2016年北京市海淀区普通中学中考数学模拟试卷(二)(1月份)

合集下载

海淀区2016届初三二模数学答案及答案

海淀区2016届初三二模数学答案及答案

(元/月) 国内数据流量(MB) 国内主叫(分钟) 国内流量 18 28 38 48 100 100 300 500 0 50 50 50 0.29 元/MB
0.19 元/分钟
小明每月大约使用国内数据流量 200MB,国内主叫 200 分钟,若想使每月付费最少,则 他应预定的套餐是 A.套餐 1 B.套餐 2 C.套餐 3 D.套餐 4
2015 年全国人口年龄构成统计图
根据以上信息解答下列问题: (1)直接写出扇形统计图中 m 的值; (2)根据统计表估计 2020 年我国人口数约为 亿人;
( 3) 若 2020 年我国儿童占总人口的百分比与 2015 年相同, 请你估算到 2020 年我国儿科医 生需比 2015 年增加多少万人,才能使每千名儿童拥有的儿科医生数达到 0.6.
9.随着“互联网+”时代的到来,一种新型的打车方式受到 大众欢迎. 该打车方式采用阶梯收费标准. 打车费用 y (单 位:元)与行驶里程 x(单位:千米)的函数关系如图所 示. 如果小明某次打车行驶里程为 20 千米,则他的打车 费用为 A.32 元 B.34 元 C.36 元 D.40 元 10.如图 1,抛物线 y x bx c 的顶点为 P,与 x 轴交于 A,B 两点.若 A,B 两点间 的距离为 m, n 是 m 的函数,且表示 n 与 m 的函数关系的图象大致如图 2 所示,则 n 可能 为
三、解答题(本题共 72 分,第 17~26 题,每小题 5 分,第 27 题 7 分,第 28 题 7 分,第 29 题 8 分) 17.计算: ( ) 1 ( 3 2) 0 1 2 4 cos 45 .
1 3
8( x 1) 5 x 17, 18.解不等式组 并将解集在数轴上表示出来. x 10 x6 , 2

[VIP专享]2016年海淀区初三二模数学试题及答案(word版)

[VIP专享]2016年海淀区初三二模数学试题及答案(word版)

海淀区九年级第二学期期末练习
9.随着“互联网+”时代的到来,一种新型的打车方式受 到
大众欢迎.该打车方式采用阶梯收费标准.打车费用 y(单
位:元)与行驶里程 x(单位:千米)的函数关系如图 所
示. 如果小明某次打车行驶里程为 20 千米,则他的打 车
费用为 A.32 元
九年级数学 第 2 页(共 15 页)
C. (a3 )2 a 6
B. a8 a4 a2
A. a 2 a 3 a 6
3.下列计算正确的是
C.
B.
A.
中抽象出来的,其中是轴对称图形的是
88.8918÷1.2990÷.1=4214÷3922=.0034=1÷15251371=8535.78.208÷023.2173c00÷1*m=29030.3922c=.1÷20m3=2÷120252.=3535=42314c)*523m240341*31.252=31*.1.535.*031342.*9205221.04.455=+213*05*2022.02.854850.3150.*+58c12*5m1*202+.050+0.014*85.20*051000+0+03/8T.+0÷+=55+1*011+010+91÷01454050*0010200+5+0+080+400*+4**1*1510.3910%*C%-*6+÷M(=*M=5÷50)*30*31(÷3110*5+**÷4*1m243.%71e=78%n0)8=8s.5=77.93c.6c0mmc.4*m1*31,0w199o.k2.m4c-cem.5mn2csp26m659*.0.34-50.60c5*pm.3c85m9,c05g.m.05i0rp-l.s.85p6/c50bcm0.om7py.c.6spm5c+mc;0m..7.cmk ; 1+1k+12+1+k2234=1c+m1++4+4+2

北京市海淀区2016年中考二模数学试卷(含官方参考答案及评分标准)

北京市海淀区2016年中考二模数学试卷(含官方参考答案及评分标准)

海淀区九年级第二学期期末练习数学试卷参考答案一、选择题(本题共30分,每小题3分) 题 号1 2 3 4 5 6 7 8 9 10 答 案A C C C AB BC B C二、填空题(本题共18分,每小题3分)题 号11 12 13 答 案2 3(2)(2)x x +- 134题 号 14 15 16 答 案 6y x=(本题答案不唯一) 0.25,从一副去掉大小王的扑克牌中抽出一张牌,牌的花色是红桃. 三角形的三条角平分线交于一点;两点确定一条直线.三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)17.解:原式231+21+42=---⨯ ……………………4分 325=-.………………………5分18.解:原不等式组为8(1)5171062x x x x ->-⎧⎪⎨--≤⎪⎩,①,② 解不等式①,得 3x >-. ………………………2分解不等式②,得 2≤x . ………………………3分∴ 原不等式组的解集为32x -≤<.………………………4分不等式组的解集在数轴上表示如下:………………………5分19. 解:(1)∵ 原方程有两个不相等的实数根,∴ 0Δ>.即 364(7)0k -+>.∴ 2k <..………………………2分(2)∵2k <且k 为正整数,∴1=k ..………………………3分∴0862=+-x x .∴1224x x ==,..………………………5分20.证明:∵ AB DE BC BF ⊥⊥,,90ACB ∠=︒, ∴90DBF BEF ACB ∠=∠=∠=︒.∴ ︒=∠+∠︒=∠+∠9029021F ,.∴ F ∠=∠1..………………………2分在中和△△DFB ABC , 1F ACB DBF AC BD ∠=∠⎧⎪∠=∠⎨⎪=⎩,,, ∴ ABC △≌DFB △.………………………4分∴DF AB =..………………………5分21.解:设小静原来每分钟阅读x 个字.…………1分由题意,得 300291003500+=x x . ………………………3分 解得 500=x . ………………………4分 经检验,500=x 是原方程的解,且符合题意.∴130030050023002=+⨯=+x .答:小静现在每分钟阅读1300个字. ………………………5分22.(1)证明:∵ 90ACB ∠=︒, EF D C A B 12∴AC BC ⊥. ∵DE BC ⊥, ∴AC ∥DE . 又∵ CF ∥AD ,∴ 四边形ACFD 为平行四边形. …………1分 ∴CF AD =.∵ CD AB 为边上的中线, ∴BD AD =. ∴CF BD =.∴四边形BDCF 为平行四边形. ∵ BC DE ⊥,∴四边形BDCF 为菱形. ………………………3分 (2)解:在Rt ACE △中,∵ 2tan 3EC EAC AC ∠==, ∴设 2,3CE x AC DF x ===. ∵菱形BDCF 的面积为24, ∴1242DF BC ⋅=.………………………4分 ∴ 24DF EC ⋅=. ∴ 3224x x ⋅=.∴ 12x =,22x =-(舍). ∴4CE =,12EF =3DF =. ∴5CF =. ………………………5分23. 解:(1)∵点)1,(m A 在双曲线xy 6=上, ∴6=m . ………………………1分 ∵点)1,6(A 在直线b x y +=21上, ∴2-=b . ………………………2分EFDACB(2)当点B 在线段DE 上时,如图1,过点D 作DP ⊥y 轴于P ,过点B 作BQ ⊥y 轴于Q . 可得EQB △∽EPD △. ∵BE BD 2=, ∴13BQ BE DP DE ==. ∵1BQ =, ∴3DP =. ∵点D 在直线1l 上,∴)213(-,的坐标为点D .………………4分 当点B 在线段DE 的延长线上时,如图2,同理,由BE BD 2=,可得点D 的坐标为5(1)2--,. 综上所述,点D 的坐标为)213(-,或5(1)2--,.…………… 5分24. (1)证明:连接OD .………………………1分∵⊙O 切BC 于点D , 90C ∠=︒, ∴90ODB C ∠=∠=︒. ∴OD ∥AC . ∴DAC ODA ∠=∠. ∵OD OA =, ∴OAD ODA ∠=∠. ∴DAC OAD ∠=∠.∴AD 平分BAC ∠.………………………2分(2)解:连接DE . ∵AE 为直径, ∴︒=∠90ADE .EODBAC图1图2∵OAD DAC ∠=∠,sin 55DAC ∠=, ∴sin 55OAD ∠=. ∵5OA =, ∴10AE =.∴45AD =.………………………3分 ∴4CD =,8AC =. ∵OD ∥AC ,∴BOD BAC △∽△.………………………4分∴OD BDAC BC =. 即584BD BD =+. ∴203BD =.………………………5分25.(1)m 16.5=;………………………2分(2)14;(估值在合理范围内即可) ………………………3分 (3)14000016.5%0.69.721000⨯⨯- 4.14=.答:2020年我国儿科医生需比2015年增加4.14万人,才能使每千名儿童拥有的儿科医 生数达到0.6. ………………………5分26. 第二步:6BD BC ==;………………………1分第四步:如图,△ABC 即为所求. ………………3分 第五步: ② ,18.………………5分27. 解:(1)12n n =. ……………… 1 分理由如下:由题意可得抛物线的对称轴为2x =.∵1P (1,1n ),2P (3,2n )在抛物线24y ax ax b =-+上, ∴12n n =.………………3分 (2)当0a >时,抛物线的顶点为(2,1),且过点(4,4), ∴抛物线的解析式为23344y x x =-+.………………5分 当0a <时,抛物线的顶点为(2,4),且过点(4,1),∴抛物线的解析式为23314y x x =-++. 综上所述,抛物线的解析式为23344y x x =-+或23314y x x =-++.…………7 分28. 解:(1)①补全图形,如图1所示.…………1分②连接BE .∵AB BC =,,E C 关于直线BD 对称, ∴AB BC BE ==.………………………2分 ∴C BEC ∠=∠, BAE BEA ∠=∠. ∵90ABC ∠=︒,∴270BAE AEC C ∠+∠+∠=︒.∴135AEC ∠=︒..………………………4分 (2)求解思路如下:a .连接AC ,过点A 作AF ⊥CE ,交CE 延长线于点F ,如图2所示;b .由(1)可求︒=∠135AEC ,由2AE =可求1AF EF ==;c .由31CE =-,可求2AC =, 2AB BC ==,可证△ABE 为等边三角形;d .由C ,E 两点关于直线BD 对称,AB AD =,可求15EBD ∠=︒,75ABD ∠=︒,30α=︒. ……………………7分29.解:(1)函数1y x =-没有不变值; ………………1分函数1y x=有1-和1两个不变值,其不变长度为2;………………2分 函数2y x =有0和1两个不变值,其不变长度为1;………………3分 (2)①∵函数22y x bx =-的不变长度为零, ∴方程22x bx x -=有两个相等的实数根. ∴1b =-. ………………4分②解方程22x bx x -=,得10x =,212b x +=.………………5分 ∵13b ≤≤, ∴212x ≤≤.∴函数22y x bx =-的不变长度q 的取值范围为12q ≤≤. ………………6分 (3)m 的取值范围为13m ≤≤或18m <-. ………………8分。

2016中考海淀二模数学试卷

2016中考海淀二模数学试卷

1海 淀 区 九 年 级 第 二 学 期 期 末 练 习一、选择题〔此题共30分,每题3分〕1.2022年冬奥会由北京和张家口两市联合承办.北京到张家口的自驾距离约为196 000米.196 000用科学记数法表示应为A .1.96×105B .19.6×104C .1.96×106D .0.196×1062.中华文化底蕴深厚,地方文化活动丰富多彩.下面的四幅简笔画是从我国地方文化活动中抽象出来的,其中是轴对称图形的是A .B .C .D . 3.以下计算正确的选项是A .632a a a =⋅B .842a a a ÷=C .623)(a a = D .a a a 632=+4.如图,边长相等的正方形、正六边形的一边重合, 那么1∠的度数为 A .20° B .25° C .30° D .35° 5.如图,数轴上有M ,N ,P ,Q 四个点,其中点 P 所表示的数为a ,那么数3a -所对应的点可能是 A .M B .N C .P D .Q6分数 80 85 90 95 人数1432这10名学生所得分数的平均数是A .86B .88C .90D .927.如图,A ,B ,C ,D 为⊙O 上的点, AB OC ⊥于点E ,假设=30CDB ∠︒,2OA =,那么AB 的长为A 3B .23C .2D .48套餐 类型 月费〔元/月〕 套餐内包含内容套餐外资费国内数据流量〔MB 〕 国内主叫〔分钟〕 国内流量 国内主叫套餐1 18 100 0 元/MB元/分钟套餐2 28 100 50 套餐3 38 300 50 套餐44850050小明每月大约使用国内数据流量200MB ,国内主叫200分钟,假设想使每月付费最少,那么NMQPE BCOAD他应预定的套餐是A .套餐1B .套餐2C .套餐3D .套餐4 9.随着“互联网+〞时代的到来,一种新型的打车方式受到 群众欢送.该打车方式采用阶梯收费标准.打车费用y 〔单 位:元〕及行驶里程x 〔单位:千米〕的函数关系如图所 示. 如果小明某次打车行驶里程为20千米,那么他的打车费用为A .32元B .34元C .36元D .40元10.如图1,抛物线2y x bx c =-++的顶点为P ,及x 轴交于A ,B 两点.假设A ,B 两点间的距离为m , n 是m 的函数,且表示n 及m 的函数关系的图象大致如图2所示,那么n 可能为A .PA AB +B .PA AB -C .AB PA D .PAAB二、填空题〔此题共18分,每题3分〕11.当分式的值为0时,x 的值为 . 12.分解因式:2312x -=______ _________. 13.据传说,古希腊数学家、天文学家泰勒斯曾利用相似三角形的原理,在金字塔影子的顶部立一根木杆,借助太阳光线构成两个相似三角形,来测量金字塔的高度. 如下图,木杆EF 的长为2m ,它的影长FD 为3m ,测得OA 为201m ,那么金字塔的高度BO 为______ _ m .14.请写出一个图象过〔2,3〕和〔3,2〕两点的函数解析式______ ____. 15.在某次试验数据整理过程中,某个事件发生的频率情况如下表所示.试验次数 10 50 100 200 500 1000 2000 事件发生的频率估计这个事件发生的概率是_________________(准确到0.01),试举出一个随机事件的例子,使它发生的概率及上述事件发生的概率大致一样: ______ _____________________________________________________________________________. 16.阅读下面材料:实际生活中,有时会遇到一些“不能接近的角〞,如图中的P ∠,我们可以采用下面的方 法作一条直线平分P ∠. 如图,〔1〕作直线l 及P ∠的两边分别交于点A ,B ,分别作PAB ∠和PBA ∠的角平分线,两条角平分线相交于点M ;〔2〕作直线k 及P ∠的两边分别交于点C ,D ,分别作PCD ∠和PDC ∠的角平分 线,两条角平分线相交于点N ; 〔3〕作直线 MN . 所以,直线MN 平分P ∠.请答复:上面作图方法的依据是 _________________ ___. 三、解答题〔此题共72分,第17~26题,每题5分,第27题7分,第28题7分,第29题8分〕 17.计算:101()(32)124cos 453----+-+︒.18.解不等式组并将解集在数轴上表示出来.19.关于x 的方程2670x x k -++=有两个不相等的实数根. 〔1〕求k 的取值范围;〔2〕当k 为正整数时,求方程的根.20.:如图,在△ABC 中,∠ACB =90︒,点D 在BC 上,且BD =AC ,过点D 作DE ⊥AB 于点E ,过点B 作CB 的垂线,交DE 的延长线于点F .求证:AB =DF .21.为了提升阅读速度,某中学开设了“高效阅读〞课.小静经过2个月的训练,发现自己现在每分钟阅读的字数比原来的2倍还多300字,现在读9100字的文章及原来读3500字的文章所用的时间一样.求小静现在每分钟阅读的字数.22.如图,在△ABC 中,∠ACB =90︒,CD 为AB 边上的中线,过点D 作DE BC ⊥于E ,过点C 作AB 的平行线及DE 的延长线交于点F ,连接BF ,AE .〔1〕求证:四边形BDCF 为菱形;〔2〕假设四边形BDCF 的面积为24,tan ∠EAC =23,求CF 的长.23.在平面直角坐标系xOy 中,直线1l :及双曲线的一个交点为(,1)A m .〔1〕求m 和b 的值;〔2〕过(1,3)B 的直线交1l 于点D ,交y 轴于点E . 假设2BD BE =,求点D 的坐标.24.如图,在△ABC 中,∠C =90°,点E 在AB 上,以AE为直径的⊙O 切BC 于点D ,连接AD . 〔1〕求证:AD 平分∠BAC ; 〔2〕假设⊙O 的半径为5,sin ∠DAC =55,求BD 的长.25.据报道,2021 年我国每千名儿童所拥有的儿科医生数为〔将0~14岁的人群定义为儿童〕,远低于世界主要兴旺国家,儿科医生存在较大缺口.根据2000-2021 年报道的相关数据,绘制统计图表如下:全国人口、儿童人口、儿科医生及每千名儿童拥有的儿科医生数统计表年份全国人口儿童人口儿科医生每千名儿童拥有的E ODBAC〔亿人〕〔亿人〕〔万人〕儿科医生数2000 2005 2021 20212021 年全国人口年龄构成统计图根据以上信息解答以下问题: (1)直接写出扇形统计图中m 的值;(2)根据统计表估计2021年我国人口数约为 亿人;〔3〕假设2021年我国儿童占总人口的百分比及2021 年一样,请你估算到2021年我国儿科医生需比2021 年增加多少万人,才能使每千名儿童拥有的儿科医生数到达.26. 小明在做数学练习时,遇到下面的题目:小明的计算结果及参考答案不同,因此他对参考答案产生了质疑.下面是他的分析、 探究过程,请你补充完整.第一步,读题,并标记题目条件如下:在△ABC 中,D 为AC 边上一点,①AB=AC ;②DBA A ∠=∠;③BD=BC ;④CD =2; ⑤△BDC 的周长为14.第二步,依据条件③、④、⑤,可以求得BD BC ==__________; 第三步,作出△BCD ,如图2所示;题目:如图1,在△ABC 中,D 为AC 边上一点,AB=AC , DBA A ∠=∠,BD=BC .假设CD =2,△BDC 的周长为14, 求AB 的长. 参考答案:AB =8.第四步,依据条件①,在图2中作出△ABC ;〔尺规作图,保存作图痕迹〕BDC图2第五步,对所作图形进展观察、测量,发现及标记的条件_____不符〔填序号〕,去 掉这个条件,题目中其他局部保持不变,求得AB 的长为__________.27.:点(,)P m n 为抛物线24y ax ax b =-+〔0a ≠〕上一动点.(1) 1P 〔1,1n 〕,2P 〔3,2n 〕为P 点运动所经过的两个位置,判断1n ,2n 的大小,并说明理由; (2) 当14m ≤≤时,n 的取值范围是14n ≤≤,求抛物线的解析式.28. :AB BC =,90ABC ∠=︒.将线段AB 绕点A 逆时针旋转α〔090α︒<<︒〕得 到线段AD .点C 关于直线BD 的对称点为E ,连接AE ,CE . 〔1〕如图, ①补全图形;②求AEC ∠的度数;教师:“质疑是 开启创新之门 的钥匙!〞小明:“该题目的条件存在自相矛盾的地方.假设去掉矛盾的条件后,便可求出AB 的长.〞〔2〕假设2AE =,31CE =-,请写出求α度数的思路.〔可以不写出计算结果.........〕29. 对于某一函数给出如下定义:假设存在实数p ,当其自变量的值为p 时,其函数值等于p ,那么称p 为这个函数的不变值. 在函数存在不变值时,该函数的最大不变值及最小不变值 之差q 称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度q 为 零.例如,以下图中的函数有0,1两个不变值,其不变长度q 等于1.〔1〕分别判断函数1y x =-,,2y x =有没有不变值?如果有,直接写出其不变长度; 〔2〕函数22y x bx =-.①假设其不变长度为零,求b 的值;②假设13b ≤≤,求其不变长度q 的取值范围;〔3〕记函数22()y x x x m =-≥的图象为1G ,将1G 沿x=m 翻折后得到的函数图象记为2G .函数G 的图象由 1G 和2G 两局部组成,假设其不变长度q 满足03q ≤≤,那么m 的取值范围为 .海淀区九年级第二学期期末练习数学试卷参考答案一、选择题〔此题共30分,每题3分〕 题 号 1 2 3 4 5 6 7 8 9 10 答 案ACCCABBCBCCDACDA二、填空题〔此题共18分,每题3分〕题 号 11 1213 答 案23(2)(2)x x +-134题 号141516答 案〔此题答案不唯一〕0.25,从一副去掉大小王的扑克牌中抽出一张牌,牌的花色是红桃.三角形的三条角平分线交于一点;两点确定一条直线.三、解答题〔此题共72分,第17~26题,每题5分,第27题7分,第28题7分,第29题8分〕 17.解:原式231+21+42=---⨯……………………4分 325=-.………………………5分 18.解:原不等式组为解不等式①,得 3x >-. ………………………2分 解不等式②,得 2≤x . ………………………3分∴ 原不等式组的解集为32x -≤<.………………………4分 不等式组的解集在数轴上表示如下:………………………5分19. 解:〔1〕∵ 原方程有两个不相等的实数根,∴ 0Δ>.即 364(7)0k -+>.∴ 2k <..………………………2分 〔2〕∵2k <且k 为正整数,∴1=k ..………………………3分 ∴0862=+-x x .∴1224x x ==,..………………………5分20.证明:∵ AB DE BC BF ⊥⊥,,90ACB ∠=︒, ∴90DBF BEF ACB ∠=∠=∠=︒.∴ ︒=∠+∠︒=∠+∠9029021F ,. ∴ F ∠=∠1..………………………2分 在中和△△DFB ABC ,∴ ABC △≌DFB △.………………………4分 ∴DF AB =..………………………5分21.解:设小静原来每分钟阅读x 个字.…………1分由题意,得 . ………………………3分解得 500=x . ………………………4分 经检验,500=x 是原方程的解,且符合题意. ∴130030050023002=+⨯=+x .答:小静现在每分钟阅读1300个字. ………………………5分22.〔1〕证明:∵ 90ACB ∠=︒, ∴AC BC ⊥. ∵DE BC ⊥, ∴AC ∥DE . 又∵ CF ∥AD ,∴ 四边形ACFD 为平行四边形. …………1分 ∴CF AD =.∵ CD AB 为边上的中线, ∴BD AD =. ∴CF BD =.∴四边形BDCF 为平行四边形. ∵ BC DE ⊥,∴四边形BDCF 为菱形. ………………………3分F〔2〕解:在Rt ACE △中,∵ ,∴设 2,3CE x AC DF x ===. ∵菱形BDCF 的面积为24, ∴ .………………………4分 ∴ 24DF EC ⋅=. ∴ 3224x x ⋅=.∴ 12x =,22x =-〔舍〕. ∴4CE =,3DF =.∴5CF =. ………………………5分23. 解:〔1〕∵点)1,(m A 在双曲线上,∴6=m . ………………………1分 ∵点)1,6(A 在直线上,∴2-=b . ………………………2分 〔2〕当点B 在线段DE 上时,如图1,过点D 作DP ⊥y 轴于P ,过点B 作BQ ⊥y 轴于Q .可得EQB △∽EPD △. ∵BE BD 2=, ∴.∵1BQ =, ∴3DP =. ∵点D 在直线1l 上, ∴.………………4分当点B 在线段DE 的延长线上时,如图2, 同理,由BE BD 2=,可得点D 的坐标为. 综上所述,点D 的坐标为或.…………… 5分图1图224. 〔1〕证明:连接OD .………………………1分∵⊙O 切BC 于点D , 90C ∠=︒,∴90ODB C ∠=∠=︒.∴OD ∥AC .∴DAC ODA ∠=∠.∵OD OA =,∴OAD ODA ∠=∠.∴DAC OAD ∠=∠.∴AD 平分BAC ∠.………………………2分〔2〕解:连接DE .∵AE 为直径,∴︒=∠90ADE .∵OAD DAC ∠=∠,sin ,∴sin .∵5OA =,∴10AE =.∴AD =.………………………3分∴4CD =,8AC =.∵OD ∥AC ,∴BOD BAC △∽△.………………………4分∴.即.∴.………………………5分25.〔1〕m 16.5=;………………………2分〔2〕14;〔估值在合理范围内即可〕 ………………………3分〔3〕14000016.5%0.69.721000⨯⨯- 4.14=. 答:2021年我国儿科医生需比2021 年增加4.14万人,才能使每千名儿童拥有的儿科医生数到达0.6. ………………………5分26. 第二步:6BD BC ==;………………………1分第四步:如图,△ABC 即为所求. ………………3分第五步: ② ,18.………………5分27. 解:〔1〕12n n =. ……………… 1 分理由如下:由题意可得抛物线的对称轴为2x =.∵1P (1,1n ),2P 〔3,2n 〕在抛物线24y ax ax b =-+上,∴12n n =.………………3分〔2〕当0a >时,抛物线的顶点为〔2,1〕,且过点〔4,4〕,∴抛物线的解析式为.………………5分当0a <时,抛物线的顶点为〔2,4〕,且过点〔4,1〕,∴抛物线的解析式为.综上所述,抛物线的解析式为或.…………7 分28. 解:〔1〕①补全图形,如图1所示.…………1分②连接BE .∵AB BC =,,E C 关于直线BD 对称,∴AB BC BE ==.………………………2分∴C BEC ∠=∠, BAE BEA ∠=∠.∵90ABC ∠=︒,∴270BAE AEC C ∠+∠+∠=︒.∴135AEC ∠=︒..………………………4分〔2〕求解思路如下:a .连接AC ,过点A 作AF ⊥CE ,交CE 延长线于点F ,如图2所示;b .由〔1〕可求︒=∠135AEC ,由2AE =可求1AF EF ==;c .由31CE =-,可求2AC =, 2AB BC ==,可证△ABE 为等边三角形;d .由C ,E 两点关于直线BD 对称,AB AD =,可求15EBD ∠=︒,75ABD ∠=︒,30α=︒. ……………………7分29.解:〔1〕函数1y x =-没有不变值; ………………1分函数有1-和1两个不变值,其不变长度为2;………………2分 函数2y x =有0和1两个不变值,其不变长度为1;………………3分〔2〕①∵函数22y x bx =-的不变长度为零,∴方程22x bx x -=有两个相等的实数根.∴1b =-. ………………4分②解方程22x bx x -=,得10x =,.………………5分 ∵13b ≤≤,∴212x ≤≤.∴函数22y x bx =-的不变长度q 的取值范围为12q ≤≤. ………………6分 〔3〕m 的取值范围为13m ≤≤或. ………………8分。

