成都七中高一(下)数学单元测试
四川省成都市第七中学2023-2024学年高一下学期期末考试数学试卷(解析版)
成都七中高2026届高一下期期末考试数学试题一.单项选择题:本大题共8小题,每小题5分,共计40分.每小题给出的四个选项中,只有一项是符合题目要求的.1.若2i z =-,则z z -=()A.B.2iC.2D.4【答案】C 【解析】【分析】根据共轭复数写出z ,即可求出模长.【详解】2i z =- ,2i z ∴=+,即(2i)(2i)2i 2z z -=+--==.故选:C.2.若2,a a = 与b 夹角为60,且()b a b ⊥- ,则b = ().A.32B.1C.D.2【答案】B 【解析】【分析】根据向量垂直,结合数量积的定义即可列方程求解.【详解】由()b a b ⊥- ,得20b a b ⋅-= ,故22cos600b b ⋅-=,故1b = 或0b = ,若0b = ,则,a b共线,不满足题意,故1b = ,故选:B3.已知tan 2α=,α为锐角,则πsin()4α+=(). A.1010B.1010 C.31010-D.31010【答案】D 【解析】【分析】利用两角和的正弦公式把πsin()4α+展开,然后利用同角三角函数基本关系即可求解.【详解】πππ2sin(sin coscos sin (sin cos )4442ααααα+=+=+ ,,,α为锐角,sin 0,cos 0αα∴>>,sin tan 2cos ααα== ,sin 2cos αα∴=,又22sin cos 1αα+= sin ,cos 55αα∴==,即35sin cos 5αα+=,得0π2sin()31n cos 4201ααα+=+=.故选:D.4.将函数()sin f x x =的图象先向左平移π3个单位长度,再将得到的图象上所有点的横坐标扩大到原来的2倍,纵坐标不变,得到函数()g x 的图象,则()g x 的一条对称轴可能为().A.5π12B.π12C.5π3D.π3【答案】D 【解析】【分析】根据平移伸缩得到三角函数解析式再求对称轴即可.【详解】将函数()sin f x x =的图象先向左平移π3个单位长度,再将得到的图象上所有点的横坐标扩大到原来的2倍,纵坐标不变,得到函数()1πsin 23g x x ⎛⎫=+ ⎪⎝⎭,则对称轴为πππ,Z 232x k k +=+∈,所以对称轴为π2π,Z 3x k k =+∈,当0k =时对称轴为π3x =.故选:D.5.已知,,αβγ是三个不同的平面,,m n 是两条不同的直线,且m αβ⋂=,给出下列四个命题:①若//m n ,则//n α或//n β②若m n ⊥,则n α⊥或n β⊥③若,αβγβ⊥⊥,则//αγ④若,//n m n γβ⋂=,则//γα则上述命题中正确的个数为().A.0B.1C.2D.3【答案】B 【解析】【分析】利用直线、平面间的位置关系判断即可.【详解】对于①,若,//m m n αβ⋂=,则如图所示,第一种情况,n 在,αβ外,可得//n α或//n β;第二种情况,n 在β内,可得//n α;第三种情况,n 在α内,可得//n β,综上所述,//n α或//n β,故①正确;对于②,若,m m n αβ⋂=⊥,则n 与α相交或在α内,n 与β相交或在β内,故②错误;对于③,若m αβαβγβ⊥⋂=⊥,,,则,αγ相交或//αγ,故③错误;对于④,若,,//m n m n αβγβ⋂=⋂=,则//γα或γ与α相交,故④错误.故选:B.6.同时抛掷两枚质地均匀的六面骰子,则所得点数之差绝对值小于2的概率为().A.23B.59C.49D.13【答案】C 【解析】【分析】|根据古典概型计算即可.【详解】同时抛掷两枚质地均匀的六面骰子,则所得点数分别为,x y ,共有36种情况,点数之差绝对值小于2的情况有()()()()()()()()()()()()()()()()1,1,2,2,3,3,4,4,5,5,6,6,1,2,2,3,3,4,4,5,5,6,2,1,3,2,4,3,5,4,6,5共16种点数之差绝对值小于2的概率为()1642369P x y -<==.故选:C.7.羌族是中国西部地区的一个古老民族,被称为“云朵上的民族”,其建筑颇具特色.碉楼是羌族人用来御敌、储存粮食柴草的建筑,一般多建于村寨住房旁.现有一碉楼,其主体部分可以抽象成正四棱台1111ABCD A B C D -,如图,已知该棱台的体积为311224m 8m 4m AB A B ==,,,则二面角1A AB C--的正切值为().A.3B.2C.D.32【答案】A 【解析】【分析】先求出正四棱台的高,再取正四棱台上下底面的中心为1,O O ,取11,AB A B 的中点,E M ,作1//MN OO 交OE 于点N ,则MEN ∠为二面角1A AB C --的平面角,即可求解.【详解】解:设正四棱台的高为h ,则(221843V h =++,得()12246416323h =++,得6h =,取正四棱台上下底面的中心为1,O O ,如图所示:取11,AB A B 的中点,E M ,作1//MN OO 交OE 于点N ,则MEN ∠为二面角1A AB C --的平面角,则184=6,22MN OO h EN -====,得6tan 32MN MEN EN∠===,故选:A8.在ABC 中,角A B C ,,所对的边分别为a b c ,,,已知160a A == ,,设O G ,分别是ABC 的外心和重心,则AO AG ⋅的最大值是()A.12B.13 C.14D.16【答案】B 【解析】【分析】设D 为BC 边中点,连接OD ,作OH AC ⊥于H ,即H 为AC 中点,求得212AO AC AC ⋅= ,212AO AB AB ⋅= ,化解得221166AO AG AB AC +=⋅ ,再通过余弦定理及均值不等式即可求解.【详解】设D 为BC 边中点,连接OD ,作OH AC ⊥于H ,即H 为AC 中点,因为21|||cos |||||2AO AC AO AC OAC AH AC AC ⋅=⋅∠=⋅= ,同理21|||cos 2|AO AB AO AB OAB AB ⋅=⋅∠= ,则()221332AO AG AO AD AO AB AC ⎛⎫⋅=⋅=⋅+ ⎪⎝⎭()()222211113666AO AB AC AB b c =⋅+=+=+,在ABC 中,1,60a A ==︒,由余弦定理得2222cos60a b c bc ︒=+-,即221b c bc +=+,由均值不等式,2212bc b c bc +=+≥,所以1bc ≤(当且仅当1b c ==等号成立),所以()()()2211111116663AO AG c b bc ⋅=+=+≤+= .故选:B.二.多项选择题:本大题共3小题,每小题6分,共计18分.每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,选对但不全的得部分分,有选错的得0分.9.已知()()1,,2,3a b ==+λλr r,则().A.“1λ=”是“a ∥b”的必要条件B.“3λ=-”是“a ∥b”的充分条件C.“12λ=-”是“a b ⊥ ”的必要条件D.“12λ=”是“a b ⊥ ”的充分条件【答案】BC 【解析】【分析】对于AB :根据向量平行的坐标表示结合充分必要条件分析判断;对于CD :根据向量垂直的坐标表示结合充分必要条件分析判断.【详解】因为()()1,,2,3a b ==+λλr r,对于选项AB :若a ∥b,则()23+=λλ,解得1λ=或3λ=-,可知a ∥b,等价于1λ=或3λ=-,若a ∥b ,不能推出1λ=,所以“1λ=”不是“a ∥b”的必要条件,故A 错误;若3λ=-,可以推出a ∥b ,所以“3λ=-”是“a ∥b”的充分条件,故B 正确;对于选项CD :若a b ⊥,则230++=λλ,解得12λ=-,可知a b ⊥ ,等价于12λ=-,若a b ⊥ ,可以推出12λ=-,所以“12λ=-”是“a b ⊥ ”的必要条件,故C 正确;若12λ=,不能推出a b ⊥ ,“12λ=”不是“a b ⊥ ”的充分条件,故D 错误;故选:BC.10.已知一组样本数据()12201220,,,,x x x x x x ≤≤≤ 下列说法正确的是().A.该样本数据的第60百分位数为12x B.若样本数据的频率分布直方图为单峰不对称,且在右边“拖尾”,则其平均数大于中位数C.若样本数据的方差2022112520i i s x ==-∑,则这组样本数据的总和为100D.若由()21,2,,20i i y x i == 生成一组新的数据1220,,,y y y ,则这组新数据的平均值是原数据平均值的2倍【答案】BCD 【解析】【分析】根据题意,结合百分位数、数据方差,以及平均数与方差的性质,逐项判定,即可求解.【详解】对于A ,由200.612⨯=,可得第60百分位数为12132x x +,错误;对于B ,数据的频率分布直方图为单峰不对称,向右边“拖尾”,大致如图所示,由于“右拖”时最高峰偏左,中位数靠近高峰处,平均数靠近中点处,此时平均数大于中位数,正确;对于C ,由()11222202011252020i i i i s x x x ===∑-=∑-,则20202221150020i i i i x x x ==-=-∑∑,所以5x =,故这组样本数据的总和等于20100x =,正确;对于D ,若由()21,2,,20i i y x i == 生成一组新的数据1220,,,y y y ,则这组新数据的平均值是原数据平均值的2倍,正确.故选:BCD .11.如图,在长方体ABCD A B C D -''''中,2,4,AB BC AA '===N 为棱C D ''中点,1,2D M P '=为线段A B '上一动点,下列结论正确的是().A.线段DP 长度的最小值为655B.存在点P ,使AP PC +=C.存在点P ,使A C '⊥平面MNP D.以B 为球心,176为半径的球体被平面AB C '所截的截面面积为6π【答案】AC 【解析】【分析】对于A ,在三角形中,由垂线段最短即可计算得到;对于B ,通过平面翻折,化空间到平面,利用两点之间线段最短计算出AP PC +的最小值,再与C ,依题意作出经过三点,,M N P 的平面,再证明A C '与平面垂直即得;对于D ,利用球的截面圆的性质,先通过等体积求得球心到平面的距离,再由垂径定理求出截面圆半径即得.【详解】对于A ,如图1,因A B A D ''===,BD =,故当DP A B ⊥'时,线段DP 长度最小,此时由等面积,1122DP ⨯⨯,解得655DP ==,故A 正确;对于B ,如图2,将平面A D CB ''旋转至平面11BC D A ',使之与平面A AB '共面,连接1AC 与A B '交于点1P ,此时1111AP PC AC +=为最小值.sinA BA '∠==,190A BC '∠=,故1cos cos(90)sinABC A BA A BA ''∠=∠+=-∠=-由余弦定理,2221122222cos 88(8AC ABC =+-⨯⨯∠=-⨯-=+,故1AC =>因此不存在这样的点P ,使AP PC +=B 错误;对于C ,如图3,取131,,22B E B F A G =='='',连接FG 交A B '于P ,下证AC MN '⊥.连接D C ',由2D N D DD M DC''=='可得ND M D DC '' ,则得D C MN '⊥,因D A ''⊥平面DCC D '',因MN ⊂平面DCC D '',则D A MN ''⊥,因D C D A D ''''⋂=,,D C D A '''⊂平面A D C '',故MN ⊥平面A D C '',又A C '⊂平面A D C '',故A C MN '⊥.同理,A C EN '⊥,因MN EN N ⋂=,,MN EN ⊂平面MEN ,故A C '⊥平面MEN .下证//EF GM .取线段A G '的三等分点,J K ,取A D ''的中点H ,连接,,,EH HJ JF D K ',易证////,EH A B FJ EH A B FJ ''''==,则得EFJH ,得//EF JH ,易得//JH D K ',因//,D M GK D M GK ''=,得D MJK ' ,得//D K GM ',故得//EF GM .同理可得//MN FG ,因此,,,,M N E F G 五点共面.由A C '⊥平面MEN 可得A C '⊥面MNEFG .所以存在这样的点P 使A C '⊥面MNP ,故C正确;对于D ,如图4,以点B 为球心,176为半径的球面被面AB C '所截的截面为圆形,记其半径为r,则r =(*),其中d 为点B 到平面AB C '的距离.由B ABC B AB C V V --''=可得,1133ABC AB C S BB S d ''⨯⨯=⨯⨯ ,则122442132d ⨯⨯⨯==⨯,代入(*),得52r =,所以截面面积225ππ4S r ==,故D 错误.故选:AC.【点睛】关键点点睛:本题主要考查多面体中与动点有关的距离最值,截面性质问题,属于难题.解题关键在于处理距离和的最小值常常需要平面翻折,截面问题,一般应先作出截面,再根据条件分析截面性质,对于球的截面圆,常通过垂径定理求解.三.填空题:本大题共3小题,每小题5分,共计15分.12.习主席曾提出“绿水青山就是金山银山”的科学论断,为响应国家号召,农学专业毕业的小李回乡创业,在自家的田地上种植了,A B 两种有机生态番茄共5000株,为控制成本,其中A 品种番茄占40%.为估计今年这两种番茄的总产量,小李采摘了10株A 品种番茄与10株B 品种番茄,其中A 品种番茄总重17kg ,B 品种番茄总重23kg ,则小李今年共可收获番茄约_______kg .【答案】10300【解析】【分析】求解两种番茄的种植株数,利用比例即可求解.【详解】由题意,知A 品种番茄共40%5000=2000⨯株,B 品种番茄3000株,故共可收获番茄约172320003000103001010⨯+⨯=kg ,故答案为:1030013.已知三棱锥A BCD,ABC - 是边长为2的等边三角形,BCD △是面积为2的等腰直角三角形,且平面ABC ⊥平面BCD ,则三棱锥A BCD -的外接球表面积为_______.【答案】28π3##28π3【解析】【分析】判断出等腰直角三角形BCD △的直角,根据面面垂直的性质说明四边形1O EGO 为矩形,求出相关线段长,即可求得三棱锥外接圆半径,即可求得答案.【详解】由于ABC 是边长为2的等边三角形,故2BC =,BCD △是面积为2的等腰直角三角形,假设BDC ∠为直角,则BD DC ==112BCD S ==△不合题意;故DBC ∠或DCB ∠为直角,不妨设DBC ∠为直角,则2BD BC ==;设ABC 的中心为G ,E 为BC 的中点,则,,A G E 共线,且AE BC ⊥,由于平面ABC⊥平面BCD ,平面ABC ⋂平面BCD BC =,AE ⊂平面ABC ,故⊥AE 平面BCD ,设O 为三棱锥A BCD -的外接球球心,1O 为DC 中点,即为BCD △的外接圆圆心,连接1OO ,则1OO ⊥平面BCD ,则1OO AE ∥,连接1OG,O E ,则OG ⊥平面ABC ,AE ⊂平面ABC ,则OG AE ⊥,又⊥AE 平面BCD ,1O E ⊂平面BCD ,则1AE O E ⊥,则四边形1O EGO 为矩形,则112122323OG O E DB ,AG ====⨯=,故22273OA OG AG =+=,故三棱锥A BCD -的外接球表面积为228π4π3OA ⨯=,故答案为:28π314.在ABC 中,43AB AC AB AC P ⊥==,,,为斜边BC 上一动点,点Q 满足2PQ =,且AQ mAB nAC =+,则2m n +的最大值为______________.【答案】1323+【解析】【分析】取AB 中点D ,连接CD 交AQ 于点E ,由平面向量的线性运算得2AQ m n AE+=,过Q 作QF CD ∥交直线AB 于点,AQ AF F AEAD=,如图,当P 与B 重合,FQ 与P 相切时,AF AD取得最大值,即可求解.【详解】AB 中点D ,由题可知点Q 点在以P 为圆心,以2为半径的圆上,则2AQ mAB n AC mAD n AC =+=+;连接CD 交AQ 于点E ,()1AE AD AC λλ=+-,则()()1AQ AQ AQ AE AD AC AE AEλλ=⋅=⋅+- ,故2AQ m n AE+=.过Q 作QF CD ∥交直线AB 于点,AQ AF F AEAD=.如图,当P 与B 重合,FQ 与P 相切时,AF AD取得最大值.则3tan tan 2∠=∠=BFQ ADC,得sin ∠=BFQ ,得2,223sin 33BQ AB BF BF m n BFQAD +===+==∠.故答案为:1323+四.解答题:本大题共5小题,共计77分.解答应写出文字说明、证明过程或演算步骤.15.如图,棱长为6的正方体1111ABCD A B C D -中,O 是AC 的中点,E 是1AA 的中点,点F 在AB上.(1)当F 是AB 的中点时,证明:平面//EFO 平面11A D C ;(2)当F 是靠近B 的三等分点时,求异面直线FO 与1AC 所成角的余弦值.【答案】(1)证明见解析(2)3015.【解析】【分析】(1)利用OF OE ,分别为11,BC A C A D 的中位线,得到//OF 平面11A D C ,//OE 平面11A D C ,借助面面平行的判定定理证明即可;(2)由1//OE A C 可知EOF ∠或其补角为异面直线FO 与1AC 所成角,借助余弦定理求出即可.【小问1详解】由正方体1111ABCD A B C D -可知,,O E 是1,AC AA 中点,所以1//,OE A C 因为11A D ⊂平面11,A D C OE ⊄平面11A D C ,所以//OE 平面11A D C .因为F 是AB 中点,O 是AC 中点,所以OF 为ABC 的中位线,故11////OF BC A D .又由于1AC ⊂平面11,A D C OF ⊄平面11A D C ,所以//OF 平面11A D C .又,,OE OF O OE OF =⊂ 平面EFO ,故平面//EFO 平面11A D C .【小问2详解】由1//OE A C 知,异面直线FO 与1AC 所成角即为EOF ∠或其补角.由于1AA ⊥平面,,ABCD AB AO ⊂平面ABCD ,则1AA 与,AB AO 都垂直,所以90EAF EAO ∠=∠=︒,由题意得4AF =,在Rt EAF △中,由勾股定理可得5EF =.易得3AO AE ==,在Rt EAO △中,由勾股定理可得EO =在OAF △中,45CAB ∠=︒,由余弦定理得FO ==,在EOF 中,由余弦定理可得2222cos EF EO FO EO FO EOF =+-⋅⋅∠,代入解得cos 015EOF ∠==>.所以异面直线FO 与1AC 所成角的余弦值为3015.16.2024年4月26日,主题为“公园城市、美好人居”的世界园艺博览会在四川成都正式开幕,共建成113个室外展园,涵盖了英式、法式、日式、意式、中东、东南亚等全球主要园林风格,吸引了全球各地游客前来参观游玩.现从展园之一的天府人居馆中随机抽取了50名游客,统计他们的参观时间(从进入至离开该展园的时长,单位:分钟,取整数),将时间分成[)[)[]455555658595 ,,,,,,五组,并绘制成如图所示的频率分布直方图.(1)求图中a 的值;(2)由频率分布直方图,试估计该展园游客参观时间的第75百分位数(保留一位小数);(3)由频率分布直方图,估计样本的平均数¯(每组数据以区间的中点值为代表).【答案】(1)0.015a =;(2)78.3(3)69x =.【解析】【分析】(1)应用频率和为1求参数;(2)应用频率分布直方图求百分位数步骤求解;(3)应用频率分布直方图求平均数步骤求解.【小问1详解】由样本频率分布直方图可知()0.0120.0250.035101a +++⨯=,解得0.015a =;【小问2详解】样本频率直方图前三组频率之和为()0.0100.0250.035100.70.75++⨯=<,前四组频率之和为()0.0100.0250.0350.015100.850.75+++⨯=>,所以样本数据的第七十五百分位数在第四组内,设其为x ,则()750.0150.700.75x -⨯+=,解得78.3=x ,所以样本数据的第七十五百分位数为78.3.由样本估计总体,估计该展园游客参观时间的第七十五百分位数也为78.3;【小问3详解】0.0110500.03510600.02510700.01510800.0151090x =⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯,计算可得,样本的平均数69x =.17.甲、乙两位同学进行羽毛球比赛,并约定规则如下:在每个回合中,若发球方赢球,则得1分,并且下一回合继续由其发球;若发球方输球,则双方均不得分,且下一回合交换发球权;比赛持续三回合后结束,若最终甲乙得分相同,则为平局.已知在每回合中,甲获胜的概率均为23,各回合比赛结果相互独立,第一回合由甲发球.(1)求甲至少赢1个回合的概率;(2)求第二回合中有选手得分的概率;(3)求甲乙两人在比赛中平局的概率.【答案】(1)2627(2)59(3)427.【解析】【分析】(1)根据对立事件概率求法及乘法公式结合条件即得;(2)结合对立事件和独立事件,应用和事件求概率;(3【小问1详解】设事件=i A “第i 回合甲胜”,事件M =“甲至少赢一回合”,故M =“甲每回合都输”.i A 为i A 对立事件,()23i P A =,故()13i P A =.()()()()()()31231231261111327P M P M P A A A P A P A P A ⎛⎫=-=-=-=-=⎪⎝⎭,故甲至少赢1个回合的概率为2627.【小问2详解】设事件N =“第二回合有人得分”,由题可知1212N A A A A =⋃,且12A A 和12A A 互斥,则()()()()()()()1212121259P N P A A P A A P A P A P A P A =+=⋅+⋅=,故第二回合有人得分的概率为59.【小问3详解】设事件Q =“甲乙两人平局”,由题可知,只有0:0与1:1两种情况,因此123123Q A A A A A A =⋃,故()()()()()()()()()123123123123427P Q P A A A P A A A P A P A P A P A P A P A =+=+=,故甲乙两人平局的概率为427.18.记ABC 的内角A B C ,,的对边分别为a b c ,,,已知4,2,sin sin 2sin a c a A c C b B ==+=,D 是线段AC 上的一点,满足13AD AC =,过D 作一条直线分别交射线BA 、射线BC 于M N 、两点.(1)求b ,并判断ABC 的形状;(2)求BD 的长;(3)求BM BN ⋅的最小值.【答案】(1)b =,钝角三角形(2)2133(3)409【解析】【分析】(1)由正弦定理得b =cos 0A <,得到π2A >,ABC 是钝角三角形;(2),BA BC 可作为一组基底,求出5cos ,cos 8BA BC B 〈〉== ,根据题目条件得到2133BD BA BC =+ ,平方后2BD,从而求出答案;(3)设,BM xBA BN yBC ==,根据向量共线得到()()1,0,1BD t BM tBN t =-+∈ ,由向量基本定理得到()21,313x y t t ==-,表达出()291BM BN BA BC t t⋅=⋅-⋅ ,其中50BA BC ⋅=>,由基本不等式求出最小值.【小问1详解】由正弦定理得,222sin sin 2s n 2i a a c A c C b B b ⇒+=+=,又4,2a c ==,解得b =.又因为22220b c a +-=-<,故222cos 02+-=<b c a A bc,因为0πA <<,故π2A >,所以ABC 是钝角三角形.【小问2详解】由平面向量基本定理,,BA BC可作为一组基底向量,且有2,4BA BC == ,2225cos ,cos 28a cb BA BC B ac+-〈〉===.由于13AD AC = ,所以()13BD BA BC BA -=- ,故2133BD BA BC =+ .BD ==3===;【小问3详解】由题意可设,BM xBA BN yBC == .由于,,M D N 三点共线,设MD tMN =,01t <<,故()BD BM t BN BM -=- ,故()()1,0,1BD t BM tBN t =-+∈.