Multiple Target Localisation in Sensor Networks with Location Privacy

合集下载

面向复杂动态场景的多传感器定位与场景重构方法

面向复杂动态场景的多传感器定位与场景重构方法

面向复杂动态场景的多传感器定位与场景重构方法2023-11-10•引言•多传感器定位技术•复杂动态场景下的传感器部署与优化•场景重构方法•实验验证与分析目•结论与展望录01引言背景随着物联网、人工智能等技术的快速发展,多传感器定位与场景重构技术在智能家居、智慧城市等领域得到了广泛应用,成为当前研究的热点问题。

意义多传感器定位与场景重构技术能够实现对目标物体的精准定位和场景信息的全面感知,对于提高物联网设备的智能化水平、增强智慧城市的安全监控能力等方面具有重要意义。

研究背景与意义目前,多传感器定位与场景重构技术已经取得了一定的研究成果,但仍存在一些问题,如传感器之间的信息融合、动态场景下的实时定位等。

现状在复杂动态场景中,由于环境变化和干扰因素的影响,多传感器定位与场景重构面临着诸多的挑战,如何提高定位精度和鲁棒性,实现对动态目标的实时跟踪和场景重构是亟待解决的问题。

挑战研究现状与挑战研究内容与方法研究内容本研究旨在解决面向复杂动态场景的多传感器定位与场景重构问题,主要研究内容包括:1)多传感器的信息融合算法;2)动态场景下的目标定位与跟踪;3)场景信息的重构与可视化。

研究方法本研究采用理论分析与实验验证相结合的方法,首先建立多传感器信息融合模型,通过对各种传感器的数据进行融合处理,提高定位精度和鲁棒性;其次,设计动态场景下的目标定位与跟踪算法,实现对动态目标的实时跟踪;最后,通过实验验证本研究的可行性和有效性。

02多传感器定位技术利用无线信号强度衰减模型,通过接收信号强度估计距离,实现定位。

信号强度到达时间到达时间差通过测量信号从发射点到接收点的时间,计算信号传播距离,确定位置。

通过比较不同接收点收到信号的时间差,计算信号传播距离差,确定位置。

030201通过采集环境中的信号特征,构建包含信号特征和位置关系的指纹地图。

构建指纹地图在定位过程中,实时采集信号特征并与指纹地图进行匹配,确定位置。

实时匹配根据环境变化更新指纹地图,适应环境变化。

《双视角下移动群智感知中依赖位置的任务分配机制》范文

《双视角下移动群智感知中依赖位置的任务分配机制》范文

《双视角下移动群智感知中依赖位置的任务分配机制》篇一一、引言移动群智感知(Mobile Crowd Sensing,MCS)作为一种新兴的感知技术,通过利用大量移动设备进行协同感知和数据处理,实现了对复杂环境的实时监控和感知。

在双视角下,即用户视角和系统视角,移动群智感知的任务分配机制对系统性能的优化起着至关重要的作用。

特别是当任务依赖位置信息时,如何合理分配任务成为了一个关键问题。

本文旨在探讨双视角下移动群智感知中依赖位置的任务分配机制,以提高系统效率和用户满意度。

二、用户视角下的任务分配机制从用户视角来看,任务分配机制应充分考虑用户的地理位置、设备能力、个人偏好等因素。

首先,系统需要收集用户的地理位置信息,以便根据任务的地理位置要求进行匹配。

其次,系统应评估用户的设备能力,如计算能力、电池寿命、存储空间等,以确保用户能够完成分配的任务。

此外,个人偏好也是任务分配的重要参考因素,如用户可能更愿意参与某些类型的任务或对某些地点感兴趣。

在双视角下,用户和系统之间需要进行有效的交互和沟通。

系统可以通过激励机制,如任务报酬、奖励机制等,激发用户的参与意愿。

同时,系统需要为用户提供清晰的任务描述和期望结果,以便用户了解任务的难度、要求和可能的回报。

这样有助于用户在众多任务中选择最符合自己需求和能力的任务。

三、系统视角下的任务分配策略从系统视角来看,任务分配策略需关注整体任务完成效率和资源优化。

首先,系统应根据任务的类型、要求和紧急性对任务进行分类。

其次,根据移动设备的地理位置、设备能力和剩余资源等动态信息进行实时匹配。

这样可以通过动态调度和资源优化来确保任务能够及时完成并最大化利用系统资源。

此外,系统应考虑任务的地理分布性。

对于某些需要大规模地理覆盖的任务,系统可以通过多路径路由和分布式计算来提高任务的完成效率。

同时,为了降低通信开销和提高数据传输效率,系统可以设计高效的数据传输协议和压缩算法。

四、位置信息的利用与隐私保护在双视角下移动群智感知中依赖位置的任务分配机制中,位置信息的利用至关重要。

Multi-targeting method and multi-targeting sensor

Multi-targeting method and multi-targeting sensor

专利名称:Multi-targeting method and multi-targetingsensor device for locating short-rangetarget objects in terms of distance andangle发明人:Stefan Lindenmeier,Johann-Friedrich Luy申请号:US10538731申请日:20031202公开号:US20060114146A1公开日:20060601专利内容由知识产权出版社提供专利附图:摘要:A multi-targeting method for locating short-range target objects in terms ofdistance and angle. The method includes the following steps: a) a characteristic signal is emitted by a transmitting antenna of a first sensor element; b) the reflected characteristic signal is received by at least two adjacent reception antennae of the first sensor element; c) the difference in transit time of the reflected characteristic signal to the two adjacent reception antenna of the first sensor element is measured in order to determine the distance between the target objects and the first sensor element; and d) the phase differences of the characteristic signal between the two adjacent reception antenna of the first sensor element are measured in order to determine the angles between the target objects and the first sensor element. In addition, a device for implementing the above-mentioned method.申请人:Stefan Lindenmeier,Johann-Friedrich Luy地址:Elchingen 89725 DE,Ulm DE国籍:DE,DE更多信息请下载全文后查看。

SensorFusion多传感器融合算法设计

SensorFusion多传感器融合算法设计

SensorFusion多传感器融合算法设计随着科技的不断发展和智能化应用的快速推进,多传感器融合技术成为了现代信息处理领域中的一个重要研究方向。

在众多应用中,传感器融合算法在自动驾驶、智能家居、健康监测等领域有着广泛的应用。

本文将探讨SensorFusion多传感器融合算法的设计原理和关键技术。

1. 引言SensorFusion是指将多个传感器的数据融合起来,以提高系统的性能和稳定性。

传感器融合的目标是从多个传感器中获取更准确、更完整的信息,同时减少传感器之间的冗余和噪声。

传感器融合算法设计包括数据采集、数据预处理、特征提取和数据融合等步骤。

2. 数据采集与预处理传感器融合的首要任务是获取传感器数据。

不同传感器的数据类型和采集方式不同,因此在设计传感器融合算法时,需要考虑如何有效地采集传感器数据,并进行预处理以滤除噪声和无用信息。

常见的传感器包括摄像头、激光雷达、红外传感器等。

对于每个传感器,采集的数据需要进行校准和对齐,以保证数据的准确性和一致性。

3. 特征提取和选择传感器的数据通常是庞大且复杂的,需要通过特征提取和选择来减少数据量和提取有用的特征信息。

特征提取是指从原始数据中提取具有代表性和区分性的特征,比如提取图像中的边缘、颜色等特征;特征选择是指从提取得到的特征中选择与任务相关的特征,以充分利用有限的计算和存储资源。

特征提取和选择的方法包括统计学方法、机器学习方法和信息论方法等。

4. 数据融合算法数据融合是指将多个传感器的信息整合起来,通过融合算法处理和分析多源数据,以提高系统的性能和鲁棒性。

常见的数据融合算法包括加权平均法、卡尔曼滤波、粒子滤波等。

4.1 加权平均法加权平均法是最简单且常用的数据融合方法。

该方法通过为每个传感器分配权重,将传感器的数据进行加权平均。

权重的分配可以基于经验、精度或其他可靠性指标。

加权平均法适用于静态环境下,要求传感器之间相互独立且准确。

4.2 卡尔曼滤波卡尔曼滤波是一种运用在系统状态估计中的最优滤波算法。

一种基于随机集的PHD多目标多传感器关联算法

一种基于随机集的PHD多目标多传感器关联算法
2 0 1 4 , 2 9 ( 2 )
E l e c t r o n i c I n f o r ma t i o n Wa r f a r e Te c h n o l o g y
电 子 信 息 对 抗 技 术
l 7
中图 分 类 号 : T N 9 7 1 . 1
文献标志码 : A
D 0 s e d . T h e i n f 0 r ma t i 0 n 0 f mu l t i —s e n s o r r a d i a t i o n s o u r c e wi t h P HD i s i f l t e r e d a n d t h e t r e a t e d mu h i —t a r g e t d a t a i s a s s o e i a t e d .S i mu l a t i o n r e s u l t s d e mo n s t r a t e t h e c o mp u t a t i o n a l c o s t i s d e —
t i 0 n a l g o r i t h ms u n d e r t h e c o n d i t i o n o f c o mp l i c a t e d mu l t i p l e t a r g e t s .Ai mi n g a t p r a c t i c a l a p p l i c a t i o n.I n u l t i —t a r g e t mI d t i —s e n s o r a s s o c i a t i o n a l g o r i t h m b a s e d o n r a n d o m i f n i t e s e t P HD i s p r o 。

双层协作的无线传感器网络目标跟踪方法

双层协作的无线传感器网络目标跟踪方法

层 节点 ,利用外层节点 的快速侦测和 内层节 点的准确定位对移动 目标进行定位跟踪 ,同时向汇聚节点快速 上传移 动 目 轨迹 。理论分析和 标 实验结果表明 ,该方法可 以降低 无线传感器 网络功耗 ,提高 目 定位精 度。 标 关健诃 :无线传感器 网络;协作感知 ;双层监测机制 ; 目 标跟踪 ;外 层侦 测机制 ;内层定位机制
2 双层协作模型
本节介 绍无线传 感器 网络的监 测对 象和环境 ,并在基本 网络模 型的基础 上引入双 层协作机 制 ,用于 分析 移动 目标的
WS 最具代表性 的应用之一 , N) 在环境监测、生境监测等诸多 领域有广 阔的应 用前景 J无线传感器 网络 的 目标跟踪监测 。 机制是指 :在监测 区域内随机部署大量的传感器节点 ,移动
m eho a e n q a r n o a i n. ts l c st e h g —e a v o e a e n t er l to f en d sp sto s l c t st o l a g t c r t d b s d o u d a tl c to I ee t i h r l t e n d sb s d o h e ai n o o e o i n , o a e m bi tr e swhih a e h i h t i he e
[ src ]B t d cn ed u l—i l mo i r gmeh ns it rls esrNew r( N)ti pp r rp ssatre akn Ab ta t yi r u igt o becr e nt i c a i noWi esS n o t okWS ,hs ae o oe g trc ig no h c on m e p a t

多传感器箱粒子PHD滤波多目标跟踪算法

多传感器箱粒子PHD滤波多目标跟踪算法

多传感器箱粒子PHD滤波多目标跟踪算法蔡如华1,杨标1,吴孙勇1,2(1. 桂林电子科技大学数学与计算科学学院,广西桂林 541004;2. 广西密码学与信息安全重点实验室,广西桂林 541004)摘要:针对目标检测概率较低导致单个传感器无法对目标进行有效检测并跟踪的问题,本文提出了多传感器箱粒子概率假设密度(multi-sensor box particle probability hypothesis density filter, MS-BOX-PHD)滤波器。

MS-BOX-PHD滤波器首先将多个传感器的量测转换、融合成为一个量测集合,并利用箱粒子概率假设密度(box particle probability hypothesis density filter, BOX-PHD)滤波器对多个目标的状态进行预测和更新。

数值实验表明,相较于单传感器箱粒子概率假设密度(Single-BOX-PHD)滤波器,MS-BOX-PHD滤波器在目标检测概率较低时,能够有效地对多目标的状态和数目进行估计;相较于区间量测下多传感器标准PHD粒子(multi-sensor standard probability hypothesis density particle filter with interval measurement, IM-PHD-PF)滤波器,在达到相同的跟踪性能时,计算效率提升了38.57%。

关键词:多传感器;箱粒子滤波;概率假设密度滤波;区间量测中图分类号:TP302.7 文献标识码:A 文章编号:1001-8891(2020)04-0385-08Multisensor Box Particle PHD Multitarget Tracking AlgorithmCAI Ruhua1,YANG Biao1,WU Sunyong1,2(1. Mathematics and Computer Science College of Guilin University of Electronic Technology, Guilin 541004, China;2. Guangxi Key Laboratory of Cryptography and Information Security, Guilin 541004, China)Abstract:As single sensors cannot detect and track targets with low detection probability, a new multisensor box particle probability hypothesis density filter is proposed in this paper. The MS-BOX-PHDfilter converts and fuses multiple sensor measurement sets into a new set, and the multitarget states are predicted and updated using a box particle probability hypothesis density filter. Numerical experiments show that the MS-BOX-PHD filter can estimate the state and number of multitargets when the target detection probability is low, unlike a single sensor box particle probability hypothesis density filter.Compared with the multisensor standard probability hypothesis density filter with interval measurement, the computational efficiency increased by 38.57% for the same tracking performanceKey words:multi-sensor, box particle filter, probability hypothesis density filter, interval measurement0 引言多目标跟踪(multi-target tracking, MTT)算法的有效性和实时性一直以来是国内外学者关注的热点。

通信受限下分布式多传感器协同跟踪算法

通信受限下分布式多传感器协同跟踪算法

收稿日期:2016-05-08修回日期:2016-06-09基金项目:国家自然科学基金(61004119,61174024,61375011);浙江省自然科技基金资助项目(LY16F030009)作者简介:赵猛(1990-),男,河南息县人,硕士研究生。

研究方向:目标跟踪和传感器资源管理。

*摘要:在分布式多传感器目标跟踪系统中,由于局部融合中心(LFC )的物理限制(如:有限的频率信道、处理器容量有限等),只能接收有限个传感器的传送数据。

此外,信息传输的方式也将影响传感网的使用寿命,因此,研究了通信受限下的分布式多传感器目标协同跟踪问题。

首先对监视区内分布的传感器进行聚类分簇形成若干个子网,接着从通信能耗的角度出发,对传感器采集信息的传递路径进行最优路径规划;进而对子网局部状态进行估计,在子网信息融合中,分别采用最大距离和、最大化信息增量两种准则进行最佳传感器选择,最后通过各子网全局航迹融合实现分布式多传感器协同跟踪。

