2020-2021人教版七年级数学下学期月考试卷

合集下载

2020-2021学年福建省龙岩市漳平市七年级(下)第二次月考数学试卷(附答案详解)

2020-2021学年福建省龙岩市漳平市七年级(下)第二次月考数学试卷(附答案详解)

2020-2021学年福建省龙岩市漳平市七年级(下)第二次月考数学试卷一、选择题(本大题共10小题,共40.0分)1. 下列方程组中,是二元一次方程组的是( )A. {x +4y =41x +2y =9B. {x +2y =5y +3z =7C. {x =1x −4y =6D. {x −y =4xyx −2y =1 2. 方程组{x +y =102x +y =16的解是( ) A. {x =6y =4 B. {x =5y =6 C. {x =3y =6 D. {x =2y =8 3. 利用加减消元法解方程组{2x +5y =−10 ①5x −3y =6 ②,下列做法正确的是( ) A. 要消去y ,可以将①×5+②×2B. 要消去x ,可以将①×3+②×(−5)C. 要消去y ,可以将①×5+②×3D. 要消去x ,可以将①×(−5)+②×24. 若方程mx +ny =6的两个解是{x =1y =1,{x =2y =−1,则m ,n 的值为( ) A. 4,2 B. 2,4 C. −4,−2 D. −2,−45. 若m >n ,则下列不等式正确的是( )A. m −2<n −2B. m 4>n 4C. 6m <6nD. −8m >−8n6. 若方程组{4x +3y =1ax +(a −1)y =3的解x 与y 相等,则a 的值等于( ) A. 4 B. 10 C. 11 D. 127. x 的2倍减去7的差不大于−1,可列关系式为( )A. 2x −7≤−1B. 2x −7<−1C. 2x −7=−1D. 2x −7≥−18. 购买铅笔7支,作业本3本,圆珠笔1支共需3元;购买铅笔10支,作业本4本,圆珠笔1支共需4元,则购买铅笔11支,作业本5本,圆珠笔2支共需( )A. 4.5元B. 5元C. 6元D. 6.5元9. 某抗战纪念馆馆长找到大学生团干部小张,联系青年志愿者在周日参与活动,活动累计56个小时的工作时间,需要每名男生工作5个小时,每名女生工作4个小时,小张可以安排学生参加活动的方案共有( )A. 1种B. 2种C. 3种D. 4种10. 如图,在正方形ABCD 的每个顶点上写一个数,把这个正方形每条边的两端点上的数加起来,将和写在这条边上,已知AB 上的数是3,BC 上的数是7,CD 上的数是12,则AD 上的数是( )A. 2B. 7C. 8D. 15二、填空题(本大题共6小题,共24.0分)11. 已知{x +2y =2020y +2z =2021z +2x =2022,则x +y +z 的值______.12. 如果4x a+2b−5−2y 3a−b−3=8是二元一次方程,那么a −b =___.13. 已知关于x ,y 的二元一次方程组{2x +3y =k x +2y =−1的解互为相反数,则k 的值是______. 14. 若a −3b =2,3a −b =6,则b −a 的值为______.15. 已知a >b ,则−12a +c ______−12b +c(填>、<或=).16. 爸爸沿街匀速行走,发现每隔7分钟从背后驶过一辆103路公交车,每隔5分钟从迎面驶来一辆103路公交车,假设每辆103路公交车行驶速度相同,而且103路公交车总站每隔固定时间发一辆车,那么103路公交车行驶速度是爸爸行走速度的______倍.三、解答题(本大题共9小题,共86.0分)17. 用不等式表示.(1)m 与3的和是负数;(2)x 减去8的差大于4;(3)a 的2倍大于或等于6;(4)x 与y 的和不大于−2.18. 解方程组{0.2x +0.6y =1.50.15x −0.3y =0.5.19. 已知y =ax 2+bx +c ,当x =1时,y =0;当x =2时,y =5;当x =−3时,y =0,求a ,b ,c 的值.20. 已知{x =3y =−2是方程组{ax +by =3bx +ay =−7的解,求代数式(a +b)(a −b)的值.21. 根据不等式的性质,把下列不等式化成x >a 或x <a 的形式.(1)x +7>9;(2)6x<5x−3;(3)15x<25;(4)−23x>−1.22.为了提高市民的环保意识,倡导“节能减排、绿色出行”,某市计划在城区投放一批“共享单车”.这批单车分为A、B两种不同款型,其中A型车单价400元,B型车单价320元.今年年初,“共享单车”试点投放在某市中心城区正式启动,投放A、B两种款型的单车共100辆,总价值36800元,试问本次投放的A型车与B型车各多少辆?23.为确保信息安全,在传输时往往需加密,发送方发出一组密码a,b,c时,则接收方对应收到的密码为A,B,C.双方约定:A=2a−b,B=2b,C=b+c,例如发出1,2,3,则收到0,4,5(1)当发送方发出一组密码为2,3,5时,则接收方收到的密码是多少?(2)当接收方收到一组密码2,8,11时,则发送方发出的密码是多少?24.小亮在匀速行驶的汽车里,注意到公路里程碑上的数如下表所示:那么小亮在12:00时看到的两位数是______,并写出解答过程.25.小明同学四次到某超市购买A,B两种商品,其中有两次是有折扣的,购买数量及消费金额如下表所示:解答下列问题:(1)第______次购买有折扣;(2)求A、B两种商品的原价;(3)若A、B两种商品折扣数不变,求A、B两种商品的折扣数各是多少.答案和解析1.【答案】C【解析】解:A 、1x 与2y 是分式,故该选项错误;B 、有三个未知数,故该选项错误;C 、符合二元一次方程组的定义;D 、第一个方程中的xy 是二次的,故该选项错误.故选:C .组成二元一次方程组的两个方程应共含有两个未知数,且未知数的项最高次数都应是一次的整式方程.本题考查了二元一次方程组的定义.一定要紧扣二元一次方程组的定义“由两个二元一次方程组成的方程组”,细心观察排除,得出正确答案.2.【答案】A【解析】解:{x +y =10 ①2x +y =16 ②, ②−①得:x =6,把x =6代入①得:y =4,则方程组的解为{x =6y =4, 故选:A .方程组利用加减消元法求出解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.3.【答案】D【解析】【分析】方程组利用加减消元法求出解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.【解答】解:利用加减消元法解方程组{2x +5y =−10 ①5x −3y =6 ②, 要消去x ,可以将①×(−5)+②×2.故选:D .4.【答案】A【解析】【分析】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值. 将x 与y 的两对值代入方程计算即可求出m 与n 的值.【解答】解:将{x =1y =1,{x =2y =−1分别代入mx +ny =6中, 得:{m +n =6 ①2m −n =6 ②, ①+②得:3m =12,即m =4,将m =4代入①得:n =2,故选:A .5.【答案】B【解析】【分析】本题主要考查不等式的性质,解题的关键是掌握不等式的基本性质,尤其是性质:不等式的两边同时乘以(或除以)同一个正数,不等号的方向不改变;不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.将原不等式两边分别都减2、都除以4、都乘以6、都乘以−8,根据不等式的基本性质逐一判断即可得.【解答】解:A 、将m >n 两边都减2得:m −2>n −2,此选项错误;B 、将m >n 两边都除以4得:m 4>n 4,此选项正确;C 、将m >n 两边都乘以6得:6m >6n ,此选项错误;D 、将m >n 两边都乘以−8,得:−8m <−8n ,此选项错误;故选:B .6.【答案】C【解析】解:根据题意得:{4x +3y =1(1)ax +(a −1)y =3(2)x =y(3),把(3)代入(1)解得:x =y =17,代入(2)得:17a +17(a −1)=3,解得:a =11.故选:C .理解清楚题意,运用三元一次方程组的知识,解出a 的数值.本题的实质是解三元一次方程组,用加减法或代入法来解答.7.【答案】A【解析】解:根据题意,得2x −7≤−1.故选:A .理解:不大于−1,即是小于或等于−1.本题考查把文字语言的不等关系转化为用数学符号表示的不等式.8.【答案】B【解析】解:设铅笔的单价是x 元,作业本的单价是y 元,圆珠笔的单价是z 元.购买铅笔11支,作业本5本,圆珠笔2支共需a 元.则由题意得{7x +3y +z =3 ①10x +4y +z =4 ②11x +5y +2z =a ③由②−①得3x +y =1 ④由②+①得17x +7y +2z =7 ⑤由⑤−④×2−③得0=5−a∴a =5故选:B .首先假设铅笔的单价是x 元,作业本的单价是y 元,圆珠笔的单价是z 元.购买铅笔11支,作业本5本,圆珠笔2支共需a 元.根据题目说明列出方程组{7x +3y +z =3 ①10x +4y +z =4 ②11x +5y +2z =a ③,解方程组求出a 的值,即为所求结果.解答此题的关键是列出方程组,用加减消元法求出方程组的解.9.【答案】B【解析】解:设安排女生x 人,安排男生y 人,依题意得:4x +5y =56,则x =56−5y 4.当y =4时,x =9.当y =8时,x =4.即安排女生9人,安排男生4人;安排女生4人,安排男生8人.共有2种方案.故选:B .设安排女生x 人,安排男生y 人,由“累计56个小时的工作时间”列出方程求得正整数解.考查了二元一次方程的应用.注意:根据未知数的实际意义求其整数解.10.【答案】C【解析】【分析】此题主要考查了方程组的应用,注意利用整体思想求出x +z 的值是解题关键.根据题意首先设A 点数为x ,B 点数为y ,则C 点数为7−y ,D 点数为z ,得出x +y =3①,z +7−y =12②,从而得出x +z 的值.【解答】解:设A 点数为x ,B 点数为y ,则C 点数为7−y ,D 点数为z ,根据题意可得:x +y =3①,C 点数为7−y ,故z +7−y =12②,故①+②得:x +y +z +7−y =12+3,故x +z =8,即AD 上的数是:8.故选C .11.【答案】2021【解析】解:{x +2y =2020①y +2z =2021②z +2x =2022③,①+②+③得:3x +3y +3z =6063,则x +y +z =2021.故答案为:2021.方程组三个方程相加求出所求即可.此题考查了解三元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.12.【答案】0【解析】【分析】本题主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.根据二元一次方程的定义即可得到x 、y 的次数都是1,则得到关于a ,b 的方程组求得a ,b 的值,则代数式的值即可求得.【解答】解:根据题意得:{a +2b −5=13a −b −3=1, 解得:{a =2b =2. 则a −b =0.故答案为:0.13.【答案】−1【解析】解:解方程组{2x +3y =k x +2y =−1得:{x =2k +3y =−2−k , 因为关于x ,y 的二元一次方程组{2x +3y =k x +2y =−1的解互为相反数, 可得:2k +3−2−k =0,解得:k =−1.故答案为:−1.将方程组用k 表示出x ,y ,根据方程组的解互为相反数,得到关于k 的方程,即可求出k 的值.此题考查方程组的解,关键是用k 表示出x ,y 的值.14.【答案】−2【解析】解:由题意知{a −3b =2①3a −b =6②, ①+②,得:4a −4b =8,则a −b =2,∴b −a =−2,故答案为:−2.本题主要考查解二元一次方程组,解题的关键是掌握等式的基本性质的灵活运用.将两方程相加可得4a −4b =8,再两边都除以4得出a −b 的值,继而由等式的性质和相反数定义即可得出答案.15.【答案】<【解析】解:∵a >b ,∴−12a <−12b ,∴−12a +c <−12b +c .不等式两边加或减某个数或式子,乘或除以同一个正数,不等号的方向不变;不等式两边乘或除以一个负数,不等号的方向改变.主要考查了不等式的基本性质.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.16.【答案】6【解析】解:设103路公交车行驶速度为x 米/分钟,爸爸行走速度为y 米/分钟,两辆103路公交车间的间距为s 米,根据题意得:{7x −7y =s 5x +5y =s解得:x =6y .故答案为:6.设103路公交车行驶速度为x 米/分钟,爸爸行走速度为y 米/分钟,两辆103路公交车间的间距为s 米,根据“每隔7分钟从背后驶过一辆103路公交车,每隔5分钟从迎面驶来一辆103路公交车”,即可得出关于x 、y 的二元一次方程组,消去s 即可得出x =6y ,此题得解.本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.17.【答案】解:(1)m +3<0;(2)x −8>4;(3)2a ≥6;(4)x +y ≤−2.【解析】直接利用负数的定义以及结合不等关系得出不等式即可.此题主要考查了由实际问题抽象出一元一次不等式,正确掌握相关定义是解题关键.18.【答案】解:{0.2x +0.6y =1.5①0.15x −0.3y =0.5②, ②×2+①,得0.5x =2.5,解得:x =5,把x =5代入①,得1+0.6y =1.5,解得:y =56,所以原方程组的解为{x =5y =56.【解析】②×2+①得出0.5x =2.5,求出x ,再把x =5代入①求出y 即可.此题主要考查了解二元一次方程组的方法,要熟练掌握,注意代入消元法和加减消元法的应用.19.【答案】解:由题意,得{a +b +c =0①4a +2b +c =5②9a −3b +c =0③,②−①得:3a +b =5④,③−①得:8a −4b =0,即2a −b =0⑤,④+⑤得:5a =5,解得:a =1,把a =1代入④得:3+b =5,解得:b =2,把a =1,b =2代入①得:1+2+c =0,解得:c =−3,则方程组的解{a =1b =2c =−3.【解析】把x 与y 的值代入y =ax 2+bx +c 得到方程组,求出方程组的解即可.此题考查了解三元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.【答案】解:把{x =3y =−2代入方程组得:{3a −2b =3①3b −2a =−7②, ①+②得:a +b =−4,①−②得:5a −5b =10,即a −b =2,则(a +b)(a −b)=(−4)×2=−8.【解析】把x 与y 的值代入方程组求出a 与b 的值,把a +b =−4,a −b =2代入原式计算即可求出值.此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.21.【答案】解:(1)∵x +7>9,∴x >2.(2)∵6x <5x −3,∴6x −5x <−3.∴x <−3.(3)∵15x <25, ∴15x ×5<25×5. ∴x <2.(4)∵−23x >−1,∴−2x >−3.∴x <32.【解析】(1)根据不等式的性质(不等式两边减去同一个数,不等号方向不变)解决此题.(2)根据不等式的性质(不等式两边加上同一个数,不等号方向不变;不等式两边同时除以一个不为0的数,不等号方向不变)解决此题.(3)根据不等式的性质(不等式两边同乘一个不为0的数,不等号方向不变)解决此题.(4)根据不等式的性质(不等式两边同时乘或除不为0的正数,不等号方向不变;不等式两边同乘或除不为0的负数,不等号方向不变)解决此题.本题主要考查不等式的非负性,熟练掌握绝对值的非负性是解决本题的关键.22.【答案】解:设本次投放的A 型车为x 辆,B 型车为y 辆,根据题意,得:{x +y =100400x +320y =36800, 解得:{x =60y =40, 答:本次投放A 型车60辆,B 型车40辆.【解析】设本次投放的A 型车为x 辆,B 型车为y 辆,由题意:A 型车单价400元,B 型车单价320元.投放A 、B 两种款型的单车共100辆,总价值36800元,列出二元一次方程组,解方程组即可.本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.23.【答案】解:(1)由题意得:{2×2−3=A B =2×3C =3+5,解得:A =1,B =6,C =8,答:接收方收到的密码是1、6、8;(2)由题意得:{2a −b =22b =8b +c =11,解得:a =3,b =4,c =7,答:发送方发出的密码是3、4、7.【解析】(1)根据题意可得方程组,再解方程组即可.(2)根据题意可得方程组,再解方程组即可.此题主要考查了方程组的应用,关键是正确理解题意,根据密文与明文之间的关系列出方程组.24.【答案】27;解:设第一次他看到的两位数的个位数为x ,十位数为y ,汽车行驶速度为v ,根据题意得:{10x +y −(10y +x)=v 100y +x −(10y +x)=4v, 解得:x =72y ,∵x ,y 为1~9的自然数,∴x =7,y =2.答:小亮在12:00时看到的两位数是27.【解析】本题考查了三元一次方程组的应用,解题关键是弄清题意,合适的等量关系,列出方程组.本题涉及一个常识问题:两位数=10×十位数字+个位数字,并且在求两位数或三位数时,一般是不能直接设这个两位数或三位数的,而是设它各个数位上的数字为未知数.设第一次他看到的两位数的个位数为x ,十位数为y ,汽车行驶速度为v ,第一次看到的两位数为10y +x ,行驶一小时后看到的两位数为10x +y ,第三次看到的三位数为100y +x ,由汽车均速行驶可得16时行驶的路程,即可列出两个方程求解得出x =72y ,再根据x 、y 都为1~9的自然数,即可判断出答案.25.【答案】三、四【解析】解:(1)由题意得:第三、四次购买有折扣,故答案为:三、四;(2)设A 商品的原价为x 元,B 商品的原价为y 元,根据题意,得:{4x +5y =3202x +6y =300, 解得:{x =30y =40, 答:A 商品的原价为30元,B 商品的原价为40元;(3)设A 商品折扣数为m 折,B 商品折扣数为n 折,根据题意,得:{5×30×m 10+7×40×n 10=2584×30×m 10+7×40×n 10=240, 解得:{m =6n =6, 答:A 商品折扣数为6折,B 商品折扣数为6折.(1)由表中数据即可得出结论;(2)设A 商品的原价为x 元,B 商品的原价为y 元,由表中数据列出二元一次方程组,解方程组即可;(3)设A 商品折扣数为m 折,B 商品折扣数为n 折,由(2)的结果结合表中数据列出二元一次方程组,解方程组即可.本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.。

