九年级数学周测(4)
人教版九年级数学上册第二十一章一元二次方程测试题(全章)
第二十一章一元二次方程周周测6一、选择题(每题3分,共30分)1.已知1是关于x的一元二次方程(m﹣1)x2+x+1=0的一个根,则m的值是() A.1 B.﹣1 C.0 D.无法确定2.若关于x的一元二次方程的两个根为x1=1,x2=2,则这个方程是()A.x2+3x﹣2=0 B.x2﹣3x+2=0 C.x2﹣2x+3=0 D.x2+3x+2=0 3.一元二次方程(x﹣2)=x(x﹣2)的解是()A.x=1 B.x=0 C.x1=2,x2=0 D.x1=2,x2=14.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有不相等实数根,则k的取值范围是()A.k>12B.k≥12C.k>12且k≠1 D.k≥12且k≠15.用配方法解一元二次方程x2+4x﹣5=0,此方程可变形为()A.(x+2)2=9 B.(x﹣2)2=9 C.(x+2)2=1 D.(x﹣2)2=16.下列关于x的方程有实数根的是()A.x2-x+1=0 B.x2+x+1=0C.(x-1)(x+2)=0 D.(x-1)2+l=07.某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为()A.144(1﹣x)2=100 B.100(1﹣x)2=144C.144(1+x)2=100 D.100(1+x)2=1448.一元二次方程x2+px﹣2=0的一个根为2,则p的值为()A.1 B.2 C.﹣1 D.﹣29.关于x的一元二次方程x2+2(m﹣1)x+m2=0的两个实数根分别为x1,x2,且x1+x2>0,x1x2>0,则m的取值范围是()A.m≤ B.m≤且m≠0 C.m<1 D.m<1且m≠0 10.若,a b是方程2220060x x+-=的两根,则23a a b++=()A.2006 B.2005 C.2004 D.2002第II卷(非选择题)二、填空题(每题3分,共18分)11.方程x2﹣2x=0的解为12.已知关于x的方程02=+-nmxx的两个根是0和3-,则m= ,n= .13.已知关于x的方程240x x a-+=有两个相同的实数根,则a的值是.14.已知一元二次方程22310x x--=的两根为12x x,,则=+2111xx___________.15.如图(1),在宽为20m,长为32m的矩形耕地上修建同样宽的三条道路(横向与纵向垂直),把耕地分成若干小矩形块,作为小麦试验田国,假设试验田面积为570m2,求道路宽为多少?设宽为x m,从图(2)的思考方式出发列出的方程是_ .16.已知关于x的一元二次方程01)1(2=++-xxm有实数根,则m的取值范围是.三、解答题(共112分)17.(共24分,每小题6分)解下列一元二次方程.(1)x2﹣5x+1=0;(2)3(x﹣2)2=x(x﹣2).(3) 022=+x x (4)02632=+-x x18.(12分)在实数范围内定义一种新运算“”,其规则为:a b =a 2-b 2,根据这个规则:(1)求43的值; (2)求(x +2)5=0中x 的值.19.(12分)已知x 1=-1是方程052=-+mx x 的一个根,求m 的值及方程的另一根x 2。
(常考题)北师大版初中数学九年级数学上册第一单元《特殊平行四边形》检测(答案解析)(4)
一、选择题1.如图,依据尺规作图的痕迹,则α∠是( )A .54°B .36°C .28°D .72°2.如图,正方形ABCD ,对角线,AC BD 相交于点O ,过点D 作ODC ∠的角平分线交OC 于点G ,过点C 作CF DG ⊥,垂足为F ,交BD 于点E ,则:ADG BCE S S 的比为( )A .(21):1+B .(221):1-C .2∶1D .5∶23.如图,在菱形ABCD 中,对角线AC 、BD 交于点O ,且AC =6,BD =8,过A 点作AE 垂直BC ,交BC 于点E ,则BE CE的值为( )A .512B .725C .718D .5244.如图,在△ABC 中,AD 是BC 边上的高线,CE 是AB 边上的中线,DG ⊥CE 于点G ,CD =AE .若BD =6,CD =5,则△DCG 的面积是( )A.10 B.5 C.103D.535.顺次连接对角线互相垂直的四边形各边中点,所得到的四边形一定是()A.正方形B.矩形C.菱形D.以上都不对6.如图,正方形ABCD的边长为3,点P为对角线AC上任意一点,PE BC⊥,PQ AB⊥,垂足分别是E,Q,则PE PQ+的值是()A.32B.3 C.322D.327.如图,在长方形ABCD中,动点P从A出发,以相同的速度,沿A B C D A----方向运动到点A处停止.设点P运动的路程为,x PCD∆的面积为y,如果y与x之间的关系如图所示,那么长方形ABCD的面积为()A.12 B.24 C.20 D.488.如图,四边形ABCD中,∠BAD=∠C=90°,AB=AD,AE⊥BC,垂足是E,若线段AE=4,则四边形ABCD的面积为()A .12B .16C .20D .249.如图,在平行四边形ABCD 中,AD =2AB 、点F 是AD 的中点,作CE ⊥AB 垂足E 在线段AB 上,连接 EF 、CF ,则下列结论:①2BCD DCF ∠=∠;②EF =CF ; ③S △BCE =S △CEF ;④∠DFE =3∠AEF .其中正确的结论有( )A .1个B .2个C .3个D .4个10.如图,AB AF ⊥,EF AF ⊥,BE 与AF 交于点C ,点D 是BC 的中点,2AEB B ∠=∠.若8BC =,7EF =,则AF 的长是( )A .6B .7C .3D .511.如图,矩形ABCD 的两条对角线的一个交角为60︒,两条对角线的长度之和为24cm ,则这个矩形的一条短边的长为( )A .6cmB .12cmC .24cmD .48cm12.如图所示,将矩形纸片ABCD 折叠,使点D 与点B 重合,点C 落在点C '处,折痕为EF ,若122EFC '∠=︒,那么ABE ∠的度数为( )A .24︒B .32︒C .30D .26︒二、填空题13.如图,在菱形ABCD 中,E 、F 分别是AC 、BC 的中点,如果EF =5,那么菱形ABCD 的周长_____.14.如图,AC 是菱形ABCD 的对角线,P 是AC 上的一个动点,过点P 分别作AB 和BC 的垂线,垂足分别是点F 和E ,若菱形的周长是12cm ,面积是6cm 2,则PE +PF 的值是_____cm .15.如图,长方形台球桌面ABCD 上有两个球P 、Q .//PQ AB ,球P 连续撞击台球桌边AB ,BC 反射后,撞到球Q .已知点M 、N 是球在AB ,BC 边的撞击点,4PQ =,30MPQ ∠=︒,且点P 到AB 边的距离为3,则MP 的长为__________,四边形PMNQ 的周长为________16.如图,BD 为矩形ABCD 的对角线,点E 在BC 上,连接AE ,2,EC=7,∠C=2∠DAE ,则BD=__.17.请你写出一个原命题与它的逆命题都是真命题的命题____________________ . 18.如图所示,在正方形ABCD 中,E 是AC 上的一点,且AB =AE ,则∠BEC 的度数是_____度.19.如图,在ABC 中,90C ∠=︒,60B ∠=︒,AD ,CE 都是ABC 的中线,点M 是CE 的中点,若1CM =,则CD =______.20.菱形ABCD 周长为52cm ,它的一条对角线长为10cm ,则另一条对角线长为__________cm .三、解答题21.在Rt ABC △中,90BAC ∠=︒,D 是BC 的中点,E 是AD 的中点.过点A 作//BC AF 交BE 的延长线于点F .(1)求证:AEF ≌DEB ;(2)证明四边形ADCF 是菱形.22.已知点(0,4)A 、(4,0)B -分别为面直角坐标中y 、x 轴上一点,将线段OA 绕O 点顺时针旋转至OC ,连接AC 、BC .(1)如图1,若60AOC ∠=︒,求ACB ∠的度数;(2)若60AOC ∠=︒,AOB ∠的平分线OD 交BC 于D ,如图2,求证:OD BD CD +=;(3)若30AOC ∠=︒,过A 作AE AC ⊥交BC 于E ,如图3,求BE 的长. 23.如图,四边形ABCD 是平行四边形,//DE BF ,且分别交对角线AC 于点E ,F ,连接,BE DF .若BE DE =,求证:四边形EBFD 是菱形.24.如图1.在平面直角坐标系中,一次函数323y x =-+的图象与x 轴,y 轴分别交于点A 和点C ,过点A 作AB x ⊥轴,垂足为点A ;过点C 作CB y ⊥轴,垂足为点C ,两条垂线相交于点B .(1)线段AC 的长为______,ACO ∠=______度.(2)将图2中的ABC 折叠,使点A 与点C 重合,再将折叠后的图形展开,折痕DE 交AB 于点D ,交AC 于点E ,连接CD ,如图②,求线段AD 的长;(3)点M 是直线AC 上一个动点(不与点A 、点C 重合).过点M 的另一条直线MN 与y 轴相交于点N .是否存在点M ,使AOC △与MCN △全等?若存在,请求出点M 的坐标;若不存在,请说明理由.25.综合与探究如图是一个正方形纸片ABCO ,如果将正方形纸片ABCO 绕点C 逆时针旋转角度α(0°<α<90°),得到正方形CDEF ,ED 交AB 于点G ,ED 的延长线交0A 于点H ,连接CH 、CG .(1)求证:CG 平分∠DCB ;(2)直接写出线段HG 、OH 、BG 之间的数量关系;(3)连接BD ,AD ,AE ,BE ,试探究在旋转过程中,四边形AEBD 能否成为矩形?请说明理由.26.综合与实践问题情境:如图1,已知点O是正方形ABCD的两条对角线的交点,以点O为直角顶点的直角三角形BC=.OEF的两边OE,OF分别过点B,C,且OF OC=,30∠=︒,2E(1)OC的长度为________;操作证明:∆按如图放置,若OE,OF分别与AB,BC (2)如图2,在(1)的条件下,将OEF相交于点M,N.请判断OM和ON有怎样的数量关系,并证明结论;探究发现:∆按如图放置,若点B恰好在EF上,求证:(3)如图3,在(1)的条件下,将OEF=.EM EB【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】先根据矩形的性质得出AD∥BC,故可得出∠DAC的度数,由角平分线的定义求出∠EAF的度数,再由EF是线段AC的垂直平分线得出∠AEF的度数,根据三角形内角和定理得出∠AFE的度数,进而可得出结论.【详解】解:如图,∵四边形ABCD是矩形,∴AD∥BC,∴∠DAC=∠ACB=72°.∵由作法可知,AF是∠DAC的平分线,∠DAC=36°.∴∠EAF=12∵由作法可知,EF是线段AC的垂直平分线,∴∠AEF=90°,∴∠AFE=90°-36°=54°,∴∠α=54°.故选:A.【点睛】本题考查的是作图-基本作图,熟知角平分线及线段垂直平分线的作法是解答此题的关键. 2.A解析:A【分析】由题意先证得DE DC =和()DOG COE ASA ∆≅∆,设2AD DC a ==,进而可用含a 的式子表示出线段AG 和BE 的长,要求:ADG BCE S S ∆∆的比值即求AG 和BE 的比值,代入即可求解.【详解】 解:正方形ABCD ,AD DC ∴=,45ODC OCD OAD ∠=∠=∠=︒,90DOC BOC ∠=∠=︒,OD OC =, DF 平分ODC ∠,22.5EDF CDF ∴∠=∠=︒,CF DG ⊥,67.5DEF DCF ∴∠=∠=︒,67.54522.5OCE ∴∠=︒-︒=︒,DE DC =,OCE ODG ∴∠=,又OD OC =,90DOC BOC ∠=∠=︒,()DOG COE ASA ∴∆≅∆,OG OE ∴=,设2AD DC a ==,则有OA OB =,2DE a =,BD =,2)BE BD DE a ∴=-=,2AG AO OG a =+=, 12ADG S AG OD ∆=,12BCE S BE OC ∆=,OD OC =,::2:2)1):1ADG BCE S S AG BE a a ∆∆∴===,故选:A .【点睛】本题主要考查了正方形的性质,角平分线的定义以及全等三角形的判定与性质,解题的关键是将两个三角形的面积比转化成两条线段的比,综合性较强.3.C解析:C【分析】利用菱形的性质即可计算得出BC 的长,再根据面积法即可得到AE 的长,最后根据勾股定理进行计算,即可得到BE 的长,进而得出结论.【详解】解:∵四边形ABCD 是菱形,∴CO =12AC =3,BO =12BD =4,AO ⊥BO ,∴BC5,∵S 菱形ABCD =12AC•BD =BC×AE , ∴AE =16825⨯⨯=245. 在Rt △ABE 中,BE75 , ∴CE =BC ﹣BE =5﹣75=185, ∴775==18185BE CE 的值为718, 故选:C .【点睛】本题主要考查了菱形的性质以及勾股定理的运用,关键是掌握菱形性质:四条边都相等、对角线互相垂直平分.4.B解析:B【分析】作EF ⊥BC 于F 点,首先结合直角三角形中“斜中半”定理可求得△ABD 中AB 的长度,从而结合勾股定理求出AD 的长度,再根据中位线定理可得EF 的长度,然后进一步判定△EDC 为等腰三角形,并根据“三线合一”的性质推出12DCG EDC S S =△△,最后根据12EDC S CD EF =△求解即可. 【详解】∵AD 是BC 边上的高线,CE 是AB 边上的中线,∴△ABD 为直角三角形,E 为斜边AB 上的中点,∴AE=BE=DE ,∵CD =AE ,CD =5,∴AB=2AE =10,在Rt △ABD中,由勾股定理可得:AD =∴AD =8,作EF ⊥BC 于F 点,则EF 为△ABD 的中位线, ∴142EF AD ==, 又∵CD=ED ,DG ⊥CE 于点G ,∴△EDC 为等腰三角形,12DCG EDC S S =△△, ∵11541022EDC S CD EF ==⨯⨯=△, ∴11052DCG S =⨯=△, 故选:B .【点睛】本题主要考查直角三角形中“斜中半”定理,中位线定理,以及等腰三角形的判定与性质综合问题,灵活运用“斜中半”定理求出三角形的边长是解题关键.5.B解析:B【分析】根据三角形中位线的性质,可得到这个四边形是平行四边形,再由对角线垂直,能证出有一个角等于90°,则这个四边形为矩形;【详解】如图,AC ⊥BD ,E 、F 、G 、H 分别为各边的中点,连接点E 、F 、G 、H ,∵点E 、F 、G 、H , 分别为各边的中点,∴EF ∥AC ,GH ∥AC ,EH ∥BD ,FG ∥BD ,∴四边形EFGH 是平行四边形,∵AC ⊥BD ,EF ∥AC ,EH ∥BD ,∴∠EMO=∠ENO=90°,∴四边形EMON 是矩形,∴∠MEN=90°,∴四边形EFGH 是矩形;故选:B .【点睛】本题考查了三角形中位线的性质、平行四边形的判定以及矩形的判定方法,正确掌握知识点是解题的关键.6.B解析:B【分析】证明四边形PQBE是矩形得PE=QB,证明△PEC是等腰直角三角形得PQ=BE便可求得结果【详解】解:∵四边形ABCD是正方形,∠BCD=45°∴∠ABC=90°,∠ACB=12∵PE⊥BC,PQ⊥AB,∴四边形PQBE是矩形,∴PQ=BE∵AC是正方形ABCD的对角线,∴∠PCE=45°,又∠PEC=90°∴△PEC是等腰直角三角形∴PE=CE∴PE+PQ=CE+BE=BC=3.故选:B.【点睛】本题主要考查了正方形的性质,矩形的性质与判定,等腰直角三角形的判定,关键是证明PE=CE,PQ=BE.7.B解析:B【分析】根据题意结合图象得出AB、BC的长度,再求出面积即可.【详解】由题意可知,当点P从点A运动到点B时,△PCD的面积不变,结合图象可知AB=6,当点P 从点B 运动到点C 时,△PCD 的面积逐渐变小直到为0,结合图象可知BC=4, ∴长方形ABCD 的面积为:AB•BC=6×4=24.故选:B .【点睛】本题考查了矩形的性质和动点问题的函数图象,能根据图形得出正确信息是解此题的关键.8.B解析:B【分析】延长CD ,作AF CD ⊥的延长线于点F ,构造出全等三角形,()ABE ADF AAS ≅,即可得到四边形ABCD 的面积就等于正方形AECF 的面积.