仿真验证了算法的有效性。

关键词:分布式,通信受限,最短路径规划,聚类分簇,航迹融合中图分类号:TN953;E96文献标识码:ADOI :10.3969/j.issn.1002-0640.2017.06.002通信受限下分布式多传感器协同跟踪算法*赵猛,左燕,李明地,郭宝峰(杭州电子科技大学通信信息传输与融合技术国防重点学科实验室,杭州310018)Distributed Multi-sensor Target Collaborative Tracking Algorithmunder Communication ConstraintsZHAO Meng ,ZUO Yan ,LI Ming-di ,GUO Bao-feng(Institute of Information and Control ,Hangzhou Dianzi University ,Hangzhou 310018,China )Abstract :In a distributed multi-sensor target tracking system ,the physical limitation of the local fusion center (LFC )(limited frequency channel ,limited processor capacity )is considered ,which canonly receive the transmission data of a finite number of sensors.In addition ,the way of information transmission will affect the service life of the sensor network ,so this paper studies the distributed multi -sensor target tracking problem under communication constraints.In this paper ,the distributed sensors in the monitoring area are firstly combined to a number of sub-networks ,and then the optimal transmission path of sensor data is determined by minimizing the communication consumption costs.Moreover the local state of each sub -network is estimated.In the local fusion center ,the sensor isselected based on the maximum distance and the maximum information increment.Finally the multi-sensor collaborative tracking is implemented by the global track fusion.Simulation results show the effectiveness of the proposed algorithm.Key words :distributed ,limited communication ,shortest path planning ,cluster ,track fusion 0引言利用空间分布的多个传感器(雷达、红外、激光测距仪、声呐等)来协同跟踪目标是未来网络化作战的特点[1]。

Multi-Target Multi-Object Tracking,Sensor Fusion of Radar and Infrared

Multi-Target Multi-Object Tracking,Sensor Fusion of Radar and Infrared
2004 IEEE IntelligentVehicles Symposium
University of Parma Parma, Italy June 14-17,2004
Multi-Target Multi-Object Tracking, Sensor Fusion of Radar and Infrared
-32.
detected objects. Figure 2 shows a 7'7GHz standard ACC sensor and the infrared sensor used for the multi-sensor fusion in this paper. To show the motivation and necessity of tracking and fusion algorithms figure 3 shows a bird view of all infrared and radar measurements obtained during a 20 second test drive. The graph shows the trajectory of the test vehicle as a solid line and the obtained sensor measurements as points. For the sake of readablity the lateral position of the measurements is exaggerated by a factor of 20. These data show that a powerful tracking and powerful data association and fusion algorithms are needed to reject clutter and noise and to estimate the dynamics of the preceding vehicles reliably.

毫米波辐射计

毫米波辐射计

Code:RPG-MWR-STD-TMDate: 11.07.2011Issue: 00/01Technical Manual (standard radiometers)Pages: 45Technical Instrument ManualDescription of Instrument TechnologyApplicable forHATPRO, LHATPRO, TEMPRO, HUMPRO, LHUMPRO,LWP, LWP-U90, LWP-U72-82, LWP-90-150,Tau-225, Tau-225-350Code: RPG-MWR-STD-TM Date: 11.07.2011 Issue: 00/01 Page: 2 / 45Technical Manual (standard radiometers)Code: RPG-MWR-STD-TMDate: 11.07.2011Issue: 00/00Technical Manual (standard radiometers)Page: 3 / 45Code: RPG-MWR-STD-TM Date: 11.07.2011 Issue: 00/01 Page: 4 / 45Technical Manual (standard radiometers)Code: RPG-MWR-STD-TMDate: 11.07.2011Issue: 00/00Technical Manual (standard radiometers)Page: 5 / 45Code: RPG-MWR-STD-TM Date: 11.07.2011 Issue: 00/01 Page: 6 / 45Technical Manual (standard radiometers)Code: RPG-MWR-STD-TMDate: 11.07.2011Issue: 00/00Technical Manual (standard radiometers)Page: 7 / 45Code: RPG-MWR-STD-TM Date: 11.07.2011 Issue: 00/01 Page: 8 / 45Technical Manual (standard radiometers)Code: RPG-MWR-STD-TMDate: 11.07.2011Issue: 00/00Technical Manual (standard radiometers)Page: 9 / 45Code: RPG-MWR-STD-TM Date: 11.07.2011 Issue: 00/01 Page: 10 / 45Technical Manual (standard radiometers)Date: 11.07.2011 Issue: 00/01 Page: 12 / 45 (standard radiometers)Date: 11.07.2011 Issue: 00/01 Page: 14 / 45 (standard radiometers)Date: 11.07.2011 Issue: 00/01 Page: 16 / 45 (standard radiometers)Date: 11.07.2011 Issue: 00/01 Page: 18 / 45 (standard radiometers)Date: 11.07.2011 Issue: 00/01 Page: 20 / 45 (standard radiometers)Code: RPG-MWR-STD-TMDate: 11.07.2011Issue: 00/00Technical Manual (standard radiometers)Page: 21 / 45Code: RPG-MWR-STD-TM Date: 11.07.2011 Issue: 00/01 Page: 22 / 45Technical Manual (standard radiometers)Code: RPG-MWR-STD-TMDate: 11.07.2011Issue: 00/00Technical Manual (standard radiometers)Page: 23 / 45Code: RPG-MWR-STD-TM Date: 11.07.2011 Issue: 00/01 Page: 24 / 45Technical Manual (standard radiometers)Code: RPG-MWR-STD-TMDate: 11.07.2011Issue: 00/00Technical Manual (standard radiometers)Page: 25 / 45Code: RPG-MWR-STD-TM Date: 11.07.2011 Issue: 00/01 Page: 26 / 45Technical Manual (standard radiometers)Code: RPG-MWR-STD-TMDate: 11.07.2011Issue: 00/00Technical Manual (standard radiometers)Page: 27 / 45Code: RPG-MWR-STD-TM Date: 11.07.2011 Issue: 00/01 Page: 28 / 45Technical Manual (standard radiometers)Code: RPG-MWR-STD-TMDate: 11.07.2011Issue: 00/01Technical Manual(standard radiometers)Pages: 453 Advantages of Filterbank Systems over SequentiallyScanning Radiometers3.1 IntroductionPassive microwave radiometers are well suited to measure humidity and temperature profiles in the troposphere of the earth, as well as integrated quantities like the integrated water vapour (IWV) and liquid water content of clouds (LWP). The humidity information is taken from the shape of the single water vapour line at 22.24 GHz (line width approx. +/-6 GHz) while the temperature profile is derived from the shape of the oxygen line around 60 GHz (line width approx. +/- 8 GHz. Because the lines are symmetrical, only one half of the line has to be measured for profiling. The lines are strongly pressure broadened (see Fig.3.1).Fig.3.1: Spectral features used for microwave atmospheric profiling Because of the pressure broadened line shapes, the information content of the water vapour line and oxygen line are limited to 3 (water vapour) and 4 (oxygen line) independent degrees of freedom. This means that 3 numbers can usually completely characterize the shape of the water vapour line and 4 numbers can completely describe all the information in the oxygen line. This is similar to the fact that a point in space is uniquely defined by three numbers (three dimensions). Or in other words: A high spectral resolution is not required to measure a broad spectral line.31.4 GHz90 GHz60 GHz22.24 GHzWater VapourOxygenCloud liquidwaterCode: RPG-MWR-STD-TM Date: 11.07.2011 Issue: 00/01 Page: 30 / 45Technical Manual (standard radiometers)Date: 11.07.2011 Issue: 00/01 Page: 32 / 45 (standard radiometers)Date: 11.07.2011 Issue: 00/01 Page: 34 / 45 (standard radiometers)Date: 11.07.2011 Issue: 00/01 Page: 36 / 45 (standard radiometers)Date: 11.07.2011 Issue: 00/01 Page: 38 / 45 (standard radiometers)Date: 11.07.2011 Issue: 00/01 Page: 40 / 45 (standard radiometers)Code: RPG-MWR-STD-TMDate: 11.07.2011Issue: 00/00Technical Manual (standard radiometers)Page: 41 / 45Code: RPG-MWR-STD-TM Date: 11.07.2011 Issue: 00/01 Page: 42 / 45Technical Manual (standard radiometers)Code: RPG-MWR-STD-TMDate: 11.07.2011Issue: 00/00Technical Manual (standard radiometers)Page: 43 / 45Code: RPG-MWR-STD-TMDate: 11.07.2011Issue: 00/01 Technical Manual(standard radiometers)Pages: 45Code: RPG-MWR-STD-TMDate: 11.07.2011Issue: 00/01Technical Manual(standard radiometers)Pages: 45 5 Radiometer dimensions。

