(全国III卷)2019年高考数学等值试题预测卷理
全国III卷理科数学2019年高考分析及2019年高考预测.
新课标全国III卷理科数学高考分析及高考预测研究发现,新课标全国卷的试卷结构和题型具有一定的稳定性和连续性.每个题型考查的知识点、考查方法、考查角度、思维方法等相对固定.掌握了全国卷的各种题型,就把握住了全国卷命题的灵魂.基于此,笔者潜心研究近2年全国高考文科数学3卷和高考数学考试说明,精心分类汇总了全国卷近2年所有题型.为了便于读者使用,所有题目分类(共21类)列于表格之中,按年份排序.高考题的小题(填空和选择)的答案都列在表格的第三列,便于同学们及时解答对照答案,所有解答题的答案直接列在题目之后,方便查看.一、集合与简易逻辑小题:1.集合小题:2年2考,每年1题,都是交并补子运算为主,多与不等式交汇,新定义运算也有较小的可能,但是难度较低;基本上是每年的送分题,相信命题小组对集合题进行大幅变动的,则S T=2][3,+∞2.简易逻辑小题:2年0考.这个考点包含的小考点较多,并且容易与函数,不等式、数列、三角函数、立体几何交汇,热点就是“充要条件”;难点:否定与否命题;冷点:全称与特称,思想:逆否.要注意,这类题可以分为两大类,一类只涉及形式的变换,比较简单,另一类涉及命题真二、复数小题:2年2考,每年1题,以四则运算为主,偶尔与其他知识交汇,难度较小.一般三、平面向量小题:2年2考,每年1题,向量题考的比较基本,突出向量的几何运算或代数运算,不侧重于与其它知识交汇,难度不大(与全国其它省份比较).我认为这样有利于考查向量的12(,23(2年2考,全国3卷线性规划题考的比较基本,一般不与其它知识结合,不象部分省区的高考向量题侧重于与其它知识交汇,如和平面向量、基本不等式、解析几何等交汇.我觉得这种组合式交汇意义不大,不利于考查基本功.由于线性规划的运算量相对较大,我觉得难度不宜太大,不过为了避免很多同学解出交点代入的情况估计会加大“形’的考察力度(注意:某两条直线的交点未必在可行域内,因此必须作图).另外全国2卷近年没有考线性规划应用题了,是否可以考五、三角函数小题:2年4考.题目难度较小,主要考察公式熟练运用,平移,由图像性质、化简求值、解三角形等问题(含应用题),基本属于“送分题”.考三角小题时,一般是一个考查三角恒等变形或三角函数的图象性质,另一个考查解三角形.,410310=sin x+√的图像至少六、立体几何小题:2年4考,每年2题,一般考三视图和球,主要计算体积和表面积.其中,我认为“点线面”也有可能出现在小题,但是难度不大,立体几何是否会与其它知识交汇?如:几何概型(与体积有关的)?有可能.但是,根据全国卷的命题习惯,交汇可能性不大.异面直线所成的角考了两次.年年考三视图,是否也太稳定了吧?球体是基本的几何体,是发展空间想象能力的很好载体,60角时,60角;所成角的最小值为60.(填写所有正确结论的编号)2016年(9)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A)18365+(B)54185+(C)90(D)81B2016年(10) 在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球,若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是(A)4π (B)92π(C)6π (D)323πB务员考试的逻辑推理题,但这是个信号.2003年全国高考曾经出过一道把直角三角形的勾股定理类比到四面体的小题,这个题已经是教材的一个例题;上海市是最喜欢考类比推理的,上海市2000年的那道经典的等差数列与等比数列性质的类比题也早已进入教材习题.这类题目不会考察“理论概念”问题,估计是交汇其他题目命题,难度应该不大.适当出一道“类比推理”的小题是值年份题目答案2017年全国27. 甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A.乙可以知道四人的成绩 B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩 D.乙、丁可以知道自己的成绩D2016年全国2(15)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是1和3的考题.前几年其它省份高考及各地模拟较多出现几何概型与线性规划交汇式命题,这个问题教材上也有.是不是全国卷也该考一下二维的几何概型了?年份题目答案(10)从区间随机抽取2n个数,,…,,,,…,,构成n个数对,,…,,其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率的近似值为(A)(B)(C)(D)5. 某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两为优良的九、统计小题:2年2考.其实统计考个小题比较好的,各地高考及模拟高考小题居多.因为这个考点内容实在太多:频率分布表、直方图、抽样方法、样本平均数、方差、标准差、散点图、线性回归、3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是A.月接待游客量逐月增加B.年接待游客量逐年增加(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。
【新课标Ⅲ卷】2019届高考数学(理)押题预测卷(含答案解析)
2019年高考押题预测卷01【新课标Ⅲ卷】理科数学(考试时间:120分钟 试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.己知集合{|1}A x x =≤-,{|0}B x x =>,则()A B =R ðA .(1,)-+∞B .(,0]-∞C .[1,0)-D .(1,0]-2.已知i 为虚数单位,z 是z 的共轭复数,若复数1i1iz +=-,则z z ⋅= A .1-B .iC .1D .43.已知tan 3α=,则cos(2)2απ+= A .45-B .35-C .35D .454.已知双曲线221y x m-=,则实数m 的取值范围为A .1(,)2+∞B .[1,)+∞C .(1,)+∞D .(2,)+∞5.若2(2nx-的展开式的所有二项式系数之和为32,则展开式中的常数项为 A .10-B .5-C .5D .106.《算法统宗》是中国古代数学名著,由明代数学家程大位编著,它对我国民间普及珠算和数学知识起到了很大的作用,是东方古代数学的名著.在这部著作中,许多数学问题都是以歌诀形式呈现的,如“九儿问甲歌”就是其中一首:一个公公九个儿,若问生年总不知,自长排来差三岁,共年二百又零七,借问长儿多少岁,各儿岁数要详推.在这个问题中,这位公公的长儿的年龄为 A .23岁B .32岁C .35岁D .38岁7.已知某几何体的俯视图是如图所示的边长为1的正方形,正视图与侧视图都是边长为1的正三角形,则此几何体的体积为AB .13CD8.函数ln ||()x f x x=的大致图象为A B C D9.若x ,y 满足约束条件212x y x y y +≥⎧⎪-≤⎨⎪≤⎩,则12x y +的最小值为A .12-B .1C .74D .410.已知直线l 与圆22:4O x y +=相切于点(,点P 在圆22:40M x x y -+=上,则点P 到直线l 的距离的最小值为 A .1BCD .211.在三棱锥D ABC -中,AC BC BD AD ====,且线段AB 的中点O 恰好是三棱锥D ABC -的外接球的球心.若三棱锥D ABC -D ABC -的外接球的表面积为 A .64πB .16πC .8πD .4π12.已知对任意的[1,e]x ∈,总存在唯一的[1,1]y ∈-,使得2ln e 0yx y a +-=成立,其中e 为自然对数的底数,则实数a 的取值范围为 A .[1,e]B .1(1,e 1)e++C .1(,1e]e+D . 1(1,e]e+第Ⅱ卷二、填空题(本题共4小题,每小题5分,共20分)13.已知向量(1,2)=a ,(3,)t =b ,若()+⊥a b a ,则t =________________.14.已知函数()(1)e xf x ax =+在点(0,(0))f 处的切线经过点(1,)1-,则实数a =________________.15.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F ,2F ,椭圆C 外一点P 满足212PF F F ⊥,且212||||PF F F =,线段1PF ,2PF 分别交椭圆C 于点A ,B ,若1||||PA A F =,则22||||BF PF =________________. 16.已知数列{}n a 满足11a =,*1()2nn n a a n a +=∈+N ,数列{}n b 是单调递增数列,且1b λ=-,1n b +=*(2)(1)()n nn a n a λ+-∈N ,则实数λ的取值范围为________________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,已知2222sin sin sin b c a C Abc B+--=. (Ⅰ)求角B 的大小;(Ⅱ)若ABC △ABC △周长的最小值. 18.(本小题满分12分)为响应低碳绿色出行,某市推出“新能源分时租赁汽车”,其中一款新能源分时租赁汽车每次租车收费的标准由以下两部分组成:①根据行驶里程按1元/公里计费;②当租车时间不超过40分钟时,按0.12元/分钟计费;当租车时间超过40分钟时,超出的部分按0.20元/分钟计费(租车时间不足1分钟按1分钟计算).已知张先生从家到公司的距离为15公里,每天租用该款汽车上下班各一次,且每次租车时间20[],60t ∈(单位:分钟).由于堵车、红绿灯等因素,每次路上租车时间t 是一个变量,现统计了张先生50次路上租车的时间,整理后得到下表:(Ⅰ)求张先生一次租车费用y (元)与租车时间t (分钟)的函数关系式;(Ⅱ)公司规定员工上下班可以免费乘坐公司班车,若不乘坐公司班车的每月(按22天计算)给800元车补.从经济收入的角度分析,张先生上下班应该选择公司班车还是选择新能源分时租赁汽车?(Ⅲ)若张先生一次租车时间不超过40分钟为“路段畅通”,将频率视为概率,设ξ表示3次租用新能源分时租赁汽车中“路段畅通”的次数,求ξ的分布列与数学期望. 19.(本小题满分12分)如图,在四棱锥P ABCD -中,底面ABCD 是直角梯形,90BAD CDA ∠=∠=︒,PA ⊥平面ABCD ,1PA AD DC ===,2AB =.(Ⅰ)证明:平面PBC ⊥平面PAC ;(Ⅱ)若(21)PQ PB =-,求二面角P AC Q --的大小. 20.(本小题满分12分)已知点M ,N 在抛物线2:2(0)C y px p =>上,线段MN 的中点的纵坐标为4,直线MN 的斜率为12. (Ⅰ)求抛物线C 的方程;(Ⅱ)已知点(1,2)P ,A ,B 为抛物线C (原点除外)上不同的两点,直线PA ,PB 的斜率分别为1k ,2k ,且12112k k -=,记抛物线C 在点A ,B 处的切线交于点S ,若线段AB 的中点的纵坐标为8,求点S 的坐标.21.(本小题满分12分)已知函数()e ()xf x ax a =-∈R 的图象与y 轴交于点A ,曲线()y f x =在点A 处的切线的斜率为2-.(Ⅰ)求a 的值及函数()f x 的单调区间;(Ⅱ)设2()31g x x x =-+,证明:当0x >时,()()f x g x >恒成立.请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分. 22.(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy中,曲线C 的参数方程为2sin x y αα⎧=⎪⎨=⎪⎩,其中α为参数,在以坐标原点O 为极点,x 轴的正半轴为极轴的极坐标系中,点P 的极坐标为)4π,直线l 的极坐标方程为sin()04ρθπ-+=.(Ⅰ)求曲线C 的普通方程与直线l 的直角坐标方程;(Ⅱ)若Q 是曲线C 上的动点,M 为线段PQ 的中点,求点M 到直线l 的距离的最大值. 23.(本小题满分10分)选修4-5:不等式选讲已知函数()|1|||f x x x m =++-.(Ⅰ)若不等式()3f x ≥对任意的x ∈R 恒成立,求实数m 的取值范围; (Ⅱ)若关于x 的不等式2()2f m m x x -≥-的解集非空,求实数m 的取值范围.。
2019年新课标全国卷3高考理科数学试题及答案
绝密★启用前2019年普通高等学校招生全国统一考试(新课标Ⅲ)理科数学注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A I B 中元素的个数为 A .3B .2C .1D .02.设复数z 满足(1+i)z =2i ,则∣z ∣= A .12B .22C .2D .23.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是 A .月接待游客量逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月份D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳4.(x +y )(2x -y )5的展开式中x 3y 3的系数为 A .-80B .-40C .40D .805.已知双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线方程为52y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为 A .221810x y -= B .22145x y -= C .22154x y -= D .22143x y -= 6.设函数f (x )=cos(x +3π),则下列结论错误的是 A .f (x )的一个周期为−2πB .y =f (x )的图像关于直线x =83π对称 C .f (x +π)的一个零点为x =6πD .f (x )在(2π,π)单调递减 7.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为A .5B .4C .3D .28.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .πB .3π4C .π2D .π49.等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为 A .-24B .-3C .3D .810.已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A.3B.3C.3D .1311.已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =A .12-B .13C .12D .112.在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP u u u r=λAB u u u r +μAD u u u r,则λ+μ的最大值为A .3B .CD .2二、填空题:本题共4小题,每小题5分,共20分。
