直线与圆的方程单元测试(教师)
人教A版新教材选择性必修第一册第二章直线与圆的方程单元测试题
人教A版新教材选择性必修一第二章直线与圆的方程单元测试题时间:120分钟满分:150分命卷人:审核人:一、选择题(每小题5分,共12小题60分)1. 已知直线与直线平行,则它们之间的距离是()A. B. C. D.2. 已知直线过定点,点在直线上,则的最小值是( )A. B. C. D.3. 由三条直线,和围成的三角形是()A. 直角三角形B. 等边三角形C. 钝角三角形D. 锐角三角形4. 直线与圆的位置关系是()A. 相交B. 相离C. 相切或相离D. 相切或相交5. 直线的倾斜角的取值范围是()A. B. C. D.6. 圆与圆的公切线有()A. 条B. 条C. 条D. 条7. 已知点,直线与线段相交,则实数的取值范围是()A. B. C. 或 D.8. 已知点在圆上,点,则线段的中点的轨迹方程是()A. B.C. D.9. 若直线与圆相切,且为锐角,则该直线的斜率是( )A. B. C. D.10. 圆上到直线的距离为的点共有( )A. 1个B. 2个C. 3个D. 4个11. 由直线上的点P向圆引切线,则切线长的最小值为()A. 1B.C.D. 912. 唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题一“将军饮马”问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在区域为,若将军从点处出发,河岸线所在直线方程为,并假定将军只要到达军营所在区域即回到军营,则“将军饮马”的最短总路程为( )A. B. C. D.二、填空题(每小题5分,共4小题20分)13. 已知直线不通过第一象限,则实数的取值范围__________.14. 已知圆经过直线与圆的交点,且圆的圆心在直线上,则圆的方程为__________.15. 一束光线从点出发,经轴反射到圆上,则最短路程是__________.16. 关于方程表示的圆,下列叙述中:①圆心在直线上;②其圆心在轴上;③过原点;④半径为.其中叙述正确的是__________(要求写出所有正确的序号).三、解答题(第17题10分,第18题12分,第19题12分,第20题12分,第21题12分,第22题12分,共6小题70分)17. 已知的顶点的平分线所在直线方程为边上的高所在直线方程为.(1)求顶点的坐标;(2)求的面积.18.(2020安徽高二月考)设直线的方程为..(1)若在两坐标轴上的截距相等,求的方程;(2)若与两坐标轴围成的三角形的面积为,求的值.19.已知点及圆C:.(1)若直线l过点P且被圆C截得的线段长为,求l的方程;(2)求过P点的圆C的弦的中点D的轨迹方程.20.(2020东莞市东华高级中学高二期中)已知圆,圆,则(1)若两圆心距为,求的值.(2)直线与坐标轴的交点,.点在圆上,求三角形面积最小值.21.已知实数、满足方程.(1)求的最大值和最小值;(2)求的最小值;(3)求的最大值和最小值.22. 曲线上两点、满足:(1)关于直线对称,(2),求直线的方程.人教A版新教材选择性必修一第二章直线与圆的方程单元测试题答案和解析第1题:【答案】A【解析】提示:因为两直线平行,故,所以.将代入直线的方程并化简得.由平行线的距离公式得两直线的距离为,故选A.第2题:【答案】B【解析】直线方程可化为:,令,得,所以点,又点在直线上,所以的最小值为点到直线的距离,因为,所以的最小值是.第3题:【答案】A【解析】和,则,∴.故选A.第4题:【答案】D【解析】直线过定点在圆上,∴直线与圆的位置关系是相切或相交.第5题:【答案】B【解析】解:直线可化为:,倾斜角,, 则,因为所以所以,即,所以. 所以选B.第6题:【答案】C【解析】两圆圆心距,所以两圆相外切,那么公切线有条,故选C.第7题:【答案】C【解析】∵直线可化为过定点,所以,数形结合可得直线的斜率的取值范围是或,即或,得的取值范围是或第8题:【答案】B【解析】设,线段中点坐标为,由坐标为,得到线段中点坐标为,即,代入圆可得:,即.故线段中点的轨迹方程为.第9题:【答案】A【解析】由题意知,圆心到直线的距离为, 则,所以或者, 当时,,, 当时,不可能成立,故舍去.第10题:【答案】C【解析】圆可化为, 所以圆心为,半径为2, 圆心到直线的距离为:, 所以, 所以圆上到直线的距离为的点共有3个. 故选:C第11题:【答案】C【解析】解:将圆方程化为标准方程得:,得到圆心,半径,圆心到直线的距离,则切线长的最小值,故选C.第12题:【答案】B【解析】由题点和军营所在区域在河岸线所在直线方程的同侧,设点关于直线的对称点,中点在直线上,解得:,即,设将军饮马点为,到达营区点为,则总路程,要使路程最短,只需最短,即点到军营的最短距离,即点到区域的最短距离为:.第13题:【答案】【解析】由题意得直线恒过定点,且斜率为,∵直线不通过第一象限,∴,解得,故实数的取值范围是.第14题:【答案】【解析】设所求圆的方程为:,即, ∴圆心为,由圆心在直线,∴,∴, ∴圆的方程为,即.第15题:【答案】.【解析】相当于求与圆上点的最近距离,.第16题:【答案】①③【解析】将圆的方程化成:易知①③正确第17题:【答案】(1);(2).【解析】(1)直线,则,直线的方程为, 由所以点的坐标. (2),所以直线的方程为,,即., 点到直线的距离为, 则.第18题:【答案】见解析【解析】(1)由题意知,,即.当直线过原点时,该直线在两条坐标轴上的截距都为,此时,直线的方程为;当直线不过原点,即时,由截距相等,得即,直线的方程为. 综上所述,所求直线的方程为或. (2)由题意知, ,,且在轴,轴上的截距分别为,.由题意知,,即. 当时,解得,当时,解得. 综上所述,或.第19题:【答案】(1)直线的方程为:或;(2)【解析】(1)如图所示,,设是线段的中点,则点C的坐标为, 在中,可得,设所求直线的方程为:即,由点到直线的距离公式得:此时直线的方程为:. 又直线的斜率不存在时,也满足题意,此时方程为:所以所求直线的方程为:或. (2)设过点P的圆C的弦的中点为,则即所以化简得所求轨迹的方程为:.第20题:【答案】见解析【解析】解析:(1)∵的圆心,的圆心, 又∵圆心距为, 由得, ∴或. (2)∵当时,当时,, ∴,, ∴, 当到直线的距离最小时,面积最小. 设的高为, ∴, ∴.第21题:【答案】(1),(2),(3),【解析】(1)原方程化为,表示以点为圆心,半径为的圆.设,即,当直线与圆相切时,斜率取得最大值和最小值,此时有,解得,故的最大值为,最小值为. (2)设,即,当与圆相切时,纵截距取得最大值和最小值,此时,即,故,. (3)表示圆上的点与原点距离的平方,由平面几何知识知原点与圆心连线与圆的两个交点处取得最大值和最小值.又圆心到原点的距离为,故,.第22题:【答案】或【解析】由(1)得直线过圆心,∴,,故设直线的方程为,与圆方程联立消去得.设,,由于,∴,即结合韦达定理可得或.从而直线的方程为或.。
圆与直线的方程单元测试题含答案
圆与直线的方程单元测试题含答案本文档为一个圆与直线的方程单元测试题,共包含多道题目及其答案。
问题 1给定圆 $C: (x-2)^2 + (y-3)^2 = 9$ 和直线 $L: 2x+y=6$,判断直线 $L$ 是否与圆 $C$ 相交。
答案:直线 $L$ 与圆 $C$ 交于两个点。
问题 2给定圆 $C: (x-1)^2 + (y+2)^2 = 16$ 和直线 $L: 3x+y=2$,求直线 $L$ 与圆 $C$ 的交点坐标。
答案:直线 $L$ 与圆 $C$ 的交点坐标为 $(\frac{10}{13}, -\frac{24}{13})$ 和 $(\frac{29}{13}, -\frac{6}{13})$。
问题 3给定圆 $C: (x+2)^2 + (y-1)^2 = 25$ 和直线 $L: x+y=0$,判断直线 $L$ 是否与圆 $C$ 相切。
答案:直线 $L$ 与圆 $C$ 相切。
问题 4给定圆 $C: (x-3)^2 + (y+4)^2 = 36$ 和直线 $L: 2x-y=10$,求直线 $L$ 与圆 $C$ 的交点坐标。
答案:直线 $L$ 与圆 $C$ 的交点坐标为 $(\frac{32}{5},\frac{14}{5})$ 和 $(\frac{2}{5}, -\frac{6}{5})$。
问题 5给定圆 $C: (x+1)^2 + (y-2)^2 = 25$ 和直线 $L: x-y=0$,判断直线 $L$ 是否与圆 $C$ 相离。
答案:直线 $L$ 与圆 $C$ 相离。
问题 6给定圆 $C: (x+5)^2 + (y+3)^2 = 36$ 和直线 $L: x+2y=5$,求直线 $L$ 与圆 $C$ 的交点坐标。
答案:直线 $L$ 与圆 $C$ 的交点坐标为 $(-1, 3)$。
以上为圆与直线的方程单元测试题及其答案。
注:答案均采用四舍五入取整的方式。
高中数学教师资格证笔试练题:第二章 直线与圆的方程 单元检测卷
高中数学选择性必修第一册第二章直线与圆的方程测试卷一、单选题1.直线l 经过点(3,4)P -且与圆2225x y +=相切,则直线l 的方程为( )A .44(3)3y x -=-+B .34(3)4y x -=+C .44(3)3y x +=--D .44(3)3y x +=-2.已知直线l 过点(3A ,(3B +,则直线l 的斜率为( )A B C .D .3.已知()1,3A ,()3,1B -,则以AB 为直径的圆的方程为( ) A .()()22215x y -+-= B .()()222120x y -+-= C .()()22125x y ++-=D .()()221220x y ++-=4.已知直线1:32l y x =-,直线221:60l x y -+=,则1 l 与2 l 之间的距离为( )AB C D 5.已知直线l 过直线l 1:x -2y +3=0与直线l 2:2x +3y -8=0的交点,且点P (0,4)到直线l 的距离为2,则这样的直线l 的条数为( ) A .0B .1C .2D .36.直线1x y +=与圆221x y +=的位置关系是( ) A .相离 B .相切 C .相交且直线经过圆心 D .相交但直线不经过圆心7.若直线:l y kx =30x y +-=的交点位于第二象限,则直线l 的倾斜角的取值范围是( ) A .3,24ππ⎛⎤ ⎥⎝⎦B .3,24ππ⎡⎫⎪⎢⎣⎭C .3,34ππ⎛⎫ ⎪⎝⎭D .3,24ππ⎛⎫ ⎪⎝⎭8.直线160l x my -+=:和直线()210l mx y m R +-=∈:的位置关系是( )A .相交且垂直B .平行C .相交且不垂直D .不确定9.已知圆的一条直径的端点分别是()1,0A -,()3,4B -,则该圆的方程为( ) A .()()22128x y ++-= B .()()22128x y -++= C .()()221232x y ++-=D .()()221232x y -++=10.两条直线20x y a ++=和1102x ay a ⎛⎫--=≠- ⎪⎝⎭的交点的轨迹方程是( )A .212102y xy x y ⎛⎫++-=≠- ⎪⎝⎭B .212102x xy y x ⎛⎫++-=≠- ⎪⎝⎭C .221x y x +=-+D .2121x y x -=+二、填空题11.写出一个圆心在直线340x y +=上,且与x 轴相切的圆的标准方程:___________. 12.经过A (18,8),B (4,﹣4)两点的直线的斜率k =__. 13.直线1x =的倾斜角和斜率分别为__________.14.若圆的方程222440x y x y +-++=,则此圆的圆心坐标为___________. 15.已知实数m ,n 满足10m n +-=,则22m n +的最小值为___________.16.若直线l 过点33,2M ⎛⎫-- ⎪⎝⎭且被圆2225x y +=所截得的弦长是8,则l 的方程为________.17.已知圆221:(3)(1)4C x y ++-=,直线:148310l x y +-=,则圆1C 关于直线l 对称的圆2C 的标准方程为______.18.已知点P ,Q 是圆221x y +=上的动点,若直线l :0x y b ++=上存在点A ,使得π2PAQ ∠=,则b 的取值范围是______.19.已知直线x +y =a 与圆224x y +=交于A 、B 两点,且||||OA OB OA OB +=-,其中O 为坐标原点,则实数a 的值为________.20.已知点(2,0),(2,0),A B -如果直线340(0)x y m m -+=>上有且只有一个点P 使得PA ⊥PB ,那么实数m 的值为________. 三、解答题21.求过点(2,1)A -,圆心在直线2y x =-上,且与直线10x y +-=相切的圆的方程. 22.已知圆C 过点()6,0A ,()1,5B ,且圆心在直线:2780l x y -+=上. (1)求圆C 的标准方程;(2)将圆C 向上平移1个单位长度后得到圆1C ,求圆1C 的标准方程. 23.求直线112y x =-关于直线24y x =-对称的直线的一般式方程.24.已知点(P 在以坐标原点为圆心的圆O 上,直线1l 0y +-=与圆O 相交于A ,B 两点,且A 在第一象限(1)求圆O 在点P 处的切线方程;(2)设()()000,1Q x y x ≠±是圆O 上的一个动点,点Q 关于原点O 的对称点为1Q ,点Q 关于x 轴的对称点为2Q ,如果直线1AQ ,2AQ 与y 轴分别交于()0,m 和()0,n 两点,问mn 是否为定值?若是,求出定值;若不是,说明理由.25.已知圆M 过C (1,﹣1),D (﹣1,1)两点,且圆心M 在x +y ﹣2=0上. (1)求圆M 的方程;(2)设P 是直线3x +4y +8=0上的动点,P A ,PB 是圆M 的两条切线,A ,B 为切点,求四边形P AMB 面积的最小值.参考答案1.B 【详解】由题设,点()3,4-在圆2225x y +=上,易知切线方程的斜率存在,设切线方程的斜率为k ,则切线方程为4(3)y k x -=+,即340kx y k -++=, ⊥圆心(0,0)到切线的距离5d ==,解得34k =,故切线方程为34(3)4y x -=+.2.C 【详解】因为直线l 过点(3A ,(3B +,所以由过两点的直线的斜率公式,得直线l 36-= 3.A 【详解】AB 的中点()2,1为圆心,半径r ==所以所求圆的方程为()()22215x y -+-=. 4.D 【详解】直线1l 的方程可化为6240x y --=,则1l 与2l 之间的距离d =. 5.C 【详解】方法一 由2302380x y x y -+=⎧⎨+-=⎩得12x y =⎧⎨=⎩,即直线l 过点(1,2).设点Q (1,2),因为PQ 2,所以满足条件的直线l 有2条.方法二 依题意,设经过直线l 1与l 2交点的直线l 的方程为2x +3y -8+λ(x -2y +3)=0(λ⊥R ),即(2+λ)x +(3-2λ)y +3λ-8=0.2=,化简得5λ2-8λ-36=0,解得λ=-2或185,代入得直线l 的方程为y =2或4x -3y +2=0, 6.D 【详解】圆221x y +=的圆心()0,0O ,半径1r =.因为圆心()0,0O 到直线1x y +=的距离1d =, 所以直线与圆相交但直线不过圆心. 7.D 【详解】联立方程组30y kx x y ⎧=⎪⎨+-=⎪⎩,解得x y =0<0>,解得1k <-, 设直线l 的倾斜角为θ,其中[0,)θπ∈,即tan 1θ<-,解得324ππθ<<, 即直线l 的倾斜角的取值范围是3(,)24ππ.8.A 【详解】解:当0m =时,12l l ⊥; 当0m ≠时,11k m=,2k m =-, 则121k k ,则12l l ⊥.综上,知12l l ⊥, 9.B 【详解】解:由题意可知,()1,0A -,()3,4B -的中点为()1,2-,又圆的半径为12r AB == 故圆的方程为()()22128x y -++=. 10.A 【详解】联立2010x y a x ay ++=⎧⎨--=⎩,解得2121221a x a a y a ⎧-=⎪⎪+⎨+⎪=-⎪+⎩,由221a y a +=-+,得221y a y +=-+, 将221y a y +=-+代入2121a x a -=+, 可得212102y xy x y ⎛⎫++-=≠- ⎪⎝⎭.11.()()22439x y -++=(答案不唯一) 【详解】设圆的方程为222()()(0)x a y b r r -+-=>,则只要符合340a b r b +=⎧⎨=⎩即可,如433a b r =⎧⎪=-⎨⎪=⎩,故答案为:()()22439x y -++= 12.67【详解】解:经过A (18,8),B (4,﹣4)两点的直线的斜率k =8461847+=-, 故答案为:67.13.90︒,不存在 【详解】直线1x =垂直于x 轴,所以倾斜角为90︒,斜率不存在. 故答案为:90︒;不存在. 14.()1,2- 【详解】解:根据题意,圆的方程是222440x y x y +-++=,即()()22121x y -++=, 故其圆心坐标为:()1,2-, 故答案为:()1,2- 15.12 【详解】由题意得2222m n +=,所表示的几何意义是点(,)m n 到原点(0,0)的距离的平方, 又由原点(0,0)到直线10x y +-=的距离为(),d m n ==在该直线上 ,,可得22m n +的最小值为212=.故答案为:1216.3x =-或34150x y ++= 【详解】当直线l 不存在斜率时,直线l 过点33,2M ⎛⎫-- ⎪⎝⎭,所以直线l 的方程为:3x =-,把3x =-代入圆的方程中,得223254y y +=⇒=±,因为4(4)8--=,所以3x =-符合题意; 当直线l 存在斜率时,设为k ,因为直线l 过点33,2M ⎛⎫-- ⎪⎝⎭,所以直线l 的方程为:3(3)226302y k x kx y k +=+⇒-+-=, 因为2225x y +=的半径为5,直线l 被圆2225x y +=所截得的弦长是8, 所以圆心(0,0)到直线l3,334k =⇒=-,所以332()26()303415044x y x y ⨯--+⨯--=⇒++=,故答案为:3x =-或34150x y ++= 17.22(4)(5)4x y -+-= 【详解】设圆2C 的圆心坐标为(,)m n . 因为直线l 的斜率74k =-,圆221:(3)(1)4C x y ++-=的圆心坐标为(3,1)-,半径2r,所以由对称性知14373114831022n m m n -⎧=⎪⎪+⎨-++⎪⨯+⨯-=⎪⎩,解得4 5m n =⎧⎨=⎩. 所以圆2C 的方程为22(4)(5)4x y -+-=. 故答案为: 22(4)(5)4x y -+-=. 18.[2,2]- 【详解】如图,过圆221x y +=上任意两点P ,Q 分别作与坐标轴平行的直线,两直线交于一点A ,则点A 满足题意,可知正方形区域内(含边界),对于任意两点P ,Q 均存在满足题意的A 点.当直线0x y b ++=过正方形右上顶点时,b 取得最小值2-;当直线0x y b ++=过正方形左下顶点时,b 取得最大值2,故b 的取值范围为[]22-,. 故答案为:[2,2]-.19.2± 解. 【详解】因||||OA OB OA OB +=-,由向量加法和减法的几何意义知,以线段OA ,OB 为一组邻边的平行四边形两条对角线长相等,从而这个平行四边形是矩形,即OA OB ⊥,又||||2==OA OB ,则AOB 是等腰直角三角形,于是点O 到直线AB ,=2a =±.故答案为:2± 20.10 【详解】由题意知,点P 的轨迹是以AB 为直径的圆,圆的方程为:x 2+y 2=4 所以要使得直线3x ﹣4y +m =0上有且只有一个点P 使得P A ⊥PB , 则此直线与圆:x 2+y 2=4相切,圆心()0,0,半径为2, 2916m ,解得m =10或-10(舍去).所以m =10. 故答案为:10.21.22(1)(2)2x y -++=. 【详解】设圆心坐标为(,)a b ,半径为r ,由题意得:2222(2)(1)b a a b r r⎧⎪=-⎪⎪-+--=⎨=,解得12a b r ⎧=⎪=-⎨⎪=⎩,故所求圆的方程为22(1)(2)2x y -++=.22.(1) ()()223213x y -+-=;(2) ()()223313x y -+-=.【详解】(1)因为直线AB 的斜率为50116-=--, 所以线段AB 的垂直平分线m 的斜率为1. 又易知线段AB 的中点坐标为75,22⎛⎫⎪⎝⎭,所以直线m 的方程为57122y x ⎛⎫-=⨯- ⎪⎝⎭,即10x y --=. 因为圆心在直线l 上,所以圆心是直线m 与直线l 的交点.由102780x y x y --=⎧⎨-+=⎩,解得32x y =⎧⎨=⎩. 所以圆心为()3,2C,半径r CA == 所以圆C 的标准方程是()()223213x y -+-=. (2)由(1),知圆C 的圆心坐标为()3,2, 将点()3,2向上平移1个单位长度后得到点()3,3, 故圆1C 的圆心坐标为()3,3故圆1C 的标准方程为()()223313x y -+-=. 23.112220x y +-=. 【详解】由11224y x y x ⎧=-⎪⎨⎪=-⎩,可得交点为(2,0), 所以可设所求直线的方程为()2y k x =-,即20kx y k --=. 点(3,2)为直线24y x =-=解得12k =(舍去)或112k =-. 所以所求直线的方程为111102x y --+=,即112220x y +-=. 故答案为:112220x y +-=.24.(1)40x +-=;(2)是定值,理由见解析. 【详解】 (1)因为OP k ==O 在点P处的切线斜率为所以圆O 在点P处的切线方程为)13y x -=-,即40x -= (2)是定值,理由如下解方程组224y x y +-=+=⎪⎩,可得A , 因为()000,(1)Q x y x ≠±,所以()100,Q x y --,()200,Q x y -,22004x y +=,由10:1)AQ y x -,令0x =,得0m =由20:1)AQ y x =-,令0x =,得0n =∴2020004(1)41x mn x --===-. 25.(1)()()22114x y -+-=;(2) 【详解】解:(1)设圆M 的方程为:()()()2220x a y b r r -+-=>, 根据题意得222222(1)(1)1(1)(1)1202a b r a a b r b a b r ⎧-+--==⎧⎪⎪--+-=⇒=⎨⎨⎪⎪+-==⎩⎩,故所求圆M 的方程为:()()22114x y -+-= ; (2)如图,答案第11页,共8页 四边形PAMB 的面积为PAM PBM S S S =+,即()12S AM PA BM PB =+ 又2,AM BM PA PB ===,所以2S PA =,而PA,即S = 因此要求S 的最小值,只需求PM 的最小值即可, PM 的最小值即为点M 到直线3480x y ++=的距离所以min 3PM ==,四边形PAMB面积的最小值为=。
(完整版)高二数学-直线和圆的方程-单元测试(含答案).doc
高二直线和圆的方程单元测试卷班级: 姓名:一、选择题: 本大题共 10 小题,每小题 5 分,共 50 分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线 l 经过 A (2, 1)、B ( 1,m 2) (m ∈ R)两点,那么直线 l 的倾斜角的取值范围是A . [0, )B . [ 0, ] [3 C . [0, ], )444D . [0, ](, ) 422. 如果直线 (2a+5) x+( a - 2)y+4=0 与直线 (2- a)x+(a+3)y - 1=0 互相垂直,则 a 的值等于 A . 2 B .- 2C . 2,- 2D .2,0,- 2 3.已知圆 O 的方程为 x 2+ y 2= r 2,点 P ( a ,b )( ab ≠ 0)是圆 O 内一点,以P为中点的弦所在的直线为 m ,直线 n 的方程为 ax +by = r 2,则A .m ∥n ,且 n 与圆 O 相交B . m ∥ n ,且 n 与圆 O 相 离C . m 与 n 重合,且 n 与圆 O 相离D .m ⊥ n ,且 n 与圆 O 相离4. 若直线 ax2by 2 0( a,b 0) 始终平分圆 x 2y 2 4x 2 y8 0 的周长,则12a b的最小值为A .1B . 5 C.4 2D . 3 225. M (x 0 , y 0 ) 为 圆 x 2 y 2a 2 ( a 0) 内 异 于 圆 心 的 一 点 , 则 直 线x 0 x y 0 y a 2 与该圆的位置关系为A .相切 B.相交C.相离 D .相切或相交6. 已知两点 M ( 2,- 3), N (- 3,- 2),直线 L 过点 P ( 1, 1)且与线段 MN 相交,则直线 L 的斜率 k 的取值范围是A .3≤k ≤ 4B . k ≥ 3或 k ≤- 4C . 3≤ k ≤ 4D .-34444≤ k ≤45) 2 1)27. 过直线 y x 上的一点作圆 (x ( y 2 的两条切线 l 1, l 2 ,当直 线 l 1, l 2 关于 yx 对称时,它们之间的夹角为A . 30oB . 45oC . 60oD . 90ox y 1 01x 、yy1 0,那么 xy8满足条件4()的最大值为.如果实数2xy 1 0A . 2B. 1C.1D.19 (0, a),1x 2 y224其斜率为 ,且与圆2相切,则 a 的值为.设直线过点A.4B. 2 2C.2D.210.如图, l 1 、 l 2 、 l 3 是同一平面内的三条平行直线,l 1 与 l 2 间的距离是 1,l 2 与 l 3 间的距离是 2,正三角形 ABC 的三顶点分别在 l 1 、l 2 、l 3 上,则⊿ ABC的边长是A. 23 4 63 172 21B.3 C.4D.3一、选择题答案123 45 678910二、填空题: 本大题共 5 小题,每小题 5 分,共 25 分.答案填在题中横线上.11.已知直线 l 1 : x y sin 1 0 , l 2 : 2x siny 1 0 ,若 l 1 // l 2 ,则.12.有下列命题:①若两条直线平行,则其斜率必相等;②若两条直线的斜率乘积为- 1, 则其必互相垂直;③过点(- 1,1),且斜率为 2 的直线方程是y 1 2 ;x1④同垂直于 x 轴的两条直线一定都和 y 轴平行 ;⑤若直线的倾斜角为 ,则 0 .其中为真命题的有 _____________( 填写序号 ).13.直线 Ax + By +C = 0 与圆 x 2+ y 2= 4 相交于两点 M 、 N ,若满足 C 2= A 2+ uuuuruuurB 2,则 OM · ON ( O 为坐标原点)等于 _ .14.已知函数 f ( x) x 22x 3 ,集合 Mx, y f ( x) f ( y) 0 , 集 合 N x, y f ( x) f ( y) 0 , 则 集 合 MN 的 面 积是;15.集合P ( x, y) | x y 5 0,x N*,y N*},Q ( x, y) | 2x y m 0 ,M x, y) | z x y , ( x, y) ( P Q),若z 取最大值时,M(3,1) ,则实数m的取值范围是;三、解答题:本大题共 6 小题,共 75 分.解答应写出文字说明,证明过程或演算步骤.16.(本小题满分12 分)已知ABC 的顶点A为(3,-1),AB边上的中线所在直线方程为6x 10 y 59 0, B 的平分线所在直线方程为x 4y 10 0 ,求BC 边所在直线的方程.17.(本小题满分12 分)某厂准备生产甲、乙两种适销产品,每件销售收入分别为 3 千元, 2 千元。