四川省达州市第一中学校2020-2021学年下学期第一次月考七年级数学试卷 解析版

四川省达州市第一中学校2020-2021学年下学期第一次月考七年级数学试卷  解析版

2020-2021学年四川省达州一中七年级(下)第一次月考数学试卷一、选择题(每小题3分,共30分)1.用科学记数法表示0.0000907,得()A.9.07×10﹣4B.9.07×10﹣5C.9.07×10﹣6D.9.07×10﹣7 2.下列计算正确的是()A.(x3)2=x6B.y3÷y3=y C.3m+3n=6mn D.a2•a3=a63.若a m=4,a n=6,则a m+n=()A.B.C.10D.244.某同学在计算﹣3x2乘一个多项式时错误的计算成了加法,得到的答案是x2﹣x+1,由此可以推断正确的计算结果是()A.4x2﹣x+1B.x2﹣x+1C.﹣12x4+3x3﹣3x2D.无法确定5.下列运算中,不能用平方差公式运算的是()A.(﹣b﹣c)(﹣b+c)B.﹣(x+y)(﹣x﹣y)C.(x+y)(x﹣y)D.(x+y)(2x﹣2y)6.若x+y=3且xy=1,则代数式(1+x)(1+y)的值等于()A.﹣1B.1C.3D.57.下列各式:①﹣(﹣a3)4=a12②(﹣a n)2=(﹣a2)n③(﹣a﹣b)3=(a+b)3④(a﹣b)4=(﹣a+b)4其中正确的个数是()A.1B.2C.3D.48.若x2+2(m﹣1)x+16是完全平方式,则m的值为()A.±8B.﹣3或5C.﹣3D.59.(2+1)(22+1)(24+1)…(232+1)﹣1的个位数字()A.2B.4C.6D.810.一个自然数若能表示为相邻两个自然数的平方差,则这个自然数称为智数,比如:22﹣12=3,3就是智数,从0开始,不大于2021的智数共有()A.1009B.1010C.1011D.以上都不对二、填空题(每小题3分,共18分)11.若(x﹣4)0有意义,则x的取值范围是.12.计算的值是.13.已知(x+1)(x﹣4)=x2+px﹣4,则p的值是.14.若x=3m+2,y=9m,则用x的代数式表示y为.15.已知a﹣b=4,则=.16.已知m2﹣4m+1=0,则代数式值=.三、解答题(满分72分)17.(8分)计算:(1);(2)20202﹣2019×2021(用乘法公式简算).18.(8分)计算:(1)(ab2)2⋅(﹣a3b)3÷(﹣5ab);(2)(2x﹣y﹣3)(2x+y+3).19.(8分)解方程:(1)2x﹣2﹣26=192;(2)(x﹣1)(x+8)﹣x(x+3)=0.20.(10分)(1)先化简,再求值:(x+2y)(x﹣2y)+(20xy3﹣8x2y2)÷4xy,其中x=2019,y=2020;(2)已知(2a﹣1)2+|b+3|=0,求[(a2+b2)﹣(a﹣b)2+2b(a﹣b)]÷(﹣2b)的值.21.(6分)若多项式x2+mx﹣8和x2﹣3x+n的的乘积中不含x2和x3的项,求m+n的值.22.(6分)若x2+2x﹣4=(x﹣a)2+b.(1)a=,b=.(2)当x=时,代数式x2﹣2x﹣4有最小值,最小值是.(3)求代数式﹣x2﹣4x﹣8的最大值是.23.(8分)因为(x+3)(x﹣2)=x2+x﹣6,所以(x2+x﹣6)÷(x﹣2)=x+3,这说明x2+x ﹣6能被x﹣2整除,同时也说明x2+x﹣6有一个因式是x﹣2时,因式x﹣2为0,那么多项式x2+x﹣6的值也为0,利用上面的结果求解:(1)多项式A能被x+4整除,商为2x﹣1,求多项式A;(2)已知x﹣2能整除x2+kx﹣14,求k的值.24.(9分)通过两种不同的方法计算同一个图形的面积,可以得到一个代数等式,例如图1可以得到(a+2b)(a+b)=a2+3ab+2b2(1)图2所表示的数学等式为.(2)利用(1)中所得到的结论,解决问题:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;(3)如图3,将两个边长分别为a和b正方形拼在一起,B、C、G三点在同一直线上,连接BD和BF,若这两个正方形的边长满足a+b=10,ab=20、求出阴影部分的面积.25.(9分)我国古代数学的许多发现都曾位居世界前列,其中“杨解三角”(如图所示)就是一例.这个三角形的构造法则为:两腰上的数都是1,其余每个数均为其上方(左右)两数之和.事实上,这个三角形给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第行的三个数1,2,1,恰好对应(a+b)2=a2+2ab+b2展开式中各项的系数;第四行的四个数1,3,3,1,恰好对应(a+b)3=a3+3a2b+3ab2+b3展开式中各项的系数等等.(1)请写出(a+b)5的展开式(a+b)5=;(2)根据规律计算:﹣45+5×44×3﹣10×43×32+10×42×32﹣5×4×34+35;(3)若;试求a1+a2+a3+…+a2017+a2018的值.2020-2021学年四川省达州一中七年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.用科学记数法表示0.0000907,得()A.9.07×10﹣4B.9.07×10﹣5C.9.07×10﹣6D.9.07×10﹣7【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:0.000 090 7=9.07×10﹣5.故选:B.2.下列计算正确的是()A.(x3)2=x6B.y3÷y3=y C.3m+3n=6mn D.a2•a3=a6【分析】直接利用同底数幂的乘除运算法则以及幂的乘方运算法则分别计算得出答案.【解答】解:A、(x3)2=x6,故此选项正确;B、y3÷y3=1,故此选项错误;C、3m+3n无法合并,故此选项错误;D、a2•a3=a5,故此选项错误;故选:A.3.若a m=4,a n=6,则a m+n=()A.B.C.10D.24【分析】直接利用同底数幂的乘法运算法则计算得出答案.【解答】解:∵a m=4,a n=6,∴a m+n=a m•a n=4×6=24,故选:D.4.某同学在计算﹣3x2乘一个多项式时错误的计算成了加法,得到的答案是x2﹣x+1,由此可以推断正确的计算结果是()A.4x2﹣x+1B.x2﹣x+1C.﹣12x4+3x3﹣3x2D.无法确定【分析】根据整式的减法法则求出多项式,根据单项式与多项式相乘的运算法则计算,得到答案.【解答】解:x2﹣x+1﹣(﹣3x2)=x2﹣x+1+3x2=4x2﹣x+1,﹣3x2•(4x2﹣x+1)=﹣12x4+3x3﹣3x2,故选:C.5.下列运算中,不能用平方差公式运算的是()A.(﹣b﹣c)(﹣b+c)B.﹣(x+y)(﹣x﹣y)C.(x+y)(x﹣y)D.(x+y)(2x﹣2y)【分析】能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反,对各选项分析判断后利用排除法.【解答】解:A、(﹣b﹣c)(﹣b+c)符合平方差公式的特点,能用平方差公式计算,故本选项不符合题意;B、﹣(x+y)(﹣x﹣y)=(x+y)(x+y),不符合平方差公式的特点,不能用平方差公式计算,故本选项符合题意;C、(x+y)(x﹣y)符合平方差公式的特点,能用平方差公式计算,故本选项不符合题意;D、(x+y)(2x﹣2y)=2(x+y)(x﹣y)符合平方差公式的特点,能用平方差公式计算,故本选项不符合题意.故选:B.6.若x+y=3且xy=1,则代数式(1+x)(1+y)的值等于()A.﹣1B.1C.3D.5【分析】利用多项式的乘法法则把所求式子展开,然后代入已知的式子即可求解.【解答】解:(1+x)(1+y)=x+y+xy+1,则当x+y=3,xy=1时,原式=3+1+1=5.故选:D.7.下列各式:①﹣(﹣a3)4=a12②(﹣a n)2=(﹣a2)n③(﹣a﹣b)3=(a+b)3④(a﹣b)4=(﹣a+b)4其中正确的个数是()A.1B.2C.3D.4【分析】根据幂的乘方法则,分别计算即可.【解答】解:①根据幂的乘方可得﹣(﹣a3)4=﹣a12,所以①错误,不符合题意;②根据幂的乘方可得(﹣a n)2=a2n,当n为偶数时,(﹣a2)n=a2n,当n为奇数时,(﹣a2)n=﹣a2n,所以②错误,不符合题意;③(﹣a﹣b)3=﹣(a+b)3,所以③错误,不符合题意;④(a﹣b)4=(﹣a+b)4,所以④正确,符合题意.故选:A.8.若x2+2(m﹣1)x+16是完全平方式,则m的值为()A.±8B.﹣3或5C.﹣3D.5【分析】由于x2+2(m﹣1)x+16是完全平方式,而16=42,然后根据完全平方公式即可得到关于m的方程,解方程即可求解.【解答】解:∵x2+2(m﹣1)x+16是完全平方式,而16=42,∴m﹣1=4或m﹣1=﹣4,∴m=5或﹣3.故选:B.9.(2+1)(22+1)(24+1)…(232+1)﹣1的个位数字()A.2B.4C.6D.8【分析】在代数式前面乘以(2﹣1),代数式的值不变,连续使用平方差公式,找到规律即可求出代数式的值;通过列举,找到2n的个位数字的循环规律即可.【解答】解:原式=(2﹣1)(2+1)(22+1)(24+1)...(232+1)﹣1=(22﹣1)(22+1)(24+1)...(232+1)﹣1=(24﹣1)(24+1)...(232+1)﹣1=264﹣1﹣1=264﹣2,∵21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,∴2n的个位数字为2,4,8,6四个数字的循环.∵64÷4=16,∴264﹣2的个位数字是4.故选:B.10.一个自然数若能表示为相邻两个自然数的平方差,则这个自然数称为智数,比如:22﹣12=3,3就是智数,从0开始,不大于2021的智数共有()A.1009B.1010C.1011D.以上都不对【分析】根据“智慧数”的定义得出智慧数的分布规律,进而得出答案.【解答】解:∵(n+1)2﹣n2=(n+1+n)(n+1﹣n)=2n+1,∴所有的奇数都是智慧数,∵2021÷2=1010......1,∴不大于2021的智慧数共有:1010+1=1011(个).故选:C.二、填空题(每小题3分,共18分)11.若(x﹣4)0有意义,则x的取值范围是x≠4.【分析】直接利用零指数幂的性质得出答案.【解答】解:若(x﹣4)0有意义,则x﹣4≠0,解得:x≠4.故答案为:x≠4.12.计算的值是.【分析】根据幂的意义和积的乘方的逆用解答.【解答】解:原式=(﹣)2020×()2020×=(﹣)2020×=(﹣1)2020×=1×=.故答案为:.13.已知(x+1)(x﹣4)=x2+px﹣4,则p的值是﹣3.【分析】将等式左侧展开,利用对应项的系数相同可求p的值.【解答】解:∵(x+1)(x﹣4)=x2﹣3x﹣4,又(x+1)(x﹣4)=x2+px﹣4,∴p=﹣3.故答案为:﹣3.14.若x=3m+2,y=9m,则用x的代数式表示y为x2﹣4x+4.【分析】根据条件求得3m=x﹣2,根据幂的乘方公式对y=9m进行变形,再整体代入求值即可.【解答】解:∵x=3m+2,∴3m=x﹣2,∴y=9m=(32)m=(3m)2=(x﹣2)2=x2﹣4x+4.故答案为:x2﹣4x+4.15.已知a﹣b=4,则=8.【分析】根据==,将a﹣b=4代入即可.【解答】解:===.故答案为:8.16.已知m2﹣4m+1=0,则代数式值=14.【分析】由m2﹣4m+1=0得出m﹣4+=0,即m+=4,再两边平方,进一步求解即可.【解答】解:∵m2﹣4m+1=0,∴m﹣4+=0,则m+=4,∴(m+)2=16,∴m2+2+=16,∴m2+=14,故答案为:14.三、解答题(满分72分)17.(8分)计算:(1);(2)20202﹣2019×2021(用乘法公式简算).【分析】(1)先根据有理数的乘方,零指数幂,负整数指数幂进行计算,再求出答案即可;(2)先变形,再根据平方差公式进行计算,再求出答案即可.【解答】解:(1)原式=﹣1+1+4=4;(2)原式=20202﹣(2020﹣1)×(2020+1)=20202﹣20202+1=1.18.(8分)计算:(1)(ab2)2⋅(﹣a3b)3÷(﹣5ab);(2)(2x﹣y﹣3)(2x+y+3).【分析】(1)根据积的乘方、同底数幂的乘除法可以解答本题;(2)根据平方差公式、完全平方式可以解答本题.【解答】解:(1)(ab2)2•(﹣a3b)3÷(﹣5ab)=a2b4•(﹣a9b3)÷(﹣5ab)==;(2)(2x﹣y﹣3)(2x+y+3).=[2x﹣(y+3)]×[2x+(y+3)]=(2x)2﹣(y+3)2=4x2﹣y2﹣6y﹣9.19.(8分)解方程:(1)2x﹣2﹣26=192;(2)(x﹣1)(x+8)﹣x(x+3)=0.【分析】(1)将方程变形为左右两边都是2为底数的幂的形式,得到指数相等即可得答案;(2)利用多项式乘以多项式化简,再按照解方程步骤即可得解.【解答】解:(1)∵2x﹣2﹣26=192,∴2x﹣2=192+64=256=28,∴x﹣2=8,∴x=10;(2)∵(x﹣1)(x+8)﹣x(x+3)=0,∴x2+7x﹣8﹣x2﹣3x=0,∴4x=8,∴x=2.20.(10分)(1)先化简,再求值:(x+2y)(x﹣2y)+(20xy3﹣8x2y2)÷4xy,其中x=2019,y=2020;(2)已知(2a﹣1)2+|b+3|=0,求[(a2+b2)﹣(a﹣b)2+2b(a﹣b)]÷(﹣2b)的值.【分析】(1)先根据多项式乘以多项式,多项式除以单项式进行计算,再合并同类项,最后求出答案即可;(2)先根据完全平方公式和单项式乘以多项式进行计算,再合并同类项,算除法,求出a、b的值,再求出答案即可.【解答】解:(1)(x+2y)(x﹣2y)+(20xy3﹣8x2y2)÷4xy=x2﹣4y2+5y2﹣2xy=x2+y2﹣2xy=(x﹣y)2,当x=2019,y=2020时,原式=(2019﹣2020)2=1;(2)[(a2+b2)﹣(a﹣b)2+2b(a﹣b)]÷(﹣2b)=(a2+b2﹣a2+2ab﹣b2+2ab﹣2b2)÷(﹣2b)=(﹣2b2+4ab)÷(﹣2b)=b﹣2a,∵(2a﹣1)2+|b+3|=0,∴2a﹣1=0且b+3=0,解得:a=,b=﹣3,当a=,b=﹣3时,原式=﹣3﹣2×=﹣4.21.(6分)若多项式x2+mx﹣8和x2﹣3x+n的的乘积中不含x2和x3的项,求m+n的值.【分析】利用多项式的乘法法则将两个多项式的乘积展开,令x2项和x3项的系数为0,结论可得.【解答】解:由题意:(x2+mx﹣8)(x2﹣3x+n)=x4﹣3x3+nx2+mx3﹣3mx2+mnx﹣8x2+24x﹣8n=x4+(m﹣3)x3+(n﹣3m﹣8)x2+(mn+24)x﹣8n.∵乘积中不含x2和x3的项,∴m﹣3=0,n﹣3m﹣8=0.∴m=3,n=17.∴m+n=20.22.(6分)若x2+2x﹣4=(x﹣a)2+b.(1)a=﹣1,b=﹣5.(2)当x=1时,代数式x2﹣2x﹣4有最小值,最小值是﹣5.(3)求代数式﹣x2﹣4x﹣8的最大值是.【分析】(1)配方确定a,b.(2)利用平方的非负性求最值.(3)配方求最值.【解答】解:(1)∵x2+2x﹣4=x2+2x+1﹣5=(x+1)2﹣5.∴a=﹣1,b=﹣5.故答案为:﹣1,﹣5.(2)∵x2﹣2x﹣4=x2﹣2x+1﹣5=(x﹣1)2﹣5,(x﹣1)2≥0.∴当x=1时,x2﹣2x﹣4有最小值﹣5.故答案为:1,﹣5.(3)﹣x2﹣4x﹣8=﹣(x2+4x+4﹣4+8)=﹣(x+2)2﹣4.∵(x+2)2≥0.∴当x=﹣2时,﹣x2﹣4x﹣8有最大值﹣4.23.(8分)因为(x+3)(x﹣2)=x2+x﹣6,所以(x2+x﹣6)÷(x﹣2)=x+3,这说明x2+x ﹣6能被x﹣2整除,同时也说明x2+x﹣6有一个因式是x﹣2时,因式x﹣2为0,那么多项式x2+x﹣6的值也为0,利用上面的结果求解:(1)多项式A能被x+4整除,商为2x﹣1,求多项式A;(2)已知x﹣2能整除x2+kx﹣14,求k的值.【分析】(1)根据被除式、除式、商的关系,可得算式(x+4)(2x﹣1),然后计算即可得到答案;(2)根据上面得出的结论,当x=2时,x2+kx﹣14=0,再求出k的值即可.【解答】解:(1)由题意,得,A=(x+4)(2x﹣1)=2x2﹣x+8x﹣4=2x2+7x﹣4;(2)∵x﹣2能整除x2+kx﹣14,∴当x﹣2=0时,x2+kx﹣14=0,当x=2时,x2+kx﹣14=4+2k﹣14=0,解得:k=5.24.(9分)通过两种不同的方法计算同一个图形的面积,可以得到一个代数等式,例如图1可以得到(a+2b)(a+b)=a2+3ab+2b2(1)图2所表示的数学等式为(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.(2)利用(1)中所得到的结论,解决问题:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;(3)如图3,将两个边长分别为a和b正方形拼在一起,B、C、G三点在同一直线上,连接BD和BF,若这两个正方形的边长满足a+b=10,ab=20、求出阴影部分的面积.【分析】(1)正方形的面积=边长×边长=各个部分面积的和.(2)代入第一问的公式即可.(3)阴影部分的面积S阴=S△BCD+S正CEFG﹣S△BGF,再根据面积公式代入求解即可.【解答】解:(1)由题意得:正方形的面积=边长×边长=各个部分面积的和,∴(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.故答案为:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.(2)∵a+b+c=11,ab+bc+ac=38,∴112=a2+b2+c2+2×38,∴a2+b2+c2=45.(3)由题意得:S阴=S△BCD+S正CEFG﹣S△BGF,∴S阴=a2+b2﹣(a+b)b=(a2﹣ab+b2)=(a2+2ab+b2﹣3ab)=(a+b)2﹣ab.∵a+b=10,ab=20,∴S阴=×102﹣×20=20.答:阴影部分的面积为20.25.(9分)我国古代数学的许多发现都曾位居世界前列,其中“杨解三角”(如图所示)就是一例.这个三角形的构造法则为:两腰上的数都是1,其余每个数均为其上方(左右)两数之和.事实上,这个三角形给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第行的三个数1,2,1,恰好对应(a+b)2=a2+2ab+b2展开式中各项的系数;第四行的四个数1,3,3,1,恰好对应(a+b)3=a3+3a2b+3ab2+b3展开式中各项的系数等等.(1)请写出(a+b)5的展开式(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5;(2)根据规律计算:﹣45+5×44×3﹣10×43×32+10×42×32﹣5×4×34+35;(3)若;试求a1+a2+a3+…+a2017+a2018的值.【分析】(1)根据“杨辉三角”给出的系数规律直接写出展开式即可;(2)根据式子规律把原式改写成(﹣4+3)5的形式计算即可;(3)根据“杨辉三角”给出的系数规律求系数和即可.【解答】解:(1)(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5;故答案为:a5+5a4b+10a3b2+10a2b3+5ab4+b5;(2)﹣45+5×44×3﹣10×43×32+10×42×32﹣5×4×34+35=(﹣4)5+5×(﹣4)4×3+10×(﹣4)3×32+10×(﹣4)2×32+5×(﹣4)×34+35=(﹣4+3)5=﹣1;(3)当x=0时,a2019=1,当x=1时,a1+a2+a3+…+a2017+a2018+a2019=1,∴a1+a2+a3+…+a2017+a2018=1﹣1=0.。