【详解】解:如图,延长CD ,作AF CD ⊥的延长线于点F ,∵AE BC ⊥,∴90AEC AEB ∠=∠=︒,∵AF CD ⊥,∴90AFC ∠=︒,∵90C ∠=︒,∴四边形AECF 是矩形,∴90EAF ∠=︒,∵BAD EAF ∠=∠,∴BAD EAD EAF EAD ∠-∠=∠-∠,即BAE DAF ∠=∠,在ABE △和ADF 中,BAE DAF AEB AFD AB AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()ABE ADF AAS ≅,∴AE AF =,∴四边形AECF 是正方形,∵ABE ADF S S ,∴216ABCD AECF S S AE ===.故选:B .【点睛】本题考查全等三角形的性质和判定,正方形的性质和判定,解题的关键是作辅助线构造全等三角形.9.C解析:C【分析】由在平行四边形ABCD 中,AD=2AB ,F 是AD 的中点,证明AF=FD=CD ,继而证得①2BCD DCF ∠=∠;然后延长EF ,交CD 延长线于M ,分别利用平行四边形的性质以及全等三角形的判定与性质得出△AEF ≌△DMF (ASA ),可得EF MF =,再证明90ECM ∠=︒,从而可判断②;由,CBE CEF S S =可得:13CBE ABCD S S =,可得:2,3BE AB =与已知不符,从而可判断③;设∠FEC=x ,则∠FCE=x ,再分别表示∠EFD=9018022703x x x ︒-+︒-=︒-,∠AEF=90,M FCM x ∠=∠=︒-从而可判断④.【详解】解:①∵F 是AD 的中点,∴AF=FD ,∵在▱ABCD 中,AD=2AB ,∴AF=FD=CD ,∴∠DFC=∠DCF ,∵AD ∥BC ,∴∠DFC=∠FCB ,∴∠DCF=∠BCF ,∴∠BCD 2DCF =∠,故①正确;②延长EF ,交CD 延长线于M ,∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠A=∠MDF ,∵F 为AD 中点,∴AF=FD ,在△AEF 和△DFM 中,A FDM AF DFAFE DFM ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AEF ≌△DMF (ASA ),∴FE=MF ,∠AEF=∠M ,∵CE ⊥AB ,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF ,∴EF=CF ,故②正确;③∵EF=FM ,EFC CFM S S ∴=,若,CBE CEF SS = 则13CBE ABCD S S = 11,23BE EC AB EC ∴= 32,BE AB ∴=2,3BE AB ∴= 与已知条件不符, 故CBE CEFS S =不一定成立,故③错误; ④设∠FEC=x ,,EF CF =∴∠FCE=x ,∴∠DCF=∠DFC=90x ︒-,∠EFC=1802x ︒-,∴∠EFD=9018022703x x x ︒-+︒-=︒-,∵∠AEF=90,M FCM x ∠=∠=︒-∴∠DFE=3∠AEF ,故④正确.故选:C .【点睛】本题考查的是平行四边形的性质,三角形全等的判定与性质,平行线的性质,三角形的内角和定理,直角三角形斜边上的中线的性质,等腰三角形的性质,掌握以上知识是解题关键.10.C解析:C【分析】根据直角三角形的性质和等腰三角形的判定和性质即可得到结论.【详解】∵AB⊥AF,∴∠FAB=90°,∵点D是BC的中点,∴AD=BD=12BC=4,∴∠DAB=∠B,∴∠ADE=∠B+∠BAD=2∠B,∵∠AEB=2∠B,∴∠AED=∠ADE,∴AE=AD,∴AE=AD=4,∵,EF⊥AF,∴==3,故选:C.【点睛】本题考查了直角三角形斜边中线的性质,三角形的外角性质,等腰三角形的判定和性质,勾股定理,正确的识别图形是解题的关键.11.A解析:A【分析】根据矩形的性质求出OA=OB,AC=BD,求出AC的长,求出OA和OB的长,推出等边三角形OAB,求出AB=OA,代入求出即可.【详解】解:∵四边形ABCD是矩形,∴OA=OC=12AC,OD=OB=12BD,AC=BD,∴OA=OB,∵AC+BD=24,∴AC=BD=12cm,∴OA=OB=6cm,∵OA=OB,∠AOB=60°,∴△OAB是等边三角形,∴AB=OA=6cm,故选:A.【点睛】本题考查了矩形的性质和等边三角形的性质和判定的应用,解此题的关键是求出等边三角形OAB和求出OA的长.12.D解析:D【分析】由折叠的性质知:∠EBC′、∠BC′F都是直角,∠BEF=∠DEF,因此BE∥C′F,那么∠EFC′和∠BEF互补,这样可得出∠BEF的度数,进而可求得∠AEB的度数,则∠ABE可在Rt△ABE 中求得.【详解】解:由折叠的性质知,∠BEF=∠DEF,∠EBC′、∠BC′F都是直角,∴BE∥C′F,∴∠EFC′+∠BEF=180°,又∵∠EFC′=122°,∴∠BEF=∠DEF=58°,∴∠AEB=180°-∠BEF-∠DEF=64°,在Rt△ABE中,∠ABE=90°-∠AEB=26°.故选D.【点睛】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.二、填空题13.40【分析】根据三角形的中位线平行于第三边并且等于第三边的一半可得AB=2EF然后根据菱形的四条边都相等列式计算即可得解【详解】解:∵EF分别是ACBC的中点∴EF是△ABC的中位线∴AB=2EF=解析:40【分析】根据三角形的中位线平行于第三边并且等于第三边的一半可得AB=2EF,然后根据菱形的四条边都相等列式计算即可得解.【详解】解:∵E、F分别是AC、BC的中点,∴EF是△ABC的中位线,∴AB=2EF=2×5=10,∴菱形ABCD的周长=4×10=40.故答案为:40.【点睛】本题考查了菱形的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键.14.2【分析】连接BP根据菱形的面积公式和三角形的面积公式得S△ABC=S△ABP+S△BPC=S△ABP+S△BPC=AB•PE+BC•PE把相应的值代入即可【详解】解:连接BP ∵四边形ABCD 是菱形解析:2【分析】连接BP ,根据菱形的面积公式和三角形的面积公式得S △ABC =S △ABP +S △BPC =12ABCD S 菱形,S △ABP +S △BPC =12AB•PE +12BC•PE 把相应的值代入即可. 【详解】解:连接BP ,∵ 四边形ABCD 是菱形,且周长是12cm ,面积是6cm 2∴AB =BC =14×12=3(cm ), ∵AC 是菱形ABCD 的对角线, ∴ S △ABC =S △ABP +S △BPC =12ABCD S 菱形=3(cm 2), ∴S △ABP +S △BPC =12AB•PE +12BC•PE =3(cm 2), ∴12×3×PE +12×3×PF =3, ∴PE +PF =3×23=2(cm ), 故答案为:2.【点睛】 此题考查菱形的性质,S △ABP +S △BPC =S △ABC =12ABCDS 菱形是解题的关键.注意掌握辅助线的作法和数形结合思想的应用. 15.16【分析】作PE ⊥AB 于E 则PE=3延长PQMN 交于点Q 证出Q 与Q 关于BC 对称MP=2PE=6由轴对称的性质得出NQ=NQ 证出∠Q=30°=∠MPQ 得出MQ=MP=6即可得出答案【详解】解:作PE解析:16【分析】作PE ⊥AB 于E ,则PE=3,延长PQ 、MN 交于点Q ,证出Q 与Q'关于BC 对称,MP=2PE=6,由轴对称的性质得出NQ'=NQ ,证出∠Q'=30°=∠MPQ ,得出MQ'=MP=6,即可得出答案.【详解】解:作PE⊥AB于E,则PE=3,延长PQ、MN交于点Q,如图所示:∵四边形ABCD是矩形,∴∠B=90°,AB⊥BC,∵PQ//AB,∴PQ⊥BC,∠EMP=∠MPQ=30°,∠Q'=∠BMN,∴Q与Q'关于BC对称,MP=2PE=6,∴NQ'=NQ,由题意得:∠BMN=∠EMP=30°,∴∠Q'=30°=∠MPQ,∴MQ'=MP=6,∴四边形PMNQ的周长=MP+PQ+NQ+MN=MP+PQ+NQ'+MN=MP+PQ+MQ'=6+4+6=16;故答案为:6,16.【点睛】本题考查了矩形的性质、轴对称的性质、平行线的性质、等腰三角形的判定等知识;熟练掌握矩形的性质和轴对称的性质是解题的关键.16.13【分析】直接利用矩形的性质结合等腰直角三角形的性质得出ABBE的长再利用勾股定理得出BD的长【详解】解:∵四边形ABCD是矩形∴∠ABC=∠C=90°AD∥BC∵∠C=2∠DAE∴∠DAE=45解析:13【分析】直接利用矩形的性质结合等腰直角三角形的性质得出AB,BE的长,再利用勾股定理得出BD的长.【详解】解:∵四边形ABCD是矩形,∴∠ABC=∠C=90°,AD∥BC,∵∠C=2∠DAE,∴∠DAE=45°,∴AB=BE,∵2,∴AB=BE=5,∵EC=7,∴AD=BC=12,∴.故填:13.【点睛】此题主要考查了矩形的性质以及勾股定理、等腰直角三角形的性质,正确得出AB ,BE 的长是解题关键.17.对角线互相平分且相等的四边形是矩形(答案不唯一)【分析】命题由题设和结论两部分组成题设是已知事项结论是由已知事项推出的事项;题设成立结论也成立的叫真命题而题设成立结论不成立的为假命题把一个命题的题设 解析:对角线互相平分且相等的四边形是矩形(答案不唯一)【分析】命题由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项;题设成立,结论也成立的叫真命题,而题设成立,结论不成立的为假命题,把一个命题的题设和结论互换即可得到其逆命题.【详解】解:如命题:对角线互相平分且相等的四边形是矩形,真命题,逆命题是矩形的对角线互相平分且相等,真命题,故答案为:对角线互相平分且相等的四边形是矩形(答案不唯一).【点睛】本题考查了命题与定理:判断事物的语句叫命题;题设与结论互换的两个命题互为逆命题;正确的命题叫真命题,错误的命题叫假命题.18.5【分析】根据正方形的性质AC 平分∠BAD 可得∠BAE =45°再根据AB =AE 由等腰三角形的性质即可求出∠BEC 的度数【详解】解:在正方形ABCD 中AC 平分∠BAD ∴∠BAE =45°而AB =AE ∴∠解析:5.【分析】根据正方形的性质,AC 平分∠BAD ,可得∠BAE =45°,再根据AB =AE ,由等腰三角形的性质即可求出∠BEC 的度数.【详解】解:在正方形ABCD 中,AC 平分∠BAD ,∴∠BAE =45°,而AB =AE ,∴∠ABE =∠AEB =180452︒-︒=67.5°, 又∵∠AEB +∠BEC =180°,∴∠BEC =180°﹣67.5°=112.5°,故答案为112.5.【点睛】 本题考查正方形的性质,等腰三角形的性质.熟记正方形的对角线平分线一组对角,并且将这组对角分成四个45°的角是解决此题的关键.19.1【分析】证明△BCE 是等边三角形求出BE=CE=BC=2由D 是BC 的中点可得结论【详解】解:在中∵是的中线∴∵∴是等边三角形∴∵点是的中点且∴∵是边上的中线∴故答案为:1【点睛】此题主要考查了等边解析:1【分析】证明△BCE 是等边三角形,求出BE =CE =BC =2,由D 是BC 的中点可得结论.【详解】解:在ABC 中,90C ∠=︒,∵CE 是ABC 的中线, ∴12==CE BE AB ∵60B ∠=︒, ∴BCE ∆是等边三角形∴BC CE =∵点M 是CE 的中点,且1CM =,∴22CE CM BC ===∵AD 是BC 边上的中线, ∴112122CD BC ==⨯= 故答案为:1.【点睛】 此题主要考查了等边三角形的判定和三角形中线的性质,证明BCE ∆是等边三角形是解答此题的关键.20.24【分析】根据菱形的性质先求菱形的边长利用勾股定理求另一条对角线的长度【详解】如图菱形ABCD 中BD=10∴AC ⊥BD ∵菱形的周长为52BD=10∴AB=52÷4=13BO=5∴AO=∴AC=则这解析:24【分析】根据菱形的性质,先求菱形的边长,利用勾股定理求另一条对角线的长度.【详解】如图,菱形ABCD 中,BD=10,∴AC ⊥BD ,∵菱形的周长为52,BD=10,∴AB=52÷4=13,BO=5,∴AO=2213512∴AC=24.则这个菱形的另一条对角线长为24cm .故答案为:24.【点睛】本题考查了菱形对角线互相垂直平分、菱形各边长相等的性质,考查了勾股定理在直角三角形中的运用,本题中根据勾股定理求AO 的值是解题的关键. 三、解答题21.(1)见解析;(2)见解析.【分析】(1)利用平行线的性质,补充一组对应角相等即可;(2)利用有一组邻边相等的平行四边形是菱形证明即可.【详解】(1)∵//BC AF ,∴AFE DBE ∠=∠,∵E 是AD 中点,AD 是BC 边上的中线,∴AE DE =,BD CD =,在AFE △和DBE 中,AFE DBE FEA BED AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴AFE △≌DBE (AAS ).(2)由(1)知AFE △≌DEB ,则AF DB =,∵DB DC =,∴AF CD =,∵//BC AF ,∴四边形ADCF 是平行四边形,∵90BAC ∠=︒,D 是BC 的中点,E 是AD 中点, ∴12AD DC BC ==, ∴四边形ADCF 是菱形.【点睛】 本题考查了三角形的全等,菱形的判定,熟练掌握判定三角形全等原理和菱形的判定定理是解题的关键.22.(1)45︒;(2)见解析;(3)4.【分析】(1)将线段OA 绕O 点顺时针旋转至OC ,60AOC ∠=︒,OA=OC=4,可证△AOC 为等边三角形,由OB=OC=4,可求∠OBC=∠BCO=15°,可求∠ACB=∠ACO-∠BCO=45°即可; (2)在BC 上取点H 使45COH ∠=︒,由AOB ∠的平分线OD ,可得∠BOD=∠DOA=45°,可求∠DOH=60°,OB=OC=4,利用等边对等角∠DBO=∠HCO ,又∠BOD=∠HOC=45°,可证△BOD ≌△COH(ASA),由性质OD=OH ,BD CH =,可证△DOH 等边三角形即可退出结论 ;(3)以AE 为边作AEF ACO △≌△,连FB 由OC EF =;=4AF OA OB ==,90FAO BOA ∠=∠=︒,可得正方形AFBO ,由30AFE AOC OBE ∠=∠=∠=︒,可求60EFB EBF ∠=∠=︒可证EFB △是等边三角形即可.【详解】(1)∵将线段OA 绕O 点顺时针旋转至OC ,60AOC ∠=︒,(0,4)A ,∴OA=OC=4,∴△AOC 为等边三角形,∴∠ACO=60°,∵(4,0)B -,∴OB=OC=4,∴∠OBC=∠BCO=12(180°-90°-60°)=15°, ∴∠ACB=∠ACO-∠BCO=60°-15°=45°,∴∠ACB =45︒;(2)在BC 上取点H 使45COH ∠=︒,∵AOB ∠的平分线OD 交BC 于D ,∴∠BOD=∠DOA=45°,∵∠AOC=60°,∴∠BOC=90°+60°=150°,∴∠DOH=150°-∠BOD -∠COD=90°-45°-45°=60°,∵OB=OC=4,∴∠DBO=∠HCO ,∠BOD=∠HOC=45°,∴△BOD ≌△COH(ASA),∴OD=OH ,BD CH =, ∴DOH 是等边三角形,OD DH ∴=,OD BD CD ∴+=;(3)以AE 为边作AEF ACO △≌△,连FB ,OC EF ∴=;=4AF OA OB ==,90FAO BOA ∠=∠=︒,∴正方形AFBO ,30AFE AOC OBE ∴∠=∠=∠=︒,60EFB EBF ∴∠=∠=︒,EFB ∴△是等边三角形,∴4BE BF OB ===.【点睛】本题考查旋转,等边三角形的判定与性质,等腰三角形的判定与性质,角平分线的性质,三角形全等,正方形判定与性质,掌握旋转的性质,会利用旋转和夹角60°证等边三角形,等边三角形的判定方法与性质,等腰三角形的判定方法与性质,角平分线的性质,三角形全等判断方法与性质,正方形判定与性质是解题关键.23.