Knowledge-based verication of clinical guidelines by detection of anomalies

合集下载

循证医学基础知识

循证医学基础知识

循证医学基础知识循证医学基础知识一、循证医学定义循证医学(Evidence-based Medicine,EBM)即遵循证据的医学,是国际临床领域近年来迅速发展起来的一种新的医学模式。

其核心思想是:任何医疗决策的确定都应基于客观的临床科学研究依据;任何临床的诊治决策,必须建立在当前最好的研究证据与临床专业知识和患者的价值相结合的基础上。

这是David Sackett 教授对于循证医学的定义。

这句话定义了临床医学的新模式,强调最佳证据、专业知识和经验、患者需求三者的结合,并且指出三者缺一不可,相辅相成,共同构成循证思维的主体。

医学的循证化要求临床医生从更多方面来把握疾病,把握医患关系。

其结果是医生和患者形成诊治联盟,使患者获得最好的临床结果和生命质量。

二、循证医学基本思想任何医疗决策的确定,都要基于临床科研所取得的最佳证据,即无论临床医生确定治疗方案和专家确定治疗指南,都应依据现有的最佳证据进行;证据是循证医学的基石,其主要来源是医学期刊的研究报告,特别是临床随机对照试验(RCT)的研究成果,以及对这些研究的Meta分析;运用循证医学思想指导临床实践,最关键的内容是根据临床所面临的问题进行系统的文献检索,了解相关问题的研究进展,对研究结果进行科学评价以获得最佳证据。

四、循证医学的起源与发展希波克拉底著述中将观察性研究首次引入医学领域;中国宋代的《本草图经》提出通过人体试验验证人参效果;中国清朝《考证》中第一次提出循证思维;1747年苏格兰航海外科医生Lind 进行首次治疗坏血病的对照试验,试验橘子、柠檬及其他干预的疗效,与其同时,其他研究人员将观察性试验和定量试验研究,创造性的陆续引入内科学和外科学;1816年Alexander Hamilton 首次报道爱丁堡的一项大型对照试验,评价放血疗法的效果,这是采用交替法产生对照组的最早记载之一;1898年丹麦医生Fibiger通过半随机对照试验,验证血清治疗白喉的效果;1904年Pearson接种肠热病疫苗与生存率之间的相关关系的研究,开创了将多个研究资料合并进行统计学分析的先例;1907年Gold Berger鉴定伤寒菌尿症的文献中,制定特定标准选择、提取分析的资料以及统计学分析,成为Meta-分析的雏形;1948年英国领导开展了世界上第一个临床随机对照试验(RCT),肯定了链霉素治疗肺结核的疗效;1982年Thomas C Chalmers提出累计性Meta-分析概念,即将每一项新的随机试验结果,累加到已知的针对某病某干预措施的随机临床试验Meta-分析结果中;1987年Cochrane 根据妊娠与分娩的RCT结果撰写的系统评价,成为RCT和系统评价真正的里程碑,同时指出其他专业也应遵循这种方法;1992年底,英国国家卫生服务中心成立英国Cochrane中心,旨在促进和协调医疗保健方面RCT系统评价的生产和保存,以便依据最好的科学进展和研究结果服务于临床医疗、卫生管理和高层决策;1996年中国循证医学/Cochrane中心正式成立,出版了由王家良教授主编的中国第一部循证医学专著。

基于文献的生物医学知识发现方法与工具

基于文献的生物医学知识发现方法与工具
病毒的昆虫媒介传播(insect vectors) 空气传播(air) 在空气中的稳定性(stability of viruses in air)


通过与A和C有共同联系B找出更多符合条件的病毒。 将得到的文献经过一些系列的处理,Arrowsmith列 出了三个有意义的B-LIST(病毒的集合),通过进 一步的统计学分析和查阅文献,最终找出相对有意 义的病毒(B)
发现科研机构间潜在的合作方向
利用Arrowsmith程序,发现美国斯坦福大学 和哥伦比亚大学在医学信息学研究领域的潜 在合作方向 尝试将这种方法运用到寻求发现科研机构合 作与交流的领域中。 结果表明,利用Arrowsmith所挖掘的科研合 作与交流的内容详细、明确,能体现出研究 所使用的具体方法和侧重点,能更好地体现 出两个机构研究内容的相似点(可以合作之 处)和不同点(可以相互交流、学习之处)。

开放式知识发现
开放式知识发现的过程是,对某个初始研究 主题A,在MEDLINE的标题字段检索其相关 文献,寻找与A在标题中共同出现的中间词B, 通过筛选得到有一定意义的B,进而重复上述 过程,得到目标词C。 开放式挖掘初衷是从某个疾病或药物初始, 寻找疾病的潜在病因和治疗方法或者药物的 潜在治疗应用。
Medical Matrix


每一大类下再根据内容的性质分为新闻(News)、全文和 多媒体(Full Text/MultiMedia)、摘要(Abstracts)、参 考书(Textbooks)、主要网址(Major Sites/Home Pages)、 操作手册(Procedures)、实用指南(Practice Guidelines/FAQS)、病例(Cases)、临床和和病理图像 (Images、Path/Clinical)、患者教育(Patient Education)、教学资料(Educational Materials)等亚类。 对链接的网址按一到五个星进行分级,并且附有简明扼要的 评论,便于使用者事先决定是否进入其网页进一步阅读,以 节省时间。另外还提供免费的mailing list,定期发布网上医学 资源变化情况的通知。

总血红蛋白测量

总血红蛋白测量
Science. 2007;36:235-242. 7 Patel KP, et al. Hemoglobin test result variability and cost analysis of eight different analyzers during open heart surgery. JECT 2007;39:10-17. 8 De Louw A, et al. Reliability of HemoCue in patients with gastrointestinal bleeding. Van Intensive Care Medicine. 2007 ;33 :355-358. 9 Argawal R, et al. Bedside hemoglobinometry in hemodialysis patients: Lessons from point of care testing. ASAIO J. 2001.;47(3):240-3. 10 Gehring H, et al. Accuracy of point of care testing (POCT) for determining hemoglobin concentrations. Acta Anaesthesiol Scand. 2002;46:980-86. 11 Mokken FC, et al. Differences in peripheral arterial and venous hemorheologic parameters. Ann Hematol 1996;73:135-137. 12 Yang ZW, et al. Comparison of blood counts in venous, fingertip, and arterial blood and their measurement variation. Clin. Lab. Haem. 2001;23:155-159. 13 Morris SS, et al. Precision, accuracy, and reliability of hemoglobin assessment with use of capillary blood. Am J Clin Nutr 1999 ;69 :1243-8. 14 Bouton, FR, et al. Improved strategy for prospective blood donors for anemia. Transfus Med 1994;4:221-225. 15 Looker AC, et al. Within person variance in biochemical indicators of iron status: Effects on prevalence indicators. Amer J Clin Nutr 1990;52:541-7. 16 Burger S, et al. A Procedure to estimate the accuracy and reliability of HemoCue measurements of survey workers. 2004. 17 Martin DT, et al. Blood Testing for Professional Cyclists: What is a fair Hematocrit Value? Dept of Physiology and Applied Nutrition, Australian Institute of Sport. 18 Gore CJ, et al. Plasma volume, osmolarity, total protein and electrolytes during treadmill running and cycle ergometry exercise. European Jornal of Applied Physiology

journal of evidence based medicine经验

journal of evidence based medicine经验

journal of evidence based medicine经验一、引言在当今医学领域,证据为基础的医学(Evidence-Based Medicine,EBM)已成为医疗实践和教学的重要理念。