2019年高考真题——理科数学(全国卷Ⅲ) 含答案
绝密★启用前2019年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给的四个选项中,只有一项是符合题目要求的。
1.已知集合2{1,0,1,2}{1}A B x x =-=≤,,则AB = A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,2 2.若(1i)2i z +=,则z =A .1i --B .1+i -C .1i -D .1+i 3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为A .0.5B .0.6C .0.7D .0.84.(1+2x 2 )(1+x )4的展开式中x 3的系数为A .12B .16C .20D .245.已知各项均为正数的等比数列{a n }的前4项为和为15,且a 5=3a 3+4a 1,则a 3=A . 16B . 8C .4D . 26.已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则A .e 1a b ==-,B .a=e ,b =1C .1e 1a b -==,D .1e a -=,1b =-7.函数3222x x x y -=+在[]6,6-的图象大致为 A . B .C .D .8.如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则A .BM =EN ,且直线BM 、EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM 、EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线9.执行下边的程序框图,如果输入的ε为0.01,则输出s 的值等于A.4122-B.5122-C.6122-D.7122- 10.双曲线C :2242x y -=1的右焦点为F ,点P 在C 的一条渐进线上,O 为坐标原点,若=PO PF ,则△PFO 的面积为A .324B .322C .22D .3211.设()f x 是定义域为R 的偶函数,且在()0,∞单调递减,则A .f (log 314)>f (322-)>f (232-) B .f (log 314)>f (232-)>f (322-) C .f (322-)>f (232-)>f (log 314)D .f (232-)>f (322-)>f (log 314)12.设函数()f x =sin (5x ωπ+)(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论: ①()f x 在(0,2π)有且仅有3个极大值点②()f x 在(0,2π)有且仅有2个极小值点③()f x 在(0,10π)单调递增 ④ω的取值范围是[1229510,) 其中所有正确结论的编号是A . ①④B . ②③C . ①②③D . ①③④二、填空题:本题共4小题,每小题5分,共20分。
2019年高考理科数学全国卷3含答案
数学试卷第1页(共18页)数学试卷第2页(共18页)绝密★启用前2019年普通高等学校招生全国统一考试·全国Ⅲ卷理科数学一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{1,0,1,2}{1}A B x x =-=≤,,则A B = ()A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,22.若(1i)2i z +=,则=z ()A .1i--B .1+i-C .1i-D .1+i3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为()A .0.5B .0.6C .0.7D .0.84.()()42121++x x 的展开式中3x 的系数为()A .12B .16C .20D .245.已知各项均为正数的等比数列{}n a 的前4项和为15,且53134=+a a a ,则3=a ()A .16B .8C .4D .26.已知曲线e ln x y a x x =+在点1(,)ae 处的切线方程为2=+y x b ,则()A.–1==,a e bB.1==,a e b C.–11==,a e b D.–11==-a e b ,7.函数3222xxx y -=+在[]6,6-的图象大致为()A.B.C .D.8.如图,点N 为正方形ABCD 的中心,ECD △为正三角形,⊥平面平面ECD ABCD ,M 是线段ED 的中点,则()A.=BM EN ,且直线,BM EN 是相交直线B.≠BM EN ,且直线,BM EN 是相交直线C.=BM EN ,且直线,BM EN 是异面直线D.≠BM EN ,且直线,BM EN 是异面直线9.执行下边的程序框图,如果输入的ε为0.01,则输出s 的值等于()毕业学校_____________姓名________________考生号_____________________________________________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第3页(共18页)数学试卷第4页(共18页)A.4122-B.5122-C.6122-D.7122-10.双曲线C :2242x y -=1的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点,若=PO PF ,则PFO△的面积为()A .324B .322C .22D .3211.设()f x 是定义域为R 的偶函数,且在()0,+∞单调递减,则()A .23323log 1224ff f --⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭>>B .23323124l 2og f f f --⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭>>C .23332124log 2f f f --⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭>>D .23323lo 122g 4f f f--⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭>>12.设函数()si 5n f x x ωπ+⎛⎫= ⎪⎝⎭()0ω>,已知()f x 在[]0,2π有且仅有5个零点,下述四个结论:①()f x 在(0,2π)有且仅有3个极大值点②()f x 在(0,2π)有且仅有2个极小值点③()f x 在(0,10π)单调递增④ω的取值范围是[1229510,)其中所有正确结论的编号是()A .①④B .②③C .①②③D .①③④二、填空题:本题共4小题,每小题5分,共20分.13.已知a ,b 为单位向量,且·0=a b,若2=-c a ,则cos ,=a c .14.记n S 为等差数列{}n a 的前n 项和,12103a a a =≠,,则105S S =.15.设12F F ,为椭圆C :22+13620x y =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为.16.学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D -挖去四棱锥-O EFGH 后所得的几何体,其中O 为长方体的中心,,,,E F G H 分别为所在棱的中点,16cm 4cm AB =BC =AA =,,3D 打印所用原料密度为30.9 g/cm ,不考虑打印损耗,制作该模型所需原料的质量为g.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤。
2019年高考全国卷三理科数学试题及答案
2019年高考全国卷三理科数学试题及答案2019年高考全国卷三理科数学试题及答案一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.已知集合 $A=\{-1,0,1,2\}$,$B=\{x|x^2\leq1\}$,则$A\cap B$ 等于 $\{ -1,0,1\}$。
2.若 $z(1+i)=2i$,则 $z=-1-i$。
3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著。
某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为 $0.5$。
4.$(1+2x^2)(1+x)^4$ 的展开式中 $x^3$ 的系数为 $12$。
5.已知各项均为正数的等比数列 $\{a_n\}$ 的前4项和为15,且 $a_5=3a_3+4a_1$,则 $a_3=4$。
6.已知曲线 $y=aex+x\ln x$ 在点 $(1,ae)$ 处的切线方程为$y=2x+b$,则 $a=e$,$b=-1$。
7.函数 $y=\frac{2x^3}{x^2+y^2}$ 在 $[-6,6]$ 的图像大致为图中的 $ABCD$,如下图所示。
8.如图,点 $N$ 为正方形 $ABCD$ 的中心,$\triangleECD$ 为正三角形,平面 $ECD\perp$ 平面 $ABCD$,$M$ 是线段 $ED$ 的中点,则 $BM=EN$,且直线 $BM$,$EN$ 是相交直线。
9.执行右边的程序框图,如果输入的$\epsilon$ 为$0.01$,则输出 $s$ 的值等于 $\frac{1}{24}$。
10.双曲线 $\frac{x^2}{16}-\frac{y^2}{9}=1$ 的右焦点为$F$,$O$ 为坐标原点,双曲线 $C$:$\frac{x^2}{16}-\frac{y^2}{k^2}=1$,点 $P$ 在 $C$ 的一条渐近线上,若$PO=PF$,则$\triangle PFO$ 的面积为$\frac{3\sqrt{2}}{2}$。
2019年高考数学(理)原创押题预测卷02(新课标Ⅲ卷)(参考答案)
2
2
当 x 2 时,原式化为 x 2 2x 1 8 ,即3x 9 ,故2 x 3 .(4 分)
综上所述,不等式 f (x)|2x 1| 8 的解集为[ 7 , 3] .(5 分) 3
(2)由 f (x) 1 的解集为 (, 0) (2, ) ,及| x a |1 x a 1或x a 1,
y2
1
,消元整理得(4k
2 1)x2
8kmx
4(m2 1)
0
,(7
分)
y kx m
由题意,得 (8km)2 4(4k 2 1) 4(m2 1) 16(4k 2 m2 1) 0 ,①
x x 8km
设
A(x1,
y
)
、
1B(x
,
y
)2
,则由根与系数的关系可得 2
1
x1
x2
2
4k 2 1 4(m2 1) 4k 2 1
5 625
所以 X 的分布列为
X
0
1
2
3
4
81 216 216 96
16
P
625 625 625 625 625
故 E( X ) 81 0 216 1 216 2 96 3 16 4 1000 8 .
625 625 625 625 625
2
28
(或 X ~ B(4, ) ,则 E( X ) 4 )(12 分)
1 ,即 2k
2
m2 1
1 ,整理得m2 4k 1 ,②(11 分) 2
将②代入①,整理得4k 2 4k 0 ,解得k 0 或 k 1.
由②得, m2 4k 1 0 ,解得k 1 . 4
所以 k [ 1 , 0) (1,) ,故直线 l 的斜率的取值范围是[ 1 , 0)
2019年高考理科数学全国卷3(附参考答案和详解)
方法!,设调查的!##位学生中阅读过1西游记2的学 生 人 数 为 "!则 ")6#&'#*$#!解得 "*7#! 所以该校阅读过1西游记2的 学 生 人 数 与 该 校 学 生 总 数 比 值
的估计值为!7###*#!7!故选 %!
方法",用 E=:: 图 表 示 调 查 的 !## 位 学 生 中 阅 读 过 1西 游
05 .!#曲线 "+ 是弧.55!
$!%分 别 写 出 "!#"$#"+ 的 极 坐 标 方 程 $$%曲 线 " 由 "!#"$#"+ 构 成 #若 点 1 在 " 上 #且
"31"'槡+#求 1 的极坐标!
第 $$ 题 图
$!!$本小 题 满 分
!$
分 %已 知 曲 线
.,&'
#$ $
#5
为 直 线&'
$ % -!*$$(
+ $
%)*$$(
$ +
%)*
123+
! )
$ % .!*$$(
$ +
%)*$$(
+ $
%)*
123+
! )
第8题图 $! ! %
$ % !$!设
函
数
*$#%'9/:
#0
"
$)#%#已 知 *$#%在 (##$)
有 且 仅 有 " 个 零 点 #下 述 四 个 结 论 ,
$! ! %
8!执行如图 所 示 的 程 序 框 图#如 果 输 入 的7为
2019年高考理数全国卷3含答案解析
()
A.
f
log3
1 4
>f
3 2 2
>f
2 2 3
B.
f
log3
1 4
>f
2 2 3
>f
3 2 2
C.
f
3 2 2
>f
2 2 3
>f
log3
1 4
D.
f
2 2 3
>f
3 2 2
>f
log3
1 4
12.设函数
f
x
sin
x
D.0,1, 2
2.若 z(1 i) 2i ,则 z
()
A. 1 i
B. 1+i
C.1 i
D.1+i
3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为
中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查
了 100 位学生,其中阅读过《西游记》或《红楼梦》的学生共有 90 位,阅读过
2
22
7
.得
BM 7 ,所以 BM EN .连接 BD , BE ,因为四边形 ABCD 为正方形,所
以 N 为 BD 的中点,即 EN , MB 均在平面 BDE 内,所以直线 BM , EN 是相交 直线,故选B.