见解析【分析】根据平行四边形的性质,可以得到AD=CB ,AD ∥CB ,从而可以得到∠DAE=∠BCF ,再根据DE ∥BF 和等角的补角相等,从而可以得到∠AED=∠CFB ,然后即可证明△ADE 和△CBF 全等,从而可以得到DE=BF ,再根据DE ∥BF ,即可得到四边形EBFD 是平行四边形,再根据BE=DE ,即可得到四边形EBFD 为菱形.【详解】证明:∵四边形ABCD 是平行四边形,∴AD=CB ,AD ∥CB ,∴∠DAE=∠BCF ,∵DE ∥BF ,∴∠DEF=∠BFE ,∴∠AED=∠CFB ,在△ADE 和△CBF 中,DAE BCF AED CFB AD CB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌△CBF (AAS ),∴DE=BF ,又∵DE ∥BF ,∴四边形EBFD 是平行四边形,∵BE=DE ,∴四边形EBFD 为菱形.【点睛】本题考查平行四边形的判定和性质、菱形的判定,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.24.(1)4;30.(2)AD =3;(3)M 点的坐标为(-2,−【分析】(1)先确定出OA =2,OC AC =4,可得出答案;(2)利用折叠的性质得出BD -AD ,最后用勾股定理即可得出结论;(3)分不同的情况画出图形,根据全等三角形的性质可求出点M 的坐标.【详解】解:(1)∵一次函数y =+的图象与x 轴,y 轴分别交于点A ,点C ,∴令0x =,则y =0y =,则2x =,∴A (2,0),C (0,∴OA =2,OC∵AB ⊥x 轴,CB ⊥y 轴,∠AOC =90°,∴四边形OABC 是矩形,∴AB =OC =8,BC =OA =4,在Rt △ABC 中,根据勾股定理得,4AC ===, ∴∠ACO =30°.故答案为:4;30.(2)由(1)知,BC =2,AB由折叠知,CD =AD ,在Rt △BCD 中,BD =AB -AD AD ,根据勾股定理得,CD 2=BC 2+BD 2,即:AD 2=4+(AD )2,∴AD (3)①如图1,MN ⊥y 轴,若△AOC ≌△MNC ,则CN =CO ,∴M 点的纵坐标为43,代入y =-3x +23得,x =-2,∴M (−2,43).②如图2,MN ⊥AC ,MP ⊥y 轴,∵2323MCN AOC S S ∆∆⨯=== ∴CN =AC =4, ∴2323PM ⨯== ∴M 33y 3x 3得,y 3或y 3 ∴M 3−333).综合以上可得M 点的坐标为(-2,33−333【点睛】此题是一次函数综合题,主要考查了矩形的性质和判定,全等三角形的判定和性质,勾股定理,折叠的性质,解题的关键是利用分类讨论的思想解决问题.25.(1)见解析;(2)HG=OH+BG ;(3)能,理由见解析【分析】(1)根据旋转和正方形的性质可得出CD=CB ,∠CDG=∠CBG=90,根据全等直角三角形的判定定理(HL )即可证出Rt △CDG ≌Rt △CBG ,即∠DCG=∠BCG ,由此即可得出CG 平分∠DCB ;(2)由(1)的Rt △CDG ≌Rt △CBG 可得出BG=DG ,根据全等直角三角形的判定定理(HL )即可证出Rt △CHO ≌Rt △CHD ,即OH=HD ,再根据线段间的关系即可得出HG=HD+DG=OH+BG ;(3)根据(2)的结论即可找出当G 点为AB 中点时,四边形AEBD 为矩形.【详解】证明:(1)正方形ABCO 绕点C 旋转得到正方形CDEF .,90CD CB CDG CBG ︒∴=∠=∠=,在直角三角形CDGC 和直角三角形CBG 中.CD CB CG CG =⎧⎨=⎩, CDG CBG ∴≅,DCG BCG ∴∠=∠,即CG 平分∠DCB .(2)HG=OH+BG .由(1)证得:Rt △CDG ≌Rt △CBG ,∴BG=DG ,在Rt △CHO 和Rt △CHD 中,CH CH CO CD =⎧⎨=⎩, ∴Rt △CHO ≌Rt △CHD (HL ),∴OH=HD ,∴HG=HD+DG=OH+BG ;(3)如图,当点G 为AB 中点时,四边形AEBD 为距形,因为点G 为AB 中点,所以BG=GA=12AB , ∵CDG CBG ∆≅∆, ∴1122DG BG AB DE ===, 所以BG=GA=DG=GE , 所以四边形AEBD 是平行四边形,因为AB=DE ,所以四边形AEBD 是矩形.【点睛】本题考查了正方形的性质、矩形的判定、旋转的性质、全等三角形的判定及性质,解题的关键是:(1)证出Rt △CDG ≌Rt △CBG ;(2)找出BG=DG 、OH=HD ;(3)掌握矩形的判定方法.26.(1)2;(2)OM ON =,证明详见解析;(3)详见解析【分析】(1)由题意可得OC=OB ,OC ⊥OB ,再根据勾股定理即可得到答案;(2)连接OB ,OC ,证明BOM CON ∆∆≌,即可得出答案;(3)根据题意可推出OBF ∆为等边三角形,可得60OBF F ∠=∠=︒,2BF OF ==,再根据45OBC ∠=︒,可得45OBM ∠=︒,从而可推出,EBM EMB ∠=∠,即可得证.【详解】解:(1)∵点O 是正方形ABCD 的两条对角线的交点,以点O 为直角顶点的直角三角形OEF 的两边OE ,OF 分别过点B ,C ,∴OC=OB ,OC ⊥OB ,∵BC=2,∴OC 2=BC 2-OB 2,2OC 2=BC 2,2OC 2=4,即OC=2;(2)OM ON =;证明:如图,连接OB ,OC ,∵点O 是正方形ABCD 的两条对角线的交点,∴OB OC =,45OBM OCN ∠=∠=︒,∵90BOF MOB BOF NOC ∠+∠=∠+∠=︒,∴MOB NOC ∠=∠,在BOM ∆和CON ∆中OBM OCN OB OC MOB NOC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()BOM CON ASA ∆∆≌,∴OM ON =;(3)连接OB ,OC ,∵OF OC =,OB OC =,∴OB OF =,∵在Rt OEF ∆中,30E ∠=︒,∴60F ∠=︒,∴OBF ∆为等边三角形,∴60OBF F ∠=∠=︒,2BF OF ==又∵45OBC ∠=︒,∴45OBM ∠=︒,∵180180456075EBM OBM OBF ∠=-∠-∠=--︒︒=︒︒︒,∴180180753075EMB EBM E ∠=-∠-∠=-︒-︒=︒︒︒,∴EBM EMB ∠=∠,∴EM EB =.【点睛】本题考查了等边三角形的判定和性质,正方形的性质,全等三角形的判定和性质,等腰三角形的判定,掌握知识点是解题关键.。
北师大版九年级数学上册第一章特殊平行四边形单元测试
北师大版九年级数学上册第一章特殊平行四边形单元测试(4)学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,已知菱形ABCD的边长为2,∠DAB=60°,则对角线BD的长是()A.1BC.2D.2.正方形面积为36,则对角线的长为()A.6B.C.9D.3.如图,在矩形ABCD中,对角线BD=8cm,∠AOD=120°,则AB的长为()B.2cm C.D.4cmA4.如图,菱形ABCD的对角线AC,BD的长分别为6 cm,8 cm,则这个菱形的周长为()A.5 cm B.10 cm C.14 cm D.20 cm5.下列命题中,真命题是().A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C .对角线互相平分的四边形是平行四边形D .对角线互相垂直平分的四边形是正方形6.在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的条件是( )A .AC =BD ,AB∠CD ,AB =CDB .AD∠BC ,∠A =∠C C .AO =BO =CO =DO ,AC∠BD D .AO =CO ,BO =DO ,AB =BC7.若顺次连接四边形ABCD 各边的中点所得四边形是菱形.则四边形ABCD 一定是( )A .菱形B .对角线互相垂直的四边形C .矩形D .对角线相等的四边形8.如图,EF 过矩形ABCD 对角线的交点O ,且分别交AB 、CD 于E 、F ,那么阴影部分的面积是矩形ABCD 的面积的( )A .15B .14C .13D .3109.图,在∠ABC 中,AB =AC ,四边形ADEF 为菱形,O 为AE ,DF 的交点,S △ABC =,则S 菱形ADEF =( )A .4B .C .D .10.如图,四边形ABCD 中,90BAD C ∠=∠=︒,AB AD =,AH BC ⊥于H ,若线段AH =ABCD 的面积是( ).A .3B .4C .D .6二、填空题11.如图,一活动菱形衣架中,菱形的边长均为16cm ,若墙上钉子间的距离AB=BC=16cm ,则∠1=_______°12.如图,已知正方形ABCD 的边长为1,连接AC ,BD ,相交于点O ,CE 平分∠ACD 交BD 于点E ,则DE =_____.13.如图,在菱形ABCD 中,点A 在x 轴上,点B 的坐标为(8,2),点D 的坐标为(0,2),则点C 的坐标为_____________.14.如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,CE ∠BD ,垂足为点E ,CE =5,EO =2DE ,则DE 的长为________.15.如图,四边形ABCD 是菱形,24,10,AC BD DH AB ==⊥ 于点H ,则线段BH 的长为_________.16.将五个边长都为2的正方形按如图所示摆放,点A 1、A 2、A 3、A 4分别是四个正方形的中心,则图中四块阴影部分的面积的和为______.17.图,已知正方形ABCD 的边长为4,P 是对角线BD 上一点(不与B ,D 重合),PE∥CD 交BC 于点E ,PF ∥BC 交CD 于点F ,连接AP ,EF .给出下列结论:∠PD EC ;∠四边形PECF 的周长为8;∠∠APD 一定是等腰三角形;∠AP =EF .其中正确结论的序号为________.三、解答题18.如图,矩形ABCD 中,AC 与BD 交于点O BE AC CF BD ⊥⊥,,,垂足分别为.E F ,求证:BE CF =.19.如图,在77⨯的正方形网格中,网格线的交点称为格点,B 在格点上,每一个小正方形的边长为1.(1)以AB 为边画菱形,使菱形的其余两个顶点都在格点上(画出一个即可).(2)计算你所画菱形的面积.20.如图,菱形ABCD的对角线AC,BD交于点O,AB=5,AC=6,DE∠BC的延长线于点E,求OE的长.21.如图,菱形ABCD的对角线AC,BD交于点O,BE∥AC,AE∥BD,EO与AB交于点F.(1)求证:四边形AEBO是矩形;(2)若CD=3,求EO的长.22.如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,连接PE,PB.(1)在AC上找一点P,使∠BPE的周长最小(作图说明);(2)求出∠BPE周长的最小值.23.如图,矩形ABCD 和正方形ECGF,其中E、H分别为AD、BC中点,连结AF、HG、AH.=;(1)求证:AF HG∠=∠;(2)求证:FAE GHC24.如图,△ABC 中,点O 是边AC 上一个动点,过O 作直线MN∠BC,设MN 交∠ACB 的平分线于点E,交∠ACB 的外角平分线于点F.(1)求证:OE=OF;(2)当点O 在边AC 上运动到什么位置时,四边形AECF 是矩形?并说明理由.(3)若AC 边上存在点O,使四边形AECF 是正方形,猜想△ABC 的形状并证明你的结论.25.有一张矩形纸片ABCD,其中AB=10,AD=6,现将矩形纸片折叠,点D的对应点记为点P,折痕为EF(点E、F是折痕与矩形纸片的边的交点),再将纸片还原.(1)若点P落在矩形ABCD的边AB上(如图∠).∠当点P与点A重合时,∠DEF=________°,当点E与点A重合时,∠DEF=________°,当点F与点C重合时,AP=________;∠若点P为AB的中点,求AE的长;(2)若点P落在矩形ABCD的外部(如图∠),点F与点C重合,点E在AD上,BA与FP交于点M,当AM=DE时,请求出AE的长;(3)若点E为动点,点F为DC的中点,直接写出AP的最小值.参考答案:1.C【分析】利用菱形的性质以及等边三角形的判定方法得出∠DAB 是等边三角形,进而得出BD 的长,【详解】解:∠菱形ABCD 的边长为2,∠AD =AB =2,又∠∠DAB =60°,∠∠DAB 是等边三角形,∠AD =BD =AB =2,则对角线BD 的长是2.故选C .【点睛】此题主要考查了菱形的性质以及等边三角形的判定,得出∠DAB 是等边三角形是解题关键.2.B【分析】根据对角线互相垂直的四边形的面积等于对角线乘积的一半,且正方形对角线相等,列方程解答即可.【详解】设对角线长是x .则有12x 2=36,解得:x故选B .【点睛】本题考查了正方形的性质,注意结论:对角线互相垂直的四边形的面积等于对角线乘积的一半.此题也可首先根据面积求得正方形的边长,再根据勾股定理进行求解.3.D【分析】根据矩形的性质求出4AO BO cm ==,再根据等边三角形的判定可得AOB 是等边三角形,然后根据等边三角形的性质即可得.【详解】∠120AOD ∠=︒∠18060AOB AOD ∠=︒-∠=︒∠四边形ABCD 是矩形,8BD cm = ∠118,4,422AC BD cm AO AC cm BO BD cm ======∠4AO BO cm ==∠AOB 是等边三角形∠4AB AO cm ==故选:D .【点睛】本题考查了矩形的性质、等边三角形的判定与性质等知识点,熟记矩形的性质是解题关键.4.D【分析】根据菱形的性质和勾股定理求解即可.【详解】解:∠菱形的对角线AC 与BD 相交于点O ,∠AO =OC ,BO =OD ,AC ∠BD ,AB =BC =CD =AD ,∠AC =6cm ,BD =8cm ,∠在Rt∠AOB 中,AO =3cm ,BO =4cm ,∠AOB =90°,由勾股定理得:AB ,∠菱形的周长为4×5=20cm ,故选:D .【点睛】本题考查菱形的性质、勾股定理,熟练掌握菱形的对角线互相垂直且平分是解答的关键.5.C【详解】解:A 、两条对角线相等且相互平分的四边形为矩形;故本选项错误;B 、对角线互相垂直的平行四边形是菱形;故本选项错误;C 、对角线互相平分的四边形是平行四边形;故本选项正确;D 、对角线互相垂直平分且相等的四边形是正方形;故本选项错误.故选C .6.C【分析】根据正方形的判定:对角线互相垂直平分且相等的四边形是正方形进行分析从而得到最后的答案.【详解】解:A ,不能,只能判定为矩形,不符合题意;B ,不能,只能判定为平行四边形,不符合题意;C ,能,符合题意;D,不能,只能判定为菱形,不符合题意.故选C.7.D【分析】根据三角形的中位线定理得到EH∠FG,EF=FG,EF=12BD,要是四边形为菱形,得出EF=EH,即可得到答案.【详解】解:∠E,F,G,H分别是边AD,AB,CB,DC的中点,∠EH=12AC,EH∠AC,FG=12AC,FG∠AC,EF=12BD,∠EH∠FG,EF=FG,∠四边形EFGH是平行四边形,假设AC=BD,∠EH=12AC,EF=12BD,则EF=EH,∠平行四边形EFGH是菱形,即只有具备AC=BD即可推出四边形是菱形,故选:D.【点睛】题目主要考查中位线的性质及菱形的判定和性质,理解题意,熟练掌握运用三角形中位线的性质是解题关键.8.B【分析】根据矩形的性质,得△EBO∠∠FDO,再由△AOB与△ABC同底且△AOB的高是△ABC高的12得出结论.【详解】解:∠四边形为矩形,∠OB=OD=OA=OC,在△EBO与△FDO中,∠∠EOB=∠DOF,OB =OD ,∠EBO =∠FDO ,∠∠EBO ∠∠FDO (ASA ),∠阴影部分的面积=S △AEO +S △EBO =S △AOB ,∠∠AOB 与△ABC 同底且△AOB 的高是△ABC 高的12, ∠S △AOB =12S △ABC =14S 矩形ABCD . 故选B【点睛】本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质9.C【分析】根据菱形的性质,结合AB =AC ,得出DF 为∠ABC 的中位线,DF∥BC ,12DF BC =,从而得出AE 为∠ABC 的高,得出BC AE ⨯=的面积.