精品解析:湖南省长沙市湘郡培粹实验中学2020-2021学年七年级下学期第一次月考数学试卷(解析版)

精品解析:湖南省长沙市湘郡培粹实验中学2020-2021学年七年级下学期第一次月考数学试卷(解析版)
3.下列说法中错误的是()
A. 是0.25的一个平方根B.正数a的两个平方根的和为0
C. 的平方根是 D.当 时, 没有平方根
【答案】C
【解析】
【详解】A选项中,因为“ ”,所以A中说法正确;
B选项中,因为“正数的两个平方根互为相反数,而互为相反数的两数和为0”,所以B中说法正确;
C选项中,因为“ 平方根是 ”,所以C中说法错误;
【详解】解:由题意可知 ,解得 ,则
故点 的坐标为
故答案为
【点睛】此题考查了平面直角坐标系的性质,熟练掌握平面直角坐标系的有关性质是解题的关键.
16.定义:对于任意实数 ,有 ,例如 ,则 ________.
【答案】
【解析】
【分析】根据新定义运算法则及实数的性质即可求解.
【详解】解:根据题意可知,

湖南省长沙市湘郡培粹实验中学2020-2021学年七年级下学期第一次月考数学试卷
一、单选题(共12小题,36分)
1.在同一平面内,两条不重合直线的位置关系可能是()
A.平行或相交B.垂直或相交
C.垂直或平行D.平行、垂直或相交
【答案】A
【解析】
【分析】根据同一平面内两条不重合直线的位置关系进行判断即可.

同理可得:
∴每6个点一个循环,

∴点 的坐标是
故选A
【点睛】此题考查了平面直角坐标系中坐标规律的探索,读懂题目,利用题目所给公式是解题的关键,利用公式求出几个点的坐标,找到循环规律,利用这个规律即可求出.
二、填空题(共6小题,18分)
13.在实数π, , , , ,0.2121121112…(每两个2之间依次多一个1),无理数共有_____个.
【答案】4

2020-2021七年级下学期月考数学试卷含答案解析

2020-2021七年级下学期月考数学试卷含答案解析

一、选择题(每题3分,共24分)1.(3分)下列图形中匕1和匕2是对顶角的是()2.(3分)实数-兀,-3.14,0,V2四个数中,最小的是()A.-JiB.■3.14C.扼D.03.(3分)如图,AB II CD,AE平分ZCAB交CD于点E,A.65°B115° C.125°D.130°4.(3分)如图,点E在BC的延长线上,下列条件中不能判定AB II CD的是()A.匕3=匕4B.z1=z2C.zB=zDCED.zD+z DAB=180°5.(3分)如图,若将木条a绕点0旋转后与木条b平行,则旋转的最小角度为()q°力150。

bA.65°B.85°C.95°D.115°6.(3分)估计M+1的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间7.(3分)如图,在6X6方格中有两个涂有阴影的图形M、N,①中的图形M平移后位置如②所示,以下对图形M的平移方法叙述正确的是()z1图①图②A.向右平移2个单位,向下平移3个单位B.向右平移1个单位,向下平移3个单位C.向右平移1个单位,向下平移4个单位D.向右平移2个单位,向下平移4个单位8.(3分)如图,CD II AB,OE平分匕AOD,OF±OE, OG±CD,匕D=50°,则下列结论:®ZAOE=65°;②OF平分匕BOD;(3)zGOE=zDOF;④ZGOE=25°.其中正确的是()A.①②③B.①②④C.②③④D.①②③④二、填空题(每小题3分,共21分)9.(3分)9的算术平方根是;16的平方根是;64的立方根是.10.(3分)将命题“对顶角相等”改写成“如果…那么・•”的形式:,这个命题的逆命题是命题(填:真或假)11.(3分)如图,计划把河水引到水池A中,先作AB±CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是.12.(3分)如图,将长方形纸片ABCD折叠,使点D与点B重合,点C落在点C'处,折痕为EF.如果匕ABE=20°,那么ZEFB=度.13.(3分)如图,EF II AD,AD II BC,CE平分匕BCF, ZDAC=115°,ZACF=25°,贝l]zFEC=度.14.(3分)a、b、c是同一平面内不重合的三条直线,下列四个命题:①如果a II b,a±c,那么b±c;②如果b II a, c II a,那么b II c;③如果b±a,c±a,那么b±c;④如果b_La,c±a,那么b II c.其中真命题是(填写所有真命题的序号)15.(3分)观察下列各式的规律:三、解答题(共75分)16.(8分)计算:(1)I V3~2|-74+^27;(2)I-3|-屈+扼+(-2)2.17.(8分)求下列各式中的x.(1)4x2=81;(2)(x+1)3-27=0.18.(5分)AABC在网格中的位置如图所示,请根据下列要求作图:(1)过点C作AB的平行线;(2)过点A作BC的垂线段,垂足为D;(3)将6ABC先向下平移3格,再向右平移2格得到AEFG (点A的对应点为点E,点B的对应点为点F,点C的对应点为点G)19.(6分)如图,已矢口AB^BC,BC±CD,z1=z2.试判断BE与CF的关系,并说明你的理由.解:BE II CF.理由:•.•AB^BC,BC±CD(已知)==90°匕1=匕2•••zABC-z1=zBCD-z2,1H z EBC=z BCF20.(6分)已知2a+1的平方根为土3,a+3b-3的算术平方根为4.(1)求a,b的值;(2)求a+b的平方根.21.(6分)如图所示,点B,E分别在AC,DF±,BD, CE均与AF相交,匕1=匕2,zC=zD,求证:匕A=/F.22.(6分)请根据如图所示的对话内容回答下列问题.我有一ME方体的魔方,它的体积是216cm*123|我有体的纸盒,它的体积是600cmL纸盒Z a S|的宽与你的魔方的棱长该纸盒的长与高相等。

人教版七年级数学下学期第二次数学月考试卷【含答题卡】

人教版七年级数学下学期第二次数学月考试卷【含答题卡】

人教版七年级数学下学期第二次数学月考试卷(总分:150分,考试时间:120分钟)一、精心选一选(每小题4分,共40分)1.下列方程中,是二元一次方程的是( )A. B.C. D . 02=-y x 21=-y x 12=-y x 01=-xy 2.“与3的和不大于6”用不等式表示为( )a A. B. C. D .63<+a 63≤+a 63>+a 63≥+a 3.若,则下列不等式不成立的是( )b a <A . B . C . D .11+<+b a b a 22<b a -<-33b a <4.已知单项式 与是同类项,那么的值分别是( )322y xm -m n y x -,m n A . B . C . D .⎩⎨⎧-==13n m ⎩⎨⎧==13n m ⎩⎨⎧=-=13n m ⎩⎨⎧-=-=13n m 5.若,则的值分别为( )0)3(12=--+-+y x y x y x ,A . B . C . D .⎩⎨⎧-==12y x ⎩⎨⎧==12y x ⎩⎨⎧==21y x ⎩⎨⎧==03y x 6.二元一次方程的正整数解有( )个72=+y x A .1 B .2 C .3 D .47.若关于的不等式的解集是,则的取值范围是( )x 1)1(->-a x a 1>x a A . B . C . D .0<a 0>a 1<a 1>a 8.不等式的非负整数解有( )个x x -≤-5)1(3A .1 B .2 C .3 D .49.小明准备用22元钱买笔和笔记本,已知每支笔3元,每本笔记本2元,他买了3本笔记本后,用剩余的钱来买笔,那么他最多可以买( )支笔A .3B .4C .5D .610.已知三年前,A 的年龄是B 的年龄的5倍,现在A 的年龄是B 的年龄的4倍,则A 现在的年龄是( ) 岁.A .48B .45C .12D .9二、认真填一填(每小题4分,共24分)11.把方程化为用含的代数式来表示:= .42=-y x x y y 12.写出一个解为的二元一次方程组: .⎩⎨⎧=-=21y x13.若关于的方程的解为负数,则的取值范围是 .x 23+=+x mx m 14.某次知识竞赛共有20题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少要答对 道题.15.在实数范围内定义新运算“△”,其规则是:△=a b ba -2已知不等式△的解集为,则 .x 1≥m 1-≥x =m 16.已知为整数且关于、的二元一次方程组有整数解,m x y ⎩⎨⎧=+=-7422y x my x 则= .m 三、耐心做一做(共86分)17.(12分)解方程组:(1) (2)⎩⎨⎧=--=533y x x y 233511x y x y +=⎧⎨-=⎩18.(8分)解不等式并在数轴上表示出其解集:63)2(2<-+x x 19.(8分)已知:且当时,;当时,;b kx y +=1-=x 2=y 2=x 7-=y 求:当时,的值;2-=x y 20.(8分)甲乙两人相距6千米,两人同时出发相向而行,1小时相遇;同时出发同向而行甲3小时可追上乙,两人的平均速度各是多少?21.(8分)当为何正整数时代数式的值不小于的值?x 41+x 1312--x 22.(8分)某物流公司要将300吨货物运往某地,现有A 、B 两种型号的车可供调用,已知A型车每辆可装20吨,B 型车每辆可装15吨,在每辆车不超载的条件下,把300吨货物一次性装运完,问:在已确定调用5辆A 型车的前提下至少还需调用B 型车多少辆?23.(10分)若关于、的二元一次方程组的解满足,x y ⎩⎨⎧=++=-my x m x y 52322>+y x 求的取值范围m 24.(10分)若关于、的二元一次方程组与有相同的解,x y ⎩⎨⎧=+=+822by ax y x ⎩⎨⎧-=-=-41023ay bx y x 求的值2017)2(b a +25.(14分)某商场销售A、B两种型号的计算器,A型的计算器进价为30元/台,B型的计算器进价为40元/台,商场销售3台A型的计算器和2台B型的计算器,可获利润68元;销售2台A型的计算器和3台B型的计算器,可获利润72元;(1)求A、B两种型号的计算器在该商场的售价分别是多少元/台?(2)某天商场只有2120元的进货资金,王经理又想购进这两种型号的计算器共70台,请问:①王经理有哪几种进货方案?②王经理怎样进货可使商场销售完这70台计算器获得的利润最大?最大利润为多少?并说明理由。

2021年新版初一下学期数学月考试卷带答案汇总

2021年新版初一下学期数学月考试卷带答案汇总

2020-2021年初一下学期数学月考试卷带答案10.一个人从点A出发向北偏东60°方向走到B点,再从B点出发向南偏西15°方向走到C点,那么∠ABC等于()A.75°B.105°C.45°D.135°11.一个数的算术平方根是,则比这个数大2的数的算术平方根是()A. B. C. D.12.下列说法正确的个数是()①同位角相等;②过一点有且只有一条直线与已知直线垂直;③过一点有且只有一条直线与已知直线平行;④三条直线两两相交,总有三个交点;⑤若∥b,b∥c,则a∥c。

A.1个B.2个C.3个D. 4个二、填空题(每小题4分,共24分)13.16的平方根是,的算术平方根是。

14.比较大小:。

15.如图,已知B、C、E在同一条直线上,且CD∥AB,若∠A=105°,∠B=40°,则∠ACE= 。

16.如图,AB∥CD,BC∥DE,若∠B=50°,则∠D的度数是。

17.用“×”定义新运算:对于任意实数、,都有,例如:,那么;当为实数时,。

18.如图,一个含有30°角的直角三角形的两个顶点放在一个长方形的对边上,若∠1=25°,则∠2=。

三、解答题。

(共78分)19.(10分)计算。

20.(10分)求。

(1)(2)21.(8分)分别根据已知条件进行推理,得出结论,并说明理由。

(1)∵AB∥CD(已知),∴∠=∠,∠=∠()(2)∵AD∥BC(已知),∴∠=∠,∠=∠。

()(3)∵AD∥BC(已知),∴∠BAD+∠=180°()∵AB∥CD(已知),∴∠BCD+∠=180°()∴∠=∠(同角的补角相等)。

22.(8分)如图所示,已知∠1=40°,OE ⊥CD,OF⊥AB,求∠BOE 的度数。

23.(10分)如图,∠1=100°,∠2=100°,∠3=120°,求∠4的度数。

七年级数学月考试卷含解析试题(共25页)

七年级数学月考试卷含解析试题(共25页)

漳浦县2021-2021学年(xuénián)七年数学下学期月考试卷一、单项选择题〔一共14题;一共56分〕1.以下图案中,不是轴对称图形的是〔〕A. B.C.D.2.三角形两边的长分别是4和10,那么此三角形第三边的长可能是〔〕A. 5B. 6C. 11 D. 163小明不慎将一块三角形的玻璃碎成如下图的四块〔图中所标1、2、3、4〕,你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带第_____块去,这利用了三角形全等中的_____原理〔〕A. 2;SAS B. 4;ASA C. 2;AAS D. 4;SAS4如图,AD⊥BC于D,BE⊥AC于E,CF⊥AB于F,GA⊥AC于A,那么△ABC 中,AC边上的高为〔〕A. ADB. GAC. BED. CF 5如图,有一池塘,要测池塘两端A,B的间隔,可先在平地上取一个直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE=CB,连接DE,那么量出DE的长,就是A、B的间隔.我们可以证明出△ABC≌△DEC,进而得出AB=DE,那么断定(duàndìng)△ABC和△DEC全等的根据是〔〕A. SSSB. SASC. ASAD. AAS6李教师用直尺和圆规作角的平分线.作法:①以点O为圆心,适当长为半径画弧,交OA于点D,交OB于点E②分别以点D、E为圆心,大于 DE的长为半径画弧,两弧在∠AOB的内部相交于点C.③画射线OC,那么OC就是∠AOB的平分线.李教师用尺规作角平分线时,用到的三角形全等的断定方法是〔〕A. SSSB. SASC. ASAD. AAS7如图,△ABC中,AB的垂直平分线DE交AB于E,交BC于D,假设AC=6,BC=10,那么(nà me)△ACD的周长为〔〕A. 16B. 14C. 12D. 108如图,△ABC和△A′B′C′关于直线对称,以下结论中:①△ABC≌△A′B′C′;②∠BAC′=∠B′AC;③l垂直平分CC′;④直线BC和B′C′的交点不一定在l上,正确的有〔〕A. 4个 B. 3个 C. 2个 D. 1个9如图,在△ABC中,∠ABC=50°,AD,CD分别(fēnbié)平分∠BAC,∠ACB,那么∠ADC等于〔〕A. 125°B. 105°C. 115°D. 100°10如图,∠CAB=∠DB A,添加一个条件使△CAB≌△DBA,以下错误的选项是〔〕A. ∠CBA=∠DABB. ∠C=∠DC. AC=BDD. C B=DA11有以下命题说法:其中正确的有〔〕①锐角三角形中任何两个角的和大于90°;②等腰三角形的高、中线、角平分线互相重合③角的对称轴是角平分线;④等腰三角形中有一个是40°,那么它的底角是70°;⑤一个(yī ɡè)三角形中至少有一个角不小于60度.6〕等腰三角形一定是锐角三角形;7〕三角形的内角平分线、中线、高都是线段;8〕三角形的三条高一定都在三角形的内部12如图,在△ABC中,AB=AC,D为BC上一点,且DA=DC,BD=BA,那么∠B的大小为〔〕A. 40°B. 36°C. 30°D. 25°13,如图,点P关于OA、OB的对称点分别是P1, P2,分别交OA、OB于C,D,P1P2=6cm,那么△PCD的周长为〔〕 1314A. 3cmB. 6cmC. 12cmD. 无法确定14.如图为6个边长相等的正方形的组合图形,那么∠1+∠2+∠3=〔〕A. 90°B. 120°C. 135°D. 150°二、填空题〔一共(yīgòng)6题;一共24分〕15一个等腰三角形的边长分别是和,那么它的周长是_______cm.16如图,为了防止门板变形,小明在门板上钉了一根加固木条,从数学的角度看,这样做的理由是利用了三角形的________。

2020-2021学年度七年级数学下册第三次月考试题卷(附答案)

2020-2021学年度七年级数学下册第三次月考试题卷(附答案)