高中试卷-专题10 直线和圆的方程(单元测试卷)(含答案)
专题10 《直线和圆的方程》单元测试卷一、单选题1.(2019·全国高二月考(文))直线:的倾斜角为( )A .B .C .D .【答案】D 【解析】直线的斜率,设直线的倾斜角为,则,所以.故选:D.2.(2019·浙江省高二期中)圆心为,且过原点的圆的方程是( )A .B .C .D .【答案】A 【解析】根据题意.故选:.3.(2020·南京市江宁高级中学高一月考)如果直线(2a+5)x+(a -2)y+4=0与直线(2-a)x+(a+3)y -1=0互相垂直,则a 的值等于( )A .2B .-2C .2,-2D .2,0,-2【答案】C 【解析】(2a +5)(2-a )+(a -2)(a +3)=0,所以a =2或a =-2.4.(2019·山东省高一期中)圆与直线的位置关系( )A .相切B .相离C .相交D .不能确定【答案】Cx y +-0=30°45°60°135°0x y +=1k =-0x y +=1(080)a a °£<°tan 1a =-135a =°()2,2()()22228x y -+-=()()22222x y -+-=()()22228x y +++=()()22222x y +++=r ==()()22228x y -+-=A 22(1)5x y +-=120mx y m -+-=直线即即直线过点,把点代入圆的方程有,所以点在圆的内部,过点的直线一定和圆相交.故选:C.5.(2019·山东省高一期中)从点向圆引切线,则切线长的最小值( )A .B .5CD .【答案】A【解析】设切线长为,则,故选:A.6.(2020·南京市江宁高级中学高一月考)已知直线在两坐标轴上的截距相等,则实数A .1B .C .或1D .2或1【答案】D 【解析】由题意,当,即时,直线化为,此时直线在两坐标轴上的截距都为0,满足题意;当,即时,直线化为,由直线在两坐标轴上的截距相等,可得,解得;综上所述,实数或.故选:D .7.(2019·山东省高一期中)若点为圆的弦的中点,则弦所在直线的方程为( )A .B .C .D .120mx y m -+-=()12y m x -=-()21,()21,405+<()21,()21,(,3)P m 22(2)(2)1x y +++=4+d 2222(2)51(2)24d m m =++-=++min d \=20ax y a +-+=(a =)1-2-2a 0-+=a 2=ax y 2a 0+-+=2x y 0+=2a 0-+¹a 2¹ax y 2a 0+-+=122x ya a a+=--2a2a a-=-a 1=a 2=a 1=(1,1)P 2240x y x +-=AB AB 20x y +-=0x y -=20x y -+=22(1)5x y +-=【解析】化为标准方程为.∵为圆的弦的中点,∴圆心与点确定的直线斜率为,∴弦所在直线的斜率为1,∴弦所在直线的方程为,即.故选:B.8.(2020·武威第六中学高三二模(文))过点且倾斜角为的直线被圆所截得的弦长为( )AB .1CD .【答案】C 【解析】根据题意,设过点且倾斜角为的直线为 ,其方程为,即,变形可得,圆 的圆心为,半径 ,设直线与圆交于点,圆心到直线的距离,则,故选C.9.(2020·南京市江宁高级中学高一月考)已知直线和以,为端点的线段相交,则实数k 的取值范围为( )A .B.2240x y x +-=()22-24x y +=()1,1P ()22-24x y +=AB P 01121k -==--AB AB 11y x -=-0x y -=()1,030o ()2221x y -+=()1,030o l ()tan 301y x =-o)1y x =-10x -=()2221x y -+=()2,01r =l AB 12d 2AB ==20kx y -+=()3,2M -()2,5N 32k £32k ³C .D .或【答案】C 【解析】因为直线恒过定点,又因为,,所以直线的斜率k 的范围为.故选:C .10.(2020·四川省宜宾市第四中学校高二月考(理))已知圆,圆,、分别是圆、上动点,是轴上动点,则的最大值是( )A .BC .D【答案】D 【解析】如下图所示:4332k -££43k £-32k ³20kx y -+=()0,2A 43AM k =-32AN k =4332k -££()()221:231C x y -+-=()()222:349C x y -+-=M N 1C 2C P x PN PM -4+4+圆的圆心,半径为,圆的圆心,半径为,,由圆的几何性质可得,,,当且仅当、、三点共线时,取到最大值.故选:D.二、多选题11.(2019·辽宁省高二月考)在同一直角坐标系中,直线与圆的位置不可能是( )A .B .C .D .【答案】ABD 【解析】直线经过圆的圆心,且斜率为.故选项满足题意.故选:.12.(2020·山东省高三期末)已知点是直线上一定点,点、是圆上1C ()12,3C 11r =2C ()23,4C 23r =12C C ==2223PN PC r PC £+=+1111PM PC r PC ³-=-2112444PN PM PC PC C C -£-+£+=1C P 2C PN PM -4+2y ax a =+222()x a y a ++=2y ax a =+222()x a y a ++=(),0a -a ,,A B D ABD A :0l x y +=P Q 221x y +=的动点,若的最大值为,则点的坐标可以是( )A .B .C .D .【答案】AC 【解析】如下图所示:原点到直线的距离为,则直线与圆相切,由图可知,当、均为圆的切线时,取得最大值,连接、,由于的最大值为,且,,则四边形为正方形,所以由两点间的距离公式得整理得,解得,因此,点的坐标为或.故选:AC.13.(2020·广东省高二期末)瑞士数学家欧拉(LeonhardEuler )1765年在其所著的《三角形的几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上,后人称这条直线为欧拉线.已知的顶点,,其欧拉线方程为,则顶点的坐标可以是( )A .B .C .D .PAQ Ð90o A (()1))1,1-l 1d ==l 221x y +=AP AQ 221x y +=PAQ ÐOP OQ PAQ Ð90o 90APO AQO Ð=Ð=o 1OP OQ ==APOQ OA =OA ==220t -=0t =A ()ABC D ()4,0-A ()0,4B 20x y -+=C ()2,0()0,2()2,0-()0,2-【答案】AD 【解析】设的垂直平分线为,的外心为欧拉线方程为与直线的交点为,,①由,,重心为,代入欧拉线方程,得,②由 ①②可得或 .故选:AD 三、填空题14.(2019·浙江省高二期中)直线过定点______;若与直线平行,则______.【答案】 【解析】(1),故.即定点为(2) 若与直线平行,则,故或.当时与直线重合不满足.故.故答案为:(1) ; (2)15.(2018·江苏省高二月考)已知以为圆心的圆与圆相内切,则圆C 的方程是________.【答案】(x -4)2+(y +3)2=36.(,),C x y AB y x =-ABC D 20x y -+=y x =-(1,1)M-22||||(1)(1)10MC MA x y \==\++-=()4,0A -()0,4B ABC D 44(,33x y -+20x y -+=20x y --=2,0x y ==0,2x y ==-()1:20l m x y m +--=()m R Î1l 2:310l x my --=m =()1,23-()1:20(1)20l m x y m m x x y +--=Þ-+-=101202x x x y y -==ììÞíí-==îî()1,21l 2:310l x my --=()()()()()2310130m m m m +---=Þ-+=1m =3m =-1m =1l 2l 3m =-()1,23-()4,3C -22:1O x y +=【解析】,设所求圆的半径为,由两圆内切的充分必要条件可得:,据此可得:,圆C 的方程是(x -4)2+(y +3)2=36.16.(2020·河南省高三二模(文))圆关于直线的对称圆的标准方程为__________.【答案】【解析】,圆心为,半径为,设圆心关于直线的对称点为,对称圆的标准方程为.故答案为:.17.(2020·四川省高三二模(文))已知、为正实数,直线截圆所得的弦长为,则的最大值为__________.【答案】【解析】因为直线截圆所得的弦长为,且圆的半径为2.故圆心到直线的距离.,因为、为正实数,故,所以.当且仅当时取等号.5=()0r r >15r -=6r =22230x y y ++-=10x y +-=22(2)(1)4x y -+-=Q 2222230(41)x y y x y ++-=Þ+=+\(0,1)-210x y +-=(,)x y \1(1)1,2,1.110,22y x xy x y +ì´-=-ï=ìïÞíí=-îï+-=ïî\22(2)(1)4x y -+-=22(2)(1)4x y -+-=a b 10x y ++=()()224x a y b -+-=ab 1410x y ++=(224x (),a b d ==a b 1a b +=2124a b ab +æö£=ç÷èø12a b ==故答案为:四、解答题18.(2020·吴江汾湖高级中学高一月考)求圆上与直线的距离最小的点的坐标.【答案】【解析】过圆心且与直线垂直的直线方程为,联立圆方程得交点坐标为,,又因为与直线的距离最小,所以.19.(2019·全国高二月考(文))已知直线过点.(1)若原点到直线的距离为,求直线的方程;(2)当原点到直线的距离最大时,求直线的方程.【答案】(1)或;(2)【解析】(1)①当直线的斜率不存在时,方程符合题意;14224x y +=43120x y +-=86,55P æöç÷èø43120x y +-=340x y -=224340x y x y ì+=í-=î86,55æöç÷èø86,55æö--ç÷èø43120x y +-=86,55P æöç÷èøl (2,1)P -O l 2l O l l 20x -=34100x y --=250.x y --=l 2x =②当直线的斜率存在时,设斜率为,则方程为,即,解得,则直线的方程为故直线的方程为或(2)当原点到直线的距离最大时,直线因为,所以直线的斜率所以其方程为,即20.(2020·吴江汾湖高级中学高一月考)在中,,边上的高所在的直线方程为,边上中线所在的直线方程为.(1)求点坐标;(2)求直线的方程.【答案】(1)(2)【解析】(1)边上的高为,故的斜率为, 所以的方程为,即,因为的方程为解得所以.l k ()12y k x +=-210.kx y k ---=234k =l 34100.x y --=l 20x -=34100.x y --=O l .l OP ^011022OP k +==--l 2,k =()122y x +=-250.x y --=ABC D (1,2)A -AC BE 74460x y +-=AB CM 211540x y -+=C BC ()66C ,2180x y +-=AC 74460x y +-=AC 47AC ()4217y x -=+47180x y -+=CM 211540x y -+=21154047180x y x y -+=ìí-+=î,,66x y =ìí=î()66C ,(2)设,为中点,则的坐标为, 解得, 所以, 又因为,所以的方程为即的方程为.21.(2019·浙江省高二期中)如图,圆,点为直线上一动点,过点引圆的两条切线,切点分别为(1)求证:直线恒过定点,并求出该定点的坐标;(2)若两条切线于轴分别交于两点,求面积的最小值.【答案】(1)见解析,(2【解析】(1)设,则以 为直径的圆的方程: ,与圆,两式相减得:,()00,B x y M AB M 0012,22x y -+æöç÷èø0000122115402274460x y x y -+ì-+=ïíï+-=î0028x y =ìí=î()2,8B ()6,6C BC ()866626y x --=--BC 2180x y +-=22:(2)1C x y -+=P :4l x =P C ,A BAB Q ,PA PB y ,M N QMN V 5,02Q æöç÷èø(4,)P t CP ()22232t x y æö-+-=ç÷èø22:(2)1C x y -+=:2(2)1AB l x ty -+=所以直线恒过定点.(2)设直线与的斜率分别为,与圆,即.所以,,22.(2020·江西省新余一中高一月考)已知点,,直线:,设圆的半径为,圆心在直线上.(1)若圆心也在直线上,过点作圆的切线,求切线的方程;(2)若圆上存在点,使,为坐标原点,求圆心的横坐标的取值范围.【答案】(1)或.(2)【解析】(1)由得:,所以圆C:..当切线的斜率存在时,设切线方程为,由,解得:当切线的斜率不存在时,即也满足所以切线方程为:或.5,02Qæöç÷èøAP BP12,k k(4)y t k x-=-C1=223410k tk t-+-=2121241,33-+=×=t tk k k k14My t k=-24Ny t k=-12||44=-==³MN k k()min1522MNQSD==(4,4)A(0,3)B l1y x=-C1C lC37y x=-A CC M2MB MO=O C a4x=3440x y-+=a££a££137y xy x=-ìí=-î()3,2C22(3)(2)1x y-+-=4(4)y k x-=-1d==34k=4x=4x=3440x y-+=(2)由圆心在直线l :上,设设点,由化简得:,所以点M在以为圆心,2为半径的圆上. 又点M 在圆C 上,所以圆C 与圆D 有交点,则即,解得:23.(2019·山东省高一期中)已知点,点在圆上运动.(1)求过点且被圆截得的弦长为的直线方程;(2)求的最值.【答案】(1)或;(2)最大值为88,最小值为72.【解析】(1)依题意,直线的斜率存在,因为过点且被圆截得的弦长为,,设直线方程为,即,解得或所以直线方程为或.(2)设点坐标为则.因为,所以,即的最大值为88,最小值为72.C 1y x =-(,1)C a a -(,)M x y ||2||MB MO ==22(1)4x y ++=(0,1)D -1||3CD ££13££a ££a ££(2,2),(2,6),(4,2)A B C ----P 22:4E x y +=C E 222||||||PA PB PC ++7100x y ++=20x y +-=C E 2(4)y k x +=-420kx y k ---==17k =-1k =-7100x y ++=20x y +-=P (),x y 224x y +=222222222||||||(2)(2)(2)(6)(4)(2)PA PB PC x y x y x y ++=++++++-+-++()223468804x y y y=+-+=-22y -≤≤7280488y £-£222||||||PA PB PC ++。
人教版高中数学选修一第二单元《直线和圆的方程》测试卷(答案解析)
一、选择题1.过点()0,0A 、()2,2B 且圆心在直线24y x =-上的圆的标准方程为( ) A .()2224x y -+= B .()2224x y ++= C .()()22448x y -+-=D .()()22448x y ++-=2.两圆222240x y ax a +++-=和2224140x y by b +--+=恰有三条公切线,若a R ∈,b R ∈且0ab ≠,则2211a b +的最小值为( ) A .72B .4C .1D .53.点()4,2P -与圆224x y +=上任一点连线的中点轨迹方程是( ) A .()()22211x y -++= B .()()22214x y -++= C .()()22421x y ++-=D .()()22211x y ++-=4.直线0x y +=被圆226240x y x y +-++=截得的弦长等于( )A .4B .2C .D5.已知圆222:(1)(1)(0)C x y r r -+-=>,若圆C 上至少有3个点到直线20x y ++=,则实数r 的取值范围为( )A .(0,B .C .)+∞D .+∞[)6.设点M 为直线2x =上的动点,若在圆22:3O x y +=上存在点N ,使得30OMN ∠=︒,则M 的纵坐标的取值范围是( )A .[1,1]-B .11,22⎡⎤-⎢⎥⎣⎦C .[-D .22⎡-⎢⎣⎦7.两圆交于点(1,3)A 和(,1)B m ,两圆的圆心都在直线02cx y -+=上, 则m c += . A .1B .2C .3D .48.直线y =x +b 与曲线x =b 的取值范围是( )A .||b =B .-1<b ≤1或b =C .-1≤b <1D .非以上答案9.过点(1,2)的直线被圆229x y +=所截弦长最短时的直线方程是( ) A .250x y +-= B .20x y -= C .230x y -+=D .20x y +=10.若直线y x b =+与曲线3y =2个公共点,则b 的取值范围是( )A.[1-+ B.(11]-- C.[3,1+D .[1,3]-11.若过点(2,1)P 的圆与两坐标轴都相切,则圆心到直线230x y -+=的距离是( ) ABCD12.曲线34y x x =-在点(1,3)--处的切线方程是( ) A .74y x =+B .72y x =+C .4y x =-D .2y x =-二、填空题13.已知点(),P x y 是直线240x y -+=上一动点,直线PA ,PB 是圆22:20C x y y ++=的两条切线,A ,B 为切点,C 为圆心,则四边形PACB 面积的最小值是______.14.设()11,M x y 、()22,N x y 为不同的两点,直线:0l ax by c ++=,1122ax by cax by cδ++=++,以下命题中正确的序号为__________.(1)存在实数δ,使得点N 在直线l 上; (2)若1δ=,则过M 、N 的直线与直线l 平行; (3)若1δ=-,则直线l 经过MN 的中点;(4)若1δ>,则点M 、N 在直线l 的同侧且直线l 与线段MN 的延长线相交; 15.光线沿直线30x y -+=入射到直线220x y -+= 后反射,则反射光线所在直线的方程为___________________.16.已知圆C :()2234x y -+=,线段MN 在直线211y x =-+上运动,点P 是线段MN 上任意一点,若圆C 上存在两点A ,B ,使得PA PB ⊥,则线段MN 长度的最大值是___________.17.过点()10,10-且在x 轴上的截距是在y 轴上截距的4倍的直线的方程为_____________.18.已知等腰三角形的底边所在直线过点()2,1P ,两腰所在的直线为20x y +-=与740x y -+=,则底边所在的直线方程是_____________.19.若直线y x b =+与曲线y =b 的范围______________.20.已知圆C :222x y +=,点P 为直线136x y+=上的一个动点,过点P 向圆C 作切线,切点分别为A 、B ,则原点O 到直线AB 距离的最大值是______.三、解答题21.在平面直角坐标系xOy 中,已知圆M 过点A (1,2),B (7,-6),且圆心在直线x +y -2=0上.(1)求圆M 的标准方程;(2)设平行于OA 的直线l 与圆M 相交于C ,D 两点,且CD =2OA ,求直线l 的方程. 22.已知直线l 过点(2,1)M ,且分别与x 轴正半轴、y 轴正半轴交于点A 、B ,(O 为坐标原点)(1)当ABO 的面积为4时,求直线l 的一般式方程; (2)当MA MB ⋅取最小时,求直线l 的一般式方程.23.已知ABC 的顶点(5,1)A ,直线BC 的方程为6590x y AB --=,边上的中线CM 所在直线方程为250x y --=. (1)求顶点C 的坐标;(2)求AC 边上的高所在直线方程.24.已知圆1C 过点(0,6)A ,且与圆222:10100C x y x y +++=相切于原点,直线:(21)(1)740l m x m y m +++--=.(1)求圆1C 的方程;(2)求直线l 被圆1C 截得的弦长最小值.25.已知圆C 的圆心在直线2y x =-上,且过点(2,1),(0,3)-- (1)求圆C 的方程;(2)已知直线l 经过原点,并且被圆C 截得的弦长为2,求直线l 的方程. 26.圆心在直线:10l x y ++=上的经过点(1,2),(1,0)A B -; (1)求圆C 的方程(2)若过点(0,3)D 的直线1l 被圆C 截得的弦长为31l 的方程;【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】设圆心的坐标为(),24a a -,根据圆心到点A 、B 的距离相等可得出关于实数a 的等式,求出a 的值,可得出圆心的坐标,并求出圆的半径,由此可得出所求圆的标准方程. 【详解】设圆心为(),24C a a -,由AC BC ==整理可得20a -=,解得2a =,所以圆心()2,0C ,所求圆的半径为2AC =,因此,所求圆的标准方程为()2224x y -+=.故选:A. 【点睛】方法点睛:求圆的方程常见的思路与方法如下:(1)求圆的轨迹方程,直接设出动点坐标(),x y ,根据题意列出关于x 、y 的方程即可; (2)根据几何意义直接求出圆心坐标和半径,即可写出圆的标准方程;(3)待定系数法,可以根据题意设出圆的标准方程或一般方程,再根据所给条件求出参数即可.2.C解析:C 【分析】由题意可知两圆外切,可得出2249a b +=,然后将代数式2211a b +与2249a b +相乘,展开后利用基本不等式可求得2211a b +的最小值. 【详解】圆222240x y ax a +++-=的标准方程为()224x a y ++=,圆心为()1,0C a -,半径为12r =,圆2224140x y by b +--+=的标准方程为()2221x y b +-=,圆心为()20,2C b ,半径为21r =.由于圆222240x y ax a +++-=和2224140x y by b +--+=恰有三条公切线,则这两圆外切,所以,1212C C r r =+3=,所以,2249a b +=,所以,222222222211411141551999a b a b a b a b b a ⎛⎛⎫+⎛⎫+=+=++≥⨯+= ⎪ ⎪ ⎝⎭⎝⎭⎝, 当且仅当222a b =时,等号成立,因此,2211a b +的最小值为1. 故选:C. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.3.A解析:A 【分析】设圆上任意一点为()11,x y ,中点为(),x y ,则114222x x y y +⎧=⎪⎪⎨-⎪=⎪⎩,由此得解轨迹方程.【详解】设圆上任意一点为()11,x y ,中点为(),x y ,则114222x x y y +⎧=⎪⎪⎨-⎪=⎪⎩,112422x x y y =-⎧⎨=+⎩代入224x y +=得()()2224224x y -++=,化简得()()22211x y -++=.故选:A . 4.A解析:A 【分析】先将圆化成标准方程,求出圆心与半径,再求圆心到直线的距离,然后解弦长即可. 【详解】因为226240x y x y +-++= 所以22(3)(1)6x y -++=,圆心到直线的距离为d ==直线0x y +=被圆226240x y x y +-++=截得的弦长4l =;故选:A . 【点睛】计算圆的弦长通常使用几何法简捷.也可使用代数法计算.5.D解析:D 【分析】根据题意,得到直线不过圆心,且求得圆心到直线的距离,结合题中条件,得到实数r 的取值范围. 【详解】圆222:(1)(1)(0)C x y r r -+-=>的圆心(1,1)到直线20x y ++=为:d ==,且直线20x y ++=不过圆心,若圆222:(1)(1)(0)C x y r r -+-=>上至少有3个点到直线20x y ++=,则有r ≥= 所以实数r的取值范围为+∞[), 故选:D. 【点睛】思路点睛:该题考查的是有关直线与圆的相关问题,解决该题的思路如下: (1)求得圆心到直线的距离,并且发现直线不过圆心; (2)结合题中条件,得到r 的取值范围.6.C解析:C 【分析】在OMN=,从而得到M y =ONM ∠的取值范围,求出M y 的取值范围,即可得解; 【详解】解:设()2,M M y ,在OMN 中,由正弦定理得sin sin OM ONONM OMN=∠∠因为30OMN ∠=︒,ON=12==整理得M y =由题意知0150ONM ︒<∠<︒,所以(]sin 0,1ONM ∠∈,所以sin 1ONM ∠=时,M y 取得最值,即直线MN 为圆22:3O x y +=的切线时,My取值最值,所以M y ⎡∈-⎣故选:C【点睛】本题考查直线与圆的综合应用,解答的关键转化到OMN 中利用正弦定理计算,考查转化思想;7.C解析:C 【分析】由两圆相交且圆心都在直线02c x y -+=上可知线段AB 中点在02cx y -+=上,代入中点坐标整理即可. 【详解】由题意可知:线段AB 的中点1,22m +⎛⎫⎪⎝⎭在直线02c x y -+=上代入得:12022m c+-+= 整理可得:3m c += 本题正确选项:C 【点睛】本题考查两圆相交时相交弦与圆心连线之间的关系,属于基础题.8.B解析:B 【分析】作出曲线21x y =-y x b =+,求出直线过半圆直径两端点时的b 值,及直线与半圆相切时的b 值可得结论. 【详解】作出曲线21x y =-,它是单位圆的右半个圆,作出直线y x b =+,如图, 易知(0,1),(1,0)A B -,当直线y x b =+过点A 时,1b =,当直线y x b =+过点B 时,1b =-, 当直线y x b =+与半圆相切时,12b =,2b =±,由图可知2b =-∴b 的取值范围是11b -<≤或2b =-. 