在这个过程中,经验作为医学实践的基础,对于提高医疗服务质量和患者满意度具有重要意义。

然而,如何在证据为基础的医学中充分发挥经验的作用,成为了一个值得探讨的问题。

二、证据为基础的医学的含义1.定义证据为基础的医学,是指通过系统地搜索、评估和应用最新、最全面的科学研究证据,为临床决策提供依据的医学实践模式。

这种模式强调医生在临床决策过程中要充分考虑科学研究证据的质量和可靠性。

2.核心理念EBM的核心理念包括:患者为中心、疗效评估、持续更新知识和技能、医生与患者共同决策。

这些理念要求医生在临床实践中,始终将患者的利益放在首位,注重疗效评估,不断学习新知识,以提高医疗服务质量。

3.实践应用在实际医疗工作中,证据为基础的医学要求医生运用批判性思维,对临床问题进行系统性地分析和解决。

医生需要通过检索专业数据库、评估研究质量、结合患者特点,为患者提供最佳的治疗方案。

三、经验在证据为基础的医学中的作用1.经验的价值经验是医学发展的基石,尤其在急诊、重症等领域,医生的经验对于挽救患者生命至关重要。

在证据为基础的医学中,经验具有不可替代的价值。

2.经验的局限性然而,单纯依赖经验进行临床决策存在一定的局限性。

首先,医生的经验受个人能力、时间和病例数的限制;其次,经验积累的过程可能受到错误观念和不当做法的影响;最后,经验很难系统地传承和更新。

3.经验与证据的关系经验和证据之间并非对立关系,而是相辅相成的。

经验为证据的积累提供了基础,而证据则为经验的传承和拓展提供了依据。

在证据为基础的医学中,医生应充分运用自己的经验,同时不断更新知识,将经验与证据相结合,为患者提供最佳的治疗方案。

四、如何在证据为基础的医学中运用经验1.收集和整理经验数据医生应充分利用临床工作机会,积累和整理个人及团队的临床经验。

2022年专升本临床医学综合课件

2022年专升本临床医学综合课件

of action and factors influencing
treatment decisions.
Clinical Pathology
Exploring the Laboratory
Understanding Hematology Intro to Histopathology
Gain insights into the various
Cardiovascular
Anatomy
The Respiratory System
in Depth
Delve into the complexities of
Uncover the mechanics of
structures and functions of the
the heart and circulatory
comprehensive physical examinations,
including inspection, palpation,
percussion, and auscultation.
3
Assessing Vital Signs
Learn the significance of measuring
vital signs and interpreting the results
to identify potential health issues.
Medical Ethics and Law
Principles of Medical
Ethics
Patient
Confidentiality and
2
Interviewing and
Communication Skills

临床领导力量表的汉化及信度效度检验

临床领导力量表的汉化及信度效度检验

论著Research Papers临床领导力量表的汉化及信度效度检验李全万巧琴杨悦[摘要]目的:对临床领导力量表(Clinical Leadership Survey,CLS)进行翻译与跨文化调试,检验中文版CLS的信度和效度,为我国临床护士领导力研究提供有效工具。

方法:通过直译-回译法将CLS翻译为中文,通过专家咨询法和对40名临床护士的预调查进行跨文化调试;便利抽取315名临床护士进行正式调查,4名专家进行内容效度评价,以检验中文版CLS的信度和效度。

结果:中文版CLS由5个维度,15个条目构成。

项目分析结果显示,条目临界比CR值均>3.0,条目与量表总分相关系数为0.680〜0.829(P<0.01);验证性因子分析显示,L/df=2.413,RMSEA=0.079,TLI-0.917,CFI=0.941;内容效度评价结果显示,条目水平的内容效度指数与量表总体内容效度指数均为1;信度分析结果显示,量表总体Cronbach5s a系数为0.942,各维度Cronbach,s a系数为0.748-0.889,重测信度为0.892(P<0.001)o结论:中文版CLS信度和效度良好,可作为评价我国临床护士领导力的有效工具。

[关键词1临床领导力;护士;临床护士领导力;信度;效度[中图分类号]R47[DOI]10.3969/j.issn.l672-1756.2021.02.006Reliability and validity of the Chinese version of the Clinical Leadership Survey/LI Quan,WAN Qiaoqin,YANG Yue// Nursing School of Peking University,Beijing,100191,China III Chinese Nursing Management-2021,21⑵:186-190 [Abstract]Objective:To conduct translation and cross-cultural modification of the Clinical Leadership Survey(CLS), to test the reliability and validity of the Chinese version.Methods:The Chinese version of CLS was developed through the process of translation and back-translation,conduct cross-cultural modification through expert consultatio n and pi l ot-test.Totally315clinical nurses were investigated through convenience sampling for test the reliability and validity of Chinese version of CLS.Four experts conducted content validity evaluation.Results:The Chinese version of CLS consisted of 5factors and15items.The items analysis indicated that the CR was more than3.0and correlation coefficients between the items and the total score were0.680-0.829(P<0.01).The confirmatory factor analysis showed that x2/(^/=2.413, RMSEA=0.079,TLI=0.917and CFI=0.94L The content validity results were confirmed with I-CVIs and S-CVI of1.The Cronbach's alpha coefficient for the overall scale was0.942,and ranging from0.748-0.889for each factor.The test-retest reliability was0.892(P<0.001).Conclusion:The Chinese version of CLS has proved to be reliable and valid.It can be used asa valid tool to evaluate the leadership of clinical nurses in China.[Keywords]clinical leadership;nurse;staff nurse clinical leadership;reliability;validity作者单位:北京大学护理学院,100191(李全,万巧琴);北京大学口腔医院口腔颌面外科(杨悦)作者简介:李全,硕士,护师通信作者:万巧琴,博士,副教授,E-mail:qqwan05@;杨悦,硕士,主任护师,E-mail:yangyuekq@共识冲华内分泌代谢杂志,2020,36⑻:643653.[11]杨涛,杨宇峰,石岩.2型糖尿病运动处方的建立.中医药临床杂志,2018,30(1):11-14.[12]Scallan JP,Zawieja SD,Castorena-GonzalezJA,et al.Lymphatic pumping:mechanics,mechanisms and malfunction.J Physiol,2016,594(20):5749-576&[1引刘艳飞,刘均娥,麦艳华,等.近10年来乳腺癌术后上肢淋巴水肿的发生状况及危险因素分析•石家庄:第五届京津冀护理学研究生学术论坛论文集,2020. [14]王鹤玮,贾杰.乳腺癌术后上肢淋巴水肿的检查与评估研究进展.中国康复理论与实践,2017,23(9):1001-1006.[15]Norman SA,Miller LT.Erikson HB.et al.Development and validation of a telephonequestionnaire to characterize lymphedemain women treated for breast cancer.PhysTher,2001,81⑹:1192-1205.[16]刘瑾,路潜,欧阳倩,等.Norman电话问卷用于乳腺癌术后淋巴水肿判断效果的检测.护理学杂志,2015,30(24):36-38.[17]吴曼,魏玉虾,余灿清,等•中国10个地区成年人骨骼肌质量和手握力的描述性分析冲华流行病学杂志,2019,40⑷:376-381.[18]张腾飞,刘欢,舒永梅,等•有氧运动结合力量训练对中老年女性握力及功能性体适能的影响.中国康复医学杂志,2015,30(12):1243-1247.[19]李山,陈信芝.最大力量预测公式的准确性研究.西安体育学院学报(西安),2016,33⑸:612—617.[20]中国抗癌协会乳腺癌专业委员会.中国抗癌协会乳腺癌诊治指南与规范(2019年版)冲国癌症杂志,2019,29(8):609—680.[21]Oliveira MMF,Gurgel MSC,AmorimBJ,et al.Long-term effects of manuallymphatic drainage and active exercises onphysical morbidities,lymphoscintigraphyparameters and lymphedema formationin patients operated due to breast cancer:aclinical trial.PLoS One,201&13(l):e0189176.[22]刘燕.弹力带柔性抗阻训练对改善衰弱前期老年人平衡能力的作用•系统医学,2020,5(19):176-178.[收稿日期:2020-12-15][修回日期:2021-01-11](编辑:陈雪)论著£Research Papers临床领导力是指临床医护人员在工作实践中为患者和医疗团队提供指导和支持的行为叫有效的临床领导力有利于创造良好的工作环境、提升组织成员工作满意度,提高临床服务质量、实现患者良好结局2004年,美国高等护理教育协会(American Association of Colleges of Nursing, AACN)将领导力列为注册护士专业实践及绩效标准之一叫临床护士负责和监督患者的整个护理过程,直接领导和管理患者的护理安全叫具备领导力的临床护士可识别和应对可能威胁患者的风险,积极与医生或同事沟通协调,制定提高护理质量的计划,改善患者结局叫准确地评价是护理人员领导力培训与提升的重要基础。

基于步态的机器学习模型识别遗忘型轻度认知障碍和阿尔茨海默病

基于步态的机器学习模型识别遗忘型轻度认知障碍和阿尔茨海默病

·3857·•论著•基于步态的机器学习模型识别遗忘型轻度认知障碍和阿尔茨海默病陶帅1,韩星1,孔丽文1,汪祖民1,谢海群2*【摘要】 背景 随着老龄化社会的到来,与年龄密切相关的认知障碍(包括痴呆)的患病率明显增加。

先前的研究表明,具有不同认知能力的人群所表现的步态状态也不一样。

过去研究者们在研究遗忘型轻度认知障碍(aMCI)和阿尔茨海默病(AD)的步态时,使用了统计分析方法,对机器学习方法的使用较少。

目的 构建基于步态的机器学习模型识别aMCI 和AD,探索aMCI 和AD 之间的步态标志物,以便将其用作帮助诊断aMCI 患者和AD 患者的可能工具。

方法 于2018年12月至2020年12月,从国家康复辅具研究中心附属康复医院、佛山市第一人民医院、大连大学附属中山医院招募了102例受试者,按照筛选标准最终纳入98例受试者,其中55例为aMCI 患者,10例为AD 患者,33例为健康对照(HC)者。