第9页
【考点】空间线线位置关系
【考查能力】空间想象
9.【答案】C
【解析】执行程序框图 x 1, s 0 , s 0 1 1, x 1 ,不满足 x< 1 ,
坐标.
23.[选修 4–5:不等式选讲](10 分) 设 x, y, z R ,且 x y z 1 . (1)求 (x 1)2 ( y 1)2 (z 1)2 的最小值; (2)若 (x 2)2 ( y 1)2 (z a)2≥ 1 成立,证明: a≤ 3 或 a≥1. 3
2019年高考等值预测卷(全国Ⅲ卷)数学(理)试卷及答案
2019年高考等值试卷★预测卷理科数学(全国Ⅲ卷)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂 黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在 答题卡上.写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共 12 小题,每小题 5 分,共 60 分。
在每小题给出的四个选项中, 只有一项是符合题目要求的。
1.设集合 A ={x |x ≤x },B ={x | A . (,1]C . (0,1]1x≥1},则 A ∩B =B . [0,1] D . (,1]∪ (0,1]2.已知 i 为虚数单位,则2 i 1 i=3 1 A . i2 23 1 B . i2 21 3 C . i2 21 3 D . i2 23.“0<x <1”是“sin x <sin x ”的 A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4.运行如图所示的程序框图,设输出的数据构成集合A ,从集否结束开始i =-1i <3?是 y =i +2i输出 y 合 A 中任取一个元素 a ,则函数 y x a 在(0,+∞)上是增函i =i +1数的概率为A .1 2 3 B . C .545D .3 4 5.若函数 f ( x ) a x (a >0,且 a ≠1)在区间[2,4]上的最大值与最小值之差为 2,则实数2 2 2a =A .22B . 2C .1 2D .26.我国古代木匠精于钻研,技艺精湛,常常设计出巧 夺天工的建筑,如图.在 24 主视图2 2 左视图一座宫殿中,有一件特别 的“柱脚”的三视图如右 图所示.则其体积为8A . +4π3C .8+4π8B . +8π3D .8+8π俯视图7.已知斜率为 2 的直线 l 过抛物线 C :y =2px (p >0)的焦点 F ,且与抛物线交于 A ,B 两 点,若线段 AB 的中点 M 的纵坐标为 1,则 p =A .1B . 2C .2D .48.将函数 f ( x ) sin 2x 3 cos 2x 的图象向右平移位,所得图象经过点(,1),则 的最小值为8 (>0)个单位,再向上平移 1 个单A .512B .712C .524D .7249.已知双曲线x 2 y 21(a>0,b >0)的左、右焦点分别为 F ,F ,过 F 作 x +y 1 2 1=a 2的切线,交双曲线右支于点 M ,若∠F MF =45º,则双曲线的离心率为12A . 2B . 3C .2D .310.有一个长方体木块,三个侧面积分别为 8,12,24,现将其削成一个正四面体模型,则该正四面体模型棱长的最大值为A .2B . 2 2C .4D . 4 211.已知在平面直角坐标系 xOy 中,O 为坐标原点,A (0,2),|OB |+|OA |2 =20,若平面内点 P 满足 PB 3P A ,则|PO |的最大值为 A .4B .5C .6D .72 22 a b 22 2e x 2a ,x a , 12.已知 A 、B 是函数f ( x )(其中 a >0)图象上的两个动点,点 P (a ,0),e ,x a若 PA PB 的最小值为 0,则函数 f ( x ) 的最小值为A .1e 2B .1e C .1e 2D .1 e二、填空题:本大题共 4 小题 每小题 5 分,共 20 分。
2019年普通高等学校招生全国统一考试预测卷(三)-数学(理)
2019年普通高等学校招生全国统一考试预测卷(三)-数学(理)注意事项:认真阅读理解,结合历年的真题,总结经验,查找不足!重在审题,多思考,多理解!数学〔理科〕试卷本试卷分第一卷〔选择题〕和第二卷〔非选择题〕两部分. 第一卷1至2页,第二卷3至5页,考试结束后,将本试卷和答题卡一并交回.参考公式:球的表面积公式:S=24R π,其中R 表示球的半径第一卷〔共60分〕一、 选择题:本大题共12小题,每题5分,共60分,在每题给出的四个选项中,只有一项为哪一项符合题意要求的. 1.在复平面内,复数2)1(i -对应的点位于A 、【一】三象限的角平分线上B 、【二】四象限的角平分线上C 、实轴上D 、虚轴上 2.设全集U=I ,}12|{)},1ln(|{)2(<=-==-x x x N x y x M ,那么右图中阴影部分表示的集合为A 、{|1}x x ≥B 、{|12}x x ≤<C 、{|01}x x <≤D 、{|1}x x ≤ 3.实数列2,,,,1--z y x 成等比数列,那么xyz =A 、—4B 、±4C 、22-D 、22±4.),0(,,+∞∈c b a ,023=+-c b a ,那么bac 的A 、最大值是3B 、最小值是3C 、最大值是33 D 、最小值是3 5.一个简单多面体的三视图如下图,其主视图与左视图是边长为2的正三角形,俯视图轮廓为正方形,那么其体积是 A 、324 B 、334 C.38 D.346. 设33,33337437617673475277+⋅+⋅=⋅+⋅+⋅+=C C C B C C C A A 、128B 、129C 、74D 、07.在ABC ∆中,向量)72cos ,18(cos =AB ,)27cos 2,63cos 2( =BC ,那么ABC ∆的面积等于 A 、22B 、42 C 、23 D 、2俯视图A 、命题“假设21x =,那么1=x ”的否命题为:“假设21x =,那么1x ≠”;B 、命题“x R ∃∈,使得210x x ++<”的否定是:“x R ∀∈, 均有210x x ++<”;C 、在ABC ∆中,“B A >”是“B A 22cos cos <”的充要条件; D 、“2x ≠或1y ≠”是“3x y +≠”的非充分非必要条件.9. 两点(1,0)M -,(1,0)N ,假设直线340x y m -+=上存在点P 满足0PM PN ⋅=,那么实数m 的取值范围是A.(,5][5,)-∞-+∞B. (,25][25,)-∞-+∞C.[25,25]-D.[5,5]- 10.假设],2,2[ππβα-∈、且0sin sin >-ββαα,那么下面结论正确的选项是A.βα>B.0>+βαC.βα<D.22βα>11.如图,正三棱锥A —BCD 侧面的顶角为40°,侧棱长为a ,动点E 、F 分别在侧棱AC 、AD 上,那么以线段BE 、EF 、FB 长度和 的最小值为半径的球的体积为A 、334a πB 、3332a πC 、334a π D 、34a π 12.在正方体1111D C B A ABCD -的各顶点与各棱中点共20个点中,任取2点连成直线,在这些直线中任取一条,它与对角线1BD 垂直的概率为A 、16621 B.19021 C.19018 D.16627第二卷〔共90分〕本卷包括必考题和选考题两部分,第13—第21题为必考题,每个试题考生都必须做答。
2019年全国统一高考数学试卷(理科)以及答案解析(全国3卷)
2019年全国统一高考数学试卷(理科)(全国3卷)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={﹣1,0,1,2},B={x|x2≤1},则A∩B=()A.{﹣1,0,1}B.{0,1}C.{﹣1,1}D.{0,1,2} 2.(5分)若z(1+i)=2i,则z=()A.﹣1﹣i B.﹣1+i C.1﹣i D.1+i3.(5分)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该学校学生总数比值的估计值为()A.0.5B.0.6C.0.7D.0.84.(5分)(1+2x2)(1+x)4的展开式中x3的系数为()A.12B.16C.20D.245.(5分)已知各项均为正数的等比数列{a n}的前4项和为15,且a5=3a3+4a1,则a3=()A.16B.8C.4D.26.(5分)已知曲线y=ae x+xlnx在点(1,ae)处的切线方程为y=2x+b,则()A.a=e,b=﹣1B.a=e,b=1C.a=e﹣1,b=1D.a=e﹣1,b=﹣1 7.(5分)函数y=在[﹣6,6]的图象大致为()A.B.C.D.8.(5分)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线9.(5分)执行如图的程序框图,如果输入的ɛ为0.01,则输出s的值等于()A.2﹣B.2﹣C.2﹣D.2﹣10.(5分)双曲线C:﹣=1的右焦点为F,点P在C的一条渐近线上,O为坐标原点.若|PO|=|PF|,则△PFO的面积为()A.B.C.2D.311.(5分)设f(x)是定义域为R的偶函数,且在(0,+∞)单调递减,则()A.f(log3)>f(2)>f(2)B.f(log3)>f(2)>f(2)C.f(2)>f(2)>f(log3)D.f(2)>f(2)>f(log3)12.(5分)设函数f(x)=sin(ωx+)(ω>0),已知f(x)在[0,2π]有且仅有5个零点.下述四个结论:①f(x)在(0,2π)有且仅有3个极大值点②f(x)在(0,2π)有且仅有2个极小值点③f(x)在(0,)单调递增④ω的取值范围是[,)其中所有正确结论的编号是()A.①④B.②③C.①②③D.①③④二、填空题:本题共4小题,每小题5分,共20分。
2019年全国普通高等院校统一招生考试数学试卷(终极押题全国III卷)(理)Word版含解析
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集,集合,则()A.B.C.D.【答案】 B【解析】,又,.故选:B.2.已知复数满足 (是虚数单位),则复数的模 ( )A.B.C.D.【答案】 B【解析】∵,∴,故,故本题选B.3.中国古代数学名著《九章算术》中记载了公元前344年商鞅督造的一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸),若取,立方寸=升,则商鞅铜方升的容积约为()A.升B.升C.升D.升【答案】 B【解析】由三视图得,商鞅铜方升由一圆柱和一长方体组合而成,(如图所示)故其体积(立方寸),(升),故选:B4.已知α为锐角,且tan,则cos(2)=()A.B.C.D.【答案】 A【解析】5.二项式的展开式中的系数是,则( )A.1 B.C.D.【答案】 B【解析】由题意,二项式的展开式中的通项公式,令,解得,所以含项的系数为,解得故选:B.6.函数的图象大致是()A.B.C.D.【答案】 A【解析】单调递增均存在单调递减区间,由此可得正确本题正确选项:7.过双曲线的左焦点,作圆的切线,切点为,直线交双曲线右支于点,若,则双曲线的离心率为A.B.C.D.【答案】 A【解析】设右焦点为F′,∵,∴E是PF的中点,∴PF′=2OE=a,∴PF=3a,∵OE⊥PF,∴PF′⊥PF,∴(3a)2+a2=4c2,∴e==,故选:A.8.执行如图的程序框图,则输出的S的值是( )A.126 B.C.30 D.62【答案】 D【解析】模拟程序的运行,可得:,满足条件,执行循环体,,满足条件,执行循环体,,满足条件,执行循环体,,满足条件,执行循环体,,满足条件,执行循环体,,此时,不满足条件,退出循环,输出的值为62.故本题选D.9.已知等差数列{a n}的公差d≠0,S n为其前n项和,若a2,a3,a6成等比数列,且a4=﹣5,则的最小值是()A.B.C.D.【答案】 A【解析】∵等差数列的公差,,,成等比数列,且,∴,,解得,,当时,,则,令且,解得,即时,取得最小值,且,故选A.10.如图,在长方体,且异面直线所成角的余弦值为,则该长方体外接球体积为A.B.C.D.【答案】 B【解析】∵异面直线所成角的余弦值为,且,∴,在中,设.∵,∴,∴,∴则长方体外接球直径为,半径为故选:B11.已知椭圆C:的离心率为,直线l与椭圆C交于两点,且线段的中点为,则直线l的斜率为()A.B.C.D.1【答案】 C【解析】由,得,∴,则椭圆方程为,设,则,把A,B的坐标代入椭圆方程得:,①-②得:,∴.∴直线l的斜率为.故选:C.12.已知且,函数,满足对任意实数,都有成立,则实数的取值范围是( )A.B.C.D.