七年级数学下册第三次月考试题卷满分:150分考试用时:120分钟范围:第一章《整式的乘除》~第四章《三角形》班级姓名得分一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置作答,每小题3分,共30分.1.下列运算正确的是()A. (−x)2·x3=x6B. (−x)3÷x=x2C. 3x2yz÷(−xy)=−3xzD. (a−b)6÷(a−b)3=a3−b32.如图,点F,E分别在线段AB和CD上,下列条件能判定AB//CD的是()A. ∠1=∠2B. ∠1=∠4C. ∠4=∠2D. ∠3=∠43.有一辆汽车储油45升,从某地出发后,每行驶1千米耗油0.1升,如果设剩余油量为(升,行驶的路程为(千米),则与的关系式为A. y=45−0.1xB. y=45+0.1xC. y=45−xD. y=45+x4.已知BD是△ABC的中线,AB=4,AC=3,BD=5,则△ABD的周长为()A.12B. 10.5C. 10D. 8.55.如图,已知△ABC的六个元素,而在图甲、乙、丙中,仅已知甲、乙、丙三个三角形中某些元素,则与△ABC一定全等的三角形是()A. 甲和乙B. 乙和丙C. 只有乙D. 只有丙6.2020年初以来,红星消毒液公司生产的消毒液在库存量为m吨的情况下,日销售量与产量持平.自1月底抗击“新冠病毒”以来,消毒液需求量猛增,该厂在生产能力不变的情况下,消毒液一度脱销,下面表示2020年初至脱销期间,该厂库存量y(吨)与时间t(天)之间关系的大致图象是()A. B. C. D.7.下列说法中正确的是()A. 如果|x|=7,那么x一定是7B. −a表示的数一定是负数C. 射线AB和射线BA是同一条射线D. 一个锐角的补角比这个角的余角大90°8.设a=355,b=444,c=533,则a、b、c的大小关系是()A. c<a<bB. a<b<cC. b<c<aD. c<b<a9. 如果二次三项式x 2−14x +m 2是一个完全平方式,那么m 的值是( ) A. 7 B. ±7 C. 49 D. √1410. 如图,在长方形ABCD 中,AB =6cm ,BC =8cm ,点E 是AB 上的一点,且AE =2BE.点P 从点C 出发,以2cm/s 的速度沿点C −D −A −E 匀速运动,最终到达点E.设点P 运动时间为ts ,若三角形PCE 的面积为18cm 2,则t 的值为( )A. 98或194B. 98或194或274C. 94或6 D. 94或6或274 二、填空题(本大题共5小题,共20.0分)11. 如图,已知BD 是△ABC 的中线,AB =5,BC =3,△ABD 和△BCD 的周长的差是 .12. 某汽车生产厂对其生产的A 型汽车进行油耗试验,试验中汽车为匀速行驶,在行驶过程中,油箱的余油量y(升)与行驶时间t(小时)之间的关系如下表:t(小时)0 1 2 3 y(升) 120 112 104 96由表格中y 与t 的关系可知,当汽车行驶 小时时,油箱的余油量为0升. 13. 如图,点O 在直线AB 上,OC ⊥OD ,OC ,OF 分别平分∠AOE 和∠BOD.若∠AOC =20∘,则∠BOF 的度数为 .14. 若2x =5,2y =1,2z =6.4,则x +y +z = .15. 如图所示,与∠A 是同旁内角的角共有______个.三、解答题(本大题共10小题,共100.0分)16. (8分)化简(2a +b)(b −2a)−(a −2b)2+4a(a −b)中,其中a =3,b =−217. (10分)如图,点O 是直线AB 上任一点,射线OD 和射线OE 分别平分∠AOC 和∠BOC .(1)填空:与∠AOE 互补的角有______;(2)若∠COD =30°,求∠DOE 的度数;(3)当∠AOD =α°时,请直接写出∠DOE 的度数.18.(10分)如图,四边形ABCD中,AB//CD,CD=AD,∠ADC=60°,对角线BD平分∠ABC交AC于点P.CE是∠ACB的角平分线,交BD于点O.(1)请求出∠BAC的度数;(2)试用等式表示线段BE、BC、CP之间的数量关系,并说明理由.19.(10分)如图,在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一直线上,连接BD.(1)△BAD与△CAE全等吗?为什么?(2)试猜想BD,CE有何特殊位置关系,并说明理由.20.(10分)棱长为a的小正方体,按照下图的方法继续摆放,自上而下分别叫第一层、第二层、…、第n层.第n层的小正方体的个数记为S.解答下列问题:(1)按要求填写下表:n1234…S13…(2)研究上表可以发现S随n的变化而变化,且S随n的增大而增大有一定的规律,请你用式子来表示S与n的关系,并计算当n=10时,S的值为多少?21.(8分)如图,直线AB,CD相交于点O,∠1=35∘,∠2=75∘,求∠EOB的度数.22.(10分)数学课上,老师出了这样一道题:先化简,再求值:(2x+y)(2x−y)−(2x−y)2+2y2,其中xy=2021.小亮一看,题中没有给出x和y的值,只给出了xy的值,所以小亮认为根据题中条件不可能求出题目的值.你认为小亮的说法正确吗⋅请说明理由.23.(10分)陈杰骑自行车去上学,当他以往常的速度骑了一段路时,忽然想起要买某本书,于是又折回到刚经过的一家书店,买到书后继续赶去学校.以下是他本次上学所用的路程与时间的关系示意图.根据图中提供的信息回答下列问题:(1)陈杰家到学校的距离是多少米?书店到学校的距离是多少米?(2)陈杰在书店停留了多少分钟?本次上学途中,陈杰一共行驶了多少米?(3)在整个上学的途中哪个时间段陈杰骑车速度最快?最快的速度是多少米?(4)如果陈杰不买书,以往常的速度去学校,需要多少分钟?本次上学比往常多用多少分钟?24.(12分)在平面直角坐标系中,O为原点,点A(2,0),点B(0,3).(Ⅰ)如图①,三角形AOB的面积为______;(Ⅱ)如图②,将线段AB向右平移2个单位长度,再向上平移1个单位长度,得到线段A1B1,求三角形OA1B1的面积;(Ⅲ)如图①,在x轴上是否存在点C,使三角形ABC的面积等于6.若存在,求点C 的坐标;若不存在,请说明理由.25.(12分)如图,将一副三角板中的两块直角三角尺的直角顶点O按如图方式叠放在一起.(1)判断大小关系:∠AOD______∠BOC(填>、=、<等);(2)若∠BOD=35°,则∠AOC=____________;若∠AOC=135°,则∠BOD=__________;(3)猜想∠AOC与∠BOD的数量关系,并说明理由.答案1.C2.B3.A4.B5.B6.D7.D8.A9.B10.C11.212.1513.35°14.515.416.解:原式=b2−4a2−a2+4ab−4b2+4a2−4ab =−3b2−a2,当a=3,b=−2时,原式=−3×4−9=−12−9=−21.17.解:(1)∠BOE、∠COE;(2)∵OD、OE分别平分∠AOC、∠BOC,∠BOC,∴∠COD=∠AOD=30°,∠COE=∠BOE=12∴∠AOC=2×30°=60°,∴∠BOC=180°−60°=120°,∠BOC=60°,∴∠COE=12∴∠DOE=∠COD+∠COE=90°;(3)当∠AOD=α°时,∠DOE=90°.18.(1)解:∵CD=AD,∠ADC=60°,∴△ACD为等边三角形,∵AB//CD,∴∠ACD=60°,∴∠BAC=∠ACD=60°;(2)证明::在BC上截取BF=BE,∵BD平分∠ABC,∴∠EBO=∠OBF,∵OB=OB,∴△BEO≌△BFO(SAS),∴∠BOE=∠BOF,∵∠BAC=60°,CE是∠ACB的角平分线,∴∠OBC=∠OCB=60°,∴∠POC=∠BOE=60°,∴∠COF=60°,∴∠COF=∠POC,又∵OC=OC,∠OCP=∠OCF,∴△CPO≌△CFO(ASA),∴CP=CF,∴BC=BF+CF=BE+CP.19.解:(1)全等.因为∠BAC=∠DAE=90°,所以∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE.在△BAD和△CAE中,所以△BAD≌△CAE(SAS).(2)BD,CE的特殊位置关系为BD⊥CE.理由:由(1)知△BAD≌△CAE,所以∠ADB=∠E.因为∠DAE=90°,所以∠E+∠ADE=90°.所以∠ADB+∠ADE=90°,即∠BDE=90°.所以BD,CE的特殊位置关系为BD⊥CE.20.解:(1)6,10(2)S=n(n+1).2=55.当n=10时,S=10×(10+1)221.解:因为∠1与∠DOB是对顶角,所以∠DOB=∠1=35∘.又因为∠2=75∘,所以∠EOB=∠2+∠DOB=75∘+35∘=110∘.22.解:不正确.理由如下:因为(2x+y)(2x−y)−(2x−y)2+2y2=4x2−y2−4x2+4xy−y2+2y2=4xy.所以,当xy=2021时,原式=4×2021=8084.23.解:(1)陈杰家到学校的距离是1500米,1500−600=900(米).所以书店到学校的距离是900米.(2)12−8=4(分钟),所以陈杰在书店停留了4分钟.1200+(1200−600)+(1500−600)=2700(米),所以本次上学途中,陈杰一共行驶了2700米.(3)(1500−600)÷(14−12)=450(米/分钟),所以在整个上学的途中12分钟到14分钟时段陈杰骑车速度最快,最快的速度是450米/分钟.(4)1500÷(1200÷6)=7.5(分钟),14−7.5=6.5(分钟),所以陈杰以往常的速度去学校,需要7.5分钟,本次上学比往常多用6.5分钟.答:陈杰以往常的速度去学校,需要7.5分钟,本次上学比往常多用6.5分钟.24.解:(Ⅰ)如图①中,∵A(2,0),点B(0,3),∴OA=2,OB=3,∴S△AOB=12⋅OA⋅OB=12×2×3=3.故答案为3.(Ⅱ)如图②中,过点B1作B1E⊥x轴于E,过点A1作A1F⊥x轴于F.由题意A1(4,1),B1(2,4),∴E(2,0),F(4,0),∴OE=2,EB1=4,EF=2,A1F=1,∴S△OA1B1=S△AB1E+S梯形EFA1B1−S△OFA1=12×2×4+12×(4+1)×2−12×1×4=7.(Ⅲ)如图1−1中,存在点C.设C(m,0),由S△ABC=12×AC×OB=6,可知12×|2−m|×3=6,解得m=−2或6,∴C(−2,0)或C(6,0).25.解:(1)=;(2)145°;45°;(3)猜想:∠AOC+∠BOD=180°,理由:依题意∠AOB=∠DOC=90°,∴∠AOC+∠BOD=(∠AOB+∠BOC)+∠BOD,=∠AOB+(∠BOC+∠BOD),=∠AOB+∠DOC=90°+90°,=180°.。

安徽省舒城第二中学2020-2021学年七年级下学期月考数学试题

安徽省舒城第二中学2020-2021学年七年级下学期月考数学试题

二、填空题 11.中国抗疫取得了巨大成就,为世界各国防控疫情提供了重要借鉴和支持.新型冠状 病毒的直径为 0.00000008 0.00000012m ,把 0.00000012 用科学记数法表示: .
12. 16 的平方根是

13.运算程序如图所示,规定:从“输入一个 x 值”到“结果是否大于18 ”为一次程序操作, 如果程序操作恰好进行了 2 次后停止,那么满足条件的所有整数 x 的和是 .
(1) 22 36 3 27
0
32
(2) ( x )2 ( y2 )3 (xy)4 yx
2 x 2 3x 3
16.解不等式组:
x
4
2
x 3
1
,并求出最大整数解.
17.分解因式
(1) 4x2 64 ;
(2) 9 x2 12xy 36 y2 .
试卷第 2页,共 4页
18.先化简,再求值 2(x 1)2 3(x 3)(3 x) (x 5)(x 2) ,其中 x 2 .
方形如图乙.若图甲和图乙中阴影部分的面积分别为 1 和 13 ,则正方形 A,B 的面积之 44
和为( )
试卷第 1页,共 4页
A.3
B.3.5
C.4
D.4.5
10.已知 x2 2x 5 0 , d x4 2x3 x2 12x 6 ,则d 的值为( )
A. 9
B.14
C.19
D. 24
a2 D. a2 2
A. 22020
B. 22021
C. 22020
D.-2
8.下列运算正确的是( )
A.
a
a
b

b
b
a
=1

七年级下学期数学月考试卷真题

七年级下学期数学月考试卷真题

七年级下学期数学月考试卷一、单选题1. 下列数中,是无理数的是()A .B .C . 0.123456D . 22. 下列计算正确的是()A .B .C .D .3. 下列调查中,适宜采用全面调查方式的是()A . 了解某个班级学生的视力情况B . 调查某批次日光灯的使用寿命C . 调查市场上矿泉水的质量情况D . 调查某市成年人的学历水平4. 点在数轴上和表示2的点相距个单位长度,则点表示的数为()A . 或B .C .D .5. 已知,,则以下式子正确的是()A .B .C .D .6. 今年我市有近4万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计解析,以下说法正确的是()A . 这1000名考生是总体的一个样本B . 近4万名考生是总体C . 每位考生的数学成绩是个体D . 1000名学生是样本容量7. 已知是方程组的解,则的值是()A .B . 1C .D . 58. 《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四足五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余尺.将绳子对折再量长木,长木还剩余尺,问木长多少尺,现设绳长尺,木长尺,则可列二元一次方程组为()A .B .C .D .9. 如图,某计算器中有、、三个按键,以下是这三个按键的功能:① :将荧幕显示的数变成它的算术平方根;② :将荧幕显示的数变成它的倒数;③ :将荧幕显示的数变成它的平方.小明输入一个数据后,按照以下步骤操作,依次按照从第一步到第三步循环按键.若一开始输入的数据为10,那么第2020步之后,显示的结果是()A . 100B . 1C . 0.01D . 10二、填空题10. 的平方根是________.11. 由方程组,可得与的关系是________.12. 体育老师从七年级学生中抽取40名参加全校的健身操比赛.这些学生身高(单位:)的最大值为186,最小值为155.若取组距为3,则可以分成________组.13. 为了估计一个鱼塘里鱼的数量,第一次打捞上来20条,做上记号放入水中,第二次打捞上来25条,其中4条有记号,鱼塘大约有鱼________条.14. 如图,点表示的实数是________.15. 要用20张白卡纸做长方体的包装盒,准备把这些白卡纸分成两部分,一部分张做侧面,另一部分张做底面.已知每张白卡纸可以做侧面2个,或做底面3个,如果5个侧面可以和2个底面做成一个包装盒.依题意列方程组为________.三、解答题16.(1)计算:(2)解方程:(3)解方程组:(4)解方程组:17. 在等式中,当时,;当时,.求当时,的值.18. 某工厂去年的利润(总产值总支出)为300万元,今年总产值比去年增加了20%,支出比去年减少了10%,今年的利润为810万元,去年的总产值、总支出各是多少万元?19. 调查某中学七年级学生身体素质情况,体育老师以七年级(1)班60位学生为样本进行一分钟跳绳次数测试,测试结果得出部分频数分布表和部分频数分布直方图,如下组别次数频数(人数)第1组16第2组8第3组第4组16第5组6请结合图表完成下列问题:(1)求表中的的值;(2)已知该校七年级共有学生720人,请你估计一分钟跳绳次数不低于140次的七年级学生有多少名?20. 已知,都是关于,的二元一次方程的解,且,求的值.21. 某县某包装生产企业承接了一批上海世博会的礼品盒制作业务,为了确保质量,该企业进行试生产.他们购得规格是的标准板材作为原材料,每张标准板材再按照裁法一或裁法二裁下型与型两种板材.如图甲所示.(单位)(1)列出方程(组),求出图甲中与的值;(2)在试生产阶段,若将625张标准板材用裁法一裁剪,125张标准板材用裁法二裁剪,再将得到的型与型板材做侧面和底面,刚好可以做成图乙的竖式与横式两种无盖礼品盒.求可以做竖式与横式两种无盖礼品盒各多少个?。

七年级下学期数学月考试卷(5)套真题

七年级下学期数学月考试卷(5)套真题

七年级下学期数学月考试卷(5)一、单选题1. 以下问题,适合用普查的是()A . 调查我国七年级学生的视力情况B . 调查CCTV1《中国诗词大会》的收视率C . 对乘客上飞机前进行的安全检查D . 调查某品牌笔芯的使用寿命2. 下列计算正确的是()A .B .C .D .3. 芯片是手机、电脑等高科技产品的核心部件,目前我国芯片已可采用14纳米工艺。