所以()21133BD t x BA ty BC BA BC =-⋅+⋅=+ ,由平面向量基本定理,解得()21,313x y t t ==-,所以()21,313BM BA BN BC t t ==-.因此()()21231391BM BN BA BC BA BC t t t t ⎛⎫⎛⎫⋅=⋅=⋅ ⎪ ⎪ ⎪--⋅⎝⎭⎝⎭,而||||cos 50BA BC BA BC B ⋅=⋅⋅=>,其中()11122t t t t -+-≤=,当且仅当1t t -=,即12t =时,等号成立,因此当12t =时,409BM BN ⋅= 为最小值.【点睛】平面向量解决几何最值问题,通常有两种思路:①形化,即用平面向量的几何意义将问题转化为平面几何中的最值或取值范围问题,然后根据平面图形的特征直接进行求解;②数化,即利用平面向量的坐标运算,把问题转化为代数中的函数最值与值域,不等式的解集,方程有解等问题,然后利用函数,不等式,方程的有关知识进行求解.19.如图,斜三棱柱111A B C ABC -中,90ABC ∠= ,四边形11ABB A 是菱形,D 为AB 中点,1A D ⊥平面ABC ,点1A 到平面11BCC B 1AA 与1CC 的距离为2.(1)求证:CB ⊥平面11ABB A ;(2)求1AC 与平面11BCC B 所成角的正弦值;(3)若E F ,分别为1AA AC ,的中点,求此斜三棱柱被平面1B EF 所截的截面面积.【答案】(1)证明见解析(2)155(3)53412.【解析】【分析】(1)根据线面垂直判定定理证明即可;(2)先根据线面垂直判定定理证明线面垂直,几何法得出线面角,再计算得出正弦值;(3)先找到截面,再计算截面即可.【小问1详解】因为1A D ⊥平面,ABC BC ⊂平面ABC ,故1A D BC ⊥.又由90ABC ∠=︒,即1,,AB BC AB A D D AB ⊥⋂=⊂平面11ABB A ,1A D ⊂平面11ABB A ,因此BC ⊥平面11ABB A .【小问2详解】由于菱形11ABB A ,且1A D 为AB 的垂直平分线,因此可知1A AB △和11B A B 均为等边三角形.由BC ⊥平面11,ABB A BB ⊂平面1ABB A ,可得1BC BB ⊥,斜三棱柱进一步可得11B BCC 是矩形.此时作1111,A P BB AQ CC ⊥⊥,连接1,,PQ PC AC .由题知,112,AQ A P =⊂平面11ABB A ,可得111,BC A P BC BB B BB ⊥⋂=⊂,平面11,BCC B BC ⊂平面11BCC B ,因此1AP ⊥平面11BCC B ,因此由题知,1,A P PQ PC =⊂平面11BCC B ,所以也有11,A P PQ A P PC ⊥⊥.因此,1ACP ∠为1AC 与平面11BB C C 所成角.在1Rt A PQ △中,1PQ ==,由矩形可知1BC PQ ==.由于1A P =1B AB △中,可以解得12,BB P =为1BB 中点,1BP =.所以,在Rt BCP △中,PC =1Rt ACP △中,1AC =.因此,111115sin ,5A P ACP AC AC ∠===与平面11BB C C所成角的正弦值为5.【小问3详解】延长1,EF C C 交于点M ,连接1MB ,交BC 于N ,连接FN ,如图,故四边形1B EFN 即为所得截面.上一问可知,菱形11ABB A 的边长为2,矩形11B BCC 中1BC =,平行四边形11ACC A中111112,AA CC AC AC AC =====.要计算截面1B EFN 的面积,首先研究1B EM △.在11A B E △中,由于11120EA B ∠=︒,由余弦定理可得1B E =,E F 为中点,因此12EM EF AC ===,此时有1MC AE ==,在直角11MB C中1MB N =为BC 的三等分点.因此1B EM △中,由余弦定理可得2221111cos 25EM MB EB EMB EM MB +-∠==⋅⋅,第21页/共21页所以可以计算得117sin 5EMB ∠=.设截面面积为S ,由于111,23MF ME MN MB ==,有11111115534sin sin 22612B EM NFM B EM S S S ME MB EMB MF MN EMB S =-=⋅⋅∠-⋅⋅∠==△△△因此,此斜三棱柱被平面1B EF 所截的截面面积为53412.。
2018-2019学年四川省成都七中高一(下)入学数学试卷(2月份)(解析版)
2018-2019学年四川省成都七中高一(下)入学数学试卷(2月份)一、选择题(本大题共12小题,共60.0分)1.设集合{A=x|1<x<2},{B=x|x<a},若A⊆B,则a的取值范围是()A. B. C. D.2.若f(x)=2x+3,g(x+2)=f(x),则g(x)的表达式为()A. B. C. D.3.设α是第三象限角,化简:=()A. 1B. 0C.D. 24.设a=0.60.4,b=0.40.6,c=0.40.4,则a,b,c的大小关系为()A. B. C. D.5.若函数f(x)满足f(x)-2f(2-x)=-x2+8x-8,则f(1)的值为()A. 0B. 1C. 2D. 36.已知函数g(x)与f(x)=a x(a>0,a≠1)的图象关于直线y=x对称,则g(2)+g()的值为()A. 4B. 2C. 1D. 07.直角坐标系内,β终边过点P(sin2,cos2),则终边与β重合的角可表示成()A. ,B. ,C. ,D. ,8.已知函数f(x)=,,,,在定义域上单调递减,那么a的取值范围是()A. B. C. D.9.如图,在△ABC中,已知=,P为AD上一点,且满足=m+,则实数m的值为()A.B.C.D.10.在直角三角形ABC中,点D是斜边AB的中点,点P为线段CD的中点,则=()A. 2B. 4C. 5D. 1011.定义在R上的偶函数f(x)满足f(x+2)=f(x),当x[-3,-2]时,f(x)=x2+4x+3,则y=f[f(x)]+1在区间[-3,3]上的零点个数为()A. 1个B. 2个C. 4个D. 6个12.设e为自然对数的底数,则函数f(x)=e x(2-e x)+(a+2)•|e x-1|-a2存在三个零点,则a的取值范围是()A. B. C. D.二、填空题(本大题共4小题,共20.0分)13.函数f(x)=+lg(3x+1)的定义域为______.14.tan=______.15.在△ABC中,∠A=60°,a=4,b=4,则B等于______.16.已知,,,,且,则cos(x+2y)=______.三、解答题(本大题共6小题,共70.0分)17.(1)化简求值:(log32+1og92)(log43+1og83)+2;(2)已知x-x-1=-,求x3-x-3的值.18.已知=(1,2),=(-3,2),当k为何值时:(1)k+与-3垂直;(2)k+与-3平行,平行时它们是同向还是反向?19.声音通过空气的振动所产生的压强叫声压强,简称声压,单位为帕(Pa).把声压的有效值取对数来表示声音的强弱,这种表示声音强弱的数值叫声压级.声压级以符号S PL表示,单位为分贝(dB),公式为:S PL(声压级)=(dB),式中p e为待测声压的有效值,p ref为参考声压,在空气中参考声压p ref一般取值2×10-5Pa.根据上述材料,回答下列问题.(1)若某两人小声交谈时的声压有效值p e=0.002Pa,求其声压级;(2)已知某班开主题班会,测量到教室内最高声压级达到90dB,求此时该班教室内声压的有效值.20.已知函数f(x)=A sin(ωx+φ)(A>0,ω>0)的部分图象如图所示.(Ⅰ)求函数f(x)的解析式;(Ⅱ)若函数f(x)在[0,π]上取最小值时对应的角度为θ,求半径为2,圆心角为θ的扇形的面积.21.已知定义域为R的函数f(x)=-+是奇函数(1)求a的值;(2)判断函数f(x)的单调性并证明;(3)若对于任意的t(1,2),不等式f(-2t2+t+1)+f(t2-2mt)≤0有解,求m的取值范围.22.已知函数f(x)=sin(x R).任取t R,若函数f(x)在区间[t,t+1]上的最大值为M(t),最小值为m(t),记g(t)=M(t)-m(t).(Ⅰ)求函数f(x)的最小正周期及对称轴方程(Ⅱ)当t[-2,0]时,求函数g(t)的解析式(Ⅲ)设函数h(x)=2|x-k|,H(x)=x|x-k|+2k-8,其中实数k为参数,且满足关于t的不等式k-5g(t)≤0有解.若对任意x1[4,+∞),存在x2(-∞,4],使得h(x2)=H(x1)成立,求实数k的取值范围参考公式:sinα-cosα=sin(α-)答案和解析1.【答案】A【解析】解:在数轴上画出图形易得a≥2.故选:A.在数轴上画出图形,结合图形易得a≥2.本题考查集合的包含关系,解题时要作出图形,结合数轴进行求解.2.【答案】B【解析】解:∵f(x)=2x+3,∴g(x+2)=f(x)=2x+3=2(x+2)-1,即g(x)=2x-1故选:B.由g(x+2)=f(x),把f(x)的表达式表示为含有x+2的基本形式即可.本题考查了求简单的函数解析式的问题,是基础题.3.【答案】C【解析】解:∵α是第三象限角,可得:cosα<0,∴=-,∵cos2α+cos2αtan2α=cos2α+cos2α•=cos2α+sin2α=1.∴=-1.故选:C.原式利用单项式乘以多项式法则计算,再利用同角三角函数间基本关系化简,结合角的范围即可得到结果.此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键,属于基础题.4.【答案】B【解析】解:∵a=0.60.4,c=0.40.4,由幂函数的性质可得a>c,∵b=0.40.6,c=0.40.4,由指数函数的性质可得b<c,∴b<c<a.故选:B.直接利用指数函数与幂函数的单调性进行大小比较.本题考查指数函数与幂函数的图象与性质,是基础题.5.【答案】B【解析】解:∵函数f(x)满足f(x)-2f(2-x)=-x2+8x-8,∴f(1)-2f(1)=-1+8-8,∴f(1)=1.故选:B.在f(x)-2f(2-x)=-x2+8x-8中,令x=1,能求出f(1)的值.本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.6.【答案】D【解析】解:若函数g(x)与f(x)=a x(a>0,a≠1)的图象关于直线y=x对称,故函数g(x)与f(x)=a x(a>0,a≠1)互为反函数,故g(x)=log a x(a>0,a≠1),故g(2)+g()=log a2+=log a2-log a2=0,故选:D.由已知可得函数g(x)与f(x)=a x(a>0,a≠1)互为反函数,即g(x)=log a x(a>0,a≠1),结合对数的运算性质,可得答案.本题考查的知识点是反函数,函数求值,对数的运算性质,难度中档.7.【答案】A【解析】解:∵β终边过点P(sin2,cos2),即为(cos (-2),sin (-2))∴终边与β重合的角可表示成-2+2kπ,k Z,故选:A.由P(sin2,cos2),即为(cos (-2),sin(-2)),即可求出.本题考查了终边相同的角和诱导公式,属基础题.8.【答案】C【解析】解:根据题意,函数f(x)的定义域为(0,+∞),y=x+在(0,1]为减函数,则[1,+∞)上为增函数,y=3-x在(0,+∞)上为减函数,又由函数y=x+与y=3-x有2个交点:(,)和(1,2),若函数f(x)=在定义域上单调递减,必有0<a≤或a=1,即a的取值范围为(0,]{1};故选:C.根据题意,分析函数f(x)的定义域为(0,+∞),再分析函数y=x+和函数y=3-x在(0,+∞)上的单调性,求出两个函数的交点,据此分析可得答案.本题考查分段函数的单调性,关键是分析分段函数解析式的形式,属于基础题.9.【答案】B【解析】解:如图,又=,所以又=m+,由平面向量基本定理可得,解得m=故选:B.由题设,可将用两向量表示出来,已知中已有足=m+,可根据平面向量基本定理建立起m的方程,从而求出m的值.本题考查平面向量基本定理的应用,根据向量的三角形法则与平行四边形法则把用两向量表示出来,是解答本题的关键.10.【答案】D【解析】解:以D为原点,AB所在直线为x轴,建立如图坐标系,∵AB是Rt△ABC的斜边,∴以AB为直径的圆必定经过C点设AB=2r,∠CDB=α,则A(-r,0),B(r,0),C(rcosα,rsinα)∵点P为线段CD的中点,∴P (rcosα,rsinα)∴|PA|2=+=+r2cosα,|PB|2=+=-r2cosα,可得|PA|2+|PB|2=r2又∵点P为线段CD的中点,CD=r∴|PC|2==r2所以:==10故选:D.以D为原点,AB所在直线为x轴,建立坐标系,由题意得以AB为直径的圆必定经过C点,因此设AB=2r,∠CDB=α,得到A、B、C和P各点的坐标,运用两点的距离公式求出|PA|2+|PB|2和|PC|2的值,即可求出的值.本题给出直角三角形ABC斜边AB上中线AD的中点P,求P到A、B距离的平方和与PC平方的比值,着重考查了用解析法解决平面几何问题的知识点,属于中档题.11.【答案】C【解析】解:∵当x[-3,-2]时,f(x)=x2+4x+3=(x+2)2-1[-1,0];又f(x)为R上的偶函数,∴当x[2,3]时,f(x)[-1,0];又f(x+2)=f(x),∴f(x)为以2为周期的函数,由题意,偶函数f(x)在区间[-3,3]上的值域为[-1,0],由f[f(x)]+1=0得到f[f(x)]=-1,于是可得f(x)=0或±2(舍弃),由f(x)=0可得x=±1,±3,所以y=f[f(x)]+1在区间[-3,3]上的零点个数为4.故选:C.由题意,偶函数f(x)在区间[-3,3]上的值域为[-1,0],确定f(x)=0,即可得出y=f[f(x)]+1在区间[-3,3]上的零点个数.本题考查函数的周期性、奇偶性、函数图象的对称性,体现数形结合的数学思想.考查的知识点是根的存在性及根的个数判断,其中根据已知条件分析函数的性质,进而判断出函数零点的分布情况是解答本题的关键.12.【答案】D【解析】解:设t=e x-1,则e x=t+1,则f(t)=(t+1)(1-t)+(a+2)|t|-a2=1-t2+(a+2)|t|-a2,令m=|t|=|e x-1|.则f(m)=-m2+(a+2)m+1-a2,∵f(x)有三个零点,∴等价为f(m)=-m2+(a+2)m+1-a2,有两个根,一个根在(0,1)内,另一个根在[1,+∞),则,得得1<a≤2,即实数a的取值范围是(1,2],故选:D.利用换元法设m=|t|=|e x-1|.转化为一元二次函数根的分布,利用数形结合进行求解即可.本题主要考查函数与方程的应用,利用换元法转化为一元二次函数,利用一元二次函数根的分布是解决本题的关键.综合性较强.13.【答案】,【解析】解:要使f(x)有意义,则:;∴;∴f(x)的定义域为.故答案为:.可看出,要使得f(x)有意义,则需满足,解出x的范围即可.考查函数定义域的概念及求法,对数函数的定义域.14.【答案】2-【解析】解:tan=tan(-)===2-,故答案为:2-.利用两角差的正切公式求得tan=tan(-)的值.本题主要考查两角差的正切公式的应用,属于基础题.15.【答案】45度【解析】解:∵在△ABC中,∠A=60°,a=4,b=4,∴由正弦定理=得:sinB=,又a=4>b=4,∴60°=A>B,∴B=45°.故答案为:45°.利用正弦定理=即可求得sinB,再由a>b知A>B,从而可得答案.本题考查正弦定理,在△ABC中,a>b知A>B是关键,属于基础题.16.【答案】1【解析】解:设f(u)=u3+sinu.由①式得f(x)=2a,由②式得f(2y)=-2a.因为f(u)在区间上是单调增函数,并且是奇函数,∴f(x)=-f(2y)=f(-2y).∴x=-2y,即x+2y=0.∴cos(x+2y)=1.故答案为:1.设f(u)=u3+sinu.根据题设等式可知f(x)=2a,f(2y)=-2a,进而根据函数的奇偶性,求得f(x)=-f (2y)=f(-2y).进而推断出x+2y=0.进而求得cos(x+2y)=1.本题主要考查了利用函数思想解决实际问题.考查了学生运用函数的思想,转化和化归的思想.17.【答案】解:(1)(log32+1og92)(log43+1og83)+2=+5=•+5=+5=.(2)∵x-x-1=-,∴x2+x-2+2=(x+x-1)2=(x-x-1)2+4=+4=,∴x2+x-2=.∴x3-x-3=(x-x-1)(x2+x-2+1)=×=-.【解析】(1)利用指数与对数运算性质即可得出.(2)利用乘法公式即可得出.本题考查了指数与对数运算性质、乘法公式,考查了推理能力与计算能力,属于基础题.18.【答案】解:(1)由题意可得k+=(k-3,2k+2),-3=(10,-4),由k+与-3垂直可得(k -3,2k+2)•(10,-4)=10(k-3)+(2k+2)(-4)=0,解得k=19.(2)由k+与-3平行,可得(k-3)(-4)-(2k+2)×10=0,解得k=-,此时,k+=-+=(-,),-3=(10,-4),显然k+与-3方向相反.【解析】(1)由题意可得k +和-3的坐标,由k+与-3垂直可得它们的数量积等于0,由此解得k的值.(2)由k +与-3平行的性质,可得(k-3)(-4)-(2k+2)×10=0,解得k的值.再根据 k+和-3的坐标,可得k +与-3方向相反.本题主要考查两个向量的数量积公式的应用,两个向量共线、垂直的性质,属于中档题.19.【答案】解:(1)由声压有效值p e=0.002Pa,根据S PL==40dB∴两人小声交谈时声压级为40dB(2)根据声压级S PL=90=,可得P e=帕.∴教室内最高声压级达到90dB,求此时该班教室内声压的有效值为P e=帕.【解析】(1)利用公式,代入P e=0.002帕,P mf=2×10-5帕,即可求得结论;(2)利用公式,代入P e=0.002帕,S pl=80分贝,即可求得结论.本题考查利用数学知识解决实际问题,考查学生的计算能力,属于基础题.20.【答案】解:(Ⅰ)根据函数f(x)=A sin(ωx+φ)(A>0,ω>0)的部分图象,可得A=2,•=+,∴ω=2.再根据五点法作图可得2×(-)+φ=0,求得φ=,∴f(x)=2sin(2x+).(Ⅱ)∵函数f(x)的周期为π,在[0,π]上,当x=时,f(x)取最小值-2,此时对应的角度为θ=,结合半径为2,则圆心角为θ的扇形的面积为θ•r2=••4=.【解析】(Ⅰ)由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得f(x)的解析式.(Ⅱ)求出θ,根据半径为2,求出圆心角为θ的扇形的面积.本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,正弦函数的图象和性质,属于中档题.21.【答案】解:(1)∵f(x)是R上的奇函数,∴f(0)=-+=0,∴a=1.(2)f(x)=-+,故f(x)是R上的减函数.证明:设x1,x2是R上的任意两个数,且x1<x2,则f(x1)-f(x2)=-=,∵x1<x2,∴0<<,∴>0,即f(x1)-f(x2)>0,∴f(x1)>f(x2),∴f(x)在R上是减函数.(3)∵f(x)是奇函数,f(-2t2+t+1)+f(t2-2mt)≤0有解,∴f(t2-2mt)≤-f(-2t2+t+1)=f(2t2-t-1),又f(x)是减函数,∴t2-2mt≥2t2-t-1在(1,2)上有解,∴m≤=-++.设g(t)=-++,则g′(t)=--<0,∴g(t)在(1,2)上单调递减,∴g(t)<g(1)=.∴m的取值范围是(-∞,].【解析】(1)根据f(0)=0求出a的值;(2)根据函数单调性的定义证明;(3)根据奇偶性和单调性列出不等式,从而得出m的范围.本题考查了函数奇偶性、单调性的应用,函数最值的计算,属于中档题.22.【答案】解:(Ⅰ)对于函数f(x)=sin(x R),它的最小正周期为=4,由=kπ+,求得x=2k+1,k Z,可得f(x)的对称轴方程为x=2k+1,k Z.(Ⅱ)当t[-2,0]时,①若t[-2,-),在区间[t,t+1]上,M(t)=f(t)=sin,m(t)=f(-1)=-1,g(t)=M(t)-m(t)=1+sin.②若t[-,-1),在区间[t,t+1]上,M(t)=f(t+1)=sin(t+1)=cos t,m(t)=f(-1)=-1,g(t)=M(t)-m(t)=1+cos.③若t[-1,0],在区间[t,t+1]上,M(t)=f(t+1)=sin(t+1)=cos t,m(t)=f(t)=sin t,g(t)=M(t)-m(t)=cos t-sin.综上可得,g(t)=,,,,,,.(Ⅲ)函数f(x)=sin的最小正周期为4,∴M(t+4)=M(t),m(t+4)=m(t).函数h(x)=2|x-k|,H(x)=x|x-k|+2k-8,对任意x1[4,+∞),存在x2(-∞,4],使得h(x2)=H(x1)成立,即函数H(x)=x|x-k|+2k-8在[4,+∞)上的值域是h(x)在[4,+∞)上的值域的子集.∵h(x)=|2|x-k|=,①当k≤4时,h(x)在(-∞,k)上单调递减,在[k,4]上单调递增.故h(x)的最小值为h(k)=1;∵H(x)在[4,+∞)上单调递增,故H(x)的最小值为H(4)=8-2k.由8-2k≥1,求得k≤.②当4<k≤5时,h(x)在(-∞,4]上单调递减,h(x)的最小值为h(4)=2k-4,H(x)在[4,k]上单调递减,在(k,+∞)上单调递增,故H(x)的最小值为H(k)=2k-8,由,求得k=5,综上可得,k的范围为(-∞,]{5}.【解析】(Ⅰ)根据正弦函数的周期性和图象的对称性,求得函数f(x)的最小正周期及对称轴方程.(Ⅱ)当t[-2,0]时,分类讨论求得M(t)和m(t),可得g(t)的解析式.(Ⅲ)由题意可得函数H(x)=x|x-k|+2k-8在[4,+∞)上的值域是h(x)在[4,+∞)上的值域的子集,分类讨论求得k的范围.本题主要考查正弦函数的周期性,指数函数的图象特征,函数的能成立、函数的恒成立问题,属于难题.。
成都七中届高一下期期中数学试题
11. 数列{an}满足 an 3an1 2 , a1 0 ,则 a3
12. 13.
ABC
己知 a
的内角 A, B ,C 满足: B 是 A与C 的等差中项,则 (1,3),b (2, 2), 则 (a b)(a b)
2
C. 7 3
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置2试时32卷,3各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并25工且52作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
2020-2021学年成都七中高一下期半期考试数学试卷及答案(1)
满足 : a1 b1 1, a2 b2 1, a3 b3 1.
(1)求数列an , bn 的通项公式;
(2)设cn
an
bn ,数列cn的前n项和为Sn ,求满足
Sn 3 an1
100(n
2, n
N
)的最小正整数n的值.
3
20.(本小题满分12分)已知各项均为正数的数列an满足:a1
2
2
5.矩形ABCD中, AB 3, BC 2, E为BC的中点,点F满足DF 2FC, 则AE AF ( A)8(B)4(C) 4(D) 8
1
6.函数f
(
x
)
sin
2
x
sin
x
,
x
(
2
,
)的零点为x0
,
则tan
2
x0的值为
( A) 3(B) 3(C ) 3(D) 3
3
3
7.如图正六边形ABCDEF ,则以下向量的数量积的值中 最大的为
sin( 3
C)
3
1
sin C
2 sin C
3 3 1 cos C 3 3 2 sin C 2
3 2
1 tan C
3 3 2
2
C ( , ),可知:C ( , ), tan C (2 3),
62
2 12 4
2
3 1 3 3 33
C ABC
2 tan C
2
(
2
3 ,33
3),
2
ABC的周长的取值范围是(3 3 3 ,3 3 3). 2
22.(本小题满分12分)如图,在小岛B的正北方向上10 n mile的C处有一艘货轮,为了躲避礁石, 该货轮沿南偏西 ( (30, 45 ))的方向航行,小岛B有一艘快艇沿北偏西(90 )角方向行驶 给货轮运送补给, 双方无线电约定在点P处完成补给.货轮得到补给后将原航行方向顺时针 旋转30向A地运送物资.