故选:B【点睛】本题考查直线与圆的位置关系,解题时要注意曲线是半圆,因此直线过B 点时与半圆有两个交点,直线与半圆相切时,也只有一个公共点,这是易错点.9.A解析:A 【分析】分析可得当弦长最短时,该弦所在直线与过点(1,2)的直径垂直,先求出过点(1,2)的直径的斜率,然后再求出所求直线的斜率,最后由点斜式写出直线的方程即可. 【详解】当弦长最短时,该弦所在直线与过点(1,2)的直径垂直, 圆229x y +=的圆心为(0,0),所以过点(1,2)的直径的斜率为20210-=-, 故所求直线为12-,所求直线方程为12(1)2y x ,即250x y +-=. 故选:A . 【点睛】方法点睛:本题考查直线与圆位置关系的应用,解题关键是明确当弦与圆的直径垂直时,弦长最短,考查逻辑思维能力,属于常考题.10.B解析:B 【分析】将234y x x =--化为22(2)(3)4-+-=x y (3y ≤),作出直线与半圆的图形,利用两个图形有2个公共点,求出切线的斜率,观察图形可得解. 【详解】由234y x x =--得22(2)(3)4-+-=x y (3y ≤),所以直线y x b =+与半圆22(2)(3)4-+-=x y (3y ≤)有2个公共点,作出直线与半圆的图形,如图:当直线经y x b =+过点(4,3)时,341b =-=-, 当直线与圆22(2)(3)4-+-=x y 211=+,解得122b =-或122b =+由图可知,当直线y x b =+与曲线234y x x =-2个公共点时,1221b -<≤-,故选:B 【点睛】关键点点睛:作出直线与半圆的图形,利用切线的斜率表示b 的范围是解题关键.11.C解析:C 【分析】由题意可知圆心在第一象限,设圆心的坐标为(),,0a a a >,可得圆的半径为a ,写出圆的标准方程,利用点()2,1在圆上,求得实数a 的值,利用点到直线的距离公式可求出圆心到直线230x y -+=的距离. 【详解】由于圆上的点()2,1在第一象限,若圆心不在第一象限,则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限, 设圆心的坐标为(),a a ,则圆的半径为a ,圆的标准方程为()()222x a y a a -+-=. 由题意可得()()22221a a a -+-=,可得2650a a -+=,解得1a =或5a =, 所以圆心的坐标为()1,1或()5,5,圆心()1,1到直线230x y -+=的距离均为15d ==圆心()5,5到直线230x y -+=的距离均为25d ==圆心到直线230x y -+=的距离均为5d ==;所以,圆心到直线230x y -+=. 故选:C. 【点睛】关键点点睛:本题考查圆心到直线距离的计算,求出圆的圆心是解题的关键,考查计算能力.12.D解析:D 【分析】已知点(1,3)--在曲线上,若求切线方程,只需求出曲线在此点处的斜率,利用点斜式求出切线方程. 【详解】由已知得:曲线为34y x x =-;则:对其进行求导得243y x '=-;当1x =-时,243(1)1y '=-⨯-=∴ 曲线34y x x =-在点(1,3)--处的切线方程为:31(1)y x +=⨯+化简得:2y x =-; 故选:D. 【点睛】本题主要考查了求曲线切线方程,解题关键是掌握根据导数求切线的方法,考查了分析能力和计算能力,属于中档题.二、填空题13.2【分析】根据切线的性质可将面积转化为求出的最小值即到直线的距离【详解】圆化为可得圆心为半径为1如图可得则当取得最小值时最小点是直线上一动点到直线的距离即为的最小值故答案为:2【点睛】关键点睛:本题解析:2 【分析】根据切线的性质可将面积转化为21PACB S PC =-,求出PC 的最小值即()0,1C -到直线240x y -+=的距离. 【详解】圆22:20C x y y ++=化为()2211x y ++=,可得圆心为()0,1-,半径为1,如图,可得22221PA PC AC PC =-=-,212212PACB PACS SPA AC PA PC ==⨯⨯⨯==-则当PC 取得最小值时,PACB S 最小, 点(),P x y 是直线240x y -+=上一动点,()0,1C ∴-到直线240x y -+=的距离即为PC 的最小值,()min 222014521PC ⨯++∴==+-()min 512PACB S ∴=-=.故答案为:2. 【点睛】关键点睛:本题考查直线与圆相切问题,解题的关键是利用切线性质将面积转化为21PACB S PC =-PC 的最小值即可.14.②③④【分析】①点在直线上则点的坐标满足直线方程从而得到进而可判断①不正确②若则进而得到根据两直线斜率的关系即可判断②③若即可得到即可判断③④若则或根据点与直线的位置关系即可判定④【详解】解:若点在解析:②③④ 【分析】①点在直线上,则点的坐标满足直线方程,从而得到220ax bx c ++=,进而可判断①不正确.②若1δ=,则1122ax by c ax by c ++=++,进而得到1221y y ax x b-=--,根据两直线斜率的关系即可判断②.③若1δ=-,即可得到1212()()022x x y y a b c ++++=,即可判断③. ④若1δ>,则11220ax by c ax by c ++>++>,或11220ax by c ax by c ++<++<,根据点与直线的位置关系即可判定④. 【详解】解:若点N 在直线l 上则220ax bx c ++=,∴不存在实数δ,使点N 在直线l 上,故①不正确;若1δ=,则1122ax by c ax by c ++=++, 即1221y y ax x b-=--, MN l k k ∴=, 即过M 、N 两点的直线与直线l 平行,故②正确; 若1δ=-,则11220ax by c ax by c +++++= 即,1212()()022x x y y a b c ++++=, ∴直线l 经过线段MN 的中点,即③正确;若1δ>,则11220ax by c ax by c ++>++>,或12220ax by c ax by c ++<++<, 即点M 、N 在直线l 的同侧,且直线l 与线段MN 不平行.故④正确. 故答案为:②③④. 【点睛】本题考查两直线的位置关系,点与直线的位置关系,直线的一般式方程等知识的综合应用,若两直线平行则两直线的斜率相等.15.【分析】求得直线与直线的交点的坐标然后求出直线上的点关于直线的对称点的坐标进而可求得直线的方程即为反射光线所在直线的方程【详解】联立解得则直线与直线的交点为设直线上的点关于直线的对称点为线段的中点在 解析:730x y --=【分析】求得直线30x y -+=与直线220x y -+=的交点A 的坐标,然后求出直线30x y -+=上的点()3,0B -关于直线220x y -+=的对称点C 的坐标,进而可求得直线AC 的方程,即为反射光线所在直线的方程. 【详解】联立30220x y x y -+=⎧⎨-+=⎩,解得14x y =⎧⎨=⎩,则直线30x y -+=与直线220x y -+=的交点为()1,4A .设直线30x y -+=上的点()3,0B -关于直线220x y -+=的对称点为(),C a b , 线段BC 的中点3(,)22a b M -在直线220xy -+=上,则322022a b-⨯-+=,整理得220a b --=.直线220x y -+=的斜率为2,直线BC 与直线220x y -+=垂直,则213ba ⋅=-+,整理得230ab ++=.所以,220230a b a b --=⎧⎨++=⎩,解得1585a b ⎧=⎪⎪⎨⎪=-⎪⎩,即点1(,55)8C -.所以,反射光线所在直线的斜率为8457115ACk +==-, 因此,反射光线所在直线的方程为()471y x -=-,即730x y --=. 故答案为:730x y --=. 【点睛】运用点关于直线的对称点的坐标的求解是解题关键.16.【分析】题目等同于点P 在已知直线上的轨迹长度考虑边界的情况此时△APC 和△ABC 均为等腰直角三角形先算出进一步求出答案【详解】题目等同于点P 在已知直线上的轨迹长度考虑边界的情况也就是PAPB 分别与圆 解析:23【分析】题目等同于点P 在已知直线上的轨迹长度,考虑边界的情况,此时△APC 和△ABC 均为等腰直角三角形,先算出2232lPC d =-=,进一步求出答案. 【详解】题目等同于点P 在已知直线上的轨迹长度,考虑边界的情况,也就是PA ,PB 分别与圆相切的情况,此时△APC 和△ABC 均为等腰直角三角形,由题意知,圆心()3,0C ,半径2r线段PC 的长为22r =圆心到直线的距离d ==,根据图像的对称性可知2l==所以线段MN 长度的最大值为故答案为: 【点睛】本题考查了直线与圆位置关系的应用.本题的难点是分析何时EF 取到最值.根据考虑边界的情况数形结合得出结论.17.或【分析】分类讨论:直线过坐标原点直线不过坐标原点再根据截距的关系求解出直线的方程【详解】当直线过坐标原点时显然直线的斜率存在设代入所以所以所以直线方程为;当直线不过坐标原点时设所以横截距为纵截距为解析:y x =-或11542y x =-+ 【分析】分类讨论:直线过坐标原点、直线不过坐标原点,再根据截距的关系求解出直线的方程. 【详解】当直线过坐标原点时,显然直线的斜率存在,设y kx =,代入()10,10-, 所以1010k -=,所以1k =-,所以直线方程为y x =-; 当直线不过坐标原点时,设()1010y k x -=+,所以横截距为1010k--,纵截距为1010k +,所以()101041010k k --=+,解得14k =-或1k =-(舍),所以直线方程为11542y x =-+,故答案为:y x =-或11542y x =-+. 【点睛】本题考查根据截距关系求解直线方程,难度一般.根据截距的倍数求解直线方程时,要注意直线过坐标原点的情况.18.或【分析】在等腰三角形顶角角平分线上任取一点利用点到两腰所在直线的距离相等可求得顶角角平分线方程再由底边所在直线过点且与顶角角平分线垂直可求得所求直线的方程【详解】在等腰三角形顶角角平分线上任取一点解析:370x y +-=或310x y -+= 【分析】在等腰三角形顶角角平分线上任取一点(),M x y ,利用点M 到两腰所在直线的距离相等可求得顶角角平分线方程,再由底边所在直线过点P 且与顶角角平分线垂直可求得所求直线的方程. 【详解】在等腰三角形顶角角平分线上任取一点(),M x y , 则点M 到直线20x y +-=与740x y -+=的距离相等,=7452x y x y -+=+-.所以,()7452x y x y -+=+-或()7452x y x y -+=-+-,所以,该等腰三角形顶角角平分线所在直线的方程为370x y -+=或6230x y +-=. 由于底边与顶角角平分线垂直.当底边与直线370x y -+=垂直时,且直线370x y -+=的斜率为13, 此时底边所在直线方程为()132y x -=--,即370x y +-=;当底边与直线6230x y +-=垂直时,且直线6230x y +-=的斜率为3-,此时底边所在直线方程为()1123y x -=-,即310x y -+=. 故答案为:370x y +-=或310x y -+=.【点睛】本题考查等腰三角形底边所在直线方程的求解,考查了等腰三角形三线合一的性质以及点到直线距离公式的应用,考查计算能力,属于中等题.19.或【分析】由曲线变形为画出的图象当直线经过时直线与曲线有两个公共点求出此时的以及直线过时的值再求出当直线与曲线相切时的的值数形结合即可得b 的范围【详解】由曲线变形为画出的图象①当直线经过时直线与曲线解析:22b -≤<或b = 【分析】由曲线y =()2204y x y +=≥,画出 y x b =+,()2204y x y +=≥的图 象,当直线经过()2,0A - ,()0,2B 时,直线与曲线有两个公共点,求出此时的b ,以及直线y x b =+过(2,0)C 时b 的值,再求出当直线与曲线相切时的b 的值,数形结合即可得b 的范围. 【详解】由曲线y =()2204y x y +=≥,画出 y x b =+,()2204y x y +=≥的图象,①当直线经过()2,0A - ,()0,2B 时,直线与曲线有两个公共点,此时2b =, 当直线y x b =+过(2,0)C 时02b =+,得2b =-, 所以若直线与曲线有1个公共点,则22b -≤<.②当直线与曲线相切时,联立224y x bx y =+⎧⎨+=⎩ ,化为222240x bx b ++-=, 令2248(4)0b b ∆=--=,解得:22b =,或22b =-(舍去), 综上所述b 的范围: 22b -≤<或22b =. 故答案为:22b -≤<或22b =.【点睛】本题主要考查了直线与圆相交相切问题、采用数形结合思想,属于中档题.20.【分析】为使原点到直线距离的最大则应当最小于是应当最小进而得到应当最小然后利用点到直线的距离公式求得的最小值利用直角三角形相似求得原点到直线距离的最大值【详解】为使原点到直线距离的最大则应当最小于是 解析:53【分析】为使原点O 到直线AB 距离的最大,则AOB ∠应当最小,于是AOP ∠应当最小,进而得到OP 应当最小,然后利用点到直线的距离公式求得OP 的最小值,利用直角三角形相似求得原点O 到直线AB 距离的最大值. 【详解】为使原点O 到直线AB 距离的最大,则AOB ∠应当最小,于是AOP ∠应当最小,∴OA OP应当最大,∴OP 应当最小,当且仅当OP 与直线136x y+=垂直时OP 最小,OP 的最小值为O 到直线136x y +=,即260x y +-=的距离2266521d ==+设OP 与AB 交于点,Q 则2~,||Rt OQA Rt OAP OQ OP OA ∴⨯=,∴max5||,655OQ ==5 【点睛】本题考查与圆有关的最值问题,属中等难度的题目,关键在于转化为OP 最小,同时注意利用三角形相似进行计算.三、解答题21.(1)()()224225x y -++=;(2)2200x y --=. 【分析】(1)联立线段AB 的垂直平分线所在的方程与圆心所在直线方程,可得圆心坐标,进而求出圆的半径以及圆M 的标准方程;(2)设出直线l 的方程,由CD =2OA 可得弦长,利用点到直线的距离公式结合勾股定理列出方程,可得直线l 的方程. 【详解】(1)由题意可解得线段AB 的垂直平分线所在的方程为:y +2=34(x -4),即354y x =-,因为圆心在直线x +y -2=0上,且圆M 过点A (1,2),B (7,-6),则圆心为直线354y x =-与直线x +y -2=0的交点,联立20354x y y x +-=⎧⎪⎨=-⎪⎩,解得42x y =⎧⎨=-⎩,即圆心M 为(4,-2),半径为MA ()()2241225-+--=,所以圆M 的标准方程为()()224225x y -++=.(2)由直线l 平行于OA ,可设直线l 的方程为:20y x m m =+≠,,则圆心M 到直线l的距离为d ==CD =2OA=2525d +=,所以d ==,则解得m =-20或m =0(舍去),则直线l 的方程为2200x y --=. 【点睛】关键点点睛:本题考查圆的标准方程,考查圆的性质,解决本题的关键点是由已知求出弦长CD ,利用圆的弦长的一半,圆心到直线的距离和圆的半径构造直角三角形,结合勾股定理计算出参数的值,进而可得直线的方程,考查了学生计算能力,属于中档题. 22.(1)240x y +-=;(2)30x y +-=. 【分析】(1)设直线的截距式方程,结合三角形面积公式即可得解;(2)设直线l 的方程为()12y k x -=-,表示出点A 、B ,进而可得,MA MB ,表示出MA MB ⋅后结合基本不等式即可得解. 【详解】(1)由题意,设直线l 的方程为()1,0,0x ya b a b+=>>, 则142ABO S ab ==△,所以8ab =, 又直线l 过点(2,1)M ,所以211a b +=,所以42a b =⎧⎨=⎩, 所以直线l 的方程为142x y+=即240x y +-=; (2)设直线l 的方程为()12y k x -=-,则12,0A k ⎛⎫-+ ⎪⎝⎭,()0,21B k -+,所以MA =MB ,所以4MA MB ⋅=, 当且仅当21k =时,等号成立,所以当MA MB ⋅取最小时,1k =-(正值舍去), 此时直线方程为12y x -=-+即30x y +-=. 【点睛】关键点点睛:解决本题的关键是设出合理的直线方程,结合两点间距离公式及基本不等式运算即可得解.23.(1)(4,3)C ;(2)250x y --=.【分析】(1)联立直线方程可解得结果;(2)设出()00,B x y ,利用AB 的中点M 在直线CM 上以及点()00,B x y 在直线BC 上,解方程组可得B 的坐标,利用垂直可得斜率,根据点斜式可得所求直线方程. 【详解】 (1)联立6590250x y x y --=⎧⎨--=⎩,解得43x y =⎧⎨=⎩,可得(4,3)C ;(2)设()00,B x y ,则AB 的中点0051,22x y M ++⎛⎫⎪⎝⎭, 则0000659015502x y y x --=⎧⎪⎨++--=⎪⎩,解得(1,3)B --, 又23145AC k -==--,所以AC 边上的高所在直线的斜率12k =,所以AC 边上的高所在直线方程为13(1)2y x +=+,即250x y --=. 【点睛】关键点点睛:求出点B 的坐标是求出AC 边上的高所在直线方程的关键,设()00,B x y ,利用直线BC 的方程和AB 的中点坐标满足CM 的方程可解得点B 的坐标. 24.(1)22(3)(3)18x y -+-=;(2) 【分析】(1)设2221:()()C x a y b r -+-=,根据题意列方程组解得,,a b r 即可得解;(2)求出直线l 所经过的定点(3,1)B ,再根据圆心1C 到直线l 的距离的最大值可求得结果. 【详解】(1)设2221:()()C x a y b r -+-=,圆222:10100C x y x y +++=的圆心2(5,5)C --,半径为则222222()(6)a b r a b r r ⎧-+-=⎪⎪+=⎨=,解得33a b r ⎧=⎪=⎨⎪=⎩, 所以圆1C 的方程为22(3)(3)18x y -+-=.(2)因为:(21)(1)740l m x m y m +++--=,即(27)40x y m x y +-++-=,由27040x y x y +-=⎧⎨+-=⎩得31x y =⎧⎨=⎩,所以直线l 过定点(3,1)B , 设圆心1(3,3)C 到直线l 的距离为d,则1||2d C B ≤==,当且仅当1l BC ⊥时,等号成立,所以弦长||AB =≥=.所以直线l 被圆1C 截得的弦长的最小值为. 【点睛】关键点点睛:第二问利用圆心1C 到直线l 的距离的最大值求弦长的最小值是解题关键. 25.(1)22(1)(2)2x y -++=;(2)0x =或34y x =-. 【分析】(1)根据题意设圆心坐标为(,2)a a -,进而得222222(2)(12)(0)(32)a a r a a r⎧-+-+=⎨-+-+=⎩,解得1,a r ==,故圆的方程为22(1)(2)2x y -++=(2)分直线l 的斜率存在和不存在两种情况讨论求解即可. 【详解】(1)圆C 的圆心在直线2y x =-上,设所求圆心坐标为(,2)a a - ∵ 过点(2,1),(0,3)--,222222(2)(12)(0)(32)a a r a a r⎧-+-+=∴⎨-+-+=⎩解得1,a r ==∴ 所求圆的方程为22(1)(2)2x y -++= (2)直线l 经过原点,并且被圆C 截得的弦长为2 ①当直线l 的斜率不存在时,直线l 的方程为0x =, 此时直线l 被圆C 截得的弦长为2,满足条件; ②当直线l 的斜率存在时,设直线l 的方程为y kx =,由于直线l 被圆C 截得的弦长为2,故圆心到直线l 的距离为1d = 故由点到直线的距离公式得:1d ==解得34k =-,所以直线l 的方程为34y x =- 综上所述,则直线l 的方程为0x =或34y x =- 【点睛】易错点点睛:本题第二问在解题的过程中要注意直线斜率不存在情况的讨论,即分直线l 的斜率存在和不存在两种,避免在解题的过程中忽视斜率不存在的情况致错,考查运算求解能力与分类讨论思想,是中档题.26.(1)22(1)4x y ++=;(2)0x =,或4390x y -+=.【分析】(1)求出线段AB 中垂线方程,由中垂线与直线l 相交求得圆心坐标,再求得半径可得圆标准方程;(2)求得圆心到直线1l 距离为1,检验斜率不存在的直线是否满足题意,在斜率存在时设直线方程为30kx y --=,由圆心到直线的距离可得k ,得直线方程.【详解】(1)由题意得,圆心C 一定在线段AB 的垂直平分线上,0211(1)AB k -==---,线段AB 中点为(0,1), ∴直线AB 的垂直平分线为10x y -+=,∴直线:10l x y ++=与10x y -+=的交点即为圆心C ,坐标为()1,0-.∴圆C 的方程为22(1)4x y ++=,(2)当直线1l 斜率不存在时,方程为0x =,此时圆心到1l 距离为1,截得的弦长为当直线1l 斜率存在时,设为k ,则1:30l kx y --=,圆心(1,0)-到1l距离1d ===∴43k = ∴直线1l 的方程为0x =,或4390x y -+=.【点睛】易错点睛:本题考查求圆的标准方程,考查直线与圆相交弦长问题.已知弦长求直线方程时,须考虑斜率不存在的直线是否满足题意,在斜率存在的情况下,设出直线方程,由圆心到直线的距离列式可得结论.。
直线与圆的方程测试卷(含答案)精编版
单元检测(七) 直线和圆的方程 (满分:150分 时间:120分钟)一、选择题(本大题共12小题,每小题5分,共60分)1.若直线x+ay-a=0与直线ax-(2a-3)y-1=0垂直,则a 的值为( )A.2B.-3或1C.2或0D.1或0 解析:当a=0时,显然两直线垂直;a≠0时,则1321-=-•-a a a ,得a=2.故选C. 答案:C2.集合M={(x,y)|y=21x -,x 、y ∈R },N={(x,y)|x=1,y ∈R },则M∩N 等于( ) A.{(1,0)} B.{y|0≤y≤1} C.{1,0} D.解析:y=21x -表示单位圆的上半圆,x=1与之有且仅有一个公共点(1,0).答案:A3.菱形ABCD 的相对顶点为A(1,-2),C(-2,-3),则对角线BD 所在直线的方程是 …( ) A.3x+y+4=0 B.3x+y-4=0 C.3x-y+1=0 D.3x-y-1=0解析:由菱形的几何性质,知直线BD 为线段AC 的垂直平分线,AC 中点O )25,21(--在BD 上,31=AC k ,故3-=BD k ,代入点斜式即得所求. 答案:A 4.若直线1=+bya x 经过点M(cosα,sinα),则 ……( ) A.a 2+b 2≤1 B.a 2+b 2≥1C.11122≤+b a D.11122≥+b a解析:直线1=+bya x 经过点M(cosα,sinα),我们知道点M 在单位圆上,此问题可转化为直线1=+bya x 和圆x 2+y 2=1有公共点,圆心坐标为(0,0),由点到直线的距离公式,有.111111|1|2222≥+⇒≤+-b a b a答案:D5.当圆x 2+y 2+2x+ky+k 2=0的面积最大时,圆心坐标是( )A.(0,-1)B.(-1,0)C.(1,-1)D.(-1,1)解析:r 2=222431444k k k -=-+, ∴当k=0时,r 2最大,从而圆的面积最大.此时圆心坐标为(-1,0),故选B.答案:B6.过直线y=x 上的一点作圆(x-5)2+(y-1)2=2的两条切线l 1,l 2,当直线l 1,l 2关于y=x 对称时,它们之间的夹角为( ) A.30° B.45° C.60° D.90° 解析:由已知,得圆心为C(5,1),半径为2,设过点P 作的两条切线的切点分别为M,N,当CP 垂直于直线y=x 时,l 1,l 2关于y=x 对称,|CP|为圆心到直线y=x 的距离,即|CP|=2211|15|=+-,|CM|=2,故∠CPM=30°,∠NPM=60°. 答案:C7.在如图所示的坐标平面的可行域(阴影部分且包括边界)内,若是目标函数z=ax+y(a>0)取得最大值的最优解有无数个,则a 的值等于( )A.31B.1C.6D.3 解析:将z=ax+y 化为斜截式y=-ax+z(a>0),则当直线在y 轴上截距最大时,z 最大. ∵最优解有无数个,∴当直线与AC 重合时符合题意.又k AC =-1, ∴-a=-1,a=1. 答案:B8.已知直线l 1:y=x,l 2:ax-y=0,其中a 为实数,当这两条直线的夹角在(0,12π)内变动时,a 的取值范围是( )A.(0,1)B.)3,33(C.(33,1)∪(1,3) D.(1,3)解析:结合图象,如右图,其中α=45°-15°=30°,β=45°+15°=60°. 需a ∈(tan30°,1)∪(1,tan60°), 即a ∈(33,1)∪(1,3). 答案:C9.把直线x-2y+λ=0向左平移1个单位,再向下平移2个单位后,所得直线正好与圆x 2+y 2+2x-4y=0相切,则实数λ的值为( )A.3或13B.-3或13C.3或-13D.-3或-13 解析:直线x-2y+λ=0按a=(-1,-2)平移后的直线为x-2y+λ-3=0,与圆相切,则圆心(-1,2)到直线的距离55|8|=-=λd ,求得λ=13或3. 答案:A10.如果直线y=kx+1与圆x 2+y 2+kx+my-4=0交于M 、N 两点,且M 、N 关于直线x+y=0对称,则不等式组⎪⎩⎪⎨⎧≥≤-≥+-0,0,01y my kx y kx 表示的平面区域的面积是( )A.41B.21C.1D.2 解析:由题中条件知k=1,m=-1,易知区域面积为41.答案:A 11.两圆⎩⎨⎧+=+-=ββsin 24,cos 23y x 与⎩⎨⎧==θθsin 3,cos 3y x 的位置关系是( )A.内切B.外切C.相离D.内含解析:两圆化为标准式为(x+3)2+(y-4)2=4和x 2+y 2=9,圆心C 1(-3,4),C 2(0,0). 两圆圆心距|C 1C 2|=5=2+3.∴两圆外切. 答案:B12.方程29x -=k(x-3)+4有两个不同的解时,实数k 的取值范围是( ) A.)247,0( B.(247,+∞) C.(32,31) D.]32,247(解析:设y=29x -,其图形为半圆;直线y=k(x-3)+4过定点(3,4),由数形结合可知,当直线y=k(x-3)+4与半圆y=29x -有两个交点时,32247≤<k . ∴选D.答案:D二、填空题(本大题共4小题,每小题5分,共20分)13.若x,y 满足约束条件⎪⎩⎪⎨⎧≤≤≥+-≥+,30,03,0x y x y x 则z=2x-y 的最大值为__________.解析:作出可行域如图所示.