七年级数学上册第2章代数式2.2列代数式教案1新版湘教版
七级数学上册第2章代数式2.2列代数式教案(新版)湘教版
2.2列代数式(第1课时)教课目的在详细的情形中能列出代数式,进一步熟习代数式的书写要求。
要点难点要点:列代数式;难点:理解描绘数目关系的语句,正确地列出代数式。
教课过程一激情引趣,导入新课1下边是我在从前学生作业中采集到的代数式,他们的书写规范吗?为何?(1) ab3;(2) s÷t;(3) 23xy;(4)(a+b)(a+b);(5) 2+b平方米。
52比一比,看谁做得快而准。
(1)小明买铅笔 5 支,买练习本 4 本,此中铅笔x 元一支,练习本y 元一本,那么他对付给商铺____________元。
(2)某校梯形教室第一排有8 个座位,第二排有位,那么第n 排有 ____________个座位。
10 个座位,此后每排比它前一排多 2 个座(做完后沟通议论,你是怎么知道的?)(3)小斌从边长为10 cm的正方形纸片的4 个角均剪去一个边长为x cm 的小正方形,做成一个无盖的纸盒,你能算出纸盒的表面积吗?x10二合作沟通,研究新知1思虑问题:什么是代数式?察看上边列出的式子:5x 4 y ,8+2(n-1),100 4x2, 前方碰到的: 1139a,3.31t,此后我们将要碰到的:5,2xy2,11, 还有: 0,-1, m,-a 这些式子有什么共同点v0.23x 4 y r R2呢?依据下边的提示回答。
( 1 )在有些式子中,数与数、数与字母、字母与字母之间是用什么符号连结的?_____________(2)这些式子中含有等号或许不等号吗?______________(3)有没有不含有运算符号的式子?____________;你能说出什么是代数式吗?用_______ 把 ______________ 连结而成的式子,叫做代数式。
独自的一个数或许一个字母也叫_________.2 沟通经验:如何列代数式?你有什么经验?例 1 用代数式表示:(1)一个数 x 与 6 的和;( 2)比 -5 小 a 的数;(3) a 与 b 和的平方;(4) a 与 b 的平方和;( 5) a 与 b 的平方差;(6) a 与 b 差的平方;(7)某校买书 25 本,每本 a 元,该校对付书费多少元?(8)有一个容量是 60 升的铁桶,贮满油,拿出(x 1) 升后,桶内还有油多少升?说一说: 25a 还能够表示什么?例 2 3 月 12 日某校团委组织260 名学生(此中女生有 b 人)去青少年世纪林植树,每个男生植树 x 棵,每个女生植树y 棵,你能用代数式表示他们共植树多少棵吗?变式:( 1)3 月 12 日某校团委组织260 名学生(此中女生有 b 人)去青少年世纪林植树, 3个男生植树 5 棵, 5 个女生植树 3棵,你能用代数式表示他们共植树多少棵吗?(2)3 月 12 日某校团委组织260名学生(此中女生有 b 人)去青少年世纪林植树,每个男生植树 x 棵,每个女生比男生少植树 1 棵,你能用代数式表示他们共植树多少棵吗?四应用迁徙稳固提升1 研究规律例 3 下边每个图都是由s 个圆构成的,形如三角形图案,每条边上(包含极点)共有n 个,按此规律推测,用含有n 的式子表示为s=_________。
XJ湘教版 初一七年级数学 上册第一学期秋季(教学设计 教案)第二章 代数式(全章 分课时 含反思)
第二章代数式2.1用字母表示数1.知道现实情境中字母表示数的意义,形成初步符号感;2.会用字母表示一些简单问题情境中的数量关系和变化规律;(重点,难点)3.初步培养学生观察、分析、抽象、概括等思维能力和应用意识.一、情境导入我们不少同学都是唱着儿歌长大的,朗朗上口、童趣横生的儿歌有的至今难以忘怀.其中有一首名叫《数蛤蟆》的儿歌,你想起来了吗?一只青蛙一张嘴,两只眼睛四条腿,一声扑通跳下水;两只青蛙两张嘴,四只眼睛八条腿,两声扑通跳下水;三只青蛙三张嘴,六只眼睛……,a只青蛙a张嘴,2a只眼睛4a条腿,由此看出a是一个字母,它代表“很多只”的数量,用字母a可以清楚地表示出青蛙、嘴、眼睛、腿和跳水声之间的数量关系.今天我们就学习用字母表示数.二、合作探究探究点一:含字母式子的书写要求下列各式中,符合代数式书写要求的有( )(1)134x2y; (2)a×3;(3)ab÷2; (4)a2-b23.A.4个 B.3个C.2个 D.1个解析:(1)正确的书写格式是74x2y,不符合要求;(2)正确的书写格式是3a,不符合要求;(3)正确的书写格式是12ab,不符合要求;(4)符合要求.符合代数式书写要求的共1个.故选D.方法总结:代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“·”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.探究点二:用含字母的式子表示数量关系用字母表示下列问题中的数量关系:(1)为落实“阳光体育”工程,某校计划购买m个篮球和n个排球,已知篮球每个80元,排球每个60元,购买这些篮球和排球的总费用为__________元.(2)在运动会中,一班总成绩为m 分,二班比一班总成绩的23还多5分,则二班的总成绩为________.(3)某商店压了一批商品,为尽快售出,该商店采取如下销售方案:将原来每件m 元,加价50%,再做两次降价处理,第一次降价30%,第二次降价10%.经过两次降价后的价格为______________元.解析:(1)用购买m 个篮球的总价加上n 个排球的总价表示.所以购买这些篮球和排球的总费用为(80m +60n )元.(2)二班的总成绩=23m +5.(3)根据题意得m (1+50%)(1-30%)(1-10%)=0.945m (元).方法总结:像这样的实际问题要先找出各个量之间的关系.要抓住关键词语,明确它们之间的意义及它们之间的关系,如和、差、积、商、大、小、多、少、倍、分等,注意数量关系的运算顺序,正确使用运算符号及括号.三、板书设计1.用字母表示数:字母和数一样,可以参与运算,可以用式子把数量关系简明地表示出来. 2.列式的注意事项:①数与字母、字母和字母相乘省略乘号; ②数与字母相乘时数字写在前面.通过本课时的教学要让学生经历从实际问题中用字母表示数,初步理解用字母表示数的意义及目的,可以先用数,后用字母来表示.让学生循序渐进的学习本部分内容,让学生在现实情境中去理解、感悟、体会字母能够代替数,发展学生的符号感.在数学教学中,让学生逐步学会用代数的思想方法分析和解决问题.2.2 列代数式1.在具体情境中进一步理解用字母表示数的意义,了解代数式的概念,知道单独的一个数或字母也是代数式;2.会根据实际问题列出代数式,进一步规范代数式的书写格式;(难点) 3.能理解一些简单代数式的实际背景,培养符号感;4.通过具体情境,培养把实际问题抽象为数学问题的能力.(重点、难点)一、情境导入青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段.列车在冻土地段的行驶速度是100千米/时,在非冻土地段的行驶速度可以达到120千米/时,请根据这些数据回答下列问题:列车在冻土地段行驶时,2小时能行驶多少千米?3小时呢?t小时呢?1.思考:(1)若正方形的边长为a,则正方形的面积是________,体积是________.(2)设n表示一个数,则它的相反数是________;(3)铅笔的单价是x元,钢笔的单价是铅笔单价的2.5倍,则钢笔的单价是________元.(4)一辆汽车的速度是v千米/时,行驶t小时所走过的路程为________千米.2.观察所列代数式包含哪些运算,有何共同的运算特征.二、合作探究探究点一:代数式的识别有下列式子:x2,m-n>1,p+q,12ab,S=πR2,2016,代数式有( ) A.3个 B.4个 C.5个 D.6个解析:代数式是用运算符号把数和字母连接而成的式子,m-n>1是用不等号“>”连接而成的式子、S=πR2是用等号“=”连接而成的式子,它们都不是代数式.而x2,p+q,12ab,2016都是代数式.故选B.方法总结:明确代数式的意义是正确识别代数式的前提.式子中有关系符号(如等号或不等号)的都不是代数式.探究点二:列代数式用代数式表示:(1)x与2的平方和;(2)x与2的和的平方;(3)x的平方与2的和;(4)x与2的平方的和.解析:这四个小题,都有关键词“平方”和“和”,但这两个词在四个小题中的语序不一样.(1)中是先平方再求和,即x2-22;(2)中是先求和再平方,即(x+2)2;(3)中是先x 的平方再求和,即x2+2;(4)中是先2的平方再求和,即x+22.解:(1)x2-4;(2)(x+2)2;(3)x2+2;(4)x+4.方法总结:用代数式表示数量关系时,一般要将句子分层,逐层分析,一步步列出代数式.探究点三:代数式的意义下列代数式可以表示什么?(1)2a-b;(2)2(a-b).解析:解释代数式的意义,可以从两个方面入手,一是从字母表示数的角度考虑;二是可以联系生活实际来举例说明.不管采用哪种方式,一定要注意运算形式和运算顺序.解:(1)2a与b的差;或a的2倍与b的差;或用a表示一本作业本的价格,用b表示一支铅笔的价格,则2a-b表示买两本作业本比买一支铅笔多的钱数;(2)2与a-b的积;或a 与b 的差的2倍.方法总结:描述一个代数式的意义,可以从字母本身出发来描述字母之间的数量关系,也可以联系生活实际或几何背景赋予其中字母一定的实际意义加以描述.探究点四:代数式的应用【类型一】根据实际问题列代数式用代数式表示下列各式.(1)王明同学买2本练习册花了n 元,那么买m 本练习册要花多少元? (2)正方体的棱长为a ,那么它的表面积是多少?体积呢?解析:(1)根据买2本练习册花了n 元,得出买1本练习册花n2元,再根据买了m 本练习册,即可列出算式.(2)根据正方体的棱长为a 和表面积公式、体积公式列出式子.解:(1)因为买2本练习册花了n 元,所以买1本练习册花n2元,所以买m 本练习册要花12mn 元; (2)因为正方体的棱长为a ,所以它的表面积是6a 2;它的体积是a 3.方法总结:此题考查了列代数式,用到的知识点包括正方体的表面积公式和体积公式,根据题意列出式子是解本题的关键.【类型二】用字母表示几何图形中的数量关系用字母表示图中阴影部分的面积:解析:(1)图中阴影部分是正方形中挖去一个圆后剩下的部分,且正方形的边长是a ,圆的直径也是a ,圆的半径是a2;(2)图中阴影部分是长方形中挖去4个小正方形后剩下的部分,且长方形的长为a ,宽为b ,小正方形的边长为x .解:(1)S =a 2-π·(a2)2;(2)S =ab -4x 2.方法总结:将不规则图形的面积转化为规则图形(如长方形、圆、三角形等)的面积的和或差是解决求阴影部分面积问题的关键.探究点五:探求规律性问题观察下列图形:它们是按一定规律排列的.(1)依照此规律,第20个图形共有几个五角星? (2)摆成第n 个图案需要几个五角星? (3)摆成第2016个图案需要几个五角星?