已知14纳米为0. 0000000 14米,数据0. 0000000 14用科学记数法表示为()A .B .C .D .4. 若3x=4,3y=6,则3x+y的值是()A . 24B . 10C . 3D . 25. 如图1,将一张长方形纸板四角各切去一个同样的正方形,制成如图2的无盖纸盒,若该纸盒的容积为4a2b则图2中纸盒底部长方形的周长为()A . 4abB . 8abC . 4a+bD . 8a+2b6. 如果二次三项式x2﹣16x+m2是一个完全平方式,那么m的值是()A . ±8B . 4C . ±4D . 87. 小刘下午5点30分放学匀速步行回家,途中路过鲜花店为过生日的妈妈选购了一束鲜花,6点20分到家,已知小刘家距学校3千米,下列图象中能大致表示小刘离学校的距离S(千米)与离校的时间t(分钟)之的关系的是()A .B .C .D .8. 我们知道,同底数幂的乘法法则为am·an=am+n(其中a≠0 ,m、n为正整数),类似地我们规定关于任意正整数m、n的一种新运算:h(m+n)=h(m)·h(n);比如h(2)=3,则h(4)=h(2+2)=3×3=9,若h(2)=k(k≠0 ),那么h(2n)·h (2020)的结果是()A . 2k+2020B . 2k+1010C . kn+1010D . 1022k9. 甲、乙两同学骑自行车从A地沿同一条路到B地,已知乙比甲先出发.他们离出发地的距离s/km和骑行时间t/h之间的函数关系如图所示.根据图象信息,以下说法错误的是()A . 他们都骑了20 kmB . 两人在各自出发后半小时内的速度相同C . 甲和乙两人同时到达目的地D . 相遇后,甲的速度大于乙的速度10. 已知,,,那么代数式的值是().A . 4B . 3C . 2D . 1二、填空题11. -12019+22020×()2021=________12. 若展开是一个二次二项式,则a=________.13. 若,,,则,,的大小关系用“连接为________.14. 若x=3m+2,y=27m﹣8,则用x的代数式表示y为________.15. 甲、乙两车分别从A,B两地同时相向匀速行驶,当乙车到达A地后,继续保持原速向远离B的方向行驶,而甲车到达B地后立即掉头,并保持原速与乙车同向行驶,经过15小时后两车同时到达距A地300千米的C地(中途休息时间忽略不计).设两车行驶的时间为x(小时),两车之间的距离为y(千米),y与x之间的函数关系如图所示,则当甲车到达B地时,乙车距A地________千米.三、解答题16. 计算:(1)a﹣2b2•(a2b﹣2)﹣3;(2)(x﹣8y)(x﹣y);(3)3a3b•(﹣2ab)+(﹣3a2b)2;(4)(15x2y﹣10xy2)÷5xy;(5)(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2;(6)[x(x2y2﹣xy)﹣y(x2﹣x3y)]÷3xy.17. 先化简再求值:,其中,.18. “中国梦”是中华民族每个人的梦,也是每个中小学生的梦.各中小学开展经典诵读活动,无疑是“中国梦”教育这一宏大乐章里的响亮音符.某中学在全校800名学生中随机抽取部分学生进行调查,调查内容分为四种: :非常喜欢,:喜欢,:一般,:不喜欢被调查的同学只能选取其中的一种.根据调查结果,绘制出两个不完整的统计图(图形如下),并根据图中信息,回答下列问题:(1)本次调查中,一共调查了多少名学生?(2)条形统计图中,________,________;(3)在扇形统计图中,“ :喜欢”所在扇形的圆心角的度数是多少?(4)请估计该学校800名学生中“ :非常喜欢”和“ :喜欢”经典诵读的学生共有多少人?19. 小亮家距离学校8千米,昨天早晨,小亮骑车上学途中,自行车“爆胎”,恰好路边有“自行车”维修部,几分钟后车修好了,为了不迟到,他加快了骑车到校的速度.回校后,小亮根据这段经历画出如下图象.该图象描绘了小亮行的路程S与他所用的时间t之间的关系.请根据图象,解答下列问题:(1)小亮行了多少千米时,自行车“爆胎”?修车用了几分钟?(2)小亮到校路上共用了多少时间?(3)如果自行车没有“爆胎”,一直用修车前的速度行驶,那么他比实际情况早到或晚到学校多少分钟(精确到0.1)?20. 若(x2+px﹣)(x2﹣3x+q)的积中不含x项与x3项(1)求p、q的值;(2)求代数式(﹣2p2q)2+(3pq)0+p2019q2020的值21. 我们已经学习过多项式除以单项式,多项式除以多项式一般可用竖式计算,步骤如下:①把被除式、除式按某个字母作降幂接列,井把所块的项用零补齐;②用除式的第一项除以除式第一项,得到商式的第一项;③用商式的一项去乘除式,把积写在被除式下面(同类项对齐),消去相等项;④把减得的差当作新的被除式,再按照上面的方法继续演算,直到余式为零或余式的次数低于除式的次数时为止,被除式=除式×商式+余式,若余式为零,说明这个多项式能被另一个多项式整除.例如:计算(6x4﹣7x3﹣x2﹣1)÷(2x+1),可用竖式除法如图:所以6x4﹣7x3﹣x2﹣1除以2x+1,商式为3x3﹣5x2﹣2x﹣1,余式为0.根据阅读材料,请回答下列问题:(1)(x3﹣4x2+7x﹣5)÷(x﹣2)的商是________,余式是________;(2)x3﹣x2+ax+b能被x2+2x+2整除,求a,b的值.22. 如图,已知在矩形ABCD中,AD=8,CD=4,点E从点D出发,沿线段DA以每秒1个单位长的速度向点A方向移动,到达A点停止运动;同时点F从点C 出发,沿射线CD方向以每秒2个单位长的速度移动,到达D点停止运动,设点E移动的时间为t(秒).(1)当t=1时,求四边形BCFE的面积;(2)设四边形BCFE的面积为S,求S与t之间的关系式,并写出t的取值范围;(3)若F点到达D点后立即返回,并在线段CD上往返运动,当E点到达A点时它们同时停止运动,求当t为何值时,以E,F,D三点为顶点的三角形是等腰三角形,并求出此的等腰三角形的面积S△EDF.。

2020-2021学年度第一学期第二次质量调研七年级数学试卷 附参考答案

2020-2021学年度第一学期第二次质量调研七年级数学试卷  附参考答案

2020-2021学年度第一学期第二次质量调研七 年 级 数 学 试 卷(试卷总分:150分 考试时间:120分钟)一.选择题(共8小题,每小题3分,共24分) 1.﹣2020的相反数是( ) A .﹣2020B .2020C .- 12020D .120202.下列各数中,是无理数的是( ) A .0B .3.14C .13D .π3.在下列单项式中,与5xy 2是同类项的是( )A .5ab 2B .5xyC .5x 2yD .﹣7y 2x4.代数式a 2+b 2的意义是( ) A .a 、b 两数的平方和 B .a+b 的平方 C .a 、b 两数和的平方 D .以上全不对5.由6个相同的小正方体搭成的几何体如图所示,则它的主视图是( )A .B .C .D .6.下列图形中,∠1与∠2是对顶角的是( )A .B .C .D .7.按照如图所示的计算程序,若输入x ,经过第二轮程序计算之后,输出的值为- 116 ,则输入的x 值为( )A .±12B .- 12C .±14D .- 148.某一电子昆虫落在数轴上的某点K 0,从K 0点开始跳动,第1次向左跳1个单位长度到K 1,第2次由K 1向右跳2个单位长度到K 2,第3次由K 2向左跳3个单位长度到K 3,第4次由K 3向右跳4个单位长度到K 4……依此规律跳下去,当它跳第100次落下时,电子昆虫在数轴上的落点K 100表示的数恰好是2015,则电子昆虫的初始位置K 0所表示的数是( ) A .2065 B .﹣1965 C .1965 D .﹣2065 二.填空题(共8小题,每小题3分,共24分)9.如果温度上升4℃,记作+4℃,那么温度下降7℃记作 ℃. 10.若|x|=﹣(﹣8),则x = . 11.单项式- 5x 2y 3的系数是 .12.已知一个角为45°,那么这个角的补角是 度.13.如图,是一个正方体的表面展开图,则原正方体中“人”字所在的面相对的面上标的字是 .(第13题图) (第14题图)14.如图,点A 在点O 的北偏西60°的方向上,点B 在点O 的南偏东20°的方向上,那么∠AOB 的大小为 °.15.矩形长和宽分别为8cm 、6cm ,以其中一边所在直线为轴旋转一周,得到的几何体的底面积是 .16.如下表,从左向右依次在每个小格子中都填入一个有理数,使得其中任意四个相邻小格子中所填数之和都等于15.已知第3个数为7,第5个数为m ﹣1,第16个数为2,第78个数为3﹣2m ,则第2021个数为 .7m ﹣1三.解答题(共11小题,共102分) 17.(10分)计算:(1)(- 56)×(47 - 38 + 114 ). (2)(- 18)÷ 94 +(- 2)3 ×(- 12 )- (-32).18.(10分)化简、求值: (1)化简:﹣3x 2+5x ﹣12x 2+x .(2)先化简、再求值:2(x 2y ﹣xy )+3(xy ﹣x 2y )﹣4x 2y ,其中x =1,y =﹣2. 19.(10分)解方程:(1)2(2x +1)=1-5(x -2). (2)2x 0.3 -1.6x -30.6 =31x +83.20.(6分)操作:如图,已知三点A ﹑B ﹑C. (1)画线段AB ; (2)画射线AC ; (3)画直线BC.21.(6分)已知:如图,线段AB=8cm ,C 是AB 的中点,点D 在CB 上,DB=2.5cm.求线段CD 的长.22.(6分)已知:如图,直线AB 、CD 相交于点O ,∠BOD 与∠BOE 互为余角,若∠AOC=68°,求∠BOE 的度数.23.(8分)在参加植树活动中,甲班有27人,乙班有19人,现在增派20人去支援,使得甲班的人数是乙班人数的2倍,则应调往甲、乙两班各多少人? 24.(8分)学校图书馆向某班数学兴趣小组赠送图书.如果每名学生5本,那么多3本;如果每名学生7本,那么少5本.问数学兴趣小组共有学生多少名?有图书多少本? 25.(12分)李老师准备购买若干个某种笔记本奖励学生,甲、乙两家商店都有足够数量的这种笔记本,其标价都是每个6元,甲商店的促销方案是:购买这种笔记本数量不超过5个时,原价销售;超过5个时,超过部分按原价的7折销售.乙商店的销售方案是:一律按标价的8折销售. (1)(4分)若李老师要购买x (x >5)个这种笔记本,请用含x 的式子分别表示李老师到甲商店和乙商店购买全部这种笔记本所需的费用.(要求:分别列式后,再化简) (2)(4分)李老师购买多少个这种笔记本时,到甲、乙两家商店购买所需费用相同? (3)(4分)若李老师需要20个这种笔记本,则到甲、乙哪家商店购买更优惠?OCD A B E26.(12分)如图①,点O 为直线AB 上一点,过点O 作射线OC ,使∠BOC =60°,将一直角三角板的直角顶点放在点O 处,一边ON 在射线OB 上,另一边OM 在直线AB 的上方.(1)(3分)在图①中,∠COM = 度; (2)(5分)将图①中的三角板绕点O 按逆时针方向旋转,使得ON 在∠BOC 的内部,如图②,若∠NOC =16∠MOA ,求∠BON 的度数;(3)(4分)将图①中的三角板绕点O 以每秒10°的速度沿逆时针方向旋转一周,在旋转的过程中,当直线ON 恰好平分锐角∠BOC 时,旋转的时间是 秒.(直接写出结果)27.(14分)我们规定,若关于x 的一元一次方程ax =b 的解为x =b ﹣a ,则称该方程为“奇异方程”.例如:2x =4的解为x =2=4﹣2,则该方程2x =4是“奇异方程”.请根据上述规定解答下列问题: (1)(3分)判断方程5x =﹣8 (回答“是”或“不是”)“奇异方程”; (2)(3分)若a =3,有符合要求的“奇异方程”吗?若有,求b 的值;若没有,请说明理由; (3)(4分)已知关于x 的一元一次方程-3x =mn+n 是“奇异方程”,并且它的解为x =n ,求m 、n 的值; (4)(4分)若关于x 的一元一次方程2x =mn+m 和﹣2x =mn+n 都是“奇异方程”,求代数式﹣2(m+11)+4n+3[(mn+m )2﹣m]﹣12 [(mn+n )2﹣2n]的值.2020-2021学年度第一学期七年级数学第二次月考试卷(总分:150分 时间150分钟)参考答案 仅供参考一.选择题(共8小题,每小题3分,共24分)B D D ACD A C二.填空题(共8小题,每小题3分,共24分)9.- 7 10.±8 11.- 53 12.13513.中 14.140 15.36πcm 2或64πcm 216.- 5三.解答题(共12小题) 17.(10分)(1)原式=-15 (2)原式=5 18.(10分)(1)原式=- 72x 2+6x(2)原式=xy-5x 2y ,当x =1,y =-2时,原式=8. 19.(10分) (1)x =1 (2)x =71920.(6分)操作:略; 21.(6分)CD =1.5cm ; 22.(6分)∠BOE =22°; 23.(8分)应调往甲17人,乙班3人; 24.(8分)有学生4名,有图书23本; 25.(12分)(1)李老师到甲商店购买全部这种笔记本应付费:6×5+0.7×6(x-5)=4.2x+9(元); 李老师到乙商店购买全部这种笔记本应付费:0.8×6x =4.8x (元).(4分) (2)设李老师要购买x (由题可知x >5)个这种笔记本时,到甲、乙两家商店购买所需费用相同.由题意,得4.2x+9=4.8x .解得x =15.答:李老师购买15个这种笔记本时,到甲、乙两家商店购买所需费用相同.(4分) (3)李老师购买20个这种笔记本到甲商店应付费:4.2×20+9=93(元); 李老师购买20个这种笔记本到乙商店应付费:4.8×20=96(元). 因为93元<96元,所以李老师到甲商店购买更优惠.(4分) 26.(12分) (1)30 (3分) (2)∠BON =54°(5分) (3)(3)3或21(4分) 27.(14分)(1)∵5x =-8,∴x =- 85,∵﹣8-5=-13,- 85 ≠ - 13,∴5x =﹣8不是奇异方程;故答案为:不是;(2分)(2)∵一元一次方程4x =m 是“奇异方程”,∴x =m-4把x =m-4代入一元一次方程4x =m 中,得:4(m-4)=m ,解得:m = 163 ;故答案为:m = 163;(2分)(3)∵一元一次方程-3x =mn+n 是“奇异方程”,∴x =mn+n+3, 又x =n ,∴mn+n+3=n ,∴mn =-3,把x =n ,mn =-3代入一元一次方程-3x =mn+n 中,得:-3n =-3+n ,解得:n =34 ,将n =34 代入mn =-3中,得:m =-4.故答案为:m =-4,n =34 ;(3分)(4)∵一元一次方程ax =b 的解为x =b3又∵x =b ﹣a ,a =3 ∴x =b-3,∴b-3=b 3 ,解得:b =92,即b =92 时,有符合要求的“奇异方程”; (3分)(5)由题可知: mn+m =4①, mn+n =- 43②,①式减②式,得:m-n =163,∴ - 2(m+11)+4n+3[(mn+m )2-m] - 12 [(mn+n )2- 2n]=- 2m - 22 + 4n + 3(mn+m )2-3m - 12 (mn+n )2+ n=- 5(m ﹣n )﹣22+3(mn+m )2 - 12 (mn+n )2,=- 5 × 163 - 22 + 3 × 42 - 12 × (- 43 )2=- 23 - 89=- 149 .(4分)。