存在站址误差时的线性校正TDOA定位算法

存在站址误差时的线性校正TDOA定位算法

存在站址误差时的线性校正TDOA定位算法邓兵;孙正波;杨乐;贺青【摘要】针对到达时间差定位中接收传感器位置信息含有随机误差这一问题,提出了一种线性校正到达时间差定位算法.首先通过引入中间变量将非线性时差定位方程转化为伪线性方程,并利用加权最小二乘估计求得目标位置的初始解;接着通过求解初始位置估计的误差对目标位置初始解进行线性校正,得到目标位置更为精确的最终估计.仿真结果验证了所提算法具有较好的定位性能.%This paper considers the problem of locating a source using time difference of arrival(TDOA) measurements obtained at spatially distributed sensors in the presence of sensor position errors.A linear-correction TDOA localization algorithm that involves closed-form weighted least squares(WLS) optimization only is developed.The proposed method first converts nonlinear TDOA equations into pseudo-linear ones by introducing an intermediate variable and obtains the initial source position estimate using the WLS technique.Then a linear-correction method is applied to improve the initial localization result by estimating and subtracting its positioning error.Simulation results demonstrate the good performance of the proposed method.【期刊名称】《西安电子科技大学学报(自然科学版)》【年(卷),期】2017(044)004【总页数】6页(P106-111)【关键词】无源定位;到达时间差;站址误差;加权最小二乘估计;克拉美罗界【作者】邓兵;孙正波;杨乐;贺青【作者单位】信息工程大学信息系统工程学院,河南郑州 450002;盲信号处理重点实验室,四川成都 610041;盲信号处理重点实验室,四川成都 610041;江南大学物联网工程学院,江苏无锡 214122;盲信号处理重点实验室,四川成都 610041【正文语种】中文【中图分类】TN91无源定位技术作为一个经典问题,在雷达、声纳、导航和无线通信网络等领域存在着广泛的应用[1-5].常用定位参数主要包括到达时间(Time Of Arrival,TOA)[2]、到达时间差(Time Difference Of Arrival,TDOA)[3-4]、到达角度(Angle Of Arrival,AOA)[5]等.如果观测站与目标之间存在相对运动,则到达频率差(Frequency Difference Of Arrival,FDOA)[6-8]也可用于辐射源定位.其中基于多站时差测量的定位技术由于其定位成本低,精度较高,对目标发射信号的强度、频率信息不需要精确已知等优点,受到越来越多的关注.典型的TDOA定位算法包括泰勒级数展开迭代求解算法[7]、两步加权最小二乘(Two-Step Weighted Least Square,TSWLS)算法[8]、多维标度(MultiDimensional Scaling,MDS)算法[9]等.泰勒级数算法需要初始位置估计来进行迭代求解,在初始位置误差较大或者定位几何较差时,往往容易发散,不能够收敛到真实位置附近.两步加权最小二乘算法首先通过引入中间变量构造伪线性方程,并求得伪线性方程的加权最小二乘(Weighted Least Squares, WLS)解,进而再利用中间变量与辐射源位置之间的约束关系提升定位精度.但是该方法在第2步WLS估计求解时涉及到平方、开方等非线性运算,容易产生模糊的定位结果,并且有可能出现虚数解.MDS算法在加权矩阵的求解过程中可能出现矩阵奇异的情况,且正则化因子的选取对定位结果影响较大[9].文献[10-11]提出了一种线性校正到达时间差的定位算法,其过程也分为两步,首先在第1步和TSWLS算法一样,利用中间变量构造伪线性方程进行求解;在第2步中,通过对定位结果的线性误差校正来提升定位结果精度.从该文献的结论可以看出,该方法能够获得比TSWLS算法、MDS算法更为精确的定位结果.然而,文献[10-11]中的这种方法都是在假设传感器位置信息精确已知的条件下得到的,而在实际当中,传感器位置信息往往不够准确,存在随机误差,即使在误差很小的情况下,也会严重降低目标的定位精度.笔者主要考虑在接收传感器存在位置误差的条件下,利用文献[10-11]的线性校正思想,结合TDOA定位信息,对辐射源实现定位.首先,给出典型的定位模型,并提出存在站址误差时的线性校正TDOA加权最小二乘算法,算法具有代数闭式解;然后,通过与定位的克拉美罗界(Cramer-Rao Low Bound,CRLB)的对比,分析所提算法的性能,证明了算法的统计有效性;最后,通过计算机仿真验证了文中算法在不同的TDOA参数测量误差、接收站站址误差条件下的定位效果.假设uo=[xo,yo,zo]T表示目标的未知位置向量.共有M个接收传感器,M≥3,第i个传感器的真实位置;si= [xi,yi,zi]T,表示第i个传感器位置的实际测量值,i=1,2,…,M,[·]T表示转置,记又记其中,表示接收传感器位置误差;Δs满足零均值高斯分布,且协方差矩阵为Qs;符号“o”表示真实值;并假设目标信号传输过程不存在多径效应及同频干扰等问题.根据几何关系,第i个传感器与目标之间的距离可表示为其中表示欧氏距离.不失一般性,选取观测站作为参考接收站.目标到第i个传感器和第1个传感器之间的距离差为其中,ri1为距离差测量值,Δri1为距离差的测量误差.为简单起见,记ro=[,,,…,]T,r= [r21,r31,…,rM1]T,则TDOA的观测矢量r= ro+Δr,其中Δr= [Δr1,Δr2,…,ΔrM]T.假设测量误差Δr满足零均值高斯分布,其协方差矩阵为Qr.2.1 定位方程伪线性化求解对=+关系式两边平方,并利用式(1),可以得到考虑到为带有误差的传感器已知位置,则由泰勒级数展开关系可以得到其中记忽略时差测量方程中的二阶误差项,则有其中,i=2,3,…,M.引入中间变量,定义未知矢量并记εt= [εt,2,εt,3,…,εt,M]T,则有根据误差关系式(5),可得其中,0为3×1全零向量.式(6)为非线性方程,但若假设uo与无关,式(6)则变为关于的伪线性方程.利用加权最小二乘原理可得到其中,W为加权矩阵,φ1的估计误差及协方差分别为Δφ1=φ1-=(W G1W εt,cov(φ1)≈(W1G1)-1 .进一步观察可发现,W表达式中B和D均含有未知的目标位置,无法直接求取W.在实际实现当中,首先用 (M- 1)× (M-1) 维的单位矩阵IM-1代替W,则可计算出φ1.再利用这一计算值求得W,来获得关于更好的估计,迭代几次即可得到的WLS解.2.2 线性校正TDOA定位算法式(10)在求解过程中假设uo与无关.TSWLS算法在这一基础上利用两者之间的函数关系式(4),构造新的变量 (uo- s1)⊙ (uo- s1)进行求解,其中“⊙”表示Schur积(元素和元素相乘).目标位置求解结果涉及到平方、开方等非线性运算,容易出现定位结果模糊或者虚数解.对此,在考虑站址误差的情况下,提出一种线性校正TDOA定位算法.由式(11)知,φ1的估计误差为Δφ1.考虑到实际位置矢量uo与其初始估计值之间存在定位误差Δu,其中将在处进行一阶泰勒级数展开,得到将其代入式(5),并忽略二阶误差项,整理得到令整理得到同理,利用加权最小二乘原理可得到同样,估计误差和协方差分别为且根据误差关系可知,定位误差u-uo=Δu-φ2=Δφ2.由式(16)及TDOA测量误差、站址误差的零均值高斯误差分布特性可知,E[Δφ2]= 03×1,即文中所提算法在误差较小时为无偏估计,其协方差由式(17)给出.另外,从式(12)~式(15)可知,文中所提线性校正算法相较于TSWLS算法和MDS算法,只忽略了测量误差、站址误差的二阶项(见式(12)).而TSWLS算法的第2步因平方、开方运算的引入,需忽略二阶及二阶以上的误差项; 在噪声较大的情况下,其定位精度将不如文中所提算法的,这个结论也得到了仿真结果的支持.根据统计信号的处理理论,往往将算法逼近CRLB[5-8]的程度作为评价各种算法性能的一个标准.由文献[8]可知,TDOA定位的CRLB表达式为由式(17)知,cov(φ2)=cov(u)=-1,则有cov(u)-1=(B QrBT+D QsDT)-1G2 .根据矩阵求逆公式:(B QrBT+D QsDT)-1=(B QrBT)-1-BG3(+G3B-1 ,其中,G3=B-1D,则有(B QrBT+D QsDT)-1G2=G4-G3(+G3G4 ,其中,G4=B-1G2.假设条件成立,则可得到G3≈ ∂ro/ ∂so,G4≈ ∂ro/∂uo.则由式(24)知,cov(u)-1≈ X-Y Z-1YT=J,即cov(u)≈ RCRLB(u).这意味着,在较小的观测误差下,文中所提定位算法的估计性能能够到达克拉美罗下界,是最优估计.仿真假设有5个接收传感器,其真实坐标分别为:假设TDOA测量误差为σt,协方差矩阵 Qr= R,R是 (M-1)× (M-1) 维矩阵,其对角线元素为 c2,其余元素为0.5c2.σd= c σt 表示距离测量误差.接收站站址误差矩阵 Qs= I,I是3M×3M 维单位矩阵,σs为站址误差.文中算法的定位精度用均方根误差(Root Mean Square Error,RMSE)来计算,其中ul为第l次蒙特卡洛仿真得到的目标位置估计值,uo为目标真实位置, L=5 000,为仿真运行次数.仿真中分别假设: 近场目标真实位置矢量 uo= [285,325,275]T; 远场目标真实位置矢量uo= [2 850,3 250,2 750]T.在图1和图3中,= 10-6 m2.在图2和图4中,= 10-4 m2.从图1~图4的结果可以看出,在存在站址误差条件下,无论是近场目标还是远场目标,线性校正TDOA加权最小二乘定位算法可很好地实现目标的定位解算,在误差较小时,能够达到CRLB.随着误差的增大,具有优于TSWLS算法、MDS算法的性能.以上仿真较好地证明了上述的性能分析.此外,根据文献[6,9]可知,TSWLS算法的计算复杂度小于MDS算法的计算复杂度,而文中算法同TSWLS算法相比,在第2步中需重新计算观测矩阵与测量矩阵,计算量有所增加,但与TSWLS算法复杂度总体相当.为验证上述分析,在MATLAB R2009b仿真条件下,经统计,运算 5 000 次TSWLS算法、MDS算法以及文中算法的计算总时间分别为 2.141 0 s、 2.162 3 s 和 3.506 4 s,这符合预期.笔者针对实际当中传感器存在站址误差时的TDOA定位问题,通过伪线性化非线性时差方程求得目标位置初始解,然后利用加权最小二乘算法估计位置偏差来线性校正位置初始解,进一步提升目标定位精度.性能分析表明,所提算法在误差较小时能够达到克拉美罗界的理论下限,是一种无偏最优估计.计算机仿真结果说明,与TSWLS算法、MDS算法相比,文中算法具有较好的定位性能.文中所提的线性校正思想可进一步推广到其他定位体制中,下一步将展开相应的研究工作.【相关文献】[1] 朱国辉, 冯大政, 周延, 等. 一种线性校正到达时间差定位算法[J]. 电子与信息学报, 2015, 37(1): 85-90.ZHU Guohui, FENG Dazheng, ZHOU Yan, et al. A Linear-correction Based on Time Difference of Arrival Localization Algorithm [J]. Journal of Electronics & Information Technology, 2015, 37(1): 85-90.[2] HO K C. Bias Reduction for an Explicit Solution of Source Localization Using TDOA [J]. IEEE Transactions on Signal Processing, 2012, 60(5): 2101-2114.[3] CAO Y L, PENG L, LI J Z, et al. A New Iterative Algorithm for Geolocating a Known Altitude Target Using TDOA and FDOA Measurements in the Presence of Satellite Location Uncertainty [J]. Chinese Journal of Aeronautics, 2015, 28(5): 1510-1518.[4] WEI H W, PENG R, WAN Q, et al. Multidimensional Scaling Analysis for Passive Moving Target Localization with TDOA and FDOA Measurements [J]. IEEE Transactions on Signal Processing, 2010, 58(3): 1677-1688.[5] TAPONECCO L, D’AMICO A A, MENGALI U. Joint TOA and AOA Estimation for UWB Localization Applications [J]. IEEE Transactions on Wireless Communications, 2011, 10(7): 2207-2217.[6] ZHU G H, FENG D Z. Bi-iterative Method for Moving Source Localisation Using TDOA and FDOA Measurements [J]. Electronics Letters, 2015, 51(1): 8-10.[7] KIM Y H, KIM D G, KIM H N. Two-step Estimator for Moving Emitter Geolocation Using Time Difference of Arrival/Frequency Difference of Arrival Measurements [J]. IET Radar, Sonar and Navigation, 2015, 9(7): 881-887.[8] SUN M, HO K C. An Asymptotically Efficient Estimator for TDOA and FDOA Positioning of Multiple Disjoint Sources in the Presence of Sensor Location Uncertainties [J]. IEEE Transactions on Signal Processing, 2011, 59(7): 3434-3440.[9] WEI H W, WAN Q, CHEN Z X, et al. Multidimensional Scaling-based Passive Emitter Localisation from Range-difference Measurements [J]. IET Signal Processing, 2008, 2(4): 415-423. [10] 朱国辉, 冯大政, 周延, 等. 一种线性校正TOA定位算法[J]. 西安电子科技大学学报, 2015, 42(3): 22-25, 32.ZHU Guohui, FENG Dazheng, ZHOU Yan, et al. TOA Localization Algorithm Using the Linear-correction Technique [J]. Journal of Xidian University, 2015, 42(3): 22-25, 32.[11] 朱国辉, 冯大政, 周延. 一种利用多运动接收站的时差定位算法[J]. 西安电子科技大学学报, 2015, 42(2): 35-39, 76.ZHU Guohui, FENG Dazheng, ZHOU Yan. New TDOA Localization Algorithm Using Multiple Moving Receivers [J]. Journal of Xidian University, 2015, 42(2): 35-39, 76.。

基于YOLOv5和重识别的行人多目标跟踪方法

基于YOLOv5和重识别的行人多目标跟踪方法

第37卷第7期2022年7月Vol.37No.7Jul.2022液晶与显示Chinese Journal of Liquid Crystals and Displays基于YOLOv5和重识别的行人多目标跟踪方法贺愉婷1,2,车进1,2*,吴金蔓1,2(1.宁夏大学物理与电子电气工程学院,宁夏银川750021;2.宁夏沙漠信息智能感知重点实验室,宁夏银川750021)摘要:针对目前遵循基于检测的多目标跟踪范式存在的不足,本文以DeepSort为基础算法展开研究,以解决跟踪过程中因遮挡导致的目标ID频繁切换的问题。

首先改进外观模型,将原始的宽残差网络更换为ResNeXt网络,在主干网络上引入卷积注意力机制,构造新的行人重识别网络,使模型更关注目标关键信息,提取更有效的特征;然后采用YOLOv5作为检测算法,加入检测层使得模型适应不同尺寸的目标,并在主干网络加入坐标注意力机制,进一步提升检测模型精度。

在MOT16数据集上进行多目标跟踪实验,多目标跟踪准确率达到66.2%,多目标跟踪精确率达到80.8%,并满足实时跟踪的要求。

关键词:多目标跟踪;行人重识别;YOLOv5;注意力机制;深度学习中图分类号:TP391文献标识码:A doi:10.37188/CJLCD.2022-0025Pedestrian multi-target tracking method based on YOLOv5and person re-identificationHE Yu-ting1,2,CHE Jin1,2*,WU Jin-man1,2(1.School of Physics and Electronic-Electrical Engineering,Ningxia University,Yinchuan750021,China;2.Ningxia Key Laboratory of Intelligent Sensing for Desert Information,Yinchuan750021,China)Abstract:Aiming at the shortcomings of current detection-based multi-target tracking paradigm,a research is conducted based on the algorithm of DeepSort to address the issue of frequent switching of targeted ID resulting from occlusion in tracking process.Firstly,focus should be placed on improving appearance model.Efforts should be made in replacing broadband and residual networks with ResNeXt networks,which introduces the mechanism for convolution attention into the backbone network and establish a new person re-identification network.In doing so,the model can pay more attention to critical information of targets and obtain effective features.Then,YOLOv5serves as a detection algorithm. Adding detection layer enables the model to respond to targets of different sizes.Moreover,the mechanism for coordinate attention is introduced into the backbone networks.These efforts can further 文章编号:1007-2780(2022)07-0880-11收稿日期:2022-01-24;修订日期:2022-02-11.基金项目:国家自然科学基金(No.61861037)Supported by National Natural Science Foundation of China(No.61861037)*通信联系人,E-mail:koalache@第7期贺愉婷,等:基于YOLOv5和重识别的行人多目标跟踪方法improve the accuracy of detection model.The multi-target tracking experiment is carried out on data sets of MOT16,the multi-target tracking accuracy rate is up to66.2%,and the multi-target tracking precision ratio is up to80.8%.All these can meet the needs of real-time tracking.Key words:multi-target tracking;person re-identification;YOLOv5network;attention mechanism;deep learning1引言多目标跟踪(Multiple Target Tracking,MTT)主要任务是在给定视频中同时对多个特定目标进行定位,同时保持目标的ID稳定,最后跟踪记录他们的轨迹[1]。