当直线z=2x-y 过顶点B 时,z 达到最大,代入得z=9. 答案:914.在y 轴上截距为1,且与直线2x-3y-7=0的夹角为4π的直线方程是_________. 解析:由题意知斜率存在,设其为k,则直线方程为y=kx+1.则|321||32|4tan k k +-=π.解得k=5或51-. ∴直线方程为y=5x+1或y=151+-x ,即5x-y+1=0或x+5y-5=0. 答案:5x-y+1=0或x+5y-5=015.设A(0,3),B(4,5),点P 在x 轴上,则|PA|+|PB|的最小值是________,此时P 点坐标是_______. 解析:点A 关于x 轴的对称点为A′(0,-3), 则|A′B|=45为所求最小值.直线A′B 与x 轴的交点即为P 点,求得P(23,0). 答案:45 (23,0) 16.已知圆M:(x+cosθ)2+(y-sinθ)2=1,直线l:y=kx,下面四个命题: ①对任意实数k 与θ,直线l 和圆M 相切; ②对任意实数k 与θ,直线l 和圆M 有公共点;③对任意实数θ,必存在实数k,使得直线l 和圆M 相切; ④对任意实数k,必存在实数θ,使得直线l 和圆M 相切.其中真命题的序号是.(写出所有真命题的序号) 解析:圆心M(-cosθ,sinθ)到直线l:kx-y=0的距离1|sin cos |1|sin cos |22++=+--=k k k k d θθθθ1|)sin(1|22+++=k k θϕ=|sin(φ+θ)|(其中tanφ=k) ≤1=r,即d≤r,故②④正确. 答案:②④三、解答题(本大题共6小题,共70分)17.(本小题满分10分)已知△ABC 的三个顶点A(4,-6),B(-4,0),C(-1,4),求: (1)AC 边上的高BD 所在直线的方程; (2)BC 的垂直平分线EF 所在直线的方程; (3)AB 边的中线的方程.解:(1)易知k AC =-2,∴直线BD 的斜率k BD =21.又BD 直线过点B(-4,0),代入点斜式易得直线BD 的方程为x-2y+4=0.(2)∵k BC =34, ∴k EF =43-.又线段BC 的中点为(25-,2), ∴EF 所在直线的方程为y-2=)25(43+-x . 整理得所求的直线方程为6x+8y-1=0.(3)∵AB 的中点为M(0,-3), ∴直线CM 的方程为1343-=++xy . 整理得所求的直线方程为7x+y+3=0(-1≤x≤0).18.(本小题满分12分)已知圆C 与y 轴相切,圆心C 在直线l 1:x-3y=0上,且截直线l 2:x-y=0的弦长为22,求圆C 的方程. 解:∵圆心C 在直线l 1:x-3y=0上, ∴可设圆心为C(3t,t). 又∵圆C 与y 轴相切, ∴圆的半径r=|3t|. ∴222||3)2()23(t t t =+-,解得t=±1. ∴圆心为(3,1)或(-3,-1),半径为3.∴所求的圆的方程为(x-3)2+(y-1)2=9或(x+3)2+(y+1)2=9.19.(本小题满分12分)已知等边△ABC 的边AB 所在的直线方程为3x+y=0,点C 的坐标为(1,3),求边AC、BC所在的直线方程和△ABC的面积.解:由题意,知直线AC、BC与直线AB均成60°角,设它们的斜率为k,则3|313|=---kk,解得k=0或k=3.故边AC、BC所在的直线方程为y=3,y=3x,如图所示,故边长为2,高为3.∴S△ABC=33221=⨯⨯.20.(本小题满分12分)圆C经过不同的三点P(k,0)、Q(2,0)、R(0,1),已知圆C在P点的切线斜率为1,试求圆C的方程.解:设圆C的方程为x2+y2+Dx+Ey+F=0.将P、Q、R的坐标代入,得⎪⎩⎪⎨⎧=++=-=+.01,2,2FEFkDk∴圆的方程为x2+y2-(k+2)x-(2k+1)y+2k=0,圆心为)212,22(++kk.又∵k CP=-1,∴k=-3.∴圆的方程为x2+y2+x+5y-6=0.21.(本小题满分12分)过点P(2,4)作两条互相垂直的直线l1、l2,若l1交x轴于A点,l2交y轴于B点,求线段AB的中点M的轨迹方程.解法一:设点M的坐标为(x,y),∵M为线段AB的中点,∴A的坐标为(2x,0),B的坐标为(0,2y).∵l1⊥l2,且l1、l2过点P(2,4),∴PA⊥PB,k PA·k PB=-1.而k PA =,2204x --k PB =0224--y(x≠1), ∴11212-=-•-y x (x≠1). 整理,得x+2y-5=0(x≠1).∵当x=1时,A 、B 的坐标分别为(2,0)、(0,4),∴线段AB 的中点坐标是(1,2),它满足方程x+2y-5=0. 综上所述,点M 的轨迹方程是x+2y-5=0.解法二:设M 的坐标为(x,y),则A 、B 两点的坐标分别是(2x,0)、(0,2y),连结PM, ∵l 1⊥l 2,∴2|PM|=|AB|.而|PM|=22)4()2(-+-y x , |AB|=,)2()2(22y x + ∴.44)4()2(22222y x y x +=-+-化简,得x+2y-5=0,即为所求的轨迹方程.解法三:设M 的坐标为(x,y),由l 1⊥l 2,BO ⊥OA,知O 、A 、P 、B 四点共圆, ∴|MO|=|MP|,即点M 是线段OP 的垂直平分线上的点.∵k OP =20204=--,线段OP 的中点为(1,2), ∴y-2=21-(x-1),即x+2y-5=0即为所求.22.(本小题满分12分)实系数方程f(x)=x 2+ax+2b=0的一个根在(0,1)内,另一个根在(1,2)内,求: (1)12--a b 的值域; (2)(a-1)2+(b-2)2的值域; (3)a+b-3的值域.解:由题意⎪⎩⎪⎨⎧>++<++>⎪⎩⎪⎨⎧><>.02,012,0.0)2(,0)1(,0)0(b a b a b f f f 即易求A(-1,0)、B(-2,0).由⎩⎨⎧=++=++,02,012b a b a ∴C(-3,1).(1)记P(1,2),k PC <12--a b <k PA ,即12--a b ∈(41,1). (2)|PC|2=(1+3)2+(2-1)2=17,|PA|2=(1+1)2+(2-0)2=8,|PB|2=(1+2)2+(2-0)2=13.∴(a-1)2+(b-2)2的值域为(8,17). (3)令u=a+b-3,即a+b=u+3. -2<u+3<-1,即-5<u<-4. ∴a+b-3的值域为(-5,-4).。
(完整版)高二数学-直线和圆的方程-单元测试(含答案)
高二直线和圆的方程单元测试卷班级:姓名:一、选择题:本大题共 10 小题,每小题 5 分,共 50 分,在每小题给出的四 个选项中,只有一项是符合题目要求的.1.直线 l 经过 A(2,1)、B(1,m2)(m∈R)两点,那么直线 l 的倾斜角的取 值范围是A.[0, )B.[0, ] [ 3 , ) 44C.[0, ] 4D.[0, ] ( , ) 422. 如果直线(2a+5)x+(a-2)y+4=0与直线(2-a)x+(a+3)y-1=0互相垂直,则a 的值等于A. 2B.-2C.2,-2D.2,0,-23.已知圆 O 的方程为 x2+y2=r2,点 P(a,b)(ab≠0)是圆 O 内一点,以 P为中点的弦所在的直线为 m,直线 n 的方程为 ax+by=r2,则A.m∥n,且 n 与圆 O 相交 离B.m∥n,且 n 与圆 O 相C.m 与 n 重合,且 n 与圆 O 相离D.m⊥n,且 n 与圆 O 相离4. 若直线 ax 2by 2 0(a,b 0) 始终平分圆 x2 y2 4x 2 y 8 0 的周长,则 1 2 ab的最小值为A.1B.5C.42D. 3 2 25. M (x0 , y0 ) 为 圆 x2 y2 a2 (a 0) 内 异 于 圆 心 的 一 点 , 则 直 线x0 x y0 y a 2 与该圆的位置关系为A.相切B.相交C.相离D.相切或相交6. 已知两点 M(2,-3),N(-3,-2),直线 L 过点 P(1,1)且与线段MN 相交,则直线 L 的斜率 k 的取值范围是A. 3 ≤k≤4 4B.k≥ 3 或 k≤-4 4C. 3 ≤k≤4 4D.-4≤k≤ 3 47. 过直线 y x 上的一点作圆 (x 5)2 ( y 1)2 2 的两条切线 l1,l2 ,当直线 l1,l2 关于 y x 对称时,它们之间的夹角为A. 30B. 45C. 60D. 90x y 1 08.如果实数x、y满足条件 y 1 0x y 1 0,那么 4x (1)y 的最大值为 2A. 2B.1C. 1 2D. 1 49.设直线过点 (0, a), 其斜率为 1,且与圆 x2 y2 2 相切,则 a 的值为15 . 集 合 P (x, y) | x y 5 0 , x N* , y N* } ,Q (x, y) | 2x y m 0,M x, y) | z x y , (x, y) (P Q) , 若 z 取 最 大 值 时 ,M (3,1),则实数 m 的取值范围是;三、解答题:本大题共 6 小题,共 75 分.解答应写出文字说明,证明过程或 演算步骤.16.(本小题满分 12 分)已知 ABC 的顶点 A 为(3,-1),AB 边上的中线所在直线方程为 6x 10y 59 0 , B 的平分线所在直线方程为 x 4y 10 0 ,求BC 边所在直线的方程.17.(本小题满分 12 分) 某厂准备生产甲、乙两种适销产品,每件销售收入分别为 3 千元,2 千 元。
直线与圆的方程单元测试题含答案
掌握直线与圆的位置关系判断是解决直线与圆相关问题的基础,对于提高解题能力和数学思 维能力有很大的帮助。
定义:直线方程的基本形式是y=kx+b,其中k是斜率,b是截距。
斜率:表示直线与x轴的夹角,当k>0时,夹角为锐角;当k<0时,夹角为钝角。 截距:表示直线与y轴的交点,当b>0时,交点在正半轴上;当b<0时,交点在负半轴 上。
圆的一般方程:x^2+y^2+Dx+Ey+F=0,其中D、E、F为常数
圆的参数方程:x=a+r*cosθ,y=b+r*sinθ,其中(a,b)为圆心,r为半径,θ为参数
圆的切线方程:在已知圆x^2+y^2+Dx+Ey+F=0上,切线的方程可表示为:D*x*x0+E*y*y0+F*x+E*y+C=0, 其中(x0,y0)为切点
单击此处添加标题
圆的直径的方程:$(x-\frac{x1+x2}{2})^2+(y\frac{y1+y2}{2})^2=(\frac{\sqrt{(x1-x2)^2+(y1-y2)^2}}{2})^2$,其中 $(x1,y1)$和$(x2,y2)$为直径的两个端点
联立方程法:通过将直线方程与圆方程联立,消元求解交点坐标
添加文档副标题
目录
01.
02.
03.
定义:表示直线上的点与固定点之间的距离始终等于一个常数 形式:Ax + By + C = 0,其中A、B、C为常数,且A和B不同时为0 分类:一般式、点斜式、斜截式、两点式和截距式 适用范围:适用于所有直线方程,是直线方程的基本形式
《直线和圆的方程》检测卷与答案
因为直线AB平行于直线x+2y-3=0(m≠-3), 所以设直线AB的方程为x+2y+m=0(m≠-3), 又点A(0,-1)在直线AB上, 所以0+2×(-1)+m=0,解得m=2, 所以直线AB的方程为x+2y+2=0,
4.直线x+y-1=0被圆(x+1)2+y2=3截得的弦长等于
A. 2
√B.2
C.2 2
D.4
由题意,得圆心为(-1,0),半径 r= 3,弦心距 d=|-11+2+0-121|= 2, 所以所求的弦长为 2 r2-d2=2.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
16.集合A={(x,y)|x2+y2=4},B={(x,y)|(x-3)2+(y-4)2=r2},其中 r>0,若A∩B中有且仅有一个元素,则r的值是___3_或__7__.
∵A∩B中有且仅有一个元素, ∴圆x2+y2=4与圆(x-3)2+(y-4)2=r2相切. 当两圆内切时,由 32+42=|2-r|,解得 r=7(负值舍去); 当两圆外切时,由 32+42=2+r,解得 r=3. ∴r=3或r=7.
√C.3x+4y-3=0
√B.4x+3y+3=0
D.3x-4y+3=0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
已知圆的标准方程是(x-2)2+(y-2)2=1, 它关于x轴对称的圆的方程是(x-2)2+(y+2)2=1, 设光线l所在直线的方程是y-3=k(x+3)(其中斜率k待定),即kx-y+ 3k+3=0, 由题设知对称圆的圆心C′(2,-2)到这条直线的距离等于1,
直线和圆的方程测试题
直线和圆的方程测试题1. 直线方程部分1.1 点斜式方程直线L通过已知点P(x₁, y₁)且斜率为k,求直线L的方程。
解析:直线L的点斜式方程为:y - y₁ = k(x - x₁)1.2 斜截式方程直线L的斜截式方程为y = kx + b,已知直线L经过点P(x₁, y₁),求直线L的方程。
解析:直线L的斜率k可通过已知点P(x₁, y₁)和直线方程的斜率形式得到。
将已知点P(x₁, y₁)代入直线方程中,得到方程:y₁ = kx₁ + b从而求解得到斜截式方程y = kx + b。
2. 圆方程部分2.1 标准方程圆C的圆心为点O(h, k),半径为r,求圆C的方程。
解析:圆C的标准方程为:(x - h)² + (y - k)² = r²2.2 一般方程圆C的圆心为点O(h, k),半径为r,求圆C的一般方程。
解析:一般方程形式为:x² + y² + Dx + Ey + F = 0带入圆心坐标O(h, k),得到方程:(x - h)² + (y - k)² = r²展开并整理,可得一般方程。
3. 测试题部分测试题一:已知圆C的圆心为O(-2, 3),半径为5,请写出圆C的标准方程和一般方程。
解析:圆C的标准方程为:(x - (-2))² + (y - 3)² = 5²展开并整理得到:x² + y² + 4x - 6y - 12 = 0因此,圆C的一般方程为:x² + y² + 4x - 6y - 12 = 0测试题二:已知直线L通过点P(3, 4)且斜率为 -2,请写出直线L的点斜式方程和斜截式方程。
解析:直线L的点斜式方程为:y - 4 = -2(x - 3)直线L的斜截式方程为:y = -2x + b为了求解斜截式方程中的截距b,将已知点P(3, 4)代入斜截式方程中得:4 = -2(3) + b求解得到b = 10因此,直线L的斜截式方程为:y = -2x + 10通过以上题目和解析,我们掌握了直线和圆的方程及其不同形式的表示方法。
第二章 直线和圆的方程同步课堂单元测试(解答题提升版)(解析版)
第二章直线和圆的方程同步课堂单元测试【解答题提升版】一、解答题1.已知点P (2,2),圆22:80C x y y +-=,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点.(1)求点M 的轨迹方程;(2)当|OP |=|OM |时,求l 的方程及△POM 的面积.【答案】(1)()()22132x y -+-=;(2)直线l 的方程为380x y +-=,POM ∆的面积为165.【分析】求得圆C 的圆心和半径.(1)当,,C M P 三点均不重合时,根据圆的几何性质可知CM MP ⊥,,C P 是定点,所以M 的轨迹是以PC 为直径的圆(除,P C 两点),根据圆M 的圆心和半径求得M 的轨迹方程.当,,C M P 三点有重合的情形时,M 的坐标满足上述求得的M 的轨迹方程.综上可得M 的轨迹方程.(2)根据圆的几何性质(垂径定理),求得直线l 的斜率,进而求得直线l 的方程.根据等腰三角形的几何性质求得POM ∆的面积.【详解】圆:C ()22244x y +-=,故圆心为()0,4C ,半径为4.(1)当C ,M ,P 三点均不重合时,∠CMP =90°,所以点M 的轨迹是以线段PC 为直径的圆(除去点P ,C ),线段PC 中点为()1,3,12PC ==M 的轨迹方程为(x -1)2+(y -3)2=2(x ≠2,且y ≠2或x ≠0,且y ≠4).当C,M,P 三点中有重合的情形时,易求得点M 的坐标为(2,2)或(0,4).综上可知,点M 的轨迹是一个圆,轨迹方程为(x -1)2+(y -3)2=2.(2)由(1)可知点M 的轨迹是以点N (1,3).由于|OP |=|OM |,故O 在线段PM 的垂直平分线上.又P 在圆N 上,从而ON ⊥PM .因为ON 的斜率为3,所以l 的斜率为13-,故l 的方程为1833y x =-+,即380x y +-=.又易得|OM |=|OP |=,点O 到l=||5PM =,所以△POM 的面积为1162555⨯=.【点睛】本小题主要考查动点轨迹方程的求法,考查圆的几何性质,考查等腰三角形面积的计算,考查化归与转化的数学思想方法,考查运算求解能力,属于中档题.2.在平面直角坐标系xOy 中,已知曲线C 的方程是1x ya b+=(a ,0b >).(1)当1a =,2b =时,求曲线C 围成的区域的面积;(2)若直线l :1x y +=与曲线C 交于x 轴上方的两点M ,N ,且OM ON ⊥,求点211,b a ⎛⎫⎪⎝⎭到直线l 距离的最小值.【答案】(1)4;(2)【分析】(1)当1a =,2b =时,曲线C 的方程是12y x +=,对绝对值内的数进行讨论,得到四条直线围成一个菱形,并求出面积为4;(2)对,x y 进行讨论,化简曲线方程,并与直线方程联立,求出点,M N 的坐标,由OM ON⊥得到,a b 的关系221122a b b=-+,再利用点到直线的距离公式求出211324b d ⎛⎫-+ ⎪=得min d =8.【详解】(1)当1a =,2b =时,曲线C 的方程是12y x +=,当0x =时,2y =±,当0y =时,1x =±,当0,0x y >>时,方程等价于112x y+=,当0,0x y <>时,方程等价于112x y+=-,当0,0x y <<时,方程等价于112x y +=--,当0,0x y ><时,方程等价于112x y +=-,曲线C 围成的区域为菱形,其面积为12442⨯⨯=;(2)当0x >,0y >时,有1x ya b+=,联立直线1x y +=可得,a ab ab b M a b a b --⎛⎫⎪--⎝⎭,当0x <,0y >时,有1x ya b+=-,联立直线1x y +=可得,a ab b ab N a b a b -+⎛⎫⎪++⎝⎭,由OM ON ⊥可得1OM ON k k =-,即有1ab b b aba ab a ab -+⋅=---,化为221122a b b=-+,点211,b a ⎛⎫⎪⎝⎭到直线l 距离2111b b d -+=211324b ⎛⎫-+ ⎪=由题意可得0a ab -<,0a b -<,0ab b -<,即a ab b <<,可得01a <<,1b >,可得当112b =,即2b =时,点211,b a ⎛⎫ ⎪⎝⎭到直线l .【点睛】解析几何的思想方法是坐标法,通过代数运算解决几何问题,本题对运算能力的要求是比较高的.3.已知圆C 过点A (2,6),且与直线l 1:x +y -10=0相切于点B (6,4).(1)求圆C 的方程;(2)过点P (6,24)的直线l 2与圆C 交于M ,N 两点,若△CMN 为直角三角形,求直线l 2的斜率;(3)在直线l 3:y =x -2上是否存在一点Q ,过点Q 向圆C 引两切线,切点为E ,F ,使△QEF 为正三角形,若存在,求出点Q 的坐标,若不存在,说明理由.【答案】(1)()()221150x y -++=;(2)直线的斜率为125或者不存在;(3)存在,()11,9或()9,11--.【分析】(1)设圆心坐标(,)C a b ,半径为,(0)r r >,通过垂直关系和半径关系求出未知数即可;(2)若△CMN 为直角三角形,则圆心到直线的距离为22r ,即可求解斜率;(3)使△QEF 为正三角形,即,23EQF QC r π∠==,求出点Q 的坐标.【详解】(1)设圆心坐标(,)C a b ,半径为,(0)r r >,圆C 过点A (2,6),且与直线l 1:x +y -10=0相切于点B (6,4),所以416CB b k a -⎧==⎪-即28412b a a b =-⎧⎨-=⎩,解得11a b =⎧⎨=-⎩,所以r ==所以圆C 的方程:()()221150x y -++=;(2)过点P (6,24)的直线l 2与圆C 交于M ,N 两点,若△CMN 为直角三角形,CM CN =,所以△CMN 为等腰直角三角形,且2MCN π∠=,所以圆心(1,1)C -到直线l 2的距离为52r =,当直线l 2的斜率不存在时,直线方程6x =,圆心(1,1)C -到直线l 2的距离为5,符合题意;当直线l 2的斜率存在时,设斜率为k ,直线方程为24(6)y k x -=-,即6240kx y k --+=圆心(1,1)C -到直线l 25=,5=1=,解得125k =,直线的斜率为125或者不存在;(3)若直线l 3:y =x -2上存在一点Q ,过点Q 向圆C 引两切线,切点为E ,F ,使△QEF 为正三角形,即3EQF π∠=,在Rt ECQ ∆中,,62EQC QEC ππ∠=∠=2QC r ==设(,2),Q a a QC -==2(1)100a -=解得9a =-或11a =所以点Q 的坐标为()11,9或()9,11--.【点睛】此题考查直线和圆的位置关系,其中涉及等价转化思想,将直角三角形关系转化为圆心到直线距离关系求解,将正三角形关系转化成点到圆心距离关系求解.4.在平面直角坐标xOy 中,圆22:4O x y +=与圆22 :(3)(1)8C x y -+-=相交与PQ 两点.(I )求线段PQ 的长.(II )记圆O 与x 轴正半轴交于点M ,点N 在圆C 上滑动,求MNC ∆面积最大时的直线NM 的方程.【答案】(I )3105;(II )360x y +-=或320x y +-=.【分析】(I )先求得相交弦所在的直线方程,再求得圆O 的圆心到相交弦所在直线的距离,然后利用直线和圆相交所得弦长公式,计算出弦长PQ .(II )先求得当90MCN ∠=︒时,MNC S ∆取得最大值,根据两直线垂直时斜率的关系,求得直线NC 的方程,联立直线NC 的方程和圆的方程,求得N 点的坐标,由此求得直线MN 的斜率,进而求得直线MN 的方程.【详解】(I )由圆O 与圆C 方程相减可知,相交弦PQ 的方程为330x y +-=.点(0,0)到直线PQ 的距离d5PQ =(Ⅱ)MC =NC =1sin 2sin 2MNC S MC NC MCN MCN ∆=∠=∠当90MCN ∠=︒时,MNCS取得最大值.此时MC NC ⊥,又1CM k =则直线NC 为4y x =-+.由224(3)(1)8y x x y =-+⎧⎨-+-=⎩,()1,3N 或()5,1N -当点()1,3N 时,3MN k =-,此时MN 的方程为360x y +-=.当点()5,1N -时,13MN k =-,此时MN 的方程为320x y +-=.∴MN 的方程为360x y +-=或320x y +-=.【点睛】本小题主要考查圆与圆相交所得弦长的求法,考查三角形面积公式,考查直线与圆相交交点坐标的求法,考查直线方程的求法,考查两直线垂直时斜率的关系,综合性较强,属于中档题.5.蝴蝶定理因其美妙的构图,像是一只翩翩起舞的蝴蝶,一代代数学名家蜂拥而证,正所谓花若芬芳蜂蝶自来.如图,已知圆M 的方程为()222x y b r +-=,直线x my =与圆M 交于()11,C x y ,()22,D x y ,直线x ny =与圆M 交于()33,E x y ,()44,F x y .原点O 在圆M 内.(1)求证:34121234y y y y y y y y ++=.(2)设CF 交x 轴于点P ,ED 交x 轴于点Q .求证:OP OQ =.【答案】(1)证明见解析(2)证明见解析【分析】(1)联立直线方程和圆的方程,求出两根之和与两根之积,找到相等代换量,从而证明成立.(2)分别求出点P 和点Q 的横坐标表达式,结合(1)中得证结论,从而证明成立.【详解】(1)已知圆M 的方程为()222x y b r +-=,直线x my =与圆M 交于()11,C x y ,()22,D x y ,联立()222x y b r x my⎧+-=⎪⎨=⎪⎩,化简得2222(1)20m y by b r +-+-=,则12221b y y m +=+,221221b r y y m -=+,所以1222122y y b y y b r +=-,同理线x ny =与圆M 交于()33,E x y ,()44,F x y ,联立()222x y b r x ny⎧+-=⎪⎨=⎪⎩化简得2222(1)20n y by b r +-+-=,则12221b y y n +=+,221221b r y y n -=+,所以3422342y y b y y b r +=-,故有34122212342y y y y by y b r y y ++==-,所以34121234y y y y y y y y ++=成立;(2)不妨设点(,0)P p ,点(,0)Q q ,因为C 、P 、F 三点共线,所以414100y y x p x p --=--,化简得411414x y x y p y y -=-,因为点C 在直线x my =上,所以11x my =,点F 在直线x ny =上,所以44x ny =,则4114141414()ny y my y y y n m p y y y y --==--,同理因为E 、Q 、D 三点共线,所以322300y y x q x q --=--,化简得233232x y x y q y y -=-,因为点D 在直线x my =上,所以22x my =,点E 在直线x ny =上,所以33x ny =,则2332233232()my y ny y y y m n q y y y y --==--,又由34121234y y y y y y y y ++=,可得12341111y y y y +=+,41231111y y y y ∴-=-,即32141423y y y y y y y y --=,所以23141432y y y y y y y y =--,则23141432()()y y m n y y n m y y y y --=---,所以p q =-,所以OP OQ =成立.【点睛】本题在蝴蝶定理背景下考查了直线和圆的位置关系,在解答过程中关键是联立直线方程和圆的方程进行求解,本题有一定的计算量,尤其含有多个字母的运算,考查了转化能力,计算能力.6.已知平面直角坐标系上一动点(),P x y 到点()2,0A -的距离是点P 到点()10B ,的距离的2倍.(1)求点P 的轨迹方程:(2)若点P 与点Q 关于点()1,4-对称,求P 、Q 两点间距离的最大值;(3)若过点A 的直线l 与点P 的轨迹C 相交于E 、F 两点,()2,0M ,则是否存在直线l ,使BFM S △取得最大值,若存在,求出此时的方程,若不存在,请说明理由.