2016年北京市海淀区中考数学一模试卷及答案

2016年北京市海淀区中考数学一模试卷及答案

2016年北京市海淀区中考数学一模试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.(3分)“中华人民共和国全国人民代表大会”和“中国人民政治协商会议”于2016年3月3日在北京胜利召开.截止到2016年3月14日,在百度上搜索关键词“两会”,显示的搜索结果约为96 500 000条.将96 500 000用科学记数法表示应为()A.96.5×107B.9.65×107C.9.65×108D.0.965×1092.(3分)如图是某个几何体的三视图,该几何体是()A.长方体B.正方体C.圆柱D.三棱柱3.(3分)一个不透明的口袋中装有3个红球和12个黄球,这些球除了颜色外,无其他差别,从中随机摸出一个球,恰好是红球的概率为()A.B.C.D.4.(3分)下列图形中,是轴对称图形,但不是中心对称图形的是()A. B.C.D.5.(3分)如图,在▱ABCD中,AB=3,BC=5,∠ABC的平分线交AD于点E,则DE的长为()A.5 B.4 C.3 D.26.(3分)如图,等腰直角三角板的顶点A,C分别在直线a,b上.若a∥b,∠1=35°,则∠2的度数为()A.35°B.15°C.10°D.5°7.(3分)初三(8)班体委用划记法统计本班40名同学投掷实心球的成绩,结果如下表所示:则这40名同学投掷实心球的成绩的众数和中位数分别是()A.9,8 B.9,8.5 C.8,8 D.8,8.58.(3分)京津冀都市圈是指以北京、天津两座直辖市以及河北省的保定、廊坊、唐山、邯郸、邢台、秦皇岛、沧州、衡水、承德、张家口和石家庄为中心的区域.若“数对”(190.43°)表示图中承德的位置,“数对”(160,238°)表示图中保定的位置,则与图中张家口的位置对应的“数对”为()A.(176,145°)B.(176,35°) C.(100,145°)D.(100,35°)9.(3分)油电混动汽车是一种节油、环保的新技术汽车.它将行驶过程中部分原本被浪费的能量回收储存于内置的蓄电池中.汽车在低速行驶时,使用蓄电池带动电动机驱动汽车,节约燃油.某品牌油电混动汽车与普通汽车的相关成本数据估算如下:某人计划购入一辆上述品牌的汽车.他估算了未来10年的用车成本,在只考虑车价和燃油成本的情况下,发现选择油电混动汽车的成本不高于选择普通汽车的成本.则他在估算时,预计平均每年行驶的公里数至少为()A.5 000 B.10 000 C.15 000 D.20 00010.(3分)小明在暗室做小孔成像实验,如图1,固定光源(线段MN)发出的光经过小孔(动点K)成像(线段M′N′)于足够长的固定挡板(直线l)上,其中MN∥l.已知点K匀速运动,其运动路径由AB,BC,CD,DA,AC,BD组成.记它的一段时间为x,M′N′的长度为y,若y关于x的函数图象大致如图2所示,则点K 的运动路径可能为()A.A→B→C→D→A B.B→C→D→A→B C.B→C→A→D→B D.D→A→B→C→D二、填空题(本题共18分,每小题3分)11.(3分)分解因式:a2b﹣2ab+b=.12.(3分)如图,AB是⊙O的弦,OC⊥AB于点C,若AB=8cm,OC=3cm,则⊙O的半径为cm.13.(3分)埃及《纸草书》中记载:“一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33”设这个数是x,可列方程为.14.(3分)在下列函数①y=2x+1;②y=x2+2x;③y=;④y=﹣3x中,与众不同的一个是(填序号),你的理由是.15.(3分)北京市2010~2015年高考报名人数统计如图所示.根据统计图中提供的信息,预估2016年北京市高考报名人数约为万人,你的预估理由是.16.(3分)阅读下面材料:在数学课上,老师提出如下问题:尺规作图:过直线外一点作已知直线的平行线.已知:直线l及其外一点A.求作:l的平行线,使它经过点A.小云的作法如下:(1)在直线l上任取一点B,以点B为圆心,AB长为半径作弧,交直线l于点C;(2)分别以A,C为圆心,以AB长为半径作弧,两弧相交于点D;(3)作直线AD.所以直线AD即为所求.老师说:“小云的作法正确.”请回答:小云的作图依据是.三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)17.(5分)计算:()0﹣6sin30°+()﹣2+|1﹣|.18.(5分)解不等式组并写出它的所有整数解.19.(5分)已知x2+x﹣5=0,求代数式(x﹣1)2﹣x(x﹣3)+(x+2)(x﹣2)的值.20.(5分)如图,在△ABC中,∠BAC=90°,AD⊥BC于点D,DE为AC边上的中线,求证:∠BAD=∠EDC.21.(5分)目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的能量消耗.对比手机数据发现小明步行12 000步与小红步行9 000步消耗的能量相同.若每消耗1千卡能量小明行走的步数比小红多10步,求小红每消耗1千卡能量需要行走多少步?22.(5分)如图,矩形ABCD的对角线AC,BD相交于点O,过点B作AC的平行线交DC的延长线于点E.(1)求证:BD=BE;(2)若BE=10,CE=6,连接OE,求tan∠OED的值.23.(5分)在平面直角坐标系xOy中,直线y=﹣x与双曲线y=(k≠0)的一个交点为P().(1)求k的值;(2)将直线y=﹣x向上平移b(b>0)个单位长度后,与x轴,y轴分别交于点A,点B,与双曲线y=(k≠0)的一个交点记为Q.若BQ=2AB,求b的值.24.(5分)如图,AB,AD是⊙O的弦,AO平分∠BAD.过点B作⊙O的切线交AO的延长线于点C,连接CD,BO.延长BO交⊙O于点E,交AD于点F,连接AE,DE.(1)求证:CD是⊙O的切线;(2)若AE=DE=3,求AF的长.25.(5分)阅读下列材料:2015年中国内地电影市场票房总收入400亿元,动画电影成为了新崛起的热点,票房占比为11.25%.2014年,中国内地动画电影市场6部破亿,只有一部《熊出没》为国产动画电影,票房成绩为2.4亿元.而2015年中国内地动画电影市场共8部破亿,国产动画电影占3部,分别是《大圣归来》,《熊出没2》和《十万个冷笑话》.其中,《大圣归来》以9.55亿元票房夺冠,《熊出没2》比2014年第一部的票房又增长了20%,《十万个冷笑话》以1.2亿元票房成绩勉强破亿.另外5部来自海外动画电影,其中美国两部全球热映的动画电影《超能陆战队》和《小黄人大眼萌》在中国内地只拿下5.26亿元和4.36亿元票房,而同样来自美国的《精灵旅社2》收获1.2亿元票房,日本的《哆啦A梦之伴我同行》和法国的《小王子》分别获得5.3亿和1.58亿元票房收入.2015年中国内地动画电影市场中,国产动画电影共上映41部,其中票房在1000万元~5000万元、5000万元~1亿元的国产动画电影分别有12部和5部,票房金字塔结构分化更加明显,标志着中国国产动画电影市场的日趋成熟.根据以上材料解答下列问题:(1)2015年中国内地动画电影票房收入为亿元;(2)如图为2015年国产动画电影票房金字塔,则B=;(3)选择统计表或统计图将2015年中国内地动画电影市场票房收入前5名的票房成绩表示出来.26.(5分)有这样一个问题:探究函数y=(x﹣1)(x﹣2)(x﹣3)的图象与性质.小东对函数y=(x﹣1)(x﹣2)(x﹣3)的图象与性质进行了探究.下面是小东的探究过程,请补充完成:(1)函数y=(x﹣1)(x﹣2)(x﹣3)的自变量x的取值范围是全体实数;(2)下表是y与x的几组对应值.①m=;②若M(﹣7,﹣720),N(n,720)为该函数图象上的两点,则n=;(3)在平面直角坐标系xOy中,A(x A,y A),B(x B,﹣y A)为该函数图象上的两点,且A为2≤x≤3范围内的最低点,A点的位置如图所示.①标出点B的位置;②画出函数y=(x﹣1)(x﹣2)(x﹣3)(0≤x≤4)的图象.27.(7分)在平面直角坐标系xOy中,抛物线y=mx2﹣2mx+m﹣4(m≠0)的顶点为A,与x轴交于B,C两点(点B在点C左侧),与y轴交于点D.(1)求点A的坐标;(2)若BC=4,①求抛物线的解析式;②将抛物线在C,D之间的部分记为图象G(包含C,D两点).若过点A的直线y=kx+b(k≠0)与图象G有两个交点,结合函数的图象,求k的取值范围.28.(7分)在△ABC中,AB=AC,∠BAC=90°,点D在射线BC上(与B、C两点不重合),以AD为边作正方形ADEF,使点E与点B在直线AD的异侧,射线BA 与射线CF相交于点G.(1)若点D在线段BC上,如图1.①依题意补全图1;②判断BC与CG的数量关系与位置关系,并加以证明;(2)若点D在线段BC的延长线上,且G为CF中点,连接GE,AB=,则GE 的长为,并简述求GE长的思路.29.(8分)在平面直角坐标系xOy中,⊙C的半径为r,P是与圆心C不重合的点,点P关于⊙C的限距点的定义如下:若P′为直线PC与⊙C的一个交点,满足r≤PP′≤2r,则称P′为点P关于⊙C的限距点,如图为点P及其关于⊙C的限距点P′的示意图.(1)当⊙O的半径为1时.①分别判断点M(3,4),N(,0),T(1,)关于⊙O的限距点是否存在?若存在,求其坐标;②点D的坐标为(2,0),DE,DF分别切⊙O于点E,点F,点P在△DEF的边上.若点P关于⊙O的限距点P′存在,求点P′的横坐标的取值范围;(2)保持(1)中D,E,F三点不变,点P在△DEF的边上沿E→F→D→E的方向运动,⊙C的圆心C的坐标为(1,0),半径为r,请从下面两个问题中任选一个作答.2016年北京市海淀区中考数学一模试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.(3分)“中华人民共和国全国人民代表大会”和“中国人民政治协商会议”于2016年3月3日在北京胜利召开.截止到2016年3月14日,在百度上搜索关键词“两会”,显示的搜索结果约为96 500 000条.将96 500 000用科学记数法表示应为()A.96.5×107B.9.65×107C.9.65×108D.0.965×109【解答】解:96 500 000用科学记数法表示应为:9.65×107,故选:B.2.(3分)如图是某个几何体的三视图,该几何体是()A.长方体B.正方体C.圆柱D.三棱柱【解答】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱.故选D.3.(3分)一个不透明的口袋中装有3个红球和12个黄球,这些球除了颜色外,无其他差别,从中随机摸出一个球,恰好是红球的概率为()A.B.C.D.【解答】解:∵一个不透明的口袋中装有3个红球和12个黄球,这些球除了颜色外无其他差别,∴从中随机摸出一个小球,恰好是红球的概率为:=.故选C.4.(3分)下列图形中,是轴对称图形,但不是中心对称图形的是()A. B.C.D.【解答】解:A、既是轴对称图形也是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项正确;C、既是轴对称图形也是中心对称图形,故此选项错误;D、既是轴对称图形也是中心对称图形,故此选项错误;故选:B.5.(3分)如图,在▱ABCD中,AB=3,BC=5,∠ABC的平分线交AD于点E,则DE的长为()A.5 B.4 C.3 D.2【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=5,∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AE=AB=3,∴DE=AD﹣AE=2.故选D.6.(3分)如图,等腰直角三角板的顶点A,C分别在直线a,b上.若a∥b,∠1=35°,则∠2的度数为()A.35°B.15°C.10°D.5°【解答】解:如图所示:∵△ABC是等腰直角三角形,∴∠BAC=90°,∠ACB=45°,∴∠1+∠BAC=35°+90°=125°,∵a∥b,∴∠ACD=180°﹣125°=55°,∴∠2=∠ACD﹣∠ACB=55°﹣45°=10°;故选:C.7.(3分)初三(8)班体委用划记法统计本班40名同学投掷实心球的成绩,结果如下表所示:则这40名同学投掷实心球的成绩的众数和中位数分别是()A.9,8 B.9,8.5 C.8,8 D.8,8.5【解答】解:投掷实心球的成绩最多的是9,共有14人,所以,众数是9,这40名同学投掷实心球的成绩从小到大排列,第20,21人的成绩是8,所以中位数是8.故选A8.(3分)京津冀都市圈是指以北京、天津两座直辖市以及河北省的保定、廊坊、唐山、邯郸、邢台、秦皇岛、沧州、衡水、承德、张家口和石家庄为中心的区域.若“数对”(190.43°)表示图中承德的位置,“数对”(160,238°)表示图中保定的位置,则与图中张家口的位置对应的“数对”为()A.(176,145°)B.(176,35°) C.(100,145°)D.(100,35°)【解答】解:由题意可得,建立的坐标系如右图所示∵“数对”(190,43°)表示图中承德的位置,“数对”(160,238°)表示图中保定的位置,∴张家口的位置对应的“数对”为(176,145°),故选A.9.(3分)油电混动汽车是一种节油、环保的新技术汽车.它将行驶过程中部分原本被浪费的能量回收储存于内置的蓄电池中.汽车在低速行驶时,使用蓄电池带动电动机驱动汽车,节约燃油.某品牌油电混动汽车与普通汽车的相关成本数据估算如下:某人计划购入一辆上述品牌的汽车.他估算了未来10年的用车成本,在只考虑车价和燃油成本的情况下,发现选择油电混动汽车的成本不高于选择普通汽车的成本.则他在估算时,预计平均每年行驶的公里数至少为()A.5 000 B.10 000 C.15 000 D.20 000【解答】解:设平均每年行驶的公里数为x公里,根据题意得:174800+x×10≤159800+x×10,解得:x≥10000.答:平均每年行驶的公里数至少为10000公里.故选B.10.(3分)小明在暗室做小孔成像实验,如图1,固定光源(线段MN)发出的光经过小孔(动点K)成像(线段M′N′)于足够长的固定挡板(直线l)上,其中MN∥l.已知点K匀速运动,其运动路径由AB,BC,CD,DA,AC,BD组成.记它的一段时间为x,M′N′的长度为y,若y关于x的函数图象大致如图2所示,则点K 的运动路径可能为()A.A→B→C→D→A B.B→C→D→A→B C.B→C→A→D→B D.D→A→B→C→D 【解答】解:由题意可得,当K在点A处时,y最大,在C处时,y最小,点K匀速运动,由图2可知,点K从开始运动到第一次到达的位置一定为点C,第三次到达的位置一定为点A,故选项B符合,从B→C,y随x的增大而减小,从C→D,y随x的增大而增大,从D→A,y随x的增大而增大,A→B,y随x的增大而减小,故选B.二、填空题(本题共18分,每小题3分)11.(3分)分解因式:a2b﹣2ab+b=b(a﹣1)2.【解答】解:a2b﹣2ab+b,=b(a2﹣2a+1),…(提取公因式)=b(a﹣1)2.…(完全平方公式)12.(3分)如图,AB是⊙O的弦,OC⊥AB于点C,若AB=8cm,OC=3cm,则⊙O的半径为5cm.【解答】解:由垂径定理OC⊥AB,则AC=BC=AB=4cm在Rt△ACO中,AC=4,OC=3,由勾股定理可得AO==5(cm),即⊙O的半径为5cm.故答案为:5.13.(3分)埃及《纸草书》中记载:“一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33”设这个数是x,可列方程为x+x+x+x=33.【解答】解:设这个数是x,依题意有x+x+x+x=33,故答案为:x+x+x+x=33.14.(3分)在下列函数①y=2x+1;②y=x2+2x;③y=;④y=﹣3x中,与众不同的一个是③(填序号),你的理由是只有③的自变量取值范围不是全体实数.【解答】解:①y=2x+1中自变量的取值范围是全体实数;②y=x2+2x中自变量的取值范围是全体实数;③y=中自变量的取值范围是x≠0;④y=﹣3x中自变量的取值范围是全体实数;理由是:只有③的自变量取值范围不是全体实数故答案为:③,只有③的自变量取值范围不是全体实数.15.(3分)北京市2010~2015年高考报名人数统计如图所示.根据统计图中提供的信息,预估2016年北京市高考报名人数约为 6.53万人,你的预估理由是最近三年减少的人数趋于平缓,减少人数基本维持在0.25万人左右.【解答】解:由折线统计图可知,2010﹣2011年报名人数减少8.02﹣7.60=0.42(万人),2011﹣2012年报名人数减少7.60﹣7.35=0.25(万人),2012﹣2013年报名人数减少7.35﹣7.27=0.08(万人),2013﹣2014年报名人数减少7.27﹣7.05=0.22(万人),2014﹣2015年报名人数减少7.05﹣6.78=0.27(万人),由上可预估2016年北京市高考报名人数约为6.53万人,理由:最近三年减少的人数趋于平缓,减少人数基本维持在0.25万人左右;故答案为:6.53,最近三年减少的人数趋于平缓,减少人数基本维持在0.25万人左右.16.(3分)阅读下面材料:在数学课上,老师提出如下问题:尺规作图:过直线外一点作已知直线的平行线.已知:直线l及其外一点A.求作:l的平行线,使它经过点A.小云的作法如下:(1)在直线l上任取一点B,以点B为圆心,AB长为半径作弧,交直线l于点C;(2)分别以A,C为圆心,以AB长为半径作弧,两弧相交于点D;(3)作直线AD.所以直线AD即为所求.老师说:“小云的作法正确.”请回答:小云的作图依据是四条边都相等的四边形是菱形;菱形的对边平行.【解答】解:由题意可得,小云的作图依据是:四条边都相等的四边形是菱形;菱形的对边平行.(本题答案不唯一).故答案为:四条边都相等的四边形是菱形;菱形的对边平行.三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)17.(5分)计算:()0﹣6sin30°+()﹣2+|1﹣|.【解答】解:原式=1﹣6×+4+﹣1=4﹣2.18.(5分)解不等式组并写出它的所有整数解.【解答】解:解不等式4(x﹣1)≤3(x+2)得:x≤10,解不等式<x﹣4得:x>7,∴不等式组的解集为:7<x≤10,则该不等式组的整数解有:8、9、10.19.(5分)已知x2+x﹣5=0,求代数式(x﹣1)2﹣x(x﹣3)+(x+2)(x﹣2)的值.【解答】解:(x﹣1)2﹣x(x﹣3)+(x+2)(x﹣2)=x2﹣2x+1﹣x2+3x+x2﹣4=x2+x﹣3,∵x2+x﹣5=0,∴x2+x=5,∴原式=5﹣3=2.20.(5分)如图,在△ABC中,∠BAC=90°,AD⊥BC于点D,DE为AC边上的中线,求证:∠BAD=∠EDC.【解答】证明:∵∠BAC=90°,∴∠BAD+∠DAC=90°,又∵AD⊥BC,即∠ADC=90°,∴∠DAC+∠C=90°,∴∠BAD=∠C.∵DE是直角△ACD斜边上的中线,∴DE=AC=EC,∴∠C=∠EDC,∴∠BAD=∠EDC.21.(5分)目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的能量消耗.对比手机数据发现小明步行12 000步与小红步行9 000步消耗的能量相同.若每消耗1千卡能量小明行走的步数比小红多10步,求小红每消耗1千卡能量需要行走多少步?【解答】解:设小红每消耗1千卡能量需要行走x步,则小明每消耗1千卡能量需要行走(x+10)步,根据题意,得=,解得x=30.经检验:x=30是原方程的解.答:小红每消耗1千卡能量需要行走30步.22.(5分)如图,矩形ABCD的对角线AC,BD相交于点O,过点B作AC的平行线交DC的延长线于点E.(1)求证:BD=BE;(2)若BE=10,CE=6,连接OE,求tan∠OED的值.【解答】解:(1)∵四边形ABCD是矩形,∴AC=BD,AB∥CD,又∵BE∥AC,∴四边形ABEC是平行四边形,∴AC=BE,∴BD=BE;(2)如图,过点O作OF⊥CD于点F,∵四边形ABCD是矩形,∴∠BCD=90°.∵BE=BD=10,∴CD=CE=6.同理,可得CF=DF=CD=3,∴EF=9.在直角△BCE中,由勾股定理可得:BC=8.∵OB=OD,∴OF为△BCD的中位线,∴OF=BC=4,∴在直角△OEF中,tan∠OED==.23.(5分)在平面直角坐标系xOy中,直线y=﹣x与双曲线y=(k≠0)的一个交点为P().(1)求k的值;(2)将直线y=﹣x向上平移b(b>0)个单位长度后,与x轴,y轴分别交于点A,点B,与双曲线y=(k≠0)的一个交点记为Q.若BQ=2AB,求b的值.【解答】解:(1)∵直线y=﹣x经过P().∴m=﹣,∴P(,﹣),∵点P(,﹣)在y=(k≠0)上,∴k=×(﹣)=﹣6.(2)如图,∵直线y=﹣x向上平移b(b>0)个单位长度后的解析式为y=﹣x+b,∴OA=OB=b,∵BQ=2AB,∴=或=1,作QC⊥x轴于C,∴QC∥y轴,∴△ABO∽△AQC,∴===,或===1,∴点Q坐标(﹣2b,3b),或(2b,﹣b)∴﹣6b2=﹣6或﹣2b2=﹣6,b=±1或b=±,∵b>0,∴b=1或.24.(5分)如图,AB,AD是⊙O的弦,AO平分∠BAD.过点B作⊙O的切线交AO的延长线于点C,连接CD,BO.延长BO交⊙O于点E,交AD于点F,连接AE,DE.(1)求证:CD是⊙O的切线;(2)若AE=DE=3,求AF的长.【解答】(1)证明:如图,连接OD.∵BC为圆O的切线,∴∠CBD=90°.∵AO平分∠BAD,∴∠OAB=∠OBF.∵OA=OB=OD,∴∠OAB=∠ABO=∠OAF=∠ODA,∴∠BOC=∠DOC,在△COB和△COD中,,∴BOC≌△DOC,∴∠CBO=∠CDO=90°,∴CD是⊙O的切线;(2)∵AE=DE,∴=,∴∠DAE=∠ABO,∴∠BAO=∠OAD=∠ABO∴∠BAO=∠OAD=∠DAE,∵BE是直径,∴∠BAE=90°,∴∠BAO=∠OAD=∠DAE=∠ABO=30°,∴∠AFE=90°,在Rt△AFE中,∵AE=3,∠DAE=30°,∴EF=AE=,∴AF==.25.(5分)阅读下列材料:2015年中国内地电影市场票房总收入400亿元,动画电影成为了新崛起的热点,票房占比为11.25%.2014年,中国内地动画电影市场6部破亿,只有一部《熊出没》为国产动画电影,票房成绩为2.4亿元.而2015年中国内地动画电影市场共8部破亿,国产动画电影占3部,分别是《大圣归来》,《熊出没2》和《十万个冷笑话》.其中,《大圣归来》以9.55亿元票房夺冠,《熊出没2》比2014年第一部的票房又增长了20%,《十万个冷笑话》以1.2亿元票房成绩勉强破亿.另外5部来自海外动画电影,其中美国两部全球热映的动画电影《超能陆战队》和《小黄人大眼萌》在中国内地只拿下5.26亿元和4.36亿元票房,而同样来自美国的《精灵旅社2》收获1.2亿元票房,日本的《哆啦A梦之伴我同行》和法国的《小王子》分别获得5.3亿和1.58亿元票房收入.2015年中国内地动画电影市场中,国产动画电影共上映41部,其中票房在1000万元~5000万元、5000万元~1亿元的国产动画电影分别有12部和5部,票房金字塔结构分化更加明显,标志着中国国产动画电影市场的日趋成熟.根据以上材料解答下列问题:(1)2015年中国内地动画电影票房收入为亿元;(2)如图为2015年国产动画电影票房金字塔,则B=21;(3)选择统计表或统计图将2015年中国内地动画电影市场票房收入前5名的票房成绩表示出来.【解答】解:(1)2015年中国内地动画电影票房收入为400×11.25%=45(亿元);(2)B=41﹣3﹣5﹣12=21(部);故答案为45,21;(3)《熊出没2》2015年的票房为2.4×(1+20%)=2.88(亿),2015年中国内地动画电影市场票房收入前5名的票房成绩统计表26.(5分)有这样一个问题:探究函数y=(x﹣1)(x﹣2)(x﹣3)的图象与性质.小东对函数y=(x﹣1)(x﹣2)(x﹣3)的图象与性质进行了探究.下面是小东的探究过程,请补充完成:(1)函数y=(x﹣1)(x﹣2)(x﹣3)的自变量x的取值范围是全体实数;(2)下表是y与x的几组对应值.①m=﹣60;②若M(﹣7,﹣720),N(n,720)为该函数图象上的两点,则n=11;(3)在平面直角坐标系xOy中,A(x A,y A),B(x B,﹣y A)为该函数图象上的两点,且A为2≤x≤3范围内的最低点,A点的位置如图所示.①标出点B的位置;②画出函数y=(x﹣1)(x﹣2)(x﹣3)(0≤x≤4)的图象.【解答】解:(2)①当x=﹣2时,y=(x﹣1)(x﹣2)(x﹣3)=﹣60.故答案为:﹣60.②观察表格中的数据可得出函数图象关于点(2,0)中心对称,∴﹣7+n=2×2,解得:n=11.故答案为:11.(3)①作点A关于点(2,0)的对称点B1,再在函数图象上找与点B1纵坐标相等的B2点.②根据表格描点、连线,画出图形如图所示.27.(7分)在平面直角坐标系xOy中,抛物线y=mx2﹣2mx+m﹣4(m≠0)的顶点为A,与x轴交于B,C两点(点B在点C左侧),与y轴交于点D.(1)求点A的坐标;(2)若BC=4,①求抛物线的解析式;②将抛物线在C,D之间的部分记为图象G(包含C,D两点).若过点A的直线y=kx+b(k≠0)与图象G有两个交点,结合函数的图象,求k的取值范围.【解答】解:(1)y=mx2﹣2mx+m﹣4=m(x﹣1)2﹣4,所以抛物线的顶点A的坐标为(1,﹣4);(2)①∵BC=4,抛物线的对称轴为x=1,点B在点C左侧,∴点B坐标为(﹣1,0),点C坐标为(3,0),将B(﹣1,0)代入y=m(x﹣1)2﹣4,得:0=4m﹣4,解得m=1所以抛物线的解析式为y=(x﹣1)2﹣4=x2﹣2x﹣3;②B(﹣1,0),C(3,0),当x=0时,y=x2﹣2x﹣3=﹣3,则D(0,﹣3),如图,当直线y=kx+b过A、C时,直线解析式为y=2x﹣6;当直线y=kx+b过A、D时,直线解析式为y=﹣x﹣3,所以若过点A的直线y=kx+b(k≠0)与图象G有两个交点,k的取值范围为0<k≤2或﹣1≤k<0.28.(7分)在△ABC中,AB=AC,∠BAC=90°,点D在射线BC上(与B、C两点不重合),以AD为边作正方形ADEF,使点E与点B在直线AD的异侧,射线BA 与射线CF相交于点G.(1)若点D在线段BC上,如图1.①依题意补全图1;②判断BC与CG的数量关系与位置关系,并加以证明;(2)若点D在线段BC的延长线上,且G为CF中点,连接GE,AB=,则GE的长为,并简述求GE长的思路.【解答】(1)证明:①依题意补全图形,如图1所示,②BC⊥CG,BC=CG;∵∠BAC=90°,AB=AC,∴∠ABC=∠ACB=45°,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAC=∠BAD+∠DAC=90°,∠DAF=∠CAF+∠DAC=90°,∴∠BAD=∠CAF,在△BAD和△CAF中,∴△BAD≌△CAF(SAS),∴∠ACF=∠ABD=45°,∴∠ACF+∠ACB=90°,∴BC⊥CG;∵点G是BA延长线上的点,BC=CG(2)如图2,∵∠BAC=90°,AB=AC,∴∠ABC=∠ACB=45°,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAC=∠BAD﹣∠DAC=90°,∠DAF=∠CAF﹣∠DAC=90°,∴∠BAD=∠CAF,在△BAD和△CAF中,∴△BAD≌△CAF(SAS),∴∠ACF=∠ABD=45°,BD=CF,∴∠ACF+∠ACB=90°,∴BC⊥CF;∵AB=,BC=CD=CG=GF=2,∴在Rt△ACG中,根据勾股定理得,AG=,∴在Rt△CDG中,根据勾股定理的,DG=2,∵AD=,∴AH=,HG=,∴GI=AD﹣HG=,∴GE==故答案为.29.(8分)在平面直角坐标系xOy中,⊙C的半径为r,P是与圆心C不重合的点,点P关于⊙C的限距点的定义如下:若P′为直线PC与⊙C的一个交点,满足r≤PP′≤2r,则称P′为点P关于⊙C的限距点,如图为点P及其关于⊙C的限距点P′的示意图.(1)当⊙O的半径为1时.①分别判断点M(3,4),N (,0),T(1,)关于⊙O的限距点是否存在?若存在,求其坐标;②点D的坐标为(2,0),DE,DF分别切⊙O于点E,点F,点P在△DEF的边上.若点P关于⊙O的限距点P′存在,求点P′的横坐标的取值范围;(2)保持(1)中D,E,F三点不变,点P在△DEF的边上沿E→F→D→E的方向运动,⊙C的圆心C的坐标为(1,0),半径为r,请从下面两个问题中任选一个作答.<【解答】解:(1)①点M、点T关于⊙O 的限距点不存在,点N 关于⊙0的限距点存在,坐标为(1,0).②∵点D坐标为(2,0),⊙O半径为1,DE、DF分别切⊙O于E、F,∴切点坐标为(,),(,﹣),如图所示,不妨设点E(,),点F(,﹣),EO、FO的延长线分别交⊙O于点E′、F′,则E′(﹣,﹣),F′(﹣,).设点P关于⊙O的限距点的横坐标为x,①当点P在线段EF上时,直线PO与⊙O的交点P′满足1≤PP′≤2,故点P关于⊙O的限距点存在,其横坐标x满足﹣1≤x≤﹣.②当点P在线段DE、DF(不包括端点)上时,直线PO与⊙O的交点P′满足0<PP′<1或2<PP′<3,故点P关于⊙O的限距点不存在.③当点P与点D重合时,直线PO与⊙O的交点P′(1,0),满足PP′=1,故点P 关于⊙O的限距点存在,其横坐标x=1.综上所述点P关于⊙O的限距点的横坐标x的范围为﹣1≤x≤﹣或x=1.(2)问题1:如图2中,∵△DEF是等边三角形,点C是△DEF的外接圆的圆心,∵若点P关于⊙C的限距点P′存在,且P′随点P的运动所形成的路径长为πr,∴图中△PP′C是等边三角形,点P在PP′上运动时,有限距点,∵PC∥ED,∴==,∴PC=,由题意:r≤﹣r≤2r,∴,∴r的最小值为.问题2:如图2中,当点H不存在限距点时,点P就不存在限距点,∵HC=,∴﹣r>2r,∴r<,∴0<r<时点P的限距点不存在.故答案分别为,0<r<.。