多传感器融合技术小论文

多传感器融合技术小论文

Multi-sensor Data Fusion in TargetRecogonitionAbstract——This paper presents two different aspect of target recogonition based on multi-sensor data fusion.One is multi-sensor target recogonition fusion based on fuzzy theory,the other is emitter target recognition based on multi-sensor system of ESM and IR. Firstly,The paper proposes a method, it is based on fuzzy theory. First, the mutual supportability of multiple sensors is obtained from the correlation function. Then by the membership function, the reliability of information provide by each sensor is gained.And further, based on the multi-feature measured by ESM system, a new method to calculate the BPAF with synthetic fuzzy evaluation is proposed. Based on the IR image, the method to calculate the BPAF with the gray correlation analysis is proposed too.And the paper introduces the multi-sensor data fusion method based on the D-S evidence theory, which is applied to the emitter target recognition of multi-sensor system of ESM and IR. The experiments show that the proposed method is practicable and effective.1.IntroductionSpecial target recognition and tracking in the complex scene is one of the key technologies in the field of modem imaging guidance. It is well known that different imaging sensors have different imaging principles, and different imaging sensors can only response a special spectrum band of the target. In other words, the complete target features can't be obtained via a single imaging sensor, and the validity and reliability of the feature sets will be affected and the performance of target recognition system will be degraded in the case of only a single imaging sensor is used. Because each sensor can capture its special feature separately,and the features obtained from various sensors are complementary to each other. A comprehensive decision can be obtained by synthesizing suchfeatures.Multi-sensor information fusion technology can recognize one special target using different bands imaging sensor, as every sensor can capture its special features. Using the multi-sensor information fusion technology, the nontarget clusters can be suppressed or eliminated. For the multi-sensor recognition system, the anti-jam property, stability,validity, reliability and fault tolerance can be greatly improved compared with one-sensor system.2. Multi-sensor Target Recognition Fusion Based on Fuzzy TheoryTarget recognition is an important element in the field of pattern recognition, it is also called as identity estimation or attribute classification. For target recognition, the main difficulty is the extraction target characteristics.In the practical system, the measurement data is incomplete, uncertain and fuzzy, so it is very difficult to determine exactly target. The traditional target recognition methods include the feature level fusion,the data level fusion and decision level fusion etc. Of these methods, the fuzzy method is an effective method.2.1 Correlation FunctionIn the multi-sensor system Xi is the measurement data provided by the ith sensor, Xj is the measurement data provided by the jth sensor, Xi and Xj obey Gauss distribution. The pdf (probability distribution function ) curve is regarded as characteristic function of sensor, pi(x) , pj(x).xi is a measurement data of Xi , xj is a measurement data of Xj . In order to reflect the variation of xi and xj , the confidence distance measure is inducted, suppose2(/)xjij xid pi x xi dx =⎰ (1)2(/)xiji xjd pj x xj dx =⎰ (2)21(/)2ix xipi x xiσ⎧⎫-⎪⎪⎛⎫=-⎨⎬⎪⎝⎭⎪⎪⎩⎭(3)21(/)2x xjpj x xjjσ⎧⎫⎛⎫-⎪⎪=-⎨⎬⎪⎝⎭⎪⎪⎩⎭(4)dij is called as the confidence distance measure of the measurement data provided by the ith sensor and the measurement data provided by the jth sensor, using error function we can directly work out dij [1] , dij is writtenas follows:dij erf=(5)dji erf=(6)If there are n sensors in the system, then confidence distance matrix Dn of the measurement data is composed of the confidence distance measure dij(i,j=1,2,…n),Dn is written as follows:1112 (1)2122 (2)::::12...d d d nd d d nndn dn dnnD⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦(7)The generic fusion method is based on a fusion high limit ijβ,for dij,let1,0,ijdij ijrdij ijββ≤⎧=⎨>⎩(8)If rij=0, we think that the ith sensor and the jth sensor are not support each other. If rij=1,we think that the jth sensor is supported by the ith sensor. If rij = rji ,we think that the ith sensor and the jth sensor are support each other. Now, the problem arises that ijβis very absolute and subjective, the fusion results is affected by the subjective factor.Focused on the problem, a new method is proposed in the paper. According to the operation of dij and the statistical significance of operational formula, we can know01dij≤≤and the value of dij is smaller, the supportability of sensor is higher. According to the definition of the correlation function of the fuzzy theory, let(/)1,,1,2,...,f i j dij i j n =-= (9)The value of the correlation function f(i/j) denotes the supportability of sensor, the correlation function is defined as:[](/)(/)/max (/),(/)f i j f i j f i j f j i = (10)Where i,j=1,2,…,nThe matrix of f(i/j), C is formed and it is a phalanx, its order is n.In order to determine the supportability of each sensor supported by other sensors, let'min (/).1,2,...i C f i A A n == (11)'i C is the supportability of the ith sensor supported by other sensors.2.2 Fuzzy Integration FunctionSuppose that U={1,2,...,j,…,N} is a sequence set which is composed of N kinds of target attribute and S={1,2,…,i,…M} is a sequence set which is composed of M sensors. mij is the supportability of the jth target attribute supported by the ith sensor and 01mij ≤≤. Oj denotes that the target attribute is the jth ,the possibility distribution of target attribute is defined as [2][3][4]:/,i j Umij oj i S ∈=∀∈∑∏ (12) For the generic hard decision, that is, the single attribute is regarded as the target attribute, this can be regarded as the special case, that is,1,10,1j j mij j j =⎧=⎨≠⎩(13) When the target attribute is a set, mij is written as:1,1,j U mij fi j U∈⎧=⎨-∉⎩ (14) fi is the trust function of the sensor[6],fi is written as:'i fi i c μ=⨯ (15)Where i μis the reliability of the information provided by the ithsensor. 'i c is the supportability of the ith sensor supported by othersensors.For each measurement data Z ,we use the membership function ()z μto mapping Z to the degree of membership μ in the interval[0,1] .The value of μ reflects the reliability of the information provided by the sensor. When the different sensor measures, we can gain the reliability of the information provided by the sensor using the formula1,2()20,2z u z u z z u σμσσ⎧---<⎪=⎨⎪-≥⎩(16) After we gain the possibility distribution of target attribute ,1,...,i i M =∏, we use the fuzzy integration function to calculate the M possibility distribution, then we can gain the fusion result of target attribute./j Umj oj ∈=∑∏ (17)According to fuzzy integration function theory, we can gain mf , mf is written as follows:[]12,,...,M j j Mj mf S m m m = (18)Where is the fuzzy integration function. In the paper, the fuzzy integration function is written as follows:[]1/121,,...,M M M j j Mj i S m m m mij =⎛⎫= ⎪⎝⎭∏ (19)3. Emitter Target Recognition Based on Multi-sensor Data Fusion of ESM and IRThe emitter target recognition is playing more and more important role in the modern war, and the emitter target recognition is becoming more and more difficult because of the application of the high technique and the anti-measures. In the process of the emitter targets ’recognition, if single sensor or multi-sensor of single kind is used, the distilled information is not all-sided, so the recognition performance is not sogood,especially in the complex environment.With the electromagnetic signal and infrared (IR) image which are obtained by reconnaissance satellite ESM sensors (radar and communication EW reconnaissance equipments) and IR image sensor, the emitter target recognition method based on the multisensory data fusion is proposed in this paper. First,according to the difference of the information offered by ESM and IR sensors, this paper brings forward two methods to obtain BPAF separately: one is synthetic fuzzy evaluation; the other is gray correlation analysis.So the difficult problem of how to get BPAF under different conditions is solved. Further, the fusion method based on the D-S evidence theory is discussed and which is applied to the emitter target recognition.3.1 The Methods to Calculate BPAFIn the D-S evidence theory, the recognition frame Θindicates the interested propositions set. The BPAF Basic Probability Assignment Function) based on Θ is defined as m : 2Θ →[0,1], which satisfies()0()1A m m A ⊂ΘΦ=⎧⎪⎨=⎪⎩∑ (20)Where proposition A is a nonempty subset ofΘ , m(A) reflects the reliable extent of A.The BPAF is the key of D-S evidence theory. As toESM system, the BPAF is calculated with synthetic fuzzy evaluation according to multiple features of the target. As to IR sensor system, the BPAF is calculated with gray correlation analysis according to the IR image characteristic of the target.3.1.1 Method to calculate BPAF of ESM systemTo define the factor set: The observation of the ESM system commonly include the features data such as RF, PRI, PW, IPC and so on. In the synthetic fuzzy evaluation model of calculating BPAF, the factor set is defined as the set of RF, PRI, PW, and IPC.To give the weight: In the process of evaluating the reliable extent, the value of BPAF is directly relative to the weight of all the features. Here, the weight of RF, PRI, PW, and IPC is a1, a2, a3 and a4 separately,and they satisfy the standardization condition.To define the evaluation set: For evaluating the reliable extent, if the evaluation set is defined as a group of fuzzy language {very good, good, common, bad, very bad}, then the evaluation result is rather rough and is disadvantageous to the recognition. Here, the evaluation set is defined as a real number set V={x|0 ≤ x ≤1}. The bigger the value of x is, the higher the reliable extent is, on the contrary, the smaller the value of x is, the lower the reliable extent is.To evaluate single factor: The BPAF of ESM system is calculated with synthetic fuzzy evaluation according to multiple features of the target. First of all, the single factor is to be evaluated.3.1.2 Method to calculate BPAF of IR systemAccording to the similarity or dissimilarity of all the factors of the reference data list and the comparative data list, gray correlation analysis is to give the adjacent extent of the data lists [6].To define data list: The radiant character and the relationship between target and background decide the IR character. This paper takes eight types of character parameters as follows as reference data list: complexity, length-width ratio, mean contrast, the most brightness, mean difference, standard deviation, the bright pixel ratio, and tightness. And the reference data list is written as X 0={ X 0(k)|k=1,2,...,M}. The comparative data list is composed of the targets in the knowledge base, which is written as Xi ={Xi (k) | k =1,2,…,M}(i =1,2,…,N) , where N is the number of the targets in the knowledge base.To calculate the gray correlation coefficient: The absolute difference of the kth index of X0 and Xi is 0()()()i i k X k X k ∆=-, then the correlation coefficient i ξof Xi (k) and X0(k) can be calculated as follows:()()()()()i i i k i ki i i i k Min Min k Max Max k k k Max Max k ρξρ∆+∆=∆+∆ (21){}()|1,2,...,i i k k M ξξ== (22)Where, ρ ∈(0,+∞) is distinguish coefficient. The less ρ is, the greaterdistinguish ability is. Usually, ρ ∈[0,1] .()i i k Min Min k ∆is the least difference of two grades, and()i i k Max Max k ∆ is the most difference of twogrades. To calculate the gray correlation degree: We can get the correlation coefficient of each index of the comparative data lists and reference data list as above. But it is hard to make comparison because of too many results and decentralized information. So it is necessary to give a single value according to the correlation coefficients of all the indexes. This single value is called the gray correlation degree, which is written as ()0,i X X γ , simply i γ. The common method to calculate correlation degree is to give an equal weight to every index. When to identify the emitter target, the importance of different observation parameters is different, so the weight of each index should be different too. Supposed a(k),k =1,2,…,M is every index ’s weight, and1()1,()0M k a k a k ==≥∑, then theweighted correlation degree is defined as1()()M i i k k a k γξ==∑ (23)To calculate BPAF: To IR sensor, the BPAF is calculated according to the gray correlation degree. In the process of gray correlation analysis, if the data processing method is different, the correlation degree is different, but the order of correlation does not change. So we apply standardization principle to calculating the BPAF.,1()/1,2,...N i j j m i i Nγγ===∑ (24)3.2 Recognition on multi-sensor data fusionFor the multi-sensor system, if the main body of each sensor is same (th at is the recognition frame Θ is same), then, the data fusion is to combine different pieces of evidence into a new piece of evidence under the same recognition frame.In order to improve the recognition performance, measurement of multi-period from multi-sensor of ESM and IR is used. In this case, data fusion in time domain is carried out first, and then data fusion in space domain is done, and decision is made at last. That is to say, firstly, the posterior BPAF of each proposition is calculated based on the fusion of multiperiod of every sensor. And then the posterior BPAF of all the sensors is calculated. Lastly, decision is made according to the BPAF based on a given rule.The steps of recognition based on data fusion of multi-period of multi-sensor are shown as follows:1) Fusion in time domain —data fusion of multiple periods of single sensorThe posterior BPAF of the sth proposition As(s=1,2,…,K) of the ith sensor (i=1,2, …,P) based on the measurement of Q periods can be deduced with Dempster combination rule as follows.1111()()()=1()1()n s n s n n Q Q ij n ij n A A A A j j i s Q Q ij n ij n A A j j m A m A m A m A m A ≠⋂=⋂===⋂=Φ⋂Φ===--∑∑∏∏∑∑∏∏ (25)2) Fusion in space domain —data fusion of multiple sensorsBased on the data fusion of multiple periods of single sensor, the posterior BPAF of the sth proposition A s (s=1,2, …,K) of all the sensors can be deduced as follows.11()()1()n s n P i n A A i s Q i n A i m A m A m A ⋂==⋂=Φ==-∑∏∑∏ (26)3) Decision makingHow to make decision after combining the evidence with evidence theory is closely related to the practical application. Suppose 1,2A A ∃⊂Θand they satisfy:{}1()max (),i i m A m A A =⊂Θ (27){}21()max (),i i i m A m A A andA A =⊂Θ≠ (28)AND 12121()()()()()m A m A m U m A m U εε->⎧⎪<⎨⎪>⎩(29)Then A is the result of decision, where 1εand 2εare the threshold set in advance.References[1] Fukunaga K,Flick T E,A test of the Gaussian-ness of a data set using clustering, on Pattern Analysis and Machine Intelligence,1986,8.[2] Lang Hong Andrew Lynch ,Recursive Temporal-Spatial Information Fusion with Application to Target Identification,IEEE Trans on Aerospace and Electronic System,1993,2.[3] Liu Jian-shu, Multi-sensor data fusion based on correlation function and fuzzy integration function, System Engineering and Electronics,2006,7.[4] LI Mei YAO Lan. Fuzzy logic multi-sensor fusion for classification, SHIP SCIENCE AND TECHNOLOGY . V ol 25,No.6,2003.[5] Jousselme A L,Grenier D,Bosse E: A new distance between two bodies of evidence [J]. Information fusion,2001,2(1):91-101.[6] Hassan H.E. A new algorithm for radar emitter recognition. Proceedings of the 3rd International Symposium on Image and Signal Processing and Analysis, in Proc ISPA03, 2003:1097-1101.。

多传感器融合定位技术原理

多传感器融合定位技术原理

多传感器融合定位技术原理英文回答:Multi-sensor fusion positioning technology is a technology that uses multiple sensors to obtain theposition information of an object. It is widely used in many fields, such as navigation, robotics, and autonomous driving.The principle of multi-sensor fusion positioning technology is to use the complementary advantages of different sensors to improve the positioning accuracy and reliability. For example, GPS can provide accurate absolute positioning, but it is easily affected by environmental factors such as buildings and trees. Inertial navigation system (INS) can provide continuous positioning, but itwill drift over time. By fusing GPS and INS, the advantages of both sensors can be utilized to achieve high-precision and reliable positioning.Multi-sensor fusion positioning technology can be divided into two categories: centralized fusion and decentralized fusion. Centralized fusion is to collect the data from all sensors and process them in a central processor. Decentralized fusion is to process the data from each sensor separately and then fuse the results. Centralized fusion has higher accuracy but higher computational cost, while decentralized fusion has lower accuracy but lower computational cost.The key technologies of multi-sensor fusion positioning technology include sensor data preprocessing, sensor calibration, sensor data fusion, and positioning algorithm. Sensor data preprocessing is to remove noise and outliers from the sensor data. Sensor calibration is to correct the errors of the sensors. Sensor data fusion is to fuse the data from different sensors to obtain more accurate and reliable information. Positioning algorithm is to calculate the position of the object based on the fused data.中文回答:多传感器融合定位技术是一种利用多个传感器获取物体位置信息的技术,广泛应用于导航、机器人、自动驾驶等领域。

面向多目标跟踪的PHD滤波多传感器数据融合算法

面向多目标跟踪的PHD滤波多传感器数据融合算法

0引言多目标跟踪(Multiple Target Tracking ,MTT )技术在军事及民用领域都有广泛的应用,例如国土预警、海洋监视、空中交通管制[1]等。

传统多目标跟踪算法的核心是处理数据关联[2],数据关联是为了解决杂波环境下对多目标进行跟踪时出现的量测与航迹关联匹配问题,该类方法基本思路是将多目标跟踪问题转化为多个单目标的跟踪问题,典型算法如PDA 、JPDA 和MHT 等[2-3]。

然而,在复杂跟踪环境(强杂波,低检测率等)中数据关联往往会因逻辑关系复杂,计算量大而无法有效实现。

为了克服传统数据关联方法的缺陷,Mahler 等人研究了应用于多目标跟踪的广义贝叶斯滤波问收稿日期:2016-06-09修回日期:2016-08-04基金项目:国家“973”项目(2012CB821204);国家自然科学基金资助项目(61427808;61375078)作者简介:周治利(1990-),男,湖北汉川人,研究生。