【详解】解:∠四边形ADEF 为菱形,∠EF∥AB ,DE∥AC ,AF =EF =DE =AD ,AE ∠DF ,∠CEF B ∠=∠,DEB C ∠=∠,AC AB =,B C ∴∠=∠,CEF B C DEB ===∴∠∠∠∠,∠CF =EF ,DE =DB ,CF AF ∴=,AD DB =,∠DF∥BC ,12DF BC =, 90AOD ∠=︒,90AEB AOD ==︒∴∠∠,AE BC ∴⊥,ABC S =∵12BC AE ⨯=∴即BC AE ⨯=1111=2224ADEF S DF AE BC AE ⨯=⨯⨯=⨯菱形∴C 正确. 故选:C .【点睛】本题主要考查了菱形的性质,中位线的性质,等腰三角形的性质和判断,平行线的性质,菱形的面积,三角形面积的计算,根据菱形的性质和等腰三角形的性质得出DF 为∠ABC 的中位线,是解题的关键.10.D【详解】试题解析:过A 点作CD 的垂线,交CD 的延长线于F 点,如图,则四边形AECF 是矩形90,90DAE BAE DAE DAF ∠+∠=∠+∠=,BAE DAF ∴∠=∠,在∠ABE 和∠DAF 中,{AB ADBAE DAF AEB AFD =∠=∠∠=∠,则(AAS)ABE DAF ≌,,AE AF ∴=又∠四边形AECF 是矩形.∠四边形AECF 为正方形,而四边形ABCD 的面积是6,故选D.11.120【详解】由题意可得AB 与菱形的两邻边组成等边三角形,从而不难求得∠1的度数. 解:由题意可得AB 与菱形的两邻边组成等边三角形,则∠1=120°.故答案为120.此题主要考查菱形的性质和等边三角形的判定.12【分析】由正方形对角线相交于点O ,则DO CO ⊥,12DO BD ==,过点E 作EF CD ⊥于F ,设EO EF DF x ===,则DE =,列出方程x =解出x ,最后得出答案. 【详解】解:如图所示,过点E 作EF CD ⊥于F ,∠正方形ABCD 的边长为1,∠AC =BDDO CO ⊥,∠OA =OC =OB =OD =2, ∠CE 平分∠ACD 交BD 于点E ,∠EO =EF ,∠在正方形ABCD 中,∠ADB =∠CDB =45°,∠EF =DF ,设EO EF DF x ===,则DE =,∠OD =OE +DE =x =∠解得x =∠DE =OD -OE 1=,1.【点睛】本题主要考查了正方形的性质与角平分线的性质,解题的关键是根据角平线的性质作出辅助线.13.(4,4)【详解】解:连接AC 、BD 交于点E ,如图所示:∠四边形ABCD 是菱形,∠AC ∠BD ,AE =CE =12AC ,BE =DE =12BD ,∠点B的坐标为(8,2),点D的坐标为(0,2),∠OD=2,BD=8,∠AE=OD=2,DE=4,∠AC=4,∠点C的坐标为:(4,4)故答案为:(4,4)【点睛】本题考查菱形的性质;坐标与图形性质.14【分析】由矩形的性质得到∠ADC=90°,BD=AC,OD=12BD,OC=12AC,求得OC=OD,设DE=x,OE=2x,得到OD=OC=3x,根据勾股定理即可得到答案.【详解】解:∠四边形ABCD是矩形,∠∠ADC=90°,BD=AC,OD=12BD,OC=12AC,∠OC=OD,∠EO=2DE,∠设DE=x,OE=2x,∠OD=OC=3x,∠CE∠BD,∠∠DEC=∠OEC=90°,在Rt△OCE中,∠OE2+CE2=OC2,∠(2x)2+52=(3x)2,解得:x,∠DE【点睛】本题考查了矩形的性质,勾股定理,熟练掌握矩形的性质是解决问题的关键.15.50 13【详解】试题分析:∠四边形ABCD是菱形,AC=24,BD=10,∠AO=12,OD=5,AC∠BD,=13,∠DH∠AB,∠AO×BD=DH×AB,∠12×10=13×DH,∠DH=12013,5013=.考点:1.菱形的性质;2.勾股定理.16.4【分析】连接AP、AN,点A是正方形的对角线的交点,则AP=AN,∠APF=∠ANE=45°,易得PAF∠∠NAE,进而可得四边形AENF的面积等于∠NAP的面积,同理可得答案.【详解】如图,连接AP,AN,点A是正方形的对角线的交则AP=AN,∠APF=∠ANE=45°,∠∠PAF+∠FAN=∠FAN+∠NAE=90°,∠∠PAF=∠NAE,∠∠PAF∠∠NAE,∠四边形AENF的面积等于∠NAP的面积,而∠NAP 的面积是正方形的面积的14,而正方形的面积为4, ∠四边形AENF 的面积为1cm 2,四块阴影面积的和为4cm 2.故答案为4.【点睛】本题考查旋转的性质.旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:∠定点-旋转中心;∠旋转方向;∠旋转角度.17.∠∠∠【分析】∠证明PF EC =,PDF ∆是等腰直角三角形,即可说明PD =;∠先证明四边形PECF 为矩形,根据等腰直角三角形和矩形的性质可得其周长为2BC ,则四边形PECF 的周长为8;∠根据P 的任意性可以判断APD ∆不一定是等腰三角形;∠四边形PECF 为矩形,通过正方形的轴对称性,证明AP EF =.【详解】解:∠PE BC ⊥,PF CD ⊥,90PEC PFC ∴∠=∠=︒,又90C ∠=︒,∴四边形PECF 是矩形,EC PF ∴=.四边形ABCD 是正方形,45PDF ∴∠=︒,PDF ∴∆是等腰直角三角形,PD ∴==,故∠正确;∠PE BC ⊥,PF CD ⊥,90BCD ∠=︒,∴四边形PECF 为矩形,∴四边形PECF 的周长222228CE PE CE BE BC =+=+==,故∠正确; ∠点P 是正方形ABCD 的对角线BD 上任意一点,45ADP ∠=︒,∴当45PAD ∠=︒或67.5︒或90︒时,APD ∆是等腰三角形,除此之外,APD ∆不是等腰三角形,故∠错误.∠四边形PECF为矩形,∠=∠,∴=,PFE ECPPC EF正方形为轴对称图形,∴=,AP PC∴=,AP EF故∠正确;故答案为∠∠∠.【点睛】本题考查了正方形的性质,等腰三角形的判定与性质,勾股定理的运用等知识;熟练掌握正方形的性质和等腰三角形的性质是解题的关键.18.证明见解析【分析】要证BE=CF,可运用矩形的性质结合已知条件证BE、CF所在的三角形全等.【详解】证明:∠四边形ABCD为矩形,∠AC=BD,则BO=CO.∠BE∠AC于E,CF∠BD于F,∠∠BEO=∠CFO=90°.又∠∠BOE=∠COF,∠∠BOE∠∠COF.∠BE=CF.19.(1)答案不唯一,见解析;(2)6或8或10(答案不唯一)【分析】(1)根据菱形的定义并结合格点的特征进行作图;(2)利用菱形面积公式求解.【详解】解:(1)根据题意,菱形ABCD即为所求(2)图1中AC =2,BD =6∠图1中菱形面积12662=⨯⨯=.图2中,AC22442,BD =∠图2中菱形面积182=⨯=.图3中,AC BD =∠图3菱形面积1102=⨯=. 【点睛】本题考查菱形的性质,掌握菱形的概念准确作图是关键.20.4【分析】由菱形的性质得出AC BD ⊥,OB OD =,112OA OC AC ===,在Rt AOD ∆中,由勾股定理得:4OD =,得出28BD OD ==,再由直角三角形斜边上的中线性质即可得出结果.【详解】解:∠四边形ABCD 是菱形,∠AD =AB =5,AC ∠BD ,AO =12AC =12×6=3,OB =OD . 在Rt∠AOD 中,由勾股定理得OD =4OD ==,∠BD =2OD =8.∠DE ∠BC ,∠∠DEB =90°.又∠OD =OB ,∠OE =12BD =12×8=4. 【点睛】本题考查了菱形的判定与性质、平行四边形的判定、等腰三角形的判定、平行线的性质、勾股定理、直角三角形斜边上的中线性质;熟练掌握菱形的判定与性质是解题的关键.21.(1)见解析;(2)3【分析】(1)先根据平行四边形的判定证明四边形AEBO 是平行四边形,再利用菱形的对角线互相垂直和矩形的判定证明即可;(2)利用矩形的性质求解即可.(1)证明:∠BE∠AC,AE∠BD,∠四边形AEBO是平行四边形.∠四边形ABCD是菱形,∠AC∠BD,即∠AOB=90°.∠四边形AEBO是矩形.(2)解:∠四边形AEBO是矩形,∠EO=AB,在菱形ABCD中,AB=CD,∠EO=CD=3.【点睛】本题考查菱形的性质、矩形的判定与性质、平行四边形的判定,熟练掌握菱形的性质和矩形的判定与性质是解答的关键.22.(1)见解析(2)12【分析】(1)连接DE,交AC于点P′,连接BP′,当点P在点P′处时,∠BPE的周长最小.理由:证明∠AB P′∠∠AD P′,即可求解;(2)根据(1)可得P′B+P′E=DE.再由AE=3BE,可得AE=6.从而得到AD=AB=8.再由勾股定理,即可求解.(1)解:如图,连接DE,交AC于点P′,连接BP′,当点P在点P′处时,∠BPE的周长最小.理由:在正方形ABCD中,AB=AD,∠BAC=∠DAC,∠AP′=AP′,∠∠ABP′∠∠ADP′,∠BP′=DP′,∠BP+PE= DP′+ P′E≥DE,即当点P位于PP′时,∠BPE的周长PB+EP+BE最小;(2)解:由(1)得:B P ′=DP ′,∠P ′B +P ′E =DE .∠BE =2,AE =3BE ,∠AE =6.∠AD =AB =8.∠DE10.∠PB +PE 的最小值是10.∠∠BPE 周长的最小值为10+BE =10+2=12.【点睛】本题主要考查了正方形的性质,勾股定理,最短距离,全等三角形的判定和性质等,熟练掌握相关知识点是解题的关键.23.(1)详见解析;(2)详见解析.【分析】(1)根据题意可先证明四边形AHCE 为平行四边形,再根据正方形的性质得到∠AH FG =,//AH FG ,故可证明四边形AHGF 是平行四边形,即可求解;(2)根据四边形AHGF 是平行四边形,得180FAH AHG ∠+∠=︒,根据四边形ABCD 是矩形,可得 DAH AHB ∠=∠,再根据平角的性质及等量替换即可证明.【详解】(1)证明:∠四边形ABCD 是矩形,且E 、H 分别为AD 、BC 的中点, ∠AE HC =,//AE HC ,∠四边形AHCE 为平行四边形,∠AH EC =,//AH EC ,又∠四边形ECGF 为正方形,∠EC FG =,//EC FG ,∠AH FG =,//AH FG ,∠四边形AHGF 是平行四边形,∠AH FG =;(2)证明:∠四边形AHGF 是平行四边形,∠180FAH AHG ∠+∠=︒,∠四边形ABCD 是矩形,∠//AD BC ,∠DAH AHB ∠=∠,又∠180AHB AHG GHC ∠+∠+∠=︒,∠FAD GHC ∠=∠;【点睛】此题主要考查正方形的性质与证明,解题的关键是熟知特殊平行四边形的性质定理.24.(1)见解析;(2)当点 O 在边 AC 上运动到 AC 中点时,四边形 AECF 是矩形.见解析;(3)△ABC 是直角三角形,理由见解析.【分析】(1)根据平行线的性质以及角平分线的性质得出∠1=∠2,∠3=∠4,进而得出答案;(2)根据AO =CO ,EO =FO 可得四边形AECF 平行四边形,再证明∠ECF =90°利用矩形的判定得出即可;(3)利用正方形的性质得出AC ∠EN ,再利用平行线的性质得出∠BCA =90°,即可得出答案;【详解】证明:(1)∠MN 交∠ACB 的平分线于点 E ,交∠ACB 的外角平分线于点 F , ∠∠2=∠5,∠4=∠6,∠MN ∠BC ,∠∠1=∠5,∠3=∠6,∠∠1=∠2,∠3=∠4,∠EO =CO ,FO =CO ,∠OE =OF ;(2)当点 O 在边 AC 上运动到 AC 中点时,四边形 AECF 是矩形.证明:当 O 为 AC 的中点时,AO =CO ,∠EO =FO ,∠四边形 AECF 是平行四边形,∠CE 是∠ACB 的平分线,CF 是∠ACD 的平分线,∠∠ECF =12(∠ACB +∠ACD )=90°,∠平行四边形 AECF 是矩形.(3)∠ABC 是直角三角形,理由:∠四边形AECF 是正方形,∠AC∠EN,故∠AOM=90°,∠MN∠BC,∠∠BCA=∠AOM,∠∠BCA=90°,∠∠ABC 是直角三角形.【点睛】此题考查了正方形的判断和矩形的判定,需要知道平行线的特征和角平分线的性质才能解答此题.25.(1)∠ 90,45,2;∠11 12(2)1275【分析】(1)∠分别画出三种情况下的图形即可得到解答;∠连接EP,设AE=x,可以得到关于x的方程,从而得到AE的值;(2)连接EM,设AE=y,根据题意可以得到关于y的方程,解方程即可得到问题解答;(3)画出图形后根据题意可以得到解答.(1)∠如图1所示,点P与点A重合,由题意可知,PD∠EF,所以∠DEF=90°,如图2所示,点E与点A重合,由题意可知,ED=EP,PD∠EF,所以∠DEF=45°,如图3所示,点F与点C重合,连结CP,由题意可知,CP=DF=10,BC=6,∠在RT∠CPB中,PB=8,∠AP=AB-PB=2,故答案为90;45;2;∠如图4所示,连接EP,∠点P为AB的中点,∠AP=BP=5,由折叠知DE=EP,设AE=x,则DE=EP=6-x,在Rt∠AEP中,AE2+AP2=EP2,即x2+52=(6-x)2,解得x=1112,即AE=1112.(2)如图5所示,连接EM,设AE=y,由折叠知PE=DE,∠CDE=∠EPM=90°,CD=CP=AB=10,∠AM=DE,∠AM=PE.在Rt∠AEM和Rt∠PME中,,, AM PE EM ME=⎧⎨=⎩∠Rt∠AEM∠Rt∠PME(HL),∠AE=PM=y,∠CM=10-y,BM=AB-AM=AB-DE=10-(6-y)=4+y.在Rt∠BCM中,BM2+BC2=CM2,∠(4+y)2+62=(10-y)2,解得y=127.∠AE=127.(3)如图6所示,连结AF,在Rt ADF中,∠D=90°,AD=6,DF=CF=5,∠AF∠PF=DF=5,∠5AP AF PF≥-=,∠AP5.【点睛】本题考查矩形的的折叠问题和最短距离问题,正确分类并画出图形是解题的关键.。
2018年秋九年级数学上册第4章图形的相似周周测3(4.4_4.5)(新版)北师大版