2020-2021学年度七年级数学下册第一次月考试卷及答案

2020-2021学年度七年级数学下册第一次月考试卷及答案

七年级数学下册第一次月考试卷满分:150分 考试用时:120分钟范围:第一章《二元一次方程组》~第二章《整式的乘法》 班级 姓名 得分第Ⅰ卷一、选择题(本大题共10小题,共40.0分)1. 已知{x =3y =−2是方程组{ax +by =2bx +ay =−3的解,则a +b 的值是( ) A. −1 B. 1 C. −5 D. 52. 下列运算中,正确的是( )A. a 6÷a 3=a 2B. (−a)6÷(−a)2=−a 4C. (a 2)3=a 6D. (3a 2)4=12a 83. 二元一次方程组{x −2y =6x =−y 的解是( ) A. {x =−2y =2 B. {x =2y =−2 C. {x =−2y =−2 D. {x =2y =2 4. 图①是一个长为2a ,宽为2b(a >b)的长方形,用剪刀沿图中虚线(对称抽)剪开,把它分成四块形状和大小都一样的小长方形,然后按图②那样拼成一个正方形,则中间空的部分的面积是( )A. abB. a 2+2ab +b 2C. a 2−b 2D. a 2−2ab +b 25. 若一个二元一次方程的一个解为{x =2y =−1,则这个方程可以是( ) A. y −x =1 B. x −y =1 C. x +y =1 D. x +2y =16. 下列整式的运算可以运用平方差公式计算的有( )①(2m +n)(n −2m);②(a 2−4b)(4b −a 2);③(x +y)(−x −y); ④(3a +b)(−3a +b)A. 1个B. 2个C. 3个D. 4个7. 小明要用40元钱买A 、B 两种型号的口罩,两种型号的口罩必须都买,40元钱全部用尽,A 型每个6元,B 型口罩每个4元,则小明的购买方案有( )种.A. 2种B. 3种C. 4种D. 5种8. 下列计算正确的是( )A. a 6+a 6=2a 12B. 2−2÷20×23=32C. (−12ab 2)⋅(−2a 2b)3=a 3b 3D. a 3⋅(−a)5⋅a 12=−a 209. 已知关于x ,y 的二元一次方程组{x +3y =4−a x −y =3a,给出下列结论中正确的是( ) ①当这个方程组的解x ,y 的值互为相反数时,a =−2;②当a =1时,方程组的解也是方程x +y =4+2a 的解;③无论a 取什么实数,x +2y 的值始终不变;④若用x 表示y ,则y =−x 2+32; A. ①② B. ②③ C. ②③④ D. ①③④10. 添加一项,能使多项式9x 2+1构成完全平方式的是( )A. 9xB. −9xC. 9x 2D. −6x第Ⅱ卷二、填空题(本大题共8小题,共32.0分)11. 若|a +b −1|+(a −b +3)2=0,则a 2−b 2=______.12. 计算:(−4)2020×0.252019=______.13. 已知关于x ,y 的方程组{x +2y =k −12x +y =5k +4的解满足x +y =5,则k 的值为______. 14. 已知:2x +3y +3=0,计算:4x ⋅8y 的值=______.15. 如图,10块相同的小长方形墙砖拼成一个大长方形,设小长方形墙砖的长和宽分别为x 厘米和y 厘米,则列出的方程组为______.16. .已知a −1a =3,那么a 2+1a 2=_______17. 在3x +2y =4中,用含x 的代数式表示y ,可得______ .18. 如果45+45+45+4535+35+35×65+65+65+65+65+6525+25=2n ,那么n =________.三、解答题(本大题共7小题,共78.0分)19. (10分)已知(x +my)(x +ny)=x 2−5xy +3y 2,求代数式(2−m)(2−n)的值.20.(10分)《孙子算经》是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48文;如果,那么乙也共有钱48文.甲、乙两人原来各有多少钱?乙得到甲所有钱的2321.(10分)清朝数学家梅文鼎的著作《方程论》中有这样一道题:山田三亩,场地六亩,共折实田四亩七分;又山田五亩,场地三亩,共折实田五亩五分,问每亩山田折实田多少,每亩场地折实田多少?译文为:假如有山田3亩,场地6亩,其产粮相当于实田4.7亩;又山田5亩,场地3亩,其产粮相当于实田5.5亩,问每亩山田和每亩场地产粮各相当于实田多少亩?请你解答.22.(10分)如图,某中学校园内有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,学校计划在中间留一块边长为(a+b)米的正方形地块修建一座雕像,然后将阴影部分进行绿化.(1)求绿化的面积.(用含a、b的代数式表示)(2)当a=2,b=4时,求绿化的面积.23.(12分)解下列各题:①(b−c+4)(c−b+4)−(b−c)2②若一个多项式除以2x2−3,得到的商为x+4,余式为3x+2,求这个多项式.24.(12分)我国传统数学名著《九章算术》记载:“今有牛五、羊二,直金十九两;牛二、羊五,直金十六两.问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值19两银子;2头牛、5只羊,值16两银子.问每头牛、每只羊分别值银子多少两?”根据以上译文,提出以下两个问题:(1)求每头牛、每只羊各值多少两银子?(2)若某商人准备用19两银子买牛和羊(要求既有牛也有羊,且银两须全部用完),请问商人有几种购买方法?列出所有的可能.25.(14分)对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如图1可以得到(a+b)2=a2+2ab+b2,请解答下列问题:(1)写出图2中所表示的数学等式______.(2)根据整式乘法的运算法则,通过计算验证上述等式.(3)利用(1)中得到的结论,解决下面的问题:若a+b+c=10,ab+ac+bc=35,则a2+b2+c2=______.(4)小明同学用图3中x张边长为a的正方形,y张边长为b的正方形z张边长分别为a、b的长方形纸片拼出一个面积为(5a+7b)(9a+4b)长方形,则x+y+z=______.答案1.A2.C3.B4.D5.C6.B7.B8.D9.D10.D11.−312.413.214.1815.{x +2y =75x =3y16.1117.y =4−3x 218.1219.解:∵(x +my)(x +ny)=x 2+(m +n)xy +mny 2=x 2−5xy +3y 2, ∴m +n =−5,mn =3,∴(2−m)(2−n)=4−2(m +n)+mn=4+10+3=17.故代数式(2−m)(2−n)的值为17.答:代数式(2−m)(2−n)的值为17. 20.解:设甲原有x 文钱,乙原有y 文钱,由题意可得,{x +12y =4823x +y =48,解得:{x =36y =24, 答:甲原有36文钱,乙原有24文钱.21.解:设每亩山田产粮相当于实田x 亩,每亩场地产粮相当于实田y 亩,根据题意得:{3x +6y =4.75x +3y =5.5, 解得:{x =0.9y =13.答:每亩山田产粮相当于实田0.9亩,每亩场地产粮相当于实田13亩. 22.解:(1)依题意得:(3a +b)(2a +b)−(a +b)2=6a 2+3ab +2ab +b 2−a 2−2ab −b 2=(5a 2+3ab)平方米.答:绿化面积是(5a 2+3ab)平方米;(2)当a =2,b =4时,原式=20+24=44(平方米).答:绿化面积是44平方米.23.解:①原式=[4+(b −c )][4−(b −c )]−(b −c )2=16−(b −c )2−(b −c )2=16−2(b −c )2=16−2(b 2−2bc +c 2)=16−2b 2+4bc −2c 2;②根据题意可得这个多项式为:(2x 2−3)(x +4)+3x +2=2x 3+8x 2−10. 24.解:(1)设每头牛值x 两银子,每只羊值y 两银子,根据题意得:{5x +2y =192x +5y =16, 解得:{x =3y =2. 答:每头牛值3两银子,每只羊值2两银子.(2)设购买a 头牛,b 只羊,依题意有3a +2b =19,b =19−3a 2,∵a ,b 都是正整数,∴①购买1头牛,8只羊;②购买3头牛,5只羊;③购买5头牛,2只羊.25.解:(1)(a+b+c)2=a2+b2+c2+2ab+2ac+2bc (2)证明:(a+b+c)(a+b+c),=a2+ab+ac+ab+b2+bc+ac+bc+c2,=a2+b2+c2+2ab+2ac+2bc.(3)30(4)156。

2020-2021人教版数学七年级下册 专项测试卷(二)新定义数学问题

2020-2021人教版数学七年级下册 专项测试卷(二)新定义数学问题

人教版数学七年级下册 专项测试卷(二)新定义数学问题一、按要求做题1.用“※”定义一种新运算:对于任意有理数a 和b .规定a ※b =ab ²+2ab+a ,如1※2=1x2²+2x1x2+1=9.(1)求(-4)※3;(2)若21+a ※3=-16,求a 的值.2.定义新运算:对于任意实数a 、b 都有a ▲b=ab -a -b+1,等式右边是通常的加法、减法及乘法运算,例如:2▲4= 2x4-2-4+1=3.试根据上述知识解决下列问题.(1)若3▲x =6,求x 的值;(2)若▲x 5的值不大于9,求x 的取值范围.3.对于实数a ,我们规定:用符号[a ]表示不大于a 的最大整数,称为a 的根整数,例如:[9]=3,[10]_3.(1)仿照以上方法计算:[4]=____,[37]=____.(2)若[x ]=1,写出满足题意的x 的整数值:____;如果我们对a 连续求根整数,直到结果为1.例如:对10连续求根整数2次,[10]=3→[3]=1,这时的结果为1.(3)对120连续求根整数,____次之后结果为1;(4)只需进行3次连续求根整数运算,最后结果为1的所有正整数中,最大的是____.4.对于实数a 、b ,定义两种新运算“※”和“*”:a ※b=a+kb ,a*b=ka+b(其中k 为常数,且k ≠0).若对于平面直角坐标系xOy 中的点P(a ,b),有点P'(a ※b ,a*b)与之对应,则称点P 的“k 衍生点”为点P',例如:P(1,3)的“2衍生点”为P'(1+2x3,2x1+3),即P'(7,5).(1)点P( -1,5)的“3衍生点”的坐标为____;(2)若点P 的“5衍生点”的坐标为(9,-3),求点P 的坐标;(3)若点P 的“k 衍生点”为点P',且直线PP'平行于y 轴,线段PP'的长度为线段OP 长度的3倍,求k 的值.5.在平面直角坐标系xOy 中,对于任意两点P ₁(x ₁,y ₁)与P ₂(x ₂,y ₂)的“识别距离”,给出如下定义: 若y y x x 2121-≥-,则点P ₁(x ₁,y ₁)与点P ₂(x ₂,y ₂)的“识别距离”为x x 21-;若y y x x 2121--<,则点P ₁(x ₁,y ₁)与点P ₂(x ₂,y ₂)的“识别距离”为y y 21-.(1)已知点A(-1,0),点B 为y 轴上的动点.①若点A 与点B 的“识别距离”为2,则写出满足条件的点B 的坐标为____;②直接写出点A 与点B 的“识别距离”的最小值为____;(2)已知点C 的坐标为⎪⎭⎫ ⎝⎛+343m m ,点D 的坐标为(0,1),求点C 与点D 的“识别距离”的最小值及相应的点C 的坐标.6.在平面直角坐标系xOy 中,对于任意三点A 、B 、C 的“矩面积”,给出如下定义,“水平底”a :任意两点横坐标差的最大值,“铅垂高”h :任意两点纵坐标差的最大值,则“矩面积”S=ah.例如:三点坐标分别为A(1,2)、B(-3,1)、C(2,-2),则“水平底”a=5,“铅垂高”h=4,“矩面积”D=ah=20.根据所给定义解决下列问题:(1)已知点D(1,2)、E(-2,1)、F(0,6),则这三点的“矩面积”S=____;(2)若D(1,2)、E(-2,1)、F(0,t)三点的“矩面积”S 为18,求点F 的坐标.7.[阅读材料,获取新知]在航空、航海等领域我们经常用距离和角度来确定点的位置,规定如下:在平面内取一个定点O .叫做极点,引一条射线O x ,叫做极轴,再选定单位长度和角度的正方向(通常取逆时针方向).对于平面内任意一点M ,用p 表示线段OM 的长度(有时也用r 表示),p 表示从O x 到OM 的角度,p 叫做点M 的极径,ρ叫做点M 的极角,有序数对(p ,θ)就叫做点M 的极坐标,这样建立的坐标系叫做极坐标系.通常情况下,M 的极径坐标单位为1(长度单位),极角坐标单位为rad(或°).例如:如图①所示,点M 到点O 的距离为5个单位长度,OM 与O x 的夹角为70°(O x 的逆时针方向).则点M 的极坐标为(5,70°);点N 到点O 的距离为3个单位长度,ON 与O x 的夹角为50°(O x 的顺时针方向),则点N 的极坐标为(3,-500).[利用新知,解答问题]如图②所示,已知过点O 的所有射线等分圆周且相邻两射线的夹角为15°,且极径坐标单位为1.(1)点A 的极坐标是____,点D 的极坐标是____.(2)请在图②中标出点B(5,45°),点E(2,-90°);(3)怎样从点B 运动到点C?小明设计的一条路线为点B →(4,45°)→(3,45°)→(3,30°)→点C .请你设计一条与小明不同的路线,也可以从点B 运动到点C .8.定义:可化为其中一个未知数的系数都为1,另一个未知数的系数互为倒数,并且常数项互为相反数的二元一次方程组,称为“相关线性方程组”,如所示,其中k 、b 称为该方程组的“相关系数”.(1)若关于x 、y 的方程组可化为“相关线性方程组”,则该方程组的解为____,(2)若某“相关线性方程组”有无数组解,求该方程组的两个“相关系数”之和.9.阅读下列材料:我们给出如下定义:数轴上给定不重合的两点A 、B ,若数轴上存在一点M ,使得点M 到点A 的距离等于点M 到点B 的距离,则称点M 为点A 与点B 的“平衡点”.解答下列问题:(1)若点A 表示的数为-3。

2020-2021学年北京市朝阳区七年级(下)月考数学试卷(3月份)(含解析)

2020-2021学年北京市朝阳区七年级(下)月考数学试卷(3月份)(含解析)