解析:通过观察已知图形可得:每个图形都比其前一个图形多3个五角星,根据此规律即可解答.解:(1)根据题意得,因为第1个图中,五角星有3个(3×1);第2个图中,有五角星6个(3×2);第3个图中,有五角星9个(3×3);第4个图中,有五角星12个(3×4);所以第n 个图中有五角星3n 个.所以第20个图中五角星有3×20=60(个);(2)由(1)中摆成第n 个图案需要3n 个五角星;(3)摆成第2016个图案需要五角星2016×3=6048(个).方法总结:此题首先要结合图形具体数出几个值.注意由特殊到一般的分析方法.此题的规律为摆成第n 个图案需要3n 个五角星.三、板书设计代数式⎩⎪⎨⎪⎧概念→用运算符号把数和表示数的字母连接而成的式子叫代数式代数式的意义及列代数式→用字母和数表示实际问题中的数量关系教学过程中,应拓展学生的思维,培养他们观察、分析及抽象思维能力、语言能力、创造能力和类比联想能力.2.3 代数式的值1.理解代数式的值是由代数式中字母的取值确定的; 2.掌握求代数式的值的方法;(重点)3.利用求代数式的值解决较简单的实际问题;(重点)4.继续探索用代数式表示数量关系的问题,培养良好的学习习惯.一、情境导入 谁说数学学不好,这不,先前数学成绩很差的小胡,经过不断努力,不但成绩直线上升,而且现在还能设计程序计算呢!如图就是小胡设计的一个程序.当输入x 的值为3时,你能求出输出的值吗?二、合作探究探究点一:求代数式的值【类型一】根据条件直接求代数式的值当a =12,b =3时,求代数式2a 2+6b -3ab 的值.解析:直接将a =12,b =3代入2a 2+6b -3ab 中即可求得.解:原式=2×⎝ ⎛⎭⎪⎫122+6×3-3×12×3=12+18-92=14. 方法总结:(1)代入时要“对号入座”,避免代错字母;(2)代入后要恢复省略的乘号;(3)分数的立方、平方运算,要用括号括起来.【类型二】利用整体思想求代数式的值已知x -2y =3,则代数式6-2x +4y 的值为( ) A .0 B .-1 C .-3 D .3解析:此题无法直接求出x 、y 的值,这时,我们就要考虑特殊的求值方法.根据已知x -2y =3及所求6-2x +4y ,只要把6-2x +4y 变形后,再整体代入即可求解.因为x -2y =3,所以6-2x +4y =6-2(x -2y )=6-2×3=0.故选A.方法总结:整体代入法是数学中一种重要的方法,同学们应加以关注. 探究点二:代数式求值的应用【类型一】代数式求值的实际应用如图所示,某水渠的横断面为梯形,如果水渠的上口宽为a m ,水渠的下口宽和深都为b m.(1)请你用代数式表示水渠的横断面面积;(2)计算当a =3、b =1时,水渠的横断面面积.解析:(1)根据梯形面积=12(上底+下底)×高,即可用含有a 、b 的代数式表示水渠横断面面积;(2)把a =3、b =1带入到(1)中求出的代数式中,其结果即为水渠的横断面面积.解:(1)因为梯形面积=12(上底+下底)×高,所以水渠的横断面面积为12(a +b )b m 2;(2)当a =3,b =1时水渠的横断面面积为12(3+1)×1=2(m 2).方法总结:解答本题时需搞清下列几个问题:(1)题目中给出的是什么图形?(2)这种图形的面积公式是什么?(3)根据公式求图形的面积需要知道哪几个量?(4)这些量是否已知或能求出?搞清楚了这些问题,求解就水到渠成.【类型二】程序设计中的求值有一数值转换器,原理如图所示.若开始输入的x 的值是5,则发现第1次输出的结果是8,第2次输出的结果是4,…,则第2016次输出的结果是________.解析:按如图所示的程序,当输入x =5时,第1次输出5+3=8;当输入x =8时,第2次输出12×8=4;当输入x =4时,第3次输出12×4=2;当输入x =2时,第4次输出12×2=1;当输入x =1时,第5次输出1+3=4;则第6次输出12×4=2,第7次输出12×2=1,…,不难看出,从第2次开始,其运算结果按4,2,1三个数排列循环出现.因为(2016-1)÷3=671…2,所以第2016次输出的结果为2.方法总结:这种程序运算的特点是程序有多个分支,要先对输入的数据进行判断,再选择适当的某个分支按照指明的程序进行运算.【类型三】依照规律求代数式的值(2015·重庆中考)下列图形都是由几个黑色和白色的正方形按一定规律组成,图①中有2个黑色正方形,图②中有5个黑色正方形,图③中有8个黑色正方形,图④中有11个黑色正方形,…,依此规律,图⑪中黑色正方形的个数是( )A .32B .29C .28D .26解析:观察图形可知,所有图形都去掉最左边一列两个黑色正方形后,其余黑色正方形个数和都是3的倍数,图①中黑色正方形的个数为2=2+3×(1-1);图②中黑色正方形的个数为5=2+3×(2-1);图③中黑色正方形的个数为8=2+3×(3-1);…;图n 中黑色正方形的个数为2+3(n -1).所以图⑪中黑色正方形的个数为2+3×(11-1)=32.故选A.方法总结:一般应经历四个阶级“特例引路”、“对比分析”、“总结规律”、“反思检验”.有些选择题可直接采用验证法,把各个选项代入检验,看哪一个符合规律即可.三、板书设计求代数式的值⎩⎪⎨⎪⎧代入:用具体数值代替代数式里的字母计算:按代数式指明的运算计算出结果教学过程中,应通过活动使学生感知代数式运算在判断和推理上的意义,增强学生学习数学的兴趣,培养学生积极的情感和态度,为进一步学习奠定坚实的基础.2.4整式1.理解单项式、多项式及整式的概念,会判断单项式及整式.2.掌握单项式的系数与次数、多项式的次数与项的概念,明确它们之间的关系,并能灵活运用.一、情境导入方方和圆圆的房间窗帘的装饰物如图所示,它们分别由两个四分之一圆和四个半圆组成(半径都分别相同),现在方方和圆圆想算出窗帘的装饰物的面积分别是多少?窗户能射进阳光的面积分别是多少(窗框面积不计)?要解决这些问题,我们来学习下面的内容,就会知道答案.二、合作探究探究点一:单项式、多项式与整式的识别指出下列各式中哪些是单项式?哪些是多项式?哪些是整式?x2+y2,-x,a+b3,10,6xy+1,1x,17m2n,2x2-x-5,2x2+x,a7.解析:根据整式、单项式、多项式的概念和区别来进行判断.解:2x2+x,1x的分母中含有字母,既不是单项式,也不是多项式,更不是整式.单项式有-x,10,17m2n,a7;多项式有x2+y2,a+b3,6xy+1,2x2-x-5;整式有x2+y2,-x,a+b3,10,6xy+1,17m2n,2x2-x-5,a7.方法总结:(1)分母中含有字母的式子不是整式;(2)单项式和多项式都是整式;(3)单项式不含加、减运算,多项式必含加、减运算.探究点二:单项式与多项式【类型一】确定单项式的系数和次数分别写出下列单项式的系数和次数.(1)-ab2; (2)5ab3c27; (3)2πxy23.解析:单项式的系数就是单项式中的数字因数;单项式的次数就是单项式中所有字母指数的和,只要将这些字母的指数相加即可.解:(1)单项式的系数是-1,次数是3; (2)单项式的系数是57,次数是6;(3)单项式的系数是2π3,次数是3.方法总结:(1)当单项式的系数是1或-1时,“1”通常省略不写;单项式的系数是带分数时,通常写成假分数.单项式的系数包括前面的符号.(2)我们把常数项的次数看作0.确定单项式的次数时,单项式中单独一个字母的指数1不能忽略,如-3x 3y ,它的指数是4而不是3.(3)π是圆周率,是一个确定的数,不是字母.【类型二】确定多项式的项和次数写出下列各多项式的项数和次数,并指出是几次几项式.(1)23x 2-3x +5;(2)a +b +c -d ; (3)-a 2+a 2b +2a 2b 2. 解析:根据多项式的项数是多项式中单项式的个数,多项式的次数是多项式中次数最高的单项式的次数,可得答案.解:(1)23x 2-3x +5的项数为3,次数为2,是二次三项式;(2)a +b +c -d 的项数为4,次数为1,是一次四项式;(3)-a 2+a 2b +2a 2b 2的项数为3,次数为4,是四次三项式. 方法总结:(1)多项式的项包括它的符号;(2)多项式的次数是多项式里次数最高项的次数,而不是各项次数的和;(3)几次项是指多项式中次数是几的项.探究点三:与多项式有关的探究性问题已知-5x m +104x m -4x m y 2是关于x 、y 的六次多项式,求m 的值,并写出该多项式. 解析:根据多项式中次数最高的项的次数叫做多项式的次数可得m +2=6,解得m =4,进而可得此多项式.解:由题意得m +2=6, 解得m =4,此多项式是-5x 4+104x 4-4x 4y 2. 方法总结:此题考查了多项式,解题的关键是弄清多项式次数是多项式中次数最高的项的次数.若关于x 的多项式-5x 3-mx 2+(n -1)x -1不含二次项和一次项,求m 、n 的值. 解析:多项式不含二次项和一次项,则二次项和一次项系数为0.解:因为关于x 的多项式-5x 3-mx 2+(n -1)x -1不含二次项和一次项, 所以m =0,n -1=0,则m =0,n =1.方法总结:多项式不含哪一项,则哪一项的系数为0.探究点四:多项式的应用如图,某居民小区有一块宽为2a 米,长为b 米的长方形空地,为了美化环境,准备在此空地的四个顶点处各修建一个半径为a 米的扇形花台,在花台内种花,其余种草.如果建造花台及种花费用每平方米为100元,种草费用每平方米为50元.那么美化这块空地共需多少元?解析:四个角围成一个半径为a米的圆,阴影部分面积是长方形面积减去一个圆面积.解:花台面积和为πa2平方米,草地面积为(2ab-πa2)平方米.所以需资金为[100πa2+50(2ab-πa2)]元.方法总结:用式子表示实际问题中的数量关系时,首先要分清语言叙述中关键词的含义,理清它们之间的数量关系和运算顺序.探究点五:规律探究问题如图所示,这是由边长为1的等边三角形摆出的一系列图形,按这种方式摆下去,则第n个图形的周长是________.解析:第(1)个图形的周长为3,;第(2)个图形的周长为4=3+1;第(3)个图形的周长为5=3+1×2;第(4)个图形的周长为6=3+1×3.故第(n)个图形的周长为3+1(n-1)=2+n.方法总结:解答此类问题应采用比较归纳的方法和由特殊到一般的方法.通过探究特例,从中发现一些基本规律,然后推广到一般情况.三、板书设计整式⎩⎪⎨⎪⎧单项式⎩⎪⎨⎪⎧系数:单项式中的数字因数次数:所有字母的指数和多项式⎩⎪⎨⎪⎧项数:单项式的个数次数:次数最高的项的次数教学过程中,应通过丰富的现实情景,使学生经历从具体问题中抽象出数量关系,在解决问题中了解数学的价值,发展“用数学”的信心,培养学生认识特殊与一般的辩证关系.2.5 整式的加法和减法第1课时 合并同类项1.使学生理解多项式中同类项的概念,会识别同类项;(重点)2.使学生掌握合并同类项法则,能进行同类项的合并.