第四章 图形的相似周周测3一、填空题(每小题5分,共20分)1.一支铅笔长16 cm ,把它按黄金分割后,较长部分涂上橘红色,较短部分涂上浅蓝色,那么橘红色部分的长是________cm ,浅蓝色部分的长是________cm.(结果保留一位小数)2.在△ABC 中,AB =6 cm ,BC =10 cm ,AC =12 cm ,D 为AC 上点,E 为AB 上点,AD =4 cm ,当AE =________cm 时,△ADE ∽△ABC.3.顶角为36°的等腰三角形称为黄金三角形,如图,在△ABC 中,AB =AC =1,∠A =36°,BD 是三角形ABC 的角平分线,那么BD =________.4.图,已知矩形ABCD 的边长AB =3 cm ,BC =6 cm.某一时刻,动点M 从A 点出发沿AB 方向以1 cm/s 的速度向B 点匀速运动;同时动点N 从D 点出发沿DA 方向以2 cm/s 的速度向A 点匀速运动.若以A 、M 、N 为顶点的三角形与△ACD 相似,则运动的时间t 为________秒.二、选择题(每小题5分,共25分)1.已知点P 是线段AB 的一个黄金分割点(AP >PB),则PB∶AB 的值为( ) A.3-52 B.5-12C.1+52D.3-542.在Rt △ABC 和Rt △DEF 中,∠C =∠F=90°,下列条件中不能判定这两个三角形相似的是( )A .∠A =55°,∠D =35°B .AC =9,BC =12,DF =6,EF =8C .AC =3,BC =4,DF =6,DE =8D .AB =10,AC =8,DE =15,EF =93.如图所示,每个小正方形的边长均为1,则下列四个图中的三角形(阴影部分)与△EFG 相似的是( )4.如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,下列条件中不能判断△ABC∽△AED 的是( )A .∠AED =∠B B .∠ADE =∠CC.AD AE =AC ABD.AD AB =AE AC5.如图,已知:△ABC、△DEA 是两个全等的等腰直角三角形,∠BAC =∠D=90°,两条直角边AB 、AD 重合,把AD 绕点A 逆时针旋转α角(0°<α<90°),到如图所示的位置时,BC 分别与AD 、AE 相交于点F 、G ,则图中共有________对相似三角形( )A .1B .2C .3D .4三、解答题(共55分)1.(9分)已知:如图,AB ·AD =AC·AE,求证:△ABC∽△AED.2.(10分)已知M 是线段AB 的黄金分割点,且AM >BM.(1)写出AB ,AM ,BM 之间的比例式;(2)如果AB =12 cm ,求AM 与BM 的长.3.(10分)如图,在4×3的正方形方格中,△ABC 和△DEC 的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC=________°,BC =________;(2)判断△ABC 与△DEC 是否相似,并证明你的结论.4.(12分)如图,在平面直角坐标系中,已知OA=12 cm,OB=6 cm,点P从O点开始沿OA 边向点A以1 cm/s的速度移动,点Q从点B开始沿BO边向点O以1 cm/s的速度移动,如果P,Q同时出发,用t(单位:秒)表示移动的时间(0≤t≤6),那么当t为何值时,△POQ 与△AOB相似?5.(14分)(泰安中考)如图,在△ABC中,AB=AC,点P、D分别是BC、AC边上的点,且∠APD =∠B.(1)求证:AC·CD=CP·BP;(2)若AB=10,BC=12,当PD∥AB时,求BP的长答案一填空1.9.92.13.84.5-12 5.2.4或1.5 二、选择1.A 2.C 3.B 4.D 5.D三解答1.证明:∵AB·AD=AC·AE,∴AB AE =AC AD .又∵∠BAC=∠EAD,∴△ABC ∽△AED.2.(1)BM AM=AM AB .(2)AM =5-12AB =(65-6)cm ,BM =AB -AM =(18-65)cm. 3.(1)135 2 2 (2)△ABC∽△CED.理由如下:∵BC=22,EC =2,∴AB CE =22=2,BC ED =222= 2.∴AB CE =BC ED.又∵∠ABC=∠C ED =135°,∴△ABC ∽△CED. 4.①∵∠POQ=∠AOB,若△POQ∽△BOA,则OQ OA =OP OB ,即6-t 12=t 6.解得t =2.②∵∠POQ =∠AOB,若△POQ∽△AOB,则OQ OB =OP OA ,即6-t 6=t 12.解得t =4.∴当t =2或t =4时,△POQ 与△AOB 相似. 5.(1)证明:∵∠APC=∠PAB+∠B,∠APD =∠B,∴∠DPC =∠PAB.又AB =AC ,∴∠B =∠C.∴△ABP∽△PCD.∴AB PC =BP CD .∵AB =AC ,∴AC PC =BP CD.∴AC ·CD =CP·BP.(2)∵PD∥AB,∴∠DPC =∠B.又∠DPC=∠PAB,∴∠PAB =∠B.又∠B=∠C,∴∠PAB =∠C.又∠PBA=∠B,∴△PBA ∽△ABC.∴BP AB =AB BC .∴BP =AB 2BC =10212=253.。
九年级数学课堂周测及答案
周测(21.1~21.2)(时间:40分钟 满分:100分)一、选择题(每小题4分,共32分)1.下列关于x 的方程:①ax 2+bx +c =0;②x 2+4x-3=0;③x 2-4+x 5=0;④3x =x 2,其中是一元二次方程的有( )A .1个B .2个C .3个D .4个 2.方程x 2-x =0的解为( )A .x =0B .x =1C .x 1=0,x 2=1D .x 1=0,x 2=-1 3.一元二次方程3x 2-4x +1=0的根的情况为( )A .没有实数根B .只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根 4.若1-3是方程x 2-2x +c =0的一个根,则c 的值为( )A .-2B .43-2C .3- 3D .1+ 3 5.一元二次方程x 2-6x -6=0配方后可化为( )A .(x -3)2=15 B .(x -3)2=3 C .(x +3)2=15 D .(x +3)2=36.如果关于x 的一元二次方程kx 2-2k +1x +1=0有两个不相等的实数根,那么k 的取值范围是( )A .k <12B .k <12且k ≠0C .-12≤k <12D .-12≤k <12且k ≠07.如果关于x 的一元二次方程x 2+3x -7=0的两根分别为α,β,那么α2+4α+β=( )A .4B .10C .-4D .-108.解方程(x -1)2-5(x -1)+4=0时,我们可以将(x -1)看成一个整体,设x -1=y ,则原方程可化为y 2-5y +4=0,解得y 1=1,y 2=4.当y =1时,即x -1=1,解得x =2;当y =4时,即x -1=4,解得x =5,所以原方程的解为x 1=2,x 2=5.利用这种方法求得方程(2x +5)2-4(2x +5)+3=0的解为( )A .x 1=1,x 2=3B .x 1=-2,x 2=3C .x 1=-3,x 2=-1D .x 1=-1,x 2=-2二、填空题(每小题4分,共24分)9.若关于x 的方程(m +2)x |m|+2x -1=0是一元二次方程,则m = . 10.用适当的数填空:x 2-3x + =(x - )2;x 2+27x + =(x + )2.11.若关于x 的一元二次方程(p -1)x 2-x +p 2-1=0的一个根为0,则实数p 的值是 .12.关于x 的一元二次方程x 2+bx +2=0有两个不相等的实数根,写出一个满足条件的实数b 的值: . 13.已知关于x 的方程ax 2+bx +1=0的两根为x 1=1,x 2=2,则方程a(x +1)2+b(x +1)+1=0的两根之和为 . 14.对于两个不相等的实数a ,b ,我们规定max{a ,b}表示a ,b 中较大的数,如max{1,2}=2.那么方程max{2x ,x -2}=x 2-4的解为 . 三、解答题(共44分)15.(8分)写出下列方程的一般形式、二次项系数、一次项系数以及常数项.16.(15(1)4x2-3x+1=0; (2)3(x-3)2-25=0; (3)3x2+1=23x.17.(10分)阅读例题:解方程:x2-|x|-2=0.解:当x≥0时,得x2-x-2=0,解得x1=2,x2=-1<0(舍去);当x<0时,得x2+x-2=0,解得x1=1>0(舍去),x2=-2.故原方程的根为x1=2,x2=-2.请参照例题的方法解方程:x2-|x+1|-1=0.18.(11分)已知关于x的一元二次方程x2+(2m+1)x+m2=0.(1)若方程有两个实数根,求m的最小整数值;(2)若方程的两个实数根为x1,x2,且(x1-x2)2+m2=21,求m的值.单元测试(一) 一元二次方程(时间:40分钟 满分:100分)一、选择题(每小题4分,共32分)1.下列方程是关于x 的一元二次方程的是( )A .ax 2+bx +c =0 B.1x 2+1x =2 C .x 2+2x =y 2-1 D .3(x +1)2=2(x +1)2.方程x 2-3=0的根是( )A. 3 B .- 3 C .± 3 D .3 3.一元二次方程2x 2+x +1=0的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根 4.用配方法解方程x 2+10x +9=0,配方后可得( )A .(x +5)2=16 B .(x +5)2=1 C .(x +10)2=91 D .(x +10)2=109 5.若x =-1是关于x 的一元二次方程x 2-2kx +k 2=0的一个根,则k 的值为( )A .-1B .0C .1D .26.在解方程(x +2)(x -2)=5时,甲同学说:由于5=1×5,可令x +2=1,x -2=5,得方程的根x 1=-1,x 2=7;乙同学说:应把方程右边化为0,得x 2-9=0,再分解因式,即(x +3)(x -3)=0,得方程的根为x 1=-3,x 2=3.对于甲、乙两名同学的说法,下列判断正确的是( )A .甲错误,乙正确 B .甲正确,乙错误 C .甲、乙都正确 D .甲、乙都错误7.如图,某小区计划在一个长40米,宽30米的矩形场地ABCD 上修建三条同样宽的道路,使其中两条与AB 平行,另一条与AD 平行,其余部分种草.若使每块草坪面积都为168平方米,设道路的宽度为x 米,则可列方程为( )A .(40-2x)(30-x)=168×6B .30×40-2×30x -40x =168×6C .(30-2x)(40-x)=168D .(40-2x)(30-x)=1688.已知α,β是关于x 的一元二次方程x 2+(2m +3)x +m 2=0的两个不相等的实数根,且满足1α+1β=-1,则m的值是( ) A .3或-1 B .3 C .1 D .-3或1 二、填空题(每小题4分,共24分)9.一元二次方程(x -2)(x +3)=2x +1化为一般形式是 . 10.若一元二次方程(m +2)x 2+2x +m 2-4=0的常数项为0,则m = . 11.已知实数a ,b 是方程x 2-x -1=0的两根,则b a +a b的值为 .12.六一儿童节当天,某班同学每人向本班其他每名同学送一份小礼品,全班共互送306份小礼品,则该班有 名同学.13.某服装店原计划按每套200元的价格销售一批保暖内衣,但上市后销售不佳,为减少库存积压,连续两次降价打折处理,最后价格调整为每套128元.若两次降价折扣率相同,则每次降价率为 .14.阅读材料:如果a ,b 分别是一元二次方程x 2+x -1=0的两个实数根,则有a 2+a -1=0,b 2+b -1=0;创新应用:如果m ,n 是两个不相等的实数,且满足m 2-m =3,n 2-n =3,那么代数式2n 2-mn +2m +2 009= . 三、解答题(共44分)15.(12分)我们已经学习了一元二次方程的四种解法:因式分解法、直接开平方法、配方法和公式法.请选择合适的方法解下列方程.(1)x2-3x+1=0; (2)(x-1)2=3; (3)x2-3x=0; (4)x2-2x=4.16.(10分)定义新运算:对于任意实数m,n都有m☆n=m2n+n,等式右边是常用的加法、乘法及乘方运算.例如:-3☆2=(-3)2×2+2=20.根据以上知识解决问题:若2☆a的值小于0,请判断方程2x2-bx+a=0的根的情况.17.(10分)某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边用长为29米的篱笆围成,已知墙长为18米,为方便进入,在墙的对面留出1米宽的门(如图所示).设这个苗圃园垂直于墙的一边长为x米,苗圃园的面积为100平方米,求x的值.18.(12分)某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售,该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同;该果农去年枇杷的市场销售量为200千克,销售均价为20元/千克,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减少了m%.该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额与他去年樱桃和枇杷的市场销售总金额相同,求m的值.周测(22.1.1~22.1.3)(时间:40分钟 满分:100分)一、选择题(每小题4分,共28分)1.已知函数:①y =2x -1;②y =2x 2-1;③y =2x 2;④y =2x 3+x 2;⑤y =x 2-x -1,其中二次函数的个数为( )A .1B .2C .3D .42.二次函数y =a(x -1)2+b(a ≠0)的图象经过点(0,2),则a +b 的值是( )A .-3B .-1C .2D .33.对于抛物线y =12x 2,y =x 2和y =-x 2的共同性质有以下说法:①都是开口向上;②都以点(0,0)为顶点;③都以y 轴为对称轴;④都关于x 轴对称.其中正确的个数是( )A .1B .2C .3D .44.如图,平面直角坐标系中的二次函数图象所对应的函数解析式可能为( )A .y =-12x 2B .y =-12(x +1)2C .y =-12(x -1)2-1D .y =-12(x +1)2-15.已知二次函数y =2(x -3)2-2,下列说法:①其图象开口向上;②顶点坐标为(3,-2);③其图象与y 轴的交点坐标为(0,-2);④当x ≤3时,y 随x 的增大而减小,其中正确的有( )A .1个B .2个C .3个D .4个6.若正比例函数y =mx(m ≠0),y 随x 的增大而减小,则它和二次函数y =mx 2+m 的图象大致是( )7.如图是有相同对称轴的两条抛物线,下列关系不正确的是( )A .h =mB .k =nC .k >nD .h >0,k >0 二、填空题(每小题5分,共25分)8.函数y =-12(x +3)2中,当x 时,y 随x 的增大而增大;当x 时,y 随x 的增大而减小.9.将二次函数 y =x 2-1 的图象向上平移 3 个单位长度,得到的图象所对应的函数解析式是 . 10.若二次函数y =a(x -1)2+b 有最大值2,则a b(填“>”“=”或“<”).11.若点A(0,y 1),B(-3,y 2),C(1,y 3)为二次函数y =(x +2)2-9的图象上的三点,则y 1,y 2,y 3的大小关系是12.如图,在平面直角坐标系中,抛物线y =ax 2+3与y 轴交于点A ,过点A 且与x 轴平行的直线交抛物线y =13x 2于点B ,C ,则BC 的长为 .三、解答题(共47分)13.(10分)已知二次函数y =12(x +1)2+4.(1)写出抛物线的开口方向、顶点坐标和对称轴;(2)画出此函数的图象,并说出由此函数图象经过怎样平移可得到函数y =12x 2的图象.14.(10分)函数y =(m -3)xm2-3m -2是关于x 的二次函数.(1)若函数的图象开口向上,求函数的解析式,并说明在函数图象上y 随x 怎样变化?(2)在(1)中的图象上是否存在一点P ,使其到两坐标轴的距离相等?若存在,求出点P 的坐标;若不存在,请说明理由.15.(12分)如图,已知二次函数y =(x -1)2图象的顶点为C ,图象与直线y =x +m 交于A ,B 两点,其中点A 的坐标为(3,4),点B 在y 轴上.(1)求m 的值;(2)P 为线段AB 上的一个动点(点P 与点A ,B 不重合),过点P 作x 轴的垂线与这个二次函数的图象交于点E ,设线段PE 的长为h ,点P 的横坐标为x ,求h 与x 之间的函数解析式,并写出自变量x 的取值范围.16.(15分)如图,抛物线y =-14x 2+x 的顶点为A ,它与x 轴交于点O 和点B.(1)求点A 和点B 的坐标; (2)求△AOB 的面积;(3)若点P(m ,-m)(m ≠0)为抛物线上一点,求与点P 关于抛物线对称轴对称的点Q 的坐标.周测(22.1.4~22.3)(时间:40分钟 满分:100分)一、选择题(每小题4分,共28分)1.已知二次函数y =ax 2+bx +1,若当x =1时,y =0;当x =-1时,y =4,则a ,b 的值分别为( )A .a =1,b =2B .a =1,b =-2C .a =-1,b =2D .a =-1,b =-22.如图,抛物线与x 轴的两个交点为A(-3,0),B(1,0),则由图象可知y <0时,x 的取值范围是( )A .-3<x <1B .x >1C .x <-3D .0<x <1 3.对于二次函数y =-14x 2+x -4,下列说法正确的是( )A .当x>0,y 随x 的增大而增大B .当x =2时,y 有最大值-3C .图象的顶点坐标为(-2,-7)D .图象与x 轴有两个交点4.二次函数y =2x 2-4x +3的图象先向左平移4个单位长度,再向下平移2个单位长度后的抛物线解析式为( )A .y =2(x -4)2-4x +1 B .y =2(x +4)2+1 C .y =2x 2+12x +17 D .y =2x 2-10x -175.在同一平面直角坐标系中,若抛物线y =x 2+(2m -1)x +2m -4与y =x 2-(3m +n)x +n 关于y 轴对称,则符合条件的m ,n 的值为( )A .m =57,n =-187B .m =5,n =-6C .m =-1,n =6D .m =1,n =-26.