成都七中2022高一下学期数学第一次月考试卷
成都七中2022高一下学期数学第一次月考试卷1、计算(a2)3的结果是[单选题] *A. a?B. a?(正确答案)C. a?D. 3a22、已知二次函数f(x)=2x2-x+2,那么f(-2)的值为()。
[单选题] *12(正确答案)2833、向量与向量共线的充分必要条件是()[单选题] *A、两者方向相同B、两者方向相同C、其中有一个为零向量D、以上三个条件之一成立(正确答案)4、两个有理数相加,如果和小于每一个加数,那么[单选题] *A.这两个加数同为负数(正确答案)B.这两个加数同为正数C.这两个加数中有一个负数,一个正数D.这两个加数中有一个为零5、29、将点A(3,-4)平移到点B(-3,4)的平移方法有()[单选题] *A.仅1种B.2种C.3种D.无数多种(正确答案)6、从3点到6点,分针旋转了多少度?[单选题] *90°960°-1080°(正确答案)-90°7、26.已知(x﹣a)(x+2)的计算结果为x2﹣3x﹣10,则a的值为()[单选题] * A.5(正确答案)B.﹣5C.1D.﹣18、35、下列判断错误的是()[单选题] *A在第三象限,那么点A关于原点O对称的点在第一象限.B在第二象限,那么它关于直线y=0对称的点在第一象限.(正确答案) C在第四象限,那么它关于x轴对称的点在第一象限.D在第一象限,那么它关于直线x=0的对称点在第二象限.9、21、在中,为上一点,,且,则(). [单选题] *A. 24B. 36C. 72(正确答案)D. 9610、函数y=ax2+bx+c(a、b、c是常数,a≠0)是()。
[单选题] *正比例函数一次函数反比例函数二次函数11、60°用弧度制表示为()[单选题] *π/3(正确答案)π/62π/32π/512、7. 3位同学准备去学校饭堂吃午饭,学校饭堂有2个,则不同的去法共有( )种.[单选题] *A. 2+3=5种B.2×3=6种C.3×3=9种D.2×2×2=8种(正确答案)13、47.已知(x﹣2021)2+(x﹣2023)2=50,则(x﹣2022)2的值为()[单选题]* A.24(正确答案)B.23C.22D.无法确定14、38、如图,点C、D分别在BO、AO上,AC、BD相交于点E,若CO=DO,则再添加一个条件,仍不能证明△AOC≌△BOD的是()[单选题] *A.∠A=∠BB.AC=BD(正确答案)C.∠ADE=∠BCED.AD=BC15、若(x+m)(x2-3x+n)展开式中不含x2和x项,则m,n的值分别为( ) [单选题] *A. m=3,n=1B. m=3,n=-9C. m=3,n=9(正确答案)D. m=-3,n=916、用角度制表示为()[单选题] *30°(正确答案)60°120°-30°17、50、如图所示,已知△ABC≌△ADE,BC的延长线交DE于F,∠B=∠D=25°,∠ACB =∠AED=105°,∠DAC=10°,则∠DFB为()[单选题] *A.40°B.50°C.55°D.60°(正确答案)18、7.一条东西走向的道路上,小明向西走米,记作“米”,如果他向东走了米,则可记作()[单选题] *A-2米B-7米C-3米D+7米(正确答案)19、14.平面上有三个点A,B,C,如果AB=8,AC=5,BC=3,则()[单选题] * A.点C在线段AB上(正确答案)B.点C在线段AB的延长线上C.点C在直线AB外D.不能确定20、1、如果P(ab,a+b)在第四象限,那么Q(a,﹣b)在()[单选题] *A.第一象限B.第二象限(正确答案)C.第三象限D.第四象限21、若m·23=2?,则m等于[单选题] *A. 2B. 4C. 6D. 8(正确答案)22、在0°~360°范围中,与-460°终边相同的角是()[单选题] * 200°(正确答案)560°-160°-320°23、f(x)=-2x+5在x=1处的函数值为()[单选题] *A、-3B、-4C、5D、3(正确答案)24、24.不等式x-3>5的解集为()[单选题] *A. x > 1B. x > 2(正确答案)C. x > 3D. x > 425、设函数在闭区间[0,1]上连续,在开区间(0,1)上可导,且(x)>0 则()[单选题] *A、f(0)<0B、f(0)<1C、f(1)>f(0)D、f(1)<f(0)(正确答案)26、下列各式中能用平方差公式的是()[单选题] *A. (x+y)(y+x)B. (x+y)(y-x)(正确答案)C. (x+y)(-y-x)D. (-x+y)(y-x)27、25.下列式子中,正确的是()[单选题] *A.﹣|﹣8|>7B.﹣6<|﹣6|(正确答案)C.﹣|﹣7|=7D.|﹣5|<28、1.在0,,3,2π,﹣23%,2021这六个数中,非正数有()个.[单选题] * A.2(正确答案)B.3C.4D.029、23.最接近﹣π的整数是()[单选题] *A.3B.4C.﹣3(正确答案)D.﹣430、10. 已知方程组的解为,则、对应的值分别为()[单选题] *A、1,2B、1,5C、5,1(正确答案)D、2,4。
成都七中高一下数学月考答案
高2022级高一下学期3月阶段性考试数学参考答案1.C2.B3.C 【详解】由1sin()23πα-=,得11cos ,cos 33αα-==-,由于α是第二象限角,所以sin 3α==.所以tan()6cos 2παα⎛⎫----= ⎪⎝⎭()sin 6sin cos ααα=--⨯-==故选:C 4.B 【详解】2sin 4=2cos 1θθ++,则25cos 2cos 2θθ-=+,解得cos 1θ=或cos 3θ=-(舍去),故sin 0θ=,()()cos 3sin 1414θθ++=⨯=.故选:B.5.A 【详解】对于①,表示两个相等向量的有向线段,若它们的起点相同,则终点也相同,①正确;对于②,若a b ≠ 也有可能a ,b长度不等,但方向相同或相反,即共线,②错误;对于③,若AB DC = ,则AB,DC 不一定相等,所以四边形ABCD 不一定是平行四边形,③错误;对于④,若m n = ,n k = ,则m k =,④正确;对于⑤,有向线段不是向量,向量可以用有向线段表示,⑤错误.综上,正确的是①④共2个.故选:A.6.D 【详解】∵函数的最小正周期为π,∴2T ππω==,则2ω=,则()sin(2)f x x φ=+,∵图像关于直线23x π=对称,∴22,32k k Z ππφπ⨯+=+∈,即5,6k k Z πφπ=-∈,∵22ππφ-<<,∴当1k =时,566ππφπ=-=,则()sin(26f x x π=+,由26x k ππ+=,解得212k x ππ=-,当0k =时,12x π=-,即函数一个对称中心为(0)12π-,.故选:D.7.D 【详解】函数()()ϕ=+f x x ,因为(),3π⎛⎫∀∈≤ ⎪⎝⎭x R f x f ,所以()232k k Z ππϕπ+=+∈,()26k k Z πϕπ=+∈,取6πϕ=,所以()6π⎛⎫=+≤ ⎪⎝⎭f x x ,即1sin cos 3332πππ⎛⎫=++ ⎪⎝⎭f a b a b 0a =>,2sin226f b πππ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,2sin 4462f b b πππ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,所以24f f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,故A 错误;552sin 0666πππ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭f b ,故B 错误;当4,33x ππ⎡⎤∈⎢⎥⎣⎦时,3,622πππ⎡⎤+∈⎢⎥⎣⎦x ,故2sin 6y x π⎛⎫=+ ⎪⎝⎭在4,33x ππ⎡⎤∈⎢⎥⎣⎦单调递减,所以()2sin 6π⎛⎫=+ ⎪⎝⎭f x b x 在4,33ππ⎡⎤⎢⎥⎣⎦上单调递减,故C 错误;因为()f x 是x R ∈,且()22b f x b -≤≤的周期函数,故过点(),a b 的直线与()f x 的图象一定有公共点,故D 正确.故选:D.8.A 【详解】依题意作图如下:以水车的轴心为原点建立直角坐标系如上图,由题可知水车旋转一周的时间为4min ,当P 刚露出水面时,与y 轴的夹角是30︒,相邻盛水桶之间的夹角是45︒,①当P 旋转1min 时,旋转了360904︒︒=,旋转到D 点,此时D 点到水面的距离为4sin 302︒=+,所以①正确;②当43t =min 时,旋转了13周,即120︒,此时的位置是E 点,与y 轴正半轴的夹角是()1803012030︒︒︒︒-+=,当2t =min 时,P 旋转了180︒,即C 点,与y 轴正半轴的夹角也是30︒,C 点与E 点到水面的距离相等,所以②正确;③从P 点旋转到最高点共转动了150︒,所需的时间是150543603︒︒⨯=min ,5473⨯+<30,经过30min ,盛水筒P 共8次经过筒车最高点,所以③错误;④设Q 在P 的上方,OP 与y 轴负方向的夹角为α,()()0,180α︒∈则OQ 与y 轴负方向的夹角为45α︒+,相邻两筒到水面的距离差为:()()()4cos 454cos 4cos cos 45αααα︒︒⎡⎤+-=-+⎣⎦()αϕ=-,其中cos ϕ=,sin ϕ=,当αϕ=时取最大值为,故④错误;故选:A.9.AD 【详解】对于A ,若θ是第一或第四象限角,根据三角函数的定义可得cos 0θ>,故正确;对于B ,若0θ=,则cos 10θ=>,但此时θ不是第一或第四象限角,故错误;对于C ,终边在x 轴上的角的集合为{},Z k k ααπ=∈,故错误;对于D ,设扇形的圆心角的弧度数为β,半径为r ,则224112r r r ββ+=⎧⎪⎨=⎪⎩,解得21r β=⎧⎨=⎩,故正确。
人教A版数学必修一成都七中高届高一(下)入学考试数学试题.doc
高中数学学习材料唐玲出品成都七中高2016届高一(下)入学考试数学试题考试时间:120分钟;试卷满分:150分一.选择题:(每小题5分,共50分) 1.cos 210︒等于( )A.12B.12-C.32-D.322.已知全集}5,4,3,2,1{=I ,集合}5,4{},4,3,2,1{==B A ,则=)(B C A I ( )A. }5,4{B. }4,3,2,1{C. }3,2,1{D. }5{ 3. 函数(1)y x x x =-+的定义域为( )A.{}|0x x ≥B.{}|1x x ≥C.{}{}|10x x ≥D.{}|01x x ≤≤4.已知角α的终边过点(3,4)P --,则tan α等于( )A.3-B.4-C.34D.435. 三个数231.0=a ,31.0log 2=b ,31.02=c 之间的大小关系为( )A .a <c <bB .b <a <cC .a <b <cD .b <c <a 6. 已知函数()2f x x x x =-,则下列结论正确的是( )A.()f x 是偶函数,单调递增区间是()0,+∞B.()f x 是偶函数,单调递减区间是(),1-∞C.()f x 是奇函数,单调递增区间是(),0-∞D.()f x 是奇函数,单调递减区间是()1,1-7. 已知函数()log 31(01)a y x a a =+->≠且的图象恒过定点A ,若点A 也在函数()3x f x b =+的图象上,则()9log 4f =( )A.89 B. 79 C. 59 D. 298. 将函数2sin()()3y x x R π=+∈的图像向左平移(0)m m >个单位后所得的图像关于y轴对称,则m 的最小值是( ) A12π B.6π C.3πD. 56π 9.定义符号函数1,0sgn()0.01,0x x x x >⎧⎪==⎨⎪-<⎩,设1211sgn()1sgn()122()()(),22x x f x f x f x -+-+=⋅+⋅[0.1]x ∈, 若121().()2(1),2f x x f x x =+=-则()f x 的最大值为( )A.1B.3C. 12-D. 1210. x 为实数,[]x 表示不超过x 的最大整数,若函数{}[],x x x =-则方程12014{}2013x x -=的实数解的个数是( ) A.0 B.1 C.2 D.4 二.填空题:(每小题5分,共25分)11. 设扇形的周长为8cm ,面积为24cm ,则扇形的圆心角的弧度数是 ▲ ;12. 已知2tan =θ,则=-----+)sin()2sin()cos()2sin(θπθπθπθπ▲ . 13. 函数)(x f =(]1,,212∞-∈-+x x x 的值域为 ▲ . 14. 已知函数()a f x x x=+,当x N *∈时,()()2f x f ≥,则a 的取值范围为___▲_________.15. 若函数()f x 满足:在定义域D 内存在实数0x ,使得()()()0011f x f x f +=+成立,则称函数()f x 为“1的饱和函数”。
成都七中数学高一下期中经典测试卷(培优)
一、选择题1.(0分)[ID :12383]直线(2)4y k x =-+与曲线2320x y y ++-=有两个不同的交点,则实数k 的取值范围是( ) A .53(,]124B .51(,]122C .13(,]24D .1[,)2+∞2.(0分)[ID :12381]对于平面、β、γ和直线a 、b 、m 、n ,下列命题中真命题是( )A .若,,,,a m a n m n αα⊥⊥⊂⊂,则a α⊥B .若//,a b b α⊂,则//a αC .若//,,,a b αβαγβγ==则//a bD .若,,//,//a b a b ββαα⊂⊂,则//βα 3.(0分)[ID :12378]已知平面//α平面β,直线mα,直线nβ,点A m ∈,点B n ∈,记点A 、B 之间的距离为a ,点A 到直线n 的距离为b ,直线m 和n 的距离为c ,则 A .b a c ≤≤ B .a c b ≤≤C . c a b ≤≤D .c b a ≤≤4.(0分)[ID :12375]直线20x y ++=截圆222210x y x y a ++-+-=所得弦的长度为4,则实数a 的值是( ) A .-3B .-4C .-6D .36-5.(0分)[ID :12372]已知正四面体ABCD 中,M 为棱AD 的中点,设P 是BCM ∆(含边界)内的点,若点P 到平面ABC ,平面ACD ,平面ABD 的距离相等,则符合条件的点P ( ) A .仅有一个B .有有限多个C .有无限多个D .不存在6.(0分)[ID :12341]正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( ) A .814πB .16πC .9πD .274π7.(0分)[ID :12340]某几何体的三视图如图所示,则该几何体的体积为( )A .12B .18C .24D .308.(0分)[ID :12336]在梯形ABCD 中,90ABC ∠=︒,//AD BC ,222BC AD AB ===.将梯形ABCD 绕AD 所在直线旋转一周而形成的曲面所围成的几何体的体积为( ) A .23π B .43π C .53π D .2π9.(0分)[ID :12393]点A 、B 、C 、D 在同一个球的球面上,AB=BC=2,AC=2,若四面体ABCD 体积的最大值为23,则这个球的表面积为( ) A .1256πB .8πC .2516πD .254π10.(0分)[ID :12384]若圆22240x y x y +--=的圆心到直线0x y a -+=的距离为22,则a 的值为( ) A .-2或2B .12或32C .2或0D .-2或011.(0分)[ID :12369]某锥体的三视图如图所示(单位:cm ),则该锥体的体积(单位:cm 3)是( )A .13B .12C .16D .112.(0分)[ID :12418]如图,正四面体ABCD 中,,E F 分别是线段AC 的三等分点,P 是线段AB 的中点,G 是线段BD 的动点,则( )A .存在点G ,使PG EF ⊥成立B .存在点G ,使FG EP ⊥成立C .不存在点G ,使平面EFG ⊥平面ACD 成立 D .不存在点G ,使平面EFG ⊥平面ABD 成立13.(0分)[ID :12415]已知ABC 的三个顶点在以O 为球心的球面上,且2AB =,4AC =,25BC =,三棱锥O ABC -的体积为43,则球O 的表面积为( )A .22πB .743πC .24πD .36π14.(0分)[ID :12338]某几何体的三视图如图所示(单位:cm ),其俯视图为等边三角形,则该几何体的体积(单位:3cm )是( )A .3B 1033C .23D 83315.(0分)[ID :12337]若圆的参数方程为12cos ,32sin x y θθ=-+⎧⎨=+⎩(θ为参数),直线的参数方程为21,61x t y t =-⎧⎨=-⎩(t 为参数),则直线与圆的位置关系是( )A .相交且过圆心B .相交但不过圆心C .相切D .相离二、填空题16.(0分)[ID :12493]设P ,A ,B ,C 是球O 表面上的四个点,PA ,PB ,PC 两两垂直,且1PA PB PC ===,则球O 的表面积为____________.17.(0分)[ID :12463]已知圆22:20(0)M x y ay a +-=>截直线0x y +=所得线段的长度是2M 与圆22:(1)(1)1N x y -+-=的位置关系是_________.18.(0分)[ID :12519]已知点1232M N (,),(,),点F 是直线l:3y x =-上的一个动点,当MFN ∠最大时,过点M ,N ,F 的圆的方程是__________.19.(0分)[ID :12515]若直线y x b =+与曲线234y x x =-b 的取值范围是______.20.(0分)[ID :12484]已知圆O :224x y +=, 则圆O 在点3)A 处的切线的方程是___________.21.(0分)[ID :12465]将正方形ABCD 沿对角线BD 折成直二面角A BD C --,①AB 与平面BCD 所成角的大小为60 ②ACD ∆是等边三角形 ③AB 与CD 所成的角为60 ④AC BD ⊥⑤二面角B AC D --为120︒ 则上面结论正确的为_______.22.(0分)[ID :12455]已知正方体1111ABCD A B C D -的棱长为1,点E 是棱1BB 的中点,则点1B 到平面ADE 的距离为__________.23.(0分)[ID :12495]正四棱锥S -ABCD 2S 、A 、B 、C 、D 都在同一个球面上,则该球的体积为______.24.(0分)[ID :12456]已知四面体ABCD 的外接球球心O 在棱CD 上,3,CD=2,则A 、B 两点在四面体ABCD 的外接球上的球面距离是________.25.(0分)[ID :12450]已知球的表面积为20π,球面上有A 、B 、C 三点.如果2AB AC ==,22BC =ABC 的距离为__________.三、解答题26.(0分)[ID :12606]已知过原点的动直线l 与圆1C :22650x y x +-+=相交于不同的两点A ,B .(1)求圆1C 的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程;(3)是否存在实数k ,使得直线L:()4y k x =-与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由.27.(0分)[ID :12558]在直角坐标系中,射线OA: x -y=0(x≥0), OB: x+2y=0(x≥0),过点P(1,0)作直线分别交射线OA 、OB 于A 、B 两点. (1)当AB 中点为P 时,求直线AB 的方程; (2)当AB 中点在直线12y x =上时,求直线AB 的方程. 28.(0分)[ID :12616]如图所示的等腰梯形ABCD 中,//AB CD ,12AB AD BC CD a ====,E 为CD 中点.若沿AE 将三角形DAE 折起,并连接DB ,DC ,得到如图所示的几何体D-ABCE ,在图中解答以下问题:(1)设G 为AD 中点,求证://DC 平面GBE ;(2)若平面DAE ⊥平面ABCE ,且F 为AB 中点,求证:DF AC ⊥.29.(0分)[ID :12533]如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 是菱形.(1)求证:BD PC ⊥;(2)若平面PBC 与平面PAD 的交线为l ,求证://BC l .30.(0分)[ID :12531]如图,四边形ABCD 为矩形,且2,1,AD AB PA ==⊥平面ABCD ,1PA =,E 为BC 的中点.(1)求证:PE DE ⊥; (2)求三棱锥C PDE -的体积;(3)探究在PA 上是否存在点G ,使得EG 平面PCD ,并说明理由.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.B2.C3.D4.A5.A6.A7.C8.C9.D10.C11.A12.C13.C14.B15.B二、填空题16.【解析】【分析】利用条件两两垂直且把三棱锥扩展为正方体球的直径即是正方体的体对角线长由球的表面积公式求解【详解】先把三棱锥扩展为正方体则正方体的体对角线的长为所以球的半径为所以球的表面积为【点睛】本17.相交【解析】【分析】根据直线与圆相交的弦长公式求出的值结合两圆的位置关系进行判断即可【详解】解:圆的标准方程为则圆心为半径圆心到直线的距离圆截直线所得线段的长度是即则圆心为半径圆的圆心为半径则即两个18.【解析】【分析】【详解】试题分析:根据题意设圆心坐标为C(2a)当∠MFN最大时过点MNF的圆与直线y=x-3相切∴∴a=1或9a=1时r=∠MCN=90°∠MFN=45°a=9时r=∠MCN<9019.【解析】【分析】由曲线y=3+得(x﹣2)2+(y﹣3)2=40≤x≤4直线y=x+b与曲线y=3+有公共点圆心(23)到直线y=x+b的距离d不大于半径r=2由此结合图象能求出实数b的取值范围【详20.【解析】【分析】先求出kOA=从而圆O在点处的切线的方程的斜率由此能出圆O在点处的切线的方程【详解】kOA=∴圆O在点处的切线的方程的斜率∴圆O在点A处的切线的方程整理得即答案为【点睛】本题考查圆的21.②③④【解析】【分析】作出此直二面角的图象由图形中所给的位置关系对命题逐一判断即可得出正确结论【详解】作出如图的图象E是BD的中点易得∠AED=90°即为此直二面角的平面角对于命题①AB与平面BCD22.【解析】【分析】点到平面的距离等价于点到平面的距离过作交于证得平面利用等面积法求得点到平面的距离也即点到平面的距离【详解】由于是的中点故点到平面的距离等价于点到平面的距离过作交于由于故平面在直角三角23.【解析】如图过S作SO1⊥平面ABCD由已知=1在Rt△SO1C中∵SC=∴∴O1S=O1A=O1B=O1C=O1D故O1是过SABCD点的球的球心∴球的半径为r=1∴球的体积为点睛:与球有关的组合24.【解析】【分析】根据球心到四个顶点距离相等可推断出O为CD的中点且OA=OB=OC=OD进而在△A0B中利用余弦定理求得cos∠AOB的值则∠AOB可求进而根据弧长的计算方法求得答案【详解】解:球心25.【解析】设球的半径为表面积解得∵在中∴从圆心作平面的垂线垂足在斜边的中点处∴球心到平面的距离故答案为点睛:本题考查的知识点是空间点线面之间的距离计算其中根据球心距球半径解三角形我们可以求出所在平面截三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题 1.B 解析:B 【解析】 【分析】利用数形结合,作出图象,计算得直线1l 与直线2l 的斜率,即可得到结论. 【详解】曲线可化简为()22(1)40x y x +-=≤,如图所示:直线()1:24l y k x =-+23221k k -=+,解得512k =, 直线()2:24l y k x =-+,此直线与曲线有两个交点,此时有12k =.所以,过点()2,4的直线与该半圆有两个交点,数形结合,解得51122k <≤. 故选:B. 