【答案】(1)()2224x y -+=;(2)14;(3)存在; 20x +=或20x +=.【分析】(1)由已知列关于x ,y 的方程化简即可求得点P 的轨迹方程;(2)设(,)Q x y ,由点P 与点Q 关于点对称,可得点P 坐标为(2,8)x y ---,把P 的坐标代入(1)中的轨迹方程,整理可得点Q 的轨迹方程为22(4)(8)4x y ++-=,由此可得P 、Q 两点间距离的最大值;(3)由题意知l 的斜率一定存在,设直线l 的斜率为k ,且1(E x ,1)y ,2(F x ,2)y ,则:(2)l y k x =+,联立直线与圆的方程,由判别式大于0求得k 的范围,再求出||EF 及M 到直线l 的距离,代入三角形面积公式,利用配方法求最值,得到k 值,可得直线方程.解:(1=∴2240x x y -+=,即()2224x y -+=,(2)设(),Q x y ,因为点P 与点Q 关于点()1,4-对称,则P 点坐标为()2,8x y ---,点在圆上运动,∴点Q 的轨迹方程为()()222284x y ---+-=,即:()()22484x y ++-=,max 414PQ ==;(3)由题意知的斜率一定存在,设直线l 的斜率为k ,且()11,E x y ,()22,F x y ,则l :()2y k x =+,联立方程:()()()()22222221414024y k x k x k x k x y ⎧=+⎪⇒++-+=⎨-+=⎪⎩,∴()()22221614140k k k k ∆=--+⋅>=<<又直线l 不点()2,0M,0k ⎛⎫⎛∈⋃ ⎪ ⎪ ⎝⎭⎝⎭.点()2,0M到直线l 的距离d =EF =∴12EFM S EF d d =⋅==△,22221616111k d k k ==++,()2210,0,43k d ⎛⎫∈⇒∈ ⎪⎝⎭,∴当22d =时,EFM S△取得最大值2,此时,2221612177k k k k =⇒=⇒=±+,∴直线l 得方程为20x +=或20x ++=.7.已知点(1,0)M ,(1,3)N ,圆22:1C x y +=,直线l 过点N .(1)若直线l 与圆C 相切,求l 的方程;(2)若直线l 与圆C 交于不同的两点A ,B ,设直线MA ,MB 的斜率分别为1k ,2k ,证明:12k k +为定值.【答案】(1)1x =或4350x y -+=;(2)证明见解析.(1)若直线l 的斜率不存在,则l 的方程为1x =,此时直线l 与圆C 相切,故1x =符合条件;若直线l 的斜率存在,设斜率为k ,其方程为(1)3y k x =-+,由直线l 与圆C1=,解得43k =,进而可得直线方程;(2)由(1)可知,l 与圆C 有两个交点时,斜率存在,此时设l 的方程为30kx y k --+=,设()11,A x y ,()22,B x y ,联立直线与圆的方程,根据判别式求得斜率的取值范围,又由韦达定理可知12x x +,12x x ,所以121221213(2)22()13k k x x k x x x x +-==--++++.【详解】(1)若直线l 的斜率不存在,则l 的方程为1x =,此时直线l 与圆C 相切,故1x =符合条件.若直线l 的斜率存在,设斜率为k ,其方程为(1)3y k x =-+,即30kx y k --+=.由直线l 与圆C 相切,圆心(0,0)到l 的距离为1,1=,解得43k =.所以直线l 的方程为4(1)33=-+y x ,即4350x y -+=,综上,直线l 的方程为1x =或4350x y -+=.(2)由(1)可知,l 与圆C 有两个交点时,斜率存在,此时设l 的方程为30kx y k --+=,联立22301kx y k x y --+=⎧⎨+=⎩,消去y 可得()()2222126680kx kk x k k +--+-+=,则()()()2222264168∆=--+-+k k k k k 24320=->k .解得43k >.设()11,A x y ,()22,B x y ,则2122261k k x x k -+=+,2122681k k x x k -+=+,(*)所以()1121212113111-++=+=---k x y y k k x x x ()221213332111-++=++---k x k x x x ()()1212123221+-=+-++x x k x x x x ,将(*)代入上式整理得121862293--+=+=-k k k k ,故12k k +为定值23-.【点睛】过一定点,求圆的切线时,首先判断点与圆的位置关系.若点在圆外,有两个结果,若只求出一个,应该考虑切线斜率不存在的情况.8.数学家欧拉在1765年提出:三角形的外心、重心位于同一直线上,这条直线被后人称之为三角形的欧拉线,若ABC 的顶点(2,0)A ,(0,4)B ,且ABC 的欧拉线的方程为20x y -+=.(1)求线段AB 的垂直平分线方程;(2)求ABC 外心F (外接圆圆心)的坐标;(3)求顶点C 的坐标.【答案】(1)230x y -+=;(2)(1,1)-;(3)(4,0)C -.【分析】(1)线段AB 的中垂线经过AB 中点,与直线AB 垂直,故求出AB 中点和中垂线斜率点入点斜式化简即可;(2)联立线段AB 的中垂线方程,ABC 的欧拉线方程即可求出外心坐标;(3)设出点C 坐标,将ABC 重心用,,A B C 表示代入欧拉线方程,再结合(2)中的外心坐标,外心到三个顶点距离相等,得到方程组求出顶点C 的坐标.【详解】解:(1)由题意可得:线段AB 的中点为(1,2),直线AB 的斜率为40202k -==--,所以线段AB 的垂直平分线的斜率为12k =所以线段AB 的垂直平分线方程为12(1)2y x -=-,即230x y -+=;(2)由23020x y x y -+=⎧⎨-+=⎩,解得11x y =-⎧⎨=⎩,所以ABC 外心F (外接圆圆心)的坐标为(1,1)-;(3)设(,)C m n ,由重心坐标公式得重心为24,33m n ++⎛⎫⎪⎝⎭,代入欧拉线的方程,得40m n -+=①,由CF AF =,得2222(1)(1)3110m n ++-=+=②,由①②解得4,0m n =-=或0,4m n ==,当0,4m n ==时,点B ,C 重合,所以4,0m n =-=,所以顶点C 的坐标为(4,0)-.【点睛】1.求解直线方程的2种方法:(1)直接法:根据已知条件,选择适当的直线方程形式,直接写出直线方程;(2)待定系数法:①设所求直线方程的某种形式;②由条件建立所求参数的方程(组);③解这个方程(组)求出参数;④把参数的值代入所设直线方程.2.谨防3种失误:(1)应用“点斜式”和“斜截式”方程时,要注意讨论斜率是否存在;(2)应用“截距式”方程时要注意讨论直线是否过原点,截距是否为0;(3)应用一般式0Ax By C ++=确定直线的斜率时注意讨论B 是否为0.9.已知直线:120()l kx y k k R -+-=∈.(1)求证:无论k 取何值,直线l 始终经过第一象限;(2)若直线l 与x 轴正半轴交于A 点,与y 轴正半轴交于B 点,O 为坐标原点,设AOB 的面积为S ,求S 的最小值及此时直线l 的方程.【答案】(1)证明见解析;(2)面积S 的最小值为4,直线l 的方程为240x y +-=.【分析】(1)先将直线方程化成点斜式,求得x 、y 的值,可得定点坐标,再根据定点在第一象限,可得直线l 始终经过第一象限;(2)法一:先求得A 、B 的坐标,可得ABC 的面积为S 表达式,再利用基本不等式,求得S 的最小值及此时的k 值,进而得到此时直线l 的方程.法二:设直线的方程为1x y a b +=(0,0)a b >>,则12S ab =,直线l 过定点(2,1),所以211a b +=,利用基本不等式求得8ab ≥,则可得S 的最小值及此时的,a b 的值,进而得到此时直线l 的方程.【详解】(1)因为直线:120l kx y k -+-=,即1(2)y k x -=-,令20x -=,求得2x =,1y =,即直线l 过定点(2,1)且在第一象限,所以无论k 取何值,直线l 始终经过第一象限.(2)方法一:因为直线l 与x 轴,y 轴正半轴分别交于A ,B 两点,所以0k <,令0y =,解得21k x k-=;令0x =,得12y k =-,即21,0k A k -⎛⎫ ⎪⎝⎭,(0,12)-B k ,∴112111(12)()44222k S OA OB k k k k -⎛⎫=⋅=-=--+ ⎪⎝⎭,∵0k <,∴0k ->,则144k k -+≥=-,当且仅当14k k -=-,也即12k =-时,取得等号,则()1114444422S k k ⎛⎫=--+≥⨯+= ⎪⎝⎭,∴4S ≥,从而S 的最小值为4,此时直线l 的方程为122y x =-+,即240x y +-=.方法二:因为直线l 与x 轴,y 轴正半轴分别交于A ,B 两点,设(),0A a ,()0,B b ,设直线的方程为1x y a b +=(0,0)a b >>,则12S ab =,又直线l 过定点(2,1),所以211a b +=,又因为0a >,0b >,所以211a b =+≥=即:1≤,所以8ab ≥,∴4S ≥,即S 的最小值为4,此时21a b=,解得4a =,2b =,所以直线l 的方程为142xy +=,即:240x y +-=.【点睛】本题主要考查直线经过定点问题和直线方程,涉及三角形的面积、截距的定义,以及利用基本不等式求面积最值,考查计算能力.10.(1)已知点P (x ,y )在圆C :x 2+y 2-6x -6y +14=0上,求x 2+y 2+2x +3的最大值与最小值.(2)已知实数x ,y 满足(x -2)2+y 2=3,求1y x-的最大值与最小值.【答案】(1)最小值为11,最大值为51;(2)最大值是-2,最小值为-2.【分析】(1)根据x 2+y 2+2x +3的几何意义求解,即求得(1,0)A -到圆心C 的距离,由这个距离加减半径后平方可得最大值和最小值.(2)设1y k x-=,代入已知等式,利用0∆≥可得k 的最大值和最小值.【详解】解:(1)圆方程化为(x -3)2+(y -3)2=4,圆心C (3,3),半径r =2.x 2+y 2+2x +3=(x +1)2+y 2+2表示圆上点P (x ,y )与定点A (-1,0)连线线段长度d 的平方加上2.因为|AC |=5,所以3≤d ≤7,所以所求最小值为11,最大值为51.(2)方程(x -2)2+y 2=3,表示以(2,0)1y x -的几何意义是圆上一点与点(0,1)连线的斜率,所以设1y x-=k ,即y =kx +1.当直线y=kx +1,解得k =-,所以1y x -的最大值是-2,最小值为-2.【点睛】方法点睛:本题考查求平方型和分式型代数式的最值,解题方法是利用其几何意义求解,平方型代数式可以理解为两点间距离的平方,利用两点间距离的最值求得结论,分式型代数式可以理解为两点连线斜率,从而利用直线与圆相交问题,利用判别式求得最值.。
直线与圆的方程测试卷(含答案)
单元检测(七) 直线和圆的方程 (总分值:150分 时间:120分钟)一、选择题(本大题共12小题,每题5分,共60分)1.假设直线x+ay-a=0与直线ax-(2a-3)y-1=0垂直,则a 的值为( )A.2B.-3或1C.2或0D.1或0 解析:当a=0时,显然两直线垂直;a≠0时,则1321-=-•-a a a ,得a=2.故选C. 答案:C2.集合M={(x,y)|y=21x -,x 、y ∈R },N={(x,y)|x=1,y ∈R },则M∩N 等于( ) A.{(1,0)} B.{y|0≤y≤1} C.{1,0} D.解析:y=21x -表示单位圆的上半圆,x=1与之有且仅有一个公共点(1,0).答案:A3.菱形ABCD 的相对顶点为A(1,-2),C(-2,-3),则对角线BD 所在直线的方程是 …( ) A.3x+y+4=0 B.3x+y-4=0 C.3x-y+1=0 D.3x-y-1=0解析:由菱形的几何性质,知直线BD 为线段AC 的垂直平分线,AC 中点O )25,21(--在BD 上,31=AC k ,故3-=BD k ,代入点斜式即得所求. 答案:A 4.假设直线1=+bya x 经过点M(cosα,sinα),则 ……( ) A.a 2+b 2≤1 B.a 2+b 2≥1C.11122≤+b a D.11122≥+b a 解析:直线1=+bya x 经过点M(cosα,sinα),我们知道点M 在单位圆上,此问题可转化为直线1=+bya x 和圆x 2+y 2=1有公共点,圆心坐标为(0,0),由点到直线的距离公式,有.111111|1|2222≥+⇒≤+-b a b a答案:D5.当圆x 2+y 2+2x+ky+k 2=0的面积最大时,圆心坐标是( )A.(0,-1)B.(-1,0)C.(1,-1)D.(-1,1)解析:r 2=222431444k k k -=-+, ∴当k=0时,r 2最大,从而圆的面积最大.此时圆心坐标为(-1,0),故选B.答案:B6.过直线y=x 上的一点作圆(x-5)2+(y-1)2=2的两条切线l 1,l 2,当直线l 1,l 2关于y=x 对称时,它们之间的夹角为( ) A.30° B.45° C.60° D.90° 解析:由已知,得圆心为C(5,1),半径为2,设过点P 作的两条切线的切点分别为M,N,当CP 垂直于直线y=x 时,l 1,l 2关于y=x 对称,|CP|为圆心到直线y=x 的距离,即|CP|=2211|15|=+-,|CM|=2,故∠CPM=30°,∠NPM=60°. 答案:C7.在如下图的坐标平面的可行域(阴影部分且包括边界)内,假设是目标函数z=ax+y(a>0)取得最大值的最优解有无数个,则a 的值等于( )A.31B.1C.6D.3 解析:将z=ax+y 化为斜截式y=-ax+z(a>0),则当直线在y 轴上截距最大时,z 最大. ∵最优解有无数个,∴当直线与AC 重合时符合题意.又k AC =-1, ∴-a=-1,a=1. 答案:B8.已知直线l 1:y=x,l 2:ax-y=0,其中a 为实数,当这两条直线的夹角在(0,12π)内变动时,a 的取值范围是( )A.(0,1)B.)3,33(C.(33,1)∪(1,3) D.(1,3)解析:结合图象,如右图,其中α=45°-15°=30°,β=45°+15°=60°. 需a ∈(tan30°,1)∪(1,tan60°), 即a ∈(33,1)∪(1,3). 答案:C9.把直线x-2y+λ=0向左平移1个单位,再向下平移2个单位后,所得直线正好与圆x 2+y 2+2x-4y=0相切,则实数λ的值为( )A.3或13B.-3或13C.3或-13D.-3或-13 解析:直线x-2y+λ=0按a=(-1,-2)平移后的直线为x-2y+λ-3=0,与圆相切,则圆心(-1,2)到直线的距离55|8|=-=λd ,求得λ=13或3. 答案:A10.如果直线y=kx+1与圆x 2+y 2+kx+my-4=0交于M 、N 两点,且M 、N 关于直线x+y=0对称,则不等式组⎪⎩⎪⎨⎧≥≤-≥+-0,0,01y m y kx y kx 表示的平面区域的面积是( )A.41B.21C.1D.2 解析:由题中条件知k=1,m=-1,易知区域面积为41.答案:A 11.两圆⎩⎨⎧+=+-=ββsin 24,cos 23y x 与⎩⎨⎧==θθsin 3,cos 3y x 的位置关系是( )A.内切B.外切C.相离D.内含解析:两圆化为标准式为(x+3)2+(y-4)2=4和x 2+y 2=9,圆心C 1(-3,4),C 2(0,0). 两圆圆心距|C 1C 2|=5=2+3.∴两圆外切. 答案:B12.方程29x -=k(x-3)+4有两个不同的解时,实数k 的取值范围是( ) A.)247,0( B.(247,+∞) C.(32,31) D.]32,247(解析:设y=29x -,其图形为半圆;直线y=k(x-3)+4过定点(3,4),由数形结合可知,当直线y=k(x-3)+4与半圆y=29x -有两个交点时,32247≤<k . ∴选D.答案:D二、填空题(本大题共4小题,每题5分,共20分)13.假设x,y 满足约束条件⎪⎩⎪⎨⎧≤≤≥+-≥+,30,03,0x y x y x 则z=2x-y 的最大值为__________.解析:作出可行域如下图.当直线z=2x-y 过顶点B 时,z 到达最大,代入得z=9. 答案:914.在y 轴上截距为1,且与直线2x-3y-7=0的夹角为4π的直线方程是_________. 解析:由题意知斜率存在,设其为k,则直线方程为y=kx+1.则|321||32|4tan k k +-=π.解得k=5或51-. ∴直线方程为y=5x+1或y=151+-x ,即5x-y+1=0或x+5y-5=0. 答案:5x-y+1=0或x+5y-5=015.设A(0,3),B(4,5),点P 在x 轴上,则|PA|+|PB|的最小值是________,此时P 点坐标是_______. 解析:点A 关于x 轴的对称点为A′(0,-3), 则|A′B|=45为所求最小值.直线A′B 与x 轴的交点即为P 点,求得P(23,0). 答案:45 (23,0) 16.已知圆M:(x+cosθ)2+(y-sinθ)2=1,直线l:y=kx,下面四个命题: ①对任意实数k 与θ,直线l 和圆M 相切; ②对任意实数k 与θ,直线l 和圆M 有公共点;③对任意实数θ,必存在实数k,使得直线l 和圆M 相切; ④对任意实数k,必存在实数θ,使得直线l 和圆M 相切.其中真命题的序号是.(写出所有真命题的序号) 解析:圆心M(-cosθ,sinθ)到直线l:kx-y=0的距离1|sin cos |1|sin cos |22++=+--=k k k k d θθθθ1|)sin(1|22+++=k k θϕ=|sin(φ+θ)|(其中tanφ=k) ≤1=r,即d≤r,故②④正确. 答案:②④三、解答题(本大题共6小题,共70分)17.(本小题总分值10分)已知△ABC 的三个顶点A(4,-6),B(-4,0),C(-1,4),求: (1)AC 边上的高BD 所在直线的方程; (2)BC 的垂直平分线EF 所在直线的方程; (3)AB 边的中线的方程.解:(1)易知k AC =-2,∴直线BD 的斜率k BD =21.又BD 直线过点B(-4,0),代入点斜式易得直线BD 的方程为x-2y+4=0.(2)∵k BC =34, ∴k EF =43-.又线段BC 的中点为(25-,2), ∴EF 所在直线的方程为y-2=)25(43+-x . 整理得所求的直线方程为6x+8y-1=0.(3)∵AB 的中点为M(0,-3), ∴直线CM 的方程为1343-=++xy . 整理得所求的直线方程为7x+y+3=0(-1≤x≤0).18.(本小题总分值12分)已知圆C 与y 轴相切,圆心C 在直线l 1:x-3y=0上,且截直线l 2:x-y=0的弦长为22,求圆C 的方程. 解:∵圆心C 在直线l 1:x-3y=0上, ∴可设圆心为C(3t,t). 又∵圆C 与y 轴相切, ∴圆的半径r=|3t|. ∴222||3)2()23(t t t =+-,解得t=±1. ∴圆心为(3,1)或(-3,-1),半径为3.∴所求的圆的方程为(x-3)2+(y-1)2=9或(x+3)2+(y+1)2=9.19.(本小题总分值12分)已知等边△ABC 的边AB 所在的直线方程为3x+y=0,点C 的坐标为(1,3),求边AC 、BC 所在的直线方程和△ABC 的面积.解:由题意,知直线AC 、BC 与直线AB 均成60°角,设它们的斜率为k,则3|313|=---kk,解得k=0或k=3.故边AC 、BC 所在的直线方程为y=3,y=3x,如下图,故边长为2,高为3. ∴S △ABC =33221=⨯⨯. 20.(本小题总分值12分)圆C 经过不同的三点P(k,0)、Q(2,0)、R(0,1),已知圆C 在P 点的切线斜率为1,试求圆C 的方程.解:设圆C 的方程为x 2+y 2+Dx+Ey+F=0.将P 、Q 、R 的坐标代入,得⎪⎩⎪⎨⎧=++=-=+.01,2,2F E F k D k∴圆的方程为x 2+y 2-(k+2)x-(2k+1)y+2k=0,圆心为)212,22(++k k . 又∵k CP =-1,∴k=-3.∴圆的方程为x 2+y 2+x+5y-6=0.21.(本小题总分值12分)过点P(2,4)作两条互相垂直的直线l 1、l 2,假设l 1交x 轴于A 点,l 2交y 轴于B 点,求线段AB 的中点M 的轨迹方程.解法一:设点M 的坐标为(x,y), ∵M 为线段AB 的中点,∴A 的坐标为(2x,0),B 的坐标为(0,2y). ∵l 1⊥l 2,且l 1、l 2过点P(2,4), ∴PA ⊥PB,k PA ·k PB =-1. 而k PA =,2204x --k PB =0224--y(x≠1),∴11212-=-•-y x (x≠1). 整理,得x+2y-5=0(x≠1).∵当x=1时,A 、B 的坐标分别为(2,0)、(0,4),∴线段AB 的中点坐标是(1,2),它满足方程x+2y-5=0. 综上所述,点M 的轨迹方程是x+2y-5=0.解法二:设M 的坐标为(x,y),则A 、B 两点的坐标分别是(2x,0)、(0,2y),连结PM, ∵l 1⊥l 2,∴2|PM|=|AB|.而|PM|=22)4()2(-+-y x ,|AB|=,)2()2(22y x +∴.44)4()2(22222y x y x +=-+-化简,得x+2y-5=0,即为所求的轨迹方程.解法三:设M 的坐标为(x,y),由l 1⊥l 2,BO ⊥OA,知O 、A 、P 、B 四点共圆, ∴|MO|=|MP|,即点M 是线段OP 的垂直平分线上的点.∵k OP =20204=--,线段OP 的中点为(1,2), ∴y-2=21-(x-1),即x+2y-5=0即为所求.22.(本小题总分值12分)实系数方程f(x)=x 2+ax+2b=0的一个根在(0,1)内,另一个根在(1,2)内,求: (1)12--a b 的值域; (2)(a-1)2+(b-2)2的值域; (3)a+b-3的值域.解:由题意⎪⎩⎪⎨⎧>++<++>⎪⎩⎪⎨⎧><>.02,012,0.0)2(,0)1(,0)0(b a b a b f f f 即易求A(-1,0)、B(-2,0).由⎩⎨⎧=++=++,02,012b a b a ∴C(-3,1).(1)记P(1,2),k PC <12--a b <k PA ,即12--a b ∈(41,1). (2)|PC|2=(1+3)2+(2-1)2=17,|PA|2=(1+1)2+(2-0)2=8,|PB|2=(1+2)2+(2-0)2=13.∴(a-1)2+(b-2)2的值域为(8,17). (3)令u=a+b-3,即a+b=u+3. -2<u+3<-1,即-5<u<-4. ∴a+b-3的值域为(-5,-4).。
(完整版)直线和圆的方程单元测试题含答案解析.docx
完美 WORD 格式 .整理《直线与圆的方程》练习题1一、选择题1.方程 x2+y2+2ax-by+c=0 表示圆心为 C( 2, 2),半径为 2 的圆,则 a、 b、c 的值依次为( B )( A)2、 4、 4;( B)-2 、 4、4;( C) 2、 -4 、 4;( D) 2、-4 、 -42.点 (1,1) 在圆 ( x a ) 2( y a ) 2 4 的内部,则a的取值范围是(A)(A)1a1(B)0a1(C)a1或 a 1 (D) a 13.自点A(1,4 ) 作圆 (x 2 ) 2( y 3 ) 21的切线,则切线长为(B)(A)5(B) 3(C)10(D) 54.已知 M (-2,0), N (2,0),则以 MN为斜边的直角三角形直角顶点P 的轨迹方程是 ( D )(A)x 2y 22(B)x 2y 24(C)x 2y 22(x 2 )(D)x 2y 24( x2)5.若圆 x2y 2(1)x2y0 的圆心在直线x 1 左边区域,则的取值范围是2(C)A. (0,+)B.1,+1(1,∞ )D. R C. (0, )56. . 对于圆x2y121上任意一点P( x, y),不等式x y m0 恒成立,则m的取值范围是BA .( 2 1,+ )B .2,C.( 1,+ )D.1,+ 1 +7. 如下图,在同一直角坐标系中表示直线y =ax与=+,正确的是 (C)y x a完美 WORD 格式 .整理8. 一束光线从点A( 1,1)出发,经x轴反射到圆 C : ( x 2)2( y 3) 2 1 上的最短路径是( A)A. 4B. 5C.32 1D.269.直线 3 x y 230 截圆x2+y2=4得的劣弧所对的圆心角是( C )A、B、C、D、643210. 如图,在平面直角坐标系中,Ω是一个与 x 轴的正半轴、 y 轴的正半轴分别相切于点C、 D的定圆所围成的区域( 含边界 ) ,、、、是该圆的四等分点.若点 (, ) 、点′( ′,y′)A B C D P x yP x满足 x≤ x′且 y≥ y′,则称 P优于 P′.如果Ω中的点 Q满足:不存在Ω中的其它点优于Q,那么所有这样的点组成的集合是劣弧()QA. ABB. BCC. CDD. DA[ 答案 ]D[ 解析 ]首先若点M 是Ω 中位于直线右侧的点,则过,作与BD平行的直线交于AC M ADC一点 N,则 N 优于 M,从而点 Q必不在直线 AC右侧半圆内;其次,设 E 为直线 AC左侧或直线 AC 上任一点,过 E 作与 AC平行的直线交AD于 F.则 F 优于 E,从而在 AC左侧半圆内及 AC上( A 除外 ) 的所有点都不可能为Q,故 Q点只能在 DA上.二、填空题11. 在平面直角坐标系xoy中,已知圆x2y2 4 上有且仅有四个点到直线12x 5 y c 0 的距离完美 WORD 格式 .整理为 1,则实数 c 的取值范围是( 13,13).12. 圆:x2y 24x 6 y0和圆: x 2y26x 0 交于 A, B 两点,则AB的垂直平分线的方程是3x y9013. 已知点 A(4,1) , B(0,4) ,在直线L: y=3x-1 上找一点P,求使 |PA|-|PB|最大时P的坐标是( 2,5 )14. 过点A( - 2,0)22→→的直线交圆 x + y =1交于 P、Q两点,则 AP· AQ的值为________.[ 答案 ]3[ 解析 ]设 PQ的中点为 M,|OM|= d,则| PM|=| QM|= 1-d2AM|2→=2,|= 4-d .∴|AP|4-d-2→221-d, | AQ|= 4-d+ 1-d,∴→·→= |→||→|cos0 °= ( 4-2- 1-2)(4-2+1-2) = (4 -2) - (1 -d2) = 3.AP AQ AP AQ d d d d d15. 如图所示,已知A(4,0),B(0,4),从点P(2,0)射出的光线经直线AB反射后再射到直线OB上,最后经直线OB反射后又回到P点,则光线所经过的路程是________.[ 答案 ]210[ 解析 ]点P关于直线AB的对称点是 (4,2),关于直线的对称点是 ( - 2,0) ,从而所求路OB程为(4 + 2) 2+ 22= 2 10.