2016-2017学年北京市海淀区九年级二模数学试卷(含答案)

2016-2017学年北京市海淀区九年级二模数学试卷(含答案)

()海 淀 区 九 年 级 第 二 学 期 期 末 练 习数 学2017.6 学校 班级 姓名 准考证号一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的.请将正确选项填涂在答题卡相应的位置.1.如图,用圆规比较两条线段A B ''和AB 的长短,其中正确的是 A .A B AB ''> B .A B AB ''= C .A B AB ''< D . 不确定2.如图,在正方体的一角截去一个小正方体,所得立体图形的主视图是A B CD 3.下列计算正确的是A .23a a a -=B .()236aa =C =D .632a a a =÷4.如图,Y ABCD 中,AD =5,AB =3,∠BAD 的平分线AE 交BC 于E 点,则EC 的长为 A .4 B .3C .2D .1B E CA D★★★★★765FED5.共享单车提供了便捷、环保的出行方式.小白同学在北京植物园打开某共享单车APP ,如图,“ ”为小白同学的位置,“★”为检索到的共享单车停放点.为了到达距离最近的共享单车停放点,下列四个区域中,小白同学应该前往的是 A .F 6 B .E 6 C .D 5D .F 76.在单词happy 中随机选择一个字母,选到字母为p 的概率是 A .15B .25C .35D .457.如图,OA 为⊙O 的半径,弦BC ⊥OA 于P 点.若OA =5,AP =2,则弦BC 的长为 A .10 B .8 C .6D .48.在下列函数中,其图象与x 轴没有交点的是 A .2y x = B .31y x =-+ C .2y x =D .1y x=9.如图,在等边三角形三个顶点和中心处的每个“○”中各填有一个式子,若图中任意三个“○”中的式子之和均相等,则a 的值为 A .3 B .2 C .1D .010.利用量角器可以制作“锐角正弦值速查卡”.制作方法如下:如图,设OA =1,以O 为圆心,分别以0.05,0.1,0.15,0.2,…,0.9,0.95长为半径作半圆,再以OA 为直径作⊙M .利用“锐角正弦值速查卡”可以读出相应锐角正弦的近似值.例如:sin600.87︒≈,sin 450.71︒=.下列角度中正弦值最接近0.94的是OM A 1020304050607080170160150140130120110100102030405060708017016015014013012011010000901801800.10.20.30.40.50.60.70.80.91A .70°B .50°C .40°D .30°二、填空题(本题共18分,每小题3分)2b2a3a P CB O11.若分式12x -有意义,则x 的取值范围是 .12.如图,在平面直角坐标系xOy 中,A (3,4)为⊙O 上一点,B 为⊙O内一点,请写出一个符合要求的点B 的坐标 . 13.计算:111mm m+--= .14.某登山队从大本营出发,在向上攀登的过程中,测得所在位置的气温y ℃与向上攀登的高度x km 的几组对应值如下表:若每向上攀登 1 km ,所在位置的气温下降幅度基本一致,则向上攀登的海拔高度为 2.5 km 时,登山队所在位置的气温约为℃.15.下图是测量玻璃管内径的示意图,点D 正对“10mm ”刻度线,点A 正对“30mm ”刻度线,DE ∥AB .若量得AB 的长为6mm ,则内径DE 的长为 mm .16.在一次飞镖比赛中,甲、乙两位选手各扔10次飞镖,下图记录了他们的比赛结果.你认为两人中技术更好的是 ,你的理由是 .三、解答题(本题共72分,第17~26题每小题5分,第27题7分,第28题7分,第29题8分)1722tan 60--°113-+⎛⎫ ⎪⎝⎭.18.解不等式组:()3221213x x x x +-≥+>-⎧⎪⎨⎪⎩,.甲 乙19.如图,在四边形ABCD 中,AB =AD ,CB =CD .请你添加一条线把它分成两个全等三角形,并给出证明.20.若关于x 的方程412m xx-=的根是2,求()2428m m --+的值.21.如图,在平面直角坐标系xOy 中,过点A (2,0)的直线l :3y mx =-与y 轴交于点B . (1)求直线l 的表达式; (2)若点C 是直线l 与双曲线ny x=的一个公共点,AB =2AC ,直接写出n 的值.22.为了让市民享受到更多的优惠,某市针对乘坐地铁的人群进行了调查.(1)为获得乘坐地铁人群的月均花费信息,下列调查方式中比较合理的是 ; A .对某小区的住户进行问卷调查DCDB E CA FB .对某班的全体同学进行问卷调查C .在市里的不同地铁站,对进出地铁的人进行问卷调查(2)调查小组随机调查了该市1000人上一年乘坐地铁的月均花费(单位:元),绘制了频数分布直方图,如图所示./元频数/① 根据图中信息,估计平均每人乘坐地铁的月均花费的范围是 元; A .20—60 B .60—120 C .120—180②为了让市民享受到更多的优惠,相关部门拟确定一个折扣线,计划使30%左右的人获得折扣优惠.根据图中信息,乘坐地铁的月均花费达到 元的人可以享受折扣.23.如图,在△ABC 中,∠BAC =90°,线段AC 的垂直平分线交AC 于D 点,交BC 于E点,过点A 作BC 的平行线交直线ED 于F 点,连接AE ,CF .(1)求证:四边形AECF 是菱形;(2)若AB =10,∠ACB =30°,求菱形AECF 的面积.24.阅读下列材料:2016年,北京市坚持创新、协调、绿色、开放、共享的发展理念,围绕首都城市战略定位,加快建设国际一流的和谐宜居之都,在教育、科技等方面保持平稳健康发展,实现了“十三五”良好开局.在教育方面,全市共有58所普通高校和81个科研机构培养研究生,全年研究生招生9.7万人,在校研究生29.2万人.全市91所普通高校全年招收本专科学生15.5万人,在校生58.8万人.全市成人本专科招生6.1万人,在校生17.2万人.在科技方面,2016年全年研究与试验发展(R&D)经费支出1479.8亿元,比2015年增长了6.9%,全市研究与试验发展(R&D)活动人员36.2万人,比上年增长1.1万人.2013年,2014年,2015年全年研究与试验发展(R&D)经费支出分别为1185.0亿元,1268.8亿元,1384.0亿元,分别比前一年度增长11.4%,7.1%,9.1%.(以上数据来源于北京市统计局)根据以上材料解答下列问题:(1)请用统计图或统计表将北京市2016年研究生、普通高校本专科学生、成人本专科学生的招生人数和在校生人数表示出来;(2)2015年北京市研究与试验发展(R&D)活动人员为万人;(3)根据材料中的信息,预估2017年北京市全年研究与试验发展(R&D)经费支出约亿元,你的预估理由是.»AC的中点,AC,BD相交于E点,过点A作25.如图,AB是⊙O的直径,BC为弦,D为⊙O 的切线交BD 的延长线于P 点. (1)求证:∠P AC =2∠CBE ;(2)若PD =m ,∠CBE =α,请写出求线段CE 长的思路.26.已知y 是x 的函数,该函数的图象经过A (1,6),B (3,2)两点. (1)请写出一个符合要求的函数表达式 ;(2)若该函数的图象还经过点C (4,3),自变量x 的取值范围是0x ≥,该函数无最小值.①如图,在给定的坐标系xOy 中,画出一.个.符合条件的函数的图象;②根据①中画出的函数图象,写出6x =对应的函数值y 约为 ; (3)写出(2)中函数的一条性质(题目中已给出的除外).27.抛物线2224y x mx m =-+-与x 轴交于A ,B 两点(A 点在B 点的左侧),与y 轴交于点C ,抛物线的对称轴为x =1.(1)求抛物线的表达式;(2)若CD∥x轴,点D在点C的左侧,12CD AB,求点D的坐标;(3)在(2)的条件下,将抛物线在直线x=t右侧的部分沿直线x=t翻折后的图形记为G,若图形G与线段CD有公共点,请直接写出t的取值范围.28.在锐角△ABC中,AB=AC,AD为BC边上的高,E为AC中点.(1)如图1,过点C作CF⊥AB于F点,连接EF.若∠BAD=20°,求∠AFE的度数;(2)若M为线段BD上的动点(点M与点D不重合),过点C作CN⊥AM于N点,射线EN ,AB 交于P 点. ①依题意将图2补全;②小宇通过观察、实验,提出猜想:在点M 运动的过程中,始终有∠APE =2∠MAD . 小宇把这个猜想与同学们进行讨论,形成了证明该猜想的几种想法: 想法1:连接DE ,要证∠APE =2∠MAD ,只需证∠PED =2∠MAD .想法2:设∠MAD =α,∠DAC =β,只需用α,β表示出∠PEC ,通过角度计算得∠APE =2α.想法3:在NE 上取点Q ,使∠NAQ =2∠MAD ,要证∠APE =2∠MAD ,只需证△NAQ ∽△APQ . ……请你参考上面的想法,帮助小宇证明∠APE =2∠MAD .(一种方法即可)EFB D CA29.在平面直角坐标系xOy 中,对于P ,Q 两点给出如下定义:若点P 到两坐标轴的距离之和等于点Q 到两坐标轴的距离之和,则称P ,Q 两点为同族点.下图中的P ,Q 两点即为同族点.图1 图2(1)已知点A 的坐标为(3-,1),①在点R (0,4),S (2,2),T (2,3-)中,为点A 的同族点的是 ; ②若点B 在x 轴上,且A ,B 两点为同族点,则点B 的坐标为 ; (2)直线l :3y x =-,与x轴交于点C ,与y 轴交于点D ,①M 为线段CD 上一点,若在直线x n =上存在点N ,使得M ,N 两点为同族点,求n 的取值范围;②M 为直线l 上的一个动点,若以(m ,0)为圆心,N ,使得M ,N 两点为同族点,直接写出m 的取值范围.海淀九年级第二学期期末练习数 学 答 案 2017.6一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分) 11.2x ≠12.答案不唯一,例如(0,0)13.1 14.答案不唯一,在10.89.6t -≤≤-范围内即可15.216.乙;乙的平均成绩更高,成绩更稳定.三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)17.原式 = 23 --------------------------------------------------------------------- 4分 = 5. ---------------------------------------------------- 5分18.解:原不等式组为()3221213x x x x +-≥+>-⎧⎪⎨⎪⎩, ①. ②由不等式①,得362x x +-≥, ------------------------------------------------- 1分解得2x ≥; ----------------------------------------- 2分由不等式①,得1233x x +>-, ------------------------------------------ 3分解得4x <; ----------------------------------------- 4分∴ 原不等式组的解集是24x ≤<. ----------------------------------------- 5分19.连接AC ,则△ABC ≌ △ADC . ----------------------------1分证明如下:在△ABC 与△ADC 中,AB AD AC AC CB CD ===⎧⎪⎨⎪⎩,,,---------------------------- 4分∴△ABC ≌ △ADC . ---------------------------- 5分20.解:∵关于x 的方程412m xx-=的根是2,∴4124m -=. --------------------------------------------1分DCBA∴ 4m =. ------------------------------------------2分∴()2428m m --+()244248=--⨯+ ---------------------------------------------- 4分0=. ------------------------------------------------------------ 5分21.解:(1)∵ 直线3l y mx =-:过点A (2,0),∴ 023m =-. ------------------------------------------------- 1分 ∴ 32m =. ------------------------------------------------- 2分 ∴ 直线l 的表达式为332y x =-. ----------------- 3分 (2)n =32-或92. -------------------------------------------- 5分22.(1)C ; ------------------------------------------------------------------- 2分 (2)① B ; --------------------------------------------------------------------- 4分 ② 100. ------------------------------------------------------------------ 5分 23.(1)证明:∵ EF 垂直平分AC ,∴ FA =FC ,EA =EC , ---------------------------------------------- 1分 ∵ AF ∥BC , ∴ ∠1=∠2. ∵ AE =CE ,∴ ∠2=∠3. ∴ ∠1=∠3. ∵ EF ⊥AC ,∴ ∠ADF =∠ADE =90°. ∵ ∠1+∠4=90°,∠3+∠5=90°. ∴ ∠4=∠5.∴ AF =AE . ------------------------------------------------ 2分 ∴ AF =FC =CE =EA .∴ 四边形AECF 是菱形. ---------------------------------------- 3分(2)解:∵∠BAC =∠ADF =90°, ∴AB ∥FE . ∵AF ∥BE ,∴四边形ABEF 为平行四边形.54321F E DCB A∵AB =10,∴FE =AB =10. -------------------------------------------------------- 4分 ∵∠ACB =30°,∴tan ABAC ACB==∠∴12AECF S AC FE ⋅==菱形 ------------------------------ 5分24.(1) 北京市2016年研究生、普通高校本专科学生、成人本专科学生招生人数和在校生人数统计表(单位:万人)北京市2016年研究生、普通高校本专科学生、成人本专科学生 招生人数和在校生人数统计图(单位:万人)---------------------------------- 2分(2)35.1 ; ---------------------------------------------------------------------------- 3分(3)答案不唯一,预估理由与预估结果相符即可. --------------------- 5分25.(1)证明:∵D 为»AC的中点,∴∠CBA =2∠CBE . ------------------------------------ 1分 ∵AB 是⊙O 的直径,A∴∠ACB =90°,∴∠1+∠CBA =90°. ∴∠1+2∠CBE =90°. ∵AP 是⊙O 的切线,∴∠PAB =∠1+∠PAC =90°. ----------------------------- 2分∴∠PAC =2∠CBE . --------------------------------------3分(2)思路:①连接AD ,由D 是»AC的中点,∠2=∠CBE , 由∠ACB =∠PAB =90°,得∠P =∠3=∠4,故AP =AE ; ②由AB 是⊙O 的直径,可得∠ADB =90°;由AP =AE ,得PE =2PD =2m ,∠5=12∠PAC =∠CBE =α -------- 4分③在Rt △PAD 中,由PD =m ,∠5=α,可求PA 的长; ④在Rt △PAB 中,由PA 的长和∠2=α,可求BP 的长; 由BE PB PE =-可求BE 的长;⑤在Rt △BCE 中,由BE 的长和CBE α∠=,可求CE 的长. ------------- 5分 26.(1)答案不唯一,例如6y x=,28y x =-+,2611y x x =-+等; ---------------------2分 (2)答案不唯一,符合题意即可; ---------------------------------------------------- 4分 (3)所写的性质与图象相符即可. ---------------------------------------- 5分 27.(1)解:∵抛物线()222244y x mx m x m =-+-=--,其对称轴为1x =,∴1m =.∴该抛物线的表达式为223y x x =--. ----------------------------- 2分 (2)解:当0y =时,2230x x --=,解得11x =-,23x =,∴抛物线与x 轴的交点为A (1-,0),B (3,0). ---------------- 3分 ∴4AB =.当0x =时,3y =-,∴抛物线与y 轴的交点为C (0,3-). -------------------- 4分 ∵12CD AB =, ∴CD =2.∵CD ∥x 轴,点D 在点C 的左侧,∴点D 的坐标为(2-,3-). ----------------------------- 5分(3)11t -≤≤. ------------------------------------------------------------- 7分28.(1)证明:∵AB =AC ,AD 为BC 边上的高,∠BAD =20°,∴∠BAC =2∠BAD =40°. -------------------------------------- 1分 ∵CF ⊥AB , ∴∠AFC =90°. ∵E 为AC 中点,∴EF =EA =12AC .∴∠AFE =∠BAC =40°. ---------------------------------------- 2分(2)①MPN ECDB A画出一种即可. -------------------------------------------------------- 3分 ②证明:想法1:连接DE .∵AB=AC ,AD 为BC 边上的高, ∴D 为BC 中点.∵E 为AC 中点, ∴ED ∥AB ,∴∠1=∠APE . --------------------------------- 4分∵∠ADC =90°,E 为AC 中点, ∴12AE DE CE AC ===.同理可证12AE NE CE AC ===. ∴AE =NE =CE =DE .∴A ,N ,D ,C 在以点E 为圆心,AC 为直径的圆上. ----- 5分 ∴∠1=2∠MAD . ------------------------------------------ 6分FEB D CAM PN ECDB A∴∠APE =2∠MAD . ------------------------------------------- 7分想法2:设∠MAD =α,∠DAC =β,∵CN ⊥AM , ∴∠ANC =90°. ∵E 为AC 中点,∴12AE NE AC ==.∴∠ANE =∠NAC =∠MAD +∠DAC =α+β. --------------------- 4分 ∴∠NEC =∠ANE +∠NAC =2α+2β. ------------------------ 5分 ∵AB =AC ,AD ⊥BC , ∴∠BAC =2∠DAC =2β.∴∠APE =∠PEC -∠BAC =2α. --------------------------------- 6分 ∴∠APE =2∠MAD . --------------------------------------------- 7分想法3:在NE 上取点Q ,使∠NAQ =2∠MAD ,连接AQ ,∴∠1=∠2. ∵AB =AC ,AD ⊥BC , ∴∠BAD =∠CAD .∴∠BAD -∠1=∠CAD -∠2,即∠3=∠4. ----------------------------------------- 4分 ∴∠3+∠NAQ =∠4+∠NAQ , 即∠PAQ =∠EAN . ∵CN ⊥AM , ∴∠ANC =90°. ∵E 为AC 中点, ∴12AE NE AC ==. ∴∠ANE =∠EAN . ------------------------------------ 5分 ∴∠PAQ =∠ANE . ∵∠AQP =∠AQP ,∴△PAQ ∽ △ANQ . -------------------------------------- 6分 ∴∠APE =∠NAQ =2∠MAD . ------------------------------------ 7分29.(1)①R ,S ; --------------------------------------------------------------------- 2分 ②(4-,0)或(4,0); --------------------------------------------- 4分 (2)①由题意,直线3y x =-与x 轴交于C (3,0),与y 轴交于D (0,3-).EDCBAP MN 4321QN MPAB CDE点M 在线段CD 上,设其坐标为(x ,y ),则有: 0x ≥,0y ≤,且3y x =-.点M 到x 轴的距离为y ,点M 到y 轴的距离为x , 则3x y x y +=-=.∴点M 的同族点N 满足横纵坐标的绝对值之和为3. 即点N 在右图中所示的正方形CDEF 上.∵点E 的坐标为(3-,0),点N 在直线x n =上,∴33n -≤≤. ---------------------------------------------------------------------------------- 6分 ②m ≤1-或m ≥1. ------------------------------------------------------- 8分更多初中数学资料,初中数学试题精解请微信扫一扫,关注周老师工作室公众号y x–1–2–3–41234–1–2–3–41234EF D C OM。