使用可穿戴设备采集参与者在单任务(自由行走)、双任务(倍数7)和双任务(倒数100)时的步态参数。

使用随机森林算法(RF)和梯度提升决策树算法(GBDT)建立模型,10个步态参数作为预测变量,疾病状态(HC、aMCI、AD)作为响应变量,比较两种机器学习算法对3个疾病组的识别效果。

然后使用机器学习算法结合递归特征消除法(RFE)进行重要特征选择。

结果 三组年龄、性别、身高、体质量、鞋码比较,差异无统计学意义(P>0.05);MMSE 评分、MoCA 评分比较,差异有统计学意义(P<0.05)。

自由行走测试时,aMCI 组和AD 组受试者步幅较HC 组短,足跟着地角度较HC 组小;AD 组步速较HC 组和aMCI 组受试者慢,足趾离地角度较HC 组小(P<0.05)。

双任务倍数7测试时,aMCI 组和AD 组受试者步速较HC 组慢,足趾离地角度和足跟着地角度较HC 组小;AD 组支撑时间较HC 组长,足趾离地角度较aMCI 组小(P<0.05)。

基于雷泰医疗多模态智能直线加速器VenusX的验收测试

基于雷泰医疗多模态智能直线加速器VenusX的验收测试

FEATURES引言放射治疗作为三大肿瘤治疗手段之一,近些年发展迅速,各种放疗新技术的开展,对作为放疗主要实施设备的医用电子直线加速器提出了更高的要求[1-2]。

而严格的质量控制是保证计划剂量准确无误执行的前提。

作为放射治疗设备管理的重要组成部分,直线加速器的验收是确保放射治疗设备质量和安全应用的核心环节[3-4]。

验收时一般要求医院高年资物理师和厂家技术工程师共同进行,根据厂家提供的设备性能、技术参数和配置清单逐一检查。

各个厂家遵循国际及国家相关标准制定各自的验收手册,工程师会遵照厂家标准进行调试;另一方面,医院人员验收时按照验收手册并参考国际及国家相关标准进行验收。

需要注意的是验收各项指标方法的正确性和准确性,还有一些指标的可调性与稳定性,可根据临床需求在合理范围内提高各项指标的精度[5]。

雷泰医疗的多模态智能医用直线加速器VenusX作为一种新型的非均整(Flattering Filter Free,FFF)模式[6-7]加速器,在机械设计方面有其特点,本研究参照国家相关标准对其各项技术指标进行临床验收,验证基于雷泰医疗多模态智能直线加速器VenusX的验收测试王海洋,解传滨,戴相昆,申红峰,陈高翔,俞伟,刘彦立,徐寿平,曲宝林中国人民解放军总医院第一医学中心放射治疗科,北京 100853[摘 要] 目的 对雷泰医疗新型推出的医用直线加速器VenusX的各项技术指标进行临床验收测试,评估其临床应用的精确性、有效性及安全性。

方法 参考国家相关标准规定与方法,对VenusX的辐射安全、机械精度、射束性能及影像系统进行质量检测与评估。

结果 各项技术指标均符合相关标准要求:辐射安全项目正常有效;等中心大小0.5 mm、机架旋转角度0.3°、数字化光距尺精度1 mm、治疗床旋转角度0.5°、治疗床各方向误差≤1 mm,光栅叶片到位精度和重复性优于标准;剂量稳定性优于相关标准;MV-EPID中心到位精度0.4 mm、到位重复性精度0.2 mm、摆位精度0.5 mm;kV-EPID中心到位精度0.3 mm、到位重复性精度0.2 mm、摆位精度0.1 mm。

危重症肠内营养支持患者再喂养综合征风险预测模型的构建与应用检验

危重症肠内营养支持患者再喂养综合征风险预测模型的构建与应用检验

40(15):2266-2268.[20] 郑秀,王颖,张强,等.以家庭为中心的护理模式对ICU 病人家属疾病不确定感的影响[J ].护理研究,2020,34(21): 3918—3921.[21] 朱小川,张先红,范娟,等.早产儿出院后父母应对能力提升的最佳证据总结[J ].护理学杂志,2023,38(3): 13-17.[22] 崔丽,高利华,王杨,等.2010~2015年某三级甲等医院超早产儿和超低出生体质量儿存活率并发症和住院费用分析[J ].安徽医学,2017,38(7):940-942.[23] 闫淑媛,刘震宇,钱红艳,等.不同胎龄及出生体质量早产儿早期神经发育的纵向研究[J ].临床儿科杂志,2017,35 (6):425-429.[24] 王晓鹏,田秀英,郑军,等.天津市早产儿流行病学调查[J ].中国妇幼保健,2016,3 1(24):5473-5475.[25] 张宇敏.发展性照护联合鸟巢式护理对早产儿生长发育及喂养耐受表现的影响[J ].全科护理,2020,18(30):4145-4147.[26] 麦玉娟,袁海英,赵梅锋.基于发展性照护理论的临床护理路径对早产儿喂养不耐受及生长发育的影响[J ].护理实践与研究,2019,16(16):25-27.[27] 柯晓婷.袋鼠式照护联合发展性照顾模式对早产儿智力发育、心理运动发育及生化水平的影响[J ].中外医学研究,2022,20(11):92-95.[28] 于夕丽,唐洪涛.早产儿发展性照顾在新生儿重症监护室的运用价值[J ].科学养生,2022,25(17):181-183.[29] 方小红,许丽萍,戴淑珍.2015-2019年我院超早产儿救治情况临床分析[J ].福建医药杂志,2021,43(6):72-75.[30] 胡晓静,李丽玲,刘婵,等.早产儿三元整合式教育方案的构建与实施[J ].中华护理杂志,2019,54(11):1626-1629.[2022-11-25收稿;2023-08-11修回](责任编辑 肖向莉)【摘要】 目的 探究危重症肠内营养支持患者再喂养综合征发生的影响因素,建立风险预测模型,并检验其效果。

clinical microbiology 检验英文原版书

clinical microbiology 检验英文原版书

clinical microbiology 检验英文原版书Title: Clinical Microbiology: An Essential Guide for Laboratory TestingIntroduction:Clinical microbiology plays a crucial role in the diagnosis and management of infectious diseases. It involves the laboratory testing of various specimens to identify and characterize microorganisms. In this article, we will explore the fundamental aspects of clinical microbiology as covered in the English original textbook.I. Overview of Clinical Microbiology:1.1 Importance of Clinical Microbiology:- Clinical microbiology aids in the identification of infectious agents, guiding treatment decisions.- It helps in the surveillance and monitoring of antimicrobial resistance.- It plays a vital role in outbreak investigations and infection control measures.1.2 Specimen Collection and Handling:- Proper collection and transportation of specimens ensure accurate and reliable results.- Different types of specimens, such as blood, urine, respiratory secretions, and wound swabs, require specific collection techniques.- Special considerations, such as timing and transport media, are essential to maintain the viability of microorganisms.1.3 Laboratory Techniques:- Microscopy techniques, including gram staining and acid-fast staining, allow for the visualization of microorganisms.- Culture-based methods involve the isolation and identification of microorganisms on various selective and differential media.- Molecular techniques, such as polymerase chain reaction (PCR), enable the detection and characterization of microorganisms at the genetic level.II. Bacterial Infections:2.1 Identification and Characterization:- Bacterial identification relies on phenotypic characteristics, including colony morphology, biochemical tests, and serological methods.- Advanced techniques, such as matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), provide rapid and accurate identification.- Antimicrobial susceptibility testing determines the susceptibility or resistance of bacterial isolates to specific antibiotics.2.2 Virulence Factors and Pathogenesis:- Understanding the virulence factors of bacteria helps in assessing their pathogenic potential.- Bacterial toxins, adhesins, and capsules contribute to the ability of bacteria to cause disease.- Molecular techniques, such as gene sequencing, aid in the identification and characterization of virulence factors.2.3 Antibiotic Resistance:- The emergence of antibiotic-resistant bacteria poses a significant challenge in clinical practice.- Mechanisms of antibiotic resistance include enzymatic inactivation, altered target sites, and efflux pumps.- Laboratory testing methods, such as disk diffusion and minimum inhibitory concentration (MIC) determination, help in monitoring and detecting antibiotic resistance.III. Viral Infections:3.1 Diagnostic Techniques:- Serological assays, such as enzyme-linked immunosorbent assay (ELISA), detect antibodies produced in response to viral infections.- Molecular methods, such as PCR and nucleic acid amplification tests (NAATs), directly detect viral genetic material.- Viral culture allows for the isolation and identification of viruses in specialized cell lines.3.2 Antiviral Therapy:- Laboratory testing helps in determining the susceptibility of viruses to antiviral drugs.- Drug resistance testing identifies mutations in viral genes associated with reduced drug effectiveness.- Viral load testing monitors the effectiveness of antiviral therapy by quantifying viral RNA or DNA.3.3 Emerging Viral Infections:- Clinical microbiology plays a crucial role in the detection and surveillance of emerging viral infections.- Rapid diagnostic tests, such as point-of-care assays, aid in the early identification of viral outbreaks.- Molecular techniques, such as next-generation sequencing (NGS), provide insights into the genetic diversity and evolution of emerging viruses.IV. Fungal and Parasitic Infections:4.1 Laboratory Diagnosis:- Direct microscopic examination of clinical specimens allows for the detection of fungal elements and parasites.- Culture-based methods help in the isolation and identification of fungal and parasitic organisms.- Molecular techniques, such as PCR and DNA sequencing, enhance the accuracy and speed of diagnosis.4.2 Antifungal and Antiparasitic Susceptibility Testing:- Laboratory testing determines the susceptibility or resistance of fungal and parasitic isolates to antifungal and antiparasitic drugs.- Methods, such as broth microdilution and agar dilution, provide quantitative susceptibility results.- Interpretive criteria assist in guiding treatment decisions based on the susceptibility profile of the organism.4.3 Epidemiology and Control Measures:- Clinical microbiology contributes to the surveillance and monitoring of fungal and parasitic infections.- Molecular typing techniques, such as multilocus sequence typing (MLST), aid in the investigation of outbreaks.- Infection control measures, including appropriate specimen handling and disinfection protocols, help prevent the spread of fungal and parasitic infections.V. Quality Assurance and Laboratory Management:5.1 Quality Control in Clinical Microbiology:- Quality control measures ensure the accuracy and reliability of laboratory results.- Internal quality control involves the use of known reference materials and regular monitoring of test performance.- External quality assessment programs provide proficiency testing to evaluate laboratory performance.5.2 Laboratory Safety:- Adherence to biosafety guidelines is essential to protect laboratory personnel and prevent laboratory-acquired infections.- Proper use of personal protective equipment, safe handling of infectious materials, and appropriate waste disposal are crucial aspects of laboratory safety.- Risk assessment and implementation of safety protocols minimize the potential for accidents and exposure to hazardous agents.5.3 Emerging Technologies and Future Perspectives:- Advances in technology, such as automation and artificial intelligence, are shaping the future of clinical microbiology.- Rapid diagnostic tests and point-of-care devices enable timely and accurate diagnosis at the patient's bedside.- Integration of big data analytics and genomics holds promise for personalized medicine and precision infectious disease management.Conclusion:Clinical microbiology is a multidisciplinary field that plays a vital role in the diagnosis, management, and prevention of infectious diseases. The English original textbook on clinical microbiology provides comprehensive coverage of the fundamental concepts, laboratory techniques, and practical applications in this field. By understanding the various aspects discussed in the book, healthcare professionals can enhance theirknowledge and skills in clinical microbiology, ultimately improving patient care and public health outcomes.。