某大学生利用课余时间在网上销售一种成本为50元/件的商品,每月的销售量y(件)与销售单价x(元/件)之间的函数关系式为y =-4x +440,要获得最大利润,该商品的售价应定为( )A .60元B .70元C .80元D .90元7.如图是二次函数y =ax 2+bx +c(a ,b ,c 是常数,a ≠0)图象的一部分,与x 轴的交点A 在(2,0)和(3,0)之间,对称轴是直线x =1.对于下列说法:①ab<0;②2a +b =0;③3a +c>0;④a +b ≥m(am +b) (m 为实数);⑤当-1<x<3时,y>0.其中正确的是( )A .①②④B .①②⑤C .②③④D .③④⑤ 二、填空题(每小题5分,共25分)8.当x =1时,二次函数y =x 2-2x +6有最小值 .9.如图,抛物线y =ax 2与直线y =bx +c 的两个交点坐标分别为A(-2,4),B(1,1),则方程ax 2=bx +c 的解是10.如图的一座拱桥,当水面宽AB 为12 m 时,桥洞顶部离水面4 m .已知桥洞的拱形是抛物线,以水平方向为x 轴,建立平面直角坐标系.若选取点A 为坐标原点时的抛物线解析式是y =-19(x -6)2+4,则选取点B 为坐标原点时的抛物线的解析式是 .11.飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是y =60t -32t 2.在飞机着陆滑行中,最后4 s 滑行的距离是12.如图,在等腰Rt △ABC 中,∠C =90°,AB =10,点F 是AB 的中点,点D ,E 分别在AC ,BC 边上运动,且始终保持DF ⊥EF ,则△CDE 面积的最大值为 . 三、解答题(共47分)13.(8分)已知二次函数y=x2+4x+k-1.(1)若抛物线与x轴有两个不同的交点,求k的取值范围;(2)若抛物线的顶点在x轴上,求k的值.14.(12分)抛物线y=-x2+(m-1)x+m与y轴交于点(0,3).(1)求出m的值,并画出这条抛物线;(2)求抛物线与x轴的交点和顶点坐标;(3)当x取什么值时,抛物线在x轴上方?(4)当x取什么值时,y的值随x的增大而减小.15.(12分)用一段长32 m的篱笆和长8 m的墙,围成一个矩形的菜园.(1)如图1,如果矩形菜园的一边靠墙AB,另三边由篱笆CDEF围成.①设DE=x m,直接写出菜园面积y与x之间的函数关系式,并写出自变量的取值范围;②菜园的面积能不能等于110 m2?若能,求出此时x的值;若不能,请说明理由;(2)如图2,如果矩形菜园的一边由墙AB和一节篱笆BF构成,另三边由篱笆ADEF围成,求菜园面积的最大值.16.(15分)已知二次函数y=-x2+bx+c的图象过点A(3,0),C(-1,0).(1)求二次函数的解析式;(2)如图,点P是二次函数图象的对称轴上的一个动点,二次函数的图象与y轴交于点B,当PB+PC最小时,求点P的坐标;(3)在第一象限内的抛物线上有一点Q,当△QAB的面积最大时,求点Q的坐标.单元测试(二) 二次函数(A卷)(时间:40分钟满分:100分)一、选择题(每小题4分,共32分)1.下列各式中,y是x的二次函数的是( )A.xy+x2=1 B.x2-y+2=0 C.y=1x2D.y2-4x=32.将二次函数y=x2-2x+3化为y=(x-h)2+k的形式,结果为( )A.y=(x+1)2+4 B.y=(x+1)2+2 C.y=(x-1)2+4 D.y=(x-1)2+23.将抛物线y=2(x-4)2-1先向左平移4个单位长度,再向上平移2个单位长度,平移后所得抛物线的解析式为(A)A.y=2x2+1 B.y=2x2-3 C.y=2(x-8)2+1 D.y=2(x-8)2-34.二次函数图象上部分点的坐标对应值列表如下:x …-3 -2 -1 0 1 …y …-3 -2 -3 -6 -11 …A.直线x=-3 B.直线x=-2 C.直线x=-1 D.直线x=05.若抛物线y=x2-x-1与x轴的一个交点的坐标为(m,0),则代数式m2-m+2 019的值为( ) A.2 019 B.2 017 C.2 018 D.2 0206.已知抛物线y=a(x-2)2+k(a>0,a,k为常数),A(-3,y1),B(3,y2),C(4,y3)是抛物线上三点,则y1,y2,y3由小到大依次排列为( )A.y1<y2<y3 B.y2<y1<y3 C.y2<y3<y1 D.y3<y2<y17.在平面直角坐标系xOy中,二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,则下列结论正确的是( )A.a<0,b<0,c>0 B.-b2a=1 C.a+b+c<0 D.关于x的方程ax2+bx+c=-1有两个不相等的实数根8.如图,△ABC是直角三角形,∠A=90°,AB=8 cm,AC=6 cm,点P从点A出发,沿AB方向以2 cm/s的速度向点B运动;同时点Q从点A出发,沿AC方向以1 cm/s的速度向点C运动,其中一个动点到达终点,则另一个动点也停止运动,则△APQ的最大面积是( )A.8 cm2 B.16 cm2 C.24 cm2 D.32 cm2二、填空题(每小题5分,共20分)9.若点A(3,n)在二次函数y=x2+2x-3的图象上,则n的值为.10.请写出一个开口向上,并且与y轴交于点(0,1)的抛物线的函数解析式:.11.二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+c的图象不经过第象限.12.已知抛物线y=x2+2x-3与x轴交于A,B两点(点A在点B的左侧),将这条抛物线向右平移m(m>0)个单位长度,平移后的抛物线与x轴交于C,D两点(点C在点D的左侧).若B,C是线段AD的三等分点,则m的值为.三、解答题(共48分)13.(12分)二次函数y =ax 2+bx +c(a ≠0)的图象如图所示,根据图象解答下列问题:(1)方程ax 2+bx +c =0的两个根为 ; (2)不等式ax 2+bx +c>0的解集为 ;(3)y 随x 的增大而减小的自变量x 的取值范围为 ;(4)若方程ax 2+bx +c =k 有两个不相等的实数根,则k 的取值范围为 . 14.(10分)如图,一次函数y 1=kx +b 与二次函数y 2=ax 2的图象交于A ,B 两点.(1)利用图中条件,求两个函数的解析式; (2)根据图象写出使y 1>y 2的x 的取值范围.15.(12分)九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x ≤90)天的售价与销量的相关信息如下表:已知该商品的进价为每件30元,设销售该商品每天的利润为y 元.(1)求出y 与x 的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?16.(14分)如图,在平面直角坐标系中,二次函数y =x 2-2x -3的部分图象与x 轴交于点A ,B(A 在B 的左边),与y 轴交于点C ,D 为顶点,连接BC.(1)求∠OBC 的度数;(2)在x 轴下方的抛物线上是否存在一点Q ,使△ABQ 的面积等于5?如存在,求Q 点的坐标;若不存在,说明理由;(3)点P 是第四象限的抛物线上的一个动点(不与点D 重合),过点P 作PF ⊥x 轴交BC 于点F ,求线段PF 长度的最大值.时间x(天) 1≤x <50 50≤x ≤90售价(元/件) x +40 90 每天销量(件)200-2x单元测试(二) 二次函数(B卷)(时间:40分钟满分:100分)一、选择题(每小题4分,共32分)1.抛物线y=-2(x-3)2+1的顶点坐标是( )A.(-3,1) B.(-3,-1) C.(3,1) D.(3,-1)2.下表给出了二次函数y=x2+2x-10中x,y的一些对应值,则可以估计一元二次方程x2+2x-10=0的一个近似解为( )x … 2.1 2.2 2.3 2.4 2.5 …y …-1.39 -0.76 -0.11 0.56 1.25 …A.2.2 B.2.3 C3.已知二次函数y=-x2+2x+1,若y随x的增大而增大,则x的取值范围是( )A.x<1 B.x>1 C.x<-1 D.x>-14.如图是二次函数y=-x2+2x+4的图象,使y≤1成立的x的取值范围是( )A.-1≤x≤3 B.x≤-1 C.x≥1 D.x≤-1或x≥35.为搞好环保,某公司准备修建一个长方体污水处理池,池底矩形的周长为100 m,则池底的最大面积是( ) A.600 m2 B.625 m2 C.650 m2 D.675 m26.对于二次函数y=x2-2mx-3,下列结论不一定成立的是( )A.它的图象与x轴有两个交点 B.方程x2-2mx=3的两根之积为-3C.它的图象的对称轴在y轴的右侧 D.当x<m时,y随x的增大而减小7.将二次函数y=x2的图象先向下平移1个单位长度,再向右平移3个单位长度,得到的图象与一次函数y=2x+b的图象有公共点,则实数b的取值范围是( )A.b>8 B.b>-8 C.b≥8 D.b≥-88.二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(-2,-9a),下列结论:①4a+2b+c>0;②5a-b+c=0;③若方程a(x+5)(x-1)=-1有两个根x1和x2,且x1<x2,则-5<x1<x2<1;④若方程|ax2+bx+c|=1有四个根,则这四个根的和为-4.其中正确的结论有( ) A.1个 B.2个 C.3个 D.4个二、填空题(每小题5分,共20分)9.当a=时,函数y=(a-1)xa2+1+x-3是二次函数.10.如果点A(-2,y1)和点B(2,y2)是抛物线y=(x+3)2上的两点,那么y1 y2.(填“>”“=”或“<”) 11.二次函数y=x2-4x+3,当0≤x≤5时,y的取值范围为.12.科幻小说《实验室的故事》中,有这样一个情节,科学家把一种珍奇的植物分别放在不同温度(其他条件均相同)的环境中,经过一天后,测试出这种植物高度的增长情况如下表:温度x/℃…-4 -2 0 2 4 4.5 …植物每天高度增长量y/mm …41 49 49 41 2519.75…①该植物在0 ℃时,每天高度增长量最大;②该植物在-6 ℃时,每天高度增长量仍能保持在20 mm以上;③该植物与大多数植物不同,6 ℃以上的环境下高度几乎不增长.其中正确的是.(填序号)三、解答题(共48分)13.(10分)如图,二次函数y=(x+2)2+m的图象与y轴交于点C,点B在抛物线上,且与点C关于抛物线的对称轴对称,已知一次函数y=kx+b的图象经过该二次函数图象上的点A(-1,0)及点B.(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足(x+2)2+m≥kx+b的x的取值范围.14.(10分)已知二次函数y=2(x-1)(x-m-3)(m为常数).(1)求证:不论m为何值,该函数的图象与x轴总有公共点;(2)当m取什么值时,该函数的图象与y轴的交点在x轴的上方?15.(14分)某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某品种蜜柚,到了收获季节,已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示.(1)求y与x的函数关系式,并写出x的取值范围;(2)当该品种的蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某农户今年共采摘蜜柚4 800千克,该品种蜜柚的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批蜜柚?请说明理由.16.(14分)如图,已知二次函数y=ax2+bx+3的图象交x轴于点A(1,0),B(3,0),交y轴于点C.(1)求这个二次函数的解析式;(2)点P是直线BC下方抛物线上的一个动点,求△BCP面积的最大值;(3)直线x=m分别交直线BC和抛物线于点M,N,当△BMN是等腰三角形时,直接写出m的值.单元测试(三) 旋转(时间:40分钟 满分:100分)一、选择题(每小题4分,共32分) 1.下列运动属于旋转的是( )A .足球在草地上滚动B .一个图形沿某直线对折的过程C .气球升空的运动D .钟表钟摆的摆动2.下面四个手机应用图标中,属于中心对称图形的是( )3.如图,在Rt △ABC 中,∠BAC =90°.将Rt △ABC 绕点C 按逆时针方向旋转48°得到Rt △A ′B ′C ,点A 在边B ′C 上,则∠B ′的度数为( )A .42°B .48°C .52°D .58°4.如图,经过矩形对称中心的任意一条直线把矩形分成面积分别为S 1和S 2的两部分,则S 1与S 2的大小关系是( )A .S 1<S 2B .S 1>S 2C .S 1=S 2D .S 1与S 2的关系由直线的位置而定 5.点P(ac 2,b a)在第二象限,则点Q(a ,b)关于原点对称的点在( )A .第一象限B .第二象限C .第三象限D .第四象限6.如图,将等边△ABC 绕点C 顺时针旋转120°得到△EDC ,连接AD ,BD.则下列结论:①AC =AD ;②BD ⊥AC ;③四边形ACED 是菱形.其中正确的个数是( )A .0B .1C .2D .37.如图,在△ABO 中,AB ⊥OB ,OB =3,∠AOB =30°,把△ABO 绕点O 旋转150°后得到△A 1B 1O ,则点A 1的坐标为( )A .(-1,-3)B .(-1,-3)或(-2,0)C .(-3,-1)或(0,-2)D .(-3,-1)8.如图,将△ABC 沿BC 翻折得到△DBC ,再将△DBC 绕点C 逆时针旋转60°得到△FEC ,延长BD 交EF于点H.已知∠ABC=30°,∠BAC=90°,AC=1,则四边形CDHF的面积为( )A.312B.36C.33D.32二、填空题(每小题5分,共20分)9.王明、杨磊两家所在位置关于学校成中心对称.如果王明家距离学校500米,那么他们两家相距米.10.在方格纸上建立如图所示的平面直角坐标系,将△ABO绕点O按顺时针方向旋转90°,得△A′B′O,则点A的对应点A′的坐标为.11.如图1,教室里有一只倒地的装垃圾的灰斗,BC与地面的夹角为50°,∠C=25°,小贤同学将它扶起平放在地上(如图2),则灰斗柄AB绕点C转动的角度为.12.如图,在正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,过点A作AH⊥EF,垂足为H,将△ADF绕点A顺时针旋转90°得到△ABG.若BE=2,DF=3,则AH的长为.三、解答题(共48分)13.(10分)如图,正方形网格中,△ABC的顶点及点O都在格点上.(1)画出△ABC关于点O中心对称的图形△A′B′C′;(2)画出△ABC绕点O顺时针旋转90°的图形△A″B″C″.14.(12分)下列3×3网格图都是由9个相同的小正方形组成,每个网格图中有3个小正方形已涂上阴影,请在余下的6个空白小正方形中,按下列要求涂上阴影:(1)选取1个涂上阴影,使4个阴影小正方形组成一个轴对称图形,但不是中心对称图形;(2)选取1个涂上阴影,使4个阴影小正方形组成一个中心对称图形,但不是轴对称图形.(请将两个小题依次作答在图1、图2中,均只需画出符合条件的一种情形)15.(12分)如图,△BAD是由△BEC在平面内绕点B逆时针旋转60°而得,且AB⊥BC,BE=CE,连接DE.(1)求证:△BDE≌△BCE;(2)判断四边形ABED的形状,并说明理由.16.(14分)在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段BC绕点B逆时针旋转60°得到线段BD.(1)如图1,直接写出∠ABD的大小(用含α的式子表示);(2)如图2,∠BCE=150°,∠ABE=60°,判断△ABE的形状,并加以证明;(3)在(2)的条件下,连接DE,若∠DEC=45°,求α的值.图1图2期中测试(时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.下列图形中,属于中心对称图形的是( )A. B.C.D.2.将一元二次方程x 2-2x -2=0配方后所得的方程是( )A .(x -2)2=2 B .(x -1)2=2 C .(x -1)2=3 D .(x -2)2=33.