2016北京市海淀区初三(一模)数 学

2016北京市海淀区初三(一模)数    学

2016北京市海淀区初三(一模)数学一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.(3分)“中华人民共和国全国人民代表大会”和“中国人民政治协商会议”于2016年3月3日在北京胜利召开.截止到2016年3月14日,在百度上搜索关键词“两会”,显示的搜索结果约为96 500 000条.将96 500 000用科学记数法表示应为()A.96.5×107B.9.65×107C.9.65×108D.0.965×1092.(3分)如图是某个几何体的三视图,该几何体是()A.长方体B.正方体C.圆柱D.三棱柱3.(3分)一个不透明的口袋中装有3个红球和12个黄球,这些球除了颜色外,无其他差别,从中随机摸出一个球,恰好是红球的概率为()A.B.C.D.4.(3分)下列图形中,是轴对称图形,但不是中心对称图形的是()A.B. C. D.5.(3分)如图,在▱ABCD中,AB=3,BC=5,∠ABC的平分线交AD于点E,则DE的长为()A.5 B.4 C.3 D.26.(3分)如图,等腰直角三角板的顶点A,C分别在直线a,b上.若a∥b,∠1=35°,则∠2的度数为()A.35°B.15°C.10°D.5°7.(3分)初三(8)班体委用划记法统计本班40名同学投掷实心球的成绩,结果如下表所示:成绩(分) 6 7 8 9 10 人数正 一正 正 一正 正正则这40名同学投掷实心球的成绩的众数和中位数分别是( ) A .9,8 B .9,8.5C .8,8D .8,8.58.(3分)京津冀都市圈是指以北京、天津两座直辖市以及河北省的保定、廊坊、唐山、邯郸、邢台、秦皇岛、沧州、衡水、承德、张家口和石家庄为中心的区域.若“数对”(190.43°)表示图中承德的位置,“数对”(160,238°)表示图中保定的位置,则与图中张家口的位置对应的“数对”为( )A .(176,145°)B .(176,35°)C .(100,145°)D .(100,35°)9.(3分)油电混动汽车是一种节油、环保的新技术汽车.它将行驶过程中部分原本被浪费的能量回收储存于内置的蓄电池中.汽车在低速行驶时,使用蓄电池带动电动机驱动汽车,节约燃油.某品牌油电混动汽车与普通汽车的相关成本数据估算如下:油电混动汽车普通汽车 购买价格17.48 15.98 每百公里燃油成本(元)3146某人计划购入一辆上述品牌的汽车.他估算了未来10年的用车成本,在只考虑车价和燃油成本的情况下,发现选择油电混动汽车的成本不高于选择普通汽车的成本.则他在估算时,预计平均每年行驶的公里数至少为( ) A .5 000 B .10 000C .15 000D .20 00010.(3分)小明在暗室做小孔成像实验,如图1,固定光源(线段MN )发出的光经过小孔(动点K )成像(线段M′N′)于足够长的固定挡板(直线l )上,其中MN ∥l .已知点K 匀速运动,其运动路径由AB ,BC ,CD ,DA ,AC ,BD组成.记它的一段时间为x,M′N′的长度为y,若y关于x的函数图象大致如图2所示,则点K 的运动路径可能为()A.A→B→C→D→A B.B→C→D→A→B C.B→C→A→D→B D.D→A→B→C→D二、填空题(本题共18分,每小题3分)11.(3分)分解因式:a2b﹣2ab+b=.12.(3分)如图,AB是⊙O的弦,OC⊥AB于点C,若AB=8cm,OC=3cm,则⊙O的半径为cm.13.(3分)埃及《纸草书》中记载:“一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33”设这个数是x,可列方程为.14.(3分)在下列函数①y=2x+1;②y=x2+2x;③y=;④y=﹣3x中,与众不同的一个是(填序号),你的理由是.15.(3分)北京市2010~2015年高考报名人数统计如图所示.根据统计图中提供的信息,预估2016年北京市高考报名人数约为万人,你的预估理由是.16.(3分)阅读下面材料:在数学课上,老师提出如下问题:尺规作图:过直线外一点作已知直线的平行线.已知:直线l及其外一点A.求作:l的平行线,使它经过点A.小云的作法如下:(1)在直线l上任取一点B,以点B为圆心,AB长为半径作弧,交直线l于点C;(2)分别以A,C为圆心,以AB 长为半径作弧,两弧相交于点D;(3)作直线AD.所以直线AD即为所求.老师说:“小云的作法正确.”请回答:小云的作图依据是.三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)17.(5分)计算:()0﹣6sin30°+()﹣2+|1﹣|.18.(5分)解不等式组并写出它的所有整数解.19.(5分)已知x2+x﹣5=0,求代数式(x﹣1)2﹣x(x﹣3)+(x+2)(x﹣2)的值.20.(5分)如图,在△ABC中,∠BAC=90°,AD⊥BC于点D,DE为AC边上的中线,求证:∠BAD=∠EDC.21.(5分)目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的能量消耗.对比手机数据发现小明步行12 000步与小红步行9 000步消耗的能量相同.若每消耗1千卡能量小明行走的步数比小红多10步,求小红每消耗1千卡能量需要行走多少步?22.(5分)如图,矩形ABCD的对角线AC,BD相交于点O,过点B作AC的平行线交DC的延长线于点E.(1)求证:BD=BE;(2)若BE=10,CE=6,连接OE,求tan∠OED的值.23.(5分)在平面直角坐标系xOy中,直线y=﹣x与双曲线y=(k≠0)的一个交点为P().(1)求k的值;(2)将直线y=﹣x向上平移b(b>0)个单位长度后,与x轴,y轴分别交于点A,点B,与双曲线y=(k≠0)的一个交点记为Q.若BQ=2AB,求b的值.24.(5分)如图,AB,AD是⊙O的弦,AO平分∠BAD.过点B作⊙O的切线交AO的延长线于点C,连接CD,BO.延长BO交⊙O于点E,交AD于点F,连接AE,DE.(1)求证:CD是⊙O的切线;(2)若AE=DE=3,求AF的长.25.(5分)阅读下列材料:2015年中国内地电影市场票房总收入400亿元,动画电影成为了新崛起的热点,票房占比为11.25%.2014年,中国内地动画电影市场6部破亿,只有一部《熊出没》为国产动画电影,票房成绩为2.4亿元.而2015年中国内地动画电影市场共8部破亿,国产动画电影占3部,分别是《大圣归来》,《熊出没2》和《十万个冷笑话》.其中,《大圣归来》以9.55亿元票房夺冠,《熊出没2》比2014年第一部的票房又增长了20%,《十万个冷笑话》以1.2亿元票房成绩勉强破亿.另外5部来自海外动画电影,其中美国两部全球热映的动画电影《超能陆战队》和《小黄人大眼萌》在中国内地只拿下5.26亿元和4.36亿元票房,而同样来自美国的《精灵旅社2》收获1.2亿元票房,日本的《哆啦A梦之伴我同行》和法国的《小王子》分别获得5.3亿和1.58亿元票房收入.2015年中国内地动画电影市场中,国产动画电影共上映41部,其中票房在1000万元~5000万元、5000万元~1亿元的国产动画电影分别有12部和5部,票房金字塔结构分化更加明显,标志着中国国产动画电影市场的日趋成熟.根据以上材料解答下列问题:(1)2015年中国内地动画电影票房收入为亿元;(2)如图为2015年国产动画电影票房金字塔,则B=;(3)选择统计表或统计图将2015年中国内地动画电影市场票房收入前5名的票房成绩表示出来.26.(5分)有这样一个问题:探究函数y=(x﹣1)(x﹣2)(x﹣3)的图象与性质.小东对函数y=(x﹣1)(x﹣2)(x﹣3)的图象与性质进行了探究.下面是小东的探究过程,请补充完成:(1)函数y=(x﹣1)(x﹣2)(x﹣3)的自变量x的取值范围是全体实数;(2)下表是y与x的几组对应值.x …﹣2 ﹣1 0 1 2 3 4 5 6 …y …m ﹣24 ﹣6 0 0 0 6 24 60 …①m=;②若M(﹣7,﹣720),N(n,720)为该函数图象上的两点,则n=;(3)在平面直角坐标系xOy中,A(x A,y A),B(x B,﹣y A)为该函数图象上的两点,且A为2≤x≤3范围内的最低点,A点的位置如图所示.①标出点B的位置;②画出函数y=(x﹣1)(x﹣2)(x﹣3)(0≤x≤4)的图象.27.(7分)在平面直角坐标系xOy中,抛物线y=mx2﹣2mx+m﹣4(m≠0)的顶点为A,与x轴交于B,C两点(点B在点C左侧),与y轴交于点D.(1)求点A的坐标;(2)若BC=4,①求抛物线的解析式;②将抛物线在C,D之间的部分记为图象G(包含C,D两点).若过点A的直线y=kx+b(k≠0)与图象G有两个交点,结合函数的图象,求k的取值范围.28.(7分)在△ABC中,AB=AC,∠BAC=90°,点D在射线BC上(与B、C两点不重合),以AD为边作正方形ADEF,使点E与点B在直线AD的异侧,射线BA与射线CF相交于点G.(1)若点D在线段BC上,如图1.①依题意补全图1;②判断BC与CG的数量关系与位置关系,并加以证明;(2)若点D在线段BC的延长线上,且G为CF中点,连接GE,AB=,则GE的长为,并简述求GE长的思路.29.(8分)在平面直角坐标系xOy中,⊙C的半径为r,P是与圆心C不重合的点,点P关于⊙C的限距点的定义如下:若P′为直线PC 与⊙C 的一个交点,满足r ≤PP′≤2r ,则称P′为点P 关于⊙C 的限距点,如图为点P 及其关于⊙C 的限距点P′的示意图. (1)当⊙O 的半径为1时.①分别判断点M (3,4),N (,0),T (1,)关于⊙O 的限距点是否存在?若存在,求其坐标;②点D 的坐标为(2,0),DE ,DF 分别切⊙O 于点E ,点F ,点P 在△DEF 的边上.若点P 关于⊙O 的限距点P′存在,求点P′的横坐标的取值范围;(2)保持(1)中D ,E ,F 三点不变,点P 在△DEF 的边上沿E→F→D→E 的方向运动,⊙C 的圆心C 的坐标为(1,0),半径为r ,请从下面两个问题中任选一个作答.问题1问题2若点P 关于⊙C 的限距点P′存在,且P′随点P 的运动所形成的路径长为πr ,则r 的最小值为.若点P 关于⊙C 的限距点P′不存在,则r的取值范围为 .数学试题答案一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.【解答】96 500 000用科学记数法表示应为:9.65×107,故选:B.2.【解答】根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱.故选D.3.【解答】∵一个不透明的口袋中装有3个红球和12个黄球,这些球除了颜色外无其他差别,∴从中随机摸出一个小球,恰好是红球的概率为:=.故选C.4.【解答】A、既是轴对称图形也是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项正确;C、既是轴对称图形也是中心对称图形,故此选项错误;D、既是轴对称图形也是中心对称图形,故此选项错误;故选:B.5.【解答】∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=5,∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AE=AB=3,∴DE=AD﹣AE=2.故选D.6.【解答】如图所示:∵△ABC是等腰直角三角形,∴∠BAC=90°,∠ACB=45°,∴∠1+∠BAC=35°+90°=125°,∴∠ACD=180°﹣125°=55°,∴∠2=∠ACD﹣∠ACB=55°﹣45°=10°;故选:C.7.【解答】投掷实心球的成绩最多的是9,共有14人,所以,众数是9,这40名同学投掷实心球的成绩从小到大排列,第20,21人的成绩是8,所以中位数是8.故选A8.【解答】由题意可得,建立的坐标系如右图所示∵“数对”(190,43°)表示图中承德的位置,“数对”(160,238°)表示图中保定的位置,∴张家口的位置对应的“数对”为(176,145°),故选A.9.【解答】:设平均每年行驶的公里数为x公里,根据题意得:174800+x×10≤159800+x×10,解得:x≥10000.答:平均每年行驶的公里数至少为10000公里.10.【解答】由题意可得,当K在点A处时,y最大,在C处时,y最小,点K匀速运动,由图2可知,点K从开始运动到第一次到达的位置一定为点C,第三次到达的位置一定为点A,故选项B符合,从B→C,y随x的增大而减小,从C→D,y随x的增大而增大,从D→A,y随x的增大而增大,A→B,y随x的增大而减小,故选B.二、填空题(本题共18分,每小题3分)11.【解答】a2b﹣2ab+b,=b(a2﹣2a+1),…(提取公因式)=b(a﹣1)2.…(完全平方公式)12.【解答】由垂径定理OC⊥AB,则AC=BC=AB=4cm在Rt△ACO中,AC=4,OC=3,由勾股定理可得AO==5(cm),即⊙O的半径为5cm.故答案为:5.13.【解答】设这个数是x,依题意有x+x+x+x=33,故答案为:x+x+x+x=33.14.【解答】①y=2x+1中自变量的取值范围是全体实数;②y=x2+2x中自变量的取值范围是全体实数;③y=中自变量的取值范围是x≠0;④y=﹣3x中自变量的取值范围是全体实数;理由是:只有③的自变量取值范围不是全体实数故答案为:③,只有③的自变量取值范围不是全体实数.15.【解答】由折线统计图可知,2010﹣2011年报名人数减少8.02﹣7.60=0.42(万人),2011﹣2012年报名人数减少7.60﹣7.35=0.25(万人),2012﹣2013年报名人数减少7.35﹣7.27=0.08(万人),2013﹣2014年报名人数减少7.27﹣7.05=0.22(万人),2014﹣2015年报名人数减少7.05﹣6.78=0.27(万人),由上可预估2016年北京市高考报名人数约为6.53万人,理由:最近三年减少的人数趋于平缓,减少人数基本维持在0.25万人左右;故答案为:6.53,最近三年减少的人数趋于平缓,减少人数基本维持在0.25万人左右.16.【解答】由题意可得,小云的作图依据是:四条边都相等的四边形是菱形;菱形的对边平行.(本题答案不唯一).故答案为:四条边都相等的四边形是菱形;菱形的对边平行.三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)17.【解答】原式=1﹣6×+4+﹣1=4﹣2.18.【解答】解不等式4(x﹣1)≤3(x+2)得:x≤10,解不等式<x﹣4得:x>7,∴不等式组的解集为:7<x≤10,则该不等式组的整数解有:8、9、10.19.【解答】(x﹣1)2﹣x(x﹣3)+(x+2)(x﹣2)=x2﹣2x+1﹣x2+3x+x2﹣4=x2+x﹣3,∵x2+x﹣5=0,∴x2+x=5,∴原式=5﹣3=2.20.【解答】证明:∵∠BAC=90°,∴∠BAD+∠DAC=90°,又∵AD⊥BC,即∠ADC=90°,∴∠DAC+∠C=90°,∴∠BAD=∠C.∵DE是直角△ACD斜边上的中线,∴DE=AC=EC,∴∠C=∠EDC,∴∠BAD=∠EDC.21.【解答】设小红每消耗1千卡能量需要行走x步,则小明每消耗1千卡能量需要行走(x+10)步,根据题意,得=,解得x=30.经检验:x=30是原方程的解.答:小红每消耗1千卡能量需要行走30步.22.【解答】(1)∵四边形ABCD是矩形,∴AC=BD,AB∥CD,又∵BE∥AC,∴四边形ABEC是平行四边形,∴AC=BE,∴BD=BE;(2)如图,过点O作OF⊥CD于点F,∵四边形ABCD是矩形,∴∠BCD=90°.∵BE=BD=10,∴CD=CE=6.同理,可得CF=DF=CD=3,∴EF=9.在直角△BCE中,由勾股定理可得:BC=8.∵OB=OD,∴OF为△BCD的中位线,∴OF=BC=4,∴在直角△OEF中,tan∠OED==.23.【解答】(1)∵直线y=﹣x 经过P (). ∴m=﹣, ∴P (,﹣), ∵点P (,﹣)在y=(k ≠0)上, ∴k=×(﹣)=﹣6. (2)如图,∵直线y=﹣x 向上平移b (b >0)个单位长度后的解析式为y=﹣x +b ,∴OA=OB=b ,∵BQ=2AB , ∴=或=1,作QC ⊥x 轴于C ,∴QC ∥y 轴,∴△ABO ∽△AQC ,∴===,或===1,∴点Q 坐标(﹣2b ,3b ),或(2b ,﹣b )∴﹣6b 2=﹣6或﹣2b 2=﹣6,b=±1或b=±,∵b >0,∴b=1或.24.【解答】(1)证明:如图,连接OD .∵BC 为圆O 的切线,∴∠CBD=90°.∵AO 平分∠BAD ,∴∠OAB=∠OBF .∵OA=OB=OD ,∴∠OAB=∠ABO=∠OAF=∠ODA ,∴∠BOC=∠DOC ,在△COB 和△COD 中,,∴BOC ≌△DOC ,∴∠CBO=∠CDO=90°,∴CD是⊙O的切线;(2)∵AE=DE,∴=,∴∠DAE=∠ABO,∴∠BAO=∠OAD=∠ABO∴∠BAO=∠OAD=∠DAE,∵BE是直径,∴∠BAE=90°,∴∠BAO=∠OAD=∠DAE=∠ABO=30°,∴∠AFE=90°,在Rt△AFE中,∵AE=3,∠DAE=30°,∴EF=AE=,∴AF==.25.【解答】(1)2015年中国内地动画电影票房收入为400×11.25%=45(亿元);(2)B=41﹣3﹣5﹣12=21(部);故答案为45,21;(3)《熊出没2》2015年的票房为2.4×(1+20%)=2.88(亿),2015年中国内地动画电影市场票房收入前5名的票房成绩统计表26.【解答】(2)①当x=﹣2时,y=(x﹣1)(x﹣2)(x﹣3)=﹣60.故答案为:﹣60.②观察表格中的数据可得出函数图象关于点(2,0)中心对称,∴﹣7+n=2×2,解得:n=11.故答案为:11.(3)①作点A关于点(2,0)的对称点B1,再在函数图象上找与点B1纵坐标相等的B2点.②根据表格描点、连线,画出图形如图所示.27.【解答】(1)y=mx2﹣2mx+m﹣4=m(x﹣1)2﹣4,所以抛物线的顶点A的坐标为(1,﹣4);(2)①∵BC=4,抛物线的对称轴为x=1,点B在点C左侧,∴点B坐标为(﹣1,0),点C坐标为(3,0),将B(﹣1,0)代入y=m(x﹣1)2﹣4,得:0=4m﹣4,解得m=1所以抛物线的解析式为y=(x﹣1)2﹣4=x2﹣2x﹣3;②B(﹣1,0),C(3,0),当x=0时,y=x2﹣2x﹣3=﹣3,则D(0,﹣3),如图,当直线y=kx+b过A、C时,直线解析式为y=2x﹣6;当直线y=kx+b过A、D时,直线解析式为y=﹣x﹣3,所以若过点A的直线y=kx+b(k≠0)与图象G有两个交点,k的取值范围为0<k≤2或﹣1≤k<0.28.【解答】(1)证明:①依题意补全图形,如图1所示,②BC⊥CG,BC=CG;∵∠BAC=90°,AB=AC,∴∠ABC=∠ACB=45°,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAC=∠BAD+∠DAC=90°,∠DAF=∠CAF+∠DAC=90°,∴∠BAD=∠CAF,在△BAD和△CAF中,∴△BAD≌△CAF(SAS),∴∠ACF=∠ABD=45°,∴∠ACF+∠ACB=90°,∴BC⊥CG;∵点G是BA延长线上的点,BC=CG(2)如图2,∵∠BAC=90°,AB=AC,∴∠ABC=∠ACB=45°,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAC=∠BAD﹣∠DAC=90°,∠DAF=∠CAF﹣∠DAC=90°,∴∠BAD=∠CAF,在△BAD和△CAF中,∴△BAD≌△CAF(SAS),∴∠ACF=∠ABD=45°,BD=CF,∴∠ACF+∠ACB=90°,∴BC⊥CF;∵AB=,BC=CD=CG=GF=2,∴在Rt△AGH中,根据勾股定理得,AG=,∴在Rt△AGH中,根据勾股定理的,DG=2,∵AD=,∴AH=,HG=,∴GI=AD﹣HG=,∴GE==故答案为.29.【解答】(1)①点M、点T关于⊙O的限距点不存在,点N关于⊙0的限距点存在,坐标为(1,0).②∵点D坐标为(2,0),⊙O半径为1,DE、DF分别切⊙O于E、F,∴切点坐标为(,),(,﹣),如图所示,不妨设点E(,),点F(,﹣),EO、FO的延长线分别交⊙O于点E′、F′,则E′(﹣,﹣),F′(﹣,).设点P关于⊙O的限距点的横坐标为x,①当点P在线段EF上时,直线PO与⊙O的交点P′满足1≤PP′≤2,故点P关于⊙O的限距点存在,其横坐标x满足﹣1≤x≤﹣.②当点P在线段DE、DF(不包括端点)上时,直线PO与⊙O的交点P′满足0<PP′<1或2<PP′<3,故点P关于⊙O的限距点不存在.③当点P与点D重合时,直线PO与⊙O的交点P′(1,0),满足PP′=1,故点P关于⊙O的限距点存在,其横坐标x=1.综上所述点P关于⊙O的限距点的横坐标x的范围为﹣1≤x≤﹣或x=1.(2)问题1:如图2中,∵△DEF是等边三角形,点C是△DEF的外接圆的圆心,∵若点P关于⊙C的限距点P′存在,且P′随点P的运动所形成的路径长为πr,∴图中△PP′C是等边三角形,点P在PP′上运动时,有限距点,∵PC∥ED,∴==,∴PC=,由题意:r≤﹣r≤2r,∴,∴r的最小值为.问题2:如图2中,当点H不存在限距点时,点P就不存在限距点,∵HC=,∴﹣r>2r,∴r<,∴0<r<时点P的限距点不存在.故答案分别为,0<r<.。