(重点、难点)一、情境导入周末,你和爸爸妈妈要外出游玩,中午决定在外面用餐,爸爸、妈妈和你各自选了要吃的东西,爸爸选了一个汉堡和一杯可乐,妈妈选了一个汉堡和一个冰淇淋,你选了一对蛋挞和一杯可乐,买的时候你该怎么向服务员点餐?生活中处处有数学的存在.可以把具有相同特征的事物归为一类,在多项式中也可以把具有相同特征的单项式归为一类.自主探索:把下列单项式归类,并说说你的分类依据.-7ab 、2x 、3、4ab 2、6ab . 二、合作探究 探究点一:同类项【类型一】同类项的识别指出下列各题的两项是不是同类项,请分别说明理由.(1)-x 2y 与12x 2y ;(2)23与-34;(3)2a 3b 2与3a 2b 3; (4)13xyz 与3xy . 解析:根据同类项的定义:所含字母相同,并且相同字母的指数也相同,对各式进行判断即可.解:(1)是同类项,因为-x 2y 与12x 2y 都含有x 和y ,且x 的指数都是2,y 的指数都是1;(2)是同类项,因为23与-34都不含字母,为常数项.常数项都是同类项;(3)不是同类项,因为2a 3b 2与3a 2b 3中,a 的指数分别是3和2,b 的指数分别为2和3,所以不是同类项;(4)不是同类项,因为13xyz 与3xy 中所含字母不同,13xyz 含有字母x 、y 、z ,而3xy 中含有字母x 、y .所以不是同类项.方法总结:(1)判断几个单项式是否是同类项的条件:a .所含字母相同;b .相同字母的指数分别相同.(2)同类项与系数无关,与字母的排列顺序无关.(3)常数项都是同类项.【类型二】已知两个单项式是同类项,求字母指数的值若-5x y 与x y 是同类项,则m +n 的值为( ) A .1 B .2 C .3 D .4解析:因为-5x2y m和x n y是同类项,所以n=2,m=1,m+n=1+2=3,故选C.方法总结:注意掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,解题时易混淆,因此成了中考的常考点.探究点二:合并同类项将下列各式合并同类项.(1)-x-x-x;(2)2x2y-3x2y+5x2y;(3)2a2-3ab+4b2-5ab-6b2;(4)-ab3+2a3b+3ab3-4a3b.解析:利用乘法的分配律,再根据合并同类项的法则“把同类项的系数相加,所得结果作为系数,字母和字母的指数不变”进行计算.解:(1)-x-x-x=(-1-1-1)x=-3x;(2)2x2y-3x2y+5x2y=(2-3+5)x2y=4x2y;(3)2a2-3ab+4b2-5ab-6b2=2a2+(4-6)b2+(-3-5)ab=2a2-2b2-8ab;(4)-ab3+2a3b+3ab3-4a3b=(-1+3)ab3+(2-4)a3b=2ab3-2a3b.方法总结:合并同类项的时候,为了不漏项,可用不同的符号(如直线、曲线、圆圈)标记不同的同类项.探究点三:化简求值化简求值:2a2b-2ab+3-3a2b+4ab,其中a=-2,b=12.解析:先将原式合并同类项得到最简结果,再把a与b的值代入计算即可求出值.解:2a2b-2ab+3-3a2b+4ab=(2-3)a2b+(-2+4)ab+3=-a2b+2ab+3.将a=-2,b=12代入得:原式=-(-2)2×12+2×(-2)×12+3=-1.方法总结:对多项式化简求值时,一般先化简,即先合并同类项,再代入值计算结果,在算式中代入负数时,要注意符号.探究点四:合并同类项的应用有一批货物,甲可以3天运完,乙可以6天运完,若共有x吨货物,甲乙合作运输一天后还有________吨没有运完.解析:甲每天运货物的13,乙每天运货物的16,则两个合作运输一天后剩余的货物为x-13x-16x=12x(吨),故填12x.方法总结:体现了数学在生活中的运用.解决问题的关键是读懂题意,找到所求的量之间的关系.三、板书设计1.同类项:所含字母相同,并且相同的字母指数也分别相同. 判断同类项的条件:两相同,两无关2.合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母和字母的指数不变.数学教学要紧密联系学生的生活实际,本节课从学生已有的知识和经验出发,从实际问题入手,引出合并同类项的概念.通过独立思考、讨论交流等方式归纳出合并同类项的法则,通过例题教学、练习等方式巩固相关知识.教学中应激发学生主动参与的学习动机,培养学生思维的灵活性.第2课时 去括号1.在具体情境中体会去括号的必要性,能运用运算律去括号;(重点) 2.掌握去括号的法则,并能利用法则解决简单的问题.(难点)一、情境导入还记得用火柴棒像如图那样搭x 个正方形时,怎样计算火柴的根数吗?方法1:第一个正方形用四根,以后每增加一个正方形火柴棒就增加三根,那么搭x 个正方形需要火柴棒________根.方法2:把每个正方形都看成是用四根火柴棒搭成的,然后再减多出的根数,那么搭x 个正方形需要火柴棒________根.方法3:第一个正方形可以看成是一根火柴棒加3根火柴棒搭成的,此后每增加一个正方形就增加3根,搭x 个正方形共需____________根.二、合作探究 探究点一:去括号下列去括号正确吗?如有错误,请改正. (1)+(-a -b )=a -b ;(2)5x -(2x -1)-xy =5x -2x +1+xy ; (3)3xy -2(xy -y )=3xy -2xy -2y ; (4)(a +b )-3(2a -3b )=a +b -6a +3b .解析:先判断括号外面的符号,再根据去括号法则选用适当的方法去括号.解:(1)错误,括号外面是“+”号,括号内不变号,应该是:+(-a -b )=-a -b ; (2)错误,-xy 没在括号内,不应变号,应该是:5x -(2x -1)-xy =5x -2x +1-xy ; (3)错误,括号外是“-”号,括号内应该变号,应该是:3xy -2(xy -y )=3xy -2xy +2y ;(4)错误,有乘法的分配律使用错误,应该是:(a +b )-3(2a -3b )=a +b -6a +9b . 方法总结:本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.探究点二:去括号运算【类型一】去括号后进行整式的化简先去括号,后合并同类项: (1)x +[-x -2(x -2y )]; (2)12a -⎝ ⎛⎭⎪⎫a +23b 2+3⎝ ⎛⎭⎪⎫-12a +13b 2;(3)2a -(5a -3b )+3(2a -b );(4)-3{-3[-3(2x +x 2)-3(x -x 2)-3]}.解析:去括号时注意去括号后符号的变化,然后找出同类项,根据合并同类项的法则进行计算,即系数相加作为系数,字母和字母的指数不变.解:(1)原式=x -x -2x +4y =-2x +4y ;(2)原式=12a -a -23b 2-32a +b 2=-2a +b 23;(3)原式=2a -5a +3b +6a -3b =3a ;(4)原式=-3{9(2x +x 2)+9(x -x 2)+9}=-27(2x +x 2)-27(x -x 2)-27=-54x -27x 2-27x +27x 2-27=-81x -27.方法总结:解决本题是要注意去括号时符号的变化,并且不要漏乘.有多个括号时要注意去各个括号时的顺序.【类型二】与绝对值、数轴相结合,去括号代数式的化简有理数a ,b ,c 在数轴上的位置如图所示,化简|a +c |+|a +b +c |-|a -b |+|b+c |.解析:根据数轴上的数,右边的数总是大于左边的数,即可确定a ,b ,c 的符号,进而确定式子中绝对值内的式子的符号,根据正数的绝对值是本身,负数的绝对值是它的相反数,即可去掉绝对值符号,对式子进行化简.解:由图可知a >0,b <0,c <0,|a |<|b |<|c |,所以a +c <0,a +b +c <0,a -b >0,b +c <0,所以原式=-(a +c )-(a +b +c )-(a -b )-(b +c )=-3a -b -3c .方法总结:本题考查了利用数轴,比较数的大小关系,对于含有绝对值的式子的化简,要根据绝对值内的式子的符号,去掉绝对值符号.探究点三:含括号的整式的化简求值 【类型一】化简求值先化简,再求值:已知x =-4,y =12,求5xy 2-[3xy 2-(4xy 2-2x 2y )]+2x 2y -xy 2.解析:原式去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.。
2018年秋七年级数学上册 第2章 代数式 2.2 列代数式教案1 (新版)湘教版
2.2 列代数式1.在具体情境中进一步理解用字母表示数的意义,了解代数式的概念,知道单独的一个数或字母也是代数式;2.会根据实际问题列出代数式,进一步规范代数式的书写格式;(难点)3.能理解一些简单代数式的实际背景,培养符号感;4.通过具体情境,培养把实际问题抽象为数学问题的能力.(重点、难点)一、情境导入青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段.列车在冻土地段的行驶速度是100千米/时,在非冻土地段的行驶速度可以达到120千米/时,请根据这些数据回答下列问题:列车在冻土地段行驶时,2小时能行驶多少千米?3小时呢?t 小时呢?1.思考:(1)若正方形的边长为a ,则正方形的面积是________,体积是________.(2)设n 表示一个数,则它的相反数是________;(3)铅笔的单价是x 元,钢笔的单价是铅笔单价的2.5倍,则钢笔的单价是________元.(4)一辆汽车的速度是v 千米/时,行驶t 小时所走过的路程为________千米.2.观察所列代数式包含哪些运算,有何共同的运算特征.二、合作探究探究点一:代数式的识别有下列式子:x 2,m -n >1,p +q ,12ab ,S =πR 2,2016,代数式有( ) A .3个 B .4个 C .5个 D .6个解析:代数式是用运算符号把数和字母连接而成的式子,m -n >1是用不等号“>”连接而成的式子、S =πR 2是用等号“=”连接而成的式子,它们都不是代数式.而x 2,p +q ,12ab ,2016都是代数式.故选B.方法总结:明确代数式的意义是正确识别代数式的前提.式子中有关系符号(如等号或不等号)的都不是代数式.探究点二:列代数式用代数式表示:(1)x 与2的平方和;(2)x 与2的和的平方;(3)x 的平方与2的和;(4)x 与2的平方的和.解析:这四个小题,都有关键词“平方”和“和”,但这两个词在四个小题中的语序不一样.(1)中是先平方再求和,即x 2-22;(2)中是先求和再平方,即(x +2)2;(3)中是先x的平方再求和,即x 2+2;(4)中是先2的平方再求和,即x +22.解:(1)x 2-4;(2)(x +2)2;(3)x 2+2;(4)x +4.方法总结:用代数式表示数量关系时,一般要将句子分层,逐层分析,一步步列出代数式.