将抛物线y =x 2向右平移2个单位长度,再向上平移1个单位长度,所得抛物线的函数解析式是 ( )A .y =(x +2)2+1 B .y =(x -2)2+1 C .y =(x +2)2-1 D .y =(x -2)2-14.在平面直角坐标系中,将点(-2,3)关于原点对称的点向左平移2个单位长度得到的点的坐标是( )A .(4,-3)B .(-4,3)C .(0,-3)D .(0,3) 5.用公式法解方程4y 2=12y +3,解为( )A .y =-3±62B .y =3±62C .y =3±232D .y =-3±2326.已知抛物线y =x 2-8x +c 的顶点在x 轴上,则c 的值是( )A .16B .-4C .4D .87.已知关于x 的一元二次方程(k -1)x 2-2x +2=0有两个不相等的实数根,则k 的取值范围值是( )A .k<32B .k ≤32C .k <32且k ≠1D .k ≤32且k ≠18.在同一平面直角坐标系中,函数y =mx +m 和函数y =-mx 2+2x +2(m 是常数,且m ≠0)的图象可能是( )9.如图,在Rt △ABC 中,∠ACB =90°,∠ABC =30°,AC =2,△ABC 绕点C 顺时针旋转得△A 1B 1C ,当A 1落在AB 边上时,连接B 1B ,取BB 1的中点D ,连接A 1D ,则A 1D 的长度是( )A.7 B .2 2 C .3 D .2 310.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b=0;③m为任意实数,则a+b>am2+bm;④a-b+c>0;⑤若ax21+bx1=ax22+bx2,且x1≠x2,则x1+x2=2.其中正确的是( ) A.①②③ B.②④ C.②⑤ D.②③⑤二、填空题(每小题3分,共24分)11.方程x2=x的根是.12.如图所示,在下列四组图形中,右边图形与左边图形成中心对称的有.①②③④13.已知方程3x2-4x-2=0的两个根是x1,x2,则1x1+1x2=.14.某楼盘2018年房价为每平方米8 100元,经过两年连续降价后,2020年房价为每平方米7 600元.设该楼盘这两年房价平均降低率为x,根据题意可列方程为.15.已知点P在抛物线y=(x-2)2上,设点P的坐标为(x,y),当0≤x≤3时,y的取值范围是.16.如图,若将图中的抛物线y=x2-2x+c向上平移,使它经过点(2,0),则此时抛物线位于x轴下方的图象对应的x的取值范围是.17.如图,在边长为1的正方形网格中,A(1,7),B(5,5),C(7,5),D(5,1).若线段AB与线段CD存在一种特殊关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,则这个旋转中心的坐标为.18.运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:t 0 1 2 3 4 5 6 7 …h 0 8 14 18 20 20 18 14 …下列结论:①足球距离地面的最大高度为20 m;②足球飞行路线的对称轴是直线t=;③足球被踢出9.5 s2时落地;④足球被踢出7.5 s时,距离地面的高度是11.25 m,其中不正确的结论是.三、解答题(共66分)19.(8分)解方程:(1)2x2+3=7x; (2)(2x+1)2+4(2x+1)+3=0.20.(8分)如图,在平面直角坐标系中,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(-1,3),B(-4,0),C(0,0).(1)画出将△ABC向上平移1个单位长度,再向右平移5个单位长度后得到的△A1B1C1;(2)画出将△ABC绕原点O顺时针方向旋转90°得到的△A2B2O.21.(9分)如图,将矩形ABCD绕点A顺时针旋转得到矩形AEFG,点E在BD上.(1)求证:FD=AB;(2)连接AF,求证:∠DAF=∠EFA.22.(9分)已知关于x的一元二次方程x2-2x+m-1=0有两个实数根x1,x2.(1)求m的取值范围;(2)当x21+x22=6x1x2时,求m的值.23.(10分)某农场要建一个长方形的养鸡场,养鸡场的一边靠墙(墙长25 m),另外三边用木栏围成,木栏长40 m.(1)若养鸡场的面积为200 m2,求养鸡场平行于墙的一边长;(2)养鸡场的面积能达到250 m2吗?如果能,请给出设计方案;如果不能,请说明理由.24.(10分)服装厂批发某种服装,每件成本为65元,规定不低于10件可以批发,其批发价y(元/件)与批发数量x(件)(x为正整数)之间所满足的函数关系如图所示.(1)求y 与x 之间所满足的函数关系式,并写出x 的取值范围;(2)设服装厂所获利润为w(元),若10≤x ≤50(x 为正整数),求批发该种服装多少件时,服装厂获得利润最大?最大利润是多少元?25.(12分)如图,二次函数y =12x 2+bx +c 的图象交x 轴于A ,D 两点并经过点B ,已知点A 的坐标是(2,0),点B的坐标是(8,6).(1)求二次函数的解析式;(2)若抛物线的对称轴上是否存在一个动点P ,使点P 到点B ,点D 的距离之和最短,若存在,求出点P 的坐标;若不存在,请说明理由;(3)该二次函数的对称轴交x 轴于点C ,连接BC ,并延长BC 交抛物线于点E ,连接BD ,DE ,求△BDE 的面积.周测(21.1~21.2)(时间:40分钟 满分:100分)一、选择题(每小题4分,共32分)1.下列关于x 的方程:①ax 2+bx +c =0;②x 2+4x-3=0;③x 2-4+x 5=0;④3x =x 2,其中是一元二次方程的有(A)A .1个B .2个C .3个D .4个 2.方程x 2-x =0的解为(C)A .x =0B .x =1C .x 1=0,x 2=1D .x 1=0,x 2=-1 3.一元二次方程3x 2-4x +1=0的根的情况为(D)A .没有实数根B .只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根4.若1-3是方程x 2-2x +c =0的一个根,则c 的值为(A)A .-2B .43-2C .3- 3D .1+ 35.一元二次方程x 2-6x -6=0配方后可化为(A)A .(x -3)2=15 B .(x -3)2=3 C .(x +3)2=15 D .(x +3)2=36.如果关于x 的一元二次方程kx 2-2k +1x +1=0有两个不相等的实数根,那么k 的取值范围是(D)A .k <12B .k <12且k ≠0C .-12≤k <12D .-12≤k <12且k ≠07.如果关于x 的一元二次方程x 2+3x -7=0的两根分别为α,β,那么α2+4α+β=(A)A .4B .10C .-4D .-108.解方程(x -1)2-5(x -1)+4=0时,我们可以将(x -1)看成一个整体,设x -1=y ,则原方程可化为y 2-5y +4=0,解得y 1=1,y 2=4.当y =1时,即x -1=1,解得x =2;当y =4时,即x -1=4,解得x =5,所以原方程的解为x 1=2,x 2=5.利用这种方法求得方程(2x +5)2-4(2x +5)+3=0的解为(D)A .x 1=1,x 2=3B .x 1=-2,x 2=3C .x 1=-3,x 2=-1D .x 1=-1,x 2=-2 二、填空题(每小题4分,共24分)9.若关于x 的方程(m +2)x |m|+2x -1=0是一元二次方程,则m =2.10.用适当的数填空:x 2-3x +94=(x -32)2;x 2+27x +7=(x 2.11.若关于x 的一元二次方程(p -1)x 2-x +p 2-1=0的一个根为0,则实数p 的值是-1.12.关于x 的一元二次方程x 2+bx +2=0有两个不相等的实数根,写出一个满足条件的实数b 的值:3(答案不唯一,满足b 2>8即可).。
(常考题)人教版初中数学九年级数学上册第四单元《圆》检测(答案解析)(4)
一、选择题1.下列说法正确的是( )A .圆是轴对称图形,任何一条直径都是圆的对称轴B .平分弦的直径垂直于弦C .长度相等的弧是等弧D .在同圆或等圆中,相等的圆心角所对的弦相等2.如图,在ABC 中,90ACB ∠=︒,过B ,C 两点的O 交AC 于点D ,交AB 于点E ,连接EO 并延长交O 于点F .连接BF ,CF ,若135EDC ∠=︒,2AE =,4BE =,则CF 的值为( ).A .10B .22C .23D .33.如图,AB 、AC 是⊙O 的切线,B 、C 为切点,∠A =50°,点P 是圆上异于B 、C 的点,则∠BPC 的度数是( )A .65°B .115°C .115°或65°D .130°或65° 4.已知正方形的边长a ,其内切圆的半径为r ,外接圆的半径为R ,则::R r a =( ) A .2:1:2 B .2:1:1 C .2:1:1 D .2:2:4 5.已知△ABC 的外心为O ,连结BO ,若∠OBA=18°,则∠C 的度数为( )A .60°B .68°C .70°D .72° 6.如图,AB 为O 的直径,C 为O 上一点,其中6AB =,120AOC ∠=︒,P 为O 上的动点,连AP ,取AP 中点Q ,连CQ ,则线段CQ 的最大值为( )A .37B .3272+C .237+D .33722+ 7.若圆锥的底面半径为5cm ,侧面积为265cm π,则该圆锥的高是( ) A .13cmB .12cmC .11cmD .10cm 8.如图所示,AB 是O 的直径,点C ,D 在O 上,21BDC ∠=︒,则AOC ∠的度数是( )A .136°B .137°C .138°D .139°9.如图,在⊙O 中,AB 是直径,弦AC=5,∠BAC=∠D .则AB 的长为( )A .5B .10C .52D .102 10.如图,在菱形ABCD 中,60A ∠=︒ ,3AB = ,A ,B 的半径分别为2和1,P ,E ,F 分别是CD 边、A 和B 上的动点,则PE PF +的最小值是( )A .333B .2C .3D .3311.如图,AB 是⊙的直径,DB 、DE 分别切⊙O 于点B 、C ,若∠ACE =35°,则∠D 的度数是( )A .65°B .55°C .60°D .70°12.如图,在平行四边形ABCO 中,45C ∠=︒,点A ,B 在O 上,点D 在ADB 上,DA DB =,则AOD ∠的度数为( )A .112.5°B .120°C .135°D .150°二、填空题13.如图,用一张半径为10cm 的扇形纸板做一个圆锥形帽子(接缝忽略不计),如果做成的圆锥形帽子的高为8cm ,那么这张扇形纸板的弧长是_______cm ,制作这个帽子需要的纸板的面积为_______cm 2.14.如图,⊙O 是△ABC 的内切圆,若∠A =70°,则∠BOC =________°.15.一排水管截面如图所示,截面半径13dm OA =,水面宽10dm AB =,则圆心O 到水面的距离OC =______dm .16.如图,AB 是半圆O 的直径,且4AB =,30BAC ︒∠=,则AC 的长为_________.17.如图,已知点,,A B C 在O 上,若50ACB ∠=,则AOB ∠=_____________________度.18.在△ABC 中,已知∠ACB =90°,BC =3,AC =4,以点C 为圆心,2.5为半径作圆,那么直线AB 与这个圆的位置关系分别是_________.19.已知⊙O 的半径为3,圆心O 到直线l 的距离为m ,若m 满足方程290x ,则⊙O 与直线l 的位置关系是________20.扇形 的半径为6cm ,弧长为10cm ,则扇形面积是________. 三、解答题21.如图,已知AB 是O 的一条弦,DE 是O 的直径且DE AB ⊥于点C . (1)若3,5OC OA ==,求AB 的长;(2)求证:EAO BAD ∠=∠.22.如图,在平面直角坐标系中,点A 的坐标为()3,2-,点B 的坐标为()0,2. (1)画出将绕点O 顺时针旋转90后的图形,记为A OB ''△;(2)在题(1)旋转过程中线段OA 扫过的面积为_______(直接写出答案)23.如图,AB为⊙O的直径,C,D是⊙O上的点,P是⊙O外一点,AC⊥PD于点E,AD 平分∠BAC.(1)求证:PD是⊙O的切线;(2)若DE=3,,∠BAC=60°,求⊙O的半径.24.如图,半径为2的⊙O与正五边形ABCDE的边AB、AE相切于点M、N,求劣弧MN 的长度.25.如图,OA、OB、OC分别是⊙O的半径,且AC=CB,D、E分别是OA、OB的中点.CD与CE相等吗?为什么?26.如图,O 是ABC 的外接圆,且AB AC =,点D 在弧BC 上运动,过点D 作//DE BC ,DE 交AB 的延长线于点E ,连接AD 、BD .(1)求证:ADB E ∠=∠;(2)当6AB =,3BE =时,求AD 的长?(3)当点D 运动到什么位置时,DE 是O 的切线?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据对称轴的定义对A 进行判断;根据垂径定理的推论对B 进行判断;根据等弧定义对C 进行判断;根据圆心角定理对D 进行判断.【详解】解:A 、圆是轴对称图形,任何一条直径所在的直线都是它的对称轴,所以A 选项错误; B 、平分弦(非直径)的直径垂直于弦,并且平分弦所对的弧,所以B 选项错误; C 、长度相等的弧不一定能重合,所以不一定是等弧,所以C 选项错误;D 、在同圆或等圆中,相等的圆心角所对的弦相等,所以D 选项正确.故选:D .【点睛】本题考查了圆的有关性质,掌握相关定理是解题关键.2.A解析:A【分析】由四边形BCDE 内接于⊙O 知∠EFC=∠ABC=45°,据此得AC=BC ,由EF 是⊙O 的直径知∠EBF=∠ECF=∠ACB=90°及∠BCF=∠ACE ,再根据四边形BECF 是⊙O 的内接四边形知∠AEC=∠BFC ,从而证△ACE ≌△BCF 得AE=BF ,根据Rt △ECF 是等腰直角三角形知EF 2=20,继而可得答案.【详解】∵四边形BCDE 内接于O ,且135EDC ∠=︒, ∴18045EFC ABC EDC ︒∠=∠=-∠=︒,∵90ACB ∠=︒, ∴ABC 是等腰三角形,∴AC BC =,又∵EF 是O 的直径, ∴90EBF ECF ACB ∠=∠=∠=︒,∴BCF ACE ∠=∠,∵四边形BECF 是O 的内接四边形,∴AEC BFC ∠=∠,∴()ACE BFC ASA ≅△△,∴AE BF =,Rt BEF △中,22222224220EF BF BE BE AE =+=+=+=,Rt ECF △中,45EFC ∠=︒,∴CE CF =,∴2222220CE CF CF EF +===,∴210CF =, ∴CF =故选:A .【点睛】本题主要考查圆周角定理,解题的关键是掌握圆内接四边形的性质、圆周角定理、全等三角形的判定与性质及勾股定理.3.C解析:C【分析】根据切线的性质得到OB ⊥AB ,OC ⊥AC ,求出∠BOC ,分点P 在优弧BC 上、点P 在劣弧BC 上两种情况,根据圆周角定理、圆内接四边形的性质计算即可.【详解】解:∵AB 、AC 是⊙O 的切线,∴OB ⊥AB ,OC ⊥AC ,∴∠OBA =90°,∠OCA =90°∵∠A =50°,∴∠BOC =360°﹣90°﹣90°﹣50°=130°,如图,当点P 在优弧BPC 上时,∠BPC =12∠BOC =65°, 当点P ′在劣弧BC 上时,∠BP ′C =180°﹣65°=115°,故选:C .【点睛】本题考查的是切线的性质、圆周角定理、圆内接四边形的性质,掌握圆的切线垂直于经过切点的半径及圆周角定理是解题的关键.4.A解析:A【分析】经过圆心O 作正方形一边AB 的垂线OC ,垂足是C .连接OA ,则在直角△OAC 中,∠AOC=45°.OC 是边心距r ,OA 即半径R ,进而即可求解【详解】如图:作出正方形的边心距,连接正方形的一个顶点和中心可得到一直角三角形 在中心的直角三角形的角为360°÷4÷2=45°,∴内切圆的半径为2a ,外接圆的半径为22a , ∴::R r a22a :2a :a=2:1:2 故选A【点睛】本题主要考查正多边形的外接圆与内切圆的半径,掌握相关概念,作出图形,是解题的关键.5.D解析:D【分析】连接OA ,则OA=OB ,可得∠OBA=∠OAB ,再结合∠OBA=18°即可求得∠AOB=144°,再根据圆周角的性质即可求得∠C=72°.