2016年北京市海淀去中考一模数学

2016年北京市海淀去中考一模数学

2015.5海淀区九年级第二学期期中数学练习一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.2015年北京市实施能源清洁化战略,全市燃煤总量减少到15 000万吨左右,将15 000用科学记数法表示应为A . 50.1510⨯B .41.510⨯C .51.510⨯D .31510⨯ 2.右图是某几何体的三视图,该几何体是A. 三棱柱B. 三棱锥C. 长方体D.正方体 3.如图,数轴上两点A ,B 表示的数互为相反数,则点B 表示的数为2A0BA .-1B .1C .-2D .24.某游戏的规则为:选手蒙眼在一张如图所示的正方形黑白格子纸(九个小正方形面积相等)上描一个点,若所描的点落在黑色区域,获得笔记本一个;若落在白色区域,获得钢笔一支.选手获得笔记本的概率为A .12 B .45 C .49 D .595.如图,直线a 与直线b 平行,将三角板的直角顶点放在直线a 上,若∠1=40°,则∠2等于A . 40°B .50°C .60°D .140° 6.如图,已知∠AOB .小明按如下步骤作图:(1)以点O 为圆心,适当长为半径画弧,交OA 于D ,交OB 于点E . (2)分别以D ,E 为圆心,大于12DE 的长为半径画弧,两弧在∠AOB 的内部相交于点C . (3)画射线OC .根据上述作图步骤,下列结论正确的是A .射线OC 是AOB ∠的平分线 B .线段DE 平分线段OC C .点O 和点C 关于直线DE 对称D .OE =CE7.某次比赛中,15名选手的成绩如图所示,则ba 21这15名选手成绩的众数和中位数分别是 A .98,95 B .98,98 C .95,98 D .95,958. 甲骑车到乙家研讨数学问题,中途因等候红灯停止了一分钟,之后又骑行了1.2千米到达了乙家.若甲骑行的速度始终不变,从出发开始计时,剩余的路程S (单位:千米)与时间t (单位:分钟)的函数关系的图象如图所示,则图中a 等于A .1.2B .2C .2.4D .69.如图,⊙O 的直径AB 垂直于弦CD ,垂足为E .若60B ∠=︒,AC =3,则CD 的长为A . 6 B. CD .310.小明在书上看到了一个实验:如右图,一个盛了水的圆柱形容器内,有一个顶端拴了一根细绳的实心铁球,将铁球从水面下沿竖直方向慢慢地匀速向上拉动.小明将此实验进行了改进,他把实心铁球换成了材质相同的别的物体,记录实验时间t 以及容器内水面的高度h ,并画出表示h 与t 的函数关系的大致图象.如左下图所示.小明选择的物体可能是二、填空题(本题共18分,每小题3分) 11.分解因式:32a ab -=____________.12.写出一个函数y kx =(0k ≠),使它的图象与反比例函数1y x=的图象有公共点,这个函数的解析式为___________.13.某学习小组设计了一个摸球试验,在袋中装有黑,白两种颜色的球,这些球的形状大小质地等完全A B CDS /千米相同,即除颜色外无其他差别.在看不到球的情况下,随机从袋中摸出一个球,记下颜色,再把它放回,不断重复.下表是由试验得到的一组统计数据:从这个袋中随机摸出一个球,是白球的概率约为 .(结果精确到0.1)14.如图,点C 为线段AB 上一点,将线段CB 绕点C 旋转,得到线段CD ,若DA AB ⊥,1AD =,BD BC 的长为__________. 15. 在研究了平行四边形的相关内容后,老师提出这样一个问题:“四边形ABCD 中,AD ∥BC ,请添加一个条件,使得四边形ABCD 是平行四边形”.经过思考,小明说“添加AD =BC ”,小红说“添加AB =DC ” .你同意 的观点, 理由是 .16.若三角形的某一边长等于其外接圆半径,则将此三角形称为等径三角形,该边所对的角称为等径角.已知△ABC 是等径三角形,则等径角的度数为 . 三、解答题(本题共30分,每小题5分) 17.计算:2022cos60(3.14π)--+-o .18.解不等式组:345214.33x x x x +>-⎧⎪⎨-⎪⎩,≥19.已知43x y =,求代数式22(2)()()2x y x y x y y ---+-的值.20.如图,点A ,B ,C ,D 在同一条直线上,AB=FC , ∠A =∠F ,∠EBC =∠FCB . 求证: BE=CD .21.已知关于x 的方程220 (0)kx x k k--=≠. (1)求证:方程总有两个不相等的实数根;(2)若方程的两个实数根都是整数,求整数k 的值.22.列方程或方程组解应用题:为了响应学校提出的“节能减排,低碳生活”的倡议,班会课上小李建议每位同学都践行“双面打印,节约用纸”.他举了一个实际例子:打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,总质量为160克.已知每页薄型纸比厚型纸轻0.8克,求例子中的A4厚型纸每页的质量.(墨的质量忽略不计)四、解答题(本题共20分,每小题5分)23.如图,在□ABCD 中,∠BAD 的平分线交CD 于点E ,交BC 的延长线于点F ,连接BE ,∠F =45°. (1)求证:四边形ABCD 是矩形; (2)若AB =14,DE =8,求sin ∠AEB 的值.24.根据某研究中心公布的近几年中国互联网络发展状况统计报告的部分相关数据,绘制的统计图表如下:根据以上信息解答下列问题:(1)直接写出扇形统计图中m 的值;(2)从2011年到2014年,中国网民人数每年增长的人数近似相等,估算2015年中国网民的人数约为 亿;(3)据某市统计数据显示,2014年末全市常住人口为476.6万人,其中网民数约为210万人.若2014年该市的网民学历结构与2014年的中国网民学历结构基本相同,请你估算2014年末该市网民学历是大专的约有 万人.25.如图,在△ABC 中,AB=AC ,AD ⊥BC 于点D ,过点C 作⊙O 与边AB 相切于点E ,交BC 于点F ,CE 为⊙O 的直径. (1) 求证:OD ⊥CE ;(2) 若DF =1, DC =3,求AE 的长.26.阅读下面材料:小明遇到这样一个问题:如图1,在△ABC 中,DE ∥BC 分别交AB 于D ,交AC 于E .已知CD ⊥BE ,CD=3,BE=5,求BC+DE 的值.小明发现,过点E 作EF ∥DC ,交BC 延长线于点F ,构造△BEF ,经过推理和计算能够使问题得到解决(如图2).图1 图2 图3请回答:BC +DE 的值为_______.参考小明思考问题的方法,解决问题:如图3,已知□ABCD 和矩形ABEF ,AC 与DF 交于点G ,AC =BF =DF ,求∠AGF 的度数.五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27.在平面直角坐标系xOy 中,抛物线2212y x x =-+与y 轴交于点A ,顶点为点B ,点C 与点A 关于抛物线的对称轴对称. (1)求直线BC 的解析式;(2)点D 在抛物线上,且点D 的横坐标为4.将抛物线在点A ,D 之间的部分(包含点A ,D )记为图象G ,若图象G 向下平移t (0t >)个单位后与直线BC 只有一个公共点,求t 的取值范围.28.在菱形ABCD 中,120ADC ∠=︒,点E 是对角线AC 上一点,连接DE ,50DEC ∠=︒,将线段BC 绕点B 逆时针旋转50︒并延长得到射线BF ,交ED 的延长线于点G .(1)依题意补全图形;EDC BAEDCBA备用图(2)求证:EG BC =;(3)用等式表示线段AE ,EG ,BG 之间的数量关系:_____________________________.29.在平面直角坐标系xOy 中,对于点(,)P a b 和点(,)Q a b ',给出如下定义:若,1,1≥b a b b a ⎧'=⎨-<⎩,则称点Q 为点P 的限变点.例如:点()2,3的限变点的坐标是()2,3,点()2,5-的限变点的坐标是()2,5--.(1)①点)的限变点的坐标是___________;②在点()2,1A --,()1,2B -中有一个点是函数2y x=图象上某一个点的限变点, 这个点是_______________;(2)若点P 在函数3(2,2)y x x k k =-+->-≤≤的图象上,其限变点Q 的纵坐标b '的取值范围是52≤≤b '-,求k 的取值范围;(3)若点P 在关于x 的二次函数222y x tx t t =-++的图象上,其限变点Q 的纵坐标b '的取值范围是≥b m '或b n '<,其中m n >.令s m n =-,求s 关于t 的函数解析式及s 的取值范围.海淀区九年级第二学期期中练习数学试卷答案及评分参考2015.5一、 选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)17. (本小题满分5分) 解:原式=112142-⨯+ ………………………………………………………4分 14=+ ………………………………………………………………5分 18. (本小题满分5分) 解: 345214.33x x x x +>-⎧⎪⎨-⎪⎩,≥ ② ①由不等式①得 3x <. ……………………………………………………2分由不等式②得 2≥x -. ……………………………………………………4分 ∴不等式组的解集为23≤x -<. ……………………………………………………5分19. (本小题满分5分)解: 22(2)()()2x y x y x y y ---+-2222244()2x xy y x y y =-+---………………………………………………2分243xy y =-+ ……………………………………………………………………3分()43y x y =--.…………………………………………………………………4分∵43x y =,∴原式= 0. ………………………………………………………………………5分 20. (本小题满分5分)证明: ∠EBC =∠FCB ,A B E F C D ∴∠=∠. …………………………………………………………1分在△ABE 与△FCD 中, ,,,A F AB FC ABE FCD ∠=∠⎧⎪=⎨⎪∠=∠⎩∴∆ABE ≌∆FCD .………………………………………………………………4分 ∴BE=CD . ………………………………………………………………………5分21. (本小题满分5分) (1)证明: 0k ≠,∴220 kx x k--=是关于x 的一元二次方程.22(1)4()k k∆=--- ……………………………………………………1分90=>.∴方程总有两个不相等的实数根. ………………………………………2分(2)解:由求根公式,得12x k±=. ∴1221,x x k k==-. …………………………………………………………4分 方程的两个实数根都是整数,且k 是整数,∴ 1k =-或1k =.…………………………………………………………5分22. (本小题满分5分)解: 设例子中的A4厚型纸每页的质量为x 克.………………………………………1分由题意,得40016020.8x x =⨯-. ………………………………………………2分 解得 4x =. ………………………………………………………3分 经检验, 4x =为原方程的解,且符合题意. ………………………………4分 答:例子中的A4厚型纸每页的质量为4克. …………………………………5分四、解答题(本题共20分,每小题5分) 23. (本小题满分5分)(1)证明: 四边形ABCD 是平行四边形,∴AD //BC . ∴∠DAF=∠F .∠F =45°, ∴∠DAE=45°.………………………………………1分 AF 是∠BAD 的平分线,45EAB DAE ∴∠=∠= . 90DAB ∴∠= .又 四边形ABCD 是平行四边形,∴四边形ABCD 是矩形. …………………………2分(2)解:过点B 作BH AE ⊥于点H ,如图.四边形ABCD 是矩形,∴AB =CD ,AD =BC ,∠DCB =∠D =90°.AB =14,DE =8, ∴ CE=6.在Rt △ADE 中,∠DAE=45°, ∴∠DEA =∠DAE=45°. ∴ AD=DE =8. ∴ BC =8.在Rt △BCE 中,由勾股定理得10BE =. ……………………………………………3分 在Rt △AHB 中,∠HAB=45°,∴sin 45BH AB =⋅= . …………………………………………4分 在Rt △BHE 中,∠BHE=90°,∴sin ∠AEB=10BH BE =. ……………………………………………5分 24. (本小题满分5分)(1)36. ……………………………………………………………………………1分(2)6.700.01±. ……………………………………………………………………3分 (3)21. ……………………………………………………………………………5分25. (本小题满分5分)(1)证明: ⊙O 与边AB 相切于点E ,且 CE 为⊙O 的直径.∴CE ⊥AB .AB=AC ,AD ⊥BC ,BD DC ∴=. ………………………………1分又 OE=OC ,∴OD ∥EB .∴ OD ⊥CE .………………………………2分(2)解:连接EF .CE 为⊙O 的直径,且点F 在 ⊙O 上,∴ ∠EFC =90°. CE ⊥AB ,∴∠BEC =90°. ∴+BEF FEC FEC ECF ∠=∠+∠∠=90°. ∴BEF ECF ∠=∠.∴tan tan BEF ECF ∠=∠.∴BF EF EFFC=.又 DF =1, BD=DC =3, ∴ BF =2, FC =4.∴EF = ………………………………………………… 3分∵∠EFC =90°, ∴∠BFE =90°.由勾股定理,得BE . ……………………4分EF ∥AD , ∴21BE BF EA FD ==.∴AE = ……………………………………………………5分26. (本小题满分5分)解:BC +DE. ……………………………………………………2分解决问题: 连接AE ,CE ,如图.∵四边形ABCD 是平行四边形, ∴AB // DC .∵四边形ABEF 是矩形,∴AB // FE ,BF =AE . ∴DC // FE .∴四边形DCEF 是平行四边形. ………………………………………………3分∴ CE // DF . ∵AC =BF =DF , ∴AC =AE =CE .∴△ACE 是等边三角形. …………………………………………………………4分 ∴∠ACE =60°. ∵CE ∥DF ,∴∠AGF =∠ACE =60°. …………………………………………………………5分五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27. (本小题满分7分)解:(1)∵抛物线2212y x x =-+与y 轴交于点A ,∴点A 的坐标为(0,2). …………………………………………1分 ∵2211(232)212y x x x -+==+-, ∴抛物线的对称轴为直线1x =,顶点B 的坐标为(1,32). …………2分又∵点C 与点A 关于抛物线的对称轴对称,∴点C 的坐标为(2,2),且点C 在抛物线上.设直线BC 的解析式为y kx b =+. ∵直线BC 经过点B (1,32)和点C (2,2),∴322 2.,k b k b ⎧+=⎪⎨⎪+=⎩ 解得121.k b ⎧=⎪⎨⎪=⎩, ∴直线BC 的解析式为112y x =+.…………………………3分(2) ∵抛物线2212y x x =-+中,当4x =时,6y =,∴点D 的坐标为(4,6). ………………4分∵直线112y x =+中,当0x =时,1y =, 当4x =时,3y =,∴如图,点E 的坐标为(0,1),点F 的坐标为(4,3).设点A 平移后的对应点为点'A ,点D 平移后的对应点为点'D . 当图象G 向下平移至点'A 与点E 重合时, 点'D 在直线BC 上方, 此时t =1;…………………………………………………………5分当图象G 向下平移至点'D 与点F 重合时,点'A 在直线BC 下方,此时t =3.……………………………………………………………………………………6分 结合图象可知,符合题意的t 的取值范围是13t <≤.……………………………7分28. (本小题满分7分)(1)补全图形,如图1所示.…………………………………………………………1分GFEDCBA图1 图2(2)方法一:证明:连接BE ,如图2. ∵四边形ABCD 是菱形, ∴AD ∥BC . 120ADC ∠=︒ , 60DCB ∴∠=︒.AC 是菱形ABCD 的对角线,∴1302DCA DCB ∠=∠=︒. ……………………………………………………………2分180100EDC DEC DCA ∴∠=︒-∠-∠=︒.由菱形的对称性可知, 50BEC DEC ∠=∠=︒,100EBC EDC ∠=∠=︒.……………………………………………………………………3分 100GEB DEC BEC ∴∠=∠+∠=︒. GEB CBE ∴∠=∠. 50FBC ∠=︒ ,50EBG EBC FBC ∴∠=∠-∠=︒.…………………………………………………………4分GFEDCBAEBG BEC ∴∠=∠.在△GEB 与△CBE 中,,,,GEB CBE BE EB EBG BEC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△GEB ≌△CBE .EG BC ∴=. ………………………………………………………………………………5分 方法二:证明:连接BE ,设BG 与EC 交于点H ,如图3. ∵四边形ABCD 是菱形, ∴AD ∥BC . 120ADC ∠=︒ , 60DCB ∴∠=︒.AC 是菱形ABCD 的对角线,∴1302DCA DCB ∠=∠=︒. (2)分180100EDC DEC DCA ∴∠=︒-∠-∠=︒.由菱形的对称性可知,50BEC DEC ∠=∠=︒,100EBC EDC ∠=∠=︒.……………………………………………3分50FBC ∠=︒ , 图350EBG EBC FBC BEC ∴∠=∠-∠=︒=∠. ………………………………………………4分 BH EH ∴=.在△GEH 与△CBH 中,,,,GEH CBH EH BH EHG BHC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△GEH ≌△CBH .EG BC ∴=. ………………………………………………………………………………5分 (3)AE BG +=. …………………………………………………………………7分 29.(本小题满分8分)解:(1)①;…………1分② 点B .…………2分(2)依题意,3(2)y x x =-+-≥图象上的点P 的限变点必在函数3,13,21x x y x x -+⎧=⎨--<⎩≥≤的图象上.2≤b '∴,即当1x =时,b '取最大值2.HG FED CBA当2b '=-时,23x -=-+.5x ∴=. ………………………………………3分 当5b '=-时,53x -=-或53x -=-+.2x ∴=-或8x =. ………………………………4分 52≤≤b '- ,由图象可知,k 的取值范围是58≤≤k .……………………………………………5分 (3)2222()y x tx t t x t t =-++=-+ ,∴顶点坐标为(,)t t .………………………………………………………………6分若1t <,b '的取值范围是≥b m '或≤b n ',与题意不符. 若1≥t ,当1≥x 时,y 的最小值为t ,即m t =;当1x <时,y 的值小于2[(1)]t t --+,即2[(1)]n t t =--+.22(1)1s m n t t t t ∴=-=+-+=+.∴s 关于t 的函数解析式为 211)s t t =+≥ (. ……………………………7分 当t=1时,s 取最小值2.∴s 的取值范围是s ≥2. ………………………………………………………8分。

【VIP专享】2016年海淀区初三二模数学试题及答案(word版)

【VIP专享】2016年海淀区初三二模数学试题及答案(word版)
知 5.考试结束,将本试卷、答题卡一并交回。
一、选择题(本题共 30 分,每小题 3 分)
下面各题均有四个选项,其中只有一个是符合题意的.
1.2022 年冬奥会由北京和张家口两市联合承办.北京到张家口的自驾距离约为 196 000
米.196 000 用科学记数法表示应为
A.1.96×105
B.19.6×104 C.1.96×106 D.0.196×106
B.25°
D.35°
P 所表示的数为 a,则数 3a 所对应的点可能是
A.M
B.N
B.
C.P
九年级数学 第 1 页(共 15 页)
6.培养学生观察、思考、对比及分析综合的能力。过程与方法1.通过观察蚯蚓教的学实难验点,线培形养动观物察和能环力节和动实物验的能主力要;特2征.通。过教对学观方察法到与的教现学象手分段析观与察讨法论、,实对验线法形、动分物组和讨环论节法动教特学征准的备概多括媒,体继课续件培、养活分蚯析蚓、、归硬纳纸、板综、合平的面思玻维璃能、力镊。子情、感烧态杯度、价水值教观1和.通过学理解的蛔1虫.过观适1、察于程3观阅 六蛔寄.内列察读 、虫生出蚯材 让标容生3根常蚓料 学本教活.了 据见身: 生,师的2、解 问的体巩鸟 总看活形作 用蛔 题线的固类 结雌动态业 手虫 自形练与 本雄学、三: 摸对 学动状习人 节蛔生结4、、收 一人 后物和同类 课虫活构请一蚯集 摸体 回并颜步关 重的动、学、蚓鸟 蚯的 答归色学系 点形教生生让在类 蚓危 问纳。习从 并状学理列学平的害 题线蚯四线人 归、意特出四生面体以形蚓、形类 纳大图点常、五观玻存 表及动的鸟请动文 本小引以见引、察璃现 ,预物身类 3学物明 节有言及的、导巩蚯上状 是防的体之生和历 课什根蚯环怎学固蚓和, 干感主是所列环史 学么据蚓节二样生练引牛鸟 燥染要否以举节揭 到不上适动、区回习导皮类 还的特分分蚯动晓 的同节于物让分答。学纸减 是方征节布蚓物起 一,课穴并学蚯课生上少 湿法。?广的教, 些体所居归在生蚓前回运的 润;4泛益学鸟色生纳.靠物完的问答动原 的4蛔,处目类 习和活环.近在成前题蚯的因 ?了虫以。标就 生体的节身其实端并蚓快及 触解寄上知同 物表内特动体结验和总利的慢我 摸蚯生适识人 学有容点物前构并后结用生一国 蚯蚓在于与类 的什,的端中思端线问活样的 蚓人飞技有 基么引进主的的考?形题环吗十 体生行能着 本特出要几变以动,境?大 节活的1密 方征本“特节化下物.让并为珍 近习会形理切 法。课生征有以问的小学引什稀 腹性态解的 。2课物。什游题主.结生出么鸟 面和起结蛔关观题体么戏:要利明蚯?类 处适哪构虫系察:的特的特用确蚓等 ,于些特适。蛔章形殊形征板,这资 是穴疾点于可虫我态结式。书生种料 光居病是寄的们结构,五小物典, 滑生?重生鸟内学构,学、结的型以 还活5要生类部习与.其习巩鸟结的爱 是如原活生结了功颜消固类构线鸟 粗形何因的存构腔能色化练适特形护 糙态预之结的,肠相是系习于点动鸟 ?、防一构现你动适否统。飞都物为结蛔。和状认物应与的行是。主构虫课生却为和”其结的与题、病本理不蛔扁的他构特环以生?8特乐虫形观部特8征境小理三页点观的动位点梳相组等、这;,哪物教相,理适为方引些2鸟,育同师.知应单面导鸟掌类结了;?生识的位学你握日构解2互.。办特生认线益特了通动手征观识形减点它过,抄;察吗动少是们理生报5蛔?物,与的解.参一了虫它和有寄主蛔与份解结们环些生要虫其。蚯构都节已生特对中爱蚓。会动经活征人培鸟与飞物灭相。类养护人吗的绝适这造兴鸟类?主或应节成趣的为要濒的课情关什特临?就危感系么征灭来害教;?;绝学,育,习使。我比学们它生可们理以更解做高养些等成什的良么两好。类卫动生物习。惯根的据重学要生意回义答;的3.情通况过,了给解出蚯课蚓课与题人。类回的答关:系线,形进动行物生和命环科节学动价环值节观动的物教一育、。根教据学蛔重虫点病1.引蛔出虫蛔适虫于这寄种生典生型活的线结形构动和物生。理二特、点设;置2.问蚯题蚓让的学生生活思习考性预和习适。于穴居生活的形态、结构、生理等方面的特征;3.线形动物和环节动物的主要特征。

2016年北京海淀区初三一模数学试卷

2016年北京海淀区初三一模数学试卷

2016年北京海淀区初三一模数学试卷选择题(本题共30分,每小题3分)1.A.B. C. D.“中华人民共和国全国人民代表大会”和“中国人民政治协商会议”于年月日在北京胜利召开.截止到年月日,在百度上搜索关键词“两会”,显示的搜索结果约为条.将用科学记数法表示应为( ).201633201631496 500 00096 500 00096.5×1079.65×1079.65×1080.965×1092.A.长方体 B.正方体 C.圆柱 D.三棱柱如图是某个几何体的三视图,该几何体是( ).3.A.B.C.D.一个不透明的口袋中装有个红球和个黄球,这些球除了颜色外,无其他差别,从中随机摸出一个球,恰好是红球的概率为( ).312143415454.A.B.C.D.下列图形中,是轴对称图形但不是中心对称图形的是( ).5.A. B. C. D.如图,在平行四边形中,,,的平分线交于点,则的长为( ).ABCD AB =3BC =5∠ABC AD E DE 54326.如图,等腰直角三角板的顶点,分别在直线,上.若,,则的度数为( ).A C a b a //b ∠1=35∘∠2A. B. C. D.35∘15∘10∘5∘7.A., B., C., D.,初三()班体委用划记法统计本班名同学投掷实心球的成绩,结果如下表所示:则这名同学投掷实心球的成绩的众数和中位数分别是( ).840409898.58888.58.A. B. C. D.京津冀都市圈是指以北京、天津两座直辖市以及河北省的保定、廊坊、唐山、邯郸、邢台、秦皇岛、沧州、衡水、承德、张家口和石家庄为中心的区域.若“数对”表示图中承德的位置,“数对”表示图中保定的位置,则与图中张家口的位置对应的“数对”为( ).(190 ,43)∘(160 ,238)∘(176 ,145)∘(176 ,35)∘(100 ,145)∘(100 ,35)∘9.油电混动汽车是一种节油、环保的新技术汽车.它将行驶过程中部分原本被浪费的能量回收储存于内置的蓄电池中.汽车在低速行驶时,使用蓄电池带动电动机驱动汽车,节约燃油.某品牌油电混动汽车与普通汽车的相关成本数据估算如下:油电混动汽车普通汽车→A →B解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)16.阅读下面材料:在数学课上,老师提出如下问题:尺规作图:过直线外一点作已知直线的平行线.已知:直线及其外一点.求作:的平行线,使它经过点.小云的作法如下:()在直线上任取一点,以点为圆心,长为半径作弧,交直线于点;()分别以,为圆心,以长为半径作弧,两弧相交于点;()作直线.所以直线即为所求.老师说:“小云的作法正确.”请回答:小云的作图依据是 .l A l A 1l B B AB l C 2A C AB D 3AD AD 17.计算:.−6tan 30+(+|1−|(−π)5√0∘12)−23√18.解不等式组并写出它的所有整数解.⎧⎩⎨4(x −1)⩽3(x +2)<x −4x −1219.已知,求代数式的值.+x −5=0x 2−x (x −3)+(x +2)(x −2)(x −1)220.如图,在中,,于点,为边上的中线.求证:.△ABC ∠BAC =90∘AD ⊥BC D DE AC ∠BAD =∠EDC.BE,连接,求选择统计表或统计图将年中国内地动画电影市场票房收入前2015中,抛物线.xOy y =m −2mx x 21依题意补全图.2判断与的数量关系与位置关系,并加以证明.(2)若点在线段的延长线上,且为中点,连接,,则的长为_______,并简述求长的思路.1BC CG D BC G CF GE AB =2√GE GE 中,⊙的半径为,是与圆心的一个交点,满足,则称为点xOy C r P r ⩽P ⩽2r P ′P ′。

2016年度海淀初三数学一模试题及答案解析(整编)

2016年度海淀初三数学一模试题及答案解析(整编)

海淀区九年级第二学期期中练习数 学 2016.5学校__________班级___________姓名___________成绩___________考生须知1.本试卷共8页,共三道大题,29道小题,满分120分,考试时间120分钟。

2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。

3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4.在答题卡上,选择题、画图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。