基于医疗大数据的临床文本处理与知识发现方法研究

基于医疗大数据的临床文本处理与知识发现方法研究

基于医疗大数据的临床文本处理与 知识发现方法研究胡佳慧1赵琬清1方安*任慧玲1摘要目的:研究基于医疗大数据的数据处理与知识发现方法,提升对海量临床文本的处理与利用能力。

方法:以临床 文本数据为主要研究对象,围绕数据准备、文本挖掘、评估反馈的全流程,从知识发现生命周期、文本处理流程以及关键 技术等方面,研究基于医疗大数据的数据处理与知识发现方法。

结果:基于医疗大数据的临床知识发现具有数据处理、文本挖掘和评价反馈的生命周期,语义标注是临床文本知识关联化的重要环节。

结论:基于医疗大数据的临床文本处理与知 识发现有助于促进健康医疗服务与创新。

X:•键ili丨医疗大数据知识发现临床文本生命周期自然语言处理Doi:10.3969/j.issn.1673-7571.2020.07.004[屮丨知分炎••>】RM9; T P391 [文献WiKW】AResearch on Clinical T ext Processing and Knowledge Discovery M ethod Based on Medical Big Data /H U Jia—hui, Z H A O W an—qing, FANC; An, et a l//C h in a D igital M edicine.-202015(07): 11 to 13A bstract O bjective: T his paper aims to im prove the ability o f processing and utilization o f massive clinical texts, w ith research on clinical text processing and know ledge discovery m ethod based on medical big data. M ethods: T h e research is carried ou t from the aspects o f know ledge discovery life cycle, text processing flow, and key technologies, and the clinical text d«ita is taken as the main research object. Results: T h e life cycle o f the clinical know ledge discover\f based on m edical big d«ita is consist o f data processing, text m ining and evaluation feedback. Sem antic annotation is an im portant part o f clinical text know ledge association. Conc lusion: Clinical text processing and know ledge discovery based on medical big data prom otes healthcare service and innovation.Keywords m edical big data, know ledge discovery, clinical text, life cycle, natural language processingFund project Project o f Basic Scientific R esearch Business Expenses for Central Public W elfare Scientific R esearch Institutes o f Chinese Academy o f M edical Sciences—Research on the Sem antic A nnotation M ethod o f C'hinese Electronic Medical l^ecords Facing K now ledge Discovery (N o. 2018PT33005); Collaborative Innovation Team Project o f M edical and Health Science and T echnology Innov atio n P ro ject o f C hinese A cadem y o f M edical Sciences—R esearch on the C o n stru c tio n o f the C hinese C linical M edical T erm inology System (N o. 2017—12M-3—"14)C orresponding author Institute o f M edical Inform ation, Chinese Academ y o f M edical Sciences, Beijing l〇()()2〇, P.R.C.1引言随着科技的飞速发展,国民生活 水平日益提高,健康已经成为当前人们最关心最直接最现实的主要利益问题之一。

住院患者认知障碍识别和信息管理的整合性综述

住院患者认知障碍识别和信息管理的整合性综述

住院患者认知障碍识别和信息管理的整合性综述熊蓓蓓;Daniel X.Bailey;Paul Prudon;Elaine M.Pascoe;Leonard C.Gray;Frederick Graham;Amanda Henderson;Melinda Martin-Khan【期刊名称】《International Journal of Nursing Sciences》【年(卷),期】2024(11)1【摘要】目的旨在对目前提供急性照护的医院识别认知障碍患者以及在病历中记录和管理认知相关信息的实际情况及政策要求和推荐方法进行综述。

方法采用Whittemore和Knaf1的五步法,系统检索Medline,CINAHL和Scopus数据库,并检索了灰色文献来源。

纳人了提供急性照护的医院已实施的患者认知障碍识别和认知信息管理相关的文献。

采用混合方法评价工具和灰色文献质量评估清单对文章质量进行评价。

采用主题分析法呈现和整合结果。

该综述已在PROSPERO预注册(CRD42022343577)。

结果共22篇原始研究文献和10篇政府/行业文件被纳人分析。

结果显示,实践和政策之间存在差距。

尽管在政策层面上高度重视认知障碍的识别、认知相关信息的透明度,以及与患者、家属和照顾者(如适用)之间的互动,但有时在临床实践中,认知评估是非正式的,患者的认知相关信息未作记录,与患者、家属和照顾者的互动也存在不足。

结论.通过整合认知评估,利用信息技术开发信息管理综合系统,建立相关法律法规,提供教育与和培训,并采用国家层面的策略,有可能显著改善对认知障碍患者的识别和护理。

【总页数】13页(P120-132)【作者】熊蓓蓓;Daniel X.Bailey;Paul Prudon;Elaine M.Pascoe;LeonardC.Gray;Frederick Graham;Amanda Henderson;Melinda Martin-Khan【作者单位】Centre for Health Services Research of Medicine University of Queensland;Centre for Clinical Research of Medicine University of Queensland Bris bane&Women’s Hospital;Dementia and Delirium of Medicine Alexandra Hospital;School of Nursing of Health University of Technology;Nursing Practice Development Unit Alexandra Hospital;School of Nursing and Social Sciences Queensland University;Griffith Health University;School of Nursing and Paramedicine University of the Sunshine Coast;Department of Health and Life Sciences of Exeter Kingdom;School of Nursing of Northern British Columbia George【正文语种】中文【中图分类】R47【相关文献】1.轻度认知障碍早期识别对老年住院患者安全隐患事件的影响分析2.运动结合认知训练在轻度认知障碍和阿尔茨海默病患者中应用的整合性综述3.痴呆症患者家庭照顾者实施在线教育项目的挑战:整合性综述4.促进慢性阻塞性肺疾病哮喘患者自我监控空气质量的护理干预措施: 整合性综述5.肝细胞癌患者的症状和症状群及常用工具的整合性综述因版权原因,仅展示原文概要,查看原文内容请购买。