【点睛】本题考查了直线与圆相交的性质,涉及的知识有:恒过定点的直线方程,点到直线的距离公式,以及直线斜率的求法,利用了数形结合的思想,其中抓住两个关键点是解本题的关键.2.C解析:C 【解析】 【分析】 【详解】 若由线面垂直的判定定理知,只有当和为相交线时,才有错误;若此时由线面平行的判定定理可知,只有当在平面外时,才有错误;由面面平行的性质定理:若两平面平行,第三个平面与他们都相交,则交线平行,可判断,若//αβ,a αγ⋂=,b βγ=,则//a b 为真命题, 正确;若此时由面面平行的判定定理可知,只有当、为相交线时,才有//,D βα错误. 故选C.考点:考查直线与直线,直线与平面,平面与平面的位置关系.3.D解析:D 【解析】 【分析】根据平面与平面平行的判断性质,判断c 最小,再根据点到直线距离和点到直线上任意点距离判断a 最大. 【详解】由于平面//α平面β,直线m 和n 又分别是两平面的直线,则c 即是平面之间的最短距离. 而由于两直线不一定在同一平面内,则b 一定大于或等于c ,判断a 和b 时, 因为B 是上n 任意一点,则a 大于或等于b . 故选D. 【点睛】本题主要考查面面平行的性质以及空间距离的性质,考查了空间想象能力,意在考查灵活应用所学知识解答问题的能力,属于中档题.4.A解析:A 【解析】 【分析】求出圆心坐标和半径,根据圆的弦长公式,进行求解即可. 【详解】由题意,根据圆的方程222210x y x y a ++-+-=,即22(1)(1)2x y a ++-=-, 则圆心坐标为(1,1)-,半径1r a =-, 又由圆心到直线的距离为11222d -++==,所以由圆的弦长公式可得222(1)(2)4a --=,解得3a =-,故选A. 【点睛】本题主要考查了直线与圆的位置关系的因公,以及弦长公式的应用,其中根据圆的方程,求得圆心坐标和半径,合理利用圆的弦长公式列出方程求解是解答的关键,着重考查了推理与运算能力.5.A解析:A 【解析】 【分析】根据正四面体的对称性分析到平面ABC ,平面ACD ,平面ABD 的距离相等的点的轨迹,与BCM ∆所在平面的公共部分即符合条件的点P . 【详解】在正四面体ABCD 中,取正三角形BCD 中心O ,连接AO ,根据正四面体的对称性,线段AO 上任一点到平面ABC ,平面ACD ,平面ABD 的距离相等,到平面ABC ,平面ACD ,平面ABD 的距离相等的点都在AO 所在直线上,AO 与BCM ∆所在平面相交且交于BCM ∆内部,所以符合题意的点P 只有唯一一个. 故选:A 【点睛】此题考查正四面体的几何特征,对称性,根据几何特征解决点到平面距离问题,考查空间想象能力.6.A【解析】【分析】【详解】正四棱锥P-ABCD 的外接球的球心在它的高1PO 上,记为O ,PO=AO=R ,14PO =,1OO =4-R ,在Rt △1AOO 中,12AO =, 由勾股定理()2224R R =+-得94R =, ∴球的表面积814S π=,故选A.考点:球的体积和表面积7.C解析:C【解析】试题分析:由三视图可知,几何体是三棱柱消去一个同底的三棱锥,如图所示,三棱柱的高为5,消去的三棱锥的高为3,三棱锥与三棱柱的底面为直角边长分别为3和4的直角三角形,所以几何体的体积为V =12×3×4×5−13×12×3×4×3=24,故选C .考点:几何体的三视图及体积的计算.【方法点晴】本题主要考查了几何体的三视图的应用及体积的计算,着重考查了推理和运算能力及空间想象能力,属于中档试题,解答此类问题的关键是根据三视图的规则“长对正、宽相等、高平齐”的原则,还原出原几何体的形状,本题的解答的难点在于根据几何体的三视图还原出原几何体和几何体的度量关系,属于中档试题.8.C【解析】【分析】【详解】由题意可知旋转后的几何体如图:直角梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体是一个底面半径为1,母线长为2的圆柱挖去一个底面半径同样是1、高为1的圆锥后得到的组合体,所以该组合体的体积为2215121133V V V πππ=-=⨯⨯-⨯⨯⨯=圆柱圆锥 故选C.考点:1、空间几何体的结构特征;2、空间几何体的体积. 9.D解析:D【解析】试题分析:根据题意知,ABC 是一个直角三角形,其面积为1.其所在球的小圆的圆心在斜边AC 的中点上,设小圆的圆心为Q ,若四面体ABCD 的体积的最大值,由于底面积ABC S 不变,高最大时体积最大,所以,DQ 与面ABC 垂直时体积最大,最大值为12·33ABC S DQ =,即12133DQ ⨯⨯=,∴2DQ =,设球心为O ,半径为R ,则在直角AQO 中,222OA AQ OQ =+,即()22212R R =+-,∴54R =,则这个球的表面积为:2525444S ππ⎛⎫== ⎪⎝⎭;故选D. 考点:球内接多面体,球的表面积. 10.C解析:C【解析】【分析】把圆的方程化为标准方程,找出圆心坐标,根据点到直线的距离公式列出关于a 的方程,求出方程的解得到a 的值即可.【详解】把圆的方程化为标准式为:22(1)(2)5x y -+-=,所以圆心坐标为(1,2).则圆心到直线0x y a -+=的距离22|12|221(1)a d -+==+-, 即11a -=,化简得11a -=或11a -=-,解得:2a =或0a =.所以a 的值为0或2.故选C.【点睛】本题考查学生会将圆的一般式方程化为标准式方程,灵活运用点到直线的距离公式化简求值.11.A解析:A【解析】【分析】根据三视图知该几何体对应的三棱锥,结合图中数据求得三棱锥的体积.【详解】由题意可知三棱锥的直观图如图:三棱锥的体积为:111211323⨯⨯⨯⨯=. 故选:A .【点睛】本题考查了利用三视图求几何体体积的应用问题,考查了空间想象能力,是基础题.12.C解析:C【解析】【分析】利用空间中线线、线面、面面间的位置关系对选项进行一一验证,即可得答案.【详解】正四面体ABCD 中,,E F 分别是线段AC 的三等分点,P 是线段AB 的中点,G 是直线BD 的动点,在A 中,不存在点G ,使PG EF ⊥成立,故A 错误;在B 中,不存在点G ,使FG EP ⊥成立,故B 错误;在C 中,不存在点G ,使平面EFG ⊥平面ACD 成立,故C 正确;在D 中,存在点G ,使平面EFG ⊥平面ABD 成立,故D 错误.故选:C.【点睛】本题考查命题真假的判断、考查空间中线线、线面、面面间的位置关系,考查转化与化归思想,考查空间想象能力.13.C解析:C【解析】【分析】由已知可得三角形ABC 为直角三角形,斜边BC 的中点O '就是ABC 的外接圆圆心,利用三棱锥O ABC -的体积,求出O 到底面的距离,可求出球的半径,然后代入球的表面积公式求解.【详解】在ABC 中,∵2AB =,4AC =,25BC =得AB AC ⊥,则斜边BC 的中点O '就是ABC 的外接圆的圆心,∵三棱锥O ABC -的体积为43, 11424323OO '⨯⨯⨯⨯=,解得1OO '=,221(5)6R =+=, 球O 的表面积为2424R ππ=.故选C .【点睛】本题考查球的表面积的求法,考查锥体体积公式的应用,考查空间想象能力和计算能力,属于基础题.14.B解析:B【解析】由题意可知该几何体为正三棱柱去掉一个小三棱锥,123V =⋅=. 故选:B. 15.B解析:B【解析】【分析】根据题意,将圆和直线的参数方程变形为普通方程,分析可得圆心不在直线上,再利用点到直线的距离公式计算可得圆心(1,3)-到直线320y x --=的距离2d <,得到直线与圆的位置关系为相交.【详解】根据题意,圆的参数方程为1232x cos y sin θθ=-+⎧⎨=+⎩(θ为参数),则圆的普通方程为22(1)(3)4x y ++-=,其圆心坐标为(1,3)-,半径为2.直线的方程为2161x t y t =-⎧⎨=-⎩(t 为参数),则直线的普通方程为13(1)y x +=+,即320y x --=,圆心不在直线上.∴圆心(1,3)-到直线320y x --=的距离为25d ==<,即直线与圆相交.故选A.【点睛】本题考查直线、圆的参数方程,涉及直线与圆的位置关系,解答本题的关键是将直线与圆的参数方程变形为普通方程.二、填空题16.【解析】【分析】利用条件两两垂直且把三棱锥扩展为正方体球的直径即是正方体的体对角线长由球的表面积公式求解【详解】先把三棱锥扩展为正方体则正方体的体对角线的长为所以球的半径为所以球的表面积为【点睛】本 解析:3π【解析】【分析】利用条件PA ,PB ,PC 两两垂直,且1PA PB PC ===把三棱锥P ABC -扩展为正方体,球的直径即是正方体的体对角线长,由球的表面积公式求解.【详解】先把三棱锥P ABC -,所以球的半径为2,所以球的表面积为24π3π⨯=⎝⎭.【点睛】 本题主要考查了球的体积公式:343V r π=球(其中r 为球的半径)及长方体的体对角线长公式:l =,,a b c 分别是长方体的长、宽、高).17.相交【解析】【分析】根据直线与圆相交的弦长公式求出的值结合两圆的位置关系进行判断即可【详解】解:圆的标准方程为则圆心为半径圆心到直线的距离圆截直线所得线段的长度是即则圆心为半径圆的圆心为半径则即两个 解析:相交【解析】【分析】根据直线与圆相交的弦长公式,求出a 的值,结合两圆的位置关系进行判断即可.【详解】解:圆的标准方程为222:()(0)M x y a a a +-=>,则圆心为(0,)a ,半径R a =,圆心到直线0x y +=的距离d =,圆22:20(0)M x y ay a +-=>截直线0x y +=所得线段的长度是∴即24a =,2a =,则圆心为(0,2)M ,半径2R =,圆22:(1)(1)1N x y -+-=的圆心为(1,1)N ,半径1r =,则MN =3R r +=,1R r -=,R r MN R r ∴-<<+,即两个圆相交.故答案为:相交.【点睛】本题主要考查直线和圆相交的应用,以及两圆位置关系的判断,根据相交弦长公式求出a 的值是解决本题的关键.18.【解析】【分析】【详解】试题分析:根据题意设圆心坐标为C (2a )当∠MFN 最大时过点MNF 的圆与直线y=x-3相切∴∴a=1或9a=1时r=∠MCN=90°∠MFN=45°a=9时r=∠MCN<90解析:22(2)(1)2x y -+-=【解析】【分析】【详解】试题分析:根据题意,设圆心坐标为C (2,a ),当∠MFN 最大时,过点M ,N ,F 的圆与直线y=x-3相切. ∴()()22232122a a ---+-=,∴a=1或9,a=1时,r=2,∠MCN=90°,∠MFN=45°,a=9时,r=52,∠MCN <90°,∠MFN <45°,则所求圆的方程为22(2)(1)2x y -+-=考点:圆的标准方程 19.【解析】【分析】由曲线y=3+得(x ﹣2)2+(y ﹣3)2=40≤x≤4直线y=x+b 与曲线y=3+有公共点圆心(23)到直线y=x+b 的距离d 不大于半径r=2由此结合图象能求出实数b 的取值范围【详解析:122,3⎡⎤-⎣⎦【解析】【分析】由曲线y=3+24x x -,得(x ﹣2)2+(y ﹣3)2=4,0≤x≤4,直线y=x+b 与曲线y=3+24x x -有公共点,圆心(2,3)到直线y=x+b 的距离d 不大于半径r=2,由此结合图象能求出实数b 的取值范围.【详解】由曲线y=3+24x x -,得(x ﹣2)2+(y ﹣3)2=4,0≤x≤4,∵直线y=x+b 与曲线y=3+24x x -有公共点,∴圆心(2,3)到直线y=x+b 的距离d 不大于半径r=2,即21b d =≤⇒-≤≤∵0≤x≤4,∴x=4代入曲线y=3,把(4,3)代入直线y=x+b ,得b min =3﹣4=﹣1,②联立①②,得-1b 1≤≤+∴实数b 的取值范围是[﹣1,].故答案为1,1⎡-+⎣.【点睛】本题考查实数的取值范围的求法,是中档题,解题时要认真审题,注意数形结合思想的合理运用.一般直线和圆的题很多情况下是利用数形结合来解决的,联立的时候较少;在求圆上的点到直线或者定点的距离时,一般是转化为圆心到直线或者圆心到定点的距离,再加减半径,分别得到最大值和最小值;涉及到圆的弦长或者切线长时,经常用到垂径定理.20.【解析】【分析】先求出kOA=从而圆O 在点处的切线的方程的斜率由此能出圆O 在点处的切线的方程【详解】kOA=∴圆O 在点处的切线的方程的斜率∴圆O 在点A 处的切线的方程整理得即答案为【点睛】本题考查圆的30y +-=【解析】【分析】先求出k OA ,从而圆O 在点(处的切线的方程的斜率k = ,由此能出圆O在点A 处的切线的方程.【详解】k OA =O 在点(处的切线的方程的斜率k =,∴圆O 在点A (处的切线的方程1y x =-) ,30y +-=.30y +-=.【点睛】本题考查圆的切线方程的求法,属中档题. 21.②③④【解析】【分析】作出此直二面角的图象由图形中所给的位置关系对命题逐一判断即可得出正确结论【详解】作出如图的图象E 是BD 的中点易得∠AED=90°即为此直二面角的平面角对于命题①AB与平面BCD解析:②③④【解析】【分析】作出此直二面角的图象,由图形中所给的位置关系对命题逐一判断,即可得出正确结论.【详解】作出如图的图象,E是BD的中点,易得∠AED=90°即为此直二面角的平面角对于命题①AB与平面BCD所成的线面角的平面角是∠ABE=45°,故AB与平面BCD成60°的角不正确;对于命题②,在等腰直角三角形AEC中AC等于正方形的边长,故△ACD是等边三角形,此命题正确;对于命题③可取AD中点F,AC的中点H,连接EF,EH,FH,则EF,FH是中位线,故∠EFH或其补角为异面直线AB与CD所成角,又EF,FH其长度为正方形边长的一半,而EH是直角三角形AEC的中线,其长度是AC的一半即正方形边长的一半,故△EFH是等边三角形,由此AB与CD所成的角为60°,此命题正确;对于命题④,BD⊥面AEC,故AC⊥BD,此命题正确;对于命题⑤,连接BH,HD,则BH⊥AC, DH⊥AC,则∠BHD为二面角B AC D--的平面角,又BH=DH=32AC,BD=2,AC cos∠BHD=-1,3故二面角B AC D--不是120︒综上知②③④是正确的故答案为②③④【点睛】本题考查与二面角有关立体几何中线线之间的角的求法,线面之间的角的求法,以及线线之间位置关系的证明方法.综合性较强,对空间立体感要求较高.22.【解析】【分析】点到平面的距离等价于点到平面的距离过作交于证得平面利用等面积法求得点到平面的距离也即点到平面的距离【详解】由于是的中点故点到平面的距离等价于点到平面的距离过作交于由于故平面在直角三角 解析:55 【解析】 【分析】点1B 到平面ADE 的距离等价于点B 到平面ADE 的距离,过B 作BF AE ⊥,交AE 于F ,证得BF ⊥平面ADE ,利用等面积法求得点B 到平面ADE 的距离,也即点1B 到平面ADE 的距离.【详解】由于E 是1BB 的中点,故点1B 到平面ADE 的距离等价于点B 到平面ADE 的距离,过B 作BF AE ⊥,交AE 于F ,由于BF AD ⊥,AD AE E ⋂=,故BF ⊥平面ADE .在直角三角形ABE 中,151,,22AB BE AE ===,所以1122AB BE AE BF ⋅⋅=⋅⋅,解得55BF =.【点睛】本小题主要考查点到面的距离,考查等面积法求高,考查线面垂直的证明,属于基础题.23.【解析】如图过S 作SO1⊥平面ABCD 由已知=1在Rt △SO1C 中∵SC =∴∴O1S =O1A =O1B =O1C =O1D 故O1是过SABCD 点的球的球心∴球的半径为r =1∴球的体积为点睛:与球有关的组合 解析:43π 【解析】如图,过S 作SO 1⊥平面ABCD ,由已知1112O C AC ==1.在Rt △SO 1C 中, ∵ SC =2 ,∴ 22111SO SC O C =-=,∴ O 1S =O 1A =O 1B =O 1C =O 1D ,故O 1是过S ,A ,B ,C ,D 点的球的球心,∴ 球的半径为r =1,∴ 球的体积为34433r π=π.点睛:与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.24.【解析】【分析】根据球心到四个顶点距离相等可推断出O 为CD 的中点且O A =OB =OC =OD 进而在△A0B 中利用余弦定理求得cos ∠AOB 的值则∠AOB 可求进而根据弧长的计算方法求得答案【详解】解:球心解析:23π 【解析】【分析】根据球心到四个顶点距离相等可推断出O 为CD 的中点,且OA =OB =OC =OD ,进而在△A 0B 中,利用余弦定理求得cos ∠AOB 的值,则∠AOB 可求,进而根据弧长的计算方法求得答案.【详解】解:球心到四个顶点距离相等,故球心O 在CD 中点,则OA =OB =OC =OD =1, 再由AB 3=A 0B 中,利用余弦定理cos ∠AOB 11312112+-==-⨯⨯, 则∠AOB 23π=,则弧AB 23π=•123π=. 故答案为:23π.【点睛】本题主要考查了余弦定理的应用、四面体外接球的性质等,考查了学生观察分析和基本的运算能力.25.【解析】设球的半径为表面积解得∵在中∴从圆心作平面的垂线垂足在斜边的中点处∴球心到平面的距离故答案为点睛:本题考查的知识点是空间点线面之间的距离计算其中根据球心距球半径解三角形我们可以求出所在平面截【解析】设球的半径为r ,表面积24π20πS r ==,解得r =ABC 中,2AB AC ==,BC =222AB AC BC +=,∴90BAC ∠=︒,从圆心作平面ABC 的垂线,垂足在斜边BC 的中点处,∴球心到平面ABC 的距离d == 点睛:本题考查的知识点是空间点、线、面之间的距离计算,其中根据球心距d ,球半径R ,解三角形我们可以求出ABC 所在平面截球所得圆(即ABC 的外接圆半径),构造直角三角形,满足勾股定理,我们即可求出球心到平面ABC 的距离是与球相关的距离问题常用方法.三、解答题26.(1)()3,0;(2)223953243x y x ⎛⎫⎛⎫-+=<≤ ⎪ ⎪⎝⎭⎝⎭;(3)存在,77k -≤≤或34k =±. 【解析】【分析】(1)通过将圆1C 的一般式方程化为标准方程即得结论;(2)设当直线l 的方程为y=kx ,通过联立直线l 与圆1C 的方程,利用根的判别式大于0、韦达定理、中点坐标公式及参数方程与普通方程的相互转化,计算即得结论;(3)通过联立直线l 与圆1C 的方程,利用根的判别式△=0及轨迹C 的端点与点(4,0)决定的直线斜率,即得结论【详解】(1)由22650x y x +-+=得()2234x y -+=, ∴ 圆1C 的圆心坐标为()3,0;(2)设(),M x y ,则∵ 点M 为弦AB 中点即1C M AB ⊥,∴11⋅=-C M AB k k 即13y y x x ⋅=--, ∴ 线段AB 的中点M 的轨迹的方程为223953243x y x ⎛⎫⎛⎫-+=<≤ ⎪ ⎪⎝⎭⎝⎭; (3)由(2)知点M 的轨迹是以3,02C ⎛⎫ ⎪⎝⎭为圆心32r =为半径的部分圆弧EF (如下图所示,不包括两端点),且525,33E ⎛⎫ ⎪ ⎪⎝⎭,525,33F ⎛⎫- ⎪ ⎪⎝⎭,又直线L :()4y k x =-过定点()4,0D ,当直线L 与圆L 223402321k k ⎛⎫-- ⎪⎝⎭=+得34k =±,又202357554DE DF k k ⎛- ⎝⎭=-=-=-,结合上图可知当332525,,4477k ⎡⎧⎫∈--⎨⎬⎢⎩⎭⎣⎦时,直线L :()4y k x =-与曲线L 只有一个交点.考点:1.轨迹方程;2.直线与圆相交的位置关系;3.圆的方程27.(1)220x y +-=;(2)5250x y --=【解析】【分析】【详解】(1)因为,A B 分别为直线与射线:0(0)OA x y x -=≥及:20(0)OB x y x +=≥的交点, 所以可设(,),(2,)A a a B b b -,又点(1,0)P 是AB 的中点,所以有21,2{0.2a b a b -=+=即2,3{2.3a b ==-∴A 、B 两点的坐标为2242(,),(,)3333A B -,∴223324233AB k --==--, 所以直线AB 的方程为02(1)y x -=--,即220x y +-=(2)①当直线AB 的斜率不存在时,则AB 的方程为1x =,易知,A B 两点的坐标分别为1(1,1),(1,),2A B -所以AB 的中点坐标为1(1,)4,显然不在直线12y x =上, 即AB 的斜率不存在时不满足条件.②当直线AB 的斜率存在时,记为k ,易知0k ≠且1k ≠,则直线AB 的方程为(1).y k x =-分别联立(1),{0y k x x y =--=及(1),{20.y k x x y =-+= 可求得,A B 两点的坐标分别为(,),11k k A k k --2(,)1212k k B k k -++ 所以AB 的中点坐标为(,)22122224k k k k k k k k+--+-+ 又AB 的中点在直线12y x =上,所以1()222422212k k k k k k k k -=+-+-+解得52k = 所以直线AB 的方程为5(1)2y x =-,即5250x y --= 28.(1)证明见解析;(2)证明见解析【解析】【分析】(1)连接AC 交BE 于点O ,连接OG ,先证明四边形ABCE 为平行四边形,再通过证明//OG DC ,即可得到//DC 平面GBE ;(2)通过证明AC ⊥平面DFH ,即可得到DF AC ⊥.【详解】(1)连接AC 交BE 于点O ,连接OG .因为//AB CD ,12AB AD BC CD a ====, E 为CD 中点所以AB CE =,即四边形ABCE 为平行四边形所以O 为AC 的中点因为G 分别为AD 的中点,所以//OG DC ,又因为OG ⊂平面GBE ,DC ⊄平面GBE ,所以//DC 平面GBE ;(2)取AE 中点H ,连接,DH FH .因为,F H 分别为,AB AE 中点,所以//FH BE ,易知,四边形ABCE 为菱形,所以AC BE ⊥,所以AC FH ⊥,又因为DA DE =,H 为AE 中点,所以DH AE ⊥,又平面DAE ⊥平面ABCE ,所以DH ⊥平面ABCE ,所以DH AC ⊥,又因为DH FH H ⋂=,所以AC ⊥平面DFH ,则DF AC ⊥.【点睛】本题主要考查线面平行和线线垂直的判定,考查学生的空间想象能力和推理证明能力,体现了数形结合的数学思想.29.(1)见解析;(2)见解析【解析】【分析】(1)要想证明线线垂直,可以考虑线面垂直.已知底面ABCD 是菱形,显然有BD AC ⊥ ,已知PA ⊥平面ABCD ,可以得到PA BD ⊥,这样就可以根据线面垂直的判定定理,证明出BD ⊥平面APC ,进而可以证明出BD PC ⊥;(2)可以先证明出线面平行,然后利用线面平行的性质定理证明出//BC l .【详解】。
成都七中高一(下)数学单元测试
成都七中高一(下)数学单元测试班级:______;姓名:________。
一、选择题(本大题共12个小题,每小题5分,共60分) 1、sin12π+cos 12π的值为( ) A 、26 B 、23 C 、22D 、212、在锐角△ABC 中,下列结论成立的是( )A 、sinA>cosB B 、cosA>sinBC 、tanA>tanBD 、sinA>sinB 3、已知点P(cos θ,sin θ)在直线y=2x 上,则cos2θ的值为( )A 、53-B 、53C 、54D 、54- 4、在△ABC 中,若a=15,b=10,A=60º,则cosB=( )A 、322±B 、3C 、36±D 、3 5、函数f(x)=2cosx+cos2x(x ∈R)的最小值是( ) A 、-3 B 、-23 C 、-1 D 、216、在△ABC 中,角A,B,C 所对的边长分别为a,b,c ,若∠C=120º,a ,则a 与b 的大小关系是( )A 、a >bB 、a <bC 、a=bD 、不能确定 7、sin40º(tan10º-3)的值为( )A 、1B 、2C 、-2D 、-18、在∆ABC 中,a,b,c 三边所对的角为A,B,C ,且面积S=41(a 2+b 2-c 2),则角C 为( ) A 、90º B 、60º C 、45º D 、30º9、如果sin(α+6π)=31,那么cos(3π+2α)等于( ) A 、97 B 、31 C 、-31 D 、-9710、设函数f(x)=sin(6π+x)sin(3π-x),若不等式f(x)≥f(x 0)对x ∈R 恒成立,则x 0的最小正值为( )A 、65π B 、67π C 、125π D 、127π11、设△ABC 的内角A,B,C 的对边分别为a,b,c ,若a=(b+c)cosC ,则△ABC 的形状是( )A 、等腰三角形B 、直角三角形C 、锐角三角形D 、钝角三角形 12、已知sin(α+β)sin(α-β)=31,则sin 2α+cos 2β等于( )A 、1 B 、2 C 、1 D 、413、已知a,b,c 分别是△ABC 的三个内角A,B,C 所对的边,若A+C=2B,则∠C=________。