探究点三:代数式的意义下列代数式可以表示什么?(1)2a -b ;(2)2(a -b ).解析:解释代数式的意义,可以从两个方面入手,一是从字母表示数的角度考虑;二是可以联系生活实际来举例说明.不管采用哪种方式,一定要注意运算形式和运算顺序.解:(1)2a 与b 的差;或a 的2倍与b 的差;或用a 表示一本作业本的价格,用b 表示一支铅笔的价格,则2a -b 表示买两本作业本比买一支铅笔多的钱数;(2)2与a -b 的积;或a 与b 的差的2倍.方法总结:描述一个代数式的意义,可以从字母本身出发来描述字母之间的数量关系,也可以联系生活实际或几何背景赋予其中字母一定的实际意义加以描述.探究点四:代数式的应用【类型一】 根据实际问题列代数式用代数式表示下列各式.(1)王明同学买2本练习册花了n 元,那么买m 本练习册要花多少元?(2)正方体的棱长为a ,那么它的表面积是多少?体积呢?解析:(1)根据买2本练习册花了n 元,得出买1本练习册花n 2元,再根据买了m 本练习册,即可列出算式.(2)根据正方体的棱长为a 和表面积公式、体积公式列出式子.解:(1)因为买2本练习册花了n 元,所以买1本练习册花n2元,所以买m 本练习册要花12mn 元; (2)因为正方体的棱长为a ,所以它的表面积是6a 2;它的体积是a 3.方法总结:此题考查了列代数式,用到的知识点包括正方体的表面积公式和体积公式,根据题意列出式子是解本题的关键.【类型二】 用字母表示几何图形中的数量关系 用字母表示图中阴影部分的面积:解析:(1)图中阴影部分是正方形中挖去一个圆后剩下的部分,且正方形的边长是a ,圆的直径也是a ,圆的半径是a 2;(2)图中阴影部分是长方形中挖去4个小正方形后剩下的部分,且长方形的长为a ,宽为b ,小正方形的边长为x .解:(1)S =a 2-π·(a 2)2;(2)S =ab -4x 2. 方法总结:将不规则图形的面积转化为规则图形(如长方形、圆、三角形等)的面积的和或差是解决求阴影部分面积问题的关键.探究点五:探求规律性问题观察下列图形:它们是按一定规律排列的.(1)依照此规律,第20个图形共有几个五角星?(2)摆成第n 个图案需要几个五角星?(3)摆成第2016个图案需要几个五角星? 解析:通过观察已知图形可得:每个图形都比其前一个图形多3个五角星,根据此规律即可解答.解:(1)根据题意得,因为第1个图中,五角星有3个(3×1);第2个图中,有五角星6个(3×2);第3个图中,有五角星9个(3×3);第4个图中,有五角星12个(3×4);所以第n 个图中有五角星3n 个.所以第20个图中五角星有3×20=60(个);(2)由(1)中摆成第n 个图案需要3n 个五角星;(3)摆成第2016个图案需要五角星2016×3=6048(个).方法总结:此题首先要结合图形具体数出几个值.注意由特殊到一般的分析方法.此题的规律为摆成第n 个图案需要3n 个五角星.三、板书设计代数式⎩⎪⎨⎪⎧概念→用运算符号把数和表示数的字母连接而成的式子叫代数式代数式的意义及列代数式→用字母和数表示实际问题中的数量关系教学过程中,应拓展学生的思维,培养他们观察、分析及抽象思维能力、语言能力、创造能力和类比联想能力.。
湘教版七年级数学上册《2章 代数式 2.2 列代数式》优课教学设计_2
5a,
a+5,
2,
6n
100-4x2,a+b,2ab等
5
这种把数或表示数的字母用运算符号
连接而成的式子叫做代数式。
特别地,单独的 一个数或者一个 字母也是代数式。
试一试
① 0;
②a+b=b+a;
③ m²+n²;
④
x y
⑤x>1; ⑥S=a²; ⑦mong quang ; ⑧2ab
其中是代数式的是 ①、③、④、⑧(填序号)
个位数字是 c,这个三位数可表示为 100a 10b c ;
(4)嫦娥二号发射后平均飞行 速度为 v km/h 。经过 t h ,
它飞行了
vt
千米
;若飞行
1000
km,需要
1000 v
小时;
3月12日,某校团委组织260名学生(其中女生 b
人)去市青少年世纪林植树。每个男生植树 x 棵,
每个女生植树 y棵。你能用代数式表示他们共
车的速度是多少?她骑自行车从家到学校需多
长时间?
骑自行车的速度是(v+10)km/h ;
从家到学校需
5
V+10
h.
【注意】 (1)语言叙述中关键词的意义,如“大”、 “小”、“多”、“少”、“倍”、“几 分之几”等词语与代数式中的运算符号之 间的关系; (2)要理清运算顺序和正确使用括号,以防
出现颠倒等错误;
排有多少个座位?第11排有多少个座位?第n排呢?
第5排有16个, 第11排有28个, 第n排有[8+2(n-1)]个
第1排:8 第2排:8+2 第3排:8+2+2 第4排:8+2+2+2 第5排: 8+2×4 第……11排:8+2×10 第n排:8+2× (n-1)
2024年新湘教版七年级上册数学课件 2.1 第2课时 列代数式
根据实际问题列代数式 代数式
解释代数式所表示的实际意义
1. 用式子表示下列数量:
m
(1)5 箱苹果重 m kg,平均每箱重 5 kg;
(2)一个数比 a 的 2 倍小 5,则这个数为 (2a 5) ;
(3)全校学生总数是 x,其中女生占总数 52%,则女生
人数是 52%x ,男生人数是 48%x ;
是 m 袋,用式子表示在这个月内销售这种商品的收入子
表示圆柱体的体积.
πr 2h
(3)有两片棉田,一片有 m hm2 (公顷,1 hm2 = 104 m2 ),平均每公顷产棉花 a kg;另一片有 n hm2 , 平均每公顷产棉花 b kg,用式子表示两片棉田上棉花
6.07
(1) 若某个 5 人及以下的家庭一年总用水量为 a m3,
其中 a 不超过 180,则该家庭一年的水费是多少?
解 (1) 由于一年总用水量为 a m3,且 a 不超过 180, 因而其价格为每立方米 2.07 元,故这样的家庭一年 的水费为 2.07a 元.
(2) 若某个 5 人及以下的家庭前十个月用水量为 180 m3,
___________________
···
···
m
(m为正整数)
···
··· __6__+__5__×___(_m__-__1__)_
练一练 1. 某餐厅中 1 张长方形的桌子可坐 6 人,按下图方式 将桌子拼在一起,n 张桌子拼在一起可坐 ( B ) 人. A. 4 + n B. 4 + 2n C. 3n + 4 D. 3n + 2
(4)某班有 a 名学生,现把一批图书分给全班学生阅
读,如果每人分 4 本,还缺 25 本,那么这批图书共有
湘教版七年级上2.2列代数式(2)教案新部编本
教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校2.2 列代数式(2)新邵县酿溪中学王军旗能正确的分析词语所描述的数量关系和运算顺序,会列出代数式表示复杂的数量关系。
重点:根据题意正确的列出代数式;难点:用代数式正确的表示实际问题中的数量关系。
教学目标重点难点:教学过程:一激情引趣,导入新课试试看1 大连向北京打长途电话,通话费3分钟以内3.6元,每超1分钟加收1元,某人打电话x分钟,(x>3,且为整数),则应付花费为()A 3.6分钟B ( 3.6+x)分钟C ( 0.6+x)分钟D x-3.62 张大伯从报社以每份0.4元的价格购进了a份报纸,以每份0.5元的价格售出了b份报纸,剩余的以每份0.2元的价格退回报社,则张大伯卖报的收入________元。
由于列代数式是往后要学习的方程、函数、不等式已经物理化学等等基础,因此尽管上次我们学习了列代数式,但感觉还不够,今天还需要继续训练列代数式。
二合作交流,探究新知。
1 行程问题:设时间为t,路程为s,速度为v,那么s=______,v=_____,t=_______例1小兰的家离学校5千米,她步行到速度是v千米/时,(1)小兰从家到学校需要走_____小时;(2)为了提前到校,她每小时多走了0.2千米,那么她能提前( )小时到校A 550.5v v--B550.5v v-+C550.50.5v v--+D550.5v v--变式:(1)小兰的家离学校5千米,她计划步行t小时到学校,因事晚出发了10分钟,为了准时到校,她需要把速度提高_________千米/时。
(2)轮船在静水中的速度是x千米/时,相距10千米的A,B两码头间水流速度为5千米,则该轮船往回于A,B两个码头共需要时间_________小时。
2 工程问题:设工作量为Q,工作时间为t,工作效率为v,则Q=______,v=_____,t=______. 例2 一项工程甲独做要a天完成,乙独做要b天完成,现在甲先做3天,剩下的工作乙独做还需要_________天才能完成。
新湘教版七年级数学上册第二章《列代数式》教学设计
新湘教版七年级数学上册第二章《列代数式》教学设计课 题2.2 列代数式 课 型 新授教学目标1.了解代数式的概念。
2.初步学会分析简单问题中的数量关系,并列出代数式。
3.经历探索规律的过程,了解代数式是由特殊到一般的转化,初步培养抽象思维。
教学重点根据数量关系列代数式 教学难点 探索一般规律并用代数式表示 主备学校 主备人 教学过程:一.导入明标:(见课件)1.做一做:(1)已知铅笔每支2元,练习本每本3元,买x 支铅笔,y 本练习本共需______元。
(2)一个正方形的边长为x cm ,则边长增加1cm 后的面积为_________cm 2。
(3)一批货物共m 吨,第一天售出31,第二天售出剩下的一半,还剩下货物_________吨。
(4)小兰家距学校5 km ,她步行的速度是v km/h ,则她步行到学校需_________h ,她骑自行车比步行快10 km/h ,那她骑自行车的速度是__________km/h ,她骑自行车从家到学校需____________h 。
2.明确学习目标:(1)了解怎样的式子叫代数式。
(2)学会分析问题中的数量关系,并列出代数式。
师生活动:1、学生独立完成“做一做”,师巡视指导,发现共性问题并由学生展示做法。
2、由“做一做”中所列式子引出课题。
3、课件出示学习目标,师生共同了解。
二.自主学习:(见课件)1.阅读课本第60页例1上面部分的内容,理解:怎样的式子叫做代数式?(标记出来)2.观察“做一做”中列出的式子,它们是代数式吗?3.运算符号包括哪些? X=5; a>b 是代数式吗?为什么?4. 5; x 是代数式吗?请你再写出3个代数式。
5.完成课本60页“说一说”。
师生活动:1.学生独立完成,师巡视指导,发现共性问题并由学生展示做法.2.师点拔、总结:(1)单独的一个数或一个字母也是代数式;(2)代数式中,除含有数、字母和运算符号外,还可以含有括号,用于指明运算顺序。
湘教版七年级上册数学教学课件 第2章代数式 列代数式
列代数式
列代数式
文字语言转化为符号语言
代数式所表示 的意义
课程讲授
3 代数式所表示的意义
例 下列代数式可以表示什么? (1)2a-b;(2)2(a-b).