研究方向:多目标跟踪,信息融合。

*摘要:针对密集杂波环境下单传感器应用高斯混合PHD 算法进行多目标跟踪时性能下降的问题,提出一种面向多目标跟踪的PHD 滤波多传感器数据融合算法。

首先构建了基于高斯混合PHD 滤波的多传感器数据融合系统框架,各传感器利用高斯混合PHD 滤波算法进行局部状态估计,然后对各传感器的状态估计结果进行关联度计算,最后通过构建自适应混合参数,引入协方差交叉算法对关联状态进行融合。

仿真实验表明,与单传感器高斯混合PHD 多目标跟踪算法相比,所提算法有效提高了目标数量和状态的估计精度。

关键词:多传感器多目标跟踪,高斯混合PHD 滤波,数据融合,协方差交叉中图分类号:TN953文献标识码:ADOI :10.3969/j.issn.1002-0640.2017.08.009面向多目标跟踪的PHD 滤波多传感器数据融合算法*周治利,薛安克,申屠晗,彭冬亮(杭州电子科技大学通信信息传输与融合技术国防重点学科实验室,杭州310018)Algorithm of Multi-sensor Data Fusion of PHD Filtering for Multi-target TrackingZHOU Zhi-li ,XUE An-ke ,SHEN Tu-han ,PENG Dong-liang(Fundamental Science on Communication Information Transmission and Fusion Technology Laboratory ,Hangzhou Dianzi University ,Hangzhou 310018,China )Abstract :For the problem of tracking performance degradation of the single sensor in the denseclutter environment using the Gaussian mixture PHD algorithm ,a multi-sensor data fusion algorithm for multi-target tracking based on PHD filters is proposed.First ,a multi-sensor data fusion framework based on the Gaussian mixture PHD filters is constructed.Then ,each sensor processes local state is estimated by a Gaussian mixture PHD filter algorithm.After that ,calculatethe correlated values of the statesfrommultiple sensors is calculated.Finally ,the associated states is fused through adopting acovariance intersection algorithm with an adaptive parameter modification.Simulation results show that ,compared to the single sensor Gaussian Mixture PHD filter ,the proposed algorithm can effectively improve the estimation accuracy of the target number and state.Key words :multi-sensor multi-target tracking ,gaussian mixture PHD ,data fusion ,covariance intersection文章编号:1002-0640(2017)08-0039-05Vol.42,No.8Aug ,2017火力与指挥控制Fire Control &Command Control 第42卷第8期2017年8月39··(总第42-)火力与指挥控制2017年第8期题[4],但是实现最优的多目标贝叶斯滤波器需要无限的计算量,为此Mahler 提出了一种近似方法,称为概率假设密度滤波器(Probability Hypothesis Den-sityFilter ,PHD )[4]。

概率假设密度多传感器多目标跟踪算法研究

概率假设密度多传感器多目标跟踪算法研究

概率假设密度多传感器多目标跟踪算法研究概率假设密度多传感器多目标跟踪算法研究摘要:多传感器多目标跟踪算法在目标识别与位置追踪领域具有广泛的应用。

本文基于概率假设密度(PHD)滤波理论,提出了一种多传感器多目标跟踪算法,旨在解决目标识别与跟踪中的难点和挑战。

此算法可以有效地提高目标跟踪的准确性和鲁棒性,为实际应用提供了有力支持。

1. 引言目标识别与跟踪一直是计算机视觉领域的热点研究方向。

随着传感器技术的进步和发展,多传感器多目标跟踪算法成为解决实际问题的重要手段。

然而,目标在目标识别和追踪过程中会面临复杂的环境干扰,如目标遮挡、光照变化和背景噪声等。

为了提高目标跟踪的准确性和鲁棒性,需要引入适当的概率密度模型来描述目标状态的不确定性。

2. 概率假设密度多传感器多目标跟踪算法2.1 概率假设密度滤波理论概率假设密度滤波(PHD)是一种基于概率密度的目标跟踪方法,可以有效地处理目标数量未知和目标动态变化的问题。