科学看待抗血小板药物临床试验的设计和结果

科学看待抗血小板药物临床试验的设计和结果
试验设计与结果的真实性
- 试验设计是否科学、严谨? - 研究的结果是否真实?
结果的解读和临床实用性
- 结果是什么?是否具有真实临床意义? - 结果是否有助于治疗我的病人?
林果为, 沈福民. 现代临床流行病学.复旦大学出版社.
临床科研设计的基本类型
前瞻性 观察性研究 Observational 试验性研究 (临床试验 Clinical Trial) 随机对照试验 Randomized Controlled Trial (RCT) 非随机同期对照试验 Nonrandomized Concurrent Control 历史性对照试验 Historical Control 前后对照试验 Before-after 序贯试验 Sequential 交叉对照试验 Cross-over
林果为, 沈福民. 现代临床流行病学.复旦大学出版社.
以氯吡格雷为例科学看待临床试验的设计
ACS领域的 部分研究
发表年、研究名
样本 症状发作24h内入院 的UA/NSTEMI患者 (N=12562)
设计方法
主要终点及随访时间
2001年,CURE
国际多中心、随机、 • CV死亡、非致死性 双盲、平行对照研 MI或卒中 究(安慰剂) • 至出院后12个月
(临床流行病学专家、循证医学献,并非都有用,只有近1%的 文献是缜密并具临床相关性的。 —— Mark Stevenson
(Massey University, New Zealand)
Sackett DL, Rosenberg WM, Gray JA, et al. BMJ. 1996;312(7023):71-2. /Portals/0/EpiCentre/Downloads/Education/227-407/Stevenson_critical_appraisal.pdf

循证医学 全英文名解

循证医学 全英文名解

循证医学evidence-based medicine:(EBP) aims to apply the best available evidence gained from the scientific method to clinical decision making. It seeks to assess the strength of evidence of the risks and benefits of treatments (including lack of treatment) and diagnostic tests. Evidence quality can range from meta-analyses and systematic reviews of double-blind, placebo-controlled clinical trials at the top end, down to conventional wisdom at the bottom.Meta-分析:Data synthesis, quantitative overview Data analysis A systematic method that uses statistical techniques for combining results from different studies to obtain a quantitative estimate of the overall effect of a particular intervention or variable on a defined outcome; MA produces a stronger conclusion than can be provided by any individual study.系统评价systematic review: is a literature review focused on a research question that tries to identify, appraise, select and synthesize all high quality research evidence relevant to that question. Systematic reviews of high-quality randomized controlled trials are crucial to evidence-based medicine.沾染contamination:a condition of being soiled, stained, touched, or otherwise exposed to harmful agents, making an object potentially unsafe for use as intended or without barrier techniques. An example is entry of infectious or toxic materials into a previously clean or sterile environment.干扰comtervention:Test group and a control group of study subjects underwent the test measures other than treatment, thereby artificially affect the efficacy of the test measures.意向性治疗分析intention to treatment,ITT:is an analysis based on the initial treatment intent, not on the treatment eventually administered. ITT analysis is intended to avoid various misleading artifacts that can arise in intervention research.系统分析:analysis of Specific clinical problems, the use of the system, explicitly retrieve the program, screening-related research, rigorous evaluation of the quality of research and the collection and analysis of the data included in the study for qualitative or quantitative synthesis, to draw reliable conclusions.截尾值censored value:Refers to the follow-up process, for some reason failed to clear outcomes observed in patients (i.e. the endpoint events), do not know the exact survival time of the patient, obtained survival time information is not completely临床决策分析clinical decision analysis: the application of clinical, epidemiological and other data to influence outome probability and alternative decisions in such areas as surgery and pharmaceutical treatment.发表偏倚Publication bias: arises from the tendency for researchers, editors, and pharmaceutical companies to handle the reporting of experimental results that are positive differently from results that are negative or inconclusive.随机对照试验randomized controlled trial:An experimental design used for testing the effectiveness of a new medication or a new therapeutic procedure. Individuals are assigned randomly to a treatment group (experimental therapy) and a control group (placebo or standard therapy) and the outcomes are compared. The trial is strengthened by 'blinding' or masking and cross-over design.卫生技术评估Health Technology Assessment:is a multi-disciplinary field of policy analysis that examines the medical, economic, social and ethical implications of the incremental value, diffusion and use of a medical technology in health care.内在真实性internal validity: the extent to which the effects detected in a study are truly caused by the treatment or exposure in the study sample, rather than being due to other biasing effects of extraneous variables.伤害需要病例数number needed to harm (NNH)is an epidemiological measure that indicates how many patients need to be exposed to a risk-factor over a specific period to cause harm in one patient that would not otherwise have been harmed. It is defined as the inverse of the attributable risk.前景问题Foreground questions: ask specific clinical questions that try to find relationships between a patient and their condition, an exposure (therapeutic, diagnostic), and an outcome. They are generally very detailed questions that can best be answered with the information contained in published research studies.背景问题Background questions:ask about fundamentals and facts. They are more general in nature. Background questions can be answered in any collection of factual information (databank), such as a book, practice guideline, or Web site.PICO:acronym for diagnostic questions based on these four areas of knowledge and action: Patient or problem; Intervention, cause, or prognosis; Comparison or control; and Outcome. This evidence-based method is designed tomake a valid, successful decision based on the skills and knowledge of the clinician, the values of the patient, and the best available evidence.决策树decision tree:a systematic method of managing a problem by graphically organizing the probabilities of outcomes of alternative treatments. At each decision node or branch a possible alternative is matched with its relative worth, quality of life, freedom from disability, and other factors on which a prognosis may be based.循证临床实践指南evidence-based CPGs:are a series of recommendations on clinical care, supported by the best available evidence in the clinical literature. a very structured manner by the Institute of Medicine as a “systematically developed statement to assist practitioner and patient decisions about appropriate health care for specific clinical circumstances.”敏感性分析sensitivity analysis: The systematic evaluation of of the same type (test) (containing the Meta-analysis) using two or more different methods, to compare two or more of whether the result of the same process, referred to as a sensitivity analysis. Its purpose is to understand the system evaluation results are stable and reliable.。

数据挖掘技术在中医眼科应用的设想

数据挖掘技术在中医眼科应用的设想

中国中医眼科杂志2008年12月第18卷第6期数据挖掘又称数据库中的知识发现(Knowledge Discov -ery in Database ,KDD ),是从大量的数据中,抽取潜在的、有价值的知识(模型或规则)的过程。

数据挖掘所探寻的模式是一种客观存在的、但隐藏在数据中暂时未被发现的知识。

现在,随着数据库技术的不断发展及数据库管理系统的广泛应用(例如电子病历的逐渐普及),人们面对前所未有的医学信息数量,利用数据库存储数据,采用机器学习的方法来分析数据,挖掘大量数据背后隐藏着的重要信息和知识。

当前,KDD 国际研讨会的研究重点逐渐从发现方法等理论研究转向系统应用研究,注重多种发现策略和技术的集成,以及多种学科之间的相互渗透,更为医疗卫生事业的发展及医学科研工作提供了有力的武器〔1〕。

中医眼科由于其自身的特点,传统的研究方法无法适应对于中医眼科辨证论治的深入研究,而这些困难相信能够被数据挖掘技术所攻克,数据挖掘技术将在中医眼科开辟新的应用前景,且目前尚无中医眼科数据挖掘的相关报道。

因此,中医眼科的数据挖掘具有必要性和创新性。

本文就这一设想做一次不成熟的阐述。

1中医眼科的尴尬1.1中医眼科自身特点的局限中医界有一句行话:“医门十三科,独眼科最难。

”这句话的意思不是说眼科理论精妙难懂,而是说中医眼科有着其他学科没有的特点。

这种特点就是中医眼科的“精”、“神”、“玄”。

“精”是指中医视眼睛为“精华”所在之地、“精气”表现之地;“神”是指中医视眼睛为“神光”发越之地、“神水”和“神膏”循环储存之地;“玄”是指中医视眼睛的解剖结构玄妙难知,有“玄府”、“玄巢”这样难以捉摸的地方。

中医眼科的“精”、“神”、“玄”所导致的直接后果,对于临床医师来说,最头痛的莫过于眼科症状、体征往往局限于眼睛局部,全身表现很少,而中医精髓在于“整体观念”和“辨证论治”,所以,中医眼科想要追求“整体观念”时,往往没有全身症状予以参考,甚至根本就没有全身疾病需要考虑;而中医眼科想要追求“辨证论治”时,往往发现证候最多不过就是“畏光”、“视力下降”、“眼痛”这些,更加棘手的是神志、面色、呼吸、饮食、二便、舌象、脉象根本没有异常,跟中医传统的辨证体系完全不挂钩,辨证论治无从下手,中医眼科临床中往往陷入“无证可辨”的尴尬境地。

英语医学科研论文的格式和要求(第一单元)

英语医学科研论文的格式和要求(第一单元)

英语医学科研论文的格式和要求打开一本医学专业期刊,可以看到不同文体的文章。

除了综述(review)或述评(comments )、编者按(editorials )和个例报告(case reports )外,大量的是医学科研论文,即原始报告(original articles )。