5.考试结束,将本试卷、答题卡一并交回。

一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.“中华人民共和国全国人民代表大会”和“中国人民政治协商会议”于2016年3月3日 在北京胜利召开.截止到2016年3月14日,在百度上搜索关键词“两会”,显示的搜索结果约为96 500 000条.将96 500 000用科学记数法表示应为 A .96.5×107 B .9.65×107 C .9.65×108 D .0.965×109 2.如图是某个几何体的三视图,该几何体是A .长方体B .正方体C .圆柱D .三棱柱3.一个不透明的口袋中装有3个红球和12个黄球,这些球除了颜色 外,无其他差别,从中随机摸出一个球,恰好是红球的概率为 A .B .C .D .4.下列图形中,是轴对称图形但不是中心对称图形的是A .B .C .D .143415455.如图,在ABCD 中,AB=3,BC=5,∠ABC的平分线交AD于点E,则DE的长为A.5 B.4C.3 D.26.如图,等腰直角三角板的顶点A,C分别在直线,b上.若∥b,,则的度数为A.B.C.D.7.初三(8)班体委用划记法统计本班40名同学投掷实心球的成绩,结果如下表所示:则这40名同学投掷实心球的成绩的众数和中位数分别是A.9,8 B.9,8.5 C.8,8 D.8,8.58.京津冀都市圈是指以北京、天津两座直辖市以及河北省的保定、廊坊、唐山、邯郸、邢台、秦皇岛、沧州、衡水、承德、张家口和石家庄为中心的区域.若“数对”19043︒(,)表示图中承德的位置,“数对”160238︒(,)表示图中保定的位置,则与图中张家口aa1=35∠︒2∠35︒15︒10︒5︒DBA的位置对应的“数对”为(,)A.176145︒(,)B.17635︒(,)C.100145︒(,)D.10035︒9.油电混动汽车是一种节油、环保的新技术汽车.它将行驶过程中部分原本被浪费的能量回收储存于内置的蓄电池中.汽车在低速行驶时,使用蓄电池带动电动机驱动汽车,节约燃油.某品牌油电混动汽车与普通汽车的相关成本数据估算如下:某人计划购入一辆上述品牌的汽车.他估算了未来10年的用车成本,在只考虑车价和燃油成本的情况下,发现选择油电混动汽车的成本不高于选择普通汽车的成本.则他在估算时,预计平均每年行驶的公里数至少为..A.5 000 B.10 000 C.15 000 D.20 00010.小明在暗室做小孔成像实验.如图1,固定光源(线段MN )发出的光经过小孔(动点K ) 成像(线段M'N')于足够长的固定挡板(直线l )上,其中MN// l .已知点K 匀速运动, 其运动路径由AB ,BC ,CD ,DA ,AC ,BD 组成.记它的运动时间为x ,M'N'的长度为y ,若y 关于x 的函数图象大致如图2所示,则点K 的运动路径可能为A .A →B →C →D →A B .B →C →D →A →B C .B →C →A →D →B D .D →A →B →C →D图1 图2二、填空题(本题共18分,每小题3分) 11. 分解因式:a 2b -2ab +b =________________.12. 如图,AB 为⊙O 的弦,OC ⊥AB 于点C .若AB=8,OC =3,则⊙O 的半径长为________.13.埃及《纸草书》中记载:“一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33.”设这个数是x ,可列方程为. 14.在下列函数①;②;③;④中,与众不同的一 个是_____(填序号),你的理由是________.21y x =+22y x x =+3y x=3y x =-15.北京市2010~2015年高考报名人数统计如图所示.根据统计图中提供的信息,预估2016年北京市高考报名人数约为________万人,你的预估理由是____________.16.阅读下面材料:在数学课上,老师提出如下问题:小云的作法如下:老师说:“小云的作法正确.”请回答:小云的作图依据是________________________________________.三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分) 17.计算:.18.解不等式组并写出它的所有整数解.... 19.已知,求代数式的值.20.如图,在△ABC 中,,AD BC ⊥于点D ,DE 为AC 边上的中线.求证:.21.目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的)216tan 3012π-⎛⎫-︒++ ⎪⎝⎭41)3(2),14,2x x x x -≤+⎧⎪⎨-<-⎪⎩(250x x +-=2(1)(3)(2)(2)x x x x x ---++-90BAC ∠=︒BAD EDC ∠=∠能量消耗.对比手机数据发现小琼步行12 000步与小博步行9 000步消耗的能量相同.若每消耗1千卡能量小琼行走的步数比小博多10步,求小博每消耗1千卡能量需要行走多 少步.22.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,过点B 作AC的平行线交DC 的延长线于点E . (1)求证:BD=BE ;(2)若BE =10,CE =6,连接OE ,求tan ∠OED 的值.23.在平面直角坐标系xOy 中,直线与双曲线ky x=(0k ≠)的一个交点为.(1)求k 的值;(2)将直线向上平移b (b>0)个单位长度后,与x 轴,y 轴分别交于点A ,点B ,与双曲线ky x =(0k ≠)的一个交点记为Q .若,求b 的值.y x =-)P m y x =-2BQ AB =ED ABC* *24.如图,AB ,AD 是⊙O 的弦,AO 平分.过点B作⊙O 的切线交AO 的延长线于点C ,连接CD ,BO . 延长BO 交⊙O 于点E ,交AD 于点F ,连接AE ,DE . (1)求证:是⊙O 的切线; (2)若,求的长.BAD ∠CD 3AE DE ==AF25.阅读下列材料:2015年中国内地电影市场票房总收入400亿元,动画电影成为了新崛起的热点,票房占比为11.25%.2014年,中国内地动画电影市场6部破亿,只有一部《熊出没》为国产动画电影,票房成绩为2.4亿元.而2015年中国内地动画电影市场共8部破亿,国产动画电影占3 部,分别是《大圣归来》,《熊出没2》和《十万个冷笑话》.其中,《大圣归来》以9.55 亿元票房夺冠,《熊出没2》比2014年第一部的票房又增长了20%,《十万个冷笑话》以1.2亿元票房成绩勉强破亿.另外5部来自海外动画电影,其中美国两部全球热映的动画电影《超能陆战队》和《小黄人大眼萌》在中国内地只拿下5.26亿元和4.36亿元票房,而同样来自美国的《精灵旅社2》收获1.2亿元票房,日本的《哆啦A梦之伴我同行》和法国的《小王子》分别获得5.3亿和1.58亿元票房收入.2015年中国内地动画电影市场中,国产动画电影共上映41部,其中票房在1000万元~5000万元、5000万元~1亿元的国产动画电影分别有12部和5部,票房金字塔结构分化更加明显,标志着中国国产动画电影市场的日趋成熟.根据以上材料解答下列问题:(1)2015年中国内地动画电影票房收入为亿元;(2)右图为2015年国产动画电影票房金字塔,则B=;..(3)选择统计表或.统计图将2015年中国内地动画电影市场票房收入前5名的票房成绩表示出来.26.有这样一个问题:探究函数的图象与性质.小东对函数的图象与性质进行了探究. 下面是小东的探究过程,请补充完成:(1)函数的自变量x 的取值范围是全体实数; (2)下表是y 与x 的几组对应值.(1)(2)(3)y x x x =---(1)(2)(3)y x x x =---(1)(2)(3)y x x x =---①m =;②若M (7-,720-),N (,720)为该函数图象上的 两点,则;(3)在平面直角坐标系中, A (),B ()为该函数图象上的两点,且A 为范围内的最低点,A 点的位置如图所示.①标出点B 的位置;②画出函数()的图象.27.在平面直角坐标系中,抛物线(0m ≠)的顶点为A ,与x 轴交于B ,C 两点(点B 在点C 左侧),与y 轴交于点D . (1)求点A 的坐标; (2)若BC =4,①求抛物线的解析式;②将抛物线在C ,D 之间的部分记为图象G (包含C ,D 两点).若过点A 的直线与图象G 有两个交点,结合函数的图象,求k 的取值范围.n n =xOy ,A A x y ,B A x y -23x ≤≤(1)(2)(3)y x x x =---04x ≤≤xOy 224y mx mx m =-+-+(0)y kx b k =≠28.在△ABC中,AB=AC,∠BAC=,点D在射线BC上(与B、C两点不重合),以AD为边作正方形ADEF,使点E与点B在直线AD的异侧,射线BA与射线CF相交于点G.(1)若点D在线段BC上,如图1.①依题意补全图1;②判断BC与CG的数量关系与位置关系,并加以证明;(2)若点D在线段BC的延长线上,且G为CF中点,连接GE,AB =,则GE的长为_______,并简述求GE长的思路.图1 备用图29.在平面直角坐标系中,⊙C的半径为r,P是与圆心C不重合的点,点P关于⊙C的限距点的定义如下:若为直线PC与⊙C的一个交点,满足,则称为点P关于⊙C的限距点,右图为点P及其关于⊙C的限距点的示意图.(1)当⊙O的半径为1时.①分别判断点M ,N,T 关于⊙O的限距点是否存在?若存在,求其坐标;90︒2xOyP'2r PP r'≤≤P'P'(3,4)5(,0)2(1,2)②点D的坐标为(2,0),DE,DF分别切⊙O于点E,点F,点P在△DEF的边上.若点P关于⊙O的限距点存在,求点的横坐标的取值范围;P'P'(2)保持(1)中D,E,F三点不变,点P在△DEF的边上沿E→F→D→E的方向运动,⊙C的圆心C的坐标为(1,0),半径为r.请从下面两个问题中任选一个作答.温馨提示:答对问题1得2分,答对问题2得1分,两题均答不重复计分.2015-2016年海淀区初三数学一模参考答案一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分) 17.解:原式1641=-+ ……………………4分4=5分解不等式①,得 10≤x .………………………2分 解不等式②,得7>x . ………………………3分∴ 原不等式组的解集为107≤<x .………………………4分 ∴ 原不等式组的所有整数解为8,9,10.………………………5分19. 解:原式4312222-++-+-=x x x x x ………………………3分 32-+=x x .………………………4分∵ 250x x +-=, ∴ 52=+x x .∴ 原式=532-=. .………………………5分20.证明:∵ 90BAC ∠=︒,∴ 90BAD DAC ∠+∠=︒. ∵ AD BC ⊥, ∴ 90ADC ∠=︒. ∴ 90DAC C ∠+∠=︒.∴ BAD C ∠=∠. ………………………2分 ∵ DE 为AC 边上的中线, ∴ DE EC =.∴ EDC C ∠=∠. .………………………4分∴ BAD EDC ∠=∠. ………………………5分21.解:设小博每消耗1千卡能量需要行走x 步.………………………1分由题意,得xx 90001012000=+ . ………………………3分 解得 30=x . ………………………4分 经检验,30=x 是原方程的解,且符合题意.答:小博每消耗1千卡能量需要步行30步. ………………………5分22.(1) 证明:∵ 四边形ABCD 为矩形,∴ AC BD =,AB ∥DC . ∵ AC ∥BE ,∴ 四边形ABEC 为平行四边形. ………………………2分 ∴ AC BE =.∴ BD BE =. ………………………3分 (2) 解:过点O 作OF ⊥CD 于点F .∵ 四边形ABCD 为矩形, ∴ 90BCD ∠=︒. ∵ 10BE BD ==, ∴ 6CD CE ==. 同理,可得132CF DF CD ===. ∴9EF =. ………………………4分 在Rt △BCE 中,由勾股定理可得8BC =.F ED AC∵ OB=OD ,∴ OF 为△BCD 的中位线. ∴ 142OF BC ==. ∴在Rt △OEF 中,4tan 9OF OED EF ∠==. ………………………5分23. 解:(1)∵)P m 在直线y x =-上,∴m = ………………………1分∵P 在双曲线ky x=上,∴(6k ==-. ………………………2分图1 图2(2) ∵y x =-向上平移b (0b >)个单位长度后,与x 轴,y 轴分别交于A ,B ,∴(,0),(0,)A b B b . ………………………3分 作QH ⊥x 轴于H ,可得△HAQ ∽△OAB . 如图1,当点Q 在AB 的延长线上时, ∵2BQ AB =, ∴3===ABAQOA HA OB HQ . ∵OA OB b ==,∴3HQ b =,2HO b =. ∴Q 的坐标为(2,3)b b -. 由点Q 在双曲线6y x=-上, 可得1b =. ………………………4分 如图2,当点Q 在AB 的反向延长线上时, 同理可得,Q 的坐标为(2,)b b -. 由点Q 在双曲线6y x=-上,可得3b =. 综上所述,1b =或3b =. ………………………5分24. (1) 证明:如图,连接OD . ………………………1分∵BC 为⊙O 的切线, ∴90CBO ∠=︒. ∵AO 平分BAD ∠, ∴12∠=∠. ∵OA OB OD ==, ∴1=4=2=5∠∠∠∠. ∴BOC DOC ∠=∠. ∴△BOC ≌△DOC . ∴90CBO CDO ∠=∠=︒.∴CD 为⊙O 的切线. ……………2分(2) ∵AE DE =, ∴AE DE =.∴34∠=∠. ………………………3分∵124∠=∠=∠, ∴123∠=∠=∠. ∵BE 为⊙O 的直径, ∴90BAE ∠=︒.∴123430∠=∠=∠=∠=︒.………………………4分 ∴90AFE ∠=︒ . 在Rt △AFE 中, ∵3AE =,︒=∠303, ∴AF =………………………5分25. (1) 45;………………………2分 (2) 21;………………………3分 (3) 2.4(120%) 2.88⨯+=.2015年中国内地动画电影市场票房收入前5名的票房成绩统计表………………………5分或2015年中国内地动画电影市场票房收入前5名的票房成绩统计图………………………5分m=-;………………………1分26. (2) ①60n=;………………………2分②11(3)正确标出点B的位置,画出函数图象. …………………5分27. 解:(1)224=-+-y mx mx m2(21)4m x x =-+-2(1)4m x =--.∴ 点A 的坐标为(1,4)-. ………………………2分(2)①由(1)得,抛物线的对称轴为x =1.∵ 抛物线与x 轴交于B ,C 两点(点B 在点C 左侧),BC =4,∴ 点B 的坐标为 (1,0)-,点C 的坐标为 (3,0).………………………3分∴ 240m m m ++-=.∴ 1m =.∴ 抛物线的解析式为223y x x =--.……4分② 由①可得点D 的坐标为 (0,3)-.当直线过点A ,D 时,解得1k =-.………5分当直线过点A ,C 时,解得2k =. ………6分结合函数的图象可知,k 的取值范围为10k -≤<或02k <≤. …………7分28. 解:(1) ①补全图形,如图1所示. ………………………1分图1②BC 和CG 的数量关系:BC CG =,位置关系:BC CG ⊥.…………………2分证明: 如图1.∵︒=∠=90,BAC AC AB ,∴︒=∠=∠45ACB B ,︒=∠+∠9021.∵射线BA 、CF 的延长线相交于点G ,∴︒=∠=∠90BAC CAG .∵四边形ADEF 为正方形,∴︒=∠+∠=∠9032DAF ,AF AD =.∴31∠=∠.∴△ABD ≌△ACF .…………………3分∴︒=∠=∠45ACF B .∴45B G ∠=∠=︒,90BCG ∠=︒.∴BC CG =,BC CG ⊥.…………………4分(2) 10GE =.…………………5分思路如下:a . 由G 为CF 中点画出图形,如图2所示.b . 与②同理,可得BD=CF ,BC CG =,BC CG ⊥;c . 由2=AB ,G 为CF 中点,可得2====CD FG CG BC ;d . 过点A 作AM BD ⊥于M ,过点E 作EN FG ⊥于N ,可证△AMD ≌△FNE ,可得1AM FN ==,NE 为FG 的垂直平分线,FE EG =; e . 在Rt △AMD 中,1AM =,3MD =,可得10AD =,即10GE FE AD ===. ……7分29.解:(1)①点M ,点T 关于⊙O 的限距点不存在;点N 关于⊙O 的限距点存在,坐标为(1,0).………………………2分②∵点D 的坐标为(2,0),⊙O 半径为1,DE ,DF 分别切⊙O 于点E ,点F , ∴切点坐标为13()2,,13()2,-.……………3分 如图所示,不妨设点E 的坐标为13()22,,点F 的坐标为13()22,-,EO ,FO 的延长线分别交⊙O 于点'E ,'F ,则13'()22E --,,13'()22F -,. 设点P 关于⊙O 的限距点的横坐标为x .Ⅰ.当点P 在线段EF 上时,直线PO 与''E F 的交点'P 满足2'1≤≤PP ,故点P 关于⊙O 的限距点存在,其横坐标x 满足112x -≤≤-.………5分 Ⅱ.当点P 在线段DE ,DF (不包括端点)上时,直线PO 与⊙O 的交点'P 满足1'0<<PP 或2'3PP <<,故点P 关于⊙O 的限距点不存在.Ⅲ.当点P 与点D 重合时,直线PO 与⊙O 的交点'(1,0)P 满足1'=PP ,故点P 关于⊙O 的限距点存在,其横坐标x =1.综上所述,点P 关于⊙O 的限距点的横坐标x 的范围为112x -≤≤-或x =1. ……………………6分(2)问题1: 9.………………8分 问题2:0 < r < 16.………………7分。

2016年北京市海淀区中考二模数学试卷

2016年北京市海淀区中考二模数学试卷

2016年北京海淀中考二模数学一、选择题(共10小题;共50分)1. 2022 年冬奥会由北京和张家口两市联合承办.北京到张家口的自驾距离约为米.用科学记数法表示应为A. B. C. D.2. 中华文化底蕴深厚,地方文化活动丰富多彩.下面的四幅简笔画是从我国地方文化活动中抽象出来的,其中是轴对称图形的是A. B.C. D.3. 下列计算正确的是A. B. C. D.4. 如图,边长相等的正方形、正六边形的一边重合,则的度数为A. B. C. D.5. 如图,数轴上有,,,四个点,其中点所表示的数为,则数所对应的点可能是A. B. C. D.6. 在一次中学生趣味数学竞赛中,参加比赛的名学生的成绩如下表所示:这名学生所得分数的平均数是A. B. C. D.7. 如图,,,,为上的点,于点,若,,则的长为A. B. C. D.8. 某通信公司自 2016 年 2 月 1 日起实行新的4G飞享套餐,部分套餐资费标准如下:小明每月大约使用国内数据流量,国内主叫分钟,若想使每月付费最少,则他应预定的套餐是A. 套餐B. 套餐C. 套餐D. 套餐9. 随着“互联网+”时代的到来,一种新型的打车方式受到大众欢迎.该打车方式采用阶梯收费标准.打车费用(单位:元)与行驶里程(单位:千米)的函数关系如图所示.如果小明某次打车行驶里程为千米,则他的打车费用为A. 元B. 元C. 元D. 元10. 如图1,抛物线的顶点为,与轴交于,两点.若,两点间的距离为,是的函数,且表示与的函数关系的图象大致如图2所示,则可能为A. B. C. D.二、填空题(共6小题;共30分)11. 当分式的值为时,的值为.12. 分解因式:.13. 据传说,古希腊数学家、天文学家泰勒斯曾利用相似三角形的原理,在金字塔影子的顶部立一根木杆,借助太阳光线构成两个相似三角形,来测量金字塔的高度.如图所示,木杆的长为,它的影长为,测得为,则金字塔的高度为.14. 请写出一个图象过()和()两点的函数解析式.15. 在某次试验数据整理过程中,某个事件发生的频率情况如下表所示.估计这个事件发生的概率是(精确到),试举出一个随机事件的例子,使它发生的概率与上述事件发生的概率大致相同:.16. 实际生活中,有时会遇到一些“不能接近的角”,如图中的,我们可以采用下面的方法作一条直线平分.如图,(1)作直线与的两边分别交于点,,分别作和的角平分线,两条角平分线相交于点;(2)作直线与的两边分别交于点,,分别作和的角平分线,两条角平分线相交于点;(3)作直线.所以,直线平分.请回答:上面作图方法的依据是.三、解答题(共13小题;共169分)17. 计算:.18. 解不等式组并将解集在数轴上表示出来.19. 已知关于的方程有两个不相等的实数根.(1)求的取值范围;(2)当为正整数时,求方程的根.20. 已知,如图,在中,,点在上,且,过点作于点,过点作的垂线,交的延长线于点.求证:.21. 为了提升阅读速度,某中学开设了“高效阅读”课.小静经过个月的训练,发现自己现在每分钟阅读的字数比原来的倍还多字,现在读字的文章与原来读字的文章所用的时间相同.求小静现在每分钟阅读的字数.22. 如图,在中,,为边上的中线,过点作于,过点作的平行线与的延长线交于点,连接,.(1)求证:四边形为菱形;(2)若四边形的面积为,,求的长.23. 在平面直角坐标系中,直线与双曲线的一个交点为.(1)求和的值;(2)过的直线交于点,交轴于点.若,求点的坐标.24. 如图,在中,,点在上,以为直径的切于点,连接.(1)求证:平分;(2)若的半径为,,求的长.25. 据报道,2015 年我国每千名儿童所拥有的儿科医生数为(将岁的人群定义为儿童),远低于世界主要发达国家,儿科医生存在较大缺口.根据 2000 2015 年报道的相关数据,绘制统计图表如下:全国人口、儿童人口、儿科医生及每千名儿童拥有的儿科医生数统计表2015 年全国人口年龄构成统计图(1)直接写出扇形统计图中的值;(2)根据统计表估计 2020 年我国人口数约为亿人;(3)若2020 年我国儿童占总人口的百分比与2015 年相同,请你估算到2020 年我国儿科医生需比 2015 年增加多少万人,才能使每千名儿童拥有的儿科医生数达到.26. 题目:如图1,在中,为边上一点,,,.若,的周长为,求的长.参考答案:.小明的计算结果与参考答案不同,因此他对参考答案产生了质疑.下面是他的分析、探究过程,请你补充完整.第一步,读题,并标记题目条件如下:在中,为边上一点,①;②;③;④;⑤的周长为.第二步,依据条件③、④、⑤,可以求得;第三步,作出,如图2所示;第四步,依据条件①,在图2中作出;(尺规作图,保留作图痕迹)第五步,对所作图形进行观察、测量,发现与标记的条件不符(填序号),去掉这个条件,题目中其他部分保持不变,求得的长为.27. 已知:点为抛物线上一动点.(1),为点运动所经过的两个位置,判断,的大小,并说明理由;(2)当时,的取值范围是,求抛物线的解析式.28. 已知:,.将线段绕点逆时针旋转得到线段.点关于直线的对称点为,连接,.(1)如图,①补全图形;②求的度数;(2)若,,请写出求度数的思路.(可以不写出计算结果)29. 对于某一函数给出如下定义:若存在实数,当其自变量的值为时,其函数值等于,则称为这个函数的不变值.在函数存在不变值时,该函数的最大不变值与最小不变值之差称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度为零.例如,下图中的函数有,两个不变值,其不变长度等于 .(1)分别判断函数,,有没有不变值?如果有,直接写出其不变长度;(2)函数.①若其不变长度为零,求的值;②若,求其不变长度的取值范围;(3)记函数的图象为,将沿翻折后得到的函数图象记为.函数的图象由和两部分组成,若其不变长度满足,则的取值范围为.答案第一部分1. A2. C3. C4. C5. A6. B7. B8. C9. B 10. C第二部分11.12.13.14. (本题答案不唯一)15. ;从一副去掉大小王的扑克牌中抽出一张牌,牌的花色是红桃.16. 三角形的三条角平分线交于一点;两点确定一条直线.第三部分原式17.18. 原不等式组为解不等式,得解不等式,得原不等式组的解集为.不等式组的解集在数轴上表示如下:19. (1)原方程有两个不相等的实数根,.即..(2)且为正整数,..,.20.,,,.,..在和中,..21. 设小静原来每分钟阅读个字.由题意,得解得经检验,是原方程的解,且符合题意..答:小静现在每分钟阅读个字.22. (1),.,.,四边形为平行四边形..为边上的中线,..四边形为平行四边形.,四边形为菱形.(2)在中,,设,.菱形的面积为,...,(舍).,..23. (1)点在双曲线上,.点在直线上,.(2)当点在线段上时,如图1,过点作轴于,过点作轴于.可得.,.,.点在直线上,点的坐标为.当点在线段的延长线上时,如图2,同理,由,可得点的坐标为.综上所述,点的坐标为或.24. (1)连接.切于点,,...,..平分.(2)连接.如(1)中的图所示.为直径,.,,.,..,.,..即..25. (1).(2)(估值在合理范围内即可)(3).答:2020 年我国儿科医生需比 2015 年增加万人,才能使每千名儿童拥有的儿科医生数达到.26. ;②;27. (1).理由如下:由题意可得抛物线的对称轴为.,在抛物线上,.(2)当时,抛物线的顶点为,且过点,抛物线的解析式为.当时,抛物线的顶点为,且过点,抛物线的解析式为.综上所述,抛物线的解析式为或.28. (1)①补全图形,如图1所示.②连接.,,关于直线对称,.,.,..(2)求解思路如下:a.连接,过点作,交延长线于点,如图2所示;b.由(1)可求,由可求;c.由,可求,,可证为等边三角形;d.由,,两点关于直线对称,,可求,,.29. (1)函数没有不变值;函数有和两个不变值,其不变长度为;函数有和两个不变值,其不变长度为.(2)①函数的不变长度为零,方程有两个相等的实数根..②解方程,得,.,.函数的不变长度的取值范围为.(3)的取值范围为或.。