PHD滤波结合了贝叶斯滤波与泊松过程,通过估计目标的存在概率密度来描述目标的位置和状态变化,从而实现对目标的有效跟踪。

2.2 多传感器多目标跟踪算法流程多传感器多目标跟踪算法主要包括数据融合、目标检测与识别、目标跟踪和目标状态估计等几个关键步骤。

首先,利用多传感器融合技术对来自不同传感器的数据进行整合和处理。

然后,通过目标检测与识别模块,对目标进行有效的检测和识别。

接下来,利用PHD滤波方法结合传感器测量信息,对目标进行跟踪和状态估计,并对目标的位置和状态进行更新和预测。

最后,通过数据关联和目标分组等方法,实现多目标的跟踪和识别。

3. 算法实验与分析本文在MATLAB平台上对提出的多传感器多目标跟踪算法进行了实验与分析。

实验结果表明,与传统的目标跟踪算法相比,本算法在目标识别和跟踪准确率上具有明显优势。

同时,算法具有较好的实时性和鲁棒性,能够适应复杂的环境变化和干扰。

4. 应用案例分析本文以出租车监控系统为案例,对多传感器多目标跟踪算法进行了应用分析。

多传感器高斯混合PHD融合多目标跟踪方法

多传感器高斯混合PHD融合多目标跟踪方法

多传感器高斯混合PHD融合多目标跟踪方法申屠晗;薛安克;周治利【摘要】As the performance of single sensor multi-target tracking method will degenerate under complicated environment,a multi-sensor Gaussian mixture PHD multi-target tracker is proposed in terms of FISSTtheory.First,the formalized PHD filter is analyzed with FISST.Then,a multi-sensor posterior PHD feedback fusion framework isconstructed.Further,Gaussian mixture technique is employed to build a multi-sensor PHD tracking method.At last,three applicable algorithms are proposed by solving particle matching and fusion problem.Simulation results show that,compared to some common Gaussian mixture PHD algorithms,the proposed algorithms are more accurate and robust.%针对复杂环境下单传感器多目标跟踪方法效果不佳的问题,基于FISST (Finite set statistics)跟踪理论提出一种多传感器高斯混合PHD (Probability hypothesis density)多目标跟踪方法.首先,分析了FISST下多传感器PHD的形式化滤波器,在此基础上构建一种反馈式多传感器PHD融合跟踪框架;进一步利用高斯混合技术提出多传感器PHD跟踪方法;最后,通过解决多传感器后验PHD粒子匹配与融合问题提出三种算法.仿真实验表明,与常规高斯混合PHD跟踪算法相比,本文所提算法能够有效提高目标跟踪精度和鲁棒性.【期刊名称】《自动化学报》【年(卷),期】2017(043)006【总页数】10页(P1028-1037)【关键词】多传感器多目标跟踪;有限集统计;概率假设密度;高斯混合【作者】申屠晗;薛安克;周治利【作者单位】杭州电子科技大学自动化学院,信息科学与控制工程研究所杭州310018;杭州电子科技大学自动化学院,信息科学与控制工程研究所杭州310018;杭州电子科技大学自动化学院,信息科学与控制工程研究所杭州310018【正文语种】中文在导航、制导、监测和交通等诸多应用中,多目标跟踪是一类重要的问题,通常指如何利用传感器量测对观测空间中未知目标的数量和状态做出正确、连续的估计[1−2].在信息融合领域可利用多目标跟踪技术解决上述问题[3].但在实际中,传感器量测一般会受到杂波、漏检和误差的影响,导致未经处理的量测数据与被跟踪目标间的映射关系不明确.因此,多目标跟踪问题并不简单,相关技术得到了广泛且持续的研究[4−5].在较为理想的跟踪场景中,一类简单的技术方案是利用单个传感器的量测数据来估计目标的数量和状态.这类技术就包括传统的单传感器多目标跟踪技术,其核心在于解决量测与被跟踪目标之间的数据关联(Data association,DA)问题,以及明确数据关联下的目标状态滤波问题.基于数据关联的多目标跟踪技术研究较早,已形成较多跟踪方法,包括概率数据关联方法(Probability data association,PDA)[6]、联合概率数据关联方法(Joint probability data association,JPDA)[7]、多假设跟踪方法(Multiple hypothesis tracker,MHT)[8]以及概率多假设跟踪方法(Probability multiple hypothesis tracker,PMHT)[9]等.数据关联类的跟踪方法大多基于经典概率论提出,一般需要首先解决量测数据与被跟踪目标之间的关联问题,然后再对目标的数量和状态进行估计.该类方法工程上较易实现并在一些简单场景中效果良好.但是面对更复杂的跟踪场景时,例如大量杂波和低检测率跟踪环境,单传感器DA技术的跟踪结果就面临退化的风险[10].为了提高跟踪效果,学者们提出两类改进方案,一类方案将数据在时间上进行联合,例如检测前跟踪技术(Track beforedetect,TBD)[11];另一类方案将数据在空间上进行联合,例如多传感器多目标跟踪技术(Multi-sensor multi-target tracker,MMT)[12].对于DA跟踪技术而言,数据关联与状态滤波是两个独立承接的任务,所以可以推断联合的两种形式:先联合再滤波和先滤波再联合.困难在于,选择先联合再滤波一定会使得数据关联问题更加复杂而面临组合爆炸的风险,而选择先滤波再联合则可能削弱数据融合的优势[13].为此,近年来一种基于有限集统计(Finite set statistics,FISST)的多目标跟踪理论被提出[14−15].就理论框架而言,FISST跟踪技术能够对量测与目标数量和状态的随机性进行统一建模,因此比DA技术具有更强的建模表达能力.与DA不同,由于在问题建模时就考虑了目标和量测数量的随机性,FISST不再将数据关联结果作为状态滤波的前置条件,甚至可以在一定程度上回避复杂的DA问题而先得到状态滤波结果,直到形成航迹时再进行一定的DA处理[16].虽然FISST跟踪技术理论上比较完备,但是由于涉及集合积分,在计算上难以实现最优.近年来,近似的FISST方法得到了广泛研究和快速发展,包括概率假设密度跟踪器(Probability hypothesis density tracker,PHDT)[16−17]、势概率假设密度跟踪器(Cardinal probability hypothesis density tracker,CPHDT)[18−20]、伯努利跟踪器(Bernoulli tracker,BT)[21−22]等.近似方法可采用高斯混合(Gaussian mixture,GM)或序贯蒙特卡洛(Sequential Monte Carlo,SMC)等方法将无限的积分近似为有限的和[23].目前,大多数FISST跟踪算法是针对单传感器多目标跟踪问题提出的.尽管如此,FISST理论本身就具有多传感器多目标跟踪场景的统一描述能力.因此,Mahler 等已经开始考虑将单传感器FISST向多传感器FISST推广,并且得到了多传感器概率假设密度跟踪器(Multisensor probability hypothesis tracker,MPHDT)的形式化滤波器[24−25].由于计算规模限制,一般不能得到最优MPHDT,而近似方法的研究目前还是一个开放问题[26].为此,本文基于多传感器FISST理论提出适合工程应用的多传感器多目标跟踪方法,首先,分析了形式化的多传感器PHD滤波器;然后,构建了一种反馈式多传感器PHD 跟踪框架,进一步结合混合高斯技术提出多传感器PHD跟踪方法;最后,通过解决多传感器后验PHD粒子匹配与融合问题构建三种算法.仿真实验说明了所提算法的有效性.1 问题描述考虑多传感器多目标跟踪场景:假设在k时刻,监测区域中存在Nk个目标,目标状态集合为Xk={xk,1,xk,2,···,xk,Nk},其中 xk,1 为第 i个目标在第k时刻的状态向量,任一目标在两个相继时刻满足如下高斯线性状态转移方程:其中,表示第i目标由k−1时刻到k时刻状态转移的概率密度;N(·;m,P)表示均值为m协方差为P的高斯密度函数;Fk−1表示目标状态转移矩阵,Qk−1表示过程噪声协方差.假设监测区域内共有s个传感器对目标进行同步观测,且每个传感器的观测数据是相互独立的.观测数据可能来自被跟踪目标或者杂波干扰.如果观测来自目标,则满足如下高斯观测方程:其中,表示在 k 时刻第j(j=1,···,s)个传感器对某一目标状态x观测概率,zj,k即表示相应的观测向量,Hk表示观测矩阵,Rk表示观测噪声协方差.如果观测来自杂波,则满足如下方程组:其中,nk为k时刻监测空域内的杂波个数,假设杂波数量服从强度为λ的泊松分布,yl为第l个杂波的位置状态,Ψ(x)为监测空间的体积.假设任何一个传感器对被跟踪目标的检测概率为0<PD(j)≤1,则k时刻传感器j的观测集合可能为且累积观测集合为本文研究目标为在FISST技术框架下,基于s个传感器累积到k时刻的观测集合求得多个未知目标的航迹跟踪结果.2 多传感器多目标PHD融合算法为解决上述问题,本文将基于PHD滤波理论构造多传感器PHD融合跟踪算法,具体包括以下内容:1)分析多传感器PHD融合估计的形式化滤波器;2)构建一种带反馈的多传感器PHD融合跟踪框架;3)提出一种高斯混合多传感器PHD融合方法;4)构建多传感器后验PHD粒子匹配算法;5)针对三种不同应用场景提出相应的后验PHD 粒子融合方法和多传感器PHD融合跟踪算法(Gaussian mixture multi-sensor PHD tracker,GM-MPHDT).2.1 多传感器PHD形式化滤波假设监测空间中的目标运动服从方程(1),传感器j的观测服从方程(2),存在杂波且特性服从方程(3).那么FISST理论下的形式化滤波可以用方程(4)和(5)来描述[14].其中,fk|k−1(Xk|Xk−1)是方程(1)的有限集形式,是有限集似然函数.如果现在有s个独立观测的传感器,量测集合变成难么联合似然函数和s各传感器的后验估计应该具有以下关系[14]:因为方程(4)~(6)都涉及集合的积分运算,所以较难实现有限规模的精确计算.为此,工程上一般需要一定的近似处理,其中PHD滤波器是一类常用的近似方法[16].概率假设密度(Probability hypothesis density,PHD)可以理解为监测空间某处存在目标的强度.例如k时刻监测空间中x处的概率假设密度可以由以下方程定义:显然,D(xk|Zk)不是传统意义上的概率密度,如方程(8)所示,它在监测空间的积分恰好表示了跟踪目标数量的期望:可以发现引入PHD的益处在于回避了集合积分的运算.如果假设目标数量不变的话,可利用PHD将方程(4)和(5)简化为方程(9)和(10):其中,为传感器j在k时刻对被跟踪目标的检测概率,κk(z)为空间杂波强度.进一步可以利用PHD将方程(6)改写为方程(12):方程(12)为多传感器PHD融合的形式化滤波方程,在构建算法时还需要根据具体的融合结构和近似方法对其进一步细化.2.2 反馈式多传感器PHD融合跟踪框架为进一步刻画方程(9)~(12)所描述的多传感器PHD融合过程,本文构建一种反馈式多传感器PHD融合跟踪框架(如图1所示),从而将多传感器PHD融合跟踪描述为以下4个步骤:1)在k时刻由各传感器基于历史估计信息和本地观测对当前监测空域的PHD做出后验估计;2)融合中心收到并融合来自各传感器上传的局部后验PHD,形成全局后验PHD估计;3)融合中心基于全局PHD实现k时刻多目标点迹和航迹估计结果;4)融合中心将k+1时刻的全局PHD预测反馈给各传感器作为k+1时刻的历史估计信息.从图1可见,该跟踪框架具有以下两个特征:1)融合中心直接融合分布式传感器提供的后验PHD信息;2)融合中心通过信息反馈使得分布式传感器共享了全局跟踪结果;3)该跟踪框架假设各传感器采用相同的目标状态方程.基于以上跟踪框架可以将方程(9)和(12)进一步改写如下:其中,为反馈共享的全局 PHD预测信息.因为包含积分运算,方程(13)依然不能直接计算,所以将进一步引入合适的近似技术构建多传感器PHD融合跟踪算法.图1 反馈式多传感器PHD融合跟踪框架图Fig.1 Multi-sensor PHD feedback fusion tracking framework2.3 混合高斯多传感器PHD跟踪方法高斯混合(Gaussian mixture,GM)技术是一种可以将连续高斯分布离散化表达的近似技术[13].以下将利用GM技术近似方程(10)和(13)中的积分运算,进而提出混合高斯多传感器PHD跟踪方法,具体步骤如下:1)假设在k−1时刻融合中心已经获得后验估计的并且可以用一个混合高斯三元组的集合来近似:其中,是第 i个高斯粒子的假设密度,是相应的状态向量和协方差.2)利用方程(16)对k−1时刻的后验PHD进行贝叶斯一步预测,其中,Fk|k−1为状态转移矩阵,vk|k−1是过程噪声.从而得到以下预测高斯粒子集合:3)根据框架图1,利用方程(18)将融合中心预测的高斯粒子集共享到各个分布式传感器,4) 对于传感器j = 1,···,s, 利用方程 (19)~(21)更新高斯粒子集得到 k 时刻各自的后验高斯粒子集.其中,是第j个传感器在k时刻获得的量测数量,为先验检测概率,是卡尔曼滤波增益[2],是观测似然函数.5)利用方程(14)融合各传感器求得的后验高斯粒子集得到全局后验高斯粒子集:其中,Ψ(·)表示符合方程(14)融合精神的某种融合函数.需要注意的是在取得融合粒子集后,一般还需要一定的精炼处理,包括适当的聚类、合并、修剪以及粒子的重要性重采样处理等[22].6)目标航迹则可以在精炼的后验高斯粒子集基础上应用适当的航迹关联技术获得[2].2.4 混合高斯多传感器PHD粒子集融合跟踪算法上文已经提出一种符合图1框架的高斯混合多传感器PHD跟踪方法,但是方程(22)中的融合函数Ψ(·)还缺乏具体描述.为此,下文将针对不同的应用场合对方程(22)进一步细化.仔细观察可以发现,欲明确Ψ(·)的内涵还需要解决两个关键问题:1)不同传感器的粒子间的联系(匹配)问题;2)匹配粒子的融合问题,以下将分别论述.2.4.1 多传感器PHD后验粒子匹配算法PHD后验粒子匹配的目的在于寻找多传感器之间疑似“同源”的PHD粒子,为后续的融合做好准备.所谓“同源”PHD粒子指那些由量测数据支持的源自监测空间中同一个被跟踪目标的PHD粒子.从多传感器PHD滤波跟踪的本质理解,源自同一目标的多传感器同源PHD粒子在空间分布上一般互相靠近;而多传感器之间源自随机杂波的PHD粒子大多不同源,在空间上呈现分散态势.基于以上分析,构建如下多传感器PHD后验粒子匹配算法:1)统计k时刻各传感器的后验PHD粒子数量确定出拥有最多粒子数量的后验PHD粒子集:2)设定距离门限λk,该门限可以根据先验信息设定,例如可以根据观测误差信息来设定:其中,Hj是传感器j的观测矩阵,tr(·)表示矩阵的迹,ρ>0是调控因子.3)假设将除传感器j外的所有传感器后验PHD粒子集中的每个粒子与集中的粒子进行比较,并用方程(24)计算其中的最小欧氏距离,如果,对于PHD粒子满足方程(26),则将该粒子与集中的相应粒子匹配,如果匹配粒子已经被当前传感器的其他粒子匹配,则检验是否匹配其他粒子,同时将该粒子并入粒子集合否则,粒子记为当前非匹配粒子,同时将该粒子并入粒子集合通过以上匹配算法,所有传感器的后验PHD粒子最终都归并到粒子集合中,并且对于任何一组匹配粒子,每个传感器至多贡献一个粒子.2.4.2 多传感器PHD后验匹配粒子融合算法完成粒子匹配后,还需对匹配粒子进行融合处理才能完成对方程(22)的完整实现.为方便叙述,记为来自多个传感器的一组匹配粒子.显然,匹配粒子的融合涉及粒子假设密度、状态和协方差三个要素的融合.其中粒子假设密度直接反映了监测空间的目标数量,应先于其他两个要素的融合.以下将针对三类不同的应用环境:1)高检测率、高杂波率;2)低检测率、低杂波率;3)低检测率、高杂波率,分别构建多传感器PHD 后验匹配粒子融合算法.1)低检测率/低杂波强度和低检测率/高检测强度—PHD乘积融合上述两个场景中,传感器检测均较低,所以应当侧重发挥多传感器数据互补的优势.为此,提出如下乘积融合算法,利用方程(27)和(28)进行匹配粒子的概率假设密度融合,利用方程(29)~(31)进行匹配粒子的状态和协方差融合(本文采用协方差交叉融合[2]),其中,为融合后的粒子状态和协方差.2)高检测率/低杂波强度—最大值融合此场景是比较简单融合跟踪的场景,此时应侧重确认更高性能的传感器.为此,提出如下最大值融合算法,利用方程(33)进行匹配粒子的概率假设密度融合,利用方程(29)~(31)进行匹配粒子的状态和协方差融合,3)高检测率/高杂波强度—几何均值融合此环境虽然检测率较高,但是杂波密集,容易造成目标数量的过分估计,所以应侧重于保持融合的鲁棒性.为此提几何均值融合算法,利用方程(33)进行匹配粒子的概率假设密度融合,利用方程(29)~(31)进行匹配粒子的状态和协方差融合.虽然以上三种融合算法是针对典型应用场景提出的,但是通过观察可以发现PHD乘积融合与方程(22)的理论契合度最高,因此在缺乏场景知识的大多数情况下推荐使用该融合算法.其他两种融合算法,虽然其理论优势还需要未来进一步的研究发掘,但是在一些特定的典型场景下也可以使用.为清晰表述,现在将三种反馈式多传感器PHD融合跟踪算法的核心步骤概括如下: 步骤1.融合中心利用方程(15)取得k−1时刻全局后验PHD粒子集;步骤2.利用方程(16)和(17)得到k时刻全局预测PHD粒子集;步骤3.利用方程(18)将融合中心的全局预测PHD粒子集反馈共享至各个分布式的传感器;步骤4.各分布式传感器利用方程(19)~(21)得到k时刻更新的后验PHD粒子集;步骤 5.利用方程(23)~(26)对各传感器的PHD粒子集进行匹配处理;步骤 6.粒子的融合匹配.a)乘积融合算法(Feedback multi-sensor PHD product fusion tracker,FMPF-PHDT):利用方程(27)~(31)融合匹配粒子;b)最大值融合算法(Feedback multisensor PHD max fusion tracker,FMMF-PHDT):利用方程(29)~(32)融合匹配粒子;c)几何均值融合算法(Feedback multi-sensor PHD geometrical mean fusion tracker,FMGF-PHDT):利用方程(29)~(31),(33)融合匹配粒子;步骤7.对匹配融合后的后验PHD粒子集进行聚类、合并、修剪和重要性重采样处理[14]从而获得k时刻的全局后验PHD粒子集合;步骤8.在k时刻全局后验PHD粒子集合的基础上利用航迹关联技术[1]取得被跟踪目标的航迹估计.3 仿真实验仿真实验将本文提出的三个多传感器高斯混合PHD多目标跟踪算法(FMPF-PHDT、FMMFPHDT、FMGF-PHDT)与两台常规单传感器PHD跟踪算法以及航迹融合PHD算法对比.在4个不同检测概率和杂波密度的复杂跟踪环境中,对比研究各算法数量、状态跟踪精度和鲁棒性,其中数量、状态跟踪精度指标为OSPA距离[18],蒙特卡罗仿真次数为500次.3.1 场景设置仿真实验场景设置如下:1)在[−1000,1000]×[−1000,1000](m)的二维监控区域中,设置三个被跟踪目标,目标的起始位置服从一个已知的正态分布.目标运动方程如下:其中,x(k)=[xp(k),xv(k),yp(k),yv(k)]T为目标在k时刻的状态向量,各分量分别是x 与y轴方向的位置和速度分量.T为采样周期,一般可设置为1秒.v(k)是过程噪声,服从协方差矩阵为Q的零均值高斯分布.2)设置两台位置固定的同步传感器,数据采样周期为T=1s.如果观测数据来自被跟踪目标,则观测方程如下:其中,ω(k)观测噪声,服从协方差矩阵为R的零均值高斯分布.如果观测数据来自杂波,则数量和位置服从方程(3),其中强度参数λ可设定.3)为了方便分析,假设两台传感器具有相同的扫描周期,观测方程和检测概率.根据不同的检测概率与杂波强度设定4个典型目标跟踪场景,具体参数见表1.3.2 场景分析1)场景一该场景为较为简单的高检测率稀疏杂波跟踪场景,6种算法的OSPA比较如图2所示,OSPA均值和均方根值比较如表3所示.由于此场景中各传感器观测质量都较高,所以融合过程中高质量传感器容易被较低质量传感器“拖累”.FMMF-PHDT的融合逻辑是确认最高质量的传感器,因此在该场景中效果较好.2)场景二该场景虽然检测概率较高,但是杂波较强,容易造成对目标数量的过分估计,6种算法的OSPA比较如图3所示,OSPA均值和均方根值比较如表4所示.此场景中虽然检测概率较高,但杂波密集,所以在融合多传感器信息时容易对目标数量产生过估计.FMMF-PHDT和PMPF-PHDT在融合逻辑上都可能放大所融合传感器带来的数量过估计偏差,而FMGF-PHDT的融合逻辑对于数量估计比较保守,因此在该场景下效果较好.3)场景三该场景检测概率较低,杂波密度也不大,6种算法的OSPA比较如图4所示,OSPA均值和均方根值比较如表5所示.此场景的主要问题是各传感器在跟踪时容易丢失目标,而充分利用各传感器之间的信息互补是解决该问题的有效途径.因为PMPF-PHDT的融合逻辑更加注重信息的互补性,所以在该场景中效果较好.表1 三种反馈式多传感器PHD融合跟踪算法表Table 1 Three multi-sensor PHD feedback fusion tracking algorithms算法几何均值融合算法(Feedback multi-sensor PHD geometrical mean fusion tracker,FMGF-PHDT)乘积融合算法(Feedback multi-sensor PHD product fusion tracker,FMPF-PHDT)最大值融合算法(Feedback multi-sensor PHD max fusion tracker,FMMF-PHDT)步骤1.融合中心利用方程(15)取得k−1时刻全局后验PHD粒子集;步骤2.利用方程(16)和(17)得到k时刻全局预测PHD粒子集;步骤3.利用方程(18)将融合中心的全局预测PHD粒子集反馈共享至各个分布式的传感器;步骤4.各分布式传感器利用方程(19)~(21)得到k时刻更新的后验PHD粒子集;步骤5.利用方程(23)~(26)对各传感器的PHD粒子集进行匹配处理;步骤6.对于FMPF-PHDT算法:利用方程(27)~(31)融合匹配粒子对于FMGF-PHDT算法:利用方程(29)~(31),(33)融合匹配粒子步骤7.对匹配融合后的后验PHD粒子集进行聚类、合并、修剪和重要性重采样处理[14]从而获得k时刻的全局后验PHD粒子集合;步骤8.在k时刻全局后验PHD 粒子集合的基础上利用航迹关联技术[1]取得被跟踪目标的航迹估计.对于FMMF-PHDT算法:利用方程(29)~(32)融合匹配粒子图2 场景一6种算法OSPA比较Fig.2 Six algorithms0OSPA comparison in Scenario one表2 4个目标跟踪场景的检测概率与杂波强度设定Table 2 Detection rate and clutter density settings in four tracking scenarios实验场景检测概率杂波强度场景一 0.95 10场景二 0.95 50场景三 0.65 10场景四 0.65 50表3 场景一算法OSPA均值和均方根值比较Table 3 Mean and RMS comparison of OSPA in Scenario oneOSPA平均值 38.02 36.43 31.25 27.30 38.02 OSPA均方根 3.06 3.33 4.65 3.56 3.34单传感器PHD均值航迹融合PHD FMPF-PHDT FMMF-PHDT FMGF-PHDT表4 场景二算法OSPA均值和均方根值比较Table 4 Mean and RMS comparison of OSPA in Scenario twoOSPA平均值 48.04 46.32 41.23 49.07 37.59 OSPA均方根 5.45 5.41 4.43 6.22 4.32单传感器PHD均值航迹融合PHD FMPF-PHDT FMMF-PHDT FMGF-PHDT4)场景四该场景是较难的跟踪场景,不仅检测概率较低且杂波密度较大,6种算法的OSPA比较如图5所示,OSPA均值和均方根值比较如表6所示.与场景三相比,由于杂波密度较强,低检测率条件下单传感器发现目标的能力进一步弱化,因此信息互补的作用更加明显.此时,PMPF-PHDT的跟踪效果明显优于其他算法.图3 场景二6种算法OSPA比较Fig.3 Six algorithms0OSPA comparison in Scenario two图4 场景三6种算法OSPA比较Fig.4 Six algorithms0OSPA comparison in Scenario three图5 场景四6种算法OSPA比较Fig.5 Six algorithms0OSPA comparison in Scenario four表5 场景三算法OSPA均值和均方根值比较Table 5 Mean and RMS comparison of OSPA in Scenario three单传感器PHD均值航迹融合PHDFMPF-PHDT FMMF-PHDT FMGF-PHDT OSPA平均值 49.09 48.02 37.59 41.05 42.14 OSPA均方根 4.47 4.49 5.58 3.89 5.75表6 场景四算法OSPA均值和均方根值比较Table 6 Mean and RMS comparison of OSPA in Scenario four单传感器PHD均值航迹融合PHD FMPF-PHDT FMMF-PHDT FMGF-PHDT OSPA平均值 59.18 57.76 52.52 55.83 58.55 OSPA均方根 3.24 3.42 5.64 6.65 3.444 结论面对复杂环境下的多目标跟踪问题,单传感器跟踪方法效果不佳,多传感器跟踪方法中基于DA理论的跟踪方法理论与应用上都受到限制,基于FISST理论的跟踪方法具有理论优势,但应用上有待进一步研究.为此,本文首先提出一种反馈式多传感器PHD融合跟踪框架,然后提出相应的多传感器高斯混合PHD多目标跟踪方法和三种算法,着重解决了多传感器PHD多目标跟踪中的融合结构、粒子匹配和粒子融合计算问题.仿真表明:与传统PHD跟踪算法相比,本文所提算法跟踪精度更高、鲁棒性更强.未来工作可深入研究不同形式多传感器后验PHD融合方法的理论性能,为更高性能算法的构建提供指引.References1 Quan Tai-Fan.Target Tracking:Advanced Theory andTechniques.Beijing:National Defence Industry Press,2009.(权太范.目标跟踪新理论与技术.北京:国防工业出版社,2009.)2 Han Chong-Zhao,Zhu Hong-Yan,Duan Zhan-Sheng.Multisources Information Fusion(2nd Edition).Beijing:Tsinghua University Press,2010.(韩崇昭,朱洪艳,段战胜.多源信息融合.第2版.北京:清华大学出版社,2010.)3 Bar-Shalom Y.Multitarget-multisensor Tracking:Applications and Advances.Volume III.Norwood:Artech Print on Demand,2000.4 Magnant C,Giremus A,Grivel E,Ratton L,Joseph B.Multi-target tracking using a PHD-based joint tracking and classi ficationalgorithm.In:Proceedings of the 2016 IEEE RadarConference(RadarConf).Philadelphia,PA,USA:IEEE,2016.1−65 Choi M E,Seo S W.Robust multitarget tracking scheme based on Gaussian mixture probability hypothesis density filter.IEEE Transactions on Vehicular Technology,2016,65(6):4217−42296 Bar-Shalom Y,Tse E.Tracking in a cluttered environment with probabilistic data association.Automatica,1975,11(5):451−4607 Fortmann T,Bar-Shalom Y,Scheffe M.Sonar tracking of multiple targets using joint probabilistic data association.IEEE Journal of Oceanic Engineering,1983,8(3):173−1848 Blackman S S.Multiple hypothesis tracking for multiple target tracking.IEEE Aerospace and Electronic Systems Magazine,2004,19(1):5−18 9 Cham T J,Rehg J M.A multiple hypothesis approach to figure tracking.In:Proceedings of the 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Fort Collins,CO,USA:IEEE,1999.10 Mahler R.The multisensor PHD filter:II.Erroneous solution via Poisson magic.In:Proceedings of SPIE 7336,Signal Processing,Sensor Fusion,and Target Recognition XVIII.Orlando,Florida,USA:SPIE,2009.11 Tian Y X,Gao K,Liu Y,Han L.A novel track-before-detect algorithm based on optimal nonlinear filtering for detecting and tracking infrared dim target.In:Proceedings of SPIE 9622,2015 International Conference on Optical Instruments and Technology:Optoelectronic Imaging and。