医学科研论文有许多不同的类型,常见的有两大类:医学基础研究报告和临床研究报告。

医学基础研究报告和临床研究报告。

了解英语医学科研论文的结了解英语医学科研论文的结构特点和要求,逐步掌握其写作技巧,逐步掌握其写作技巧,是医学研究人员和临床医学工作者所必须是医学研究人员和临床医学工作者所必须具备的基本技能。

具备的基本技能。

为了写好医学论文的英文摘要,应对医学论文的格式和要求有所了解。

1.格式根据国际医学杂志编辑委员会根据国际医学杂志编辑委员会 (The (The International International International Committee Committee Committee of of of Medical Medical Medical Journal Journal Editors, ICMJE) 制定的《生物医学杂志投稿统一要求》(The Uniform Requirements for Manuscripts Submitted to Biomedical Journals, 5th Ed., 1997),一篇生物医学科研论文(篇生物医学科研论文( 以下简称“论文”以下简称“论文” )应包括以下12个部分:个部分:1)标题(Title ) 7)致谢(Acknowledgements ) 2)摘要(Abstract ) 8)参考文献(References )3)引言(Introduction ) 9)插图说明(Legends )4)材料与方法(Materials and Methods ) 10)插图(Figures )5)结果(Results ) 11)表格(Tables )6)讨论(Discussion ) 12)照片和说明(Plates and Explanations )以上除7)、9)、10)、11)、12)部分因实际情况不需要外,其他各部分是一篇论文必不可少的内容。

中西医结合肿瘤内科临床带教探讨

中西医结合肿瘤内科临床带教探讨

科技创新科技视界Science &Technology Vision科技视界,、,,,。

,、,;,,,,,,,。

(1),。

,,,、、、、,,,,,,、、。

,,,。

,,,CT,,CT ,,,,,,,,。

(2),,,,、,,中西医结合肿瘤内科临床带教探讨千维娜1李治2(1.陕西中医药大学附属医院,陕西咸阳712000;2.陕西中医药大学,陕西咸阳712000)【摘要】目前,肿瘤的发病率及死亡率仍然在快速上升,恶性肿瘤依然是威胁人民健康的主要因素之一,郝希山院士表示,突破治疗肿瘤的瓶颈,需要中西医结合来共同解决这一难题,提高中西医结合肿瘤内科整体诊治水平对于我国严峻的肿瘤防控形势意义重大。