成都七中高2026届高一下期数学半期考试参考答案
成都七中高2026届高一下期数学半期考试参考答案命题人张世永陈洲建谭中文汤丽萍审题人张世永李乐一.单项选择题1—4:DCAB 5—8:CABB8.解析:A:过P 作PO ⊥MN ,易证PO =PA =PB =1,A 正确B:设NPB θ∠=,则11,cos cos(120)PN PM θθ==︒-,()111sin 6012cos cos 120cos(2120)2PMN S PM PN θθθ∆=⋅⋅︒==⋅︒--+-︒,记0tan 2θ=,则00120θθθ︒-≤≤,从而00120221202120,θθθ︒-≤-︒≤-︒易求得()01cos 2120(310θ-︒=+,从而PMN S ∆范围是5(63)]22+,B 错误C:△APM 周长为4,即4,AM AP PM PM BP DM ++=∴=+,易证45PNM ∠=︒,C 正确D:显然,当点M ,N 分别与点D ,C 重合时,MPN ∠才能取得最小值;作正方形ABCD 外接圆,只有点P 与点A 或点B 重合时在圆上,此时45MPN ∠=°,点P 在线段AB 其余位置时位于圆内,MPN ∠均大于45°,D 正确二.多项选择题9.BC 10.ABD 11.AC 12.ABD11.解析:A :角B 大于角C ,,故A 正确B :由勾股定理,222228c c =+==,则R =则22S R ππΘ∴==,故B 错误.C :2222,sin sin 22sin cos ,2,2a b c A C A C C C a c ab+-=∴==∴=⋅ 又6,4, 5.a c b ===解得故C 正确D :222cos 2cos 2cos 212sin )12sin )12sin )1A B C A B C +-=-+---<(((,222sin sin sin 0C A B --<即:,222222cos 02a b c a b c C ab+-+>∴=>则,,角C 为锐角,但是ABC ∆不一定为锐角三角形,故D 错误故答案选AC12.解析:A :2221cos ,sin 28AC AB BC A A AC AB +-===⋅故1sin 2ABC S AB AC A A =⋅⋅=∴故A 项正确B :直三棱柱侧面积()112S AA AB AC BC =⨯++=+,故B 项正确C:AC则旋转而成的几何体的体积2121434V ππ=⨯⨯⨯=⎝⎭,故C 项错误D :(如右图)延长AF ,1CC 交于点P ,连接PE 交11B C 于点M ,则四边形AEMF 是截面,且点F 是AP 的中点,点M 是11B C 上靠近1B 的三等分点,由勾股定理求得AE =,AP =,EP =因为222AE EP AP +=,AEP ∠为直角,故1315,22AEP S AE EP =⋅=△又1sin ,2AEP S AP EP APE ⋅=∠△1sin ,2FMP S P M F P APE ⋅=∠易知11523FMP AEP S S ==△△,所以四边形AEMF 的面积为3151522-=,故D 项正确.故答案选ABD 三.填空题13.2或-214.16-16.16.解析:,2ABC ACD BCD S S S ab b ∆∆∆=+=+≥由则,11sin 24ABC ab S ab C ab ∆∴≥∴==≥四.解答题17.解:()11()()21cos 2sin 2.2262I f x x x m x m π⎛⎫=+++=+++ ⎪⎝⎭...........3分70,2,2666x x ππππ⎡⎤⎡⎤∈+∈⎢⎢⎥⎣⎦⎣⎦由,得,max 35()22f x m ∴=+=, 1.m ∴=...........5分2((), (72)32222(),()26263II) =f x T k x k k Z k x k k Z πππππππππππ=+≤+≤+∈+≤≤+∈的最小正周期分由得,2()()................................1063 f x k k k Z ππππ⎡⎤∴++∈⎢⎥⎣⎦的单调递减区间为,分18.()(6,0),(6,6),(0,6),(3,0),(6,2).I A B C D E F 解:如图所示,建立以点为原点的平面直角坐标系,则(6,2),(3,6),.....................2a b ∴==-分2cos ,,.............510a b a b a b⋅∴<>==⋅分2 (610)a b ∴ 与夹角的余弦值为分()(),36(63,26),........................8II EC ma nb m n m n =+=+-由题得,分6,633,7266,5,7m m n m n n ⎧=⎪+=⎧⎪∴⎨⎨-=⎩⎪=-⎪⎩解得............................................................10分1 (127)m n ∴+=分219.()141130I ∆=-⨯⨯=-<解:,由求根公式得x =12.............................................................4 x x ∴==分()II 2210,1x x x x ++=∴=-- ,2(1)21x x x x x -=-=--,由()I知x =,则()1.........................................8 x x -=分()III 2210,1.x x x x ++=+=-由得.........................................9分()()20242024222024404867413493232211111111 1............................................................................12 x x x x x x x x xx x x x⎛⎫⎛⎫-+-=+=+⎪⎪⎝⎭⎝⎭⋅⋅+=+===-分∴原式20.()I解:)222524220.S =⨯+⨯=+该漏斗表面积米....................4分()A P ' II 将漏斗表面展开,如图所示,由两点间距离最短可得线段为蚂蚁爬行最短路径.,P A A Q A P PQ AA '''⊥过点作交延长线于点连接.cos30301sin AQ AP PQ AP =⋅︒=⋅︒=,在Rt △A 'PQ 中,P A '='A P ∴=+,即蚂蚁爬过的最短路径长为+米....................8分()III 正方形ABB 'A '的斜二测画法有以下两种:左图情况下,'45A AB ∠=︒,在△A 'AB 中由余弦定理可得:222''2'cos 'A B AA AB AA AB A AB =+-⋅⋅∠,计算得'522A B =-.......10分右图情况下,'135A AB ∠=︒,在△A 'AB 中由余弦定理可得:222''2'cos 'A B AA AB AA AB A AB =+-⋅⋅∠,计算得'522A B =+.......11分综上所述,'522A B =-米或522+米.............................................................12分22221.()2cos ABC BC AB AC AB AC CAB∆=+-⋅⋅∠I 解:中,由余弦定理2212001002200100300002=+-⨯⨯⨯=,()1003.BC ∴=米.................................................................................................4分11()sin 200sin 503 (5223)2200sin()sin 1003cos 100sin 3sin sin sin sin sin II ABC ABC S AC AB BAC AC AC C AC AB AB ABC C C AC ABC C C C Cππ∆∆=⋅⋅∠=⨯⨯⨯=-⋅∠+====∠ 在中,,分由,11003100.........................................................................6tan 3500031,tan 2300,tan ,,2326235000320000ABC ABC CS C ABC C B C C C S πππππ∆∆=+⎛⎫∴=+ ⎪ ⎪⎝⎭⎛⎫∆<<<=-<<<∈+∞ ⎪ ⎪⎝⎭∴<< ,分为锐角三角形,,又,则从而()23.50003,200003............................................8ABC S ∆∴面积取值范围是米分50003,200003.50003200003.ABM ABN ABC S S S ∆∆∆==∴<< 另解:如图4003(),sin sin sin 340034003sin ,sin ,3340032(sin 2sin ) (93)400324003[sin 2sin()](2sin 3cos 333III AD BD AB ABD DAB D AD ABD BD DAB AD BD ABD DAB ABD B ABD π===∠∠∴=∠=∠∴+=∠+∠=∠+-=∠+∠分)400212127sin(),sin ,cos , (10377)ABD ABD φφφφ=∠+==其中为锐角, 分()220,sin()1,3326400212 (123)ABD ABD ABD A AD BD ππππφφφφ<∠<<∠+<+∴∠+=+=∴+ 由,得当时,的最大值为米分22.()45,45,cos 45cos 45224424422232............................................................................DC DB BDC DC AC ACD DC DB DC AC ∠=︒∠=︒∴=⋅︒+︒=⨯⨯+⨯⨯=I解:由题意与夹角为与夹角为原式.........................................3分():0(cos ,sin ),02.(cos(),sin()),(sin ,cos ),22o xyz OP OQ P Q Q αααπππαααα-∙=≤<++-II法一:建立如图所示平面直角坐标系,由位置等价,不妨设即,2,22,M x x -≤≤设()(sin ,cos 2),(cos ,sin 2),MQ x MP x αααα=---=--22(sin cos )2sin 2cos 4,sin cos 115()sin cos 2(sin cos )224115sin cos 2(sin cos ) (524)MQ MP x x MQ MP x αααααααααααααα∴∙=+---+-∴∙=++-++≥-++分21sin cos 2sin ,22sin cos .42t t t πααααα-⎛⎫⎡⎤+=+∈-= ⎪⎣⎦⎝⎭令,则t=从而,,22min 11517()22,22 (64442)()22()(2)42 2.,042 2 (74)t f t t t t t f t f t f x MQ MP πα-⎡⎤=-+=-+∈-⎣⎦⎡⎤-==-⎣⎦∴==∙- 设,,分在,上单减,当时,最小值为分2222min min 11,(2), (544)22,()422 (72)PQ E MP MQ ME PQ ME ME MP MQ ⋅=-=-=-⋅=- 设的中点为分故分法二:()()(2,2),(2,2),(2,2),(cos ,sin ),02.A B C P αααπ--≤<III II 由知(2cos ,2sin ),(2cos ,2sin ),(2cos ,2sin ),............80,(,,),(2cos )(2cos )(2cos )0(2sin )(2sin )(2sin )0, PA PB PC aPA bPB cPC a b c R a b c a b c ∴=---=--=---++=∈--+-+-=⋅⋅⋅⋅⋅⋅⋅∴-+-+--=⋅分①ααααααααααααmax ..................................................102cos cos 2441.....112cos cos 22cos cos 1,2,,() 3...............................,0, b k a a c a b ck Z a⎧⎨⋅⋅⋅⋅⋅⋅⎩++-+==+≠-=----+==∈=②易知由①同除,以可分当时得分即时αααααααπ.......................12分。
2024-2025学年四川省成都市成都七中万达学校高一新生入学分班质量检测数学试题【含答案】
2024-2025学年四川省成都市成都七中万达学校高一新生入学分班质量检测数学试题题号一二三四五总分得分A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下列式子正确的是()A .若x y a a <,则x <y B .若bx >by ,则x >y C .若x y a a =,则x=y D .若mx=my ,则x=y 2、(4分)如图,在菱形ABCD 中,A 60∠=,AD 8=.P 是AB 边上的一点,E ,F 分别是DP ,BP 的中点,则线段EF 的长为()A .8B .C .4D .3、(4分)若分式2x 9x 3--的值为0,则x 的值等于()A .0B .3C .3-D .3±4、(4分)下列各点在反比例函数5y x =-图象上的是()A .()5,1B .()1,5C .()1,5-D .()5,5--5、(4分)巫溪某中学组织初一初二学生举行“四城同创”宣传活动,从学校坐车出发,先上坡到达A 地后,宣传8分钟;然后下坡到B 地宣传8分钟返回,行程情况如图.若返回时,上、下坡速度仍保持不变,在A 地仍要宣传8分钟,那么他们从B 地返回学校用的时间是()A .45.2分钟B .48分钟C .46分钟D .33分钟6、(4分)将0.000008这个数用科学记数法表示为()A .8×10-6B .8×10-5C .0.8×10-5D .8×10-77、(4分)不等式组2232x x x x +>⎧⎨<+⎩的解集是()A .x >-2B .x <1C .-1<x <2D .-2<x <18、(4分)无论取什么数,总有意义的分式是()A .B .C .D .二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图所示,工人师傅做一个矩形铝合金窗框分下面三个步骤进行先截出两对符合规格的铝合金窗料(如图①所示),使AB =CD ,EF =GH .(1)摆放成如图②的四边形,则这时窗框的形状是平行四边形,它的依据是.(2)将直尺紧靠窗框的一个角(如图③),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图④,说明窗框合格,这时窗框是矩形,它的依据是.10、(4分)若分式293x x --的值为0,则x 的值为_______.11、(4分)已知=0,则(a ﹣b )2的平方根是_____.12、(4分)若直角三角形两边的长分别为a 、b +|b -4|=0,则第三边的长是_________.13、(4分)方程x =-的解是__________.三、解答题(本大题共5个小题,共48分)14、(12分)如图,△ABC 是等边三角形,点D ,E 分别在BC ,AC 上,且BD=CE ,AD 与BE 相交于点F.(1)试说明△ABD ≌△BCE ;(2)△AEF 与△BEA 相似吗?请说明理由;(3)BD 2=AD·DF 吗?请说明理由.15、(8分)(1)如图1,将一矩形纸片ABCD 沿着EF 折叠,CE 交AF 于点G ,过点G 作GH ∥EF ,交线段BE 于点H .①判断EG 与EH 是否相等,并说明理由.②判断GH 是否平分∠AGE ,并说明理由.(2)如图2,如果将(1)中的已知条件改为折叠三角形纸片ABC ,其它条件不变.①判断EG 与EH 是否相等,并说明理由.②判断GH 是否平分∠AGE ,如果平分,请说明理由;如果不平分,请用等式表示∠EGH ,∠AGH 与∠C 的数量关系,并说明理由.16、(8分)已知:AC 是平行四边形ABCD 的对角线,且BE ⊥AC ,DF ⊥AC ,连接DE 、BF .求证:四边形BFDE 是平行四边形.17、(10分)如图,在平行四边形AECF 中,B ,D 是直线EF 上的两点,BE =DF ,连接AB ,BC ,AD ,DC .求证:四边形ABCD 是平行四边形.18、(10分)中国数学史上最先完成勾股定理证明的数学家是公元3世纪三国时期的赵爽,他为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成.将图中正方形MNKT ,正方形EFGH ,正方形ABCD 的面积分别记为1S ,2 S ,3S .若12318S S S ++=,则正方形EFGH 的面积为_______.B 卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)分解因式:2331212a a a -+-=______.20、(4分)如图,四边形ABCD 是菱形,点A ,B ,C ,D 的坐标分别是(m ,0),(0,n ),(1,0),(0,2),则mn=_____.21、(4分)在△ABC 中,AB=6,AC=8,BC=10,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值为_____.22、(4分)如图所示,将直角三角形,,,沿方向平移得直角三角形,,阴影部分面积为_____________.23、(4分)如图,O 为数轴原点,数轴上点A 表示的数是3,AB ⊥OA ,线段AB 长为2,以O 为圆心,OB 为半径画弧交数轴于点C .则数轴上表示点C 的数为_________.二、解答题(本大题共3个小题,共30分)24、(8分)如图,菱形ABCD 的对角线AC 、BD 相交于点O ,BE ∥AC ,AE ∥BD ,OE 与AB 交于点F.(1)试判断四边形AEBO 的形状,并说明理由;(2)若OE=10,AC=16,求菱形ABCD 的面积.25、(10分)如图1,在平面直角坐标系中,直线AB 与x 轴交于点A ,与y 轴交于点B ,与直线OC :y x =交于点C .(1)若直线AB 解析式为212y x =-+,①求点C 的坐标;②求△OAC 的面积.(2)如图2,作AOC ∠的平分线ON ,若AB ⊥ON ,垂足为E ,OA =4,P 、Q 分别为线段OA 、OE 上的动点,连结AQ 与PQ ,试探索AQ +PQ 是否存在最小值?若存在,求出这个最小值;若不存在,说明理由.26、(12分)当a在什么范围内取值时,关于x的一元一次方程2132x a x++=的解满足11x -≤≤参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】A选项错误,x ya a<,若a>0,则x<y;若a<0,则x>y;B选项错误,bx>by,若b>0,则x>y;若b<0,则x<y;C选项正确;D选项错误,当m=0时,x可能不等于y.故选C.点睛:遇到等式或者不等式判断正误,可以采用取特殊值代入的方法.2、C【解析】如图连接BD.首先证明△ADB是等边三角形,可得BD=8,再根据三角形的中位线定理即可解决问题.【详解】如图连接BD.∵四边形ABCD是菱形,∴AD=AB=8,∵60A,∠=∴△ABD是等边三角形,∴BA=AD=8,∵PE=ED,PF=FB,∴1 4.2EF BD==故选:C.考查菱形的性质以及三角形的中位线定理,三角形的中位线平行于第三边并且等于第三边的一半.3、C【解析】直接利用分式的值为0的条件以及分式有意义的条件进而得出答案.【详解】分式2x9x3--的值为0,2x90∴-=,x30-≠,解得:x3=-,故选C.本题考查了分式的值为零的条件,熟知“分子为0且分母不为0时,分式的值为0”是解题的关键.4、C【解析】由5yx=-可得,xy=-5,然后进行排除即可.【详解】解:由5yx=-,即,xy=-5,经排查只有C符合;故答案为C.本题考查了反比例函数的性质,即对于反比例函数kyx=,有xy=k是解答本题的关键.5、A【解析】试题分析:由图象可知校车在上坡时的速度为200米每分钟,长度为3600米;下坡时的速度为500米每分钟,长度为6000米;又因为返回时上下坡速度不变,总路程相等,根据题意列出各段所用时间相加即可得出答案.由上图可知,上坡的路程为3600米,速度为200米每分钟;下坡时的路程为6000米,速度为6000÷(46﹣18﹣8×2)=500米每分钟;由于返回时上下坡互换,变为上坡路程为6000米,所以所用时间为30分钟;停8分钟;下坡路程为3600米,所用时间是7.2分钟;故总时间为30+8+7.2=45.2分钟.考点:一次函数的应用.6、A 【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.由此即可解答.【详解】0.000008用科学计数法表示为8×10-6,故选A.本题考查用科学记数法表示较小的数,一般形式为a ×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.7、D 【解析】分析:首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.详解:2232x x x x +⎧⎨+⎩>①<②,解①得:x >﹣2,解②得:x <1,则不等式组的解集是:﹣2<x <1.故选D .点睛:本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分.找解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.8、A【解析】根据偶次幂具有非负性可得x +3>0,再由分式有意义的条件可得答案.【详解】∵x ⩾0,∴x +3>0,∴无论x 取什么数时,总有意义的分式是,故选:A.此题考查分式有意义的条件,解题关键在于掌握其性质.二、填空题(本大题共5个小题,每小题4分,共20分)9、【答题空1】两组对边分别相等的四边形是平行四边形【答题空2】有一个角是直角的平行四边形是矩形【解析】(1)∵AB=CD,EF=GH,∴四边形为平行四边形.(两组对边相等的四边形为平行四边形)(2)由(2)知四边形为平行四边形,∵∠C 为直角,∴四边形为矩形.(一个角为直角的平行四边形为矩形)根据平行四边形的判定,两组对边分别相等的四边形为平行四边形,即可得出②的结论,当把一个角变为直角时,根据一个角为直角的平行四边形为矩形即可得出③的结论.10、-1【解析】根据分式的值为零的条件可以求出x 的值.【详解】解:根据题意得:29=030x x ⎧-⎨-≠⎩,解得:x=-1.故答案为:-1.若分式的值为零,需同时具备两个条件:(1)分子为2;(2)分母不为2.这两个条件缺一不可.11、±1.【解析】根据非负数的性质列出方程求出a 、b 的值,代入所求代数式计算即可.【详解】根据题意得a-1=2,且b-5=2,解得:a=1,b=5,则(a-b )2=16,则平方根是:±1.故答案是:±1.本题考查了非负数的性质:几个非负数的和为2时,这几个非负数都为2.12、2或【解析】首先利用绝对值以及算术平方根的性质得出a ,b 的值,再利用分类讨论结合勾股定理求出第三边长.【详解】+|b -4|=0,∴b =4,a =1.当b =4,a =1时,第三边应为斜边,;当b =4,a =1=2.故答案为:2.本题考查了利用勾股定理解直角三角形的能力,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.13、3x =-【解析】根据解无理方程的方法可以解答此方程,注意无理方程要检验.【详解】x =-,∴1-2x=x 2,∴x 2+2x-1=0,∴(x+1)(x-1)=0,解得,x1=-1,x2=1,经检验,当x=1时,原方程无意义,当x=-1时,原方程有意义,故原方程的根是x=-1,故答案为:x=-1.本题考查无理方程,解答本题的关键是明确解无理方程的方法.