2016年北京市海淀区初三数学一模试题及答案

2016年北京市海淀区初三数学一模试题及答案

2016年北京市海淀区初三数学一模试题及答案一、选择题(本大题共16个小题,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.方程x2+2x=3的根是()A.x1=1,x2=﹣3 B.x1=﹣1,x2=3C.x1=﹣1+,x2=﹣1﹣ D.x1=1+,x2=1﹣2.如图,由下列条件不能判定△ABC与△ADE相似的是()A.=B.∠B=∠ADE C.=D.∠C=∠AED3.如图,四边形ABCD是⊙O的内接四边形,若∠BOD=88°,则∠BCD的度数是()A.88°B.92°C.106° D.136°4.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)185180185180方差 3.6 3.67.48.1根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁5.已知Rt△ABC中,∠C=90°,AC=3,BC=4,若以2为半径作⊙C,则斜边AB 与⊙C的位置关系是()A.相交B.相切C.相离D.无法确定6.反比例函数y=的两个点为(x1,y1)、(x2,y2),且x1>x2>0,则下式关系成立的是()A.y1>y2B.y1<y2C.y1=y2D.不能确定7.已知⊙O的半径为1,点A到圆心O的距离为a,若关于x的方程x2﹣2x+a=0不存在实数根,则点A与⊙O的位置关系是()A.点A在⊙O外B.点A在⊙O上C.点A在⊙O内D.无法确定8.如图,已知⊙O的半径为5,弦AB=6,M是AB上任意一点,则线段OM的长可能是()A.2.5 B.3.5 C.4.5 D.5.59.反比例函数y=的图象如图所示,以下结论:①常数m<﹣1;②在每个象限内,y随x的增大而增大;③若A(﹣1,h),B(2,k)在图象上,则h<k;④若P(x,y)在图象上,则P′(﹣x,﹣y)也在图象上.其中正确的是()A.①②B.②③C.③④D.①④10.如图,在Rt△ABC中,∠C=90°,BC=4,AC=3,CD⊥AB于D,设∠ACD=α,则cosα的值为()A.B.C.D.11.如图,函数y=ax2+bx+c(a≠0)的图象与x轴相交于A、B两点,頂点为点M.則下列说法不正确的是()A.a<0 B.当x=﹣1时,函数y有最小值4C.对称轴是直线=﹣1 D.点B的坐标为(﹣3,0)12.如图,沿一条母线将圆锥侧面剪开并展开,得到一个扇形,若圆锥的底面圆的半径r=2cm,扇形的圆心角θ=120°,则该圆锥的母线长为()A.6cm B.7cm C.8cm D.9cm13.如图,AB是⊙O的直径,弦CD⊥AB,∠C=30°,CD=2.则S阴影=()A.πB.2πC.D.π14.如图,AD=DF=FB,DE∥FG∥BC,且把三角形ABC分成面积为S1,S2,S3三部分,则S1:S2:S3=()A.1:2:3 B.1:4:9 C.1:3:5 D.无法确定15.如图,AB∥GH∥CD,点H在BC上,AC与BD交于点G,AB=2,CD=3,则GH长为()A.1 B.1.2 C.2 D.2.516.如图,抛物线y1=a(x+2)2﹣3与y2=(x﹣3)2+1交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.则以下结论:①无论x取何值,y2的值总是正数;②a=1;③当x=0时,y2﹣y1=4;④2AB=3AC;其中正确结论是()A.①②B.②③C.③④D.①④二、填空题(本大题共4小题,每小题3分,共12分)17.一台机器原价60万元,两年后这台机器的价格为48.6万元,如果每年的折旧率相同,则这台机器的折旧率为.18.如图,已知O是坐标原点,以O点为位似中心在y轴的左侧将△OBC放大两倍(即新图与原图的相似比为2),则B(3,﹣1)的对称点的坐标为.19.如图,小明同学测量一个光盘的直径,他只有一把直尺和一块三角板,他将直尺、光盘和三角板如图放置于桌面上,并量出AB=3cm,则此光盘的直径是cm.20.如图,把抛物线y=x2平移得到抛物线m,抛物线m经过点A(﹣6,0)和原点O(0,0),它的顶点为P,它的对称轴与抛物线y=x2交于点Q,则图中阴影部分的面积为.三、解答题(本大题共6小题,共66分)21.如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)根据图象直接写出不等式kx+b<时x的解集.22.小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B,C两点的俯角分别为45°,35°.已知大桥BC与地面在同一水平面上,其长度为100m,请求出热气球离地面的高度.(结果保留整数)(参考数据:sin35°≈,cos35°≈,tan35°≈)23.某校260名学生参加植树活动,要求每人植4﹣7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵,将各类的人数绘制成扇形图(如图(1))和条形图(如图(2)),经确认扇形图是正确的,而条形图尚有一处错误.回答下列问题:(1)写出条形图中存在的错误,并说明理由;(2)写出这20名学生每人植树量的众数、中位数;(3)在求这20名学生每人植树量的平均数时,小宇是这样分析的:第一步:求平均数的公式是=;第二步:在该问题中,n=4,x1=4,x2=5,x3=6,x4=7;第三步:==5.5(份)①小宇的分析是从哪一步开始出现错误的?②请你帮他计算出正确的平均数,并估计这260名学生共植树多少棵.24.某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用.设每个房间每天的定价增加x元.求:(1)房间每天的入住量y(间)关于x(元)的函数关系式;(2)该宾馆每天的房间收费p(元)关于x(元)的函数关系式;(3)该宾馆客房部每天的利润w(元)关于x(元)的函数关系式;当每个房间的定价为每天多少元时,w有最大值?最大值是多少?25.已知,如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D作DE⊥MN于E.(1)求证:DE是⊙O的切线;(2)若DE=6cm,AE=3cm,求⊙O的半径.(3)在(2)的条件下,直接写出tan∠CAB的值.26.如图,抛物线L:y=﹣(x﹣t)(x﹣t+4)(常数t>0)与x轴从左到右的交点为B,A,过线段OA的中点M作MP⊥x轴,交双曲线y=(k>0,x>0)于点P,且OA?MP=12.(1)求k的值;(2)当t=1时,求AB长,并求直线MP与L对称轴之间的距离;(3)把L在直线MP左侧部分的图象(含与直线MP的交点)记为G,用t表示图象G最高点的坐标.2016-2017学年河北省唐山市滦县九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共16个小题,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.方程x2+2x=3的根是()A.x1=1,x2=﹣3 B.x1=﹣1,x2=3C.x1=﹣1+,x2=﹣1﹣ D.x1=1+,x2=1﹣【考点】解一元二次方程-配方法.【分析】两边配上一次项系数一半的平方,写成完全平方式后再开方即可得.【解答】解:解法一:∵x2+2x=3,∴x2+2x+1=3+1,即(x+1)2=4,∴x+1=2或x+1=﹣2,解得:x1=1,x2=﹣3,解法二:∵x2+2x﹣3=0,∴(x﹣1)(x+3)=0,则x﹣1=0或x+3=0,解得:x=1或x=﹣3,故选:A.2.如图,由下列条件不能判定△ABC与△ADE相似的是()A.=B.∠B=∠ADE C.=D.∠C=∠AED【考点】相似三角形的判定.【分析】利用两组对应边的比相等且夹角对应相等的两个三角形相似可对A、C 进行判断;根据有两组角对应相等的两个三角形相似可对B、C进行判断.【解答】解:∵∠EAD=∠BAC,∴当∠AED=∠C时,△AED∽△ACB;当∠AED=∠B时,△AED∽△ABC;当=时,△AED∽△ABC;当=时,△AED∽△ACB.故选C.3.如图,四边形ABCD是⊙O的内接四边形,若∠BOD=88°,则∠BCD的度数是()A.88°B.92°C.106° D.136°【考点】圆内接四边形的性质;圆周角定理.【分析】首先根据∠BOD=88°,应用圆周角定理,求出∠BAD的度数多少;然后根据圆内接四边形的性质,可得∠BAD+∠BCD=180°,据此求出∠BCD的度数是多少即可.【解答】解:∵∠BOD=88°,∴∠BAD=88°÷2=44°,∵∠BAD+∠BCD=180°,∴∠BCD=180°﹣44°=136°,即∠BCD的度数是136°.故选:D.4.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)185180185180方差 3.6 3.67.48.1根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁【考点】方差;算术平均数.【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加.【解答】解:∵=>=,∴从甲和丙中选择一人参加比赛,∵=<<,∴选择甲参赛,故选:A.5.已知Rt△ABC中,∠C=90°,AC=3,BC=4,若以2为半径作⊙C,则斜边AB 与⊙C的位置关系是()A.相交B.相切C.相离D.无法确定【考点】直线与圆的位置关系;勾股定理.【分析】根据题意可求得直角三角形斜边上的高,再根据直线和圆的位置关系,判断圆心到直线AB的距离与2的大小关系,从而确定⊙C与AB的位置关系.【解答】解:由勾股定理得AB=5,再根据三角形的面积公式得,3×4=5×斜边上的高,∴斜边上的高=,∵>2,∴⊙C与AB相离.故选:C.6.反比例函数y=的两个点为(x1,y1)、(x2,y2),且x1>x2>0,则下式关系成立的是()A.y1>y2B.y1<y2C.y1=y2D.不能确定【考点】反比例函数图象上点的坐标特征.【分析】先根据反比例函数的性质判断出函数图象所在象限,再由x1>x2>0判断出两点所在的象限,再根据函数的增减性即可得出结论.【解答】解:∵反比例函数y=中k=2>0,∴函数图象的两个分支分别在一、三象限,∵x1>x2>0,∴点(x1,y1)、(x2,y2)在第一象限,∵在每一象限内y随x的增大而减小,∴y1<y2.故选B.7.已知⊙O的半径为1,点A到圆心O的距离为a,若关于x的方程x2﹣2x+a=0不存在实数根,则点A与⊙O的位置关系是()A.点A在⊙O外B.点A在⊙O上C.点A在⊙O内D.无法确定【考点】点与圆的位置关系;根的判别式.【分析】根据点到圆心的距离与圆的半径之间的关系:“点到圆心的距离为d,则当d=r时,点在圆上;当d>r时,点在圆外;当d<r时,点在圆内”来求解.【解答】解:由题意,得△=b2﹣4ac=4﹣4a<0,解得a>1,a>r时,点在圆外,故选:A.8.如图,已知⊙O的半径为5,弦AB=6,M是AB上任意一点,则线段OM的长可能是()A.2.5 B.3.5 C.4.5 D.5.5【考点】垂径定理;勾股定理.【分析】根据ON<OM<OA求出OM的取值范围,再进行估算.【解答】解:作ON⊥AB,根据垂径定理,AN=AB=×6=3,根据勾股定理,ON===4,则ON≤OM≤OA,4≤OM≤5,只有C符合条件.故选C.9.反比例函数y=的图象如图所示,以下结论:①常数m<﹣1;②在每个象限内,y随x的增大而增大;③若A(﹣1,h),B(2,k)在图象上,则h<k;④若P(x,y)在图象上,则P′(﹣x,﹣y)也在图象上.其中正确的是()A.①②B.②③C.③④D.①④【考点】反比例函数的性质.【分析】根据反比例函数的图象的位置确定其比例系数的符号,利用反比例函数的性质进行判断即可.【解答】解:∵反比例函数的图象位于一三象限,∴m>0故①错误;当反比例函数的图象位于一三象限时,在每一象限内,y随x的增大而减小,故②错误;将A(﹣1,h),B(2,k)代入y=得到h=﹣m,2k=m,∵m>0∴h<k故③正确;将P(x,y)代入y=得到m=xy,将P′(﹣x,﹣y)代入y=得到m=xy,故P(x,y)在图象上,则P′(﹣x,﹣y)也在图象上故④正确,故选C10.如图,在Rt△ABC中,∠C=90°,BC=4,AC=3,CD⊥AB于D,设∠ACD=α,则cosα的值为()A.B.C.D.【考点】锐角三角函数的定义.【分析】证明∠ACD=∠B,则∠ACD的余弦值等于∠B的余弦值,在直角△ABC 中,利用勾股定理求得AB的长,利用余弦的定义求解.【解答】解:在直角△ABC中,AB===5.∵在Rt△ABC中,∠C=90°,CD⊥AB于D.∴∠ACD=∠B,∴cosα=cosB==.故选A.11.如图,函数y=ax2+bx+c(a≠0)的图象与x轴相交于A、B两点,頂点为点M.則下列说法不正确的是()A.a<0 B.当x=﹣1时,函数y有最小值4C.对称轴是直线=﹣1 D.点B的坐标为(﹣3,0)【考点】抛物线与x轴的交点.【分析】根据二次函数图象的开口向下可知a<0,对称轴为直线x=﹣1,当x=﹣1时,函数y有最大值4,再根据点A的坐标为(1,0)对称轴为直线x=﹣1,可得点B的坐标为(﹣3,0),由此以上信息可得问题答案.【解答】解:A、因为函数的图象开口向下,所以a<0,此选项说法不正确,故此选项不符合题意;B、当x=﹣1时,函数y有最大值4,而不是最小值,此选项说法不正确,故该选项符合题意;C、由函数的图象可知,抛物线对称轴是直线=﹣1,此选项说法不正确,故此选项不符合题意;D、由点A的坐标为(1,0)对称轴为直线x=﹣1,可得点B的坐标为(﹣3,0),此选项说法不正确,故此选项不符合题意,故选B.12.如图,沿一条母线将圆锥侧面剪开并展开,得到一个扇形,若圆锥的底面圆的半径r=2cm,扇形的圆心角θ=120°,则该圆锥的母线长为()A.6cm B.7cm C.8cm D.9cm【考点】圆锥的计算;几何体的展开图.【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【解答】解:圆锥的底面周长=2π×2=4πcm,设圆锥的母线长为R,则:=4π,解得R=6.故选A.13.如图,AB是⊙O的直径,弦CD⊥AB,∠C=30°,CD=2.则S阴影=()A.πB.2πC.D.π【考点】扇形面积的计算;垂径定理;圆周角定理.【分析】根据垂径定理求得CE=ED=;然后由圆周角定理知∠AOD=60°,然后通过解直角三角形求得线段AE、OE的长度;最后将相关线段的长度代入S阴影=S﹣S△OED+S△ACE.扇形OAD【解答】解:∵CD⊥AB,CD=2∴CE=DE=CD=,在Rt△ACE中,∠C=30°,则AE=CEtan30°=1,在Rt△OED中,∠DOE=2∠C=60°,则OD==2,∴OE=OA﹣AE=OD﹣AE=1,S阴影=S扇形OAD﹣S△OED+S△ACE=﹣×1×+×1×=.故选D.14.如图,AD=DF=FB,DE∥FG∥BC,且把三角形ABC分成面积为S1,S2,S3三部分,则S1:S2:S3=()A.1:2:3 B.1:4:9 C.1:3:5 D.无法确定【考点】相似三角形的判定与性质.【分析】首先根据已知的平行线段,可判定△ADE∽△AFG∽△ABC,进而可由它们的相似比求得面积比,从而得到S1、S2、S3的比例关系.【解答】解:∵DE∥FG∥BC,∴△ADE∽△AFG∽△ABC,∴S△ADE:S△AFG:S△ABC=AD2:(2AD)2:(3AD)2=1:4:9;设S△ADE=1,则S△AFG=4,S△ABC=9,∴S1=S△ADE=1,S2=S△AFG﹣S△ADE=3,S3=S△ABC﹣S△AFG=5,即S1:S2:S3=1:3:5;故选:C.15.如图,AB∥GH∥CD,点H在BC上,AC与BD交于点G,AB=2,CD=3,则GH长为()A.1 B.1.2 C.2 D.2.5【考点】平行线分线段成比例.【分析】根据平行线分线段成比例定理,得出∴,,即②,将两个式子相加,即可求出GH的长.【解答】解:∵AB∥GH,∴,即①,∵GH∥CD,∴,即②,①+②,得=+=1,解得GH=1.2.故选:B.16.如图,抛物线y1=a(x+2)2﹣3与y2=(x﹣3)2+1交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.则以下结论:①无论x取何值,y2的值总是正数;②a=1;③当x=0时,y2﹣y1=4;④2AB=3AC;其中正确结论是()A.①②B.②③C.③④D.①④【考点】二次函数的性质.【分析】根据与y2=(x﹣3)2+1的图象在x轴上方即可得出y2的取值范围;把A(1,3)代入抛物线y1=a(x+2)2﹣3即可得出a的值;由抛物线与y轴的交点求出,y2﹣y1的值;根据两函数的解析式直接得出AB与AC的关系即可.【解答】解:①∵抛物线y2=(x﹣3)2+1开口向上,顶点坐标在x轴的上方,∴无论x取何值,y2的值总是正数,故本小题正确;②把A(1,3)代入,抛物线y1=a(x+2)2﹣3得,3=a(1+2)2﹣3,解得a=,故本小题错误;③由两函数图象可知,抛物线y1=a(x+2)2﹣3解析式为y1=(x+2)2﹣3,当x=0时,y1=(0+2)2﹣3=﹣,y2=(0﹣3)2+1=,故y2﹣y1=+=,故本小题错误;④∵物线y1=a(x+2)2﹣3与y2=(x﹣3)2+1交于点A(1,3),∴y1的对称轴为x=﹣2,y2的对称轴为x=3,∴B(﹣5,3),C(5,3)∴AB=6,AC=4,∴2AB=3AC,故本小题正确.故选D.二、填空题(本大题共4小题,每小题3分,共12分)17.一台机器原价60万元,两年后这台机器的价格为48.6万元,如果每年的折旧率相同,则这台机器的折旧率为10%.【考点】一元二次方程的应用.【分析】可设这台机器的折旧率为x,根据等量关系:原价×(1﹣折旧率)2=两年后这台机器的价格,依此列出方程求解即可.【解答】解:设这台机器的折旧率为x,依题意有60(1﹣x)2=48.6,解得x1=1.9(不合题意,舍去),x2=0.1.答:这台机器的折旧率为10%.故答案为:10%.18.如图,已知O是坐标原点,以O点为位似中心在y轴的左侧将△OBC放大两倍(即新图与原图的相似比为2),则B(3,﹣1)的对称点的坐标为(﹣6,2).【考点】位似变换;坐标与图形性质.【分析】根据如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k,把B点的横纵坐标分别乘以﹣2即可得到点B的对应点的坐标.【解答】解:∵以O点为位似中心在y轴的左侧将△OBC放大两倍(即新图与原图的相似比为2),∴B(3,﹣1)的对称点的坐标为[3×(﹣2),﹣1×(﹣2)],即(﹣6,2).故答案为(﹣6,2).19.如图,小明同学测量一个光盘的直径,他只有一把直尺和一块三角板,他将直尺、光盘和三角板如图放置于桌面上,并量出AB=3cm,则此光盘的直径是6cm.【考点】切线长定理.【分析】先画图,根据题意求出∠OAB=60°,再根据直角三角形的性质和勾股定理求得OB,从而得出光盘的直径.【解答】解:∵∠CAD=60°,∴∠CAB=120°,∵AB和AC与⊙O相切,∴∠OAB=∠OAC,∴∠OAB=∠CAB=60°∵AB=3cm,∴OA=6cm,∴由勾股定理得OB=3cm,∴光盘的直径6cm.故答案为:6.20.如图,把抛物线y=x2平移得到抛物线m,抛物线m经过点A(﹣6,0)和原点O(0,0),它的顶点为P,它的对称轴与抛物线y=x2交于点Q,则图中阴影部分的面积为.【考点】二次函数图象与几何变换.【分析】根据点O与点A的坐标求出平移后的抛物线的对称轴,然后求出点P 的坐标,过点P作PM⊥y轴于点M,根据抛物线的对称性可知阴影部分的面积等于矩形NPMO的面积,然后求解即可.【解答】解:过点P作PM⊥y轴于点M,∵抛物线平移后经过原点O和点A(﹣6,0),∴平移后的抛物线对称轴为x=﹣3,得出二次函数解析式为:y=(x+3)2+h,将(﹣6,0)代入得出:0=(﹣6+3)2+h,解得:h=﹣,∴点P的坐标是(﹣3,﹣),根据抛物线的对称性可知,阴影部分的面积等于矩形NPMO的面积,∴S=|﹣3|×|﹣|=.故答案为:.三、解答题(本大题共6小题,共66分)21.如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)根据图象直接写出不等式kx+b<时x的解集.【考点】反比例函数与一次函数的交点问题.【分析】(1)先把B点坐标代入y=,求出m得到反比例函数解析式为y=﹣,再利用反比例函数解析式确定A点坐标,然后利用待定系数法求一次函数解析式;(2)先求C点坐标,然后根据三角形面积公式和S△AOB=S△AOC+S△BOC进行计算;(3)观察函数图象得到当﹣4<x<0或x>2时,一次函数图象都在反比例函数图象下方,即有kx+b<.【解答】解:(1)∵B(2,﹣4)在函数y=的图象上,∴m=2×(﹣4)=﹣8,∴反比例函数的解析式为:y=﹣.∵点A(﹣4,n)在函数y=﹣的图象上,∴n=﹣=2,∴A(﹣4,2).∵y=kx+b经过A(﹣4,2),B(2,﹣4),∴,解得,∴一次函数的解析式为:y=﹣x﹣2;(2)∵C是直线AB与x轴的交点,∴当y=0时,x=﹣2,∴点C(﹣2,0),∴OC=2,∴S△AOB=S△ACO+S△BCO=×2×2+×2×4=6;(3)不等式kx+b<时x的解集为﹣4<x<0或x>2.22.小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B,C两点的俯角分别为45°,35°.已知大桥BC与地面在同一水平面上,其长度为100m,请求出热气球离地面的高度.(结果保留整数)(参考数据:sin35°≈,cos35°≈,tan35°≈)【考点】解直角三角形的应用-仰角俯角问题.【分析】作AD⊥BC交CB的延长线于D,设AD为x,表示出DB和DC,根据正切的概念求出x的值即可.【解答】解:作AD⊥BC交CB的延长线于D,设AD为x,由题意得,∠ABD=45°,∠ACD=35°,在Rt△ADB中,∠ABD=45°,∴DB=x,在Rt△ADC中,∠ACD=35°,∴tan∠ACD=,∴=,解得,x≈233m.23.某校260名学生参加植树活动,要求每人植4﹣7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵,将各类的人数绘制成扇形图(如图(1))和条形图(如图(2)),经确认扇形图是正确的,而条形图尚有一处错误.回答下列问题:(1)写出条形图中存在的错误,并说明理由;(2)写出这20名学生每人植树量的众数、中位数;(3)在求这20名学生每人植树量的平均数时,小宇是这样分析的:第一步:求平均数的公式是=;第二步:在该问题中,n=4,x1=4,x2=5,x3=6,x4=7;第三步:==5.5(份)①小宇的分析是从哪一步开始出现错误的?②请你帮他计算出正确的平均数,并估计这260名学生共植树多少棵.【考点】条形统计图;扇形统计图;加权平均数;中位数;众数.【分析】(1)条形统计图中D的人数错误,应为20×10%;(2)根据中位数、众数的定义以及条形统计图及扇形统计图所给的数据,即可求出答案;(3)①小宇的分析是从第二步开始出现错误的;②根据平均数的计算公式先求出正确的平均数,再乘以260即可得到结果.【解答】解:(1)D错误,理由为:20×10%=2≠3;(2)众数为5,中位数为5;(3)①第二步;②==5.3(棵),估计这260名学生共植树 5.3×260=1378(棵).24.某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用.设每个房间每天的定价增加x元.求:(1)房间每天的入住量y(间)关于x(元)的函数关系式;(2)该宾馆每天的房间收费p(元)关于x(元)的函数关系式;(3)该宾馆客房部每天的利润w(元)关于x(元)的函数关系式;当每个房间的定价为每天多少元时,w有最大值?最大值是多少?【考点】二次函数的应用.【分析】(1)根据题意可得房间每天的入住量=60个房间﹣每个房间每天的定价增加的钱数÷10;(2)已知每天定价增加为x元,则每天要元.则宾馆每天的房间收费=每天的实际定价×房间每天的入住量;(3)支出费用为20×(60﹣),则利润w=(60﹣)﹣20×(60﹣),利用配方法化简可求最大值.【解答】解:(1)由题意得:y=60﹣(2)p=(60﹣)=﹣+40x+12000(3)w=(60﹣)﹣20×(60﹣)=﹣+42x+10800=﹣(x﹣210)2+15210当x=210时,w有最大值.此时,x+200=410,就是说,当每个房间的定价为每天410元时,w有最大值,且最大值是15210元.25.已知,如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D作DE⊥MN于E.(1)求证:DE是⊙O的切线;(2)若DE=6cm,AE=3cm,求⊙O的半径.(3)在(2)的条件下,直接写出tan∠CAB的值.【考点】圆的综合题.【分析】(1)连接OD欲证明DE是⊙O的切线,只要证明∠ODE=90°即可.(2)连接CD,首先求出AD,由△ACD∽△ADE,得到=,即可求出AC解决问题.(3)作OF⊥MN于F,则四边形ODEF是矩形,根据tan∠CAB=,求出AF即可解决问题.【解答】(1)证明:连接OD.∵OA=OD∴∠OAD=∠ODA∵∠OAD=∠DAE∴∠ODA∠DAE.∴DO∥MN,∵DE⊥MN,∴∠ODE=∠DEM=90°即OD⊥DE,∵D在⊙O上∴DE是⊙O的切线.(2)解:连接CD∵∠AED=90°,DE=6,AE=3,∴AD===3,∵AC是⊙O的直径,∴∠ADC=∠AED=90°,∵∠CAD=∠DAE,∴△ACD∽△ADE,∴=,∴=,∴AC=15,∴⊙O的半径是7.5cm.(3)解:作OF⊥MN于F,则四边形ODEF是矩形,OF=AD=6,∴AF===4.5,∴tan∠CAB===.26.如图,抛物线L:y=﹣(x﹣t)(x﹣t+4)(常数t>0)与x轴从左到右的交点为B,A,过线段OA的中点M作MP⊥x轴,交双曲线y=(k>0,x>0)于点P,且OA?MP=12.(1)求k的值;(2)当t=1时,求AB长,并求直线MP与L对称轴之间的距离;(3)把L在直线MP左侧部分的图象(含与直线MP的交点)记为G,用t表示图象G最高点的坐标.【考点】反比例函数综合题.【分析】(1)设P(x,y),则可表示出MP,由M为OA的中点,可求得OA,由条件可求得xy,则可求得k的值;(2)把t=1,代入抛物线解析式,令y=0可求得A、B两点的坐标,可求得AB 的长,再求得抛物线的对称轴和直线MP的方程,可求得直线MP与对称轴之间的距离;(3)可用t表示出A、B两点的坐标,进一步可表示出直线MP的解析式,再根据顶点的位置可求得其最大值,可表示出G的坐标.【解答】解:(1)设P(x,y)则MP=y,∵M为OA的中点,∴OA=2x,∵OA?MP=12,∴2xy=12,∴xy=6,∴k=6;(2)当t=1,y=0时,0=﹣(x﹣1)(x﹣1+4),解得x=1或x=﹣3,∴A(1,0)、B(﹣3,0),∴AB=4;∴抛物线L的对称轴为直线x==﹣1,∵OA=1,∴MP为直线x=,∴直线MP与L对称轴之间的距离为;(3)在y=﹣(x﹣t)(x﹣t+4)中,令y=0可得﹣(x﹣t)(x﹣t+4)=0,解得x=t或x=t﹣4,∴A(t,0),B(t﹣4,0),∴抛物线L的对称轴为直线x==t﹣2,又∵MP为直线x=,∴当抛物线L的顶点在直线MP上或左侧时,即t﹣2≤时,解得t≤4,此时,顶点(t﹣2,2)为图象G最高点的坐标;当抛物线L的顶点在直线MP右侧时,即t﹣2>时,解得t>4,此时时,交点直线MP与抛物线L的交点为(,﹣t2+t),为图象G最高点的坐标.2017年2月20日第31页(共31页)。