临床带教是中西医结合肿瘤内科重要的教学部分,是调动基础知识,深入理解,融会贯通,从而提高临床动手能力的关键。

因此,探讨如何提高中西医结合肿瘤内科临床带教水平,对于提高中西医结合肿瘤内科的整体诊治水平意义重大。

【关键词】中西医结合;肿瘤内科;临床带教中图分类号:R-4文献标识码:ADOI:10.19694/ki.issn2095-2457.2021.13.31【Abstract 】At present,the incidence and mortality of tumors are still rising rapidly,and malignant tumors are still one of the mainfactors threatening people’s health.Academician Hao Xishan said that to break through the bottleneck of tumor treatment,it is necessaryto combine Chinese and Western medicine to jointly solve this problem ,Improving the overall diagnosis and treatment level of integrated Chinese and Western medicine in the oncology department is of great significance to the severe tumor prevention and control situation in my country。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Knowledge-based veri®cation of clinical guidelines by detection of anomaliesG.Duftschmid a,*,S.Miksch ba Department of Medical Computer Sciences,University of Vienna,Spitalgasse 23,A-1090Vienna,Austriab Vienna University of Technology,Institute of Software Technology (IFS),Favoritenstrasse 9-11,A-1040Vienna,AustriaReceived 31May 2000;received in revised form 21September 2000;accepted 8November 2000AbstractAs shown in numerous studies,a signi®cant part of published clinical guidelines is tainted with different types of semantical errors that interfere with their practical application.The adaptation of generic guidelines,necessitated by circumstances such as resource limitations within the applying organization or unexpected events arising in the course of patient care,further promotes the introduction of defects.Still,most current approaches for the automation of clinical guidelines are lacking mechanisms,which check the overall correctness of their output.In the domain of software engineering in general and in the domain of knowledge-based systems (KBS)in particular,a common strategy to examine a system for potential defects consists in its veri®cation.The focus of this work is to present an approach,which helps to ensure the semantical correctness of clinical guidelines in a three-step process.We use a particular guideline speci®cation language called Asbru to demonstrate our veri®cation mechanism.A scenario-based evaluation of our method is provided based on a guideline for the arti®cial ventilation of newborn infants.The described approach is kept suf®ciently general in order to allow its application to several other guideline representation formats.#2001Elsevier Science B.V .All rights reserved.Keywords:Clinical guidelines and protocols;Veri®cation;Medical plan management1.IntroductionWithin the last decade,public and private dissatisfaction about the perceived health and economical consequences of inappropriate medical care has signi®cantly increased [5].These perceptions stem from many sources including ceaselessly escalating health care costs,wide variations in medical practice patterns,and recognition that the obviouseffect Artificial Intelligence in Medicine 22(2001)23±41*Corresponding author.Tel.: 43-1-40400-6696;fax: 43-1-40400-6697.E-mail addresses :georg.duftschmid@akh-wien.ac.at (G.Duftschmid),silvia@ifs.tuwien.ac.at (S.Miksch).0933-3657/01/$±see front matter #2001Elsevier Science B.V .All rights reserved.PII:S 0933-3657(00)00098-124G.Duftschmid,S.Miksch/Artificial Intelligence in Medicine22(2001)23±41of some health services does not justify the efforts invested.Market pressures have further contributed to complicate the situation by driving medical organizations to increase productivity and to reduce costs,all without adversely affecting patient care.One method that has been proposed as an answer to these problems is to adopt standard practice guidelines.The main goals that are pursued by the application of guidelines are the improvement of patient care's quality and the reduction of treatment costs.It could be shown that these desired effects can actually be reached,provided that the guidelines are properly formulated and followed[8].In Section2we will give an overview of current approaches for the computerization of clinical guidelines and point out some techniques for their veri®cation.After a short introduction of the Asbru language for the representation of guidelines in Section3,we will present our veri®cation method in Section4.A scenario-based evaluation of our method will be provided in Section5.2.Related approaches to improve medical care2.1.Automation of clinical guidelinesBeing confronted with the laborious and inherently error-prone manual management of paper-based clinical guidelines,the interest in a computerized handling of the problem started to grow within the medical community.First attempts to automate guideline-based care were able to demonstrate a number of advantages over manual methods [13,30].A common strategy among guideline applications is the so-called prescriptive approach, where an active interpretation of a preselected guideline is generated by the system,e.g. [6,11,20,25,29,31,32].Another approach is the critiquing approach,where the system critiques the physician's plan rather than recommending a complete one of its own[2,33]. Finally,several approaches are based on the hypertext browsing of guidelines via the world wide web,e.g.[3,13].2.2.Veri®cation of clinical guidelinesOne prerequisite for a broad acceptance and an ef®cient application of guidelines in the clinical domain is the guarantee of a high level of quality and reliability.However,as has been shown in numerous studies most clinical guidelines embody different kinds of semantical errors that compromise their practical value:guidelines are often vague and incomplete,they show serious omissions and unintentional ambiguities as well as unclear de®nitions,incompleteness,and inconsistency[15,16,18,26,27,29].The situation is further complicated by the fact that the process of correcting such errors within a guideline is not a one-time matter.Rather this task is of repetitive nature as guidelines are subject to change.Changes may be effectuated by the evolution of a guideline to implement medical progress in the treatment of individual diseases.Another reason for the modi®cation of a guideline,which will become effective even more frequently is addressed in[7±9]:generic,site-independent guidelines,designed to beG.Duftschmid,S.Miksch/Artificial Intelligence in Medicine22(2001)23±4125 sharable between institutions,have to be adapted in most cases when applied by an individual organization according to the speci®c properties of the organization and of the patient to be treated.These adaptations may become necessary before the execution of a guideline due to resource or organizational limitations as well as particular patient characteristics.They may also become essential during the execution of a guideline due to unexpected events that arise in the course of patient care.In each of these cases,it has to be checked that the alterations done to the guideline do not affect its logical¯ow.In contrast to the intensive efforts to develop new guidelines,the issue of providing mechanisms to ensure their overall correctness has been widely neglected thus far. However,as is already known from the domain of software engineering,an early identi®cation of¯aws within algorithmic knowledge is critically important[1].In the domain of software engineering in general and in the domain of knowledge-based systems (KBS)in particular,a common strategy to examine a system for potential defects consists in its veri®cation.We use the term veri®cation as proposed in[12]:veri®cation is de®ned as the sum of all processes,which attempt to determine whether a KBS does or does not satisfy its purely formal speci®cations.As will be shown in Section4.2.2,we are concerned with speci®cations derived from formalizable concepts.As already indicated within[5,14],approaches concerning the semantical veri®cation of clinical guidelines are still rather rare.In the following we will give an overview of the few approaches concerning guideline veri®cation,which have been published yet.2.2.1.Decision-table techniquesOne method for the veri®cation and simpli®cation of guidelines described in the literature consists in the logical analysis of guidelines by applying decision-table tech-niques[26,27].Veri®cation here is limited to two different properties,which are com-pleteness and consistency of a guideline:a guideline is said to be complete when an action is de®ned for every possible value-combination of parameters used within the guideline.It is considered consistent,if each of its rules,consisting of a certain condition and an assigned action,is unique.If the latter property is violated,the authors distinguish between the three variants of redundant,contradictory or con¯icting guidelines.2.2.2.Examination of related tasksQuaglini et al.[23]described how a guideline may be examined for logical correctness. As a formal representation model,they organize guidelines as sets of hierarchical tasks, which amongst others include activation conditions and subtasks.Subtasks may either be in AND-relation or in XOR-relation,which means that their parent task completes either after all subtasks have completed(AND),or after one and only one subtask has completed (XOR).To show a guideline's correctness Quaglini and co-workers check for completeness and coherence:Merging Shiffman and Greenes's concepts of completeness and con¯ict [27],Quaglini and co-workers consider a guideline complete,if the activation-conditions of each set of subtasks in XOR-relation are de®ned in a way that for every combination of variable values there is exactly one task activated by that combination.Checking a guideline for coherence means to look for conjunctive subtasks,which exclude each other because of incompatible activation conditions.26G.Duftschmid,S.Miksch/Artificial Intelligence in Medicine22(2001)23±412.2.3.Condition checking based on semantic constraintsIn[17]a system called Commander is described,which helps to verify a clinical guideline by checking its conditions similar to[27].In contrast to Shiffman and Greenes, the authors ignore the consistency property in their veri®cation process and exclusively concentrate on examining the completeness of a guideline.Hereby,they incorporate semantic constraints to reduce the combinations of variable values to consider.2.2.4.Dynamic testing methodsIn[28]an approach for the dynamic analysis of the ONCOCIN knowledge-base(KB)is described,the latter being used for the representation of cancer therapy guidelines.By using the ScriptGen system,the oncologist is given the possibility to generate certain sets of test cases,which allow for the testing of selected paths within a guideline.Hereby, instances are searched for in the KB whose behavior deviates from that dictated by the speci®cation,which is the corresponding cancer therapy guideline.Typical defects are rules that®re erroneously,rules that contain errors in parameter domains and missing rules.2.2.5.Veri®cation approaches in the domain of KBSLooking for general veri®cation methods from the domain of KBS that may be useful, we found some parallels to our case:a substantial number of veri®cation approaches in the ®eld of KBS is based on the detection of¯aws in rule-bases,e.g.[19,21,22,34].As we will demonstrate in Section4.2.1,a relationship can be established between a rule-base and a clinical guideline.This principally enables the reuse of work done for the veri®cation of rule-based systems.However,existing work is far from being suf®cient for a profound veri®cation of clinical guidelines:techniques,which are reusable in our case,are too generic to allow the incorporation of those guideline-speci®c properties,which we consider essential for our veri®cation processes.3.The Asgaard/Asbru projectMost existing approaches for the automation of clinical guidelines suffer from at least one signi®cant limitation:they require a complete modeling of the guideline up to its smallest grained components during design time and do not support site-or patient-speci®c adaptation in response to a changed environment or unexpected events.These approaches are lacking the types of knowledge,which would be essential for the purpose of guideline adjustment,or do not provide them in a structured format.The time-oriented,intention-based plan-representation language Asbru[16],developed within the Asgaard project[24],offers such support.Clinical guidelines coded in the Asbru language are organized within a plan-speci®cation library.In the following the term plan is used to designate a clinical guideline,coded in the Asbru language.By providing a formal description of a plan's intention,Asbru satis®es an essential demand for ef®cient guideline transformation[8]:the structured de®nition of a plan's intention allows it to be adapted while remaining faithful to its original aim.Our veri®cation approach,presented in Section4,further supports Asbru's ability of plan modi®cation:before any plan can be released that has been altered based onG.Duftschmid,S.Miksch/Artificial Intelligence in Medicine22(2001)23±4127 compatible intentions,it must be veri®ed amongst others that it is free of logical inconsistencies.The subject of determining compatibility of intentions represents another interesting research issue but is not addressed in this paper.ponents of AsbruIn Asbru a clinical guideline is modeled as a set of hierarchical plans.Each plan is identi®ed by a unique name and consists of a set of arguments,including a time annotation that represents the temporal scope of the plan,and®ve elementary components.These components are preferences,intentions,conditions,effects and a plan body.Each plan may contain any number of subplans within its plan body,which may themselves be decom-posed into sub-subplans.In the following,we will call such a tree structure of plans, starting from one root plan down to its leaf plans,a plan hierarchy.During execution time, the system interpreter attempts to decompose each plan into its subplans until an undecomposable leaf plan is found.Such atomic plans are called primitive plans and are transferred to a suitable agent for their execution.Intentions,world states,actions/plans and effects are durative.Therefore,plan states and corresponding transition criteria are incorporated in Asbru to cope with the time-oriented environment.In this paper we will particularly focus on the veri®cation of these transition criteria,which are expressed by means of the condition component.3.2.Plan states and state-transition criteriaA set of eight different plan states is used to describe the actual state of a plan during plan selection and plan execution.Seven different conditions build the state-transition criteria,controlling transitions between neighboring plan states.Fig.1shows Asbru's model of plan states(MPS),a deterministic,®nite-state automaton.It illustrates the sequence of possible states of a plan and the corresponding conditions shown above the arrows.Asbru provides seven different conditions:1.