【答案】 A【解析】对任意实数,都有成立,∴函数在上为增函数,∴当时,,则,且,当时,,当时,即时,函数的对称轴,此时函数在上单调递增,在单调递减,不满足题意,当时,即时,函数的对称轴,此时函数在上单调递增,即,解得,综上所述的值范围为,故选:A.非选择题部分(共90分)二、填空题:本大题共4小题,每题5分,共20分.13.已知向量,,若,则_____________.【答案】【解析】依题意,由于,所以,. 14.设函数在点处的切线方程为,则______.【答案】 3【解析】函数的导数为,得在点处的切线斜率为,因为函数在点处的切线方程为,所以,解得.故答案为:15.若存在等比数列,使得,则公比的取值范围为___.【答案】【解析】,.当时,易知满足题意,但;当时,,解得,综上,. 故答案为16.已知函数在上是单调递增函数,则的取值范围为__________.【答案】【解析】函数=由故在区间是单调递增的,当k=0,在区间是单调递增函数,则,而所以所以故答案为三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17—21题为必考题,每个考生都必须作答.22、23题为选考题,考生根据要求作答.(一)必考题:共60分17.已知在中,,且.(Ⅰ)求的值;(Ⅱ)求的周长.【答案】(Ⅰ);(Ⅱ)15.【解析】(Ⅰ)∵,∴,∴,∴;(Ⅱ)∵,∴,∵,,∴,∴,∴,∴的周长为15.18.在某公司举行的一次真假游戏的有奖竞猜中,设置了“科技”和“生活”这两类试题,规定每位职工最多竞猜3次,每次竞猜的结果相互独立.猜中一道“科技”类试题得4分,猜中一道“生活”类试题得2分,两类试题猜不中的都得0分.将职工得分逐次累加并用X表示,如果X的值不低于4分就认为通过游戏的竞猜,立即停止竞猜,否则继续竞猜,直到竞猜完3次为止.竞猜的方案有以下两种:方案1:先猜一道“科技”类试题,然后再连猜两道“生活”类试题;方案2:连猜三道“生活”类试题.设职工甲猜中一道“科技”类试题的概率为0.5,猜中一道“生活”类试题的概率为0.6.(1)你认为职工甲选择哪种方案通过竞猜的可能性大?并说明理由.(2)职工甲选择哪一种方案所得平均分高?并说明理由.【答案】(1)职工甲选择方案1通过竞猜的可能性大;(2)职工甲选择方案1通过竞猜的平均分高【解析】猜中一道“科技”类试题记作事件A,猜错一道“科技”试题记作事件;猜中一道“生活”类试题记作事件B,猜错一道“生活”试题记作事件;则,,(1)若职工甲选择方案1,通过竞猜的概率为:.若职工甲选择方案2,通过竞猜的概率为:∵∴职工甲选择方案1通过竞猜的可能性大.(2) 职工甲选择方案1所得平均分高,理由如下:若职工甲选择方案1,X的可能取值为:0,2,4,则,,,数学期望若职工甲选择方案2,X的可能取值为:0,2,4,,数学期望因为,所以职工甲选择方案1所得平均分高.19.如图所示,等腰梯形ABCD中,AB∥CD,AD=AB=BC=1,CD=2,E为CD中点,AE与BD交于点O,将△ADE 沿AE折起,使点D到达点P的位置(P?平面ABCE).(Ⅰ)证明:平面POB⊥平面ABCE;(Ⅱ)若直线PB与平面ABCE所成的角为,求二面角A-PE-C的余弦值.【答案】(Ⅰ)见解析;(Ⅱ)【解析】(Ⅰ)证明:在等腰梯形ABCD中,易知△DAE为等边三角形,所以OD⊥AE,OB⊥AE,即在△PAE中,OP⊥AE,∴AE⊥平面POB,AE?平面ABCE,所以平面POB⊥平面ABCE;(Ⅱ)在平面POB内作PQ⊥OB=Q,∴PQ⊥平面ABCE.∴直线PB与平面ABCE夹角为,又∵OP=OB,∴OP⊥OB,O、Q两点重合,即OP⊥平面ABCE,以O为原点,OE为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,由题意得,各点坐标为,,,∴,,设平面PCE的一个法向量为,则,即,设,则y=-1,z=1,∴,由题意得平面PAE的一个法向量,设二面角A-P-EC为α,.即二面角A-P-EC为α的余弦值为.20.已知抛物线E:,圆C:.若过抛物线E的焦点F的直线l与圆C相切,求直线l方程;在的条件下,若直线l交抛物线E于A,B两点,x轴上是否存在点使为坐标原点?若存在,求出点M的坐标;若不存在,请说明理由.【答案】(1);(2)存在定点【解析】由题意可得抛物线的焦点,当直线的斜率不存在时,过F的直线不可能与圆C相切,设直线的斜率为k,方程设为,即,由圆心到直线的距离为,当直线与圆相切时,,解得,即直线方程为;可设直线方程为,,,联立抛物线方程可得,则,,x轴上假设存在点使,即有,可得,即为,由,,可得,即,即,符合题意;当直线为,由对称性可得也符合条件.所以存在定点使得.21.已知函数.(1)证明:当时,;(2)若有极大值,求的取值范围;【答案】(1)见解析(2)【解析】(1)证明:当时,,,令,则.∴当时,,单调递减;当时,,单调递增.∴当时,.∴当时,,在上单调递增.∴当时,,即.(2)解:由题设得.由有极大值得有解,且.令,则.由得.∴当时,,单调递减;当时,,单调递增.∴.当,即时,,即,此时,在上单调递增,无极值;当,即时,∴,.由(1)知:,即.∴存在,,使.∴当时,,即单调递增;当时,,即单调递减;当时,,即单调递增.∴是唯一的极大值点.综上所述,所求的取值范围为.(二)选考题:共10分.请考生在22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.在直角坐标系中,曲线的参数方程为,(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,已知点的极坐标为.(1)求曲线的极坐标方程;(2)过作曲线的切线,切点为,过作曲线的切线,切点为,求.【答案】(1)(2)2【解析】(1)由,得,即,故曲线的极坐标方程为.(2)由(1)知,曲线表示圆心为,半径为的圆.因为A(0,3),所以,所以.因为,所以.故.23.已知函数的最小值为.(1)求实数的值;(2)若,设,且满足,求证:.【答案】(1)(2)见证明【解析】(1)显然,在上单调递减,在上单调递增(2)证明:由于,且当且仅当,即当,时取等号故。
2019年全国高考理科数学试卷(全国III卷)及答案
2019年全国高考理科数学试卷(全国III 卷)及答案一、选择题1.已知集合}1|{},2,1,0,1{2≤=-=x x B A ,则=⋂B A ()A.}1,0,1{-B. B.{0,1}C. C.}1,1{-D.D.}2,1,0{2.若i i z 2)1(=+,则=z ()A.i--1B.i+-1C.i-1D.i+13.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著,某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为()A.5.0B.6.0C.7.0D.8.04.42)1)(21(x x ++的展开式中3x 的系数为()A.12B.16C.20D.245.已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a =()A.16B.8C.4D.26.已知曲线x x ae y x ln +=在点)1(ae ,处的切线方程为b x y +=2,则()A.e a =,1-=b B.e a =,1=bC.1-=e a ,1=b D.1-=e a ,1-=b 7.函数3222x x x y -=+在[6,6]-的图像大致为()A.B.C. D.8.如图,点N 为正方形ABCD 的中心,ECD ∆为正三角形,平面⊥ECD 平面ABCD ,M 是线段ED 的中点,则()A.EN BM =,且直线EN BM ,是相交直线B.EN BM ≠,且直线EN BM ,是相交直线C.EN BM =,且直线EN BM ,是异面直线D.EN BM ≠,且直线EN BM ,是异面直线9.执行右边的程序框图,如果输出ε为01.0,则输出s 的值等于()A.4212-B.5212-C.6212-D.7212-10.双曲线C :22142x y -=的右焦点为F ,点P 为C 的一条渐近线的点,O 为坐标原点.若||||PO PF =则PFO ∆的面积为()A:324B:322C:22D:3211.若()f x 是定义域为R 的偶函数,且在(0,)+∞单调递减,则()A.233231(log )(2)(2)4f f f -->>B.233231(log )(2)(2)4f f f -->>C.233231(2)(2)(log )4f f f -->>D.233231(2)(2)(log )4f f f -->>12.设函数()()sin 05f x x πωω⎛⎫=+> ⎪⎝⎭,已知()f x 在[]02π,有且仅有5个零点,下述四个结论:○1()f x 在()0,2π有且仅有3个极大值点○2()f x 在()0,2π有且仅有2个极小值点○3()f x 在0,10π⎛⎫ ⎪⎝⎭单调递增○4ω的取值范围是1229,510⎡⎫⎪⎢⎣⎭其中所有正确结论的编号是A.○1○4 B.○2○3 C.○1○2○3 D.○1○3○4二.填空题13.已知a ,b 为单位向量,且0a b ⋅=,若2c a =- ,则cos ,a c =.答案:23解析:∵()22222459c a a b b =-=+-⋅= ,∴3c = ,∵()2222a c a a a b ⋅=⋅=⋅= ,∴22cos ,133a c a c a c ⋅===⨯⋅ .14.记n S 为等差数列{}n a 的前n 项和,若10a ≠,213a a =,则105S S =.15.设1F 、2F 为椭圆1203622=+y x C :的两个焦点,M 为C 上一点且在第一象限,若21F MF ∆为等腰三角形,则M 的坐标为________.16.学生到工厂劳动实践,利用3D 打印技术制作模型。
2019年高考真题全国3卷理科数学(附答案解析)
绝密★启用前2019年普通高等学校招生统一考试理科数学试题卷一、单选题1.已知集合{}{}21,0,1,21A B x x ,=−=≤,则A B ⋂=( )A .{}1,0,1−B .{}0,1C .{}1,1−D .{}0,1,22.若(1i)2i z +=,则z =( ) A .1i −−B .1+i −C .1i −D .1+i3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为( ) A .0.5B .0.6C .0.7D .0.84.(1+2x 2 )(1+x )4的展开式中x 3的系数为 A .12B .16C .20D .245.已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a =( ) A .16B .8C .4D .26.已知曲线e ln x y a x x =+在点()1,ae 处的切线方程为2y x b =+,则( ) A .,1a e b ==−B .,1a e b ==C .1,1a e b −==D .1,1a e b −==−7.函数3222x xx y −=+在[]6,6−的图像大致为 A . B .C .D .8.如图,点N 为正方形ABCD 的中心,ECD ∆为正三角形,平面ECD ⊥平面,ABCD M 是线段ED 的中点,则( )A .BM EN =,且直线,BM EN 是相交直线B .BM EN ≠,且直线,BM EN 是相交直线C .BM EN =,且直线,BM EN 是异面直线D .BM EN ≠,且直线,BM EN 是异面直线9.执行如图所示的程序框图,如果输入的ε为0.01,则输出s 的值等于( )A .4122−B .5122−C .6122−D .7122−10.双曲线C :2242x y −=1的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点,若=PO PF ,则△PFO 的面积为A .4B .2C .D .11.设()f x 是定义域为R 的偶函数,且在()0,∞+单调递减,则( )A .233231log 224f f f −−⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭B .233231log 224f f f −−⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C .23332122log 4f f f −−⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D .23323122log 4f f f −−⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭12.