2016北京市海淀区初三一模数学试题及答案

2016北京市海淀区初三一模数学试题及答案

海淀区九年级第二学期期中练习数学2016.5学校班级___________ 姓名成绩一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的.1.“中华人民共和国全国人民代表大会”和“中国人民政治协商会议”于2016年3月3日在北京胜利召开.截止到2016年3月14日,在百度上搜索关键词“两会”,显示的搜索结果约为96 500 000条.将96 500 000用科学记数法表示应为A.96.5×107 B.9.65×107 C.9.65×108 D.0.965×1092. 如图是某个几何体的三视图,该几何体是A .长方体B .正方体C .圆柱D .三棱柱3. 一个不透明的口袋中装有3个红球和12个黄球,这些球除了颜色外,无其他差别,从中随机摸出一个球,恰好是红球的概率为 A . B . C . D .4. 下列图形中,是轴对称图形但不是中心对称图形的是 A . B . C . D . 5.如图,在ABCD 中,AB=3,BC =5,∠ABC 的平分线交AD 于点E ,则DE 的长为A .5B .4C .3D .2 6. 如图,等腰直角三角板的顶点A ,C分别在直线,b 上.若∥b ,,则的度数为A .B .C .D .7.初三(8)班体委用划记法统计本班40名同学投掷实心球的成绩,结果如下表所示:14341545Y a a 1=35∠︒2∠35︒15︒10︒5︒E CD BA则这40名同学投掷实心球的成绩的众数和中位数分别是A.9,8 B.9,8.5 C.8,8 D.8,8.58.京津冀都市圈是指以北京、天津两座直辖市以及河北省的保定、廊坊、唐山、邯郸、邢台、秦皇岛、沧州、衡水、承德、张家口和石家庄为中心的区域.若“数对”19043︒(,)表示图中承德的位置,“数对”(,)表示图中保定的位置,则与图中张家口160238︒的位置对应的“数对”为A.176145︒(,)B.17635︒(,)C.100145︒(,)D.10035︒(,)9.油电混动汽车是一种节油、环保的新技术汽车.它将行驶过程中部分原本被浪费的能量回收储存于内置的蓄电池中.汽车在低速行驶时,使用蓄电池带动电动机驱动汽车,节约燃油.某品牌油电混动汽车与普通汽车的相关成本数据估算如下:某人计划购入一辆上述品牌的汽车.他估算了未来10年的用车成本,在只考虑车价和燃油成本的情况下,发现选择油电混动汽车的成本不高于选择普通汽车的成本.则他在估算时,预计平均每年行驶的公里数至少..为A.5 000 B.10 000 C.15 000 D.20 00010.小明在暗室做小孔成像实验.如图1,固定光源(线段MN)发出的光经过小孔(动点K)成像(线段M'N')于足够长的固定挡板(直线l)上,其中MN// l. 已知点K匀速运动,其运动路径由AB,BC,CD,DA,AC,BD组成.记它的运动时间为x,M'N'的长度为y,若y关于x的函数图象大致如图2所示,则点K的运动路径可能为A.A→B→C→D→A B.B→C→D→A→BC .B→C→A→D→BD .D→A→B→C→D 图1 图2 二、填空题(本题共18分,每小题3分)11. 分解因式:a 2b -2ab +b =________________.12. 如图,AB 为⊙O 的弦,OC ⊥AB 于点C .若AB=8,OC =3,则 ⊙O 的半径长为________.13. 埃及《纸草书》中记载 :“一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33.”设这个数是x ,可列方程为 .14.在下列函数①;②;③;④中,与众不同的一个是_____(填序号),你的理由是________ .15. 北京市2010~2015年高考报名人数统计如图所示.根据统计图中提供的信息,预估2016年北京市高考报名人数约为________万人,你的预估理由是____________. 16.阅读下面材料:在数学课上,老师提出如下问题:21y x =+22y x x =+3y x=3y x =-小云的作法如下:.28题7分,第29题8分)17.计算:.18.解不等式组并写出它的所有整数解....19.已知,求代数式的值.20.如图,在△ABC中,,AD BC⊥于点D,DE为AC边上的中线.求证:.21.目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的能量消耗.对比手机数据发现小琼步行12 000步与小博步行9 000步消耗的能量相同.若每消耗1千卡能量小琼行走的步数比小博多10步,求小博每消耗1千卡能量需要行走多)2016tan3012π-⎛⎫-︒++⎪⎝⎭41)3(2),14,2x xxx-≤+⎧⎪⎨-<-⎪⎩(250x x+-=2(1)(3)(2)(2)x x x x x---++-90BAC∠=︒BAD EDC∠=∠少步.22.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,过点B 作AC 的平行线交DC 的延长线于点E . (1)求证:BD=BE ;(2)若BE =10,CE =6,连接OE ,求tan ∠OED 的值.23.在平面直角坐标系xOy 中,直线与双曲线k y x=(0k ≠)的一个交点为.(1)求k 的值;(2)将直线向上平移b (b>0)个单位长度后,与x 轴,y 轴分别交于点A ,点B ,与双曲线k y x=(0k ≠)的一个交点记为Q .若,求b 的值.24.如图,AB ,AD 是⊙O 的弦,AO 平分.过点B 作⊙O 的切线交AO 的延长线于点C ,连接CD ,BO .延长BO 交⊙O 于点E ,交AD 于点F ,连接AE ,DE . (1)求证:是⊙O 的切线; (2)若,求的长.y x =-(6,)P m y x =-2BQ AB =BAD ∠CD 3AE DE ==AF25.阅读下列材料:2015年中国内地电影市场票房总收入400亿元,动画电影成为了新崛起的热点,票房占比为11.25%.2014年,中国内地动画电影市场6部破亿,只有一部《熊出没》为国产动画电影,票房成绩为2.4亿元.而2015年中国内地动画电影市场共8部破亿,国产动画电影占3部,分别是《大圣归来》,《熊出没2》和《十万个冷笑话》.其中,《大圣归来》以9.55亿元票房夺冠,《熊出没2》比2014年第一部的票房又增长了20%,《十万个冷笑话》以1.2亿元票房成绩勉强破亿.另外5部来自海外动画电影,其中美国两部全球热映的动画电影《超能陆战队》和《小黄人大眼萌》在中国内地只拿下5.26亿元和4.36亿元票房,而同样来自美国的《精灵旅社2》收获1.2亿元票房,日本的《哆啦A梦之伴我同行》和法国的《小王子》分别获得5.3亿和1.58亿元票房收入. 2015年中国内地动画电影市场中,国产动画电影共上映41部,其中票房在1000万元~5000万元、5000万元~1亿元的国产动画电影分别有12部和5部,票房金字塔结构分化更加明显,标志着中国国产动画电影市场的日趋成熟.根据以上材料解答下列问题:(1)2015(2)右图为2015年国产..动画电影票房金字塔,则B = ;(3)选择统计表或.统计图将2015年中国内地动画电影市场票房收入前5名的票房成绩表示出来.26.有这样一个问题:探究函数的图象与性质. 小东对函数的图象与性质进行了探究. 下面是小东的探究过程,请补充完成:(1)函数的自变量x 的取值范围是全体实数; (2)下表是y 与x 的几组对应值.(1)(2)(3)y x x x =---(1)(2)(3)y x x x =---(1)(2)(3)y x x x =---①m = ;②若M (7-,720-),N (,720)为该函数图象上的两点,则 ;(3)在平面直角坐标系中, A (),B () 为该函数图象上的两点,且A 为范围内的最低点, A 点的位置如图所示.①标出点B 的位置;②画出函数()的图象. 27.在平面直角坐标系中,抛物线(0m ≠)的顶点为A ,与 x 轴交于B ,C 两点(点B在点C 左侧),与y 轴交于点D . (1)求点A 的坐标; (2)若BC =4,①求抛物线的解析式;②将抛物线在C ,D 之间的部分记为图象G (包含C ,D 两点).若过点A 的直线与图象G 有两个交点,结合函数的图象,求kn n =xOy ,A A x y ,B A x y -23x ≤≤(1)(2)(3)y x x x =---04x ≤≤xOy 224y mx mx m =-+-+(0)y kx b k =≠的取值范围.28.在△ABC 中,AB =AC ,∠BAC =,点D 在射线BC 上(与B 、C 两点不重合),以AD 为边作正方形ADEF ,使点E 与点B 在直线AD 的异侧,射线BA 与射线CF 相交于点G .(1)若点D 在线段BC 上,如图1. ① 依题意补全图1;② 判断BC 与CG 的数量关系与位置关系,并加以证明;(2)若点D 在线段BC 的延长线上,且G 为CF 中点,连接GE ,AB =,则GE 的 长为_______,并简述求GE 长的思路. 图1 备用图P 是与29.在平面直角坐标系中,⊙C 的半径为r ,圆心C不重合的点,点P 关于⊙C 的限距点的定义如下:若为直线PC 与⊙C 的一个交点,满足,则称为点P 关于⊙C 的限距点,右图为点P 及其关于⊙C 的限 距点的示意图.(1) 当⊙O 的半径为1时.90︒2xOy P '2r PP r '≤≤P 'P '① 分别判断点M ,N ,T 关 于⊙O 的限距点是否存在?若存在,求其坐标;②点D 的坐标为(2,0),DE ,DF 分别切⊙O 于点E ,点F ,点P 在△DEF 的 边上.若点P 关于⊙O 的限距点存在,求点的横坐标的取值范围;(2) 保持(1)中D ,E ,F 三点不变,点P 在△DEF 的边上沿E →F →D →E 的方向 运动,⊙C 的圆心C 的坐标为(1,0),半径为r .请从下面两个问题中任选一个作答. 温馨提示:答对问题1得2分,答对问题2得1分,两题均答不重复计分.海淀区九年级第二学期期中练习数学试卷参考答案一、选择题(本题共30分,每小题3分)(3,4)5(,0)2P 'P '二、填空题(本题共18分,每小题3分)三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)17.解:原式……………………4分.………………………5分解不等式①,得.………………………2分解不等式②,得.………………………3分∴原不等式组的解集为.………………………4分∴原不等式组的所有整数解为8,9,10.………………………5分19.解:原式………………………3分.………………………4分∵,∴.∴原式=..………………………5分20.证明:∵,∵,∴.∴.∴.………………………2分∵为边上的中线,∴.∴..………………………4分∴BAD EDC∠=∠.………………………5分21.解:设小博每消耗1千卡能量需要行走x步.………………………1分由题意,得. ………………………3分解得. ………………………4分经检验,是原方程的解,且符合题意.答:小博每消耗1千卡能量需要步行30步. ………………………5分22.(1) 证明:∵四边形为矩形,∴,∥.∵∥,∴四边形为平行四边形. ………………………2分∴ .∴. ………………………3分(2) 解:过点O作OF⊥CD于点F.A∵ 四边形为矩形, ∴ 90BCD ∠=︒. ∵ 10BE BD ==, ∴ 6CD CE ==.同理,可得132CF DF CD ===.∴9EF =. ………………………4分 在Rt △BCE 中,由勾股定理可得8BC =. ∵ OB=OD ,∴ OF 为△BCD 的中位线. ∴ 142OF BC ==.∴在Rt △OEF 中,4tan 9OF OED EF ∠==. ………………………5分 23. 解:(1)∵在直线上, ∴. ………………………1分 ∵在双曲线上,∴. ………………………2分图1 图2 (2) ∵向上平移(0b >)个单位长度后,与轴,轴分别交于A ,B ,∴. ………………………3分 作⊥轴于H ,可得△∽△.如图1,当点Q 在AB 的延长线上时, ∵, ∴3===ABAQOA HA OB HQ . ∵OA OB b ==, ∴,2HO b =. ∴的坐标为.由点在双曲线6y x=-上, 可得1b =. ………………………4分 如图2,当点Q 在AB 的反向延长线上时, 同理可得,的坐标为.由点在双曲线6y x=-上,可得.综上所述,或. ………………………5分24. (1) 证明:如图,连接. ………………………1分∵为⊙的切线, ∴.∵平分BAD∠,∴.∵OA OB OD==,∴1=4=2=5∠∠∠∠.∴.∴△△.∴90∠=∠=︒.CBO CDO∴为⊙的切线.……………2分(2) ∵,∴»»=.AE DE∴. ………………………3分∵124∠=∠=∠,∴.∵为⊙的直径,∴.∴.………………………4分∴.在Rt△AFE中,∵,︒3,=∠30∴. ………………………5分25. (1) 45;………………………2分(2) 21;………………………3分(3) .2015年中国内地动画电影市场票房收入前5名的票房成绩统计表………………………5分或2015年中国内地动画电影市场票房收入前5名的票房成绩统计图………………………5分26. (2) ①;………………………1分②;………………………2分(3)正确标出点B的位置,画出函数图象. …………………5分27. 解:(1).∴点的坐标为.………………………2分(2)①由(1)得,抛物线的对称轴为x=1.∵抛物线与轴交于,两点(点B在点C左侧),BC=4,∴点的坐标为,点的坐标为.………………………3分∴.∴.∴抛物线的解析式为.……4分②由①可得点的坐标为.当直线过点,时,解得.………5分当直线过点,时,解得.………6分结合函数的图象可知,k的取值范围为10k<≤.…………7分k-≤<或0228. 解:(1) ①补全图形,如图1所示.………………………1分图1②BC和CG的数量关系:BC CG⊥.…………………2分=,位置关系:BC CG证明: 如图1.∵,∴,.∵射线、的延长线相交于点,∴.∵四边形为正方形,∴,.∴.∴△≌△.…………………3分∴.∴45B G ∠=∠=︒,90BCG ∠=︒.∴BC CG =,BC CG ⊥.…………………4分(2) .…………………5分思路如下:a . 由G 为CF 中点画出图形,如图2所示.b . 与②同理,可得BD=CF ,BC CG =,BC CG ⊥;c . 由,G 为CF 中点,可得2====CD FG CG BC ;d . 过点A 作AM BD ⊥于M ,过点E 作EN FG ⊥于N ,可证△AMD ≌△FNE ,可得1AM FN ==,NE 为FG 的垂直平分线,FE EG =;e . 在Rt △AMD 中,1AM =,3MD =,可得10AD =,即10GE FE AD ===. ……7分29.解:(1)①点M ,点T 关于⊙的限距点不存在;点N 关于⊙的限距点存在,坐标为(1,0).………………………2分 ②∵点D 的坐标为(2,0),⊙半径为1,DE ,DF 分别切⊙于点E ,点F ,∴切点坐标为13()22,,13()22,-.……………3分 如图所示,不妨设点E 的坐标为13()2,,点F的坐标为13()2,-,EO ,FO 的延长线分别交⊙于点'E ,'F ,则13'()2E --,,13'()2F -,. 设点关于⊙的限距点的横坐标为.Ⅰ.当点在线段上时,直线PO 与的交点'P 满足2'1≤≤PP ,故点关于⊙的限距点存在,其横坐标满足.………5分Ⅱ.当点在线段,(不包括端点)上时,直线PO 与⊙O 的交点'P 满足1'0<<PP 或2'3PP <<,故点P 关于⊙的限距点不存在.Ⅲ.当点与点重合时,直线PO 与⊙O 的交点'(1,0)P 满足1'=PP ,故点P 关于⊙的限距点存在,其横坐标=1.综上所述,点关于⊙的限距点的横坐标的范围为或=1. ……………………6分(2)问题1: . ………………8分问题2:0 < r < 16. ………………7分2020-2-8。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年北京市海淀区普通中学中考数学模拟试卷(二)(1月份)一.选择题1.(3分)如果a与﹣2互为倒数,那么a是()A.﹣2 B.﹣ C.D.22.(3分)长城总长约为6700010米,用科学记数法表示为(保留两位有效数字)()A.6.7×105米B.6.7×106米C.6.7×107米D.6.7×108米3.(3分)在相同时刻的物高与影长成比例.小明的身高为1.5米,在地面上的影长为2米,同时一古塔在地面上的影长为40米,则古塔高为()A.60米B.40米C.30米D.25米4.(3分)如图,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是()A.CD、EF、GH B.AB、EF、GH C.AB、CD、GH D.AB、CD、EF5.(3分)图中∠BOD的度数是()A.75°B.80°C.135° D.150°6.(3分)甲乙两同学从A地出发,骑自行车在同一条路上行驶到B地,他们离出发地的距离s(千米)和行驶时间t(时)之间的函数关系的图象,如图所示.根据图中提供的信息,有下列说法:①他们都行驶了18千米.②甲车停留了0.5小时.③乙比甲晚出发了0.5小时.④相遇后甲的速度<乙的速度.⑤甲、乙两人同时到达目的地.其中符合图象描述的说法有()A.2个 B.3个 C.4个 D.5个7.(3分)如图是由几个小立方块所搭几何体的俯视图,小正方形的数字表示在该位置的小立方块的个数,这个几何体的主视图是()A.B.C.D.8.(3分)如图,用不同颜色的马赛克覆盖一个圆形的台面,估计15°的圆心角的扇形部分大约需要34片马赛克片.已知每箱装有125片马赛克片,那么应该购买多少箱马赛克片才能铺满整个台面()A.5﹣6箱B.6﹣7箱C.7﹣8箱D.8﹣9箱二.填空题9.(3分)如图,在边长为a的正方形中剪去一个边长为b的小正方形(a>b),把剩下的部分拼成一个梯形,分别计算这两个图形阴影部分的面积,验证了公式.10.(3分)汽车刹车距离S(m)与速度v(km/h)之间的函数关系是S=v2,在一辆车速为100km/h的汽车前方80m处,发现停放一辆故障车,此时刹车有危险.11.(3分)如下图,直线a∥b,则∠A=度.12.(3分)如图所示,▱ABCD中,点E在边AD上,以BE为折痕,将△ABE向上翻折,点A正好落在CD上的点F,若△FDE的周长为8,△FCB的周长为22,则FC的长为.三.解答题13.计算:.14.化简求值:(a+b)2﹣2a(b+1)﹣a2b÷b,其中a=,b=2.15.解方程:.16.一个矩形,两边长分别为xcm和10cm,如果它的周长小于80cm,面积大于100cm2.求x的取值范围.17.如图,梯形ABMN是直角梯形.(1)请在图中拼上一个直角梯形,使它与梯形ABMN构成一个等腰梯形;(2)将(1)中补上的直角梯形以点M为旋转中心,逆时针方向旋转180°,画出这个梯形.18.如图所示,△ABO中,OA=OB,以O为圆心的圆经过AB的中点C,且分别交OA、OB于点E、F.求证:AB是⊙O的切线.19.已知二次函数的图象经过(0,0)、(1,﹣1)、(﹣2,14)三点,(1)求这个二次函数的解析式及顶点坐标;(2)设这个二次函数的图象与直线y=x+t(t≤1),相交于(x1,y1),(x2,y2)两点(x1≠x2),求:t的取值范围.20.某电脑公司现有A、B、C三种型号的甲品牌电脑和D、E两种型号的乙品牌电脑.希望中学要从甲、乙两种品牌的电脑中各选购一种型号的电脑.(1)写出所有选购方案(利用树状图或列表方法表示);(2)如果(1)中各种选购方案被选中的可能性相同,那么A型电脑被选中的概率是多少?(3)现知希望中学购买甲、乙两种品牌的电脑共36台(价格如表所示),恰好用了10万元人民币,其中甲品牌电脑为A型号电脑,求购买的A型号电脑有多少台?2016年北京市海淀区普通中学中考数学模拟试卷(二)(1月份)参考答案与试题解析一.选择题1.(3分)如果a与﹣2互为倒数,那么a是()A.﹣2 B.﹣ C.D.2【解答】解:∵a与﹣2互为倒数,∴a是﹣.故选:B.2.(3分)长城总长约为6700010米,用科学记数法表示为(保留两位有效数字)()A.6.7×105米B.6.7×106米C.6.7×107米D.6.7×108米【解答】解:6700 010=6.70001×106≈6.7×106,故选B.3.(3分)在相同时刻的物高与影长成比例.小明的身高为1.5米,在地面上的影长为2米,同时一古塔在地面上的影长为40米,则古塔高为()A.60米B.40米C.30米D.25米【解答】解:据相同时刻的物高与影长成比例,设旗杆的高度为xm,则可列比例式,,解得x=30.故选C.4.(3分)如图,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是()A.CD、EF、GH B.AB、EF、GH C.AB、CD、GH D.AB、CD、EF【解答】解:设小正方形的边长为1,则AB2=22+22=8,CD2=22+42=20,EF2=12+22=5,GH2=22+32=13.因为AB2+EF2=GH2,所以能构成一个直角三角形三边的线段是AB、EF、GH.故选:B.5.(3分)图中∠BOD的度数是()A.75°B.80°C.135° D.150°【解答】解:连接OC,由圆周角定理知,∠BOD=2(∠A+∠E)=2×(35°+40°)=150°,故选D.6.(3分)甲乙两同学从A地出发,骑自行车在同一条路上行驶到B地,他们离出发地的距离s(千米)和行驶时间t(时)之间的函数关系的图象,如图所示.根据图中提供的信息,有下列说法:①他们都行驶了18千米.②甲车停留了0.5小时.③乙比甲晚出发了0.5小时.④相遇后甲的速度<乙的速度.⑤甲、乙两人同时到达目的地.其中符合图象描述的说法有()A.2个 B.3个 C.4个 D.5个【解答】解:根据题意和图象可知:①他们都行驶了18千米.②甲车停留了0.5小时.③乙比甲晚出发了1﹣0.5=0.5小时.④相遇后甲的速度<乙的速度.⑤乙先到达目的地.故只有⑤不正确.故选C.7.(3分)如图是由几个小立方块所搭几何体的俯视图,小正方形的数字表示在该位置的小立方块的个数,这个几何体的主视图是()A.B.C.D.【解答】解:从正面可看到,左边2个正方形,中间1个正方形,右边1个正方形.故选D.8.(3分)如图,用不同颜色的马赛克覆盖一个圆形的台面,估计15°的圆心角的扇形部分大约需要34片马赛克片.已知每箱装有125片马赛克片,那么应该购买多少箱马赛克片才能铺满整个台面()A.5﹣6箱B.6﹣7箱C.7﹣8箱D.8﹣9箱【解答】解:设需要x箱马赛克片.由题意:×34=125x,∴x≈6.5.∴需要马赛克片6﹣7箱.故选B.二.填空题9.(3分)如图,在边长为a的正方形中剪去一个边长为b的小正方形(a>b),把剩下的部分拼成一个梯形,分别计算这两个图形阴影部分的面积,验证了公式a2﹣b2=(a+b)(a﹣b).【解答】解:a2﹣b2=(a+b)(a﹣b).10.(3分)汽车刹车距离S(m)与速度v(km/h)之间的函数关系是S=v2,在一辆车速为100km/h的汽车前方80m处,发现停放一辆故障车,此时刹车会有危险.【解答】解:把v=100代入S=v2得:汽车刹车距离s=100>80,因此会有危险.故答案为:会.11.(3分)如下图,直线a∥b,则∠A=25度.【解答】解:∵直线a∥b,∴∠1=∠ECD=55°,∵∠1是△ABD的外角,∴∠1=∠ABD+∠A,即55°=30°+∠A,∠A=55°﹣30°=25°.故∠A=25°.12.(3分)如图所示,▱ABCD中,点E在边AD上,以BE为折痕,将△ABE向上翻折,点A正好落在CD上的点F,若△FDE的周长为8,△FCB的周长为22,则FC的长为7.【解答】解:设DF=x,FC=y,∵▱ABCD,∴AD=BC,CD=AB,∵BE为折痕,∴AE=EF,AB=BF,∵△FDE的周长为8,△FCB的周长为22,∴BC=AD=8﹣x,AB=CD=x+y,∴y+x+y+8﹣x=22,解得y=7.故答案为7.三.解答题13.计算:.【解答】解:=﹣8×+2÷(﹣)=﹣4+2÷=﹣4﹣2(2)=﹣4﹣12﹣6=﹣16﹣614.化简求值:(a+b)2﹣2a(b+1)﹣a2b÷b,其中a=,b=2.【解答】解:(a+b)2﹣2a(b+1)﹣a2b÷b,=a2+2ab+b2﹣2ab﹣2a﹣a2b÷b,=b2﹣2a,当a=,b=2时,原式=22﹣2×=3.15.解方程:.【解答】解:去分母得:3(x﹣1)=5(x+1),(2分)3x﹣3=5x+5,(3分)3x﹣5x=5+3,(4分)﹣2x=8,(5分)x=﹣4.(6分)经检验:x=﹣4是原方程的解.故原方程的解是:x=﹣4.16.一个矩形,两边长分别为xcm和10cm,如果它的周长小于80cm,面积大于100cm2.求x的取值范围.【解答】解:矩形的周长是2(x+10)cm,面积是10xcm2,(2分)根据题意,得,(4分)解这个不等式组得.(2分)所以x的取值范围是10<x<30.(2分)17.如图,梯形ABMN是直角梯形.(1)请在图中拼上一个直角梯形,使它与梯形ABMN构成一个等腰梯形;(2)将(1)中补上的直角梯形以点M为旋转中心,逆时针方向旋转180°,画出这个梯形.【解答】解:如图:18.如图所示,△ABO中,OA=OB,以O为圆心的圆经过AB的中点C,且分别交OA、OB于点E、F.求证:AB是⊙O的切线.【解答】证明:连接OC,∵OA=OB,C为AB中点,∴OC⊥AB,∵OC为半径,∴AB是⊙O的切线.19.已知二次函数的图象经过(0,0)、(1,﹣1)、(﹣2,14)三点,(1)求这个二次函数的解析式及顶点坐标;(2)设这个二次函数的图象与直线y=x+t(t≤1),相交于(x1,y1),(x2,y2)两点(x1≠x2),求:t的取值范围.【解答】解:(1)设抛物线y=ax2+bx+c∵二次函数y=ax2+bx+c的图象经过(0,0)、(1,﹣1)、(﹣2,14)三点,∴,解得:.则这个二次函数的表达式为y=2x2﹣3x;(2)①当t=1时,直线y=x+t(t≤1)可化为y=x+1,代入二次函数解析式y=2x2﹣3x得,2x2﹣4x﹣1=0,△=(﹣4)2﹣4×2×(﹣1)=24>0,故直线与抛物线有两个不同的交点.②当直线与抛物线相切时t取得最小值,把y=x+t代入抛物线y=2x2﹣3x得,2x2﹣4x﹣t=0.△=(﹣4)2﹣4×2×(﹣t)=0,即t=﹣2,故t的取值范围是﹣2<t≤1.20.某电脑公司现有A、B、C三种型号的甲品牌电脑和D、E两种型号的乙品牌电脑.希望中学要从甲、乙两种品牌的电脑中各选购一种型号的电脑.(1)写出所有选购方案(利用树状图或列表方法表示);(2)如果(1)中各种选购方案被选中的可能性相同,那么A型电脑被选中的概率是多少?(3)现知希望中学购买甲、乙两种品牌的电脑共36台(价格如表所示),恰好用了10万元人民币,其中甲品牌电脑为A型号电脑,求购买的A型号电脑有多少台?【解答】解:(1)列表如图:有6种可能结果:(A,D),(A,E),(B,D),(B,E),(C,D),(C,E);(2)因为选中A型号电脑有2种方案,即(A,D)(A,E),所以A型号电脑被选中的概率是;(3)由(2)可知,当选用方案(A,D)时,设购买A型号、D型号电脑分别为x,y台,根据题意,得解得,经检验不符合实际,舍去;当选用方案(A,E)时,设购买A型号、E型号电脑分别为a,b台,根据题意,得解得.所以希望中学购买了7台A型号电脑.。

相关文档
最新文档