三.解答题16. 设圆 C满足:①截y 轴所得弦长为2;②被x轴分成两段圆弧,其弧长之比为3: 1;③圆心到直线 l : x 2 y 0 的距离为5,求圆 C的方程.5解.设圆心为(a,b) ,半径为r ,由条件①:r 2a2 1 ,由条件②:r 22b2,从而有:2b2a21 .由条件③:| a2b | 5 | a 2b |2b 2 a 2 1 a 1 1 ,解方程组 2b | 可得:b 155| a 1或a1, 所 以 r 22b 22 . 故 所 求 圆 的 方 程 是 (x1)2 ( y 1)22 或b1(x 1)2 ( y1)2 2 .17. 已知ABC 的顶点 A 为( 3,- 1),AB 边上的中线所在直线方程为 6x 10 y 59 0 ,B的平分线所在直线方程为x 4y 10 0 ,求 BC 边所在直线的方程.解:设 B(4 y 1 10, y 1) ,由 AB 中点在 6x 10 y59 0 上,可得: 6 4y 17 10 y 1 159 0 , y 1 = 5 ,所以 B(10,5) .22设 A 点关于 x4 y 10 0 的对称点为 A'( x ', y') ,x3 4 y 4 10A (1,7) . 故 BC : 2x 9 y 650 .则有2 1 1 2y1x3 418. 已知过点 M3, 3 的直线 l 与圆 x 2y 2 4 y 21 0 相交于 A, B 两点,( 1)若弦 AB 的长为 2 15 ,求直线 l 的方程;( 2)设弦 AB 的中点为 P ,求动点 P 的轨迹方程.解 : ( 1 ) 若 直 线 l 的 斜 率 不 存 在 , 则 l 的 方 程 为 x3 , 此 时 有 y 24 y 12 0 , 弦| AB | | y A y B | 268 ,所以不合题意.故设直线 l 的方程为 y3 k x 3 ,即 kx y 3k3 0 .x 2y 220, 2 ,半径 r 5 .将圆的方程写成标准式得25,所以圆心圆心 0, 2 到直线 l 的距离 d| 3k 1|,因为弦心距、半径、弦长的一半构成直角三角形,k 213k2所以 152120 ,所以 k3 .k 225,即 k31所求直线 l 的方程为 3xy 12 0 .( 2 )设 P x, y ,圆心 O 1 0, 2 ,连接 O 1 P ,则 O 1 PAB .当 x 0 且 x3 时,kO PkAB1,又kABkMPy( 3),x( 3)1则有y2 y3 22x1,化简得x3 y 55......( 1)0 x 3222当 x0 或 x 3时, P 点的坐标为0, 2 , 0, 3 , 3, 2 , 3, 3 都是方程(1)的解,22所以弦 AB 中点 P 的轨迹方程为 x3 y5 5 .22219. 已知圆 O 的方程为 x 2+y 2= 1,直线 l 1 过点 A (3,0) ,且与圆 O 相切.(1) 求直线 l 1 的方程;(2) 设圆 O 与 x 轴交于 P ,Q 两点, M 是圆 O 上异于 P , Q 的任意一点,过点A 且与 x 轴垂直的直线为 l 2,直线 PM 交直线 l 2 于点 P ′,直线 QM 交直线 l 2 于点 Q ′. 求证:以 P ′Q ′为直径的圆 C 总过定点,并求出定点坐标[ 解析 ](1) ∵直线 l 1 过点(3,0) ,∴设直线 l 1 的方程为 y = ( x - 3) ,即 kx - -3 = 0,Aky k则圆心 O (0,0) 到直线 l 1 的距离为 d = |3 k | = 1,2k + 12解得 k =± 4 .∴直线 l 1 的方程为 y =±2 ( x - 3) .4(2) 在圆 O 的方程 x 2+ y 2= 1 中,令 y = 0 得, x =± 1,即 P ( - 1,0) , Q (1,0).又直线 l 2 过点tA 与 x 轴垂直,∴直线 l 2 的方程为 x = 3,设 M ( s , t ) ,则直线 PM 的方程为 y = s + 1( x + 1) .x = 3 4t解方程组y = t ( x + 1)得, P ′ 3, s + 1 .s + 12 t同理可得 Q ′ 3, s -1 .4t 2t∴以 P ′ Q ′为直径的圆 C 的方程为 ( x -3)( x - 3) + y - s +1 y - s -1 = 0,.专业资料分享.又 s 2+ t 2= 1,∴整理得 ( x 2+ y 2- 6x +1) +6s -2y =0, t2若圆 C 经过定点,则 y = 0,从而有 x - 6x + 1= 0,∴圆 C 总经过的定点坐标为 (3 ±22 ,0) .20. 已知直线 l :y=k (x+2 2 ) 与圆 O: x 2 y 2 4 相交于 A 、B 两点, O 是坐标原点,三角形 ABO 的面积为 S. ( 1)试将 S 表示成的函数 S ( k ),并求出它的定义域; ( 2)求 S 的最大值,并求取得最大值时k 的值 .【解】: : 如图 ,(1) 直线 l 议程 kx y2 2k 0( k 0),原点 O 到 l 的距离为 oc2 2 k 1 k2弦长 AB2 228K 2 OAOC2 421 K( 2) ABO 面积S1AB OC4 2 K 2 (1 K 2 )AB 0,1 K1( K0),1K 22S(k ) 4 2 k 2 (1 k 2 )( 1 k 1且K1 k 2(2)令11 t1,1 k 2t,2S(k )4 2 k 2 (1 k 2 )422t 2 3t 14 22(t3) 2 1 .1 k 248当 t=3时 ,13 , k 2 1 , k 3时,Smax241 k2 4 3321. 已知定点A( 0, 1),B( 0, -1 ),C(1, 0).动点P满足:AP BP k | PC |2.(1)求动点P的轨迹方程,并说明方程表示的曲线类型;(2)当kuuur uuur2 时,求| 2AP BP | 的最大、最小值.uuur( x, yuuur uuur(1x, y) .因为解:( 1)设动点坐标为P(x, y),则AP1) , BP ( x, y1) , PC AP BP k | PC |2,所以x2y2 1 k[( x 1)2y 2 ] . (1k) x2(1k ) y22kx k 1 0 .若 k1,则方程为 x 1 ,表示过点(1, 0)且平行于 y 轴的直线.若 k1,则方程化为 (x k )2y2(1)2.表示以 (k,0) 为圆心,以1为1k1k k1|1 k |半径的圆.( 2)当k 2 时,方程化为(x2) 2y21,uuur uuur uuur uuur9x29 y2 6 y 1 .因为 2AP BP(3x,3 y 1) ,所以| 2 AP BP |又 x2y24xuuur uuur6y26 .3 ,所以| 2 AP BP | 36x因为 ( x 2) 2y 21,所以令 x2cos, y sin,则 36x6y26 6 37 cos()46[46637, 46637] .uuur uuur46637337 ,所以 | 2AP BP |的最大值为最小值为4663737 3 .。
《第二章 直线和圆的方程》单元检测试卷与答案解析(共四套)
《第二章 直线和圆的方程》单元检测试卷(一)第I 卷(选择题)一、单选题(每题只有一个选项为正确答案,每题5分,共40分) 1.已知直线1l :2y x =-,2l :y kx =,若12//l l ,则实数k =( ) A .-2 B .-1 C .0 D .12.直线()()1:2140l a x a y -+++=与()2:190l a x ay ++-=互相垂直,则a 的值是( ). A .-0.25 B .1 C .-1 D .1或-13.直线:l (1)230m x my m ---+=(m R ∈)过定点A ,则点A 的坐标为( ) A .(3,1)- B .(3,1) C .(3,1)- D .(3,1)-- 4.设a R ∈,则“a=1”是“直线ax+y-1=0与直线x+ay+1=0平行”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件,5.若曲线y 与直线y =k (x ﹣2)+4有两个交点,则实数k 的取值范围是( ) A .3,14⎛⎤⎥⎝⎦ B .3,4⎛⎫+∞ ⎪⎝⎭C .(1,+∞)D .(1,3] 6.已知直线x y t +=与圆()2222x y t tt R +=-∈有公共点,则()4t t -的最大值为( ) A .4 B .289 C .329D .3277.若两平行直线20,(0)x y m m ++=>与30x ny --=则m+n =( ) A .0 B .1 C .1- D .2-8.过直线y =x 上的一点作圆22(5)(1)2x y -+-=的两条切线l 1,l 2,当直线l 1,l 2关于y =x 对称时,它们之间的夹角为( )A .30°B .45°C .60°D .90°二、多选题(每题不止有一个选项为正确答案,每题5分,共20分)9.圆221:20x y x O +-=和圆222:240O x y x y ++-=的交点为A ,B ,则有( )A .公共弦AB 所在直线方程为0x y -= B .线段AB 中垂线方程为10x y +-=C .公共弦AB 的长为2D .P 为圆1O 上一动点,则P 到直线AB 1+ 10.已知直线12:10,:(2)330l x my l m x y +-=-++=,则下列说法正确的是( )A .若12l l //,则m=-1或m=3B .若12l l //,则m=3C .若12l l ⊥,则12m =-D .若12l l ⊥,则12m = 11.已知直线l 与圆22:240C x y x y a ++-+=相交于,A B 两点,弦AB 的中点为()0,1M ,则实数a 的取值可为( )A .1B .2C .3D .4 12.下列说法正确的是( )A .直线32()y ax a a R =-+∈必过定点(3,2)B .直线32y x =-在y 轴上的截距为2-C 10y ++=的倾斜角为60°D .过点(1,2)-且垂直于直线230x y -+=的直线方程为20x y +=第II 卷(非选择题)三、填空题(每题5分,共20分)13.圆C 的圆心为(21),-,且圆C 与直线3450x y --=相切,则圆C 的方程为_______. 14.经过点P (2,1)作直线l 分别交x 轴、y 轴的正半轴于A 、B 两点,当△AOB 面积最小时,直线l 的方程为_____.15.在圆22420x y x y +-+=内,过点1,0()M 的最短弦的弦长为_____;16.圆()()221:29C x m y -++=与圆()()222:14C x y m ++-=内切,则m 的值为____.四、解答题(17题10分,其余12分,共70分) 17.已知圆C 的方程为()()22215x y -+-=. (1)写出圆心C 的坐标与半径长;(2)若直线l 过点()0,1P ,试判断与圆C 的位置关系,并说明理由.18.已知圆C :(x+2)2+y 2=5,直线l :mx ﹣y+1+2m =0,m ∈R. (1)判断直线与圆的位置关系,并说明理由;(2)若直线l 与圆C 交于,A B 两点,求弦AB 的中点M 的轨迹方程.19.已知圆()()22:1225C x y -+-=和直线()():211740l m x m y m +++--=.(1)证明:不论 m 为何实数,直线l 都与圆 C 相交于两点; (2)求直线被圆 C 截得的弦长最小时直线l 的方程;(3)已知点P (,x y )在圆C 上,求22x y +的最大值.20.在平面直角坐标系中,直线=0与圆C 相切,圆心C 的坐标为(1,-1). (1)求圆C 的方程;(2)设直线y =kx+2与圆C 没有公共点,求k 的取值范围; (3)设直线y =x+m 与圆C 交于M ,N 两点,且OM ⊥ON ,求m 的值.21.已知圆C :2240x y mx ny ++++=关于直线10x y ++=对称,圆心C 在第四象限,半径为1.(1)求圆C 的标准方程;(2)是否存在直线与圆C 相切,且在x 轴,y 轴上的截距相等?若存在,求出该直线的方程;若不存在,说明理由.22.平面直角坐标系xOy 中,已知点()2,4P ,圆22:4O x y +=与x 轴的正半轴的交于点Q .(1)若过点P 的直线1l 与圆O 相切,求直线1l 的方程; (2)若过点P 的直线2l 与圆O 交于不同的两点A ,B . ①设线段AB 的中点为M ,求点M 纵坐标的最小值;②设直线QA ,QB 的斜率分别是1k ,2k ,问:12k k +是否为定值,若是,则求出定值,若不是,请说明理由. 答案解析第I 卷(选择题)一、单选题(每题只有一个选项为正确答案,每题5分,共40分) 1.已知直线1l :2y x =-,2l :y kx =,若12//l l ,则实数k =( ) A .-2 B .-1 C .0 D .1 【答案】D【解析】已知直线1l :2y x =-,2l :y kx =,因为12//l l ,所以1k =故选:D2.直线()()1:2140l a x a y -+++=与()2:190l a x ay ++-=互相垂直,则a 的值是( ). A .-0.25 B .1 C .-1 D .1或-1 【答案】D【解析】当10a +=时,1a =-,此时14:3l x =,2:9l y =-,显然两直线垂直, 当0a =时,此时1:240l x y -++=,2:9l x =,显然两直线不垂直, 当10a +≠且0a ≠时,因为12l l ⊥,所以()()()2110a a a a -+++=,解得:1a =,综上可知:1a =或1-.故选D.3.直线:l (1)230m x my m ---+=(m R ∈)过定点A ,则点A 的坐标为( ) A .(3,1)- B .(3,1) C .(3,1)- D .(3,1)-- 【答案】B【解析】根据直线(1)230m x my m ---+=得()230m x y x ---+=, 故直线过定点为直线20x y --=和30x -+=的交点,联立方程得2030x y x --=⎧⎨-+=⎩,解得31x y =⎧⎨=⎩ ,所以定点A 的坐标为()3,1A .故选:B.4.设a R ∈,则“a=1”是“直线ax+y-1=0与直线x+ay+1=0平行”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件, 【答案】C【解析】若直线ax+y-1=0与直线x+ay+1=0平行,则21a =,且11a-≠解得1a =故选C5.若曲线y 与直线y =k (x ﹣2)+4有两个交点,则实数k 的取值范围是( ) A .3,14⎛⎤⎥⎝⎦ B .3,4⎛⎫+∞ ⎪⎝⎭C .(1,+∞)D .(1,3] 【答案】A【解析】作出曲线y 的图像,直线y =k (x ﹣2)+4恒过定点()2,4,当直线与曲线相切时,原点到直线240kx y k --+=的距离等于22=,解得34k =, 由图可知, ()3401422k -<≤=--,故选:A 6.已知直线x y t +=与圆()2222x y t tt R +=-∈有公共点,则()4t t -的最大值为( ) A .4 B .289 C .329D .327【答案】C【解析】因为()2222x y t tt R +=-∈表示圆,所以220->t t ,解得02t <<,因为直线x y t +=与圆()2222x y t tt R +=-∈有公共点,所以圆心到直线的距离d r ≤,即≤403t ≤≤,此时403t ≤≤, 因为()()()224424=-=-+=--+f t t t t t t ,在40,3⎡⎤⎢⎥⎣⎦递增,所以()4t t -的最大值34329⎛⎫= ⎪⎝⎭f . 故选:C7.若两平行直线20,(0)x y m m ++=>与30x ny --=则m+n =( ) A .0 B .1 C .1- D .2- 【答案】A【解析】由直线20,(0)x y m m ++=>与30x ny --=平行可得2n -=即2n =-, 则直线20,(0)x y m m ++=>与230x y +-=,=2m =或8m =-(舍去),所以()220m n +=+-=.故选:A.8.过直线y =x 上的一点作圆22(5)(1)2x y -+-=的两条切线l 1,l 2,当直线l 1,l 2关于y =x 对称时,它们之间的夹角为( )A .30°B .45°C .60°D .90° 【答案】C【解析】如图所示,过圆心C 作CP 垂直直线y x =于点P ,直线,PA PB 分别与圆:C 22(5)(1)2x y -+-=相切,切点分别为,A B ,根据几何知识可知,直线12,l l 也关于直线CP对称,所以直线12,l l 的夹角为APB ∠(或其补角).在Rt CBP 中,BC =CP ==所以1sin 2BPC ∠=,而BPC ∠为锐角,即有30BPC ∠=,60APB ∠=. 故选:C .二、多选题(每题不止有一个选项为正确答案,每题5分,共20分)9.圆221:20x y x O +-=和圆222:240O x y x y ++-=的交点为A ,B ,则有( )A .公共弦AB 所在直线方程为0x y -= B .线段AB 中垂线方程为10x y +-=C .公共弦AB 的长为2D .P 为圆1O 上一动点,则P 到直线AB 1+ 【答案】ABD【解析】对于A ,由圆221:20x y x O +-=与圆222:240O x y x y ++-=的交点为A ,B ,两式作差可得440x y -=,即公共弦AB 所在直线方程为0x y -=,故A 正确;对于B ,圆221:20x y x O +-=的圆心为()1,0,1AB k =,则线段AB 中垂线斜率为1-,即线段AB 中垂线方程为:()011y x -=-⨯-,整理可得10x y +-=,故B 正确; 对于C ,圆221:20x y x O +-=,圆心1O ()1,0到0x y -=的距离为2d ==,半径1r =所以AB ==C 不正确;对于D ,P 为圆1O 上一动点,圆心1O ()1,0到0x y-=的距离为2d =,半径1r =,即P到直线AB 1+,故D 正确.故选:ABD10.已知直线12:10,:(2)330l x my l m x y +-=-++=,则下列说法正确的是( )A .若12l l //,则m=-1或m=3B .若12l l //,则m=3C .若12l l ⊥,则12m =-D .若12l l ⊥,则12m = 【答案】BD【解析】直线12l l //,则3(2)0m m --=,解得3m =或1m =-,但1m =-时,两直线方程分别为10x y --=,3330x y -++=即30x y --=,两直线重合,只有3m =时两直线平行,A 错,B 正确;12l l ⊥,则230m m -+=,12m =,C 错,D 正确. 故选:BD .11.已知直线l 与圆22:240C x y x y a ++-+=相交于,A B 两点,弦AB 的中点为()0,1M ,则实数a 的取值可为( )A .1B .2C .3D .4 【答案】AB【解析】圆C 的标准方程为:()()22125x y a ++-=-,故5a <.又因为弦AB 的中点为()0,1M ,故M 点在圆内,所以()()2201125a ++-<-即3a <. 综上,3a <. 故选:AB.12.下列说法正确的是( )A .直线32()y ax a a R =-+∈必过定点(3,2)B .直线32y x =-在y 轴上的截距为2-C 10y ++=的倾斜角为60°D .过点(1,2)-且垂直于直线230x y -+=的直线方程为20x y += 【答案】ABD【解析】32()y ax a a R =-+∈可化为()23y a x -=-,则直线32()y ax a a R =-+∈必过定点(3,2),故A 正确;令0x =,则2y =-,即直线32y x =-在y 轴上的截距为2-,故B 正确;10y ++=可化为1y =-,则该直线的斜率为,即倾斜角为120︒,故C 错误;设过点(1,2)-且垂直于直线230x y -+=的直线的斜率为k 因为直线230x y -+=的斜率为12,所以112k ⋅=-,解得2k =- 则过点(1,2)-且垂直于直线230x y -+=的直线的方程为22(1)y x -=-+,即20x y +=,故D 正确; 故选:ABD第II 卷(非选择题)三、填空题(每题5分,共20分)13.圆C 的圆心为(21),-,且圆C 与直线3450x y --=相切,则圆C 的方程为_______.【答案】22(2)(1)1x y -++=【解析】圆C 的圆心为(2,1)-,与直线:3450l x y --=相切, 圆心到直线的距离等于半径,即1r d ===,∴圆C 的方程为22(2)(1)1x y -++=.故答案为:22(2)(1)1x y -++=.14.经过点P (2,1)作直线l 分别交x 轴、y 轴的正半轴于A 、B 两点,当△AOB 面积最小时,直线l 的方程为_____. 【答案】x+2y ﹣4=0;【解析】由题意可知,直线的斜率一定存在,故设直线方程y ﹣1=k (x ﹣2),k <0, 令x =0可得,y =1﹣2k ,令y =0可得x =2﹣1k, 则11121222AOBSOA OB k k =⋅=⨯--=()1114444422k k ⎛⎫--+≥+= ⎪⎝⎭, 当且仅当﹣4k =﹣1k即k =﹣12时取等号,此时直线方程y ﹣1=﹣12(x ﹣2),即x+2y ﹣4=0. 故答案为:x+2y ﹣4=0.15.在圆22420x y x y +-+=内,过点1,0()M 的最短弦的弦长为_____;【答案】【解析】圆22420x y x y +-+=化简得:()()22215x y -++=,点M 在圆内部,记圆心为()2,1C -,根据几何性质知过M 且与OM 垂直的弦最短,CM =由垂径定理得弦长为==故答案为:16.圆()()221:29C x m y -++=与圆()()222:14C x y m ++-=内切,则m 的值为______.【答案】2-或1-【解析】圆1C 的圆心为(),2m -,半径为13r =,圆2C 的圆心为()1,m -,半径为22r =,所以两圆的圆心距d =,1=,解得2m =-或1m =-.故答案为:2-或1-.四、解答题(17题10分,其余12分,共70分)17.已知圆C 的方程为()()22215x y -+-=.(1)写出圆心C 的坐标与半径长;(2)若直线l 过点()0,1P ,试判断与圆C 的位置关系,并说明理由.【答案】(1)圆心C 的坐标为()2,1,半径长r =(2)相交,理由见解析.【解析】(1)圆心C 的坐标为()2,1,半径长r =(2)当直线l 垂直于x 轴时,直线方程为0x =,与圆有2个交点;当直线l 不垂直于x 轴时,设直线l 的方程为1y kx =+,将1y kx =+代入()()22215x y -+-=整理,得()221410kx x +--=, 因为210k +≠,且()216410k∆=++>恒成立,所以直线l 与圆C 相交.综上所述,直线l 与圆C 相交.18.已知圆C :(x+2)2+y 2=5,直线l :mx ﹣y+1+2m =0,m ∈R.(1)判断直线与圆的位置关系,并说明理由;(2)若直线l 与圆C 交于,A B 两点,求弦AB 的中点M 的轨迹方程. 【答案】(1)相交,理由见解析;(2)()2211224x y ⎛⎫++-= ⎪⎝⎭ 【解析】(1)直线l :120mx y m -++=,也即()12y m x -=+,故直线恒过定点()2,1-,又()222215-++<,故点()2,1-在圆C 内,此时直线l 一定与圆C 相交.(2)设点(),M x y ,当直线AB 斜率存在时,12AB y k x -=+, 又2MC y k x =+,1AB MC k k ⨯=-, 即1122y y x x -⨯=-++, 化简可得:()()22112,224x y x ⎛⎫++-=≠- ⎪⎝⎭; 当直线AB 斜率不存在时,显然中点M 的坐标为()2,1-也满足上述方程.故M 点的轨迹方程为:()2211224x y ⎛⎫++-= ⎪⎝⎭. 19.已知圆()()22:1225C x y -+-=和直线()():211740l m x m y m +++--=. (1)证明:不论 m 为何实数,直线l 都与圆 C 相交于两点;(2)求直线被圆 C 截得的弦长最小时直线l 的方程;(3)已知点P ( ,x y )在圆C 上,求22x y +的最大值.【答案】(1)证明见解析;(2)250x y --=;(3)30+【解析】(1)因为()():211740l m x m y m +++--=所以()()2740x y m x y +-++-=令27040x y x y +-=⎧⎨+-=⎩解得31x y =⎧⎨=⎩ 所以直线l 过定点()3,1.而()()22311225-+-<,即点()3,1在圆内部. 所以直线l 与恒交于两点.(2).过圆心()1,2与点()3,1的直线1l 的方程为1522y x =-+, 被圆 C 截得的弦长最小时,直线l 必与直线1l 垂直,所以直线l 的斜率2k =,所以直线l 的方程为()123y x -=-,即250x y --=.(3)因为2222(0)(0)x y x y +-+-=,表示圆上的点(),x y 到()0,0的距离的平方,因为圆心到原点的距离d ==所以2a 2m x 2)(530(+==+x y 20.在平面直角坐标系中,直线=0与圆C 相切,圆心C 的坐标为(1,-1).(1)求圆C 的方程;(2)设直线y =kx+2与圆C 没有公共点,求k 的取值范围;(3)设直线y =x+m 与圆C 交于M ,N 两点,且OM ⊥ON ,求m 的值.【答案】(1)22()(11)9x y -++=;(2)30,4⎛⎫ ⎪⎝⎭;(3)1m =-±【解析】(1)∵直线0x y ++=与圆C 相切,且圆心C 的坐标为(1,1)-,∴圆C的半径3r ==, 则圆C 的方程为22()(11)9x y -++=;(2)∵直线y =kx+2与圆C 没有公共点,∴点(1,1)C -3>,解得304k <<, ∴k 的取值范围为30,4⎛⎫ ⎪⎝⎭; (3)联立22(1)(1)9y x m x y =+⎧⎨-++=⎩,得2222270x mx m m +++-=, 由()2248270m m m ∆=-+->,解得22m --<<-+设()()1122,,,M x y N x y , 则2121227,2m m x x m x x +-+=-=, ∵OM ON ⊥,∴12120OM ON x x y y ⋅=+=,即()()()21212121220x x x m x m x x m x x m +++=+++=,∴2270m m +-=,解得1m =-±∴1m =-±21.已知圆C :2240x y mx ny ++++=关于直线10x y ++=对称,圆心C 在第四象限,半径为1.(1)求圆C 的标准方程;(2)是否存在直线与圆C 相切,且在x 轴,y 轴上的截距相等?