®lter-preconditions need to hold initially if the plan is applicable,but can not be achieved;2.setup-preconditions need to be achieved to enable a plan to start;3.activate-condition determines if the plan should be started manually or automatically;4.suspend-conditions determine when an activated plan has to be interrupted;5.abort-conditions determine when an activated or suspended plan is terminated unsuccessfully;plete-conditions determine when an activated plan is terminated successfully;7.reactivate-conditions determine when a suspended plan can be continued.The plan states,which are stopping the execution of a plan successfully or unsuccess-fully(rejected,completed,aborted and suspended states),may be propagated in both directions of the plan hierarchy:the parent plan always propagates these plan states to its children,whereas a child plan propagates them to its parent plan if the child belongs to its parent's continuation set(see Section4.2.1).4.Veri®cation of Asbru plansWe developed a partial veri®cation method that aims at the identi®cation of ¯aws within a guideline [4].Hereby,we reuse existing veri®cation work as the basis of domain-independent ¯aws, e.g.[21].We further extend it by incorporating guideline-speci®c knowledge for the detection of ¯aws,which are characteristic for the domain of guideline-based care.The required knowledge is assumed to be available in a suitable KB component (see Section 4.2.3).4.1.MethodologyOur veri®cation approach examines the components of every Asbru plan and all its subplans for the existence of several anomalies,which indicate violations of corresponding speci®cations.The concept of anomalies is adopted from [22],where anomalies are de®ned as symptoms of probable errors.Our goal is to arrive at meaningful plans instead of totally correct plans.A plan is called meaningful,if it does not contain any anomalies,which would violate one of our speci®cations.We distinguish three levels of anomalies according to their locality (see Table 1).The described approach is based on the hierarchical organization of clinical guidelines within the Asbru language.This type of structuring is also common in a wide range of other guideline representations,e.g.[6,11,23,31,32].Therefore,our approach may also be applicable to numerous guideline models,other than the Asbru language.The properties examined by our veri®cation method are of static nature,which means that we will not have to execute any Asbru guideline in order to verifythem.Fig.1.Model of plan states Ðstates and transition criteria during plan-selection (left)and plan-execution phases (right).28G.Duftschmid,S.Miksch /Artificial Intelligence in Medicine 22(2001)23±414.1.1.Algorithm The three levels are veri®ed in a bottom-up fashion:®rst,level 1is examined,which means that every single component of a plan is checked for anomalies within its own scope.The goal of checking level 2is to detect anomalies,which result from dependencies between two or more components of a single plan.In level 3,the whole plan hierarchy is ®nally checked for anomalies that may originate from dependencies between two or more plans of the hierarchy.As guideline adaptations,in response to organizational or contextual issues,will primarily involve the exchange of whole plans,veri®cation level 3will be of particular importance in these cases.Fig.2shows an exemplary implementation of our method that is initiated by sending the message verifyHierarchy ()to all root-plans of the library.We have shown in [4]that,whereas the complexity of checking levels 1and 2grows linearly with the number of plans,it is exponential for checking level 3in the general case.Table 1Three different levels of plan-veri®cation:detect anomalies within single components (level 1),single plans (level 2)and whole plan hierarchies (level 3)Decomposition Detect anomalies within three levelsLevel 1Level 2Level 3PlanAH Subplan A a H Component A 1H F F F H Component A m H F F F Subplan A x HComponent X 1H F F FH Component X nH Fig.2.Two classes with methods,relevant for three levels veri®cation.G.Duftschmid,S.Miksch /Artificial Intelligence in Medicine 22(2001)23±412930G.Duftschmid,S.Miksch/Artificial Intelligence in Medicine22(2001)23±41We have demonstrated,however,that level3can be veri®ed with polynomial effort under the assumption that the size of examined component sets is limited by a suitable constant.4.2.Veri®cation of plan conditionsAny kind of guideline or plan,regardless of how it is modeled,needs a mechanism to control the sequence of its proposed actions.This mechanism is usually implemented through conditions.In the following,we will practically apply our veri®cation method to illustrate the examination of Asbru conditions.Our considerations will be based on the existence of the following three features,incorporated in the Asbru language:conditions to control state transitions;a generic Model of Plan States;a hierarchical organization of plans.4.2.1.Mapping plans to rule basesPreece et al.gave a detailed summary of anomalies,that can occur in rule bases[21].In the following we will show,how Asbru's Model of Plan States and every single plan can be transformed to a RB.We can then refer to[21]in formulating the speci®cations for plan conditions.Some of the anomalies we address,especially those which are more general in nature,are directly derived from[21].These existing anomalies have been complemented with additional ones,which result from speci®cs of the Asbru language and do not have an equivalent[21].After some de®nitions,we will®rst describe the complete and generic RB MPS for the Asbru's Model of Plan States(see Fig.1).Its rules specify in which sequence the conditions of a plan are considered.The RB MPS is preset by the Asbru language,assumed to be initially veri®ed and cannot be changed by the user.Therefore,it does not have to be veri®ed further.The second RB we present is called PC,and contains the plan conditions of all Asbru plans.It can be divided into rule bases PC i for each plan,thus PC PC1 ÁÁÁ PC n.All rules in PC have in common that they may only contain consequences,which are elements of ConditionSet(see below).As the rule bases PC i are to be implemented by the user,they will be the target of our veri®cation method.4.2.1.1.De®nitions.Assume pl and pa are parameters for entities``plan''and``patient''. PlanSet set of all plans in the Asbru library.PatientSet set of all patients,to whom a plan may be applied.ConditionSet f filter(pl,pa),setup(pl,pa),activate(pl,pa),suspend(pl,pa),reactiva-te(pl,pa),abort(pl,pa),complete(pl,pa)}/Ãcorrelates with arrows in Fig.1Ã/. FinalStateSet f rejected(pl,pa),aborted(pl,pa),completed(pl,pa)}.Rule R L1 ÁÁÁ Ln3M;antec1 R f L1Y F F F Y Ln g;conseq2 R M.SS i set of all subplans of plan i.1Abbreviation for antecedent.2Abbreviation for consequent.G.Duftschmid,S.Miksch/Artificial Intelligence in Medicine22(2001)23±4131 CS i continuation set of plan i.This is a subset of SS i,containing all subplans, relevant for the completion of plan i:if a plan has subplans,some of them may need to complete as a prerequisite for the completion of plan i itself.The set of relevant subplans is defined in the parent plan.A hypotheses H can be inferred from a RB for some environment E,if H is a logical consequence of supplying E as input to RB,formally:infer(H,RB,E)iff(RB E)` H Y E P PatientSet.A hypotheses H is inferable from a RB if there is some environment E such that H can be inferred from RB for E,formally:inferable(H,RB)iff(W E)infer(H,RB,E), E P PatientSet.A rule R P RB®res for some environment E,if the antecedent of R is a logical consequence of supplying E as input to RB,formally:®re(R,RB,E)iff(W s)(RB E) `antec(R)s,E P PatientSet.A rule R P RB is®reable if there is some environment E such that R®res for E,formally:®reable(R,RB)iff(W E)®re(R,RB,E),E P PatientSet.4.2.1.2.Rule bases MPS and PC.Table2shows the RB MPS.The order of the rules is important to determine which and when rules will be fired.The choice of rule ordering is oriented towards the state-transition criteria(compare Fig.1).Table3gives an example for a simpli®ed version of a certain PC k,a RB for all conditions of the plan GDM-TYPE II to treat noninsulin-dependent gestational diabetes mellitus in patients with normal blood-glucose levels.In order to get a complete model for the execution control of a certain plan i,we have to unify its conditions base PC i with the generic RB for Asbru's Models of Plan States, formally MPS PC i.To handle the anomalies,which may occur within a RB MPS PC i,it is®rst necessary to outline the speci®c properties of this RB.We mentioned that we are going to map all conditions of Asbru plans to rules of the form L1 ÁÁÁ Ln3M.As these rules may only contain conjunctive literals,we will haveTable2RB MPS representing the generic model of plan statesR1Considered(pl,pa)/Ãstarting state for each planÃ/R2Considered(pl,pa) filter(pl,pa)3possible(pl,pa)R3Considered(pl,pa) X filter(pl,pa)3rejected(pl,pa)R4Possible(pl,pa) setup(pl,pa)3ready(pl,pa)R5Possible(pl,pa) X filter(pl,pa)3rejected(pl,pa)R6Ready(pl,pa) X filter(pl,pa)3rejected(pl,pa)R7Ready(pl,pa) X setup(pl,pa)3possible(pl,pa)R8Ready(pl,pa) activate(pl,pa)3activated(pl,pa)R9Activated(pl,pa) abort(pl,pa)3aborted(pl,pa)R10Activated(pl,pa) complete(pl,pa)3completed(pl,pa)R11Activated(pl,pa) suspend(pl,pa)3suspended(pl,pa)R12Suspended(pl,pa) reactivate(pl,pa)3activated(pl,pa)R13Suspended(pl,pa) abort(pl,pa)3aborted(pl,pa)to find correct substitutions for the disjunctions,allowed within Asbru conditions.This will be done by splitting a rule at each disjunction,thereby creating a new rule with identical consequent for each disjunction.As an example,rule L 1 L 2 L 3 L 4 3M will be split into two rules L 1 L 23M and L 3 L 43M . The set of possible consequences of rules we have to consider is small:as we mentioned before,only the rule bases PC is modifiable by the user and only the conditions C P ConditionSet should be addressed by rules within it.This means that PC should only contain rules R with conseq R C .As Asbru's Model of Plan States defines seven different conditions,each PC i will usually contain around seven rules with different consequences,even though the actual number of rules may be slightly lower or higher:it may be lower,as the conditions are optional plan elements.It may be slightly higher,as a condition may include disjunctions and would then be split into several rules.Evidently,it will be easy to guarantee that PC only contains rules referring to valid Asbru conditions:one might provide some sort of input support to the user or even apply manual verification due to the small number of rules. The amount of rules we have to consider when checking anomalies within one plan is limited to the scope of the plan's hierarchy:plans of different hierarchies are inde-pendent,no anomalies can result from relationships between their rules. The possible sequences (rule ordering),in which the rules of any PC i are considered,is preset by the rule bases MPS.In contrary to ``general''RB,we can,therefore include the order of inference into our considerations.This allows us to include some dynamic aspects of Asbru plans into our static verification process:although,we will not actually execute a plan to verify it,RB MPS gives us the opportunity to take the control flow of a plan during execution into account.4.2.2.Anomalies In the following,we will list all anomalies concerning Asbru conditions and the corresponding speci®cations they violate.The anomalies are organized according to the levels in which they may occur (compare Table 1).The underlying speci®cations may be seen as an extension of existing veri®cation work,achieved through the integration of Asbru speci®c language features such as its Model of Plan States (see Fig.1).Apart from their potential occurrence in original,generic guidelines,anomalies may be caused by inadequate specialization of guidelines:anomalies may be introduced by adaptation of guidelines to the speci®c characteristics of a receiving patient,e.g.when tuning certain thresholds of single conditions for a particularly sensitive patient (level 1).Table 3RB PC k representing the conditions of plan GDM-TYPE IIFemale(pa) Pregnant(pa)3filter(GDM-TYPE II,pa)Test_available(glucose-tolerance-test,pa)3setup(GDM-TYPE II,pa)Activate(GDM-TYPE II,pa)/Ãautomatic activation Ã/Delivered(pa)3complete(GDM-TYPE II,pa)State(blood-glucose,high,pa)3suspend(GDM-TYPE II,pa)State(blood-glucose,normal,pa)3reactivate(GDM-TYPE II,pa)Insulin-indicator(pa)3abort(GDM-TYPE II,pa)32G.Duftschmid,S.Miksch /Artificial Intelligence in Medicine 22(2001)23±41。

相关文档
最新文档