2020-2021学年北京市朝阳区七年级(下)月考数学试卷(3月份)一、选择题(共10小题).1.已知a、b是两个连续的整数,且a<<b,a+b则等于()A.7B.8C.9D.102.下列命题中,是真命题的是()A.相等的角是对顶角B.垂线段最短C.的平方根是±9D.无限小数都是无理数3.下列各式中,正确的是()A.±=±3B.(﹣)2=9C.=﹣3D.=﹣2 4.对于实数x,我们规定[x]表示不大于x的最大整数,如[4]=4,[]=1,[﹣2.5]=﹣3.现对82进行如下操作:82[]=9[]=3[]=1,这样对82只需进行3次操作后变为1,类似地,对121只需进行多少次操作后变为1()A.1B.2C.3D.45.如图,一条公路修到湖边时,需拐弯绕道而过,如果第一次拐的角∠A是100°第二次拐的角∠B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C是()A.120°B.130°C.140°D.150°6.如图,a∥b,AB∥CD,CE⊥b,FG⊥b,E、G为垂足,则下列说法中错误的是()A.CE∥FGB.CE=FGC.A、B两点的距离就是线段AB的长D.直线a、b间的距离就是线段CD的长7.关于代数式的说法正确的是()A.x=0时最大B.x=0时最小C.x=﹣4时最大D.x=﹣4时最小8.如图,已知AC∥BD,∠CAE=30°,∠DBE=45°,则∠AEB等于()A.30°B.45°C.60°D.75°9.如图,将△ABE向右平移2cm得到△DCF.如果△ABE的周长是16cm,那么四边形ABFD 的周长是()A.16 cm B.18 cm C.20 cm D.21 cm10.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,这个规律是()A.∠A=∠1+∠2B.3∠A=2∠1+∠2C.2∠A=∠1+∠2D.3∠A=2(∠1+∠2)二、填空题11.如果的平方根是±3,则=.12.设:=1.732,=5.477,则=.13.如图,已知AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC=.14.如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB =70°,则∠AED′等于.15.如图,直线AB、CD相交于点O,OE⊥AB,O为垂足,如果∠EOD=38°,则∠AOC =度,∠COB=度.16.如图,已知AB∥CD,F为CD上一点,∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度数为整数,则∠C的度数为.17.如图,数轴上A、B两点表示的数分别为1和,且AB=AC,那么数轴上C点表示的数为.18.已知,BC∥OA,∠B=∠A=100°,点E、F在BC上,OE平分∠BOF,且∠FOC=∠AOC,下列结论中正确的是:.①OB∥AC;②∠EOC=45°;③∠OCB:∠OFB=1:3;④若∠OEB=∠OCA,则∠OCA=60°.三、计算题19.计算:(1)|﹣2|+|﹣1|﹣.(2)﹣22﹣+(﹣1)2013×+.20.求下列各式中x的值.(1)8x2﹣128=0;(2)(x+2)3=﹣27.(3)4(x+1)2=64.21.将下列各数填入相应的集合内.﹣7,0.32,,0,,,,π,0.1010010001…①有理数集合{ …}②无理数集合{ …}③负实数集合{ …}.22.(1)已知2a﹣1的平方根是±3,3a+b﹣1的平方根是±4,求a+2b的平方根;(2)若x,y都是实数,且y=+8,求x+3y的立方根.23.阅读理解∵<<,即2<<3.∴的整数部分为2,小数部分为﹣2∴1<﹣1<2∴﹣1的整数部分为1.∴﹣1的小数部分为﹣2解决问题:已知:a是﹣3的整数部分,b是﹣3的小数部分,求:(1)a,b的值;(2)(﹣a)3+(b+4)2的平方根.24.如图,经过平移,△ABC的顶点A移到了点D,请作出平移后的三角形.25.完成证明并写出推理根据已知,如图,∠1=132°,∠ACB=48°,∠2=∠3,FH⊥AB于H,求证:CD⊥AB.证明:∵∠1=132°,∠ACB=48°∴∠1+∠ACB=180°∴DE∥BC∴∠2=∠DCB()又∵∠2=∠3∴∠3=∠DCB()∴HF∥DC()∴∠CDB=∠FHB.()又∵FH⊥AB,∴∠FHB=90°∴∠CDB=°∴CD⊥AB.()26.如图,∠E=∠1,∠3+∠ABC=180°,BE是∠ABC的角平分线.你能判断DF与AB 的位置关系吗?请说明理由.27.学习完平行线的性质与判定之后,我们发现借助构造平行线的方法可以帮我们解决许多问题.(1)小明遇到了下面的问题:如图1,l1∥l2,点P在l1,l2内部,探究∠A,∠APB,∠B的关系小明过点P作l1的平行线,可证∠APB,∠A,∠B之间的数量关系是:∠APB=;(2)如图2,若AC∥BD,点P在AC,BD外部,∠A,∠B,∠APB的数量关系是否发生变化?请写出证明过程;(3)随着以后的学习你还会发现平行线的许多用途.试构造平行线解决以下问题:已知:如图3,三角形ABC,求证:∠A+∠B+∠C=180°.参考答案一、选择题1.已知a、b是两个连续的整数,且a<<b,a+b则等于()A.7B.8C.9D.10【分析】先估算出的取值范围,再求出a,b的值,进而可得出结论.解:∵16<19<25,∴4<<5.∵a、b是两个连续的整数,∴a=4,b=5,∴a+b=4+5=9.故选:C.2.下列命题中,是真命题的是()A.相等的角是对顶角B.垂线段最短C.的平方根是±9D.无限小数都是无理数【分析】根据对顶角的定义、垂线段的性质、平方根以及无理数的概念进行判断.解:A.相等的角不一定是对顶角,错误;B.垂线段最短,正确;C.的平方根是±3,错误;D.无限小数不都是无理数,错误;故选:B.3.下列各式中,正确的是()A.±=±3B.(﹣)2=9C.=﹣3D.=﹣2【分析】直接利用二次根式的性质分别化简得出答案.解:A、±=±3,故此选项正确;B、(﹣)2=3,故此选项错误;C、,无法化简,故此选项错误;D、=2,故此选项错误;故选:A.4.对于实数x,我们规定[x]表示不大于x的最大整数,如[4]=4,[]=1,[﹣2.5]=﹣3.现对82进行如下操作:82[]=9[]=3[]=1,这样对82只需进行3次操作后变为1,类似地,对121只需进行多少次操作后变为1()A.1B.2C.3D.4【分析】[x]表示不大于x的最大整数,依据题目中提供的操作进行计算即可.解:121[]=11[]=3[]=1,∴对121只需进行3次操作后变为1,故选:C.5.如图,一条公路修到湖边时,需拐弯绕道而过,如果第一次拐的角∠A是100°第二次拐的角∠B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C是()A.120°B.130°C.140°D.150°【分析】首先根据题意作辅助线:过点B作BD∥AE,即可得AE∥BD∥CF,则可求得:∠A=∠1,∠2+∠C=180°,则可求得∠C的值.解:过点B作BD∥AE,∵AE∥CF,∴AE∥BD∥CF,∴∠A=∠1,∠2+∠C=180°,∵∠A=100°,∠1+∠2=∠ABC=150°,∴∠2=50°,∴∠C=180°﹣∠2=180°﹣50°=130°,故选:B.6.如图,a∥b,AB∥CD,CE⊥b,FG⊥b,E、G为垂足,则下列说法中错误的是()A.CE∥FGB.CE=FGC.A、B两点的距离就是线段AB的长D.直线a、b间的距离就是线段CD的长【分析】根据垂线的性质以及两点之间的距离定义以及两直线之间的距离定义分别分析得出即可.解:A、∵CE⊥b,FG⊥b,∴FG∥EC,故此选项正确,不符合题意;B、∵a∥b,FG∥EC,∴四边形FGEC是平行四边形,∴FG=EC,故此选项正确,不符合题意;C、A、B两点的距离就是线段AB的长,此选项正确,不符合题意;D、直线a、b间的距离就是线段CE的长,故此选项错误,符合题意.故选:D.7.关于代数式的说法正确的是()A.x=0时最大B.x=0时最小C.x=﹣4时最大D.x=﹣4时最小【分析】由算术平方根的性质可知,是非负数,最小是0,这时的值最大,即可解答.解:当=0时,的值最大,即x+4=0,解得x=﹣4.故选:C.8.如图,已知AC∥BD,∠CAE=30°,∠DBE=45°,则∠AEB等于()A.30°B.45°C.60°D.75°【分析】过E作EF∥AC,然后根据平行线的传递性可得EF∥BD,再根据平行线的性质可得∠B=∠2=45°,∠1=∠A=30°,进而可得∠AEB的度数.解:过E作EF∥AC,∵AC∥BD,∴EF∥BD,∴∠B=∠2=45°,∵AC∥EF,∴∠1=∠A=30°,∴∠AEB=30°+45°=75°,故选:D.9.如图,将△ABE向右平移2cm得到△DCF.如果△ABE的周长是16cm,那么四边形ABFD 的周长是()A.16 cm B.18 cm C.20 cm D.21 cm【分析】根据平移的性质可得DF=AE,然后判断出四边形ABFD的周长=△ABE的周长+AD+EF,然后代入数据计算即可得解.解:∵△ABE向右平移2cm得到△DCF,∴DF=AE,∴四边形ABFD的周长=AB+BE+DF+AD+EF,=AB+BE+AE+AD+EF,=△ABE的周长+AD+EF,∵平移距离为2cm,∴AD=EF=2cm,∵△ABE的周长是16cm,∴四边形ABFD的周长=16+2+2=20cm.故选:C.10.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,这个规律是()A.∠A=∠1+∠2B.3∠A=2∠1+∠2C.2∠A=∠1+∠2D.3∠A=2(∠1+∠2)【分析】根据三角形的内角和定理,以及四边形的内角和定理即可求出答案.解:由题意可知:∠AED+∠ADE=180°﹣∠A,∠B+∠C=180°﹣∠A∵∠AED+∠ADE+∠1+∠2+∠B+∠C=360°,∴360°﹣2∠A+∠1+∠2=360°,∴2∠A=∠1+∠2,故选:C.二、填空题11.如果的平方根是±3,则=4.【分析】求出a的值,代入求出即可.解:∵的平方根是±3,∴=9,∴a=81,∴==4,故答案为:4.12.设:=1.732,=5.477,则=17.32.【分析】由=1.732,根据移位规律可得只要将的结果的小数点向右移动一位即可得到答案.解:∵=1.732,而3×102=300∴=10×1.732=17.32,故答案为:17.32.13.如图,已知AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC=60°.【分析】由AD∥BC,∠B=30°,根据平行线的性质,可得∠ADB=30°,又由DB平分∠ADE,可求得∠ADE的度数,继而求得答案.解:∵AD∥BC,∠B=30°,∴∠ADB=∠B=30°,∵DB平分∠ADE,∴∠ADE=2∠ADB=60°,∵AD∥BC,∴∠DEC=∠ADE=60°.故答案为:60°.14.如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB =70°,则∠AED′等于40°.【分析】根据两直线平行,内错角相等求出∠DEF,再根据折叠的性质可得∠D′EF,然后利用平角等于180°列式计算即可得解.解:∵ABCD是长方形纸片,∴AD∥BC,∴∠DEF=∠EFB=70°,根据折叠的性质,∠D′EF=∠DEF=70°,所以,∠AED′=180°﹣(∠D′EF+∠DEF)=180°﹣(70°+70°)=180°﹣140°=40°.故答案为:40°.15.如图,直线AB、CD相交于点O,OE⊥AB,O为垂足,如果∠EOD=38°,则∠AOC =52度,∠COB=128度.【分析】由已知条件和观察图形可知∠EOD与∠DOB互余,∠DOB与∠AOC是对顶角,∠COB与∠AOC互补,利用这些关系可解此题.解:∵OE⊥AB,∴∠EOB=90°,又∠EOD=38°,∴∠DOB=90°﹣38°=52°,∵∠AOC=∠DOB,∴∠AOC=52°,∵∠COB与∠AOC互补,∴∠COB=180°﹣52°=128°.故答案为:52;128.16.如图,已知AB∥CD,F为CD上一点,∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度数为整数,则∠C的度数为36°或37°.【分析】先过E作EG∥AB,根据平行线的性质可得∠AEF=∠BAE+∠DFE,再设∠CEF =x,则∠AEC=2x,根据6°<∠BAE<15°,即可得到6°<3x﹣60°<15°,解得22°<x<25°,进而得到∠C的度数.解:如图,过E作EG∥AB,∵AB∥CD,∴GE∥CD,∴∠BAE=∠AEG,∠DFE=∠GEF,∴∠AEF=∠BAE+∠DFE,设∠CEF=x,则∠AEC=2x,∴x+2x=∠BAE+60°,∴∠BAE=3x﹣60°,又∵6°<∠BAE<15°,∴6°<3x﹣60°<15°,解得22°<x<25°,又∵∠DFE是△CEF的外角,∠C的度数为整数,∴∠C=60°﹣23°=37°或∠C=60°﹣24°=36°,故答案为:36°或37°.17.如图,数轴上A、B两点表示的数分别为1和,且AB=AC,那么数轴上C点表示的数为2﹣.【分析】设C点表示x,再根据数轴上两点间距离的定义即可得出结论.解:设C点表示x,∵数轴上A、B两点表示的数分别为1和,且AB=AC,∴1﹣x=﹣1,解得x=2﹣.故答案为:2﹣.18.已知,BC∥OA,∠B=∠A=100°,点E、F在BC上,OE平分∠BOF,且∠FOC=∠AOC,下列结论中正确的是:①④.①OB∥AC;②∠EOC=45°;③∠OCB:∠OFB=1:3;④若∠OEB=∠OCA,则∠OCA=60°.【分析】①由BC∥OA,∠B=∠A=100°,∠AOB=∠ACB=180°﹣100°=80°,得到∠A+∠AOB=180°,得出OB∥AC.②OE平分∠BOF,得出∠FOE=∠BOE=∠BOF,∠FOC=∠AOC=∠AOF,从而计算出∠EOC=∠FOE+∠FOC=40°.③由∠OCB=∠AOC,∠OFB=∠AOF=2∠AOC,得出∠OCB:∠OFB=1:2.④由∠OEB=∠OCA=∠AOE=∠BOC,得到∠AOE﹣∠COE=∠BOC﹣∠COE,∠BOE =∠AOC,再得到∠BOE=∠FOE=∠FOC=∠AOC=∠AOB=20°,从而计算出∠OCA=∠BOC=3∠BOE=60°.解:∵BC∥OA,∠B=∠A=100°,∴∠AOB=∠ACB=180°﹣100°=80°,∴∠A+∠AOB=180°,∴OB∥AC.故①正确;∵OE平分∠BOF,∴∠FOE=∠BOE=∠BOF,∴∠FOC=∠AOC=∠AOF,∴∠EOC=∠FOE+∠FOC=(∠BOF+∠AOF)=×80°=40°.故②错误;∵∠OCB=∠AOC,∠OFB=∠AOF=2∠AOC,∴∠OCB:∠OFB=1:2.故③错误;∵∠OEB=∠OCA=∠AOE=∠BOC,∴∠AOE﹣∠COE=∠BOC﹣∠COE,∴∠BOE=∠AOC,∴∠BOE=∠FOE=∠FOC=∠AOC=∠AOB=20°,∴∠OCA=∠BOC=3∠BOE=60°.故④正确.故答案为:①④.三、计算题19.计算:(1)|﹣2|+|﹣1|﹣.(2)﹣22﹣+(﹣1)2013×+.解:(1)原式=2﹣+﹣1﹣2=﹣1;(2)原式=﹣4﹣2﹣﹣=﹣7.20.求下列各式中x的值.(1)8x2﹣128=0;(2)(x+2)3=﹣27.(3)4(x+1)2=64.【分析】(1)直接利用平方根的定义计算得出答案;(2)直接利用立方根的定义计算得出答案;(3)直接利用平方根的定义计算得出答案.解:(1)8x2﹣128=0,则8x2=128,故x2=16,解得:x=±4;(2)(x+2)3=﹣27,则x+2=﹣3,解得:x=﹣5;(3)4(x+1)2=64则(x+1)2=16,故x+1=±4,解得:x=﹣5或3.21.将下列各数填入相应的集合内.﹣7,0.32,,0,,,,π,0.1010010001…①有理数集合{ …}②无理数集合{ …}③负实数集合{ …}.【分析】根据实数的分类:实数分为有理数、无理数.或者实数分为正实数、0、负实数.进行填空.解:=5,=2.①有理数集合{﹣7,0.32,,0,…}②无理数集合{,,π,0.1010010001…}③负实数集合{﹣7…}.故答案是:﹣7,0.32,,0,;,,π,0.1010010001…;﹣7.22.(1)已知2a﹣1的平方根是±3,3a+b﹣1的平方根是±4,求a+2b的平方根;(2)若x,y都是实数,且y=+8,求x+3y的立方根.解:(1)由题意可知:2a﹣1=9,3a+b﹣1=16,∴a=5,b=2,∴a+2b=5+4=9,∴9的平方根是±3,即a+2b的平方根为±3.(2)由题意可知:,∴x=3,∴y=8,∴x+3y=3+24=27,∴27的立方根是3,即x+3y的立方根是323.阅读理解∵<<,即2<<3.∴的整数部分为2,小数部分为﹣2∴1<﹣1<2∴﹣1的整数部分为1.∴﹣1的小数部分为﹣2解决问题:已知:a是﹣3的整数部分,b是﹣3的小数部分,求:(1)a,b的值;(2)(﹣a)3+(b+4)2的平方根.解:(1)∵<<,∴4<<5,∴1<﹣3<2,∴a=1,b=﹣4,(2)(﹣a)3+(b+4)2=(﹣1)3+(﹣4+4)2=﹣1+17=16,故(﹣a)3+(b+4)2的平方根是:±4.24.如图,经过平移,△ABC的顶点A移到了点D,请作出平移后的三角形.解:如图,△DEF就是所求作的三角形.25.完成证明并写出推理根据已知,如图,∠1=132°,∠ACB=48°,∠2=∠3,FH⊥AB于H,求证:CD⊥AB.证明:∵∠1=132°,∠ACB=48°∴∠1+∠ACB=180°∴DE∥BC∴∠2=∠DCB(两直线平行,内错角相等)又∵∠2=∠3∴∠3=∠DCB(等量代换)∴HF∥DC(同位角相等,两直线平行)∴∠CDB=∠FHB.(两直线平行,同位角相等)又∵FH⊥AB,∴∠FHB=90°∴∠CDB=90°∴CD⊥AB.(垂直的定义)【分析】求出∠1+∠ACB=180°,根据平行线的判定得出DE∥BC,根据平行线的性质得出∠2=∠DCB,求出∠3=∠DCB,根据平行线的判定得出HF∥CD,根据平行线的性质得出∠CDB=∠FHB,即可求出答案.【解答】证明:∵∠1=132°,∠ACB=48°,∴∠1+∠ACB=180°,∴DE∥BC,∴∠2=∠DCB(两直线平行,内错角相等),又∵∠2=∠3,∴∠3=∠DCB(等量代换),∴HF∥DC(同位角相等,两直线平行),∴∠CDB=∠FHB(两直线平行,同位角相等),又∵FH⊥AB,∴∠FHB=90°,∴∠CDB=90°,∴CD⊥AB.(垂直的定义)故答案为:两直线平行,内错角相等;等量代换;同位角相等,两直线平行;两直线平行,同位角相等;90;垂直的定义.26.如图,∠E=∠1,∠3+∠ABC=180°,BE是∠ABC的角平分线.你能判断DF与AB 的位置关系吗?请说明理由.【解答】证明:平行,理由是:∵BE是∠ABC的角平分线∴∠1=∠2,∵∠E=∠1,∴∠E=∠2,∴AE∥BC,∴∠A+∠ABC=180°,∵∠3+∠ABC=180°,∴∠A=∠3,∴DF∥AB.27.学习完平行线的性质与判定之后,我们发现借助构造平行线的方法可以帮我们解决许多问题.(1)小明遇到了下面的问题:如图1,l1∥l2,点P在l1,l2内部,探究∠A,∠APB,∠B的关系小明过点P作l1的平行线,可证∠APB,∠A,∠B之间的数量关系是:∠APB =∠A+∠B;(2)如图2,若AC∥BD,点P在AC,BD外部,∠A,∠B,∠APB的数量关系是否发生变化?请写出证明过程;(3)随着以后的学习你还会发现平行线的许多用途.试构造平行线解决以下问题:已知:如图3,三角形ABC,求证:∠A+∠B+∠C=180°.解:(1)∵l1∥PE∥l2,∴∠A=∠APE,∠B=∠BPE,∴∠APB=∠APE+∠BPE=∠A+∠B,(2)∵AC∥BD,∴∠PEC=∠B,∵∠PEC=∠A+∠APB,∴∠B=∠A+∠APB,(3)过点A作PE∥BC,∴∠PAB=∠B,∠EAC=∠C,∵∠PAB+∠BAC+∠CAE=180°,∴∠B+∠BAC+∠C=180°。

初中数学月考试卷试题

初中数学月考试卷试题

卜人入州八九几市潮王学校2021年下学期镇初中数学月考试卷(本卷总分值是150分,考试时间是是:120分钟)第一局部选择题〔一共36分〕一、选择题〔本大题一一共12小题,每一小题3分,一共36分〕 1.下面是一名同学所做的4道题:①a 3+a 3=a 6②〔-a 6〕÷〔-a 3〕=-a 2③〔3xy 2〕3=27x 3y 5④2(3)3-=那么他做对题的个数是 A .0B .1 C .2D .32.实数a 、b 在数轴上的位置如下列图,那么化简|a-b|-2a 的结果是A.2a-bB.bC.-bD.-2a+b3.如图,天平右盘中的每个砝码的质量为1g ,那么物体M 的质量m(g)的取值范围,在数轴上可表示为4.如图,,MB=ND ,∠MBA=∠NDC,以下哪个条件不能断定△ABM ≌△CDN 的是 A.∠M=∠NB. AB=CD C.AM=CND.AM ∥CN 5.一个圆锥的底面半径为25,母线长为6,那么此圆锥侧面展开图的圆心角是 A.180°B.150°C.120°D.90°6.张师傅下岗后再就业,做起了小生意。

第一次进货时,他以每件a 元的价格购进了20M AB NC Db O a件甲种小商品,每件b元价格购进了30件乙种小商品〔.a>b...〕.;.回来后,根据场行情,他将两种小商品都以每件2ba元的价格出售。

在这次买卖中,张师傅A.HYB.赔钱C.不赚不赔D.无法确定⊙⊙7.如下列图的两个圆盘中,指针落在每一个数上的时机均等,那么两个指针同时落在偶数上的概率是A.525B.625C.1025D.19258.,A点的坐标为(-3,4),⊙A经过原点,那么⊙A与x轴的另一个交点坐标为A.(-4,0)B.(-5,0)C.(-8,0)D.(-6,0)9.如图,E、F、G、H分别是四边形ABCD四条边的中点,要使EFGH为菱形,四边形应该具备的条件是A.一组对边平行而另一组对边不平行B.对角线相等C.对角线互相垂直D.对角线互相平分10.HY 个人所得税法规定,公民全月工资、薪金所得不超过800元的局部不必纳锐,超过800元的局部为全月应纳税所得额,此项税款按下表分段累进计算:全月应纳税所得额 税率(%) 不超过500元的局部 5 超过500元到2000元的局部 10 超过2000元至5000元的局部15 …………某人1月份应纳此项税款41元,那么他的当月工资、薪金所得为A .1610元B .1310元C .1460元D .810元11.二次函数y ax bx c a =++≠20()的图象如下列图,以下结论:〔1〕c <0 (2)0b >〔3〕420a b c ++>〔4〕22()a cb +<其中正确的有 A.1个B.2个C.3个D.4个12.如图(1),在正方形铁皮上剪下一个圆形和扇形(圆与扇形及正方形两边都相切),使之恰好围成如图(2)所示的一个圆锥模型,该圆锥的高为15,那么正方形铁皮的边长为A .532B .522C .5312+D .5212+第二局部非选择题〔一共114分〕注意:考生必须将答案直接做在试卷上。