若存在,求出该直线的方程;若不存在,说明理由.【答案】(1)()()22121x y -++=;(2)存在,34y x =-或1y x =--±【解析】(1)将圆C 化为标准方程,得222216()()224m n m n x y +-+++= ∴ 圆心C (,22m n --),半径r =由已知得10222412m n m n ⎧--+=⎪=-⎧⎪⇒⎨=⎩=⎩或42m n =⎧⎨=-⎩ 又C 在第四象限, ∴()1,2C -∴圆C 的标准方程为22(1)(2)1x y -++=(2)当直线过原点时,l 斜率存在,则设:l y kx =314k =⇒=- 此时直线方程为34y x =-; 当直线不过原点时,设:0l x y t +-=1= 解得1t =-10x y +++=或10x y ++= 综上,所求直线的方程为:34y x =-或1y x =--±22.平面直角坐标系xOy 中,已知点()2,4P ,圆22:4O x y +=与x 轴的正半轴的交于点Q .(1)若过点P 的直线1l 与圆O 相切,求直线1l 的方程;(2)若过点P 的直线2l 与圆O 交于不同的两点A ,B .①设线段AB 的中点为M ,求点M 纵坐标的最小值;②设直线QA ,QB 的斜率分别是1k ,2k ,问:12k k +是否为定值,若是,则求出定值,若不是,请说明理由.【答案】(1)2x =和34100x y -+=;(2)①2 ②是定值,1-.【解析】(1)圆22:4O x y +=的圆心为()0,0,半径为2, 若过点()2,4P 直线1l 垂直于x 轴,则方程为2x =,与圆相切,符合题意;若过点()2,4P 直线1l 不垂直于x 轴,设直线1l 的斜率与k ,则直线1l 方程为()42y k x -=-,即240kx y k --+=,因为直线1l 与圆22:4O x y +=相切,所以圆心到直线1l的距离2d ==,解得34k =, 所以切线方程为34100x y -+=;综上得:切线1l 的方程为2x =和34100x y -+=;(2)①设点(),M x y ,因为M 为弦AB 中点,所以MO MP ⊥,又因为(),OM x y =,()2,4PM x y =--,所以由OM PM ⊥得(2)(4)0x x y y -+-=化简得22240x y x y +--=.联立22224240x y x y x y ⎧+=⎨+--=⎩得20x y =⎧⎨=⎩或6585x y ⎧=-⎪⎪⎨⎪=⎪⎩; 又因为点M 在圆22:4O x y +=内部,所以点M 的轨迹是圆22240x y x y +--=中以点68,55⎛⎫- ⎪⎝⎭和()2,0为端点的一段劣弧(不包括端点),由22240x y x y +--=即()()22125x y -+-=,令1x =得2y =±根据点(1,2在22:4O x y +=内部,所以点M纵坐标的最小值是2-; ②由题意点()2,0Q ,联立224(2)4y k x x y -=-⎧⎨+=⎩得()22214(2)(24)40k x k k x k +--+--=, 设()()1122,,,A x y B x y ,则12221224(2)1(24)410k k x x k k x x k -⎧+=⎪+⎪--⎪=⎨+⎪∆>⎪⎪⎩, 所以()()121212121224242222k x k x y k k x x x y x -+-++=+=+---- ()()121212214444222224x x k k x x x x x x +-=++=+---++ 22224(2)444(84)1221(24)44(2)162411k k k k k k k k k k k -⎡⎤⋅-⎢⎥++⎣⎦=+=-=-----⋅+++. 所以12k k +是定值,定值为1-.《第二章 直线和圆的方程》单元检测试卷(二)一、单选题1.直线:的倾斜角为( )A .B .C .D .2.圆心为,且过原点的圆的方程是( )A .B .C .D .3.如果直线(2a+5)x+(a -2)y+4=0与直线(2-a)x+(a+3)y -1=0互相垂直,则a 的值等于( )A .2B .-2C .2,-2D .2,0,-24.圆与直线的位置关系( )A .相切B .相离C .相交D .不能确定5.从点向圆引切线,则切线长的最小值( )A ..5 C.6.已知直线在两坐标轴上的截距相等,则实数A .1B .C .或1D .2或17.若点为圆的弦的中点,则弦所在直线的方程为( )A .B .C .D .8.过点且倾斜角为的直线被圆所截得的弦长为( ) A.1 C.9.已知直线和以,为端点的线段相交,则实数k 的取值范围为( )A .B . x y +-0=30︒45︒60︒135︒()2,2()()22228x y -+-=()()22222x y -+-=()()22228x y +++=()()22222x y +++=22(1)5x y +-=120mx y m -+-=(,3)P m 22(2)(2)1x y +++=420ax y a +-+=(a =)1-2-(1,1)P 2240x y x +-=AB AB 20x y +-=0x y -=20x y -+=22(1)5x y +-=()1,030()2221x y -+=20kx y -+=()3,2M -()2,5N 32k ≤32k ≥C .D .或 10.已知圆,圆,、分别是圆、上动点,是轴上动点,则的最大值是( )A . BC .二、多选题11.在同一直角坐标系中,直线与圆的位置不可能是( ) A . B . C .D . 12.已知点是直线上一定点,点、是圆上的动点,若的最大值为,则点的坐标可以是( )A .B .C .D . 13.瑞士数学家欧拉(LeonhardEuler )1765年在其所著的《三角形的几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上,后人称这条直线为欧拉线.已知的顶点,,其欧拉线方程为,则顶点的坐标可以是( )A .B .C .D .三、填空题14.直线过定点______;若与直线平行,则______.15.已知以为圆心的圆与圆相内切,则圆C 的方程是______. 16.圆关于直线的对称圆的标准方程为__________.17.已知、为正实数,直线截圆所得的弦长为,则的最大值为__________. 4332k -≤≤43k ≤-32k ≥()()221:231C x y -+-=()()222:349C x y -+-=M N 1C 2C P x PN PM -4+42y ax a =+222()x a y a ++=A :0l x y +=P Q 221x y +=PAQ ∠90A (()1))1,1ABC ∆()4,0-A ()0,4B 20x y -+=C ()2,0()0,2()2,0-()0,2-()1:20l m x y m +--=()m R ∈1l 2:310l x my --=m =()4,3C -22:1O x y +=22230x y y ++-=10x y +-=a b 10x y ++=()()224x a y b -+-=ab四、解答题18.求圆上与直线的距离最小的点的坐标. 19.已知直线过点.(1)若原点到直线的距离为,求直线的方程;(2)当原点到直线的距离最大时,求直线的方程.20.在中,,边上的高所在的直线方程为,边上中线所在的直线方程为.(1)求点坐标;(2)求直线的方程.21.如图,圆,点为直线上一动点,过点引圆的两条切线,切点分别为(1)求证:直线恒过定点,并求出该定点的坐标;(2)若两条切线于轴分别交于两点,求面积的最小值.224x y +=43120x y +-=l (2,1)P -O l 2l O l l ABC ∆(1,2)A -AC BE 74460x y +-=AB CM 211540x y -+=C BC 22:(2)1C x y -+=P :4l x =P C ,AB AB Q ,PA PB y ,M N QMN22.已知点,,直线:,设圆的半径为,圆心在直线上.(1)若圆心也在直线上,过点作圆的切线,求切线的方程;(2)若圆上存在点,使,为坐标原点,求圆心的横坐标的取值范围.23.已知点,点在圆上运动. (1)求过点且被圆截得的弦长为(2)求的最值.答案解析一、单选题1.直线:的倾斜角为( )A .B .C .D .【答案】D【解析】直线的斜率,设直线的倾斜角为, 则,所以.故选:D.2.圆心为,且过原点的圆的方程是( )A .B .C .D .【答案】A【解析】根据题意. (4,4)A (0,3)B l 1y x =-C 1C l C 37y x =-A C C M 2MB MO =O C a (2,2),(2,6),(4,2)A B C ----P 22:4E x y +=C E 222||||||PA PB PC ++x y +-0=30︒45︒60︒135︒0x y +-=1k =-0x y +-=1(080)a a ︒≤<︒tan 1α=-135α=︒()2,2()()22228x y -+-=()()22222x y -+-=()()22228x y +++=()()22222x y +++=r ==()()22228x y -+-=故选:.3.如果直线(2a+5)x+(a -2)y+4=0与直线(2-a)x+(a+3)y -1=0互相垂直,则a 的值等于( )A .2B .-2C .2,-2D .2,0,-2【答案】C【解析】(2a +5)(2-a)+(a -2)(a +3)=0,所以a =2或a =-2.4.圆与直线的位置关系( )A .相切B .相离C .相交D .不能确定【答案】C【解析】 直线即即直线过点,把点代入圆的方程有,所以点在圆的内部,过点的直线一定和圆相交.故选:C.5.从点向圆引切线,则切线长的最小值( )A ..5 C.【答案】A【解析】设切线长为,则,故选:A.6.已知直线在两坐标轴上的截距相等,则实数 )A .1B .C .或1D .2或1【答案】D【解析】由题意,当,即时,直线化为,此时直线在两坐标轴上的截距都为0,满足题意; A 22(1)5x y +-=120mx y m -+-=120mx y m -+-=()12y m x -=-()21,()21,405+<()21,()21,(,3)P m 22(2)(2)1x y +++=4d 2222(2)51(2)24d m m =++-=++min d ∴=20ax y a +-+=(a =1-2-2a 0-+=a 2=ax y 2a 0+-+=2x y 0+=当,即时,直线化为,由直线在两坐标轴上的截距相等,可得,解得; 综上所述,实数或.故选:D .7.若点为圆的弦的中点,则弦所在直线的方程为( ) A . B .C .D .【答案】B【解析】化为标准方程为.∵为圆的弦的中点,∴圆心与点确定的直线斜率为,∴弦所在直线的斜率为1,∴弦所在直线的方程为,即.故选:B.8.过点且倾斜角为的直线被圆所截得的弦长为( )A .B .1 C.【答案】C【解析】根据题意,设过点且倾斜角为的直线为 ,其方程为,即,变形可得,圆 的圆心为,半径 ,2a 0-+≠a 2≠ax y 2a 0+-+=122x y a a a+=--2a 2a a-=-a 1=a 2=a 1=(1,1)P 2240x y x +-=AB AB 20x y +-=0x y -=20x y -+=22(1)5x y +-=2240x y x +-=()22-24x y +=()1,1P ()22-24x y +=AB P 01121k -==--AB AB 11y x -=-0x y -=()1,030()2221x y -+=2()1,030l ()tan301y x =-)13y x =-10x -=()2221x y -+=()2,01r =设直线与圆交于点,圆心到直线的距离, 则C. 9.已知直线和以,为端点的线段相交,则实数k 的取值范围为( )A .B .C .D .或 【答案】C【解析】 因为直线恒过定点,又因为,,所以直线的斜率k 的范围为. 故选:C . 10.已知圆,圆,、分别是圆、l AB 12d ==2AB ==20kx y -+=()3,2M -()2,5N 32k ≤32k ≥4332k -≤≤43k ≤-32k ≥20kx y -+=()0,2A 43AM k =-32AN k =4332k -≤≤()()221:231C x y -+-=()()222:349C x y -+-=M N 1C上动点,是轴上动点,则的最大值是( )A . BC .【答案】D【解析】如下图所示:圆的圆心,半径为,圆的圆心,半径为, ,由圆的几何性质可得,, ,当且仅当、、三点共线时,.故选:D.二、多选题11.在同一直角坐标系中,直线与圆的位置不可能是()A .B .C .D . 2C P x PN PM -4+41C ()12,3C 11r =2C ()23,4C 23r =12C C ==2223PN PC r PC ≤+=+1111PM PC r PC ≥-=-2112444PN PM PC PC C C -≤-+≤+=1C P 2C PN PM -42y ax a =+222()x a y a ++=【答案】ABD【解析】直线经过圆的圆心,且斜率为. 故选项满足题意.故选:.12.已知点是直线上一定点,点、是圆上的动点,若的最大值为,则点的坐标可以是( )A .B .C .D . 【答案】AC【解析】如下图所示:原点到直线的距离为,则直线与圆相切, 由图可知,当、均为圆的切线时,取得最大值,连接、,由于的最大值为,且,, 则四边形为正方形,所以由两点间的距离公式得整理得,解得,因此,点的坐标为或. 故选:AC. 2y ax a =+222()x a y a ++=(),0a -a ,,A B D ABD A :0l x y +=P Q 221x y +=PAQ ∠90A (()1))1,1l 1d ==l 221x y +=AP AQ 221x y +=PAQ ∠OP OQ PAQ ∠9090APO AQO ∠=∠=1OP OQ ==APOQ OA ==OA ==220t -=0t =A ()13.瑞士数学家欧拉(LeonhardEuler )1765年在其所著的《三角形的几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上,后人称这条直线为欧拉线.已知的顶点,,其欧拉线方程为,则顶点的坐标可以是( )A .B .C .D .【答案】AD【解析】设的垂直平分线为,的外心为欧拉线方程为与直线的交点为,,①由,,重心为, 代入欧拉线方程,得,②由 ①②可得或 .故选:AD三、填空题14.直线过定点______;若与直线平行,则______.【答案】【解析】(1),故. 即定点为(2) 若与直线平行,则,故或.当时与直线重合不满足.故. ABC ∆()4,0-A ()0,4B 20x y -+=C ()2,0()0,2()2,0-()0,2-(,),C x y AB y x =-ABC ∆20x y -+=y x =-(1,1)M-22||||(1)(1)10MC MA x y ∴==∴++-=()4,0A -()0,4B ABC ∆44(,)33x y -+20x y -+=20x y --=2,0x y ==0,2x y ==-()1:20l m x y m +--=()m R ∈1l 2:310l x my --=m =()1,23-()1:20(1)20l m x y m m x x y +--=⇒-+-=101202x x x y y -==⎧⎧⇒⎨⎨-==⎩⎩()1,21l 2:310l x my --=()()()()()2310130m m m m +---=⇒-+=1m =3m =-1m =1l 2l 3m =-故答案为:(1) ; (2)15.已知以为圆心的圆与圆相内切,则圆C 的方程是______. 【答案】(x -4)2+(y +3)2=36.【解析】,设所求圆的半径为,由两圆内切的充分必要条件可得:,据此可得:,圆C 的方程是(x -4)2+(y +3)2=36.16.圆关于直线的对称圆的标准方程为________.【答案】【解析】 ,圆心为,半径为,设圆心关于直线的对称点为,对称圆的标准方程为.故答案为:.17.已知、为正实数,直线截圆所得的弦长为,则的最大值为__________.【答案】 【解析】因为直线截圆所得的弦长为,且圆的半径为2. 故圆心到直线的距离()1,23-()4,3C -22:1O x y +=5=()0r r >15r -=6r =22230x y y ++-=10x y +-=22(2)(1)4x y -+-=2222230(41)x y y x y ++-=⇒+=+∴(0,1)-210x y +-=(,)x y ∴1(1)1,2,1.110,22y x x y x y +⎧⨯-=-⎪=⎧⎪⇒⎨⎨=-⎩⎪+-=⎪⎩∴22(2)(1)4x y -+-=22(2)(1)4x y -+-=a b 10x y ++=()()224x a y b -+-=ab 1410x y ++=()()224x a y b -+-=(),a b d ==,因为、为正实数,故,所以. 当且仅当时取等号. 故答案为: 四、解答题18.求圆上与直线的距离最小的点的坐标. 【答案】【解析】过圆心且与直线垂直的直线方程为,联立圆方程得交点坐标为,, 又因为与直线的距离最小,所以. 19.已知直线过点.(1)若原点到直线的距离为,求直线的方程;(2)当原点到直线的距离最大时,求直线的方程.【答案】(1)或;(2)=a b 1a b +=2124a b ab +⎛⎫≤= ⎪⎝⎭12a b ==14224x y +=43120x y +-=86,55P ⎛⎫ ⎪⎝⎭43120x y +-=340x y -=224340x y x y ⎧+=⎨-=⎩86,55⎛⎫ ⎪⎝⎭86,55⎛⎫-- ⎪⎝⎭43120x y +-=86,55P ⎛⎫ ⎪⎝⎭l (2,1)P -O l 2l O l l 20x -=34100x y --=250.x y --=【解析】(1)①当直线的斜率不存在时,方程符合题意;②当直线的斜率存在时,设斜率为,则方程为,即,解得,则直线的方程为 故直线的方程为或(2)当原点到直线的距离最大时,直线因为,所以直线的斜率 所以其方程为,即20.在中,,边上的高所在的直线方程为,边上中线所在的直线方程为.(1)求点坐标;(2)求直线的方程.【答案】(1)(2) 【解析】(1)边上的高为,故的斜率为, 所以的方程为, 即,因为的方程为 l 2x =l k ()12y k x +=-210.kx y k ---=2=34k =l 34100.x y --=l 20x -=34100.x y --=O l .l OP ⊥011022OP k +==--l 2,k =()122y x +=-250.x y --=ABC ∆(1,2)A -AC BE 74460x y +-=AB CM 211540x y -+=C BC ()66C ,2180x y +-=AC 74460x y +-=AC 47AC ()4217y x -=+47180x y -+=CM 211540x y -+=解得 所以. (2)设,为中点,则的坐标为, 解得, 所以, 又因为,所以的方程为 即的方程为.21.如图,圆,点为直线上一动点,过点引圆的两条切线,切点分别为(1)求证:直线恒过定点,并求出该定点的坐标;(2)若两条切线于轴分别交于两点,求面积的最小值.【答案】(1)见解析,(2【解析】(1)设,则以 为直径的圆的方程:21154047180x y x y -+=⎧⎨-+=⎩,,66x y =⎧⎨=⎩()66C ,()00,B x y M AB M 0012,22x y -+⎛⎫ ⎪⎝⎭0000122115402274460x y x y -+⎧-+=⎪⎨⎪+-=⎩0028x y =⎧⎨=⎩()2,8B ()6,6C BC ()866626y x --=--BC 2180x y +-=22:(2)1C x y -+=P :4l x =P C ,A B AB Q ,PA PB y ,M N QMN 5,02Q ⎛⎫⎪⎝⎭(4,)P t CP, 与圆,两式相减得:,所以直线恒过定点. (2)设直线与的斜率分别为,与圆,即.所以,,所以面积的最小值为22.已知点,,直线:,设圆的半径为,圆心在直线上. (1)若圆心也在直线上,过点作圆的切线,求切线的方程;(2)若圆上存在点,使,为坐标原点,求圆心的横坐标的取值范围.【答案】(1)或.(2)或.【解析】()22232t x y ⎛⎫-+-= ⎪⎝⎭⎪⎝⎭22:(2)1C x y -+=:2(2)1AB l x ty -+=5,02Q ⎛⎫ ⎪⎝⎭AP BP 12,k k (4)y t kx -=-C1=223410k tk t -+-=2121241,33-+=⋅=t t k k k k 14M y t k =-24N y t k =-12||44=-==≥MN k k ()min 152323MNQ S ∆=⨯⨯=3(4,4)A (0,3)B l 1y x =-C 1C l C 37y x =-A C C M 2MB MO =O C a 4x =3440x y -+=22a -≤≤-22a ≤≤(1)由得:,所以圆C :..当切线的斜率存在时,设切线方程为,由,解得:当切线的斜率不存在时,即也满足 所以切线方程为:或. (2)由圆心在直线l :上,设设点,由化简得:,所以点M 在以为圆心,2为半径的圆上. 又点M 在圆C 上,所以圆C 与圆D 有交点,则即,解得:或. 23.已知点,点在圆上运动. (1)求过点且被圆截得的弦长为(2)求的最值.【答案】(1)或;(2)最大值为88,最小值为72. 【解析】(1)依题意,直线的斜率存在,因为过点且被圆截得的弦长为所以圆心到直线的,设直线方程为,即,解得或所以直线方程为或.(2)设点坐标为则.137y x y x =-⎧⎨=-⎩()3,2C 22(3)(2)1x y -+-=4(4)y k x -=-1d ==34k =4x =4x =3440x y -+=C 1y x =-(,1)C a a -(,)M x y ||2||MB MO ==22(1)4x y ++=(0,1)D -1||3CD ≤≤13≤22a -≤≤-22a ≤≤(2,2),(2,6),(4,2)A B C ----P 22:4E x y +=C E 222||||||PA PB PC ++7100x y ++=20x y +-=C E 2(4)y k x +=-420kx y k ---==17k =-1k =-7100x y ++=20x y +-=P (),x y 224x y +=222222222||||||(2)(2)(2)(6)(4)(2)PA PB PC x y x y x y ++=++++++-+-++()223468804x y y y =+-+=-因为,所以,即的最大值为88,最小值为72.《第二章 直线和圆的方程》单元检测试卷(三)一、选择题1.圆心为()1,1且过原点的圆的方程是( )A .()()22111x y -+-=B .()()22111x y +++= C .()()22112x y +++= D .()()22112x y -+-=2.经过圆2220x x y ++=的圆心C ,且与直线0x y +=垂直的直线方程是 ( )A .x +y +1=0B .x +y -1=0C .x -y +1=0D .x -y -1=0 3.平行于直线2x+y+1=0且与圆x 2+y 2=5相切的直线的方程是( ) A .2x+y+5=0或2x+y ﹣5=0 B .2x+y+=0或2x+y ﹣=0C .2x ﹣y+5=0或2x ﹣y ﹣5=0D .2x ﹣y+=0或2x ﹣y ﹣=04.直线:1l y kx =+与圆22:1O x y +=相交于,A B 两点,则"1"k =是“OAB ∆的面积为12”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分又不必要条件 5.(多选题)下列说法中正确的是( ) A .若两条直线互相平行,那么它们的斜率相等B .方程()()()()211211x x y y y y x x --=--能表示平面内的任何直线C .圆22240x y x y ++-=的圆心为()1,2-D .若直线()2320t x y t -++=不经过第二象限,则t 的取值范围是30,2⎡⎤⎢⎥⎣⎦6.(多选题)已知圆O :224x y +=和圆M :224240x y x y +-++=相交于A 、B 两22y -≤≤7280488y ≤-≤222||||||PA PB PC ++点,下列说法正确的是( ) A .两圆有两条公切线B .直线AB 的方程为24y x =+C .线段ABD .所有过点A 、B 的圆系的方程可以记为()()()222244240,1xy x y x y R λλλ+-++-++=∈≠-二、填空题7.圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a = . 8.如图,已知圆C 与x 轴相切于点,与y 轴正半轴交于两点A ,B (B 在A 的上方),且2AB =.(Ⅰ)圆C 的标准方程为_________;(Ⅱ)圆C 在点B 处的切线在x 轴上的截距为_________.9.若⊙221:5O x y +=与⊙222:()20()O x m y m R -+=∈相交于A 、B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长度是 .10.已知,AC BD 为圆O :224x y +=的两条互相垂直的弦,且垂足为M ,则四边形ABCD 的面积的最大值为______. 三、解答题11.在平面直角坐标系中,曲线与162+-=x x y 坐标轴的交点都在圆C 上, (1)求圆C 的方程;(2)如果圆C 与直线0=+-a y x 交于A,B 两点,且OB OA ⊥,求a 的值。
直线与圆的方程测试题(含答案)