解:(1)若篮球的单价是a元,足球的单价是b元,2a-b 可表示为卖两个篮球比买一个足球多花(2a-b)元.
(2)若某商店的一台学习机的售价为a元,进价为b元, 2(a-b)可表示为卖出两台学习机给商店盈利2(a-b)元.
达北京需 300小时.
课程讲授
1 代数式的概念 x 4, s , 60a 20b, mn, a2,3 pq 300
定义:像这样的式子都是用运算符号把数与字母连
接而成的,叫做代数式.
(运算符号包括+、-、×、÷、乘方)
课程讲授
1 代数式的概念
例 用代数式表示: (1)a的7倍与2b的差; (2)x,y两数的平方和减去两数积的2倍; (3)a的倒数与b的和.
小兰骑自行车的速度是(v+10)km/h,从家到学校需
5 h. v 10
课程讲授
2 列代数式
归纳:列代数式就是把实际问题中与数量有关的语句, 用含有数、字母和运算符号的式子表示出来,也就是把 文字语言转化为符号语言.
课程讲授
2 列代数式
列代数式的一般步骤: ①要抓住关键词语,明确它们的意义以及它们之间
的关系,如和、差、积、商及大、小、多、少、倍、 分、倒数、相反数等;
②理清语句层次明确运算顺序; ③牢记一些概念和公式.
课程讲授
3 代数式所表示的意义
问题1:代数式10x+5y可以表示什么? 如果用x表示1支铅笔的价格,用y表示1本练习本的价
格,那么10x+5y可以表示_1_0_支__铅__笔__与__5_本__练__习__本_____的总 钱数;
2020年秋七年级数学上册 第2章 代数式 2.2 列代数式教案2 (新版)湘教版
2.2 列代数式教学目标:1.进一步理解字母表示数的意义,能结合具体情景给字母赋于实际意义;理解代数式和代数式的值的意义,能解释一些简单代数式的实际背景或几何意义,在具体情景中能求出代数式的值. (重难点)2.通过创设实际背景和引用符号,经历观察、体验、验算、猜想、归纳等数学过程,体会数学与现实世界的联系,增强符号感,发展运用符号解决问题和数学探究意识.教法学法:教学方法:引导—探究—发现法.学习方法:自主探究与合作交流相结合.课前准备:多媒体课件、投影仪、电脑教学过程:一、创设情境,引入新课.欣赏视频,导入新课师:国庆六十周年大阅兵,同学们看了吗?首先请同学们来欣赏一段视频.(26秒.定格在胡锦涛主席乘坐红旗轿车阅兵的一个瞬间.)师:这是新中国成立以来,规模最大、装备最新、机械化程度最高的一次大阅兵.有谁知道胡主席乘坐的是什么品牌的车吗?生:国产红旗大轿车.师:对﹗国产红旗大轿车﹗这是我们民族的骄傲﹗提到造车,有一个人,功不可没,不能不提.同学们知道是谁吗?生:造车鼻祖—奚仲.(官桥镇所在地,是造车鼻祖—奚仲的故里,学生对此了解较多.)师:(多媒体展示一张奚仲造车的图片.)师:那我先来考考同学们:上面的图片中的一辆推车几个轮子?两辆推车几个轮子?x辆推车几个轮子?生:2个,4个,2x 个.师:板书2x.设计意图:通过创设教学情境,激发学生的学习兴趣,使学生在注意力集中前提下顺利过渡到本节知识内容.引导学生体验把实际问题抽象成数学问题的一般方法,同时在解答问题中形成认知冲突.通过这一情境的引入,让学生感受到祖国的强大,增强爱国的热情,民族的自豪感.了解到学习这些知识的重要性,极大地调动了学生学习数学的积极性.同时滲透了把实际问题抽象成数学问题的一般思想方法.师: 上节课,我们学习了字母能表示什么,这节课我们继续学习§3.2代数式.(板书课题)下面请同学们快速完成导学案的第一题. 二、自主探索,合作交流.1.温故而知新填空:⒈ 边长为a cm 的正方形的周长是 cm,面积是 cm 2.2 . 钢笔每支2元,铅笔每支0.5元,m 支钢笔和n 支铅笔共____________元.⒊ 温度由2℃下降t ℃后是 ℃.⒋ 小亮用t 秒走了s 米,他的速度是为 米/秒生:(完成填空,如有疑难可在小组内交流、讨论.)生1:通过实物投影展示答案:4a , a 2 , 2m +0.5n , t -2,t s 生2:第2、3题应该加上括号.师:板书正确答案.师:观察上面的这些式子有什么特点?生:(以小组为单位,进行组内交流、讨论.)生1:含有数、字母、生2:含有运算符号.师:像2x,4a , a 2 , 2m +0.5n , t -2,ts 等式子都是代数式(algebraic e x pression). 单独一个数或一个字母也是代数式.师: 你还能举几个代数式的例子吗?生1:2,m,a ﹢b…生2:m-n,5, 2n…师:真棒.下面再来考考你的眼力,请同学们快速完成导学案 : 自主探索,合作交流的第1题.2.考考你的眼力:师:下列各式中哪些是代数式?哪些不是?(1)m+5 (2)a+b=b+a (3)0(4)x2+3x+4 (5)x+y>1(6)生: (1)、(3)、(4)、(6)是代数式, (2)、(5)不是.师:小结:(1)代数式中不含“=”,“>”,“<”,“≥”,“≤”,“≠”等符号.(2)单独的一个数或字母也是代数式.师:同学们回答的很好,那我们就来巩固一下吧.生:完成巩固练习:用代数式表示(1) f的11倍再加上2可以表示为______________.(2)数a与它的的和可以表示为_________.(3)一个教室有2扇门和4扇窗户,n个这样的教室共有___________扇门和_________扇窗户.(4)小华、小明的速度分别为x米/秒,y米/秒,6分钟后它们一共走了米. 生:(完成填空并回答,如有疑难可在小组内交流、讨论.)生1: 11f+2 ,a+a,2n,4n,6(x+y)生2:(4)小题也可以写成(6x+6y)生3:第(2)小题也可以写成118 a,师: 118a通常写成98a,带分数写成假分数.师:通过前面的练习,同学们想一想,说一说:代数式在书写时应该注意那些问题呢? 生: 以小组为单位,进行组内交流、讨论后回答问题.( 同学们在充分交流的过程中,教师可参与其中,听听同学的想法,看看同学们在交流过程中的表现,积极引导不善交流的同学倾吐自己的想法,形成好的合作交流的气氛)生1:数与字母,字母与字母相乘,乘号可以省略,也可写成“.”;数字与数字相乘,乘号不能省略;数字要写在字母前面;生2:在含有字母的除法中,一般不用“÷”号,而写成分数的形式;式子后面有单位时,和差形式的代数式要在单位前把代数式括起来.生3:带分数一定要写成假分数.师:同学们回答的非常好,非常的全面.现在请同学们回过头来看一看,前面你所列的代数式符合要求吗?生:自我检查,同位之间互查.设计意图:让学生从实际问题中抽象出数学问题,学会列代数式,体验数学来源于生活,又为现实生活服务,极大地调动学生学习的主动性、积极性;规定代数式的书写要求,代数式求值的格式并用多媒体展示,目的在于让学生体会数学的规范性,严密性,进一步培养学生的数感和符号感.教学效果:本环节开始就有效地激发了学生的学习兴趣,调动了学生学习的积极性,学生主动学习和合作交流较为充分,学生成功的交流,使学生感受到数学结果的多样性,数学符号的美妙性,同时初步学会了列代数式的方法.师:我们知道了代数式,会列代数式,现在我们就来共同探究一下生活中的数学.请同学们完成导学案的探究一.三、合作探究,拓展新知.内容:讨论教材上的例题.分析需要使用代数式表达信息的原因.通过解决具体问题,让学生感受代数式求值的含义.探究一:学习要求:请认真读题并完成题后的填空:1. (1)某公园的门票价格是:成人票每人10元,儿童票每人5元.一个旅游团有x名成人和y名儿童,用代数式表示这个旅游团应付的门票费.(分析:x名成人的门票费为;y名儿童的门票费为;解:这个旅游团应付的门票费为 .(2)如果这个旅游团有37名成人和15名儿童,那么应付门票费多少元?(分析:这个旅游团有37名成人即字母 =37;儿童15名即 =15;分别把它们代入(1)中的代数式,即可求出应付门票费)解: (学生口述)生: (先独立思考,再小组内交流后回答问题.)生: (通过实物投影展示答案.)生1:(1) x名成人的门票费为10x, y名儿童的门票费为5y,这个旅游团应付的门票费为,(10x+5y)元.生2:(2) 如果这个旅游团有37名成人和15名儿童,那么应付门票费445元.师: 在回答(2)题时,我们要注意解题的格式.(板书解题过程,并加以强调.)师:刚才我们解决了生活中的一个问题,下面我们再来探究一下生物世界的奥秘吧.请同学们快速完成导学案的探究二.探究二:1.请认真读题,参照1题的答题格式,完成下题的解答过程.----相信你能行!在某地,人们发现某种蟋蟀叫的次数与气温之间有如下的近似关系:用蟋蟀1分钟叫的次数除以7,然后加上3,就近似地得到该地当时的气温(℃).(1)用代数式表示该地当时的气温;(2)当蟋蟀1分钟叫的次数分别是80,100和120时,该地当时的气温大约是多少?(结果保留整数)生: 先独立思考,再小组内交流后回答问题.生1: 口答1. 用x 表示蟋蟀1分钟叫的次数,则该地当时的气温为( 7x +3) ℃. 生2: 通过实物投影展示(2)小题答案. 设计意图:这里首先展示出学生生活中非常熟悉的小动物――蟋蟀的图片,从而提出蟋蟀每分钟叫的次数与当时温度的关系的问题,目的是刺激学生的感官,引发学生的求知欲望.对第(1)中的蟋蟀1分所叫的次数探求或变式,目的在于帮助学生自设字母来表示有关的量,为学生列代数式铺平道路,同时让学生体会数学建模的思想.求x =80、100、120时,该地当时的温度,目的在于让学生进一步学会求代数式的值,加深对蟋蟀1分叫的次数与当时温度的关系的体会.教学效果:在这个环节中教师首先给出一个实际背景,一下子就引起了学生的注意力,接着通过师生循序渐进的分析,学生很自然地领悟了数学建模的方法,掌握了列代数式的新的方法――先设字母,再列式子,使课堂气氛显得格外轻松.同时在这里通过变式,增强了思维的灵活性,降低了学习的难度,调动了学生学习的积极性.师:同学们完成的非常棒.通过刚才的探究,我们深切体会到了:知识来源于生活,又运用于生活.小组讨论:代数式10x +5y 还可以表示什么?想一想, 比一比!看谁说的既多又准!(要求学生在独立思考的基础之上,做小组交流,随后全班交流.)①如果用x (元)1支铅笔的价格,用y (元)1个练习本的价格,那么10x+5y 可以表示 的总钱数② 如果 ,那么生:(先完成①小题,然后仿照上题完成②小题.)生1:老师有 x 张10元,有y 张5元的钱,则(10x +5y)元就表示老师有多少钱.生2:一辆车以x 千米/小时的速度行驶了10小时,然后又以y 千米/小时的速度行驶了5小时,则 (10x +5y)千米 表示这辆车所走的路程.