智能传感器研究方向

智能传感器研究方向

1.边缘智能传感器 - Edge Intelligence in Sensors2.生物启发式传感器- Bio-Inspired Sensors3.可穿戴传感器 - Wearable Sensors4.环境感知传感器 - Environmental Sensing Sensors5.无线传感器网络 - Wireless Sensor Networks (WSN)6.能源自给养传感器 - Energy-Harvesting Sensors7.柔性传感器 - Flexible Sensor8.分布式传感器系统 - Distributed Sensor Systems9.自我校准传感器 - Self-Calibrating Sensors10.高精度位置感知技术 - High-Precision Location Sensing Technologies11.生物传感器 - Biosensors12.智能家居传感器 - Smart Home Sensors13.多模态传感器集成 - Multimodal Sensor Integration14.光子传感器 - Photon Sensors15.智能城市传感器网络 - Smart City Sensor Networks16.可编程传感器 - Programmable Sensors17.智能传感器与区块链融合 - Integration of Smart Sensors with Blockchain18.辐射传感 - Radiation Sensing19.超声波传感器应用 - Applications of Ultrasonic Sensors20.智能农业传感器 - Smart Agriculture Sensors21.环境能量传感器 - Ambient Energy Harvesting Sensors22.纳米尺度传感器 - Nanoscale Sensors23.智能传感器中的深度学习 - Deep Learning in Smart Sensors24.声学传感器技术 - Acoustic Sensor Technologies25.光学传感器应用 - Applications of Optical Sensors26.智能传感器中的机器学习算法 - Machine Learning Algorithms in Smart Sensors27.红外传感器技术 - Infrared Sensor Technologies28.生理信号传感器 - Physiological Signal Sensors29.人工智能辅助传感器设计 - AI-Assisted Sensor Design30.智能传感器的可靠性和安全性研究 - Reliability and Security Studies in SmartSensors。

多传感器融合改进的机器人定位决策

多传感器融合改进的机器人定位决策

需要 的后验密度 函数 。首先初 始化 一群 带权采样粒子
觚 I = kz sO A , I+Dik Ol u  ̄ n+ D Dl ,( Y O A j k0 +k
由此可得 ,其状 态方程为:

+D 0 鸲) Aks c + ]
< }。 , ,来表示 后验概 率分布 函数 p
l x )b( +j) ( +fk ck ak j ) (/
[ —
O k A)
其 中, () () 别为环境特 征到传感器 的距 离和 七和 后 分
方 向。
激光测距仪 工作与超声波传感器工作 原理相似 , 通过记录激光 发射 到接收 的时间间隔,就可 以算 出激 光测距仪到障 碍物的距离 。激光传感器测量数据 也用 极坐标表示 :( ) ,表示传感器到环境特 征的距离 , 和方 向。推导其模型 为【: 。 】
粒 子滤波器是用 有限的一组粒 子来表示 目标后验
概率 分布 。机器入 的定位是要获得其状态 向量 , 而
的后验概率分布递推公式为 :
图 1 机器人运动模型 文 献[】 5给出 了机器人直线运动模型 的推导过程 , 其直线模 型为: ( ) = () 5
粒子滤 波器采用 带权重 的随机采样 点集来表示所
在 S AM 中,用 一个向量 s L 表示机器人 的位姿 , 向量 m 表示 K 个环境特征位置。在 t 时刻 ,i 个传感
超 声波传感器 的原理是发送 一束超 声波 ,通 过测 量 该波反射和 回到接受器其所 占用 的时间 ,来估计障 碍物和机 器人之 间的距离 。
假 设 障 碍 物 在 全 局 坐 标 系 X O 中 模 型 为 Y ax+by+c =0,设 6为超声波带 开放角 ,利用极 j : ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Multiple Target Localisation in Sensor Networks withLocation PrivacyMatthew Roughan1and Jon Arnold21School of Mathematical Science,University of Adelaide,SA5005,Australiamatthew.roughan@.au2Defence Science and Technology Organisation,Australia,jon.arnold@.auAbstract.It is now well known that data-fusion from multiple sensors can im-prove detection and localisation of targets.Traditional data fusion requires thesharing of detailed data from multiple sources.In some cases,the various sourcesmay not be willing to share such detailed information.For instance,current mili-tary allies may be willing to share some level of information,but only if they cando so without revealing their secrets.This situation appears relevant for modernsensor networks,which may be comprised of networks from multiple partici-pants.It has previously been shown that localisation of a single target can beperformed while preserving location privacy of the sensor nodes.Here we extendthis to the case of multiple targets.The novel aspect of the problem is related tothe ambiguity in target labels,and how we resolve this ambiguity.Key words:Privacy-preservation,localization,ad-hoc networks1IntroductionIt is now a standard data-fusion problem to use multiple sensors to improve the lo-calisation and subsequent tracking of targets.However,there may be cases where such co-operation is limited by the nature of the parties who wish to co-operate.For instance, consider several parties who wish to be able to detect illegalfishing,drug smuggling, or terrorist activities.In the modern context such issues apply to sensor networks,and in particular we consider the case where nodes in the sensor network wish to main-tain location privacy(i.e.they wish the location of the node to remain private).There is now a substantial literature on Privacy-Preserving Data Mining(PPDM)and Secure Distributed Computing(SDC)(for examples see[1–4,9–11])and these techniques are applicable here.We shall consider two problems.First we consider a problem where each party has estimates of a set of targets’positions.They then wish to combine this information to provide a better estimate of the targets’locations without revealing information about their sensors.Previously this problem was solved for a single target in[6].The second problem we consider is one where any one sensor doesn’t have enough information(in itself)to localise the targets.The example we consider here is where each sensor provides range measurements(such as might be gained from examining time of arrival of signals,or signal power).In itself,such information is inadequate to2Matthew Roughan and Jon Arnoldlocalise a target,but in combination with data from other sensors,the measurements can provide good position estimates.This type of approach appears particularly relevant in the context of ad-hoc networks where we may wish to localise some resource on the network from purely passive measurements of signal strength at a number of points[5, 8],and each node in the network could be controlled by a separate party.Again,this problem was solved for a single target in[6].Our approach allows extensions of the solutions of these problems to multiple tar-gets,while maintaining the privacy of the participants.That is,the participating sen-sors need not reveal their location,or sensor characteristics in order to participate.The method is a simple,iterative improvement scheme that attempts to resolve the ambigu-ity between the different sensors’labellings of the targets,and its performance is good (close to the ideal performance of co-operating sensors)for small numbers of targets (<6)after which wefind that performance degrades,though this appears to be a more fundamental problem,rather than a problem with the privacy preserving approach.2Problems and assumptions2.1Problem0Wefirst consider a simple problem where N sensors(nodes)each measure an estimate of the position of a single target.We denote the position of the target by(x,y)(relative to some arbitrarily chosen,but agreed point),and the estimate from party i by(ˆx i,ˆy i). We assume that the position estimate has negligible bias and that the errors in posi-tion are independent between sensors,and have covariance matrix S i.Given constant covariance S i=S,we might improve our estimate of the position of the target by takingˆx=1NNi=1ˆx i,(1)ˆy=1NNi=1ˆy i.(2)The natural approach to computing the sum would be for each party in the measurement to pool values and then compute the sum.This approach reveals at least some values to other parties.An alternative would be to use a trusted third party to pool the results,and hence keep them secret.However trusted third parties are not easy tofind.The above problem was considered in[6],and the solution amounts to a Secure Distributed Summation(SDS).It is simple(see[4,7])to perform such a sum without leaking any information except the solution itself(even in the presence of collusion be-tween some parties).Once we compute the sum,it is a simple matter to compute the av-erage of the location estimates,and distribute this value to all parties.These approaches only work for N>2,and in reality,where one could make meaningful guesses about some values it is only really secure for reasonable values of N,but this is the case for a sensor network.Multiple Target Localisation in Sensor Networks with Location Privacy3 Although the above approach hides some information—the individual position estimates—thefinal result is that each sensor learns a positional estimate,and so hiding the individual data seems to make little sense.However,it is simple to adapt this technique to the case where the sensors in question have different characteristics,e.g., accuracy.It makes a lot more sense for a sensor operator to wish to hide their sensor’s characteristics from other operators.For instance,accuracy may depend on distance, and so knowing accuracy may reveal the distance of the node from the target.This is even more important in the multi-target environment where a sensor would reveal multiple measurements at each time-step if no privacy-preserving measures were taken.Consider the simple case where each sensor’s estimate has covariance S i=σ2i I where I is the identity matrix.We then compute a weighted meanˆx=1Ni=1w iNi=1w iˆx i,(3)ˆy=1Ni=1w iNi=1w iˆy i,(4)where the weights w i=1/σ2i.If an operator wants to conceal the characteristics of his sensor,they would wish to keep the weights w i secret.This is easily accomplished by performing two SDSs(for each co-ordinate),one over the weighted position,and the other over the weights themselves.2.2Problem1As noted,Problem0was solved in[6].However,it is unrealistic(in general)to assume only a single target.In the case of distributed measurements of multiple targets there is an ambiguity between measurements.For instance,consider Figure1.In thefigure,we as outside observers can uniquely associate each measured position(the arrows)with a unique target.However,the sensor nodes themselves cannot associate(unambiguously) the position estimates with targets.We refer to this issue as a labelling problem.One approach to solve the labelling would be to assume one possible arrangement of measurements with respect to targets,and then compute the joint estimate of the targets’positions.Once the joint position estimate is obtained(and shared with each node),then these nodes could estimate a likelihood function for the set of measurements with respect to the target and their known measurement error distributions.The joint likelihood of the measurements with respect to the labelling could then be computed (again using a secure distributed summation)across the sensors.Given the likelihood for each possible arrangement of nodes and targets,we could choose the maximum likelihood arrangement,or if we wish to track these targets,we could use the likelihoods in a multiple-hypothesis tracker.The problem with this simple approach to multiple targets is the number of possible hypotheses.If we have M targets,each node could have M!possible labellings with respect to the targets.Given N sensor nodes there would therefore be(M!)N possible hypotheses to test.Clearly this does not scale well.4Matthew Roughan and JonArnoldNote that this problem with ambiguity is not unique to privacy-preserving algo-rithms.In general,the multi-target labelling problem between a group of sensors must be solved for any distributed sensors.There are a number of approaches one could adopt to solve such a problem(e.g.,probabilitistic data association,or multi-hypothesis tracking).In the following sections we will investigate a very simple approach that eas-ily extends to become a privacy-preserving algorithm.2.3Problem2In problem2we allow the N sensor nodes to make only range estimates—a common case,for instance where we can only measure power of a signal from a target,and not the direction to a target.The combination of two such estimates is enough to localise a single target to two possible points,and three or more such measurements are capable of deducing the position uniquely(in a2D plane)with some rare exceptions.It is note-worthy,however,that when the measurements contain errors,the measurements may be inconsistent,resulting in a problem in estimating the target’s position precisely.We denote range estimates from party i by D i(which is an unbiased estimate of the true range d i),and the position of the sensor of party i by(X i,Y i).Again this localization problem for a single target has been solved[6],but the multiple target problem presents the same new challenges mentioned above.2.4AssumptionsThe main privacy aim here is to hide the location of the sensor nodes,but we also wish to keep secret,information about the characteristics of these nodes.The security model we use here is the commonly used“honest-but-curious”model. That is,we assume that the co-operating parties are honest in the sense that they follow the algorithms correctly,but they are curious and they will perform additional opera-tions in order to attempt to discover more information than intended.The honest-but-curious assumption has been widely used,and appears applicable here.Sensor operators will benefit from participating honestly in such a scheme without revealing their privateMultiple Target Localisation in Sensor Networks with Location Privacy5 information,and there is no downside in participating honestly.Dishonest partners in computation(partners who do not follow the algorithm)will reduce their own benefits, without any obvious gain.It is noteworthy that while we assume that participants follow the algorithm cor-rectly,we do allow collusion.Multiple partners are allowed to collude to attempt to learn more information than they otherwise could.The protocols we present can be made resistant to such collusion in the presence of a majority of non-colluding partici-pants.Additionally,there is now a substantial literature on PPDM(e.g.see[1–4,9–11] and the references therein),and this literature considers many variations on the type of assumptions considered here.It is therefore likely that the assumption of honest-but-curious participants can be substantially weakened.This is an important topic for future research,as the honest-but-curious assumption may well be too strong for some applications.3Solutions:problem1The number of possible hypotheses we might have to test grows as(M!)N for M targets and N sensors.However,a quick look by eye(say at Figure1)suggests that it will be common that many of the possible hypotheses are very unlikely,and it is our goal to eliminate the vast majority of these.The approach proposed here is a simple iterative approach.Each of the N sensors first assigns a random set of labels{1,2,...,M}to the targets.The joint position es-timates of the targets are then calculated.Each node then calculates the likelihood of its measurements with respect to the current labelling,and the joint position estimates. Each sensor looks for a single swap of labels that improves this likelihood as much as possible(from its perspective).They then iterate.At each step,a node only swaps two labels if this increases the likelihood,and they compute how many sensor nodes performed a swap using a SDS.When zero nodes perform a swap in one iteration,we terminate the algorithm as it can make no further progress.This approach is ideal for a privacy-preserving algorithm for a number of reasons. Its simplicity makes the information required at each step obvious,and hence it is easy to develop a privacy-preserving version of the algorithm.The computation of the joint estimate of the positions of the targets is simply the solution to problem0(discussed above)for a given set of labels.The computation reveals only the average of the mea-surements(the position estimate itself),and so performing it multiple times reveals only a series of position estimate for the targets.However,each position estimate is based on a different set of labellings,and so in theory,there may be some information revealed from the iterations,however,as we show below,generally it takes very few iterations to perform the algorithm,and the number of possible labellings is exponentially large.It therefore seems very unlikely that enough information could leak from these interme-diate results to allow any useful inferences,especially as the number of sensor nodes grows.Even if such inferences were possible,the exponential number of possibilities would make the computational expense of such inferences high.The computation of likelihoods is a local operation for each node,and so requires no additional information transfers,and so creates no additional risks of leaking intermediate information.6Matthew Roughan and Jon ArnoldA minor addition to this algorithm is that we can also compute the average likeli-hoods at each stage(using a SDS),and the algorithm can be terminated if this decreases at any point,preventing the possibility of oscillation between solutions.However,note that in the solutions below we did not have to apply this test,as the solutions always converged in relatively few iterations.In order to test this approach we make a number of simplifying assumptions:–location estimate errors are Gaussian,with covarianceσI,whereσis a constant variance across all sensors.–location estimates between targets are independent.It is worth noting that these assumptions are not a prerequisite of the algorithm.All that is required of the algorithm is that the sensor nodes know their own distribution of measurement errors—these errors can be different for each sensor,and the sensors can maintain the privacy of their measurements.Given Gaussian errors,computation of the relative likelihoods for sensor j is easily performed by computingL{(ˆx(j)i ,ˆy(j)i)|(ˆx i(k),ˆy i(k)}∝expMi=1(ˆx(j)i−ˆx i(k))2+(ˆy(j)i−ˆy i(k))22σ,where(ˆx(j)i ,ˆy(j)i)is the position estimate of sensor node j for the target i given thecurrent labelling,and(ˆx i(k),ˆy i(k))is the joint estimate of the position of target i after k iterations of the algorithm.Note that we need not calculate the exponential function here,as we are maximizing L,and the exponential function is monotonically increasing.Each node computes(locally)this likelihood for each possible swap of a pair of targets,resulting in O(M2)computations,and then uses the new labels in a new joint computation of the positions of the targets.Each node can alternatively declare that it cannot improve its likelihood,and we use a SDS tofind how many nodes are in this situation.When all nodes are at this point,we terminate the algorithm,and say it has converged.We simulate this algorithm where we distribute the N sensor nodes,and the M targets randomly in a unit square,and we vary M,N andσ.Initial results for the above algorithm are shown in Figure2(a),which appears to show a number of problems in the algorithm.Thefigure shows the Root Mean Squared Error(RMSE)of estimates of the targets position for an ideal estimate(a simple av-erage of all the measurements);independent measurements by each sensor node;and an estimate using the above algorithm.The algorithm shows worse performance than the independent estimates over a wide range of input noise(σ).Most worrying is the non-zero value of the error forσ=0.Investigation of the cause of this error found that in some(relatively rare cases)the initial label led to a situation where the labelling was“locked”in the sense that no change(of a single pair of labels)would improve the likelihood.This is a fairly rare occurrence(for small numbers of targets)and so an obvious solution is to re-initialize the algorithm a number of times.Figure2(b)shows the effect of such random initializations for N=4,M=6andσ=0.0.We can see that a relatively small number of re-initializations removes the error caused by thisMultiple Target Localisation in Sensor Networks with Location Privacy7initialization(N=4,M=6,σ=0.0).Fig.2.RMSE for position estimates over100simulations.initial locking(the number of re-initializations can be smaller for a few targets,but we will use5throughout this paper).Given5re-initializations we again simulate the performance of the algorithm,with results shown in Figures3and4.Figure3(a)shows the performance for N=5,M=3 over a range of values ofσ.We can see that the algorithm performs close to the ideal value for moderate values ofσ,but starts to deviate from the ideal,for large values. It should be noted that for the scenario simulated(with targets and sensors distributed across the unit square),a value ofσ=0.2is very large—the95th percentile confi-dence intervals for a measurement will lie in a region approximately±0.4,a substantial part of the possiblefield.Asσincreases,the number of labels that are incorrect(after convergence)increases(shown in Figure2(b)).This is inevitable because some mea-surements may lie closer to an incorrect target,and so the likelihood will be maximized by an incorrect labelling.Asσincreases more measurements will fall into this category, and so more labels will be incorrect.The problem is greatly exacerbated as the number of targets increases.The more densely packed the targets are,the more likely their measurements will overlap,and an incorrect labeling will maximize the likelihood.Figure3(c)and(d)show much worse performance for six targets.For larger numbers of targets,the algorithm is effective only for small values ofσ.As noted,however,this seems to be a fundamental problem with labelling the measurements when there is a significant probability that incorrect labellings will look more natural than the correct labelling.In essence this seems to be a problem in multi-target localisation,and although it is no doubt possible to improve on the algorithm we present here,it is unlikely that fundamental improvements are possible without further measurements(e.g.,if one had other data such as radial velocities the task might be easier).Also of interest are the number of iterations required for these algorithms.The com-putational and communications cost is directly proportional to the number of iterations, and so we would like the value to be small.In fact it is,as is shown in Figure4.The8Matthew Roughan and Jon Arnold).(N=5,M=3Fig.3.RMSE for position estimates over100simulations,given5re-initializations.Multiple Target Localisation in Sensor Networks with Location Privacy9 number of iterations seems to be insensitive to the value ofσ(as shown in Figure4(a)). On the other hand,Figure4(b)shows that the number of iterations does depend on the number of sensors N,approximately logarithmically(see dashed line).This represents quite a win for the approach(the naive approach of testing all hypothesis is exponen-tial in N,whereas this approach is logarithmic in N).The number of iterations is also dependent roughly linearly on the number of targets,but given that this algorithm can only be applied to moderate numbers of targets,this is not a great concern.As a re-sult,the communications costs of this algorithm is only a few times the cost of an ideal algorithm where no ambiguity existed.Any real approach would have to pay some com-munications cost to resolve the ambiguity of target labels,and so this approach seems quite reasonable–certainly it is better than evaluating(M!)N hypotheses.erations required with re-spect toσ(N=5,M= 3).erations required with re-spect to the number ofsensors N(M=3,σ=0.1).erations required with re-spect to the number oftargets M(N=5,σ=0.1).Fig.4.Average number of iteration over100simulations,given5re-initializations.Thefigures above show illustrative results—we have simulated many other param-eter values and the results above are representative.4Solutions:problem2The iterative solution generalizes to range measurements.The approach is the same,use a random initial labelling,compute the positions(using the privacy-preserving method described in[6]),and then try to iteratively improve the labels.The only complicat-ing factor is that in order to compute the likelihood of a measurement(with respect to a hypothetical position of a sensor node)the sensor nodes should perform a contour integral along a circular arc through the2D Gaussian distribution function.For simplic-ity,we approximate this by taking a point estimate at the distance of the measurement (assuming it lies along a line between sensor and node)from the hypothetical position of the node.This approximation greatly reduces the computational complexity of the algorithm.10Matthew Roughan and Jon ArnoldThefirst result to note is that for this case,the algorithm does not always converge quickly.In most cases the algorithm converges quickly,but in1.5%of(600)simulated cases,we observe quite a large number of iterations of the algorithm(we terminate it at 100iterations).The failure to converge quickly could be caused by the approximation we use above,and so would perhaps be removed by replacing this with the correct like-lihood.However,these cases could be simply avoided by re-initializing the algorithm after a moderate number(say20)of iterations,though they still increase the overall average number of iterations required for the algorithm.The second issue to consider is that we need more sensors for the range-only mea-surements because each sensor contributes less information in its own right(we need at least3to obtain a unique position estimate at all).As a result,there is more po-tential for locking at the initial step,and so we must re-initialize the algorithm a little more often.Figure5shows graphs of the performance with respect to the number of re-initializations with M=3and N=10.We can see that moderate values,i.e.around 20produce good results(though the marginal improvement over10is small,and so we might tradeoff performance versus communications costs if needed).Fig.5.RMSE for position estimates with respect to the number of re-initializations N=10, M=3.Figure6shows the performance of the algorithm with respect toσ(for N=10 and M=3).Note that there are only two curves here,as there is no possibility of independent nodes coming up with their own position estimated based on range alone. Clearly the results are not as good as those for problem1.It will be interesting in the future to test whether we can improve the performance by improving the approximation for the likelihood function.However,at the least this demonstrates the possibility of performing this type of multi-target localization without information sharing.Multiple Target Localisation in Sensor Networks with Location Privacy11σ.Fig.6.Performance of range-based estimation over100simulations(N=10,M=3),and20 re-initializations.5ConclusionThis paper has demonstrated that a privacy-preserving approach can be used for multiple-target localization in sensor networks.The approach preserves location privacy of sen-sor nodes,as well as the performance of the individual sensors.This paper presents work in progress.There are many questions left unanswered.–Is it possible to prevent leakage even of the intermediate information(the series of position estimates);–how can we weaken the honest-but-curious assumption;–can the performance be improved for larger numbers of targets;–how could we mesh this type of localization algorithm with tracking algorithms such as multi-hypothesis tracking;–how should we approach the problem when not all sensors can see the same set of targets;and–are there approaches which could further minimize the communications cost(this is important in the context of sensor networks where nodes may have a limited power budget)?References1.M.Atallah,M.Bykova,J.Li,K.Frikken,and M.Topkara.Private collaborative forecastingand benchmarking.In Proc.of the ACM Workshop on Privacy in the Electronic Society (WPES’04),Washington,DC,USA,October2004.2.J.Benaloh.Secret sharing homomorphisms:Keeping shares of a secret secret.In Proc.Advances in Cryptology(CRYPTO’86),pages251–260,1987.3.J.Brickell and V.Shmatikov.Privacy-preserving graph algorithms in the semi-honest model.In ASIACRYPT,LNCS,pages236–252,2005.12Matthew Roughan and Jon Arnold4. C.Clifton,M.Kantarcioglu,J.Vaidya,X.Lin,and M.Zhu.Tools for privacy preservingdistributed data mining.SIGKDD Explorations,4(2),December2002.5.N.Patwari,A.O.Hero,and J.A.Costa.to appear,chapter Learning Sensor Location fromSignal Strength and Connectivity.Springer,2006.6.M.Roughan and J.Arnold.Data fusion without data fusion:localization and tracking with-out sharing sensitive information.In Information,Decision and Control(IDC),Adelaide, Australia,February2007.7.M.Roughan and Y.Zhang.Secure distributed data-mining and its application to large-scalenetwork measurements.SIGCOMM mun.Rev.,36(1):7–14,2006.8.Y.Shang,W.Ruml,Y.Zhang,and M.Fromherz.Localization from mere connectivity.InMobiHoc’03,Annapolis,Maryland,2003.9.V.S.Verykios,E.Bertino,I.N.Fovino,L.P.Provenza,Y.Saygin,and Y.Theodoridis.State-of-the-art in privacy preserving data mining.SIGMOD Record,33(1):50–57,2004. 10. A.Yao.Protocols for secure computations.In Proc.of the23th IEEE Symposium on Foun-dations of Computer Science(FOCS),pages160–164,1982.11. A.Yao.How to generate and exchange secrets.In Proc.of the27th IEEE Symposium onFoundations of Computer Science(FOCS),pages162–167,1986.。

相关文档
最新文档