三、解答题(本大题共5个小题,共48分)14、(1)见解析;(2)见解析;(3)见解析;【解析】(1)∵△ABC是等边三角形,∴AB=BC,∠ABD=∠BCE,又∵BD=CE,∴△ABD≌△BCE;(2)△AEF与△BEA相似.由(1)得:∠BAD=∠CBE,又∵∠ABC=∠BAC,∴∠ABE=∠EAF,又∵∠AEF=∠BEA,∴△AEF∽△BEA;(3)BD2=AD•DF.由(1)得:∠BAD=∠FBD,又∵∠BDF=∠ADB,∴△BDF∽△ADB,∴BD DF AD BD=,即BD2=AD•DF.本题主要考查等边三角形的性质和全等三角形的判定与性质以及相似三角形的判定和性质等知识点,解答本题的关键是要熟练掌握三角形全等的判定与性质定理.15、(1)①EG=EH,理由详见解析;②GH平分∠AGE,理由详见解析;(2)①EG=EH,理由详见解析;②∠AGH=∠HGE+∠C,理由详见解析.【解析】(1)①由题意可证四边形GHEF 是平行四边形,可得∠GHE =∠GFE ,由折叠的性质和平行线的性质可证∠GEF =∠HGE ,可得结论;②由平行线的性质可得∠AGH =∠GHE =∠HGE ,即可得结论;(2)①由折叠的性质可得∠CEF =∠C 'EF ,∠C =∠C ',由平行线的性质可得结论;②∠AGH =∠HGE +∠C ,由三角形的外角性质可得结论.【详解】(1)①EG =EH ,理由如下:如图,∵四边形ABCD 是矩形∴AD ∥BC ∴AF ∥BE ,且GH ∥EF ∴四边形GHEF 是平行四边形∴∠GHE =∠GFE ∵将一矩形纸片ABCD 沿着EF 折叠,∴∠1=∠GEF ∵AF ∥BE ,GH ∥EF∴∠1=∠GFE ,∠HGE =∠GEF∴∠GEF =∠HGE∴∠GHE =∠HGE∴HE =GE②GH 平分∠AGE∵AF ∥BE ∴∠AGH =∠GHE ,且∠GHE =∠HGE ∴∠AGH =∠HGE ∴GH 平分∠AGE (2)①EG =EH 理由如下,如图,∵将△ABC 沿EF 折叠∴∠CEF =∠C 'EF ,∠C =∠C '∵GH ∥EF ∴∠GEF =∠HGE ,∠FEC '=∠GHE ∴∠GHE =∠HGE ∴EG =EH ②∠AGH =∠HGE +∠C 理由如下:∵∠AGH =∠GHE +∠C '∴∠AGH =∠HGE +∠C本题是四边形综合题,考查了矩形的性质,折叠的性质,平行线的性质,平行四边形的判定和性质,熟练运用这些性质进行推理是本题的关键.16、见解析【解析】根据平行四边形的性质得出AB=CD ,AB ∥CD ,求出△BAE ≌△DCF ,求出BE=DF ,根据平行四边形的判定得出即可.证明:∵BE ⊥AC ,DF ⊥AC ,∴BE ∥DF ,∠AEB=∠DFC=90°,∵四边形ABCD 是平行四边形,∴AB=CD ,AB ∥CD ,∴∠BAE=∠DCF ,在△BAE 和△DCF 中AEB CFD BAE DCF AB CD ∠∠⎧⎪∠∠⎨⎪⎩===∴△BAE ≌△DCF (AAS ),∴BE=DF ,∵BE ∥DF ,∴四边形BFDE 是平行四边形.本题考查了平行四边形的性质和判定、平行线的性质和全等三角形的性质和判定,能求出BE=DF 和BE ∥DF 是解此题的关键.17、见解析.【解析】连接AC 交BD 与点O.由四边形AECF 是平行四边形,可证OA=OC,OE=OF,又BE=DF ,所以OB=OD ,根据对角线互相平分的四边形是平行四边形可证结论成立.【详解】证明:连接AC 交BD 与点O.∵四边形AECF 是平行四边形,∴OA=OC,OE=OF,∵BE=DF ,∴OE+BE=OF+DF,∴OB=OD,∴四边形ABCD 是平行四边形.本题主要考查了平行四边形的判定,平行四边形的判定方法有:①两组对边分别平行的四边形是平行四边形;②一组对边平行且相等的四边形是平行四边形;③两组对边分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤.两组对角分别相等的四边形是平行四边形.18、1【解析】设四边形MTKN 的面积为x ,八个全等的三角形面积一个设为y ,构建方程组,利用整体的思想思考问题,求出x+4y 即可.【详解】解:设四边形MTKN 的面积为x ,八个全等的三角形面积一个设为y ,∵正方形MNKT ,正方形EFGH ,正方形ABCD 的面积分别为S 1,S 2,S 3,S 1+S 2+S 3=18,∴得出S 1=x ,S 2=4y+x ,S 3=8y+x ,∴S 1+S 2+S 3=3x+12y=18,故3x+12y=18,x+4y=1,所以S 2=x+4y=1,即正方形EFGH 的面积为1.故答案为1本题考查勾股定理的证明,正方形的性质、全等三角形的性质等知识,解题的关键是学会利用参数,构建方程组解决问题.一、填空题(本大题共5个小题,每小题4分,共20分)19、23(12)a a --【解析】根据因式分解的定义:将多项式和的形式转化为整式乘积的形式;先提公因式,再套用完全平方公式即可求解.【详解】2331212a a a -+-,=()23144a a a --+,=23(12)a a --,故答案为:2 3(12)a a --.本题主要考查因式分解,解决本题的关键是要熟练掌握因式分解的定义和方法.20、1.【解析】分析:根据菱形的对角线互相垂直平分得出OA=OC ,OB=OD ,得出m 和n 的值,从而得出答案.详解:∵四边形ABCD 是菱形,∴OA=OC ,OB=OD ,∴m=-1,n=-1,∴mn=1.点睛:本题主要考查的是菱形的性质,属于基础题型.根据菱形的性质得出OA=OC ,OB=OD 是解题的关键.21、2.1【解析】根据已知得当AP ⊥BC 时,AP 最短,同样AM 也最短,从而不难根据相似比求得其值.【详解】连结AP ,在△ABC 中,AB=6,AC=8,BC=10,∴∠BAC=90°,∵PE ⊥AB ,PF ⊥AC ,∴四边形AFPE 是矩形,∴EF=AP .∵M 是EF 的中点,∴AM=12AP,根据直线外一点到直线上任一点的距离,垂线段最短,即AP⊥BC时,AP最短,同样AM 也最短,∴当AP⊥BC时,△ABP∽△CAB,∴AP:AC=AB:BC,∴AP:8=6:10,∴AP最短时,AP=1.8,∴当AM最短时,AM=AP÷2=2.1.故答案为2.1解决本题的关键是理解直线外一点到直线上任一点的距离,垂线段最短,利用相似求解.22、1【解析】根据平移的性质,对应点间的距离等于平移的距离求出CE=BF,再求出GE,然后根据平移变换只改变图形的位置不改变图形的形状与大小可得△ABC的面积等于△DEF的面积,从而得到阴影部分的面积等于梯形ACEG的面积,再利用梯形的面积公式列式计算即可得解.【详解】∵△ACB平移得到△DEF,∴CE=BF=2,DE=AC=6,∴GE=DE-DG=6-3=3,由平移的性质,S△ABC=S△DEF,∴阴影部分的面积=S梯形ACEG=(GE+AC)•CE=(3+6)×2=1.故答案为:1.本题考查了平移的性质,熟练掌握性质并求出阴影部分的面积等于梯形ACEG的面积是本题的难点,也是解题的关键.【解析】首先利用勾股定理得出BO的长,再利用A点的位置得出答案.【详解】解:∵AB ⊥OA ∴∠OAB=90°,∵OA=3、AB=2,OC OB ∴===则数轴上表示点C 本题考查的是实数与数轴以及勾股定理,熟知实数与数轴上各点是一一对应关系与勾股定理是解答此题的关键.二、解答题(本大题共3个小题,共30分)24、(1)四边形AEBO 为矩形,理由见解析(2)96【解析】(1)根据有3个角是直角的四边形是矩形即可证明;(2)根据矩形的性质得出AB=OE=10,再根据勾股定理求出BO ,即可得出BD 的长,再利用菱形的面积公式进行求解.【详解】(1)四边形AEBO 为矩形,理由如下:∵菱形ABCD 的对角线AC 、BD 相交于点O ∴AC ⊥BD ,∵BE ∥AC ,AE ∥BD ,∴BE ⊥BD ,AE ⊥AC ,∴四边形AEBO 为矩形;(2)∵四边形AEBO 为矩形∴AB=OE=10,∵AO=AC=8,∴OB=∴BD=12,故S 菱形ABCD =AC×BD=×16×12=96此题主要考查特殊平行四边形的判定与性质,解题的关键是熟知矩形的判定与性质及菱形的性质定理.25、(1)①C (4,4);②12;(2)存在,1【解析】试题分析:(1)①联立两个函数式,求解即可得出交点坐标,即为点C 的坐标;②欲求△OAC 的面积,结合图形,可知,只要得出点A 和点C 的坐标即可,点C 的坐标已知,利用函数关系式即可求得点A 的坐标,代入面积公式即可;(2)在OC 上取点M ,使OM=OP ,连接MQ ,易证△POQ ≌△MOQ ,可推出AQ+PQ=AQ+MQ ;若想使得AQ+PQ 存在最小值,即使得A 、Q 、M 三点共线,又AB ⊥OP ,可得∠AEO=∠CEO ,即证△AEO ≌△CEO (ASA ),又OC=OA=4,利用△OAC 的面积为6,即可得出AM=1,AQ+PQ 存在最小值,最小值为1.(1)①由题意,解得4,{ 4.x y ==所以C (4,4);②把0y =代入212y x =-+得,6x =,所以A 点坐标为(6,0),所以164122OAC S =⨯⨯=;(2)由题意,在OC 上截取OM =OP ,连结MQ∵OQ 平分∠AOC ,∴∠AOQ=∠COQ ,又OQ=OQ ,∴△POQ ≌△MOQ (SAS ),∴PQ=MQ ,∴AQ+PQ=AQ+MQ ,当A 、Q 、M 在同一直线上,且AM ⊥OC 时,AQ+MQ 最小.即AQ+PQ 存在最小值.∵AB ⊥ON ,所以∠AEO=∠CEO ,∴△AEO ≌△CEO (ASA ),∴OC=OA=4,∵△OAC 的面积为12,所以AM=12÷4=1,∴AQ+PQ 存在最小值,最小值为1.考点:一次函数的综合题点评:本题知识点多,具有一定的综合性,要求学生具备一定的数学解题能力,有一定难度.26、12a 【解析】先求出方程的解,根据已知方程的解取值范围列出不等式组,再求出不等式组的解集即可.【详解】解:解方程2132x a x ++=得:32x a =-,关于x 的一元一次方程2132x a x ++=的解满足11x - ,∴1321a -- ,解得:12a ,所以当12a 时,关于x 的一元一次方程2132x a x ++=的解满足11x - .本题考查了解一元一次方程和解一元一次不等式组,根据方程的解取值范围得出关于a 的不等式组是解此题的关键.。
成都七中2016-2017学年高一下学期半期考试数学试题(pdf版)
bn
a2 n 1 a2 n 1
1 a2 n 1 a2 n 1
1 n n 1+(n+1) n 1 n n+1( n n 1)
bn
n 1 n 1 1 n n+1 n n 1
1 1 1 1 1 1 ... 1 2 2 3 n n 1 1 1 1 …………12分 1 1 n 1 n 1
9.在 ABC 中, 若 sin A sin B 1 sin 2 A. 等边三角形 B. 直角三角形
C , 则 ABC 的形状为( 2
)
C. 等腰直角三角形
D. 等腰三角形
10.已知两个等差数列 {an } 和 {bn } 的前 n 项和分别为 An 和 Bn ,且
An 6n 42 ,则使得 Bn n3
1 2 1 2 2 3 2 3 ……………10 分 3 3
π ②若 cos C 0 , sin B sin C . b c 2 ,A= , 3
1 1 3 ABC 的面积 S a b sin 2 2 3 ……………12 分 2 3 2 2
即 t =2.5 时,y 有最大值 22.所以 2017 年的年促销费用投入 2.5 万元时,该专卖 店利润最大,最大利润为 22 万元.…………………12 分
2 2 A.若 a b ,则 ac bc
B.若 a b 0 ,则
b a a b
2 2
C.若 a b 0 ,则
1 1 a b
D.若 a b 0 ,则 a ab b
5. ABC 中, AB 3 , AC 1 , C
3
四川省成都七中2014-2021学年高一下学期期初考试数学试卷 Word版含解析
2022-2021学年四川省成都七中高一(下)期初数学试卷一、选择题(每小题5分,共50分)1.设全集U=R,A={x|x<1},B={x|log2x<1},则A∩B=()A.{x|0<x<1} B.{x|0<x<2} C.{x|﹣1<x<1} D.{x|﹣1<x<2}2.在平行四边形ABCD 中,++=()A.B.C.D.3.已知角θ的顶点与原点重合,始边与x轴的非负半轴重合,终边在直线y=2x上,则sinθ=()A.B.C.或﹣D.或﹣4.函数f(x)=3x2﹣e x的零点有()A.有一个B.有两个C.有三个D.不存在5.sin80°cos20°﹣cos80°sin20°的值为()A.B.C.﹣D.﹣6.已知函数f(x)=,则满足f(x)≤2的x的取值范围是()A.[﹣1,2] B.[0,2] C.[1,+∞)D.[﹣1,+∞)7.函数y=Asin(ωx+φ)(ω>0,|φ|<,x∈R)的部分图象如图所示,则函数表达式为()A.B.C.D.8.定义在R上的格外值函数f(x)满足y=f(x+1)和y=f(x﹣1)都是奇函数,则函数y=f(x)肯定是()A.偶函数B.奇函数C.周期函数D.以上结论都不正确9.非零实数a、b满足4a2﹣2ab+4b2﹣c=0(c>0),当|2a+b|取到最大值时,则的值为()A.B.C.D.10.已知点A、B是函数f(x)=x2图象上位于对称轴两侧的两动点,定点F(0,),若向量,满足•=2(O为坐标原点).则三角形ABO与三角形AFO面积之和的取值范围是()A.(2,+∞)B.[3,+∞)C.[,+∞)D.[0,3]二、填空题(本大题有5小题,每空5分,共25分)11.若向量=(2,m ),=(1,﹣3)满足⊥,则实数m 的值为.12.若tanα>0,则sin2α的符号是.(填“正号”、“负号”或“符号不确定”)13.已知函数f(x)=3sin(ωx+φ),(ω>0)的图象的相邻两条对称轴的距离为2,则f(1)+f(2)+…+f (2022)=.14.将曲线C1:y=ln关于x轴对称得到的曲线C2,再将C2向右平移1个单位得到函数f(x)的图象,则f (+1)=.15.设函数y=f(x)的定义域为D,若存在实数x0,使f(x0)=x0成立.则称x0为f(x)的不动点或称(x0.f (x))为函数y=f(x)图象的不动点;有下列说法:①函数f(x)=2x2﹣x﹣4的不动点是﹣1和2;②若对于任意实数b,函数f(x)=ax2+(b+1)x+b﹣2.(a≠0)恒有两个不相同的不动点,则实数a的取值范围是0<a≤2;③函数f(x)=ax2+bx+c(a≠0),若y=f(x)没有不动点,则函数y=f(f(x))也没有不动点;④设函数f(x)=(x﹣1),若f(f(f(x)))为正整数,则x的最小值是121;以上说法正确的是.三、解答题(本题6小题,16~19题各12分,20题13分,21题14分,共75分)16.(12分)(2021春•成都校级月考)(1)化简;(2)计算:4+2log23﹣log 2.17.(12分)(2021春•成都校级月考)设=(﹣1,1),=(4,3),=(5,﹣2),(1)求证与不共线,并求与的夹角的余弦值.(2)求在方向上的投影.18.(12分)(2021春•成都校级月考)已知函数f(x)=8x2﹣6kx+2k﹣1.(1)若函数f(x)的零点在(0,1]内,求实数k的范围;(2)是否存在实数k,使得函数f(x)的两个零点x1,x2满足x12+x22=1,x1x2>0.19.(12分)(2021春•成都校级月考)已知函数f(x)=alog2x,g(x)=blog3x(x>1),其中常数a.b≠0.(1)证明:用定义证明函数k(x)=f(x)•g(x)的单调性;(2)设函数φ(x)=m•2x+n•3x,其中常数m,n满足m.n<0,求φ(x+1)>φ(x)时的x的取值范围.20.(13分)(2021春•雅安校级期中)半径长为2的扇形AOB 中,圆心角为,依据下面两个图形从扇形中切割一个矩形PQRS,设∠POA=θ.(1)请用角θ分别表示矩形PQRS的面积;(2)按图形所示的两种方式切割矩形PQRS,问何时矩形面积最大.21.(14分)(2021春•成都校级月考)已知函数f(x)=的图象在R上不间断.(1)求正实数a的值;(2)当x≥1时,函数h(x)=kx﹣2|x﹣2|≥0恒成立.求实数k的取值范围;(3)若关于x的方程f(x)=m|x|=0恰好有4个解,求实数m的取值范围.2022-2021学年四川省成都七中高一(下)期初数学试卷参考答案与试题解析一、选择题(每小题5分,共50分)1.设全集U=R,A={x|x<1},B={x|log2x<1},则A∩B=()A.{x|0<x<1} B.{x|0<x<2} C.{x|﹣1<x<1} D.{x|﹣1<x<2}考点:交集及其运算.专题:集合.分析:求出集合的等价条件,依据集合的基本运算进行求解即可.解答:解:A={x|x<1},B={x|log2x<1}={x|0<x<2},则A∩B={x|0<x<1},故选:A点评:本题主要考查集合的基本运算.比较基础.2.在平行四边形ABCD 中,++=()A.B.C.D.考点:向量的加法及其几何意义.专题:平面对量及应用.分析:依据题意,画出图形,结合图形,利用平面对量的加法运算法则进行运算即可.解答:解:画出图形,如图所示;++=(+)+=+=+=.故选:D.点评:本题考查了平面对量的加减运算问题,解题时应画出图形,结合图形进行解答问题,是简洁题.3.已知角θ的顶点与原点重合,始边与x轴的非负半轴重合,终边在直线y=2x上,则sinθ=()A.B.C.或﹣D.或﹣考点:任意角的三角函数的定义.专题:三角函数的求值.分析:由条件利用任意角的三角函数的定义,分类争辩求得sinθ的值.解答:解:由于角θ的终边在直线y=2x上,若角θ的终边在第一象限,则在它的终边上任意取一点P(1,2),则由任意角的三角函数的定义可得sinθ===.若角θ的终边在第三象限,则在它的终边上任意取一点P(﹣1,﹣2),则由任意角的三角函数的定义可得sinθ===﹣,故选:D.点评:本题主要考查任意角的三角函数的定义,体现了分类争辩的数学思想,属于基础题.4.函数f(x)=3x2﹣e x的零点有()A.有一个B.有两个C.有三个D.不存在考点:函数零点的判定定理.专题:函数的性质及应用.分析:令f(x)=0,得到e x=3x2,作出函数y=e x,和y=3x2的图象,利用数形结合即可得到结论解答:解:令f(x)=0,得到e x=3x2,作出函数y=e x,和y=3x2的图象如图:由图象可知两个图象的交点为3个,即函数f(x)=3x2﹣e x的零点的个数为3个,故选:C点评:本题主要考查函数零点公式的判定,利用函数和方程之间的关系转化为两个图象的交点问题是解决本题的关键.5.sin80°cos20°﹣cos80°sin20°的值为()A.B.C.﹣D.﹣考点:两角和与差的正弦函数.专题:三角函数的求值.分析:由条件利用两角和的正弦公式,求得所给式子的值.解答:解:sin80°cos20°﹣cos80°sin20°=sin(80°﹣20°)=sin60°=,故选:B.点评:主要考查两角和的正弦公式的应用,属于基础题.6.已知函数f(x)=,则满足f(x)≤2的x的取值范围是()A.[﹣1,2] B.[0,2] C.[1,+∞)D.[﹣1,+∞)考点:分段函数的应用.专题:函数的性质及应用.分析:依据分段函数的表达式,分别进行求解即可得到结论.解答:解:当x≤1时,x2+1≤2,得﹣1≤x≤1,当x>1时,由1﹣log2x≤2,得log2x≥﹣1.∴x ≥,∴x>1综上可知,实数x的取值范围是x≥﹣1.故选:D点评:本题主要考查不等式的求解,利用分段函数的表达式分别进行求解是解决本题的关键.7.函数y=Asin(ωx+φ)(ω>0,|φ|<,x∈R)的部分图象如图所示,则函数表达式为()A.B.C.D.考点:由y=Asin(ωx+φ)的部分图象确定其解析式.专题:计算题.分析:通过函数的图象求出A,周期T,利用周期公式求出ω,图象经过(3,0)以及φ的范围,求出φ的值,得到函数的解析式.解答:解:由函数的图象可知A=2,T=2×(5﹣1)=8,所以,ω=,由于函数的图象经过(3,0),所以0=2sin (),又,所以φ=;所以函数的解析式为:;故选C.点评:本题是基础题,考查三角函数的图象求函数的解析式的方法,考查同学的视图力量,计算力量,常考题型.8.定义在R上的格外值函数f(x)满足y=f(x+1)和y=f(x﹣1)都是奇函数,则函数y=f(x)肯定是()A.偶函数B.奇函数C.周期函数D.以上结论都不正确考点:函数奇偶性的性质.专题:函数的性质及应用.分析:由y=f(x+1)奇函数,即有f(1﹣x)=﹣f(1+x),由y=f(x﹣1)是奇函数,即为f(﹣x﹣1)=﹣f(x﹣1),将x换成x﹣1,x+1,再将﹣x换成x,x换成x+2,结合周期函数的定义,即可得到结论.解答:解:y=f(x+1)奇函数,即有f(1﹣x)=﹣f(1+x),将x换成x﹣1,即有f(2﹣x)=﹣f(x),①y=f(x﹣1)是奇函数,即为f(﹣x﹣1)=﹣f(x﹣1),将x换成x+1,即有f(﹣x﹣2)=﹣f(x),②则由①②可得,f(﹣x﹣2)=f(2﹣x),即有f(x﹣2)=f(x+2),将x换成x+2,可得f(x+4)=f(x),即有函数f(x)是最小正周期为4的函数.故选:C.点评:本题考查函数的奇偶性和周期性的定义,考查赋值法的运用,考查肯定的推理和分析力量,属于中档题.9.非零实数a、b满足4a2﹣2ab+4b2﹣c=0(c>0),当|2a+b|取到最大值时,则的值为()A.B.C.D.考点:不等式的基本性质.专题:不等式的解法及应用.分析:4a2﹣2ab+4b2﹣c=0(c>0),化为==,利用柯西不等式即可得出.解答:解:4a2﹣2ab+4b2﹣c=0(c>0),化为==,由柯西不等式可得:≥=(2a+b)2,当|2a+b|取到最大值时,=,化为.故选:D.点评:本题考查了柯西不等式的应用,考查了推理力量与计算力量,属于中档题.10.已知点A、B是函数f(x)=x2图象上位于对称轴两侧的两动点,定点F(0,),若向量,满足•=2(O为坐标原点).则三角形ABO与三角形AFO面积之和的取值范围是()A.(2,+∞)B.[3,+∞)C.[,+∞)D.[0,3]考点:平面对量数量积的运算.专题:平面对量及应用.分析:通过设点A(﹣x,x2)(x>0)、利用•=2、计算可知B (,),过点A、B分别作x轴垂线且垂足分别为C、D,通过S△ABO+S△AFO=S梯形ACDB﹣S△ACO﹣S△BDO+S△AFO、利用面积计算公式及基本不等式计算即得结论.解答:解:依题意,不妨设点A(﹣x,x2)(x>0)、B(p,p2)(p>0),∵•=2,即﹣xp+(xp)2=2,∴(xp)2﹣xp﹣2=0,解得:xp=2或xp=﹣1(舍),∴p=,即B (,),过点A、B分别作x轴垂线,垂足分别为C、D,则S△ABO+S△AFO=S梯形ACDB﹣S△ACO﹣S△BDO+S△AFO=(AC+BD)•CD ﹣AC•CO ﹣BD•OD+OF•CO=(x2+)•(x+)﹣x2•x ﹣••+••x=(x3++2x+﹣x3﹣+)=(+2x+)=(+)≥•2(当且仅当=即x=时等号成立)=3,故选:B.点评:本题考查平面对量数量积运算,涉及面积的计算方法、基本不等式等基础学问,留意解题方法的积累,属于中档题.二、填空题(本大题有5小题,每空5分,共25分)11.若向量=(2,m ),=(1,﹣3)满足⊥,则实数m 的值为.考点:数量积的坐标表达式.专题:平面对量及应用.分析:依据向量垂直的等价条件进行求解即可.解答:解:∵向量=(2,m),=(1,﹣3)满足⊥,∴•=2﹣3m=0,解得m=,故答案为:点评:本题主要考查向量数量积的应用,依据向量垂直的坐标公式进行求解是解决本题的关键.12.若tanα>0,则sin2α的符号是正号.(填“正号”、“负号”或“符号不确定”)考点:二倍角的正弦;三角函数值的符号.专题:三角函数的求值.分析:由已知,利用三角函数的基本关系式可得sin2α==>0,即可得解.解答:解:∵tanα>0,∴sin2α==>0.故答案为:正号.点评:本题主要考查了二倍角的正弦函数公式,三角函数基本关系式的应用,属于基础题.13.已知函数f(x)=3sin(ωx+φ),(ω>0)的图象的相邻两条对称轴的距离为2,则f(1)+f(2)+…+f (2022)=0.考点:正弦函数的图象.专题:三角函数的求值.分析:直接利用图象对称轴的距离,求出函数的周期,继而求出f(x)=3sin(x+φ),分别求出f(1),f(2),f(3),f(4)的值,发觉其规律得到答案.