设函数()f x =sin (5x ωπ+)(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论:①()f x 在(0,2π)有且仅有3个极大值点 ②()f x 在(0,2π)有且仅有2个极小值点③()f x 在(0,10π)单调递增 ④ω的取值范围是[1229,)其中所有正确结论的编号是 A .①④ B .②③C .①②③D .①③④二、填空题13.已知,a b r r 为单位向量,且a b ⋅r r =0,若2c a =r r ,则cos ,a c <>=r r ___________.14.记S n 为等差数列{a n }的前n 项和,12103a a a =≠,,则105S S =___________. 15.设12F F ,为椭圆22:+13620x yC =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.16.学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D −挖去四棱锥O EFGH −后所得的几何体,其中O 为长方体的中心,,,,E F G H 分别为所在棱的中点,16cm 4cm AB =BC =, AA =,3D 打印所用原料密度为30.9/g cm ,不考虑打印损耗,制作该模型所需原料的质量为___________g .三、解答题17.为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成,A B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:值为0.70.(1)求乙离子残留百分比直方图中,a b 的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).18.ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知sin sin 2A Ca b A +=. (1)求B ;(2)若ABC ∆为锐角三角形,且1c =,求ABC ∆面积的取值范围.19.图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°,将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2. (1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ; (2)求图2中的二面角B−CG−A 的大小.20.已知函数32()2f x x ax b =−+. (1)讨论()f x 的单调性;(2)是否存在,a b ,使得()f x 在区间[0,1]的最小值为1−且最大值为1?若存在,求出,a b 的所有值;若不存在,说明理由.21.已知曲线C :y =22x ,D 为直线y =12−上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点: (2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.22.如图,在极坐标系Ox 中,(2,0)A ,)4B π,)4C 3π,(2,)D π,弧»AB ,»BC ,»CD 所在圆的圆心分别是(1,0),(1,)2π,(1,)π,曲线1M 是弧»AB ,曲线2M 是弧»BC,曲线3M 是弧»CD .(1)分别写出1M ,2M ,3M 的极坐标方程;(2)曲线M 由1M ,2M ,3M 构成,若点P 在M 上,且||OP =P 的极坐标. 23.设,,x y z R ∈,且1x y z ++=.(1)求222(1)(1)(1)x y z −++++的最小值; (2)若2221(2)(1)()3x y z a −+−+−≥成立,证明:3a −≤或1a ≥−.参考答案1.A 【解析】 【分析】先求出集合B 再求出交集. 【详解】21,x ≤∴Q 11x −≤≤,∴{}11B x x =−≤≤,则{}1,0,1A B ⋂=−, 故选A . 【点睛】本题考查了集合交集的求法,是基础题. 2.D 【解析】 【分析】根据复数运算法则求解即可. 【详解】()(2i 2i 1i 1i 1i 1i 1i )()z −===+++−.故选D . 【点睛】本题考查复数的商的运算,渗透了数学运算素养.采取运算法则法,利用方程思想解题. 3.C 【解析】 【分析】根据题先求出阅读过西游记的人数,进而得解. 【详解】由题意得,阅读过《西游记》的学生人数为90-80+60=70,则其与该校学生人数之比为70÷100=0.7.故选C . 【点睛】本题考查抽样数据的统计,渗透了数据处理和数学运算素养.采取去重法,利用转化与化归4.A 【解析】 【分析】本题利用二项展开式通项公式求展开式指定项的系数. 【详解】由题意得x 3的系数为314424812C C +=+=,故选A .【点睛】本题主要考查二项式定理,利用展开式通项公式求展开式指定项的系数. 5.C 【解析】 【分析】利用方程思想列出关于1,a q 的方程组,求出1,a q ,再利用通项公式即可求得3a 的值. 【详解】设正数的等比数列{a n }的公比为q ,则2311114211115,34a a q a q a q a q a q a ⎧+++=⎨=+⎩, 解得11,2a q =⎧⎨=⎩,2314a a q ∴==,故选C .【点睛】本题利用方程思想求解数列的基本量,熟练应用公式是解题的关键. 6.D 【解析】 【分析】通过求导数,确定得到切线斜率的表达式,求得a ,将点的坐标代入直线方程,求得b . 【详解】详解:ln 1,x y ae x '=++1|12x k y ae ='==+=,1a e −∴=将(1,1)代入2y x b =+得21,1b b +==−,故选D .本题关键得到含有a ,b 的等式,利用导数几何意义和点在曲线上得到方程关系. 7.B 【解析】 【分析】由分子、分母的奇偶性,易于确定函数为奇函数,由(4)f 的近似值即可得出结果. 【详解】设32()22x xx y f x −==+,则332()2()()2222x x x x x x f x f x −−−−==−=−++,所以()f x 是奇函数,图象关于原点成中心对称,排除选项C .又34424(4)0,22f −⨯=>+排除选项D ;36626(6)722f −⨯=≈+,排除选项A ,故选B . 【点睛】本题通过判断函数的奇偶性,缩小考察范围,通过计算特殊函数值,最后做出选择.本题较易,注重了基础知识、基本计算能力的考查. 8.B 【解析】 【分析】利用垂直关系,再结合勾股定理进而解决问题. 【详解】如图所示, 作EO CD ⊥于O ,连接ON ,过M 作MF OD ⊥于F . 连BF ,Q 平面CDE ⊥平面ABCD .,EO CD EO ⊥⊂平面CDE ,EO ∴⊥平面ABCD ,MF ⊥平面ABCE , MFB ∴∆与EON ∆均为直角三角形.设正方形边长为2,易知12EO ON EN ===,5,,22MF BF BM ==∴=BM EN ∴≠,故选B .【点睛】本题考查空间想象能力和计算能力, 解答本题的关键是构造直角三角性. 9.C 【解析】 【分析】根据程序框图,结合循环关系进行运算,可得结果. 【详解】输入的ε为0.01,1.01,0.50.01?x S x ==+=<不满足条件; 1101,0.01?24S x =++=<不满足条件;⋅⋅⋅611101,0.00781250.01?22128S x =++++==<L 满足条件 输出676111112122222S ⎛⎫=++⋯+=−=− ⎪⎝⎭,故选C .【点睛】解答本题关键是利用循环运算,根据计算精确度确定数据分析. 10.A 【解析】 【分析】本题考查以双曲线为载体的三角形面积的求法,渗透了直观想象、逻辑推理和数学运算素养.采取公式法,利用数形结合、转化与化归和方程思想解题. 【详解】由2,,,a b c ====.,P PO PF x =∴=Q ,又P 在C 的一条渐近线上,不妨设为在2y x =上,112224PFO P S OF y ∴=⋅==△,故选A . 【点睛】忽视圆锥曲线方程和两点间的距离公式的联系导致求解不畅,采取列方程组的方式解出三角形的高,便可求三角形面积. 11.C 【解析】 【分析】由已知函数为偶函数,把233231log ,2,24f f f −−⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,转化为同一个单调区间上,再比较大小. 【详解】()f x Q 是R 的偶函数,()331log log 44f f ⎛⎫∴= ⎪⎝⎭.223303322333log 4log 31,1222,log 422−−−−>==>>∴>>Q ,又()f x 在(0,+∞)单调递减,∴()23323log 422f f f −−⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,23323122log 4f f f −−⎛⎫⎛⎫⎛⎫∴>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故选C .【点睛】本题主要考查函数的奇偶性、单调性,解题关键在于利用中间量大小比较同一区间的取值. 12.D 【解析】【分析】本题为三角函数与零点结合问题,难度大,通过整体换元得5265πππωπ≤+<,结合正弦函数的图像分析得出答案. 【详解】当[0,2]x πÎ时,,2555x πππωπω⎡⎤+∈+⎢⎥⎣⎦, ∵f (x )在[0,2]π有且仅有5个零点, ∴5265πππωπ≤+<,∴1229510ω≤<,故④正确, 由5265πππωπ≤+<,知,2555x πππωπω⎡⎤+∈+⎢⎥⎣⎦时, 令59,,5222x ππππω+=时取得极大值,①正确;极小值点不确定,可能是2个也可能是3个,②不正确; 因此由选项可知只需判断③是否正确即可得到答案, 当0,10x π⎛⎫∈ ⎪⎝⎭时,(2),5510x ππωπω+⎡⎤+∈⎢⎥⎣⎦, 若f (x )在0,10π⎛⎫⎪⎝⎭单调递增, 则(2)102ωππ+< ,即<3ϖ , ∵1229510ω≤<,故③正确. 故选D . 【点睛】极小值点个数动态的,易错,③正确性考查需认真计算,易出错,本题主要考查了整体换元的思想解三角函数问题,属于中档题. 13.23. 【解析】 【分析】根据2||c v 结合向量夹角公式求出||c v,进一步求出结果. 【详解】因为2c a =v v,0a b ⋅=vv ,所以22a c a b vv v v⋅=⋅2=,222||4||5||9c a b b =−⋅+=vv v v ,所以||3c =r ,所以cos ,a c <>=r r 22133a c a c ⋅==⨯⋅v v v v . 【点睛】本题主要考查平面向量的数量积、向量的夹角.渗透了数学运算、直观想象素养.使用转化思想得出答案. 14.4. 【解析】 【分析】根据已知求出1a 和d 的关系,再结合等差数列前n 项和公式求得结果. 【详解】因213a a =,所以113a d a +=,即12a d =,所以105S S =11111091010024542552a d a a a d⨯+==⨯+. 【点睛】本题主要考查等差数列的性质、基本量的计算.渗透了数学运算素养.使用转化思想得出答案. 15.( 【解析】 【分析】根据椭圆的定义分别求出12MF MF 、,设出M 的坐标,结合三角形面积可求出M 的坐标.【详解】由已知可得2222236,20,16,4a b c a b c ==∴=−=∴=,11228MF F F c ∴===.∴24MF =.设点M 的坐标为()()0000,0,0x y x y >>,则121200142MF F S F F y y =⋅⋅=△,又1201442MF F S y =⨯=∴=△0y =, 22013620x ∴+=,解得03x =(03x =−舍去),M \的坐标为(.【点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑推理等数学素养. 16.118.8 【解析】 【分析】根据题意可知模型的体积为四棱锥体积与四棱锥体积之差进而求得模型的体积,再求出模型的质量. 【详解】由题意得, 2146423122EFGH S cm =⨯−⨯⨯⨯=, 四棱锥O −EFG 的高3cm , ∴31123123O EFGH V cm −=⨯⨯=.又长方体1111ABCD A B C D −的体积为32466144V cm =⨯⨯=, 所以该模型体积为22114412132V V V cm =−=−=,其质量为0.9132118.8g ⨯=. 【点睛】本题考查几何体的体积问题,理解题中信息联系几何体的体积和质量关系,从而利用公式求解.17.