直线与圆的方程测试题(本试卷满分150分,考试时间120分钟)一、单项选择题(本大题共18小题,每小题4分,共72分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出,错选、多选或未选均无分.1.点M 1(2,-5)与M 2(5,y)之间的距离是5,则y=( )A.-9B.-1C.-9或-1D. 122. 数轴上点A 的坐标是2,点M 的坐标是-3,则|AM|=( )A.5B. -5C. 1D. -13. 直线的倾斜角是32π,则斜率是( ) A.3-3 B.33 C.3- D.3 4. 以下说法正确的是( )A.任意一条直线都有倾斜角B. 任意一条直线都有斜率C.直线倾斜角的范围是(0,2π) D. 直线倾斜角的范围是(0,π) 5. 经过点(4, -3),斜率为-2的直线方程是( )A. 2x+y+2=0B.2x-y-5=0C. 2x+y+5=0D. 2x+y-5=06. 过点(2,0)且与y 轴平行的直线方程是( )A.x=0B.y=0C.x=2D.y=27. 直线在y 轴上的截距是-2,倾斜角为0°,则直线方程是( )A.x+2=0B.x-2=0C.y+2=0D.y-2=08. “B ≠0”是方程“Ax+By+C=0表示直线”的( )A.充分非必要条件B.必要非充分条件C.充分且必要条件D.非充分非必要条件9. 直线3x-y+21=0与直线6x-2y+1=0之间的位置关系是( ) A.平行 B.重合 C.相交不垂直 D.相交且垂直10.下列命题错误..的是( )A. 斜率互为负倒数的两条直线一定互相垂直B. 互相垂直的两条直线的斜率一定互为负倒数C. 两条平行直线的倾斜角相等D. 倾斜角相等的两条直线平行或重合11. 过点(3,-4)且平行于直线2x+y-5=0的直线方程是( )A. 2x+y+2=0B. 2x-y-2=0C. 2x-y+2=0D.2x+y-2=012. 直线ax+y-3=0与直线y=21x-1垂直,则a=( )A.2B.-2C. 21D. 21-13. 直线x=2与直线x-y+2=0的夹角是( )A.30°B. 45°C. 60°D. 90°14. 点P (2,-1)到直线l :4x-3y+4=0的距离是( )A.1B.511C.53D.315. 圆心在( -1,0),半径为5的圆的方程是( )A.(x+1)2+y 2=5B. (x+1)2+y 2=25C. (x-1)2+y 2=5D. (x-1)2+y 2=2516. 直线3x+4y+6=0与圆(x-2)2+(y+3)2=1的位置关系是()A.相交不过圆心B.相交且过圆心C.相切D.相离17. 方程x2+y2-2kx+4y+3k+8=0表示圆,则k的取值范围是()A.k<-1或k>4B. k=-1或k=4C. -1<k<4D. -1≤k≤418. 直线y=0与圆C:x2+y2-2x-4y=0相交于A、B两点,则△ABC的面积是()A.4B.3C.2D.1二、填空题(本大题共5小题,每小题4分,共20分)请在每小题的空格中填上正确答案。
第一章 直线与圆 单元测试 2024-2025学年高二上学期数学北师大版(2019)选择性必修第一册
第一章 直线与圆 单元测试一、单选题1.若直线l 斜率为k ,向量在直线l 上,且向量在方向上的投影的模是其在方向上投影的模的2倍,则该直线的斜率k 的值为( )A .2B .C .D .2.已知圆:与圆:关于直线对称,则的方程为( )A .B .C .D .3.已知直线与圆:()交于A ,两点,且线段关于圆心对称,则( )A .1B .2C .4D .54.已知点,,,点是直线上的动点,若恒成立,则最小正整数( )A .1B .2C .3D .45.已知定点和直线,则点到直线的距离的最大值为( )A .BC .D .6.若点P 在直线上,点Q 在圆上,则线段PQ 长度的最小值为( )A .B .C .D .7.莱莫恩定理指出:过的三个顶点作它的外接圆的切线,分别和所在直线交于点,则三点在同一条直线上,这条直线被称为三角形的线.在平面直角坐标系中,若三角形的三个顶点坐标分别为,则该三角形的线的方程为( )A .B .C .D .8.直线l 过点,则直线l 的方程为( )A .B .C .D .二、多选题9.已知直线与圆交于,两点,点为线段的中点,且点的坐标为.当)A .B .的最小值为C .存在点,使D.存在,使10.下列说法正确的是( )A .已知直线过点,且在轴上截距等于轴上截距2倍,则直线的方程为B .直线没有倾斜角C .,,“直线与直线垂直”是“”的必要不充分条件D .已知直线的斜率满足,则它的倾斜角的取值范围是或11.已知直线l ∶x +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值可以是( )A .0B .1C .-1D .-2.三、填空题12.已知斜率均为负的直线与直线平行,则两条直线之间的距离为 .13.已知圆和圆,M 、N 分别是圆C 、D 上的动点,P 为x 轴上的动点,则的最小值是 .14.过点,且与直线垂直的直线方程是.四、解答题15.圆内有一点,AB 为过点P 且倾斜角为的弦.(1)当时,求AB 的长;(2)当弦AB 被点P 平分时,写出直线AB 的方程.16.圆过、两点,且圆心在直线上.(1)求圆的方程;(2)若直线在轴上的截距是轴上的截距的2倍,且被圆截得的弦长为6,求直线的方程.17.已知动点与点的距离是它与原点的距离的2倍.m m ()1,0i =()0,1j = 122±12±M ()2211x y ++=N ()()22231x y -+-=l l 210x y --=210x y -+=230x y +-=230x y +-=20x y r -+=C ()()22213x y r ++-=0r >B AB r =()0,1A ()10B ,(),0C t M AC 2MA MB ≤t =()2,0P -()():34330l m x y m m ++-+=∈R P l d 34120x y +-=221x y +=12575175225()Lemoine ABC V ,,A B C BC,CA,AB ,,P Q R ,,P Q R Lemoine xOy ()()()0,1,2,0,0,4A B C -Lemoine 2320x y --=2380x y +-=32220x y +-=23320x y --=(1,1),(2,4)A B -2y x =-2y x =--2y x =-+2y x =+:0(R)l mx y m m --=∈222:()0O x y r r +=>A B Q AB T (3,0)1m =2r =AB A 45ATO ∠=︒m 54QO QT ⋅=-l ()2,1P x y l 240x y +-=10x +=R a ∈R b ∈210ax y +-=()1210a x ay +-+=3a =l k 11k -≤<α045α≤< 135180α≤< :0l bx ay +=:20m ax by a ++=()22:21C x y +-=22:610300D x y x y +--+=PM PN +()1,5-126x y+=228x y +=()1,2P -α3π4α=C ()0,3()4,5C 80-+=x y C l x y C l (,)M x y (3,0)P O(1)求动点的轨迹的方程;(2)求的最小值;(3)经过原点的两条互相垂直的直线分别与轨迹相交于,两点和,两点,求四边形ACBD 的面积的最大值.M E x y O E A B C D S参考答案1.D【分析】设出,求出向量在和方向上的投影的模,从而得到,求出直线斜率.【详解】设,则向量在方向上的投影的模为,向量在方向上的投影的模为,则,故该直线的斜率.故选:D 2.C【分析】根据两点的坐标,求其中点坐标以及斜率,根据对称轴与两对称点连接线段的关系,可得答案.【详解】由题意得,,则的中点的坐标为,直线的斜率.由圆与圆关于对称,得的斜率.因为的中点在上,所以,即.故选:C.3.D【分析】先求得圆心的坐标,进而列出关于的方程,解之即可求得的值.【详解】圆:的圆心,由圆心在直线上,可得,解之得.故选:D 4.D【分析】先设出,得到的方程为:,由得到圆的方程,结合点到直线的距离公式,求出的最小值即可.【详解】设,由在上,得:,即,由得:,化简得,依题意,线段与圆,至多有一个公共点,故(),m a b = m()1,0i =()0,1j = 2a b=(),m a b =m()1,0i =m ia i⋅=m ()0,1j =m jb j⋅= 2ab =12b k a ==±()0,1M -()2,3N MN ()1,1MN 31220MNk +==-M N l l 112l MN k k -==-MN l ()1112y x -=--230x y +-=C r r C ()()22213x y r ++-=(1,3)C -(1,3)C -20x y r -+=230r --+==5r (,)M x y AM 0x ty t +-=2MA MB ≤t (,)M x y M AC 1xy t+=0x ty t +-=2MA MB ≤()2222(1)41x y x y ⎡⎤+-≤-+⎣⎦22418((339x y -++≥AM 22418()()339x y -++=41,33⎛⎫- ⎪⎝⎭解得:,是使恒成立的最小正整数,由于,故选:D5.B【分析】先求得直线所过定点,然后根据两点间的距离公式求得正确答案.【详解】直线,即,由解得,所以直线过定点,所以的最大值为故选:B 6.B【分析】求出圆的圆心和半径,判断直线与圆的位置关系,则线段PQ 长度的最小值为圆心到直线的距离减去半径即可.【详解】圆的圆心为,半径,因为圆心到直线的距离为,所以线段PQ长度的最小值为.故选:B 7.B【分析】待定系数法求出外接圆方程,从而得到外接圆在处的切线方程,进而求出的坐标,得到答案.【详解】的外接圆设为,,解得,外接圆方程为,即,易知外接圆在处切线方程为,又,令得,,,在处切线方程为,又,令得,,则三角形的线的方程为,即故选:B.8.D2t ≥2t ≤t 2MA MB ≤324<<4t ∴=l ()():34330l m x y m m ++-+=∈R ()33430m x x y +++-=303430x x y +=⎧⎨+-=⎩33x y =-⎧⎨=⎩l ()3,3Q -d =221x y +=(0,0)O 1r =34120x y +-=1215d ==>127155-=,A C ,P R ABC V 220x y Dx Ey F ++++=104201640E F D F E F ++=⎧⎪∴++=⎨⎪-+=⎩034D E F =⎧⎪=⎨⎪=-⎩∴22340x y y ++-=2232524x y ⎛⎫++=⎪⎝⎭A 1y =:124x y BC +=-1y =52x =,152P ⎛⎫∴ ⎪⎝⎭()0,4C -4y =-:12xAB y +=4y =-10x =()10,4R ∴-Lemoine 410514102y x +-=+-2380x y +-=【分析】根据直线的两点式方程运算求解.【详解】因为,则线l 的方程为,整理得,所以直线l 的方程为.故选:D.9.AD【分析】利用圆的弦长公式判断A 、B ;假设存在点,求出直线方程,判断与圆的位置关系,判断C ,求出点的轨迹方程,可判断D.【详解】当时,直线,圆心到直线的距离,又,解得,A 正确;由上可知圆,圆心到直线的距离,则,B 错误;若,则直线斜率为,从而直线:,此时圆心到直线的距离,则直线与圆相离,即不存在点,使,C 错误;设点,因为直线过定点,则,即,化简为,为点的轨迹方程,若,则,即,得,故存在存在,使,D 正确.故选:AD.10.CD【分析】根据截距的概念可判定A ,根据倾斜角的定义可判定B ,利用两直线垂直的位置关系可判定C ,根据倾斜角与斜率的关系可判定D.【详解】对于A ,当直线在两个坐标轴的截距都是0时,显然直线方程为,故A 错误;B ,直线倾斜角是,故B错误;对于C ,若直线与直线垂直,则有或,所以不满足充分性,反之时,此时两直线垂直,满足必要性,故C 正确;对于D ,由直线的斜率与倾斜角的关系知:12,14-≠≠()()114121x y ---=---2y x =+2y x =+A AT Q 1m =:10l x y --=O d AB ===2r =22:4O x y +=O d ==AB ===>45ATO ∠=︒AT 1-AT 30x y +-=O 2d r >=AT O A 45ATO ∠=︒(),Q x y ():1(R)l y m x m =-∈()1,0C 222OQ QC OC +=()2222211x y x y ++-+=221124x y ⎛⎫-+= ⎪⎝⎭Q 54QO QT ⋅=- ()2534x x y -⋅-+=-()2534x x x x -⋅-+-=-[]50,18x =∈m 54QO QT ⋅=- 12y x =10x +=90 210ax y +-=()1210a x ay +-+=()1400a a a a +-=⇒=3a =3a =k满足的直线,则它的倾斜角的取值范围是或,故D 正确.故选:CD 11.ABCD【分析】求出两坐标轴上的截距,进而判断的可能取值.【详解】令y =0,得到直线在x 轴上的截距是,令x =0,得到直线在y 轴上的截距为2+a ,∴不论a 为何值,直线l 在x 轴和y 轴上的截距总相等.故选:ABCD.12.33/133【分析】利用斜率为负的两直线平行,找到,表示出直线,利用两平行线间的距离公式计算即可.【详解】因为斜率均为负的直线与直线平行,所以同号,且,解得:,所以直线与直线,所以这两条直线之间的距离为.13【分析】先得到,当且仅当三点共线,且三点共线时,等号成立,设C 关于x 轴的对称点,求出的最小值,进而得到的最小值.【详解】的圆心为,半径为1,,圆心为,半径为2,结合两圆位置可得,,当且仅当三点共线,且三点共线时,等号成立,设C 关于x 轴的对称点,连接,与轴交于点,此点即为所求,此时,即为的最小值,故的最小值为11k -≤<α045α≤< 135180α≤< a 2a +a =:0l bx ay +=:20m ax by a ++=,a b 02b a a b a=≠a =:0l x +=:10m x +=d ==3-3PM PN PC PD +≥+-,,P M C ,,P N D ()0,2C '-PC PD +PM PN +()22:21C x y +-=()0,2C ()()2222:610300354D x y x y x y +--+=⇒-+-=()3,5D 3PM PN PC CM PD DN PC PD +≥-+-=+-,,P M C ,,P N D ()0,2C '-CD'x P C D =='PC PD +PM PN +3314.【分析】根据垂直求出斜率,再由点斜式方程可得答案.【详解】直线的斜截式为,故斜率是,所以所求直线的斜率是,所以所求直线方程是,即.故答案为:.15.(2)【分析】(1)根据倾斜角以及求解出直线的方程,再根据半径、圆心到直线的距离、半弦长构成的直角三角形求解出;(2)根据条件判断出,结合和点坐标可求直线的方程.【详解】(1)圆的圆心,半径因为,所以直线的斜率,所以,即,所以圆心到的距离所以(2)因为弦被平分,所以,又因为,所以,所以,即.16.(1),,【分析】(1)先求得两点,的中垂线方程,再与联立,求得圆心即可;(2)先由直线且被圆截得的弦长为6,求得圆到直线的距离,再分截距为零和不为零求解.【详解】(1)解:两点,的中垂线方程为:,联立,解得圆心,则,故圆的方程为:;(2)由直线且被圆截得的弦长为6,故圆心到直线的距离为,3160x y -+=126x y+=36y x =-+3-13()1513y x -=+3160x y -+=3160x y -+=250x y -+=()1,2P -AB AB OP AB ⊥AB k P AB 228x y +=()0,0O r =3π4α=AB 3πtan14AB k ==-()()():211AB y x -=-⨯--:10AB x y +-=O AB d AB ===AB P OP AB ⊥20210OP k -==---12AB k =()()1:212AB y x -=--:250AB x y -+=()22825x y +-=0y ±=2160x y +--=2160x y +-+=()0,3()4,580-+=x y l C C l ()0,3()4,5280x y +-=80-+=x y ()0,8C =5r C ()22825x y +-=l C C l 4d =A .若直线过原点,可知直线的斜率存在,设直线为:,此时直线的方A .若直线不过原点,设直线为:,此时直线的方程为:,综上:直线,,.17.(1)(2)(3)7【分析】(1),根据两点间的距离公式化简可得方程;(2),法一:换元后与圆的方程联立,利用判别式法求解最小值;法二:几何法,利用直线与圆的位置关系列不等式求出最小值;法三:三角换元,结合辅助角公式利用余弦函数的性质求解最小值;(3),根据直线是否存在斜率进行分类讨论,当直线存在斜率时,利用点斜式写出两直线的方程,分别求出弦长,将四边形的面积用弦长表示,即可求出最大值.【详解】(1)由已知得化简得,即,所以动点的轨迹的方程为:;(2)法一:设,得,代入轨迹的方程消去并整理得,∴,即,解得故的最小值为;法二:设,即,由(1)的结论可知,轨迹是以点为圆心,半径长为2的圆,由题意可知,直线和圆有公共点,所以圆心到直线的距离不大于半径,即,解得故的最小值为;法三:由(1)可设,,则,因为,所以当时,y kx =4d k ==⇒=l 0y ±=12202x yx y a a a+=⇒+-=48d a ⇒=±l 2160x y +--=2160x y +-+=l 0y ±=2160x y +--=2160x y +-+=22(1)4x y ++=1--=22230x y x ++-=22(1)4x y ++=M E 22(1)4x y ++=x y t -=y x t =-E y ()2222(1)30x t x t +-+-=()22Δ4(1)830t t =---≥2270t t +-≤11t --≤≤-+x y -1--x y t -=0x y t --=E (1,0)-0x y t --=22(1)4x y ++=2≤11t --≤≤-+x y -1--12cos 2sin x y θθ=-+⎧⎨=⎩(02π)θ≤<π12cos 2sin 14x y θθθ⎛⎫-=-+-=-++ ⎪⎝⎭πcos 14θ⎛⎫+≥- ⎪⎝⎭3π4θ=的最小值为;(3)i )若两直线都有斜率,可设直线AB 的方程为,则直线CD 的方程为,由(1)的结论可知,轨迹是以点为圆心,半径长为2的圆.到直线AB 的距离同理,所以,ⅱ)若AB 、CD 两直线中有一条没有斜率,则另一条的斜率为0,此时线段AB 、CD 的长分别为4(或4、,所以.综上所述,当且仅当,即时,四边形ACBD 的面积取得最大值,最大值为7.x y -1--(0)y kx k =≠1=-y x kE 1(1,0)O -1O d =||AB ==CD ==11||||22S AB CD ==⨯==7=≤1||||72S AB CD ==<21112k =+1k =±S。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直线与圆的方程单元测试
1.直线210x y -+=关于直线1x =对称的直线方程是 ( )B
A .210x y +-=
B .210x y +-=
C .230x y +-=
D .230x y +-=
2.圆0122
2
=--+x y x 关于直线032=+-y x 对称的圆的方程是 ( )C
A .21)2()3(2
2
=
-++y x B .2
1)2()3(22=++-y x C .2)2()3(22=-++y x D .2)2()3(2
2=++-y x
3.过点M(1,5)-作圆22
(1)(2)4x y -+-=的切线,则切线方程为 ( )C A .1x =- B .512550x y +-=
C .1512550x x y =-+-=或
D .15550x x y =-+-=或12
4.直线3y x =绕原点逆时针旋转090,再向右平移1个单位,所得到的直线为 ( )A
A .1133y x =-+
B .113y x =-+
C .33y x =-
D .1
13
y x =+
5.已知圆的方程为0862
2
=--+y x y x .设该圆过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形
ABCD 的面积为( )B
(A )106 (B )206 (C )306 (D )406
6.设A -12B 2-2C 03≠(
,),(,),(,)且M (a ,b)(a 0)是线段AB 上一点,则直线MC 的斜率k 的取值范围是( )D
A .5,12⎡⎤-
⎢⎥⎣⎦ B .51,2⎡
⎤-⎢⎥⎣
⎦
C .(]15,00,2⎡⎫
-
⎪⎢⎣⎭
D .[)5,1,2⎛⎤
-∞-
+∞ ⎥⎝⎦
7.设二元一次不等式组⎪⎩
⎪⎨⎧≤-+≥+-≥-+0142,080192y x y x y x ,
所表示的平面区域为M ,使函数y =a x
(a >0,a ≠1)的图象过区域M
的a 的取值范围是( )C
(A )[1,3] (B)[2,10] (C)[2,9] (D)[10,9] 8.若直线0x y c +-=与曲线24y x =-c 的最小值是
( )A
A .2
B 2
C .2-
D . 2-
9.若直线1x y
a b
+=通过点(cos sin )M αα,,则 ( )D
A .221a b +≤
B .22
1a b +≥ C .22111a b +≤ D .22111a b
+≥
10.设O 为坐标原点,C 为圆()2
2
23x y -+=的圆心,且圆上有一点(),M x y 满足0OM CM ⋅=,则
y x
=( )D
A 3
B 3或 3
C 3
D 3或311.在约束条件⎪⎪⎩⎪
⎪⎨⎧≤+≤+≥≥4
200x y s y x y x 下,当53≤≤s 时,目标函数y x z 23+=的最大值的变
化范围是( )D
A. ]15,6[
B. ]15,7[
C. ]8,6[
D. ]8,7[
12.若圆2
2
44100x y x y +---=上至少有三个不同点到直线l :0ax by +=
的距离为则直线l 的倾斜
角的取值范围是 ( )B A .[
,
124ππ
] B .[
5,1212
ππ
] C .[
,]63
ππ
D .[0,
]2
π
13.自直线y=x 上一点向圆x 2
+y 2
-6x+7=0作切线,则切线长的最小值为___________
14.已知变量x ,y 满足约束条件1≤x+y ≤4,-2≤x-y ≤2.若目标函数z =ax +y (其中a >0)仅在点(3,1)处取得最大值,则a 的取值范围为____1a >_______.
15.如果把直线x-2y+λ=0向左平移1个单位,再向下平移2个单位,便与圆x 2+y 2
+2x-4y=0相切,则实数λ的值等于__________.3或13 16.已知圆M :(x +cos θ)2+(y -sin θ)2=1,直线l :y =kx ,下面四个命题:(A)对任意实数k 与θ,直线l 和圆M 相切;(B )对任意实数k 与θ,直线l 和圆M 有公共点;(C)对任意实数θ,必存在实数k ,使得直线l 与和圆M 相切;(D )对任意实数k ,必存在实数θ,使得直线l 与和圆M 相切 其中真命题的代号是______________(写出所有真命题的代号)
解:圆心坐标为(-cos θ,sin θ)d
|sin |1
θϕ≤--(+)=(+)B )(D )
17.矩形ABCD 的两条对角线相交于点(20)M ,,AB 边所在直线的方程为360x y --=,点(11)T -,在AD 边所在直线上.(I )求AD 边所在直线的方程;(II )求矩形ABCD 外接圆的方程;
解:(I )因为AB 边所在直线的方程为360x y --=,且AD 与AB 垂直,所以直线AD 的斜率为3-. 又因为点(11)T -,在直线AD 上,所以AD 边所在直线的方程为13(1)y x -=-+.即320x y ++=.
(II )由36032=0x y x y --=⎧⎨++⎩
,
解得点A 的坐标为(02)-,,因为矩形ABCD 两条对角线的交点为(20)M ,.
所以M 为矩形ABCD
外接圆的圆心.又AM == 从而矩形ABCD 外接圆的方程为2
2
(2)8x y -+=.
18.设平面直角坐标系xoy 中,设二次函数()()2
2f x x x b x R =++∈的图象与两坐标轴有三个交点,经过这
三个交点的圆记为C .求:(Ⅰ)求实数b 的取值范围;(Ⅱ)求圆C 的方程;(Ⅲ)问圆C 是否经过某定点(其
坐标与b 无关)?请证明你的结论.
(Ⅰ)令x =0,得抛物线与y 轴交点是(0,b ); 令()2
20f x x x b =++=,由题意b ≠0 且Δ>0,解得b <1 且b ≠0.
(Ⅱ)设所求圆的一般方程为2
x 2
0y Dx Ey F ++++=
令y =0 得20x Dx F ++=这与2
2x x b ++=0 是同一个方程,故D =2,F =b . 令x =0 得2
y Ey +=0,此方程有一个根为b ,代入得出E =―b ―1.
所以圆C 的方程为22
2(1)0x y x b y b ++-++=. (Ⅲ)圆C 必过定点(0,1)和(-2,1).
证明如下:将(0,1)代入圆C 的方程,得左边=02+12+2×0-(b +1)+b =0,右边=0,
所以圆C 必过定点(0,1).同理可证圆C 必过定点(-2,1).
19.过点M (2,4)作两条互相垂直的直线,分别交x 、y 的正半轴于A 、B ,若四边形OAMB 的面积被直线AB 平
分,求直线AB 方程.
19.解:设AB 的方程为1=+b
y a x (a>0,b>0),∴)0,(a A 、),0(b B .
∵MA ⊥MB ,∴b a b a 2100)4()4()2()2(-=⇒=-⋅-+-⋅-. ∵a>0 0<b<5,∵AB 方程的一般式为bx+ay-ab=0, ∴M 到AB 的距离2
2|42|b a ab a b d +-+=,
∴MAB ∆的面积211
122|||24|820S d AB b a ab b b ==+-=-+.
而OAB ∆的面积2
2
125b b ab S -==, ∵直线AB 平分四边形OAMB 的面积,∴21S S =,
可得⎪⎩
⎪⎨⎧
==⎩⎨⎧==5
2524a b a b 或 故所求AB 方程为052=-+y x 和042=-+y x .
20.已知P 是直线3x +4y +8=0上的动点,P A 、PB 是圆 x 2+y 2-2x -2y +1=0的两条切线,A 、B 是切点,C
是圆心,求四边形P ACB 面积的最小值. 解:∵点P 在直线3x +4y +8=0上. 如图1.
∴设P (x ,4
32-
- x ),C 点坐标为(1,1).
S 四边形P ACB =2S △P AC =|AP |·|AC |=|AP |·|AC |=|AP |. ∵|AP |2=|PC |2-|AC |2=|PC |2-1
∴当|PC |最小时,|AP |最小,四边形P ACB 的面积最小. ∴|PC |2=(1-x )2+(1+2+
4
3x )2=9)145(1025
162522++=++x x x . ∴|PC |min =3 ,∴四边形P ACB 面积的最小值为22。
21.设圆满足:①截y 轴所得弦长为2;②被x 轴分成两段圆弧,其弧长之比为3:1;③圆心到直线:20
l x y -=的距离为
5
5
21.解:设圆心为(,)a b ,半径为r ,由条件①:22
1r a =+;
由②:2
2
2r b =,从而有:2
2
21b a -=;
5
|2|15
a b =⇒-=. 解方程组 2221|2|1b a a b ⎧-=⎨-=⎩
, 可得 11a b =⎧⎨=⎩或1
1a b =-⎧⎨=-⎩,
所以 22
22r b ==.
故所求圆的方程是2
2
(1)(1)2x y -+-=或2
2
(1)(1)2x y +++=.。