解答:解:函数f(x)=3sin(ωx+φ),(ω>0)的图象的相邻两条对称轴的距离为2,∴周期为4,则ω==,∴f(x)=3sin(x+φ),∴f(1)=3sin(+φ)=3cosφ,f(2)=3sin(π+φ)=﹣3sinφ,f(3)=3sin(+φ)=﹣3cosφ,f(4)=3sin(2π+φ)=3sinφ,∴f(1)+f(2)+…+f(2022)=504[f(1)+f(2)+f(3)+f(4)]=0,故答案为:0.点评:本题考查函数周期的求法以及归纳推理好三角函数的诱导公式,涉及三角函数的图象的应用,考查计算力量.14.将曲线C1:y=ln关于x轴对称得到的曲线C2,再将C2向右平移1个单位得到函数f(x)的图象,则f(+1)=.考点:函数的图象与图象变化.专题:函数的性质及应用.分析:依据函数图象的对称变换和平移变换法则,求出函数f(x)的解析式,将x=+1代入可得答案.解答:解:将曲线C1:y=ln关于x轴对称得到的曲线C2,∴曲线C2的方程为:y=﹣ln,再将C2向右平移1个单位得到函数f(x)的图象,∴函数f(x)=﹣ln,∴f(+1)=﹣ln=﹣ln=﹣(﹣)=,故答案为:点评:本题考查的学问点是函数的图象与图象变化,函数求值,依据函数图象的对称变换和平移变换法则,求出函数f(x)的解析式,是解答的关键.15.设函数y=f(x)的定义域为D,若存在实数x0,使f(x0)=x0成立.则称x0为f(x)的不动点或称(x0.f (x))为函数y=f(x)图象的不动点;有下列说法:①函数f(x)=2x2﹣x﹣4的不动点是﹣1和2;②若对于任意实数b,函数f(x)=ax2+(b+1)x+b﹣2.(a≠0)恒有两个不相同的不动点,则实数a的取值范围是0<a≤2;③函数f(x)=ax2+bx+c(a≠0),若y=f(x)没有不动点,则函数y=f(f(x))也没有不动点;④设函数f(x)=(x﹣1),若f(f(f(x)))为正整数,则x的最小值是121;以上说法正确的是①③④.考点:命题的真假推断与应用.专题:函数的性质及应用.分析:依据已知中函数不动点的定义,逐一分析四个结论的真假,最终综合争辩结果,可得答案.解答:解:令2x2﹣x ﹣4=x,解得x=﹣1,或x=2,故①函数f(x)=2x2﹣x﹣4的不动点是﹣1和2,故①正确;若对于任意实数b,函数f(x)=ax2+(b+1)x+b﹣2.(a≠0)恒有两个不相同的不动点,则ax2+(b+1)x+b﹣2=x有两个不相等的实根,则△=b2﹣4a(b﹣2)=b 2﹣4ab+8a>0恒成立,则16a2﹣32a<0,解得0<a<2,即实数a的取值范围是0<a<2,故②错误;③函数f(x)=ax2+bx+c(a ≠0),若y=f(x)没有不动点,则ax2+(b﹣1)x+c=0无实根,则函数y=f(f (x))也没有不动点;④设函数f(x)=(x﹣1),若f(f(f(x)))={[(x﹣1)﹣1]﹣1}=为正整数,则x的最小值是121,故④正确;故正确的命题的序号为:①③④,故答案为:①③④点评:本题考查的学问点是命题的真假推断与应用,此类题型往往综合较多的其它学问点,综合性强,难度中档.三、解答题(本题6小题,16~19题各12分,20题13分,21题14分,共75分)16.(12分)(2021春•成都校级月考)(1)化简;(2)计算:4+2log23﹣log2.考点:对数的运算性质;运用诱导公式化简求值.专题:函数的性质及应用;三角函数的求值.分析:(1)依据诱导公式和二倍角公式化简即可;(2)依据对数的运算性质计算即可.解答:解:(1)==﹣;(2)4+2log 23﹣log 2=2+log 29﹣log2=2+log 28=5.点评:本题考查的学问点是对数的运算性质,和三角形函数的化简,属于基础题.17.(12分)(2021春•成都校级月考)设=(﹣1,1),=(4,3),=(5,﹣2),(1)求证与不共线,并求与的夹角的余弦值.(2)求在方向上的投影.考点:数量积表示两个向量的夹角;向量的投影.专题:综合题.分析:(1)依据共线向量的推断方法易得与不共线,再结合向量的数量积的运算,可得cos<a,b>的值,(2)依据数量积的运算与投影的概念,可得在方向上的投影为,代入向量的坐标,计算可得答案.解答:解:(1)∵=(﹣1,1),=(4,3),且﹣1×3≠1×4,∴与不共线,又•=﹣1×4+1×3=﹣1,||=,||=5,∴cos<,>===﹣.(2)∵•=﹣1×5+1×(﹣2)=﹣7,∴在方向上的投影为==﹣.点评:本题考查向量的数量积的运用,要求同学能娴熟计算数量积并通过数量积来求出向量的模和夹角或证明垂直.18.(12分)(2021春•成都校级月考)已知函数f(x)=8x2﹣6kx+2k﹣1.(1)若函数f(x)的零点在(0,1]内,求实数k的范围;(2)是否存在实数k,使得函数f(x)的两个零点x1,x2满足x12+x22=1,x1x2>0.考点:一元二次方程的根的分布与系数的关系;根的存在性及根的个数推断.专题:函数的性质及应用.分析:(1)由条件利用二次函数的性质求得实数k的范围.(2)由条件利用二次函数的性质求得实数k的值,再结合(1)中k的范围,得出结论.解答:解:(1)由函数f(x)=8x2﹣6kx+2k﹣1的零点在(0,1]内,可得,求得<k ≤.(2)由题意可得,求得k >.再依据x12+x22=1=﹣2x1x2=1,可得k2﹣=1,求得k=,或k=(舍去).结合(1)可得<k ≤.故不存在实数k满足题中条件.点评:本题主要考查一元二次方程根的分布与系数的关系,二次函数的性质,体现了转化、分类争辩的数学思想,属于基础题.19.(12分)(2021春•成都校级月考)已知函数f(x)=alog2x,g(x)=blog3x(x>1),其中常数a.b≠0.(1)证明:用定义证明函数k(x)=f(x)•g(x)的单调性;(2)设函数φ(x)=m•2x+n•3x,其中常数m,n满足m.n<0,求φ(x+1)>φ(x)时的x的取值范围.考点:对数函数的图像与性质.专题:函数的性质及应用.分析:(1)任取区间(1,+∞)上两个实数x1,x2,且x1<x2,则k(x1)÷k(x2)=()2∈(0,1),进而分当ab>0时和当ab<0时两种状况,可得函数k(x)=f(x)•g(x)的单调性;(2)由函数φ(x)=m•2x+n•3x,可将φ(x+1)>φ(x)化为m•2x+2n•3x>0,结合m•n<0,分当m>0,n<0时和当m<0,n>0时两种状况,可得满足条件的x的取值范围.解答:证明:(1)任取区间(1,+∞)上两个实数x1,x2,且x1<x2,则∈(0,1),∵函数f(x)=alog2x,g(x)=blog3x(x>1),∴k(x1)÷k(x2)=(ab•log2x1•log3x1)÷(ab•log2x2•log3x2)=()2∈(0,1),当ab>0时,k(x1)<k(x2),函数k(x)=f(x)•g(x)在区间(1,+∞)上单调递增;当ab<0时,k(x1)>k(x2),函数k(x)=f(x)•g(x)在区间(1,+∞)上单调递减;(2)∵函数φ(x)=m•2x+n•3x,φ(x+1)>φ(x),m•n<0,∴φ(x+1)﹣φ(x)=m•2x+2n•3x>0,当m>0,n<0时,>,则x >,当m<0,n>0时,<,则x <,点评:本题考查的学问点是对数函数的图象与性质,函数单调性的推断与证明,其中娴熟把握函数单调性的证明方法定义法(作商法)的方法和步骤是解答本题的关键.20.(13分)(2021春•雅安校级期中)半径长为2的扇形AOB 中,圆心角为,依据下面两个图形从扇形中切割一个矩形PQRS,设∠POA=θ.(1)请用角θ分别表示矩形PQRS的面积;(2)按图形所示的两种方式切割矩形PQRS,问何时矩形面积最大.考点:弧度制的应用.专题:三角函数的求值.分析:(1)依据矩形的面积公式,分别表示即可,(2)依据三角函数中θ的范围,分别计算求出各自的最大值,比较即可.解答:解:(1)对于图1,由题意知PS=OPsinθ=2sinθ,OS=OPcosθ=2cosθ,∴S PQRS=S1=OP•OS=4sinθcosθ=2sin2θ,(0<θ<),对于图2由题意知,设PQ的中点为N,PM=2sin (﹣θ),∴MN=0M﹣ON=2cos (﹣θ)﹣=sinθ,∴S PQRS=S2=2PM•MN=4sin (﹣θ)•sinθ=sin (﹣θ)sinθ,(0<θ<),(2)对于图1,当sin2θ=1时,即θ=时,S max=2,对于图2,S2=sin (﹣θ)sinθ=[sin(2θ+)﹣],∵0<θ<,∴<2θ+<,∴<sin(2θ+)≤1,当sin(2θ+)=1,即θ=时,S max =,综上所述,依据图2的方式,当θ=时,矩形面积最大.点评:本题考查了图形的面积最大问题,关键是三角形函数的化简和求值,属于中档题.21.(14分)(2021春•成都校级月考)已知函数f(x)=的图象在R上不间断.(1)求正实数a的值;(2)当x≥1时,函数h(x)=kx﹣2|x﹣2|≥0恒成立.求实数k的取值范围;(3)若关于x的方程f(x)=m|x|=0恰好有4个解,求实数m的取值范围.考点:分段函数的应用.专题:函数的性质及应用.分析:(1)依据函数f(x)=的图象在R上不间断,可得x=0时,两段函数的函数值相等,即4=2×|﹣a|,解得正实数a的值;(2)当x≥1时,函数h(x)=kx﹣2|x﹣2|≥0恒成立.k ≥,分当x∈[1,2]时和当x∈(2,+∞)时,两种状况争辩,可得满足条件的实数k的取值范围;(3)若关于x的方程f(x)=m|x|=0恰好有4个解,函数y=f(x)与y=m|x|的图象有四个交点,对m值进行分类争辩,数形结合可得实数m的取值范围.解答:解:(1)∵函数f(x)=的图象在R上不间断.∴4=2×|﹣a|,解得a=2,或a=﹣2(舍去),∴正实数a=2,(2)当x≥1时,函数h(x)=kx﹣2|x﹣2|≥0,即k ≥,当x∈[1,2]时,k ≥=﹣2为减函数,故k≥2,当x∈(2,+∞)时,k ≥=2﹣为增函数,故k≥0;综上所述:k≥2,即实数k的取值范围为[2,+∞),(3)若关于x的方程f(x)=m|x|=0恰好有4个解,即函数y=f(x)与y=m|x|的图象有四个交点,①当m<0时,函数y=f(x)与y=m|x|的图象无交点,不满足条件;②当m=0时,函数y=f(x)与y=m|x|的图象有三个交点,不满足条件;③当m>0时,若与y=mx与y=2x﹣4平行,即m=2,则函数y=f(x)与y=m|x|的图象有三个交点,则m≥2时,函数y=f(x)与y=m|x|的图象有三个交点,若y=﹣mx与y=﹣(x2+5x+4)相切,则函数y=f(x)与y=m|x|的图象有五个交点,即x2+(5﹣m)x﹣4=0的△=(5﹣m)2﹣16=0,解得:m=1,或m=9(舍去),即m=1时,函数y=f(x)与y=m|x|的图象有五个交点,0<m<1时,函数y=f(x)与y=m|x|的图象有六个交点,故当1<m<2时,函数y=f(x)与y=m|x|的图象有四个交点,故实数m的取值范围为(1,2)点评:本题考查的学问点是分段函数的应用,函数的零点与方程的根,恒成立问题,是函数图象和性质的综合应用,难度较大.。
成都七中2024高一下期中数学试题
成都七中高2026 届高一下期数学半期考试一.单项选择题:本题共8 小题,每小题5 分,共40 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.+−−=i i 1122()()( ) A.0 B.4 C.-4i D.4i2.把余弦曲线=y x cos 上所有的点向左平移31个单位长度,得到图像对应函数为( )A.⎝⎭ ⎪=+⎛⎫πy x 3cos B.⎝⎭ ⎪=−⎛⎫πy x 3cos C.⎝⎭ ⎪=+⎛⎫y x 3cos 1 D.⎝⎭ ⎪=−⎛⎫y x 3cos 1 3.若−=θθ222sincos 1,<<θππ2,则=θcos ( )A. C.−43 D.434.在△ABC 中,=πA 6,=a =b 2,则B 大小为( ) A.π3或π32 B.或ππ443 C.π3 D.π45.以下等式错误的是( ) A.22()()m n m n m n+⋅−=− B.222()2m n m m n n +=+⋅+ C.22m n m n m n +−=− D.222()2m n m m n n −=−⋅+6.若长方体的长、宽、高分别为2,2,4,则长方体外接球的表面积为()A.π24B.C.π48D.7.已知O 0,0(),−A 1,2(),−B 3,1(),C 2,1(),则四边形OABC 的面积为( )A. B.5 C. D.108.如图,正方形ABCD 的边长为2,P ,M ,N 分别为边AB ,AD ,BC 上的点,则以下错误的是( )A.若⊥=PM PN AP PB ,,则以P 为圆心,半径为1的圆与MN 相切B.若,∠=︒=MPN AP PB 60,则△MPN 面积的取值范围是,+22]6(5C.若点N 与点C 重合,△APM 周长为4,则∠=︒PNM 45D.∠MPN 不可能小于45°四.解答题:本题共6小题,17题10分,18—22题每题12分,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知函数=++f x x x x m cos cos 2)(,在区间,⎣⎦⎢⎥⎡⎤π20上的最大值为25. I ()求常数m 的值;II ()求函数f (x )的最小正周期和单调递减区间.18.如图,正方形ABCD 边长为6,E 是AB 的中点,=BF BC 31, AF 与DE 交于点M ,记AF a =,DE b =.I ()求a 与b 夹角的余弦值;II ()若EC ma nb =+,求m +n 的值.19. 在复数范围内有关于x 的方程++=x x 102.I ()求该方程的根;II ()求−x x (1)的值;III ()有人观察到−++=x x x 1102)()(,得=x 13,试求⎝⎭⎝⎭++ ⎪ ⎪+⎛⎫⎛⎫x x x 11120242024的值.20. 如图,一个加盖密封的漏斗的上面部分是一个正方体,下面部分是一个正四棱锥,该几何体所有棱长均为2米.I ()求该漏斗的表面积;II ()若一只蚂蚁沿漏斗表面从点A '爬到点P ,求它爬过的最短路径的长;III ()将图中正方形ABB 'A '水平放置,在由斜二测画法得到的水平放置的直观图中,求线段A 'B 的长.21. 成都天府绿道专为骑行而建,以绿道为线,串联上百个生态公园,一路上树木成荫、鸟语花香,目前已然成为成都新的城市名片.成都市政府为升级绿道沿途风景,计划在某段全长200米的直线绿道AB 一侧规划一个三角形区域ABC 做绿化,如图,已知∠=πCAB 3,为提升美观度,设计师拟将绿化区设计为一个锐角三角形.I ()若AC = 100米,求BC 的长;II ()求绿化区域∆ABC 面积的取值范围;III ()绿化完成后,某游客在绿道AB 的另一侧空地上寻找最佳拍照打卡点,该游客从A 到D ,再从D 到B ,最终返回D点拍照.已知∠=πADB 3,求游客所走路程的最大值.22.边长为4的正方形ABCD 的中心为O ,以O 为圆心的单位圆O 上有两动点P ,Q 满足0OP OQ ⋅=.若点M 为正方形ABCD 边AB 上的一个动点.I ()求DC DB DC AC ⋅+⋅的值;II ()求MP MQ ⋅的最小值;III ()若0,(,,)aPA bPB cPC a b c R ++=∈,求+ab c 的最大值.。
成都七中高2024学年普通高中毕业班单科质量检查数学试题试卷
成都七中高2024学年普通高中毕业班单科质量检查数学试题试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.如图,设P 为ABC ∆内一点,且1134AP AB AC =+,则ABP ∆与ABC ∆的面积之比为A .14B .13 C .23 D .16 2.若向量(0,2)m =-,(3,1)n =,则与2m n +共线的向量可以是( )A .(3,1)-B .(3)-C .(3,1)-D .(1,3)-3.泰山有“五岳之首”“天下第一山”之称,登泰山的路线有四条:红门盘道徒步线路,桃花峪登山线路,天外村汽车登山线路,天烛峰登山线路.甲、乙、丙三人在聊起自己登泰山的线路时,发现三人走的线路均不同,且均没有走天外村汽车登山线路,三人向其他旅友进行如下陈述:甲:我走红门盘道徒步线路,乙走桃花峪登山线路;乙:甲走桃花峪登山线路,丙走红门盘道徒步线路;丙:甲走天烛峰登山线路,乙走红门盘道徒步线路;事实上,甲、乙、丙三人的陈述都只对一半,根据以上信息,可判断下面说法正确的是( )A .甲走桃花峪登山线路B .乙走红门盘道徒步线路C .丙走桃花峪登山线路D .甲走天烛峰登山线路4.设m ,n 是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是( )A .若αβ⊥,m α⊂,n β⊂,则m n ⊥B .若//αβ,m α⊂,n β⊂,则//m nC .若m n ⊥,m α⊂,n β⊂,则αβ⊥D .若m α⊥,//m n ,//n β,则αβ⊥5.在复平面内,复数2i i z -=(i 为虚数单位)对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限6.已知定义在R 上的偶函数()f x 满足()()11f x f x +=-,当[]0,1x ∈时,()1f x x =-+,函数()1x g x e--=(13x -≤≤),则函数()f x 与函数()g x 的图象的所有交点的横坐标之和为( )A .2B .4C .5D .67.执行如图所示的程序框图,输出的结果为( )A .78B .158C .3116 D .15168.已知向量(1,0)a =,(1,3)b =,则与2a b -共线的单位向量为( )A .13,22⎛⎫- ⎪ ⎪⎝⎭B .13,22⎛⎫- ⎪ ⎪⎝⎭C .3,221⎛⎫- ⎪ ⎪⎝⎭或3,221⎛⎫- ⎪ ⎪⎝⎭D .13,22⎛⎫- ⎪ ⎪⎝⎭或13,22⎛⎫- ⎪ ⎪⎝⎭9.已知复数为纯虚数(为虚数单位),则实数( )A .-1B .1C .0D .2 10.某中学有高中生1500人,初中生1000人为了解该校学生自主锻炼的时间,采用分层抽样的方法从高生和初中生中抽取一个容量为n 的样本.若样本中高中生恰有30人,则n 的值为( )A .20B .50C .40D .6011.若[]1,6a ∈,则函数2x a y x +=在区间[)2,+∞内单调递增的概率是( ) A .45 B .35 C .25 D .1512.在关于x 的不等式2210ax x ++>中,“1a >”是“2210ax x ++>恒成立”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。
2017-2018学年四川省成都七中实验学校高一(下)9月月考数学试卷 Word版含解析
2017-2018学年四川省成都七中实验学校高一(下)月考数学试卷一、选择题(每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求)1.下列各式中,值为的是()A.2sin15°cos15°B.cos215°﹣sin215°C.2sin215°﹣1 D.sin215°+cos215°2.若tanα=3,,则tan(α﹣β)等于()A.﹣3 B.C.3 D.3.函数y=2cos2(x﹣)﹣1是()A.最小正周期为π的奇函数B.最小正周期为π的偶函数C.最小正周期为的奇函数D.最小正周期为的偶函数4.sin163°sin223°+sin253°sin313°等于()A.﹣B.C.﹣D.5.将函数y=sin2x的图象向左平移个单位,再向上平移1个单位,所得图象的函数解析式是()A.y=cos2x B.y=2cos2x C.D.y=2sin2x6.在△ABC中,∠A=60°,a=,b=3,则△ABC解的情况()A.无解B.有一解C.有两解D.不能确定7.在△ABC中,内角A,B,C的对边分别是a,b,c,若a2﹣b2=bc,sinC=2sinB,则A=()A.30°B.60°C.120°D.150°8.函数f(x)=2x+x3﹣2在区间(0,1)内的零点个数是()A.0 B.1 C.2 D.39.在△ABC中,sinA=,cosB=,则cosC=()A.﹣B.﹣C.±D.±10.有以下:①对任意的α∈R都有sin3α=3sinα﹣4sin3α成立;②对任意的△ABC都有等式a=bcosA+ccosB成立;③满足“三边是连续的三个正整数且最大角是最小的2倍”的三角形存在且唯一;④若A,B是钝角△ABC的二锐角,则sinA+sinB<cosA+cosB.其中正确的的个数是()A.4 B.3 C.2 D.1二、填空题:(每小题5分,共25分)11.如果定义在区间[3+a,5]上的函数f(x)为奇函数,那么a的值为.12.函数f(x)=2x2﹣mx+3,当x∈[﹣2,+∞)时是增函数,当x∈(﹣∞,﹣2]时是减函数,则f(1)等于.13.在△ABC中,若∠A=60°,边AB=2,S△ABC=,则BC边的长为.14.在△ABC中,角A、B、C所对的边分别为a、b、C、若(b﹣c)cosA=acosC,则cosA=.15.在△ABC中,已知a,b,c是角A、B、C的对应边,则①若a>b,则f(x)=(sinA﹣sinB)•x在R上是增函数;②若a2﹣b2=(acosB+bcosA)2,则△ABC是Rt△;③cosC+sinC的最小值为;④若cos2A=cos2B,则A=B;⑤若(1+tanA)(1+tanB)=2,则,其中错误的序号是.三、解答题(16-19每小题12分,20题13分,21题14分,共75分.解答应写出文字说明,证明过程或演算步骤)16.分别根据下列条件解三角形:(1)a=,B=45°.(2)a=2,b=2,C=15°.17.已知函数y=4cos2x﹣4sinxcosx﹣1(x∈R).(1)求出函数的最小正周期;(2)求出函数的最大值及其相对应的x值;(3)求出函数的单调增区间;(4)求出函数的对称轴.18.已知cosα=,且0<β<α<,(1)求tan2α的值;(2)求cosβ.19.如图,A,B是海面上位于东西方向相距5(3+)海里的两个观测点,现位于A点北偏东60°,B点北偏西45°的D点有一艘轮船发出求救信号,位于B点南偏西75°且与B 点相距海里的C点的救援船立即前往营救,其航行速度为30海里/小时,该救援船到达D点需要多长时间?20.在锐角三角形ABC中,a,b,c分别是∠A,∠B,∠C所对应的边,向量,.(I)求角B;(Ⅱ)求sinA+sinC的取值范围.21.已知非零函数f(x)的定义域为R,对任意的x1,x2都满足f(x1+x2)=f(x1)f(x2)当x>0时,f(x)>1(1)判断f(x)的单调性并予以证明;(2)若f(4cos2θ)•f(4sinθcosθ)=1,求θ的值;(3)是否存在这样的实数m,当θ∈[0,]时,使不等式f[cos2θ﹣(2+m)sinθ]•f(3+2m)>1对所有的θ恒成立,若存在,求出m的取值范围;若不存在,说明理由.2014-2015学年四川省成都七中实验学校高一(下)3月月考数学试卷参考答案与试题解析一、选择题(每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求)1.下列各式中,值为的是()A.2sin15°cos15°B.cos215°﹣sin215°C.2sin215°﹣1 D.sin215°+cos215°考点:三角函数中的恒等变换应用.分析:这是选择题特殊的考法,要我们代入四个选项进行检验,把结果是要求数值的选出来,在计算时,有三个要用二倍角公式,只有最后一个应用同角的三角函数关系.解答:解:∵故选B点评:能将要求的值化为一个角的一个三角函数式,培养学生逆向思维的意识和习惯;培养学生的观察能力,逻辑推理能力和合作学习能力.2.若tanα=3,,则tan(α﹣β)等于()A.﹣3 B.C.3 D.考点:两角和与差的正切函数.分析:根据两角和与差的正切公式,代入即可得到答案.解答:解:∵tanα=3,∴故选D点评:本题主要考查两角和与差的正切公式.属基础题.3.函数y=2cos2(x﹣)﹣1是()A.最小正周期为π的奇函数B.最小正周期为π的偶函数C.最小正周期为的奇函数D.最小正周期为的偶函数考点:三角函数的周期性及其求法;函数奇偶性的判断.专题:三角函数的图像与性质.分析:利用二倍角公式化简为一个角的一个三角函数的形式,求出周期,判定奇偶性.解答:解:由y=2cos2(x﹣)﹣1=cos(2x﹣)=sin2x,∴T=π,且y=sin2x奇函数,即函数y=2cos2(x﹣)﹣1是奇函数.故选A.