(1) 0.35a =,0.10b =;(2) 4.05,6. 【解析】 【分析】(1)由()0.70P C =及频率和为1可解得a 和b 的值;(2)根据公式求平均数. 【详解】(1)由题得0.200.150.70a ++=,解得0.35a =,由0.050.151()10.70b P C ++=−=−,解得0.10b =.(2)由甲离子的直方图可得,甲离子残留百分比的平均值为0.1520.2030.3040.2050.1060.057 4.05⨯+⨯+⨯+⨯+⨯+⨯=,乙离子残留百分比的平均值为0.0530.1040.1550.3560.2070.1586⨯+⨯+⨯+⨯+⨯+⨯=【点睛】本题考查频率分布直方图和平均数,属于基础题.18.(1) 3B π=;(2)()82. 【解析】 【分析】(1)利用正弦定理化简题中等式,得到关于B 的三角方程,最后根据A,B,C 均为三角形内角解得3B π=.(2)根据三角形面积公式1sin 2ABC S ac B =⋅V ,又根据正弦定理和1c =得到ABC S V 关于C 的函数,由于ABC V 是锐角三角形,所以利用三个内角都小于2π来计算C 的定义域,最后求解()ABC S C V 的值域. 【详解】 (1)根据题意sinsin 2A C a b A +=,由正弦定理得sin sinsin sin 2A CA B A +=,因为0A π<<,故sin 0A >,消去sin A 得sin sin 2A CB +=. 0<B π<,02AC π+<<因为故2A CB +=或者2AC B π++=,而根据题意A B C π++=,故2A C B π++=不成立,所以2A CB +=,又因为A BC π++=,代入得3B π=,所以3B π=.(2)因为ABC V 是锐角三角形,由(1)知3B π=,A B C π++=得到23A C π+=,故022032C C πππ⎧<<⎪⎪⎨⎪<−<⎪⎩,解得62C ππ<<.又应用正弦定理sin sin a cA C=,1c =, 由三角形面积公式有:222sin()111sin 3sin sin sin 222sin 4sin ABC C a A S ac B c B c B c C Cπ−=⋅=⋅=⋅=⋅V 22sin cos cos sin 2123133(sin cos )4sin 43tan 38tan 8C C C C C ππππ−==⋅−=+.又因,tan 623C C ππ<<>,故3188tan 82C <+<,故82ABC S <<V . 故ABC S V的取值范围是 【点睛】这道题考查了三角函数的基础知识,和正弦定理或者余弦定理的使用(此题也可以用余弦定理求解),最后考查ABC V 是锐角三角形这个条件的利用.考查的很全面,是一道很好的考题.19.(1)见详解;(2) 30o . 【解析】 【分析】(1)因为折纸和粘合不改变矩形ABED ,Rt ABC V 和菱形BFGC 内部的夹角,所以//AD BE ,//BF CG 依然成立,又因E 和F 粘在一起,所以得证.因为AB 是平面BCGE 垂线,所以易证.(2)在图中找到B CG A −−对应的平面角,再求此平面角即可.于是考虑B 关于GC 的垂线,发现此垂足与A 的连线也垂直于CG .按照此思路即证. 【详解】(1)证:Q //AD BE ,//BF CG ,又因为E 和F 粘在一起.∴//AD CG ,A ,C ,G ,D 四点共面.又,AB BE AB BC ⊥⊥Q .AB ∴⊥平面BCGE ,AB ⊂Q 平面ABC ,∴平面ABC ⊥平面BCGE ,得证.(2)过B 作BH GC ⊥延长线于H ,连结AH ,因为AB ⊥平面BCGE ,所以AB GC ⊥ 而又BH GC ⊥,故GC ⊥平面HAB ,所以AH GC ⊥.又因为BH GC ⊥所以BHA ∠是二面角B CG A −−的平面角,而在BHC △中90BHC ∠=o ,又因为60FBC ∠=o 故60BCH ∠=o ,所以sin 60BH BC ==o而在ABH V 中90ABH ∠=o ,tanAB BHA BH ∠===B CG A −−的度数为30o .【点睛】很新颖的立体几何考题.首先是多面体粘合问题,考查考生在粘合过程中哪些量是不变的.再者粘合后的多面体不是直棱柱,建系的向量解法在本题中略显麻烦,突出考查几何方法.最后将求二面角转化为求二面角的平面角问题考查考生的空间想象能力.20.(1)见详解;(2) 01a b =⎧⎨=−⎩或41a b =⎧⎨=⎩. 【解析】 【分析】(1)先求()f x 的导数,再根据a 的范围分情况讨论函数单调性;(2) 根据a 的各种范围,利用函数单调性进行最大值和最小值的判断,最终得出a ,b 的值. 【详解】(1)对32()2f x x ax b =−+求导得2'()626()3af x x ax x x =−=−.所以有当0a <时,(,)3a −∞区间上单调递增,(,0)3a 区间上单调递减,(0,)+∞区间上单调递增; 当0a =时,(,)−∞+∞区间上单调递增;当0a >时,(,0)−∞区间上单调递增,(0,)3a 区间上单调递减,(,)3a +∞区间上单调递增. (2)若()f x 在区间[0,1]有最大值1和最小值-1,所以若0a <,(,)3a −∞区间上单调递增,(,0)3a 区间上单调递减,(0,)+∞区间上单调递增; 此时在区间[0,1]上单调递增,所以(0)1f =−,(1)1f =代入解得1b =−,0a =,与0a <矛盾,所以0a <不成立.若0a =,(,)−∞+∞区间上单调递增;在区间[0,1].所以(0)1f =−,(1)1f =代入解得1a b =⎧⎨=−⎩. 若02a <≤,(,0)−∞区间上单调递增,(0,)3a区间上单调递减,(,)3a +∞区间上单调递增. 即()f x 在区间(0,)3a 单调递减,在区间(,1)3a 单调递增,所以区间[0,1]上最小值为()3a f 而(0),(1)2(0)fb f a b f ==−+≥,故所以区间[0,1]上最大值为(1)f .即322()()13321a a ab a b ⎧−+=−⎪⎨⎪−+=⎩相减得32227a a −+=,即(0a a a −+=,又因为02a <≤,所以无解.若23a <≤,(,0)−∞区间上单调递增,(0,)3a 区间上单调递减,(,)3a +∞区间上单调递增. 即()f x 在区间(0,)3a 单调递减,在区间(,1)3a 单调递增,所以区间[0,1]上最小值为()3a f 而(0),(1)2(0)fb f a b f ==−+≤,故所以区间[0,1]上最大值为(0)f .即322()()1331a a ab b ⎧−+=−⎪⎨⎪=⎩相减得3227a =,解得x =23a <≤,所以无解.若3a >,(,0)−∞区间上单调递增,(0,)3a区间上单调递减,(,)3a +∞区间上单调递增. 所以有()f x 区间[0,1]上单调递减,所以区间[0,1]上最大值为(0)f ,最小值为(1)f即121b a b =⎧⎨−+=−⎩解得41a b =⎧⎨=⎩.综上得01a b =⎧⎨=−⎩或41a b =⎧⎨=⎩. 【点睛】这是一道常规的函数导数不等式和综合题,题目难度比往年降低了不少.考查的函数单调性,最大值最小值这种基本概念的计算.思考量不大,由计算量补充.21.(1)见详解;(2) 3或【解析】 【分析】(1)可设11(,)A x y ,22(,)B x y ,1(,)2D t −然后求出A ,B 两点处的切线方程,比如AD :1111()2y x x t +=−,又因为BD 也有类似的形式,从而求出带参数直线AB 方程,最后求出它所过的定点.(2)由(1)得带参数的直线AB 方程和抛物线方程联立,再通过M 为线段AB 的中点,EM AB ⊥u u u u v u u u v得出t 的值,从而求出M 坐标和EM u u u u u v 的值,12,d d 分别为点,D E 到直线AB 的距离,则12d d ==,结合弦长公式和韦达定理代入求解即可.【详解】(1)证明:设1(,)2D t −,11(,)A x y ,则21112y x =. 又因为212y x =,所以y'x =.则切线DA 的斜率为1x , 故1111()2y x x t +=−,整理得112210tx y −+=. 设22(,)B x y ,同理得222210tx y −+=.11(,)A x y ,22(,)B x y 都满足直线方程2210tx y −+=.于是直线2210tx y −+=过点,A B ,而两个不同的点确定一条直线,所以直线AB 方程为2210tx y −+=.即2(21)0tx y +−+=,当20,210x y =−+=时等式恒成立.所以直线AB 恒过定点1(0,)2. (2)由(1)得直线AB 的方程为12y tx =+. 由2122y tx x y ⎧=+⎪⎪⎨⎪=⎪⎩,可得2210x tx −−=, 于是2121212122,1,()121x x t x x y y t x x t +==−+=++=+212|||2(1)AB x x t =−==+.设12,d d 分别为点,D E 到直线AB的距离,则12d d ==.因此,四边形ADBE 的面积()(2121||32S AB d d t =+=+. 设M 为线段AB 的中点,则21,2M t t ⎛⎫+⎪⎝⎭, 由于EM AB ⊥u u u u r u u u r ,而()2,2EM t t =−u u u u r ,AB u u u r 与向量(1,)t 平行,所以()220t t t +−=,解得0t =或1t =±.当0t =时,3S =;当1t =±时S =因此,四边形ADBE 的面积为3或【点睛】此题第一问是圆锥曲线中的定点问题和第二问是求面积类型,属于常规题型,按部就班的求解就可以.思路较为清晰,但计算量不小.22.(1) 2cos ([0,])4πρθθ=∈,32sin ([,])44ππρθθ=∈,32cos ([,])4πρθθπ=−∈,(2) )6π,)3π,2)3π,5)6π. 【解析】 【分析】(1)将三个过原点的圆方程列出,注意题中要求的是弧,所以要注意的方程中θ的取值范围. (2)根据条件ρ=P 点的极坐标.【详解】(1)由题意得,这三个圆的直径都是2,并且都过原点.1:2cos ([0,])4M πρθθ=∈, 23:2cos()2sin ([,])244M πππρθθθ=−=∈,33:2cos()2cos ([,])4M πρθπθθπ=−=−∈.(2)解方程2cos [0,])4πθθ=∈得6πθ=,此时P 的极坐标为)6π解方程32sin [,])44ππθθ=∈得3π=θ或23πθ=,此时P 的极坐标为)3π或2)3π解方程32cos [,])4πθθπ−=∈得56πθ=,此时P 的极坐标为5)6π故P 的极坐标为)6π,)3π,2)3π,5)6π. 【点睛】此题考查了极坐标中过极点的圆的方程,思考量不高,运算量不大,属于中档题.23.(1) 43;(2)见详解. 【解析】【分析】(1)根据条件1x y z ++=,和柯西不等式得到2224(1)(1)(1)3x y z −++++≥,再讨论,,x y z 是否可以达到等号成立的条件.(2)恒成立问题,柯西不等式等号成立时构造的,,x y z 代入原不等式,便可得到参数a 的取值范围.【详解】(1)22222222[(1)(1)(1)](111)[(1)(1)(1)](1)4x y z x y z x y z −++++++≥−++++=+++=故2224(1)(1)(1)3x y z −++++≥等号成立当且仅当111x y z −=+=+而又因1x y z ++=,解得531313x y z ⎧=⎪⎪⎪=−⎨⎪⎪=−⎪⎩时等号成立 所以222(1)(1)(1)x y z −++++的最小值为43. (2) 因为2221(2)(1)()3x y z a −+−+−≥,所以222222[(2)(1)()](111)1x y z a −+−+−++≥. 根据柯西不等式等号成立条件,当21x y z a −=−=−,即22321323a x a y a z a +⎧=−⎪⎪+⎪=−⎨⎪+⎪=−⎪⎩时有22222222[(2)(1)()](111)(21)(2)x y z a x y z a a −+−+−++=−+−+−=+成立. 所以2(2)1a +≥成立,所以有3a −≤或1a ≥−.【点睛】两个问都是考查柯西不等式,属于柯西不等式的常见题型.。
2019年高考新课标(全国卷3)理数-真题(word版-含解析)(汇编)
2019年高考新课标全国3卷理科数学一、选择题:本题共12小题,每小题5分,共60分。