生3:某种数学资料每本要10元,英语资料每本要5元,小明买了x 本数学资料,y 本英语资料,则( 10x +5y)元 表示共用了多少钱.师:同学们真棒,举出这么多代数式10x +5y 所表示的实际背景.设计意图:用多媒体将问题展示后,让学生充分地观察、思考,进而产生联想,针对“10x+5y”所表示的意义让学生各自发表自己观点,并在小组进行交流,通过交流,学生意识到了“10x+5y”可以表示很多不同的问题,接着让各小组长上台进行展示和师生对答案进行综合评价,最后教师又用多媒体展示部分准确答案,目的是帮助学生进一步体会符号表示的意义,同时也是为了拓宽学生的思维,发展学生联想、类比、归纳等能力.四、拓展延伸讨论回答下列问题:1.写出一个你最喜欢的一个两位数.2.一个两位数的个位数字是a,十位数字是2,请用代数式表示这个两位数;3.一个两位数的个位数字是a,十位数字是b,请用代数式表示这个两位数如何用代数式表示一个三位数?生:( 以小组为单位,进行组内交流、讨论后回答问题.)生1: 通过实物投影展示答案1.我喜欢362.这个两位数是20+a3.这个两位数是10b+a4.设这个三位数的个位数字是a,十位数字是b,百位数字是c,这个三位数是100c+10b+a.生2: 通过实物投影展示答案1.我喜欢96 ,第2,3题答案和上面的同学相同,第4题.设这个三位数的个位数字是x,十位数字是y,百位数字是z,这个三位数是100z+10y+x.师: 总结:两位数表示:10十位数字+个位数字三位数表示: 100百位数字+10十位数字+个位数字设计意图:为了检测学生的灵活应变能力,创新思维的能力,以满足不同层次的学生在数学发展方面的需要.选择题目的出发点在于帮助学生学会列代数式,进一步明确代数式的实际背景或几何意义,发展学生的符号感;让学生进一步把握本章的重点,明确学习的方向. 教学效果:学生分层次独立完成,再由教师念答案学生自我评分,按不同的要求统计优秀成绩(基础差的同学做对第1,2,3题就是优秀),让每个学生都有了成就感,增强了学生学习数学的信心,真正做到了面向全体学生.五、小结回顾:师:请同学们谈一谈,通过本节课的学习,你有哪些收获?(生1、生2、生3自发站起来谈学习收获,教师作出点评、补充.)设计意图:鼓励学生结合本节课的学习谈自己的收获,学生交流,互相补充,完成本节知识的梳理.六、作业:1. P108 读一读“代数” 的由来2. P109 第1题板书设计:代数式一、代数式的意义二、代数式的值三、代数式表示的实际意义教学反思:本节课采用导学案的方式,主要讲解代数式的基本知识,并在具体情景中讲解列代数式的方法和简单的求值.通过这些内容,让学生逐渐熟悉代数式的表示方法,并培养符号逻辑思维能力.以具体的事例引入代数式的概念,既形象又浅显易懂.通过两个探究题,使学生感受到数学与日常生活的密切联系.通过学生自己大胆的尝试,让学生在学习中得到乐趣,指导学生在变化中探索规律,培养团结合作精神.通过学生对知识和技能的总结,理清本节的知识结构,使知识系统化,提升分析问题、解决问题的能力,提升与人交往的能力.无论是教学环节设计,还是课外作业的安排上,我都重视知识的产生过程,关注人的发展,意到个体间的差异,让每一个学生在课堂上都有所感悟,都有着各自的数学体验,不同的人在数学上都得到不同的发展.当然本节课在教学过程中也有遗憾的地方,在今后的教学中,我将努力克服自己在教学中的不足之处,争取在今后的教学工作中做到更好.。
湘教版数学七年级上册2.2《列代数式》教学设计2
湘教版数学七年级上册2.2《列代数式》教学设计2一. 教材分析《列代数式》是湘教版数学七年级上册第二章第二节的内容,本节课的主要任务是让学生掌握列代数式的方法和技巧。
通过本节课的学习,学生能够理解代数式的概念,能够根据实际问题列出相应的代数式。
教材中通过丰富的例题和练习题,帮助学生巩固所学知识,提高解题能力。
二. 学情分析七年级的学生已经掌握了整数、分数和小数的基本知识,对数学符号有一定的了解。
但是,对于代数式的概念和列代数式的方法可能还存在一定的困惑。
因此,在教学过程中,教师需要耐心引导,让学生逐步理解和掌握。
三. 教学目标1.知识与技能目标:使学生掌握代数式的概念,能够根据实际问题列出相应的代数式。
2.过程与方法目标:通过例题和练习题,培养学生解决实际问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的逻辑思维能力。
四. 教学重难点1.重点:代数式的概念及列代数式的方法。
2.难点:如何根据实际问题列出相应的代数式。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过提出问题,引导学生思考;通过案例分析,让学生理解代数式的概念;通过小组合作,培养学生的团队协作能力。
六. 教学准备1.教师准备:熟悉教材内容,了解学生的学习情况,准备好相关的教学案例和练习题。
2.学生准备:预习教材,了解代数式的基本概念。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾已学过的数学知识,如整数、分数、小数等,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过PPT或黑板展示教材中的例题,让学生观察并思考如何列出相应的代数式。
引导学生总结代数式的概念,并解释代数式的意义。
3.操练(10分钟)教师给出一些实际问题,让学生尝试列出相应的代数式。
学生在课堂上相互交流、讨论,教师巡回指导。
4.巩固(10分钟)教师挑选几个学生的作业,进行讲解和点评,让学生加深对代数式的理解。
同时,布置一些练习题,让学生课后巩固所学知识。
七年级数学上册 第2章 代数式章末复习教案 (新版)湘教版-(新版)湘教版初中七年级上册数学教案
第2章代数式章末复习【知识与技能】1.用字母表示数.2.列出代数式.3.对代数式进行加减.4.合并同类项.5.先化简,再求值.【过程与方法】1.加强学生对所学知识的理解.2.提高运用知识解决问题的能力.【情感态度】在观察、想象、推理、交流的数学活动中,初步养成言之有据的习惯,并初步形成积极参与数学活动,与他人合作交流的意识,积累活动经验(学习或思维的方法、策略等).【教学重点】列代数式,求代数式的值.【教学难点】代数式的化简.一、知识结构【教学说明】揭示知识之间的内在联系,将所学的零散的知识连接起来,形成一个完整的知识结构,有助于学生对知识的理解和运用.二、释疑解惑,加深理解1.代数式:把数与表示数的字母用运算符号连接而成的式子叫做代数式.单独的一个字母或一个数也是代数式.2.用字母表示式子时应注意:①在含有字母的式子里,数字和字母,字母和字母中间的乘号可以记作“.”,也可以省略不写.省略乘号时,一般把数字写在字母的前面.②两个相同字母相乘时,也写成乘方的形式.③当数字1与字母相乘时,1也省略不写.3.代数式的值:如果把代数式里的字母用数代入,那么计算出的结果叫做代数式的值.4.单项式:由数与字母的积组成的代数式叫做单项式.单独的一个字母或一个数也是单项式.单项式中,与字母相乘得数叫做单项式的系数.一个单项式中,所有字母的指数的和叫做这个单项式的次数.5.多项式:由几个单项式的和组成的代数式叫做多项式.组成多项式的每个单项式叫做多项式的项,其中不含字母的项叫常数项.多项式中次数最高的项的次数,叫做这个多项式的次数.6.整式:单项式和多项式统称为整式.7.同类项:含有的字母相同,并且相同字母的指数也分别相同的项称为同类项.把多项式中的同类项合并成一项,叫做合并同类项.8.合并同类项的法则:把同类项的系数相加,所得的结果作为系数,字母和字母的指数保持不变.9.去括号法则:括号前面是“+”号,运用加法结合律把括号去掉,原括号里各项的符号都不变.括号前面是“-”号,把括号和它前面的“-”号去掉,原括号里各项的符号都要改变.【教学说明】引导学生回顾本章知识点,使学生系统地了解本章知识及它们之间的关系.三、典例精析,复习新知1.下列语句正确的是(A)A.0是代数式.B.S=2πR是一个代数式.1不是代数式.2D.单独一个字母a不是代数式.2.有一个两位数,十位数字是a,个位数字是b,若把它们的位置交换,得到新的两位数是(C)C.10b+aD.10a+b3.计算:(2x2-3xy+6)-2(3y2x-xy-3)解:原式=2x2-3xy+6-6xy2+2xy+6=2x2-6xy2-xy+124.先化简,再求值:-5+x2-5x-x2+3x+4,其中x=-12.解:原式=(x2-x2)+(-5x+3x)+(-5+4)=-2x-1把x=-12代入原式=-2×(-12)-1=05.某物体运动的速度与时间的关系如下表:(1)请你用含t的代数式来表示该物体运动速度y.(2)当该物体运动的时间为20秒时,此时物体的速度是多少?答案:(1)y=0.2t+0.5;(2)4.5(米/秒).6.1千瓦时电(即通常所说的1度电)可供一盏40瓦的电灯点亮25小时.(1)1千瓦时的电量可供n瓦的电灯点亮多少时间?(2)若每度电的电费为a元,一个100瓦的电灯使用12时的电费是几元?答案:(1)1000n时,(2)1.2a元.【教学说明】通过典型例题,培养学生的识图能力和推理能力.四、复习训练,巩固提高1.已知多项式ax+bx合并的结果为0,则下列说法正确的是(D)A.a=b=0B.a=b=x=0C.a-b=0D.a+b=02.某同学自己装订笔记本,第一本用了aX纸,第二本用的纸X数是第一本的78,两本共用了(A)X纸.A.a+78a18aC.a+18aD.a+782+2xy=3,y2=2,则代数式2x2+4xy+y2的值为(A)4.先列出式子,再求结果:一个代数式加上5x2+4x-1得6x-8x2+2,求这个代数式.解:6x-8x2+2-(5x2+4x-1)=6x-8x2+2-5x2-4x+1=-13x2+2x+35.请写出一个含x的代数式.要求:无论x取什么有理数,代数式的值总是非负数.答案:(x2+1)等6.如图:用代数式表示阴影部分的面积.答案:12(a-b)h7.为节约能源,某单位按以下规定收取每月电费:用电不超过140度,按每度0.45元收费,如果超过140度,超过部分按每度按0.60元收费.(1)若某住户四月份的用电量是a度(a≤140),这个用户四月份应交多少电费?(2)若该住户五月份的用电量是a度(a>140),则他五月份应交多少电费?(3)若该住户六月份的用电量是200度,那么他六月份应交多少电费?答案:(1)当a≤140度时,应交电费0.45a元;(2)当a>140度时,应交电费为(0.6a-21)元;(3)140×0.45+(200-140)×0.60=99(元).8.同一时刻的时间、巴黎时间、东京时间如图所示.(1)设时间为a(7<a≤23),分别用代数式表示同一时刻的巴黎时间和东京时间.(2)2001年7月13日,时间22:08,国际奥委会主席萨马兰奇宣布,获得2008年第29届夏季奥运会的主办权.问这一时刻的巴黎时间、东京时间分别为几时?答案:(1)巴黎:a-7;东京:a+1(2)巴黎:15:08;东京:23:08【教学说明】进一步加深对知识的理解,体会本节课所涉及的数学思想和数学规律.同时,学会归纳概括和总结,积累学习经验,为今后的学习奠定基础.五、师生互动,课堂小结通过本节课的学习,你有哪些收获?还存在哪些疑惑?布置作业:教材“复习题”中第2、8、12、14、15、16题.能达到我们所制定的目标:在教学的过程中我着重精讲例题,在解题过程中实现三个目标,化解重点难点,使学生了解、理解、掌握并应用!注重基础重在实效:题目面对大众,不搞偏难怪.在解题的过程中强化书写格式.从学生的做题情况,对于发现问题作出及时处理以达到规X.同时也存在几个缺点:①有的知识点没有顾及到;②有的学生没有自觉地解决问题;③与学生互动不激烈.在授课过程中要精讲多练,多让学生发问,而且也要让学生多多总结,学以致用.。