点评:本题考查三角函数的周期性及其求法,函数奇偶性的判断,是基础题.4.sin163°sin223°+sin253°sin313°等于()A.﹣B.C.﹣D.考点:两角和与差的正弦函数;运用诱导公式化简求值.分析:通过两角和公式化简,转化成特殊角得出结果.解答:解:原式=sin163°•sin223°+cos163°cos223°=cos(163°﹣223°)=cos(﹣60°)=.故答案选B点评:本题主要考查了正弦函数的两角和与差.要熟练掌握三角函数中的两角和公式.5.将函数y=sin2x的图象向左平移个单位,再向上平移1个单位,所得图象的函数解析式是()A.y=cos2x B.y=2cos2x C.D.y=2sin2x考点:函数y=Asin(ωx+φ)的图象变换;由y=Asin(ωx+φ)的部分图象确定其解析式.专题:计算题;三角函数的图像与性质.分析:利用函数y=Asin(ωx+φ)的图象变换规律及三角函数间的关系式即可得到答案.解答:解:令y=f(x)=sin2x,则f(x+)=sin2(x+)=cos2x,再将f(x+)的图象向上平移1个单位,所得图象的函数解析式是y=cos2x+1=2cos2x,故选:B.点评:本题考查函数y=Asin(ωx+φ)的图象变换,考查升幂公式的应用,属于中档题.6.在△ABC中,∠A=60°,a=,b=3,则△ABC解的情况()A.无解B.有一解C.有两解D.不能确定考点:正弦定理.专题:计算题;解三角形.分析:由a,b及sinA的值,利用正弦定理即可求出sinB的值,求解即可.解答:解:由正弦定理得:即,解得sinB=,因为,sinB∈[﹣1,1],故角B无解.即此三角形解的情况是无解.故选A.点评:此题考查学生灵活运用正弦定理化简求值,掌握正弦函数的图象与性质,是一道基础题.7.在△ABC中,内角A,B,C的对边分别是a,b,c,若a2﹣b2=bc,sinC=2sinB,则A=()A.30°B.60°C.120°D.150°考点:余弦定理的应用.专题:综合题.分析:先利用正弦定理,将角的关系转化为边的关系,再利用余弦定理,即可求得A.解答:解:∵sinC=2sinB,∴c=2b,∵a2﹣b2=bc,∴cosA===∵A是三角形的内角∴A=30°故选A.点评:本题考查正弦、余弦定理的运用,解题的关键是边角互化,属于中档题.8.函数f(x)=2x+x3﹣2在区间(0,1)内的零点个数是()A.0 B.1 C.2 D.3考点:函数的零点与方程根的关系.专题:函数的性质及应用.分析:根据函数f(x)=2x+x3﹣2在区间(0,1)内单调递增,f(0)f(1)<0,可得函数在区间(0,1)内有唯一的零点解答:解:由于函数f(x)=2x+x3﹣2在区间(0,1)内单调递增,又f(0)=﹣1<0,f (1)=1>0,所以f(0)f(1)<0,故函数f(x)=2x+x3﹣2在区间(0,1)内有唯一的零点,故选B.点评:本题考查函数零点的定义以及函数零点判定定理的应用,属于中档题.9.在△ABC中,sinA=,cosB=,则cosC=()A.﹣B.﹣C.±D.±考点:两角和与差的余弦函数;同角三角函数间的基本关系.专题:计算题.分析:由B为三角形的内角,以及cosB的值大于0,可得出B为锐角,由cosB的值,利用同角三角函数间的基本关系求出sinB的值,由sinB的值大于sinA的值,利用正弦定理得到b大于a,根据大角对大边可得B大于A,由B为锐角可得出A为锐角,再sinA,利用同角三角函数间的基本关系求出cosA的值,最后利用诱导公式得到cosC=﹣cos(A+B),再利用两角和与差的正弦函数公式化简后,将各自的值代入即可求出值.解答:解:∵B为三角形的内角,cosB=>0,∴B为锐角,∴sinB==,又sinA=,∴sinB>sinA,可得A为锐角,∴cosA==,则cosC=cos[π﹣(A+B)]=﹣cos(A+B)=﹣cosAcosB+sinAsinB=﹣×+×=﹣.故选A点评:此题考查了两角和与差的余弦函数公式,诱导公式,同角三角函数间的基本关系,以及正弦定理,熟练掌握定理及公式是解本题的关键.10.有以下:①对任意的α∈R都有sin3α=3sinα﹣4sin3α成立;②对任意的△ABC都有等式a=bcosA+ccosB成立;③满足“三边是连续的三个正整数且最大角是最小的2倍”的三角形存在且唯一;④若A,B是钝角△ABC的二锐角,则sinA+sinB<cosA+cosB.其中正确的的个数是()A.4 B.3 C.2 D.1考点:的真假判断与应用.专题:三角函数的求值.分析:①通过sin3α=sin(α+2α)、利用二倍角公式及平方关系化简可知正确;②利用正弦定理化简可知正确;③假设存在正整数k、k+1、k﹣1分别为三角形ABC的三边长,且其对应的角分别为A、B、C,利用三角形内角和可知36°<C<45°,利用正弦定理化简可知cosC=+,进而求出不等式<+<的正整数解并检验即得结论;④通过A、B是钝角△ABC的二锐角可知0°<B<90°﹣A<90°,进而sinB<sin(90°﹣A)=cosB,同理cosA>cos(90°﹣B)=sinA,整理即得结论.解答:解:①对任意的α∈R都有sin3α=sin(α+2α)=sinαcos2α+cosαsin2α=sinα(cos2α﹣sin2α)+2sinαcos2α=sinα(1﹣2sin2α)+2sinα(1﹣sin2α)=3sinα﹣4sin3α,故①正确;②对任意的△ABC都有===2R,∴a=2RsinA=2Rsin(B+C)=2RsinBcosC+2RsinCcosB=bcosC+ccosB,故②正确;③假设存在正整数k、k+1、k﹣1分别为三角形ABC的三边长,且其对应的角分别为A、B、C,∴===2R,∵B=2C,∴sinB=sin2C=2sinCcosC,∴=,即cosC=+,又∵C<A<B,即C<A<2C,∴36°<C<45°,∴<cosC<,即<+<,∴﹣<<﹣,∴+1<k﹣1<2,∴+2<k<3,∴k=4或k=5,经检验可知当k=5时不满足题意,故③正确;④∵A,B是钝角△ABC的二锐角,∴A+B<90°,∴0°<B<90°﹣A<90°,∴sinB<sin(90°﹣A)=cosB,同理cosA>cos(90°﹣B)=sinA,∴sinA+sinB<cosA+cosB,故④正确;故选:A.点评:本题考查的真假判断与应用,注意解题方法的积累,属于中档题.二、填空题:(每小题5分,共25分)11.如果定义在区间[3+a,5]上的函数f(x)为奇函数,那么a的值为﹣8.考点:函数奇偶性的性质.专题:函数的性质及应用.分析:根据奇函数的定义域关于原点对称的性质进行求解即可.解答:解:∵函数f(x)是奇函数,∴定义域关于原点对称,则3+a+5=0,解得a=﹣8,故答案为:﹣8点评:本题主要考查函数奇偶性的应用,利用定义域的对称性是解决本题的关键.12.函数f(x)=2x2﹣mx+3,当x∈[﹣2,+∞)时是增函数,当x∈(﹣∞,﹣2]时是减函数,则f(1)等于13.考点:二次函数的性质.专题:计算题.分析:根据二次函数的图象与性质,得出x=﹣2是抛物线f(x)=2x2﹣mx+3的对称轴,确定出m的值后,再求f(1)即可.解答:解:由题意可知,x=﹣2是f(x)=2x2﹣mx+3的对称轴,即﹣=﹣2,∴m=﹣8.∴f(x)=2x2+8x+3.∴f(1)=13.故答案为:13.点评:本题考查二次函数求函数值,利用二次函数的单调性,确定出m的值是本题的关键.13.在△ABC中,若∠A=60°,边AB=2,S△ABC=,则BC边的长为.考点:余弦定理;三角形的面积公式.专题:解三角形.分析:由AB,sinA及已知的面积,利用三角形面积公式求出AC的长,再由AB,AC及cosA的值,利用余弦定理即可求出BC的长.解答:解:∵∠A=60°,边AB=2,S△ABC=,∴S△ABC=AB•AC•sinA,即=×2AC×,解得:AC=1,由余弦定理得:BC2=AB2+AC2﹣2AB•AC•cosA=4+1﹣2=3,则BC=.故答案为:点评:此题考查了余弦定理,三角形的面积公式,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.14.在△ABC中,角A、B、C所对的边分别为a、b、C、若(b﹣c)cosA=acosC,则cosA=.考点:正弦定理的应用;两角和与差的正弦函数.专题:计算题.分析:先根据正弦定理将边的关系转化为角的正弦值的关系,再运用两角和与差的正弦公式化简可得到sinBcosA=sinB,进而可求得cosA的值.解答:解:由正弦定理,知由(b﹣c)cosA=acosC可得(sinB﹣sinC)cosA=sinAcosC,∴sinBcosA=sinAcosC+sinCcosA=sin(A+C)=sinB,∴cosA=.故答案为:点评:本题主要考查正弦定理、两角和与差的正弦公式的应用.考查对三角函数公式的记忆能力和综合运用能力.15.在△ABC中,已知a,b,c是角A、B、C的对应边,则①若a>b,则f(x)=(sinA﹣sinB)•x在R上是增函数;②若a2﹣b2=(acosB+bcosA)2,则△ABC是Rt△;③cosC+sinC的最小值为;④若cos2A=cos2B,则A=B;⑤若(1+tanA)(1+tanB)=2,则,其中错误的序号是③⑤.考点:的真假判断与应用.专题:计算题.分析:①由正弦定理,可知正确;②由余弦定理可得acosB+bcosA==c,可得a2=b2+c2;③由三角函数的公式可得,由的范围可得∈(1,];④由cos2A=cos2B,可得A=B或2A=2π﹣2B,A=π﹣B,A+B=π(舍);⑤展开变形可得,即tan(A+B)=1,进而可得解答:解:①由正弦定理,a>b等价于sinA>sinB,∴sinA﹣sinB>0,∴f(x)=(sinA ﹣sinB)x在R上是增函数,故正确;②由余弦定理可得acosB+bcosA==c,故可得a2﹣b2=c2,即a2=b2+c2,故△ABC是Rt△,故正确;③由三角函数的公式可得,∵0<c<π,∴<c<,∴∈(﹣,1],∴∈(﹣1,],故取不到最小值为,故错误;④由cos2A=cos2B,可得A=B或2A=2π﹣2B,A=π﹣B,A+B=π(舍),∴A=B,故正确;⑤展开可得1+tanA+tanB+tanA•tanB=2,1﹣tanA•tanB=tanA+tanB,∴,即tan(A+B)=1,∴,故错误;∴错误是③⑤.故答案为③⑤点评:本题考查真假的判断与应用,涉及三角函数的知识,属基础题.三、解答题(16-19每小题12分,20题13分,21题14分,共75分.解答应写出文字说明,证明过程或演算步骤)16.分别根据下列条件解三角形:(1)a=,B=45°.(2)a=2,b=2,C=15°.考点:解三角形.专题:解三角形.分析:(1)由已知结合正弦定理求得A,然后分类求得C与c;(2)首先由余弦定理求得c,再由余弦定理的推论求得A,由三角形内角和定理求得B.解答:解:(1)在△ABC中,∵a=,B=45°,由正弦定理得:,即sinA==.∵0°<A<180°,∴A=60°或A=120°.当A=60°时,C=180°﹣60°﹣45°=75°,∴==;当A=120°时,C=180°﹣120°﹣45°=15°,∴==.(2)在△ABC中,∵a=2,b=2,C=15°,∴==.==,∵0°<A<180°,∴A=30°.则B=180°﹣A﹣C=180°﹣30°﹣15°=135°.点评:本题考查三角形的解法,考查了正弦定理和余弦定理在解三角形中的应用,属中档题.17.已知函数y=4cos2x﹣4sinxcosx﹣1(x∈R).(1)求出函数的最小正周期;(2)求出函数的最大值及其相对应的x值;(3)求出函数的单调增区间;(4)求出函数的对称轴.考点:三角函数中的恒等变换应用;三角函数的周期性及其求法;正弦函数的图象.专题:三角函数的图像与性质.分析:利用二倍角的正弦、余弦公式,以及两角差的正弦公式,化简函数解析式化为y=,(1)根据最小正周期公式T=求解;(2)根据解析式知:当时,函数取最大值,求出原函数的最大值和对应的x的值;(3)根据解析式知:原函数的单调增区间为正弦函数单调减区间,即(k∈Z),求解即可;(4)根据正弦函数得对称轴得(k∈Z),求解即可.解答:解:y=4cos2x﹣4sinxcosx﹣1=4×﹣2sin2x=2cos2x﹣2sin2x+2=(1)函数的最小正周期T==π;(2)当时,函数取最大值为:6,此时(k∈Z),解得(k∈Z);(3)由(k∈Z)得,(k∈Z),∴函数的单调增区间是(k∈Z);(4)由(k∈Z)得,(k∈Z),∴函数的对称轴方程是(k∈Z).点评:本题考查正弦函数的性质和三角恒等变换,涉及的公式有:二倍角的正弦、余弦公式,以及两角和与差的正弦公式,其中灵活利用三角函数的恒等变形把函数解析式化为一个角的三角函数是解本题的关键,注意化简解析式是一定要把ω化为正的.18.已知cosα=,且0<β<α<,(1)求tan2α的值;(2)求cosβ.考点:两角和与差的余弦函数.专题:三角函数的求值.分析:(1)由条件利用同角三角函数的基本关系求得sinα和tanα的值,再利用二倍角的正切公式求得tan2α的值.(2)由条件利用同角三角函数的基本关系求得sin(α﹣β)的值,再利用两角差的余弦公式求得cosβ=cos[α﹣(α﹣β)]的值.解答:解:(1)∵cosα=,且0<β<α<,∴sinα==,tanα==,∴tan2α==.(2)∵cos (α﹣β)=,0<β<α<,∴sin(α﹣β)==,cosβ=cos[α﹣(α﹣β)]=cosαcos(α﹣β)+sinαsin(α﹣β)=+=.点评:本题主要考查同角三角函数的基本关系、二倍角的正切公式、两角差的余弦公式的应用,以及三角函数在各个象限中的符号,属于基础题.19.如图,A,B是海面上位于东西方向相距5(3+)海里的两个观测点,现位于A点北偏东60°,B点北偏西45°的D点有一艘轮船发出求救信号,位于B点南偏西75°且与B 点相距海里的C点的救援船立即前往营救,其航行速度为30海里/小时,该救援船到达D点需要多长时间?考点:正弦定理;根据实际问题选择函数类型.专题:解三角形.分析:在三角形ABD中,由AB,∠ADB,以及∠DAB的度数,利用正弦定理求出BD的长,连接CD,在三角形BCD中,由BC,BD,及∠CBD的度数,利用余弦定理求出CD 的长,即为该救援船到达D点的路程,利用时间=路程÷速度,即可求出该救援船到达D点需要的时间.解答:解:在△ABD中,AB=5(3+)海里,∠ADB=60°+45°=105°,由正弦定理:=,即=,∴2BD=,即BD=5,连接CD,在△CBD中,BC=15,BD=5,∠CBD=15°+45°=60°,由余弦定理:CD2=BC2+BD2﹣2BC•BDcos60°=(15)2+(5)2﹣2×15×5cos60°=1350+150﹣450=1050,∴CD=5(海里),∴t==(小时).答:该救援船到达D点需要的时间为小时.点评:此题属于解三角形的题型,涉及的知识有:正弦、余弦定理,特殊角的三角函数值,熟练掌握定理是解本题的关键.20.在锐角三角形ABC中,a,b,c分别是∠A,∠B,∠C所对应的边,向量,.(I)求角B;(Ⅱ)求sinA+sinC的取值范围.考点:余弦定理;平面向量共线(平行)的坐标表示;正弦函数的定义域和值域.专题:计算题.分析:(I)根据两个向量的坐标,写出两个向量的共线的表示式,整理出能够应用余弦定理的形式,得到角的正弦值,求出角.(II)根据上一问的结果,写出A,C之间的关系式,把要求的两个角的正弦值的和,写成一个角的形式,利用辅角公式化成能够求函数值的形式,得到结果.解答:解:(I)∵,∴.又,∴,∴.(II)由(I)知,∴,∴=又∴∴,∴sinA+sinC点评:本题考查三角函数的恒等变形,本题解题的关键是利用向量之间的关系写出三角函数之间的关系,注意余弦定理的应用.21.已知非零函数f(x)的定义域为R,对任意的x1,x2都满足f(x1+x2)=f(x1)f(x2)当x>0时,f(x)>1(1)判断f(x)的单调性并予以证明;(2)若f(4cos2θ)•f(4sinθcosθ)=1,求θ的值;(3)是否存在这样的实数m,当θ∈[0,]时,使不等式f[cos2θ﹣(2+m)sinθ]•f(3+2m)>1对所有的θ恒成立,若存在,求出m的取值范围;若不存在,说明理由.考点:抽象函数及其应用.专题:函数的性质及应用.分析:(1)设x1,x2∈R,且x1>x2,结合当当x>0时,f(x)>1,可得f(x1)>f(x2),进而根据函数单调性的定义,可得函数f(x)在R上的单调性.(2)由(1)得f(0)=1,将方程进行转化解三角方程即可.(3)先结合存在性问题的特点先假设存在m符合题意,然后将问题转化为恒成立的问题结合二次函数的特点即可获得问题的解答.解答:解:(1)函数f(x)在R上是单调递增函数.证明:令x1=0,x2=2,则f(x2)>1,∴f(0+2)=f(0)f(2)=f(2),则f(0)=1∵当x>0时,f(x)>1∴当x<0,则﹣x>0,得f(x﹣x)=f(x)f(﹣x)=f(0)=1,得,故对于任意x∈R,都有f(x)>0,设x1,x2∈R,且x1>x2,则x1﹣x2>0,∴f(x1﹣x2)>1,∴f(x1)=f[(x1﹣x2)+x2]=f(x1﹣x2)f(x2)>f(x2),∴函数f(x)在R上是单调递增函数.(2)由(1)知f(0)=1,则f(4cos2θ)•f(4sinθcosθ)=1,等价为f(4cos2θ+4sinθcosθ)=f(0),∵函数f(x)在R上是单调递增函数,∴4cos2θ+4sinθcosθ=0,即(cosθ+sinθ)cosθ=0,即cosθ+sinθ=0或cosθ=0,即cosθ=0或tanθ=﹣1,即θ=kπ+或θ=kπ﹣,k∈Z.(3)假设存在实数m,当θ∈[0,]时,使不等式f[cos2θ﹣(2+m)sinθ]•f(3+2m)>1对所有的θ恒成立,即f[cos2θ﹣(2+m)sinθ+3+2m]>f(0)恒成立,∵函数f(x)在R上是单调递增函数,∴cos2θ﹣(2+m)sinθ+3+2m>0令t=sinθ,则t∈[0,1],则不等式等价为﹣t2﹣(2+m)t+4+2m>0在[0,1]上恒成立令g(t)=﹣t2﹣(2+m)t+4+2m,则有,即,则,解得m>﹣1.点评:本题考查的是函数的单调性证明问题.抽象函数的单调性的判定,以及赋值法的应用,在解答的过程当中充分体现了函数单调性的定义、转化法以及赋值法等知识.考查学生的运算和推理能力,综合性较强,难度较大.。
四川省成都市成都市第七中学2022-2023学年高一下学期6月月考数学试题
四川省成都市成都市第七中学2022-2023学年高一下学期6
月月考数学试题
学校:___________姓名:___________班级:___________考号:___________
3
二、多选题
三、填空题
13.2022年8月16日,航天员的出舱主通道——问天实验舱气闸舱首次亮相.某高中为了解学生对这一新闻的关注度,利用分层抽样的方法从高中三个年级中抽取了36人进行问卷调查,其中高一年级抽取了15人,高二年级抽取了12人,且高三年级共有学生900人,则该高中的学生总数为_________人.
14.已知函数()cos 1(0)f x x ωω=->在区间[]0,2π有且仅有3个零点,则ω的取值范围是________.
15.无字证明(proof without words )是指仅用图象而无需文字解释就能不证自明的数学命题,如图是某三角恒等式的无字证明,那么该图证明的三角恒等式为__________.
16.已知三棱锥-P ABC ,其中PA ⊥平面,120,2ABC BAC PA AB AC ∠=︒===,则三棱锥-P ABC 外接球的表面积为__________.
四、解答题
uu r uur。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
成都七中高一(下)数学单元测试
班级:______;姓名:________。
一、选择题(本大题共12个小题,每小题5分,共60分) 1、sin
12
π+cos
12
π的值为( )
A 、2
6 B 、2
3 C 、
2
2 D 、
2
1
2、在锐角△ABC 中,下列结论成立的是( )
A 、sinA>cos
B B 、cosA>sinB
C 、tanA>tanB
D 、sinA>sinB 3、已知点P(cos θ,sin θ)在直线y=2x 上,则cos2θ的值为( )
A 、5
3-
B 、
5
3 C 、
5
4 D 、5
4-
4、在△ABC 中,若a=15,b=10,A=60º,则cosB=( )
A 、3
22±
B 、
3
C 、3
6±
D 3
5、函数f(x)=2cosx+cos2x(x ∈R)的最小值是( ) A 、-3 B 、-2
3 C 、-1 D 、
2
1
6、在△ABC 中,角A,B,C 所对的边长分别为a,b,c ,若∠C=120º,a ,则a 与b 的大小关系是( )
A 、a >b
B 、a <b
C 、a=b
D 、不能确定 7、sin40º(tan10º-3)的值为( )
A 、1
B 、2
C 、-2
D 、-1
8、在∆ABC 中,a,b,c 三边所对的角为A,B,C ,且面积S=
4
1(a 2+b 2-c 2),则角C 为( )
A 、90º
B 、60º
C 、45º
D 、30º 9、如果sin(α+
6
π)=
3
1,那么cos(
3
π+2α)等于( )
A 、
9
7 B 、
3
1 C 、-3
1 D 、-
9
7
10、设函数f(x)=sin(6
π+x)sin(3
π-x),若不等式f(x)≥f(x 0)对x ∈R 恒成立,则x 0的最小
正值为( )
A 、
6
5π B 、
6
7π C 、
12
5π D 、
12
7π
11、设△ABC 的内角A,B,C 的对边分别为a,b,c ,若a=(b+c)cosC ,则△ABC 的形状是( )
A 、等腰三角形
B 、直角三角形
C 、锐角三角形
D 、钝角三角形 12、已知sin(α+β)sin(α-β)=
3
1,则sin 2α+cos 2
β等于( )
A 、
1 B 、
2 C 、1 D 、4
二、填空题(本大题共4个小题,每小题4分,共16分)
13、已知a,b,c 分别是△ABC 的三个内角A,B,C 所对的边,若,且A+C=2B,则∠C=________。
14、设△ABC 的内角A,B,C 的对边分别为a,b,c ,且A=120º,a=7,b+c=8,则ΔABC 的面积是________。
15、已知2cos β=cos(2α+β),那么tan(α+β)•tan α的值为________。
16、在△ABC 中,若tanAtanC+tanBtanC=tanAtanB ,且a 2+b 2=mc 2
,则实数m 等于________。
三、解答题(本大题共6个小题,共60分)
17、(12分)在△ABC 中,已知B=45°,D 是BC 边上的一点,AD=10,AC=14,DC=6,求AB 的长.
18、(12分)设向量a =(sinx,cosx),b =(3cosx,-cosx),函数f(x)=a 〃b . (1)求f(x)的最小正周期; (2)当x ∈[0,
2
π]时,求f(x)的值域.
19、(12分)在△ABC 中,a,b,c 分别为角A,B,C 的对边,2asinA=(2b+c)sinB+(2c+b)sinC 。
(1)求A 的大小;
(2)若sinB+sinC=1,试判断△ABC 的形状.
20、(12分)如图,已知半圆的直径AB=2,点C在AB的延长线上,BC=1,点P为半圆上的动点。
以PC为边作等边△PCD,且点D与圆心O分别在PC的两侧,求四边形OPDC的面积的最大值。
21、(12分)在野外为测量河对面的一座建筑物的高,准备有皮尺(可量距离)、水平仪(可量水平角、倾斜角),测量工作在河另一岸平地上进行,请你设计两种不同的测量方案,画出示意图,并写出计算过程和结果。
(所测距离用a,角用α,β,γ表示,水平仪高为h)
22、(14分)在ΔABC 中,内角A,B,C 的对边分别为a,b,c,已知sinA=sin(A-B)+sinC.
(1)求角B 的大小;
(2)若b 2=ac,判断ΔABC 的形状;
(3)求证:
cosB
a)c 2()6π
sin(C b ⋅--
⋅为定值。
高一数学测试参考答案
1-12,AAADBADCADAD 13, 90;14,
4
315;15, 3
1-
;16, 3;
17, 65;
18, (1)π,(2) ]21
,1[-;
19, (1)
3
2π,(2)等腰三角形;
20, 6
5π=
∠POB ,4
352max +
=S ;
21, 参考教材P13例3和P14例5; 22, (1)3
π
,(2)等边三角形,(3)1;。