1.已知集合2{1,0,1,2}{1}A B x x =-=≤,,则A B =A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,22.若(1i)2i z +=,则z = A .1i --B .1+i -C .1i -D .1+i3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为 A .0.5B .0.6C .0.7D .0.84.(1+2x 2 )(1+x )4的展开式中x 3的系数为 A .12B .16C .20D .245.已知各项均为正数的等比数列{a n }的前4项为和为15,且a 5=3a 3+4a 1,则a 3= A . 16B . 8C .4D . 26.已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则 A .e 1a b ==-,B .a=e ,b =1C .1e 1a b -==,D .1e a -=,1b =-7.函数3222x xx y -=+在[]6,6-的图象大致为 A .B .C .D .8.如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则A .BM =EN ,且直线BM 、EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM 、EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线9.执行下边的程序框图,如果输入的ε为0.01,则输出s 的值等于 A.4122-B.5122-C.6122-D.7122-10.双曲线C :2242x y -=1的右焦点为F ,点P 在C 的一条渐进线上,O 为坐标原点,若=PO PF ,则△PFO 的面积为A.4B.2C. D.11.设()f x 是定义域为R 的偶函数,且在()0,∞单调递减,则 A .f (log 314)>f (322-)>f (232-) B .f (log 314)>f (232-)>f (322-)C .f (322-)>f (232-)>f (log 314) D .f (232-)>f (322-)>f (log 314)12.设函数()f x =sin (5x ωπ+)(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论: ①()f x 在(0,2π)有且仅有3个极大值点;②()f x 在(0,2π)有且仅有2个极小值点 ③()f x 在(0,10π)单调递增;④ω的取值范围是[1229510,) 其中所有正确结论的编号是( ) A .①④ B .②③ C .①②③ D .①③④ 二、填空题:本题共4小题,每小题5分,共20分。
2019年高考真题—普通高等学校统一考试—理科数学(全国卷Ⅲ)—解析版_
《2019年高考真题—普通高等学校统一考试—理科数学(全国卷Ⅲ)—解析版_》摘要:有且仅有极值有且仅有极值单调递增取值围是其所有正确结论编是 B 答案析根据题画出草图由图可知由题可得得所以得故对,3已知单位向量且若则答案析∵∴ ∵∴ 记等差数列前项和若则答案析设该等差数列公差∵∴故∴ 5设、椭圆两焦上且象限若等腰三角形则坐标________ 答案析已知椭圆可知由上且象限故等腰三角形,,代入可得故坐标 6学生到工厂劳动实践利用打印技术制作模型,() 当单调递增当令得或令得单调递增单调递减 当令得或令得单调递增单调递减综上可得当单调递增当单调递增单调递减当单调递增单调递减()由()结论可知当单调递增∴满足题当若即则单调递减∴满足题若即则单调递减单调递增 ∵ ∴当 由 可得与矛盾故不成立当 由 可得与矛盾故不成立综上可知或满足题已知曲线直线上动作两条切线,...年普通高等学校招生全国统考试(全国卷)理科数学.选择题、已知集合则() BB 答案答所以若则() B 答案答 , 3《西游记》《三国演义》《水浒传》和《红楼梦》是国古学瑰宝并称国古说四名著某学了校学生四名著情况随机调了00位学生其《西游记》或《红楼梦》学生共有90位《红楼梦》学生共有80位《西游记》且《红楼梦》学生共有60位则该校《西游记》学生人数与该校学生总数比值估计值() B 答案答展开式系数() B 答案答由题可知含项所以系数 5已知各项正数等比数列前项和且则() B 答案答设该等比数列首项公比由已知得因且则可得又因即可得则 6 已知曲线处切线方程则() , B, , , 答案析令则得可得故选 7函数图像致()B 答案 B 析∵∴∴奇函数排除选项又∵根据图像进行判断可知选项B合题 8如图正方形心正三角形平面平面是线段则()且直线是相交直线 B且直线是相交直线且直线是异面直线且直线是异面直线答案 B 析因直线都是平面直线且不平行即直线是相交直线设正方形边长则由题可得根据余弦定理可得所以故选B 9执行右边程序框图如输出则输出值等() B 答案析次循环;二次循环;三次循环;四次循环;… 七次循环循环结束可得故选 0 双曲线右焦条渐近线坐标原若则面积() B 答案析由双曲线方程可得条渐近线方程;做垂直因得到;所以;故选; 若是定义域偶函数且单调递减则() B 答案析依据题函数偶函数且函数单调递减则函数上单调递增;因;又因;所以;故选设函数已知有且仅有零下述四结论有且仅有极值有且仅有极值单调递增取值围是其所有正确结论编是 B 答案析根据题画出草图由图可知由题可得得所以得故对;令得∴图像轴右侧值值故对;∵∴有或极值故错;∵∴故对二填空题 3已知单位向量且若则答案析∵∴ ∵∴ 记等差数列前项和若则答案析设该等差数列公差∵∴故∴ 5设、椭圆两焦上且象限若等腰三角形则坐标________答案析已知椭圆可知由上且象限故等腰三角形,,代入可得故坐标 6学生到工厂劳动实践利用打印技术制作模型如图该模型长方体挖四棱锥所得几何体其长方体心分别所棱,打印机所用原密不考虑打印损耗则作该模型所原质量答案答三.答题 7了甲乙两种离子鼠体残留程进行如下实验将00只鼠随机分成两组每组00只其组鼠给甲离子溶液组鼠给乙离子溶液每只鼠给溶液体积相摩尔溶相段用某种科学方法测算出残留鼠体离子分比根据实验数据分别得到如下直方图记事件“乙离子残留体分比不低55”根据直方图得到估计值070 ()乙离子残留分比直方图值;()分别估计甲乙离子残留分比平值(组数据用该组区值代表)答案见析答()依题得得()得到甲离子残留分比平值05,乙离子残留分比平值57 8角对边分别已知 (B; () 若锐角三角形且面积取值围答案()()见析析因;结合正弦定理,得,即;得到;()因,所以又因,;又因(因锐角若越越则越越;越);所以所以 9图是由矩形和菱形组成平面图形其将其沿折起使得与重合连结如图()证明图四共面且平面平面;()图二面角答案见析析证明()由题知又平面又平面平面平面 ()分别取连结则四边形棱形且60 又平面即平面以坐标原分别轴轴轴建立空直角坐标系设平面法向量, 令则, 得到平面法向量 ,故二面角 0已知函数()讨论单调性;()是否存使得区值且值?若存出所有值;若不存说明理由答案见析析() 当单调递增 当令得或令得单调递增单调递减 当令得或令得单调递增单调递减综上可得当单调递增当单调递增单调递减当单调递增单调递减()由()结论可知当单调递增∴满足题当若即则单调递减∴满足题若即则单调递减单调递增 ∵ ∴当 由 可得与矛盾故不成立当 由 可得与矛盾故不成立综上可知或满足题已知曲线直线上动作两条切线,切分别是,, ()证明直线定; ()若以圆心圆与直线相切,且切线段,四边形面积答案见析;答()当设直线方程与曲线立化简得由直线与曲线相切则有得并得坐标分别所以直线方程;当横坐标不设直线方程()由已知可得直线不坐标原即立直线方程与曲线方程可得消并化简得∵有两交∴ 设根据韦达定理有由已知可得曲线抛物线等价函数图像则有则抛物线上切线方程① 理抛物线上切线方程② 立①②并消可得由已知可得两条切线交直线上则有化简得∵∴ 即即得检验满足条件所以直线方程定综上所述直线定得证()由()得直线方程当即直线方程坐标以圆心圆与直线相切恰;当直线方程与曲线方程立化简得则坐标由已知可得即得由对称性不妨取则直线方程得坐标到直线距离到直线距离则综上所述四边形面积或四.选做题(选)如图极坐标系,,,,弧,,所圆圆心分别是曲线是弧,曲线是弧曲线是弧()分别写出,,极坐标方程;()曲线由,,构成若上且,极坐标答案见答答()由题可知,,直角坐标方程所以 ,,极坐标()或所以极坐标 3设且()值;()若成立证明或答案见析析()根据柯西不等式故当且仅当即取值; ()方法根据柯西不等式证得或方法二令有证得或。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(全国III 卷)2019年高考数学等值试题预测卷 理注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合A ={x |x 2≤x },B ={x |≥1},则A ∩B = 1xA .B .(1]-∞,[01],C .D .∪(01],(1]-∞,(01],2.已知i 为虚数单位,则= 2i1i+-A .B .C .D .31i 22-31i 22+13i 22-13i 22+3.“0<x <1”是“sin x 2<sin x ”的 A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4.运行如图所示的程序框图,设输出的数据构成集合A ,从集合A 中任取一个元素a ,则函数在(0,+∞)上是增函a y x =数的概率为A .B .C .D .123545345.若函数(a >0,且a ≠1)在区间[2,4]上的最大值与最小值之差为2,则实数a =()x f x a =AB C .D .2126.我国古代木匠精于钻研,技艺精湛,常常设计出巧夺天工的建筑,如图.在一座宫殿中,有一件特别的“柱脚”的三视图如右图所示.则其体积为A .+4πB .8383+8π C .8+4πD .8+8π7.已知斜率为2的直线l 过抛物线C :y 2=2px (p >0)的焦点F ,且与抛物线交于A ,B 两点,若线段AB 的中点M 的纵坐标为1,则p = A .1BC .2D .48.将函数的图象向右平移(>0)个单位,再向上平移1个单位,()sin 22f x x x =+ϕϕ所得图象经过点(,1),则的最小值为 8πϕA .B .C .D .512π712π524π724π9.已知双曲线(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1作x 2+y 2=a 2的切22221x y ab-=线,交双曲线右支于点M ,若∠F 1MF 2=45º,则双曲线的离心率为A B C .2 D .310.有一个长方体木块,三个侧面积分别为8,12,24,现将其削成一个正四面体模型,则该正四面体模型棱长的最大值为 A .2B .C .4D .11.已知在平面直角坐标系xOy 中,O 为坐标原点,A (0,2),|OB |2+|OA |2=20,若平面内点P 满足,则|PO |的最大值为3PB PA =A .4B .5C .6D .712.已知A 、B 是函数(其中a >0)图象上的两个动点,点P (a ,0),若2e ()e x a x x a f x x a --⎧≥⎪=⎨<⎪⎩,,,的最小值为0,则函数的最小值为PA PB⋅()fx 主视图左视图俯视图A .B .C .D . 21e -1e -21e 1e二、填空题:本大题共4小题 每小题5分,共20分。
13.已知函数则=________.2log 1()(3)1x x f x f x x >⎧=⎨+≤⎩,,,,(2)f -14.已知向量a ,b 的夹角为45º,若a =(1,1),|b |=2,则|2a +b |=________.15.记,则=________.7270127(()(2)11()1)x a a x a x a x +=+++++⋅⋅⋅++12a a ++6a ⋅⋅⋅+16.已知△ABC 的内角A ,B ,C 所对边分别为a ,b ,c ,且a cos C -c cos A =,则35b tan(A -C )的最大值为________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤。
第17~21题为必考题,每个试题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