七年级数学上册 第2章 代数式小结与复习教案 (新版)湘教版
第2章 代数式小结与复习一.学习目的和要求:1.对本章内容的认识更全面、更系统化。
2.进一步加深对本章基础知识的理解以及基本技能的掌握,并能灵活运用。
二.学习重点和难点:重点:本章基础知识的归纳、总结;基础知识的运用;整式的加减运算的灵活运用。
难点:本章基础知识的归纳、总结;基础知识的运用;整式的加减运算的灵活运用与提高。
三.学习方法:归纳,总结 交流、练习 探究 相结合四.教学目标和教学目标解析:教学目标1 单项式单项式:由数与字母的积组成的代数式叫做单项式,单独的一个字母或者一个数也是单项式.单项式的系数:单项式中,与字母相乘的数叫做单项式的系数.单项式的次数:一个单项式中,所有字母的指数之和叫做这个单项式的次数. 教学目标2 多项式多项式:有几个单项式的和组成的代数式叫做多项式. 多项式的项:组成多项式的每个单项式叫做多项式的项,其中不含字母的项叫做常数项. 多项式的次数:多项式中次数最高的项的次数,叫做这个多项式的次数.整式:单项式和多项式统称为整式.教学目标3 同类项同类项:所含字母相同,并且相同字母的指数也分别相等的项,另外所有的常数项都是同类项。
例如:n m 2-与n m 23是同类项;32y x 与232x y 是同类项。
注意:同类项与系数大小无关,与字母的排列顺序无关。
教学目标4 合并同类项法则合并同类项法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数保持不变,如:23232323)23(23n m n m n m n m =-=-。
教学目标5 去括号法则去括号法则:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里的各项都不变符号;括号前面是“-”号,把括号和它前面的“-”号去掉,括号里的各项都改变符号。
如:c b a c b a -+=-++)(, c b a c b a +--=-+-)(教学目标6 整式加减的一般步骤(1)如果有括号,那么先去括号。
湘教版数学七年级上册2.2《列代数式》教学设计
湘教版数学七年级上册2.2《列代数式》教学设计一. 教材分析《列代数式》是湘教版数学七年级上册第二章第二节的内容。
本节内容是在学生已经掌握了有理数、整式等基础知识的基础上进行教学的,是初中数学的重要内容之一。
通过本节的学习,学生能够理解和掌握代数式的概念,能够正确地列出代数式,为后续的方程、不等式等知识的学习打下基础。
二. 学情分析七年级的学生已经具备了一定的数学基础,但是对于代数式的概念和列代数式的方法可能还比较陌生。
因此,在教学过程中,需要注重引导学生理解和掌握代数式的概念,通过具体的例子让学生学会如何列出代数式。
三. 教学目标1.知识与技能目标:理解和掌握代数式的概念,能够正确地列出代数式。
2.过程与方法目标:通过观察、分析和归纳,培养学生的逻辑思维能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识。
四. 教学重难点1.重点:理解和掌握代数式的概念,能够正确地列出代数式。
2.难点:对于复杂代数式的列出,能够灵活运用所学知识。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过提出问题,引导学生思考和探索;通过具体的案例,让学生学会如何列出代数式;通过小组合作学习,培养学生的团队合作意识。
六. 教学准备1.教学PPT:制作相关的教学PPT,内容包括代数式的概念、列代数式的具体方法等。
2.案例材料:准备一些具体的案例,用于引导学生学会列出代数式。
3.小组合作学习分组:将学生分成若干小组,每组3-4人。
七. 教学过程1.导入(5分钟)通过提出问题,引导学生思考和探索代数式的概念。
例如:“你们在生活中有没有遇到过类似代数式的东西?”让学生结合生活实际,理解代数式的含义。
2.呈现(10分钟)通过PPT呈现代数式的概念,并用具体的例子进行解释。
例如:代数式可以表示为数字、字母和运算符的组合,如2x + 3,表示2乘以x加上3。
3.操练(10分钟)让学生根据给出的案例,尝试列出代数式。
最新湘教版七年级数学上册《列代数式》教学设计(精品教案)
课题:2.2 列代数式一、教学目标,重点,难点分析:1、教学目标:(1)知识与技能目标:①理解代数式的概念;②掌握列代数式的一般要求,并能列出常见的表示数量关系的代数式,简单的实际问题中数量关系的代数式以及几何图形中数量关系的代数式。
(2)过程与方法目标:①经历观察、实践、验证等数学学习活动,培养学生分析问题的能力和数学说理能力;②使学生在探索与创造的数学学习活动中,学会与人合作、与人交流。
(3)情感与态度目标:①培养学生良好的思维习惯,树立自信心,使之对数学产生浓厚的兴趣;②进一步体会到用字母表示数的优越性和必要性,并激发学生从事探索性活动的积极性。
2、教学重点:使学生能用代数式表示简单问题中的数量关系。
3、教学难点:正确理解语言叙述中的关键词语的意义,语句的层次,表示的先后顺序以及实际问题和几何图形中数量关系的表示。
二、主要教学理念:1、重视情景创设,注重知识从现实中来到现实中去的原则;2、突出数学学习内容的的现实性、有价值性和富有挑战性;3、关注学生学习的过程,进行多元评价。
三、教学流程:教学环节教学过程设计意图引入从广益欢迎你的话题提出问题:已知长沙的士的起步价为8元,两公里以上的每公里收费2元,请完成下面表格:距离(公里)1 1.5 6 整数m(m>2)费用(元)从中我们可以看到,在解决实际问题的时候,常常先把问题中未知的数用字母表示,通过列代数式来表示数量关系。
今天老师和同学们就一起来进一步探究列代数式。
(板书课题)2.2列代数式(list gebraicl a ressionexp)从广益欢迎你提起,用坐出租车的情景引入,符合学生的认知规律一、走进生活,探究新知1、已知长沙的士的起步价为8元,两公里以上的每公里收费2元,若从高铁站到我校约m (m 为整数,m>2)公里,则应收费__________元;2、已知:广益初一年级共有25个班,若平均每班约有a 人,则初一共有________人;3、已知:在广益体育节上,张明同学在一项跑步比赛中用t 秒跑了s 米,则他的平均速度为_______。
湘教版数学七年级上册2.2《列代数式》教学设计1
湘教版数学七年级上册2.2《列代数式》教学设计1一. 教材分析《列代数式》是湘教版数学七年级上册第2.2节的内容,本节内容是在学生已经掌握了代数的基本概念和代数式的基本形式的基础上进行授课的。
本节的主要内容是引导学生掌握列代数式的方法,能够根据实际问题抽象出代数式,并理解代数式的意义。
教材通过具体的例子,让学生学会如何从实际问题中提炼出关键信息,如何用代数式来表示这些信息,并理解代数式在不同情境下的意义。
二. 学情分析七年级的学生已经具备了一定的代数基础,对于代数式的概念和基本性质已经有了一定的了解。
但是,学生对于如何从实际问题中提炼出关键信息,并将其转化为代数式还有一定的困难。
因此,在教学过程中,需要引导学生从实际问题中找出关键信息,并通过适当的数学符号将其表示出来。
三. 教学目标1.知识与技能目标:学生能够理解代数式的概念,掌握列代数式的方法,能够从实际问题中提炼出关键信息,并将其转化为代数式。
2.过程与方法目标:通过具体例子,让学生学会如何从实际问题中提炼出关键信息,如何用代数式来表示这些信息,并理解代数式在不同情境下的意义。
3.情感态度与价值观目标:培养学生对数学的兴趣,提高学生解决实际问题的能力。
四. 教学重难点1.教学重点:学生能够理解代数式的概念,掌握列代数式的方法。
2.教学难点:学生能够从实际问题中提炼出关键信息,并将其转化为代数式。
五. 教学方法1.情境教学法:通过具体的问题情境,引导学生从实际问题中提炼出关键信息,并将其转化为代数式。
2.案例教学法:通过具体的例子,让学生学会如何从实际问题中提炼出关键信息,如何用代数式来表示这些信息,并理解代数式在不同情境下的意义。
3.小组合作学习:学生分组讨论,共同解决问题,提高学生的合作能力和解决问题的能力。
六. 教学准备1.教师准备:教师需要准备具体的例子,用于引导学生从实际问题中提炼出关键信息,并将其转化为代数式。
2.学生准备:学生需要预习相关内容,了解代数式的基本概念和基本性质。
湘教版数学七年级上册教案设计:2.2-列代数式(2课时)
5、P60——例2
四、课堂练习
1、P61——练习
2、填空题:设x表示一个数:
①这个数与5的和的3倍可用代数式表示成;
②这个数与1的差的 ,可用代பைடு நூலகம்式表示成;
③这个数的5倍与7的和的一半,可用代数式表示成;
④这个数的平方与这个数的 的和,可用代数式表示成。
3、判断对错,对的打“√”错的打“×”。
(A)2n一定是偶数;(B)3n表示的是奇数;
(C)2n+1表示的是奇数;(D)2n-1表示的也是奇数。
②设n是任意一个整数,那么下列说法中错误的是(A)
(A)任意一个偶数都可用4n表示;(B)有的偶数不能用4n表示;
(C)2n可以表示任何一个偶数;(D)n的奇数倍不一定是奇数。