2020-2021七年级下第一次月考数学试卷含答案解析

2020-2021七年级下第一次月考数学试卷含答案解析

一、选择题下列计算正确的是(A.(2a)3=6a3B.a2a=a2C.a3+a3=a6D.(a3)2=a62.计算(a m)2xW结果是()A.a2mB.a2(m+n)C.a2m+nD.3.下列多项式相乘,不能用平方差公式计算的是()A.(x-2y)(2y+x)B.(-2y-x)(x+2y)C.(x-2y)(-x-2y)D.(2y-x) (-x-2y)4.下列式子成立的是()A.(2a-1)2=4a2-1B.(a+3b)2=a2+9b2C.(a+b)(-a-b)=a2-b2D.(-a-b) 2=a2+2ab+b25.计算Uy)J(2xy)之的结果应该是()6.图中,Z1与匕2是对顶角的是()iA. B.D.7.下列各式中,计算结果为81-x2的是()A.(x+9)(x-9)B.(x+9)(-x-9)C.(-x+9)(-x-9)D.(-x-9) (x-9)8.如果(x-2)(x+3)=x2+px+q,那么p、q的值为()A.p=5,q=6B.p=1,q=-6C.p=1,q=6D.p=5,q=-69.计算(a-b)(a+b)(a2+b2)(a4-b4)的结果是()A.a8+2a4b4+b8B.a8-2a4b4+b8C.a8+b8D.a8-b810.计算(6X103)(8X105)的结果是()A.48X109B. 4.8X109C. 4.8X108D.48X101511.用小数表示3X10-2的结果为()A.-0.03B.-0.003C.0.03D.0.00312.下列式子正确的是()A.(a-b)2=a2-2ab+b2B.(a-b)2=a2-b2C.(a-b)2=a2+2ab+b2D.(a-b)2=a2-ab+b2二、填空题13.计算:©a5a3a=;②(a5)3-a6=.14.用小数表示:2x10-3=.24X(-2)4X (-0.25)4=.15.计算:(-5a+4b)2=.(-2ab+3)2=16.计算题:(2a+3b)(2a-3b)-(a-3b)2=.17.计算(-2)0+侍)胃=;(-2x2y)3=18.计算:20082-2007X2009=.已知a+^3,a则溪足=.a三解答题(共7小题19-24每题6分共48分)19.利用整式的乘法公式计算:©1999X2001②992_20.化简(1)(a+b-c)(a+b+c)(2)(2a+3b)(2a-3b)-(a-3b)2.21.先化简,再求值:[(x-y)2+(x+y)(x-y)]?2x,其中x=3,y=1.22.计算:(2in+n-p)(2m-n+p)23.计算-2-3-8-1x(-2)~2x(-1)-2x(n-3.14)°.24.若x-y=8,xy=10.求x2+y2的值.25.乘法公式的探究及应用.(1)如图1,可以求出阴影部分的面积是(写成两数平方差的形式);(2)如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是,长是,面积是(写成多项式乘法的形式);(3)比较图1、图2阴影部分的面积,可以得到公式;(4)运用你所得到的公式,计算下列各题:①10.2x9.8,②(2m+n-p)(2m-n+p)图1图2参考答案与试题解析一、选择题(2015春益阳校级期中)下列计算正确的是()A、(2a)3=6a3 B.a2a=a2 C.a3+a3=a6D.(a3)2=a6【考点】幕的乘方与积的乘方;同底数幕的乘法.【分析】根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幕相乘;同底数幕相乘,底数不变指数相加;幕的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.【解答】解:A、应为(2a)3=8a3,故本选项错误;B、应为a2a=a3,故本选项错误;C、应为a3+a3=2a3,故本选项错误;D、(a3)2=a6,正确;应选D.【点评】本题考查同底数幕的乘法,幕的乘方,积的乘方,熟练掌握运算性质是解题的关键.2.计算(a m)2乂寸结果是()A.a2mB.a2(m+n)C.a2m+nD.【考点】同底数幕的乘法;幕的乘方与积的乘方.【分析】首先算出(a m)2,然后根据同底数幕相乘进行判断.【解答】解:(a m)2xa n=a2m xa n=a2m+n.故选C.【点评】本题主要考查单项式的乘法,比较简单.3.下列多项式相乘,不能用平方差公式计算的是()A.(x-2y)(2y+x)B.(-2y-x)(x+2y)C.(x-2y)(-x-2y)D.(2y-x)(-x-2y)【考点】平方差公式.【专题】计算题.【分析】把A得到(x-2y)(x+2y),把C变形得到-(x -2y)(x+2y),把D变形得到(x-2y)(x+2y),它们都可以用平方差公式进行计算;而把B变形得到-(x+2y) 2,用完全平方公式计算.【解答】解:A、(x-2y)(2y+x)(x-2y)(x+2y) =x2-4y2,所以A选项不正确;B、(-2y-x)(x+2y)=-(x+2y)2,用完全平方公式计算,所以B选项正确;C、(x-2y)(-x-2y)=-(x-2y)(x+2y)=-x2+4y2,所以C选项不正确;D、(2y-x)(-x-2y)=(x-2y)(x+2y)=x2-4y2,所以D选项不正确.故选B.【点评】本题考查了平方差公式:(a+b)(a-b)=a2-b2.也考查了完全平方公式.4.下列式子成立的是()A.(2a-1)2=4a2-1B.(a+3b)2=a2+9b2C.(a+b)(-a-b)=a2-b2D.(-a-b) 2=a2+2ab+b2【考点】完全平方公式.【专题】计算题.【分析】根据完全平方公式:(a±b)2=a2±2ab+b2,对各选项展开后利用排除法求解.【解答】解:A、应为(2a-1)2=4a2-2a+1,故本选项错误;B、应为(a+3b)2=a2+6ab+9b2,故本选项错误;C、应为(a+b)(-a-b)=-a2-2ab-b2,故本选项错误;D、(-a-b)2=a2+2ab+b2,正确.故选D.【点评】本题考查了完全平方公式,熟记公式是解题的关键,漏掉乘积二倍项是同学们容易出错之处.5.计算(x'y)2-(2xy)之的结果应该是()a14p14p14p12A.2X D- y u.-x y【考点】整式的除法.【分析】根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幕相乘;幕的乘方,底数不变指数相乘;单项式除单项式的法则进行运算.【解答】解:(x3y)29(2xy)2=x6y2^4x2y2=jx4.故选B.【点评】此题是考查单项式除法的运算,幕的乘方、积的乘方的性质,熟练掌握运算法则和性质是解题的关键.6.图中,匕1与匕2是对顶角的是()A、 C. D.【考点】对顶角、邻补角.【分析】根据对顶角是一个角的两边是另一个角的两边的反向延长线,可得答案.【解答】解:A、一个角的两边不是另一个角的两边的反向延长线,故A错误;B、一个角的两边不是另一个角的两边的反向延长线,故B 错误;C、一个角的两边是另一个角的两边的反向延长线,故C正确;D、一个角的两边不是另一个角的两边的反向延长线,故D 错误;故选:C.【点评】本题考查了对顶角,对顶角是一个角的两边是另一个角的两边的反向延长线.7.下列各式中,计算结果为81-乂2的是()A.(x+9)(x•9)B.(x+9)(•x-9)C.(-x+9)(-x-9)D.(-x-9) (x-9)【考点】平方差公式.【专题】计算题.【分析】本题是平方差公式的应用,选项D中,-9是相同的项,互为相反项是x与-x,据此即可解答.【解答】解:81-x2=(-x-9)(x-9)或者(9+x)(9 -x).故选D.【点评】本题考查了平方差公式,运用平方差公式计算时,关键要找相同项和相反项其结果是相同项的平方减去相反项的平方.8.如果(x-2)(x+3)=x2+px+q,那么p、q的值为()A.p=5,q=6B.p=1,q=-6C.p=1,q=6D.p=5,q=-6【考点】多项式乘多项式.【专题】计算题.【分析】已知等式左边利用多项式乘以多项式法则计算,利用多项式相等的条件求出P与q的值即可.【解答】解:(x-2)(x+3)=x2+x-6=x2+px+q,q=-6,故选B【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.9.计算(a-b)(a+b)(a2+b2)(a4-b4)的结果是()A.a8+2a4b4+b8B.a8-2a4b4+b8C.a8+b8D.a8-b8【考点】平方差公式;完全平方公式.【分析】这几个式子中,先把前两个式子相乘,这两个二项式中有一项完全相同,另一项互为相反数.相乘时符合平方差公式得到a2-b2,再把这个式子与a2+b2相乘又符合平方差公式,得到a4-b4,与最后一个因式相乘,可以用完全平方公式计算.【解答】解:(a-b)(a+b)(a2+b2)(a4-b4),=(a2-b2)(a2+b2)(a4-b4),=(a4-b4)2,=a8-2a4b4+b8.故选B.【点评】本题主要考查了平方差公式的运用,本题难点在于连续运用平方差公式后再利用完全平方公式求解.10.计算(6X103)(8X105)的结果是()A.48X109B. 4.8X109C. 4.8X108D.48X1015【考点】整式的混合运算.【分析】本题需先根据同底数幕的乘法法则进行计算,即可求出答案.【解答】解:(6X103)(8X105),=48X10',=4.8X109;故选B【点评】本题主要考查了整式的混合运算,在解题时要注意运算顺序以及简便方法的运用是本题的关键.11.用小数表示3X10'2的结果为()A.-0.03B.-0.003C.0.03D.0.003【考点】科学记数法一原数.【分析】一个用科学记数法表示的数还原成原数时要先判断指数n的正负.n为正时,小数点向右移动n个数位;n 为负时,小数点向左移动In|个数位.【解答】解:用小数表示3X10'2的结果为0.03.故选C.【点评】本题考查写出用科学记数法表示的原数.将科学记数法axlO n表示的数“还原”成通常表示的数就是把a的小数点向左移动n位所得到的数.把一个数表示成科学记数法的形式及把科学记数法还原是两个互逆的过程,这也可以作为检查用科学记数法表示一个数是否正确的方法.12.下列式子正确的是()A.(a-b)2=a2-2ab+b2B.(a-b)2=a2-b2C.(a-b)2=a2+2ab+b2D.(a-b)2=a2-ab+b2【考点】完全平方公式.【分析】根据整式乘法中完全平方公式(a±b)2=a2±2ab+b2,即可作出选择.【解答】解:A.(a-b)2=a2-2ab+b2,故A选项正确;B.(a-b)2=a2-2ab+b2,故B选项错误;C.(a-b)2=a2-2ab+b2,故C选项错误;D.(a-b)2=a2-2ab+b2,故D选项错误;故选:A.【点评】本题考查了完全平方公式,关键是要了解(x-y) 2与(x+y)2展开式中区别就在于2xy项的符号上,通过加上或者减去4xy可相互变形得到.二、填空题13.计算:①a5a3a=a9;②(a5)3^a6=a9■【考点】同底数幕的除法;同底数幕的乘法;幕的乘方与积的乘方.【分析】①根据同底数幕的乘法,即可解答.②根据同底数幕的除法,幕的乘方,即可解答.【解答】解:①a5a3a=a5+3+1=a9;②(a5)3-a6=a15-a6=a9,故答案为:a9,a9.【点评】本题考查了同底数幕的乘法、除法,幕的乘方,解决本题的关键是熟记同底数幕的乘法、除法,幕的乘方.14.用小数表示:2x10-3=0.002.24X(-2)4X(-0.25)4=1.【考点】幕的乘方与积的乘方;科学记数法一原数.【分析】2X10-3就是把2的小数点向左移动3位即可;24X(-2)4X(-0.25)4逆用积的乘方公式即可求解.【解答】解:2X10-3=0002;24X(-2)4X(-0.25)4=(2X2X0.25)4=1.故答案是:0.002, 1.【点评】本题考查了幕的性质和积的乘方公式,正确理解积的乘方的性质是关键.15.计算:(-5a+4b)2=25a?-40ab+16b2.(-2ab+3) J4a2b)2-12ab+9.【考点】完全平方公式.【分析】利用完全平方公式完全平方公式:(a±b)2=a2±2ab+b2,即可直接求解.【解答】解:(-5a+4b)2=(-5a)2-2x5a4b+(4b) 2=25a2-40ab+16b2;(-2ab+3)=(-2ab)2-12ab+9=4a2b2-12ab+9.故答案是:25a2-40ab+16b2,4a2b2-12ab+9.【点评】本题主要考查完全平方公式的变形,熟记公式结构是解题的关键.完全平方公式:(a±b)2=a2±2ab+b2.16.计算题:(2a+3b)(2a-3b)-(a-3b)2=3a2+6ab -18b2.【考点】平方差公式;完全平方公式.【专题】计算题.【分析】原式第一项利用平方差公式化简,第二项利用完全平方公式展开,去括号合并即可得到结果.【解答】解:原式=4a2-9b2-a2+6ab-9b2=3a2+6ab-18b2.故答案为:3a2+6ab-18b2.【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.17.计算(-2)0+4)一2=1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、相信自己,精心选一选(每小题2分,共20分) 1.点A (-1,3)位于( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
2.点M (-3,-2)到y 轴的距离是( ) A .3 B .2 C .-3 D .-2 3.如图,AC ∥DF ,DE ∥BC ,则图中与∠C 相等的角有( ) A .1个 B .2个 C .3个 D .4个
4.如图,其中同旁内角有( )
A .2对
B .4对
C .6对
D .8对 5.下列说法正确的是( )
A .相等的角是对项角
B .在同一平面内,两线段不平行就相交
C .一条直线有无数条垂线
D .内错角相等
6.一张长方形纸条折成如图的形状,如果∠1=130°, ∠2=( )
A .50°
B .60°
C .55°
D .65°
7.如图,A 、B 、C 、D 中的哪幅图案可以通过图案①平移得到( )
B C
A D E F 第3题图 A
B
C D
第4题图
8.以点A (3,0)为圆心,以5为半径画圆,则圆A 与x 轴交点坐标为( ) A .(0,-2)、(0,8) B .(-2,0)、(8,0) C .(0,-8)、(0,2) D .(-8,0)、(2,0) 9.如图,是做课间操时,小明,小刚和小红三人的相对位置,如果用(4,5)表示小明的位置,(2,4)表示小刚的位置,则小红的位置可表示为( ) A .(0,0) B .(0,1) C .(1,0) D .(1,1)
10.线段AB=10cm ,点A 、B 到直线m 的距离分别为6cm 和4cm ,符合条件的直线m 的条数( ) A .1 B .2 C .3 D .4
二、希望你能填得又快又准(每小题2分),共24分)
11.如图,直线AB 与CD 相交于O 点,∠1=40°,则∠2= ∠3=

12.如图a ∥b ,c ⊥b ,∠1=30°则∠2=
13.如图,与∠1构成同位角的是 与∠2构成内错角的是_________
O
A D C
2 1
3
B
第11题图
a
b
c 2 1
第12题图
B
A D E
C
1 2
14.点M (-1,5)向下平移4个单位得N 点坐标是 15.八年级2班佳佳同学考号为8206,你理解含意吗?用同样的方法表示你的考号是
16.点A 位于第二象限,且它的横、纵坐标的积为-8,写出一个满足条件的点的坐标 17.点N (a+5,b )与点M (6,-3)关于x 轴对称,则a= , b=
18.两直线平行,一组同位角的角平分线的位置关系是 19.列举一个现实生活平移的实例 ____________________ 20.命题:“内错角相等,两直线平行”的题设是 结论是
21.如图,从书店到公路最近的是 号路线,数学道理是
22.如图,表示点B 到直线AC 的距离是

② ③ 公路
书店
第21题图
B
D
三、认真阅读,正确画图(每小题4分,计12分)
23.如图所示的正方形网格中,画出以AB 为一边的正方形ABCD ,标出C ,D ,并算出正方形ABCD 的面积=
24.画∠AOB=60°,在OA 上截取OC=2cm ,过C 点画CD ⊥OB ,垂足为D ,并画CE ⊥OA (画在右上方空白处)。

25.将△ABC 平移,使A 点平移到A ′点,画出平移后的△A ′B ′C ′
四、做一做,你能不出错吗?(共44分) 26.(本题5分)如图是日本平城京的建筑布局图,如果用
(1,2)表示图上西市的位置,那么(4,1)表示什么地方?其余地方如何表示?
27.(本题6分)如图长方形ABCD中,AB=6,AD=4,建立适当的坐标系并写出A、B、C、D四个点的坐标。

28.(本题6分)已知,AB∥CD,∠A=∠C,说明AD∥BC的理由
29.(本题6分)已知△ABC中,∠B=70°,CD平分∠ACB,
∠2=∠3,求∠1的度数。

30.(本题7分)
阅读理解填注部分理由,探索新的结论(②③两小题只写
结论)
已知AB∥CD,①如图甲∠B+∠C=∠BEC
理由如下:
解:过E点作EF∥AB
则∠1=∠ B ()
∵EF∥AB
AB∥CD
()
∴EF∥CD ()
∴∠2=∠ C ()
∵∠BEC=∠1+∠2
∴∠BEC=∠C+∠B ()
②图乙中∠B,∠E,∠D,∠F,∠C的数量关系是
③图丙中∠B,∠E,∠F,∠G,∠H,∠M,∠C的数量
关系是
31.(本题6分)(1)在所给的坐标系中(如图)描出下列各点:
--------
A B C D E F
(3,3)、(1,1)、(2,3)、(2,5)、(5,5)、(2,4)
(2)请将(1)中的6个点按下列要求分成两类,并写出
同类点具有而另一类点不具有的一个特征.(请将答案按下
列要求写在横线上:特征不能用否定形式表示;点用字母
表示)
①甲类点含有两个点,乙类点含其余四个点.
甲类:点、是同一类点,其特征是;
乙类:点、、、
是同一类点,其特征
是 .
②甲类点含有三个点,乙类点也含
有三个点.
甲类:点、、
是同一类点,其特征
是 .
乙类:点,,是同一类点,其特征是 . 32.(本题8分)
已知A(-1,0),B(0,2)。

把线段AB平移,使点B移动到点C(4,4)处,这时点A移到点D处。

①画出平移后的线段CD,并写出D点坐标。

②如果平移时只能左右移动或者上下移动,叙述线段AB是怎么移动到CD的?
③求线段平移过程中扫过的
面积。

答案:
1~5. BACCC ; 6~10. DDBDC; 11.140°, 40°;12. 60°; 13. ∠B ∠BDE;
14.(-1,1) ;15.海光(12,3,1) ;16. 答案不唯一,例如(-1,8) ;
17. a=1,b=3 ;18. 相互平行;19.例如商场里上下迎客的电梯;
20.题设:内错角相等结论:两直线平行21. ①,垂线段最短;
22.BA的长;23.10;24.略; 25.略; 26. (4,1)表示罗城门,东市(7,2),
平城富(5,7) 唐招提寺(1,5); 27.略;28.略;29. 70°;30.①略;
②∠B+∠D+∠C=∠E+∠F;③∠B+∠F+∠H+∠C=∠E+∠G+∠M;
31.①甲类:A、E,位于第一象限;乙类:B、C、D、F,位于第三象限;
②甲类:A、B、E,横坐标和纵坐标相同;乙类:C、D、F,横坐标是-2;
32.(1)D(3,2);(2)线段AB先向右平移4个单位,再向上平移2个单位,得到线段CD;
(3)所求面积为4⨯2+1
⨯1⨯2=9
2。

相关文档
最新文档