(一)必考题:(共60分) 17.(本小题满分12分)设等比数列{a n }的公比为q ,S n 是{a n }的前n 项和,已知a 1+2,2a 2,a 3+1成等差数列,且S 3=4a 2-1,q >1.(1)求{a n }的通项公式; (2)记数列{}的前n 项和为T n ,试问是否存在n ∈N *使得T n <3?如果存在,请求nna 出n 的值;如果不存在,请说明理由. 18.(本小题满分12分)为加快经济转型升级,加大技术研发力度,某市建立高新科技研发园区,并力邀某高校入驻该园区.为了解教职工意愿,该高校在其所属的8个学院的教职员工中作了“是否愿意将学校整体搬迁至研发园区”的问卷调查,8个学院的调查人数及统计数据如下:调查人数(x ) 10 20 30 40 50 60 70 80 愿意整体搬迁人数(y )817253139475566(1)请根据上表提供的数据,用最小二乘法求出变量y 关于变量x 的线性回归方程(保留小数点后两位有效数字);若该校共有教职员工2500人,请预测该校ˆˆˆybx a =+ˆb 愿意将学校整体搬迁至研发园区的人数;(2)若该校的8位院长中有5位院长愿意将学校整体搬迁至研发园区,现该校拟在这8位院长中随机选取4位院长组成考察团赴研发区进行实地考察,记X 为考察团中愿意将学校整体搬迁至研发园区的院长人数,求X 的分布列及数学期望.,,ˆˆay b x =-⋅8116310i ii x y==∑.82120400ii x==∑19.(本小题满分12分)如图,在三棱柱ADE -BCF 中,侧面ABCD 是为菱形, E 在平面ABCD 内的射影O 恰为线段BD 的中点.(1)求证:AC ⊥CF ;(2)若∠BAD =60º,AE =AB ,求二面角E -BC -F 的平面角的余弦值.20.(本小题满分12分)已知椭圆E :(a >b >0),A 、B 分别为E 的左顶点和上顶点,22221x y a b+=若AB 的中点的纵坐标为.F 1,F 2分别为E 的左、右焦点. 12(1)求椭圆E 的方程;(2)设直线L :与E 交于M ,N 两点,△MF 1F 2,△NF 1F 2的重心分别为G ,22m x my =+H .若原点O 在以GH 为直径的圆内,求实数m 的取值范围.21.(本小题满分12分)已知函数(a ∈R ),且在(0,+∞)上满足≤0恒成立. 2()(1)ln f x a x x =-+()f x ()f x (1)求实数a 的值; (2)令在上的最小值为,求证:.()()f x axg x x x a+=⋅-()a +∞,m 11()10f m -<<-(二)选考题:共10分.请考生在第22、23题中任选一题做答。
如果多做,则按所做的第一题记分。
22. [选修4—4:坐标系与参数方程](10分)在平面直角坐标系中,P (2,0).以坐标原点为极点,x 轴正半轴为极轴建立极xOy 坐标系,已知曲线C 的极坐标方程为,点Q (ρ,θ)(0≤θ≤)为C 上的动点,M 2ρ=π为PQ 的中点.(1)请求出M 点轨迹C 1的直角坐标方程;(2)设点A 的极坐标为A (1,π),若直线l 经过点A 且与曲线C 1交于点E ,F ,弦EFABCDEFO的中点为D ,求的取值范围.ADAE AF⋅23. [选修4—5:不等式选讲](10分)已知a >0,b >0.(1)若关于x 的不等式|x +3|-|x -1|≤a 2-3a 对任意实数x 都成立,求实数a 的最小值;(2.理科数学(全国Ⅲ卷)参考答案及评分标准一、选择题:每小题5分,共60分.1.C 2.D 3.A 4.A 5.B 6.C 7.C 8.D 9.B 10.B 11.B 12.D 二、填空题:每小题5分,共20分.13.2 14.15.126 16.34三、解答题:共70分.17.解:(1)∵ a 1+2,2a 2,a 3+1成等差数列,∴ 4a 2=a 1+2+a 3+1= a 1+a 3+3,即 4a 1q =a 1+a 1q 2+3,①…………………………………………………………………2分 由S 3=4a 2-1可得a 1+a 1q +a 1q 2=4a 1q -1,即a 1-3a 1q +a 1q 2+1=0,②…………………3分 联立①②及q >1解得a 1=1,q =2,∴ .……………………………………………………………………………5分 12n n a -=(2)T n =, 01211232222n n-+++⋅⋅⋅+ T n =,121231123122222n n n n--+++⋅⋅⋅++两式作差得T n =120121*********n n n -+++⋅⋅⋅+- =, 1122212212n n n n n -+-=--于是.……………………………………………………………………8分 1242n n n T -+=-∵ n ≥2时,, 112121440222n n n n n n n nT T ----++-=--+=>∴ {T n }(n ∈N *)单调递增.……………………………………………………………10分 而T 1=1<3,T 2=2<3,T 3=<3,T 4=>3, 114134∴ 当n =1,2,3时,T n <3.…………………………………………………………12分18.解:(1)由已知有,,, 45x =36y =12221..1631084536ˆ0.8020400845.ni i i nii x y n x ybxn x ==--⨯⨯==≈-⨯-∑∑,…………………………………………………………………4分 ˆ360.80450a=-⨯=故变量y 关于变量x 的线性回归方程为y =0.80x ,……………………………………5分所以当x =2500时,y =2500×0.80=2000. ………………………………………… 6分 (2)由题意可知X 的可能取值有1,2,3,4.……………………………………7分,2253483(2)7C C P X C ⋅===. …………………………………11分45481(4)14C P X C ===所以X 的分布列为E (X )=. ……………………………………………12分 1331512341477142⨯+⨯+⨯+⨯=19.(1)证明:如图,连接AC ,易知AC ∩BD =O .∵ 侧面ABCD 是菱形, ∴ AC ⊥BD .又由题知EO ⊥面ABCD ,AC 面ABCD , ⊂∴ EO ⊥AC ,X 1 2 3 4P114 37 37 114而EO ∩BD =O ,且EO ,BD 面BED , ⊂∴ AC ⊥面BED . ∴ AC ⊥ED . ∵ CF //ED ,∴ AC ⊥CF .……………………………………………………………………………5分 (2)解:由(1)知AO ⊥BO ,OE ⊥AO ,OE ⊥BO ,于是以O 为坐标原点,OA ,OB ,OE 所在直线分别为x ,y ,z 轴建立空间直角坐标系,如图.设AB =AE =2. ∵ 在菱形ABCD 中,∠BAD =60º, ∴ AO,BO =1.在Rt △EAO 中,EO .于是O (0,0,0),A0,0),B (0,1,0),E (0,0,1),C ,0,0),∴ ,1,0),=(0,-1,1),,-1,0).…………………7AB BE BC分又由, 可解得F ,1,1),于是,0,1). ……………8分EF AB = BF设平面BCE 的法向量为n 1=(x 1,y 1,z 1),则由n 1•=0,n 1•=0得BEBC令y 1=1,则x 1=, z 1=1,即n 1=(1,1).…………10分 111100yz y -+=⎧⎪⎨-=⎪⎩,,同理可得平面BCF 的法向量n 2,-1,1). ∴ cos<n 1,n 2>==1212⋅⋅n n n n 17故二面角E -BC -F 的平面角的余弦值为.…………………………………………12分 1720.解:(1)设椭圆的半焦距为c ,由题意有A (-a ,0),B (0,b ),于是,且, c a =122b =结合a 2=b 2+c 2,解得a =2,b =1,∴ 椭圆E 的方程为.………………………………………………………4分2214x y +=(2)设,,11()M x y ,22()N x y ,由已知联立方程消去x ,得,222214m x my x y ⎧=+⎪⎪⎨⎪+=⎪⎩,,4223(4)404m m y m y +++-=由可得,解得m 2<.0∆>424160m m --<2+且 ………………………………………………7分 341212221644(4)m m y y y y m m --+==++,,由题意得△MF 1F 2,△NF 1F 2 的重心,……………………8分1122((3333x y x yG H ,,,∵ 原点O 在以GH 为直径的圆内,∴ ,即.………………………………………………9分0OG OH ⋅< 121209x x y y +<∵34212121212(1)()24m m x x y y m y y y y +=++++, 433422216(1)()0244(4)4m m m m m m m --=+++<++整理得, 即m 4-16m2-16=0, 422161604(4)m m m --<+变形为, 即m 2<4,满足m 2, ……………………11分22(54)(4)0m m +-<故-2<m <2. ……………………………………………………………………………12分 21.解:(1)当x >0时,原函数可化为,则, ()(1)2ln f x a x x =-+22()axf x a x x-'=-=………………………………………………1分当a ≤0时,>0,故在上单调递增,()f x '()f x (0)+∞,由于,所以当时,,不合题意.………………………2分(1)=0f 1x >()(1)0f x f >=当时,, 0a >2()()a x a f x x--'=∴ 当时,;当时,, 20x a <<()0f x '>2x a>()0f x '<所以在上单调递增,在上单调递减,()f x 2(0)a ,()f x 2()a +∞,即.max 2()()f x f a=22ln 22ln a a =-+-所以要使≤0在时恒成立,则只需≤0,()f x (0)+∞,max ()f x 亦即≤0.…………………………………………………………3分 22ln 22ln a a -+-令,则, ()22ln 22ln a a a ϕ=-+-22()1a a a aϕ-'=-=∴ 当时,;当时,, 02a <<()0a ϕ'<2a >()0a ϕ'>即在上单调递减,在上单调递增.()a ϕ(02),(2)+∞,又,所以满足条件的只有2,即.…………………………………5分 (2)0ϕ=a 2a =(2)由(1)知a =2,, ()222ln f x x x =-+∴ ,()()f x ax g x x x a +=⋅-22ln (2)2x x xx x +=>-于是.…………………………………………………………6分22(2ln 4)()(2)x x g x x --'=-令,则, ()2ln 4s x x x =--22()1x s x x x-'=-=由于,所以,即在上单调递增; 2x >()0s x '>()s x (2)+∞,又,,(8)0s <(9)0s >∴ ,使得,即, 0(89)x ∃∈,0()0s x =002ln 4x x =-且当时,;当时,, 02x x <<()0s x <0x x >()0s x >即在上单调递减;在上单调递增, ()g x 0(2)x ,0()x +∞,∴ .……………………………10 分 min0()()g x g x =000022ln 2x x x x +=-2000022x x x x -==-即,0m x =∴ ,0()()f m f x =000222ln 2(1110)x x x =-+=--∈--,即.…………………………………………………………………1211()10f m -<<-分22.解:(1)∵ C 的直角坐标方程为x 2+y 2=4,…………………………………………1分∴ 点Q (x 0,y 0)满足x 2+y 2=4(y ≥0). …………………………………………………2分设M (x ,y ),则,即x 0=2x -2,y 0=2y , 00222x yx y +==∴ (2x -2)2+(2y )2=4(y ≥0),整理得C 1的轨迹方程为(x -1)2+y 2=1(y ≥0).…………………………………………5分 (2)直线l 过点A (-1,0),所以直线l 的参数方程为(θ为参数,θ为倾斜角,)1cos sin x t y t θθ=-+⎧⎨=⎩,,[0)6πθ∈,代入C 1:,24cos 30t t θ-+=则12124cos 3t t t t θ+=⎧⎨=⎩,,∴. ……………………………………10 分 12122cos 22]..33t t AD AM AN t t θ+==∈,23.解:(1)∵ |x +3|-|x -1|=|x +3|-|1-x |≤|(x +3)+(1-x )|=4, ……………………………3分∴ a 2-3a ≥4,解得a ≥4,或a ≤-1(舍去).∴ a 的最小值为4.……………………………………………………………………5分 (2)∵≥∴).…………………………………………………………10分 +。