4.填空题,用代数式表示:
①“a的3倍与b的2倍的差”写成:3a-2b;( )
②“x与4的平方和”写成:x2+4;( )
③“x与4的平方差”写成:(x-4)2;()
④“x的 与 的和”写成:x( + )。( )
4、选择题
①甲数是a,它是乙数的 ,则甲乙两数的积用代数式表示是()
(A) a (B) a2(C) a(D) a2
②某校一年级学生数与全校学生数的比是2∶5;已知全校男生数是m,女生数是n,那么一年级学生人数是()
分析:列代数式要注意不同语言环境下的关键词,如“大、小、几倍”等。要注意(3)中的百分数。
3、设甲数为a,乙数为b,用代数式表示:
(1)甲乙两数的和的2倍;
(2)甲数的 与乙数的 的差;
(3)甲、乙两数的平方和(即平方的和);
(4)甲乙两数的和与甲乙两数的差的积。
七年级数学上册(湘教版)教案:第二章代数式2、2列代数式(1)-最新整理
七年级数学上册(湘教版)教案:第二章代数式2、2列代数式(1)1、让学生在具体情景中列出代数式;进一步熟悉代数式的书写习惯。
2. 通过代数式表示简单数学问题中的关系,初步培养学生的抽象思维能力。
3. 通过用代数式表示实际问题中的简单数量关系;激发学生对数学学习的兴趣.教材分析重点:把语言描述的数量关系用代数式准确表示出来.难点:培养学生从特殊事例到一般的抽象概括能力.教学方法:预学----探究----精讲----提升教具准备:投影仪,幻灯片自主学习方案设计目的:为实现本节课的教学目标,组织学生通过预习经历下面的两个过程:一是通过“动脑筋”体会三个问题情境代表的代数式的特征;二是通过“大家谈谈”,归纳概括代数式的共同特征,学会根据实际情况列代数式。
请同学们预习教材P61-P62的内容,完成下面的问题.1. 通过预习教材P61-P62的“说一说”,你能通过列式子,体会这些式子的共同特征是 .2.请再举出具有这种特征的实例等.3.一般地,可以用运算符号把数和表示数的字母连接而成的式子叫作 .单独一个数或者一个字母也可以叫作 .教学过程一、预习与交流指导学生完成自主学习方案二.合作与探究通过以上的学习与讨论,我们明白了代数式的定义及特征.即用运算符号把数和表示数的字母连接而成的式子叫作代数式,且单独的数或字母也是代数式.下面进一步研究代数式的相关知识及应用例1. 下列各式中哪些是代数式,哪些不是代数式2x-1 a=1 π a0.5 s=πr 0.5>0.3注意:单独一个数或一个字母都是代数式π是单独一个数字不含“=”“>”“<”“≠”,S=vt不是代数式,但,s,t,v都是代数式。
湘教版数学七年级上册2.2《列代数式》说课稿
湘教版数学七年级上册2.2《列代数式》说课稿一. 教材分析湘教版数学七年级上册2.2《列代数式》这一节的内容,主要让学生掌握代数式的概念,了解代数式的构成要素,包括数字、变量和运算符号。
同时,通过具体的例子,让学生学会如何正确地列出代数式。
教材通过生活中的实际问题引入代数式,让学生感受到数学与生活的紧密联系,激发学生的学习兴趣。
二. 学情分析面对七年级的学生,他们对数学已有一定的基础,但代数式的学习对他们是新的挑战。
在学习过程中,学生需要从具体的事物中抽象出代数式,这对他们的抽象思维能力是一个考验。
同时,学生需要理解代数式中的符号含义,理解代数式表示的是数量关系。
三. 说教学目标1.知识与技能目标:让学生理解代数式的概念,掌握代数式的构成要素,能够正确列出代数式。
2.过程与方法目标:通过具体的生活实例,让学生感受数学与生活的联系,培养学生的抽象思维能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的逻辑思维能力。
四. 说教学重难点1.教学重点:代数式的概念,代数式的构成要素。
2.教学难点:如何从具体事物中抽象出代数式,理解代数式表示的是数量关系。
五. 说教学方法与手段在本节课中,我将采用问题驱动法,让学生在解决问题的过程中,自己去感受、去理解代数式的概念。
同时,我会运用多媒体教学手段,通过生动的动画,让学生更直观地理解代数式。
六. 说教学过程1.导入:通过一个简单的实际问题,让学生感受数学与生活的联系,激发学生的学习兴趣。
2.新课导入:介绍代数式的概念,讲解代数式的构成要素。
3.实例分析:通过具体的例子,让学生学会如何正确地列出代数式。
4.课堂练习:让学生尝试解决一些实际问题,巩固所学知识。
5.总结:对本节课的内容进行总结,强调代数式的概念和构成要素。
6.布置作业:布置一些有关代数式的练习题,让学生课后巩固所学知识。
七. 说板书设计板书设计主要包括代数式的概念,代数式的构成要素,以及一些具体的例子。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学 习 资 料 专 题
2.2 列代数式
1.在具体情境中进一步理解用字母表示数的意义,了解代数式的概念,知道单独的一个数或字母也是代数式;
2.会根据实际问题列出代数式,进一步规范代数式的书写格式;(难点)
3.能理解一些简单代数式的实际背景,培养符号感;
4.通过具体情境,培养把实际问题抽象为数学问题的能力.(重点、难点)
一、情境导入
青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段.列车在冻土地段的行驶速度是100千米/时,在非冻土地段的行驶速度可以达到120千米/时,请根据这些数据回答下列问题:列车在冻土地段行驶时,2小时能行驶多少千米?3小时呢?t 小时呢?
1.思考:(1)若正方形的边长为a ,则正方形的面积是________,体积是________.
(2)设n 表示一个数,则它的相反数是________;
(3)铅笔的单价是x 元,钢笔的单价是铅笔单价的2.5倍,则钢笔的单价是________元.
(4)一辆汽车的速度是v 千米/时,行驶t 小时所走过的路程为________千米.
2.观察所列代数式包含哪些运算,有何共同的运算特征.
二、合作探究
探究点一:代数式的识别
有下列式子:x 2,m -n >1,p +q ,1
2
ab ,S =πR 2,2016,代数式有( ) A .3个 B .4个 C .5个 D .6个
解析:代数式是用运算符号把数和字母连接而成的式子,m -n >1是用不等号“>”连接
而成的式子、S =πR 2是用等号“=”连接而成的式子,它们都不是代数式.而x 2,p +q ,12
ab ,2016都是代数式.故选B.
方法总结:明确代数式的意义是正确识别代数式的前提.式子中有关系符号(如等号或不等号)的都不是代数式.
探究点二:列代数式
用代数式表示:(1)x 与2的平方和;(2)x 与2的和的平方;(3)x 的平方与2的
和;(4)x 与2的平方的和.
解析:这四个小题,都有关键词“平方”和“和”,但这两个词在四个小题中的语序不一样.(1)中是先平方再求和,即x 2-22;(2)中是先求和再平方,即(x +2)2;(3)中是先x
的平方再求和,即x 2+2;(4)中是先2的平方再求和,即x +22.
解:(1)x 2-4;(2)(x +2)2;(3)x 2+2;(4)x +4.
方法总结:用代数式表示数量关系时,一般要将句子分层,逐层分析,一步步列出代数式.
探究点三:代数式的意义
下列代数式可以表示什么?
(1)2a -b ;(2)2(a -b ).
解析:解释代数式的意义,可以从两个方面入手,一是从字母表示数的角度考虑;二是可以联系生活实际来举例说明.不管采用哪种方式,一定要注意运算形式和运算顺序.
解:(1)2a 与b 的差;或a 的2倍与b 的差;或用a 表示一本作业本的价格,用b 表示一支铅笔的价格,则2a -b 表示买两本作业本比买一支铅笔多的钱数;(2)2与a -b 的积;或a 与b 的差的2倍.
方法总结:描述一个代数式的意义,可以从字母本身出发来描述字母之间的数量关系,也可以联系生活实际或几何背景赋予其中字母一定的实际意义加以描述.
探究点四:代数式的应用
【类型一】 根据实际问题列代数式
用代数式表示下列各式.
(1)王明同学买2本练习册花了n 元,那么买m 本练习册要花多少元?
(2)正方体的棱长为a ,那么它的表面积是多少?体积呢?
解析:(1)根据买2本练习册花了n 元,得出买1本练习册花n 2
元,再根据买了m 本练习册,即可列出算式.(2)根据正方体的棱长为a 和表面积公式、体积公式列出式子.
解:(1)因为买2本练习册花了n 元,所以买1本练习册花n
2
元,所以买m 本练习册要花12
mn 元; (2)因为正方体的棱长为a ,所以它的表面积是6a 2;它的体积是a 3.
方法总结:此题考查了列代数式,用到的知识点包括正方体的表面积公式和体积公式,根据题意列出式子是解本题的关键.
【类型二】 用字母表示几何图形中的数量关系 用字母表示图中阴影部分的面积:
解析:(1)图中阴影部分是正方形中挖去一个圆后剩下的部分,且正方形的边长是a ,圆的直径也是a ,圆的半径是a 2
;(2)图中阴影部分是长方形中挖去4个小正方形后剩下的部分,且长方形的长为a ,宽为b ,小正方形的边长为x .
解:(1)S =a 2-π·(a 2)2;(2)S =ab -4x 2
.
方法总结:将不规则图形的面积转化为规则图形(如长方形、圆、三角形等)的面积的和或差是解决求阴影部分面积问题的关键.
探究点五:探求规律性问题
观察下列图形:
它们是按一定规律排列的.
(1)依照此规律,第20个图形共有几个五角星?
(2)摆成第n个图案需要几个五角星?
(3)摆成第2016个图案需要几个五角星?
解析:通过观察已知图形可得:每个图形都比其前一个图形多3个五角星,根据此规律即可解答.
解:(1)根据题意得,因为第1个图中,五角星有3个(3×1);第2个图中,有五角星6个(3×2);第3个图中,有五角星9个(3×3);第4个图中,有五角星12个(3×4);所以第n个图中有五角星3n个.所以第20个图中五角星有3×20=60(个);
(2)由(1)中摆成第n个图案需要3n个五角星;
(3)摆成第2016个图案需要五角星2016×3=6048(个).
方法总结:此题首先要结合图形具体数出几个值.注意由特殊到一般的分析方法.此题的规律为摆成第n个图案需要3n个五角星.
三、板书设计
代数式
⎩⎪
⎨
⎪⎧概念→用运算符号把数和表示数的字母连
接而成的式子叫代数式
代数式的
意义及列
代数式
→
用字母和数表示实际问题中的
数量关系
教学过程中,应拓展学生的思维,培养他们观察、分析及抽象思维能力、语言能力、创造能力和类比联想能力.。