【详解】解:如图,连接OA ,∵点O 为ABC 的外心,∴OA=OB ,∴∠OBA=∠OAB ,又∵∠OBA=18°,∴∠OAB=∠OBA=18°,∴∠AOB=180°-∠OAB-∠OBA=144°,∴∠C=12∠AOB=72°, 故选:D .【点睛】本题考查了三角形的外心,圆周角定理,熟练掌握相关定义及性质是解决本题的关键. 6.D解析:D【分析】如图,连接OQ ,作CH ⊥AB 于H .首先证明点Q 的运动轨迹为以AO 为直径的⊙K ,连接CK ,当点Q 在CK 的延长线上时,CQ 的值最大,利用勾股定理求出CK 即可解决问题;【详解】如图,连接OQ ,作CH ⊥AB 于H .∵AQ =QP ,∴OQ ⊥PA ,∴∠AQO =90°,∴点Q 的运动轨迹为以AO 为直径的⊙K ,连接CK ,当点Q 在CK 的延长线上时,CQ 的值最大,∵120AOC ∠=︒∴∠COH =60°在Rt △OCH 中,∵∠COH =60°,OC=12AB=3, ∴OH =12OC =32,CH 2233OC OH +=,在Rt△CKH中,CK=∴CQ的最大值为32故选:D.【点睛】本题考查圆周角定理、轨迹、勾股定理、点与圆的位置关系等知识,解题的关键是正确寻找点Q的运动轨迹,学会构造辅助圆解决问题,属于中考填空题中的压轴题.7.B解析:B【分析】先根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式得到12•2π•5•OA=65π,可求出OA=13,然后利用勾股定理计算圆锥的高.【详解】解:根据题意得12•2π•5•OA=65π,解得:OA=13,所以圆锥的高12.故选:B.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.8.C解析:C【分析】利用圆周角定理求出∠BOC即可解决问题.【详解】解:∵∠BOC=2∠BDC,∠BDC=21°,∴∠BOC=42°,∴∠AOC=180°-42°=138°.故选:C.【点睛】本题考查了圆周角定理,解题的关键是熟练掌握圆周角定理,属于中考常考题型.9.C解析:C【分析】根据圆周角定理得出∠D=∠B,得出△ABC是等腰直角三角形,进而解答即可.【详解】∵AC=AC,∴∠D=∠B,∵∠BAC=∠D,∴∠B=∠BAC,∴△ABC是等腰三角形,∵AB是直径,∴△ABC是等腰直角三角形,∵AC=5,∴AB=52,故选:C.【点睛】本题考查了圆周角定理,等腰直角三角形的判定和性质,勾股定理的应用,关键是根据圆周角定理得出∠D=∠B.10.C解析:C【分析】+的最小值,进而求解即可.利用菱形的性质及相切两圆的性质得出P与D重合时PE PF【详解】解:作点A关于直线CD的对称点A´,连接BD,DA´,∵四边形ABCD是菱形,∴AB=AD,∵∠BAD=60°,∴△ABD是等边三角形,∴∠ADB=60°,∵∠BDC=∠ADB=60°,∴∠ADN =60°,∴∠A´DN=60°,∴∠ADB+∠ADA´=180°,∴A´,D,B在一条直线上,+最小,由此可得:当点P和点D重合,E点在AD上,F点在BD上,此时PE PF∵在菱形ABCD 中,∠A=60°,∴AB=AD ,则△ABD 为等边三角形,∴BD=AB=AD=3,∵⊙A ,⊙B 的半径分别为2和1,∴PE=1,DF=2,∴PE PF +的最小值为3.故选C .【点睛】本题考查了菱形的性质,等边三角形的性质,点与圆的位置关系等知识.根据题意得出点P 位置是解题的关键.11.D解析:D【分析】连结BC ,则由已知可以求得∠BCD 与∠CBD 的度数,最后由三角形的内角和定理可以得到∠D 的度数.【详解】解:如图,连结BC ,则由弦切角定理可知:∠ABC=∠ACE=35°,∵DB 与⊙O 相切,∴∠CBD=90°-∠ABC=90°-35°=55°,∵AB 是⊙的直径,∴∠ACB=90°,∴∠BCD=180°-∠ACE-∠90°=55°,∴∠D=180°-∠BCD-∠CBD=70°,故选D .【点睛】本题考查圆的应用,灵活运用直线与圆相切的性质求解是解题关键.12.C解析:C【分析】延长DO 交AB 于点H ,连接OB ,证明△△AOD BOD ≅,OD 是AOB ∠的角平分线,求得290345∠=︒-∠=︒,进行求解即可;【详解】延长DO 交AB 于点H ,连接OB ,∵四边形ABCD 是平行四边形,45C ∠=︒,∴345∠=︒,∵DA DB =,OA OB =,∴△△AOD BOD ≅,∴OD 是AOB ∠的角平分线,又∵AO BO =,∴DH AB ⊥,∴290345∠=︒-∠=︒,又∵221∠=∠,∴18045135AOD ∠=︒-︒=︒.故选:C .【点睛】本题主要考查了与圆有关的计算,结合全等三角形的性质和角平分线的性质计算即可.二、填空题13.12π60π【分析】首先根据底面半径求得圆锥的底面的周长从而求得扇形的弧长和面积;【详解】∵扇形的半径为10cm 做成的圆锥形帽子的高为8cm ∴圆锥的底面半径为∴底面周长为∴这张扇形纸板的弧长是扇形的解析:12π 60π【分析】首先根据底面半径求得圆锥的底面的周长,从而求得扇形的弧长和面积;【详解】∵扇形的半径为10cm ,做成的圆锥形帽子的高为8cm ,∴221086-=,∴底面周长为2612cm ππ⨯=,∴这张扇形纸板的弧长是12cm π, 扇形的面积为21110126022lr cm ππ=⨯⨯=. 故答案是:12π;60π.【点睛】本题主要考查了扇形弧长计算和面积计算,准确分析计算是解题的关键.14.125【分析】根据三角形内角和性质结合题意可计算得的值;根据内切圆的性质分析可计算得的值从而完成求解【详解】∵∠A =70°∴∵⊙O 是△ABC 的内切圆∴∴∴故答案为:125【点睛】本题考查了三角形内角解析:125【分析】根据三角形内角和性质,结合题意,可计算得ABC ACB ∠+∠的值;根据内切圆的性质分析,可计算得OBC OCB ∠+∠的值,从而完成求解.【详解】∵∠A =70°∴180110ABC ACB A ∠+∠=-∠=∵⊙O 是△ABC 的内切圆 ∴12OBC ABC ∠=∠,12OCB ACB ∠=∠ ∴11111055222OBC OCB ABC ACB ∠+∠=∠+∠=⨯= ∴180********BOC OBC OCB ∠=-∠-∠=-=故答案为:125.【点睛】本题考查了三角形内角和、三角形内切圆的知识;解题的关键是熟练掌握三角形内角和、三角形内切圆的性质,从而完成求解.15.12【分析】根据垂径定理求出AC=5dm 再根据勾股定理求出OC 即可【详解】∵OC ⊥AB ∴AC=5dm 在Rt △AOC 中∴OC==12dm 故答案为:12【点睛】此题考查垂径定理勾股定理熟记垂径定理是解题解析:12【分析】根据垂径定理求出AC=5dm ,再根据勾股定理求出OC 即可.【详解】∵OC ⊥AB ,10dm AB =,∴AC=5dm ,在Rt △AOC 中,13dm OA =,∴=,故答案为:12【点睛】此题考查垂径定理,勾股定理,熟记垂径定理是解题的关键.16.【分析】先根据可求得进而可求得再利用弧长公式计算即可求得答案【详解】解:∵∴∴∵∴∴的长为故答案为:【点睛】本题考查了圆周角定理弧长公式的应用熟练掌握圆周角定理弧长公式是解决本题的关键 解析:43π 【分析】先根据30BAC ∠=︒可求得260BOC BAC ∠=∠=︒,进而可求得180120AOC BOC ∠=︒-∠=︒,再利用弧长公式计算即可求得答案.【详解】解:∵30BAC ∠=︒,∴260BOC BAC ∠=∠=︒,∴180120AOC BOC ∠=︒-∠=︒,∵4AB =, ∴122AO AB ==, ∴AC 的长为120241803ππ⋅⋅=, 故答案为:43π. 【点睛】本题考查了圆周角定理,弧长公式的应用,熟练掌握圆周角定理,弧长公式是解决本题的关键.17.【分析】直接根据圆周角定理即可得出结论【详解】解:∵∠ACB 与∠AOB 是同弧所对的圆周角与圆心角∠ACB=50°∴∠AOB=100°故答案是:100°【点睛】本题考查的是圆周角定理熟知在同圆或等圆中解析:100【分析】直接根据圆周角定理即可得出结论.【详解】解:∵∠ACB 与∠AOB 是同弧所对的圆周角与圆心角,∠ACB=50°,∴∠AOB=100°.故答案是:100°.【点睛】本题考查的是圆周角定理,熟知在同圆或等圆中,一条弧所对的圆周角等于这条弧所对的圆心角的一半是解答此题的关键.18.相交【分析】根据勾股定理作于点则的长即为圆心到的距离利用等积法求出的长与半径比较大小再作判断【详解】解:如图作于点∵的两条直角边斜边即半径是直线与圆相交【点睛】此题考查的是勾股定理直线与圆的位置关系 解析:相交【分析】根据勾股定理,5AB =.作CD AB ⊥于点D ,则CD 的长即为圆心C 到AB 的距离.利用等积法求出CD 的长,与半径比较大小,再作判断.【详解】解: 如图, 作CD AB ⊥于点D .∵Rt ABC 的两条直角边3BC =,4AC =,∴斜边5AB =. 1122ABC S AC BC AB CD ∆==,即 512CD ,2.4CD .半径是2.5 2.4>, ∴直线与圆C 相交 .【点睛】此题考查的是勾股定理,直线与圆的位置关系,熟悉相关性质是解题的关键.19.相切【分析】先解一元二次方程求出m 的值再根据圆与直线的位置关系即可得【详解】由得:是圆心O 到直线的距离又满足方程的半径为3与直线的位置关系是相切故答案为:相切【点睛】本题考查了解一元二次方程圆与直线 解析:相切【分析】先解一元二次方程求出m 的值,再根据圆与直线的位置关系即可得.【详解】由290x 得:123,3x x ==-,m 是圆心O 到直线l 的距离,0m ∴≥,又m 满足方程290x ,3m ∴=,O 的半径为3,O ∴与直线l 的位置关系是相切,故答案为:相切.【点睛】本题考查了解一元二次方程、圆与直线的位置关系、点到直线的距离,熟练掌握圆与直线的位置关系是解题关键.20.30【分析】结合题意根据弧长计算公式计算得弧长对应圆心角;再结合扇形面积公式计算即可得到答案【详解】∵扇形的半径为6cm 弧长为10cm ∴弧长对应的圆心角n 为:∴扇形面积为:故答案为:30【点睛】本题解析:302cm【分析】结合题意,根据弧长计算公式,计算得弧长对应圆心角;再结合扇形面积公式计算,即可得到答案.【详解】∵扇形的半径为6cm ,弧长为10cm∴弧长对应的圆心角n 为:101803006ππ⨯=⨯ ∴扇形面积为:263003630360360n πππ⨯⨯=⨯=2cm 故答案为:302cm .【点睛】本题考查了弧长、扇形面积计算的知识;解题的关键是熟练掌握弧长、扇形的性质,从而完成求解.三、解答题21.(1)8AB =;(2)见解析【分析】(1)由DE ⊥AB ,得∠OCA =90°,OC =3,OA =5,通过勾股定理即可求出AC ;由DE 是⊙O 的直径,所以DE 平分AB ,得到AB =2AC ,即可得到AB ;(2)由OA =OE ,得∠EAO =∠E ,而直径DE ⊥AB ,则AD BD =,所以∠E =∠BAD ,由此得到∠EAO =∠BAD .【详解】(1)∵DE ⊥AB∴∠OCA=90°,则OC 2+AC 2=OA 2又∵OC =3,OA =5,∴AC=4,∵DE 是⊙O 的直径,且DE ⊥AB ,∴AB =2AC=8(2)证明∵ EO=AO ,∴∠E=∠EAO又∵DE 是⊙O 的直径,且DE ⊥AB ,∴AD BD =,∴∠E=∠BAD∴∠EAO =∠BAD .【点睛】本题考查了圆周角定理.在同圆或等圆中,同弧和等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半.同时考查了垂径定理以及勾股定理.22.(1)答案见解析;(2)134π. 【分析】(1)根据旋转要求找出A′,B′ 点连接即可.(2)根据旋转知道OA 扫过的面积即为以OA 为半径的圆的面积的四分之一,计算即可.【详解】(1)(2)∵OA 扫过的面积即为以OA 为半径的圆的面积的四分之一, ∴根据点A 的坐标为 (−3,2) ,点B 的坐标为 (0,2) ,求得OA 2=13,则以OA 为半径的圆的面积为13π,∴OA 扫过的面积为:134π. 【点睛】此题考查了旋转过程中图形及坐标的变化,难度一般.23.(1)见解析;(2)2【分析】(1)连接OD ,根据角平分线的定义得到∠BAD=∠DAE ,根据等腰三角形的性质得到∠ODA=∠OAD ,由垂直的定义得到∠AEP=90°,根据切线的判定定理即可得到结论; (2)连接BD ,根据角平分线的定义得到∠BAD=∠DAE=30°,推出AB=2BD ,设BD=x ,则AB=2x ,根据勾股定理即可得到结论.【详解】(1)证明:连接OD ,∵AD平分∠BAC,∴∠BAD=∠DAE,∵OA=OD,∴∠ODA=∠OAD,∴∠ODA=∠DAE,∴OD∥AE,∵AC⊥PD,∴∠AEP=90°,∴∠ODP=∠AEP=90°,∴OD⊥PE,∵OD是⊙O的半径,∴PD是⊙O的切线;(2)解:连接BD,∵AD平分∠BAC,∠BAC=60°,∴∠BAD=∠DAE=30°,∵AC⊥PE,3∴AD=2DE=23∵AB为⊙O的直径,∴∠ADB=90°,∴AB=2BD,设BD=x,则AB=2x,∵AD2+BD2=AB2,∴()222+=(232x x∴BD=2,AB=4,∴AO=2,∴⊙O的半径为2.【点睛】本题考查了切线的判定和性质,勾股定理,角平分线的定义,圆周角定理,含30度角的直角三角形的性质,正确的作出辅助线是解题的关键.24.45π 【分析】如图(见解析),先根据圆的切线的性质可得,OM AB ON AE ⊥⊥,再根据正五边形的内角和可得108A ∠=︒,然后根据四边形的内角和可得72MON ∠=︒,最后弧长公式即可得.【详解】如图:连接OM ,ON ,∵O 与正五边形ABCDE 的边AB 、AE 相切于点M 、N ,∴,OM AB ON AE ⊥⊥,90AMO ANO ∴∠=∠=︒,∵正五边形的每个内角为(52)1801085-⨯︒=︒, 108A ∴∠=︒,∴在四边形AMON 中,36072AMO ANO A MON ∠-∠=-∠∠︒-=︒,∵O 的半径为2,∴劣弧MN 的长度为72241805ππ⨯=.【点睛】本题考查了正五边形的内角和、圆的切线的性质、弧长公式等知识点,熟练掌握正五边形的内角和是解题关键.25.CD=CE .见解析.【分析】由题意易得OD=OE ,由等弧所对的圆心角相等可得DOC EOC ∠=∠,进而由全等三角形的判定证得△CDO ≌△CEO ,进而求证结论.【详解】CD=CE .∵ D 、E 分别是OA 、OB 的中点,∴12OD OA ,12OE OB =, ∴OD=OE ,∵AC CB =.∴DOC EOC ∠=∠,又∵OC=OC ,∴△CDO ≌△CEO ,∴CD=CE .【点睛】本题主要考查圆圆周角定理、全等三角形的判定和性质,解题的关键是由等弧所对的圆心角相等求得DOC EOC ∠=∠.26.(1)见解析;(2)AD =3)理由见解析.【分析】(1)根据圆周角定理及平行线的性质不难求解;(2)根据题意证明ABD ADE ∼,列出比例式即可求解;(3)要使DE 是圆的切线,那么D 就是切点,AD ⊥DE ,又根据AD 过圆心O ,BC ∥ED ,根据垂径定理可得出D 应是弧BC 的中点.【详解】(1)在ABC 中,∵AB AC =,∴ABC C ∠=∠.∵//DE BC ,∴ABC E ∠=∠,∴E C ∠=∠.又∵ADB C ∠=∠,∴ADB E ∠=∠.(2)解:∵ABC AED ∠=∠,A ABC CB =∠∠,ADB ACB ∠=∠,∴ADB E ∠=∠,BAD BAD ∠=∠,∴ABD ADE ∼, ∴AB AD AD AE=, 又6AB =,3BE =,∴AD =.(3)当点D 是弧BC 的中点时,DE 是O 的切线. ∵当点D 是弧BC 的中点时,AD BC ⊥,且AD 过圆心O , 又∵//DE BC ,∴AD ED ⊥.∴DE 是O 的切线. 【点睛】本题主要考查了圆周角定理,切线的判定,平行线的性质,垂径定理相似三角形的判定与性质等知识点,正确运用好圆心角,弧,弦的关系是解题的关键.。
人教版数学九年级上册周周测(含解析)第四周
第四周1.抛物线2362y x x =-++的对称轴是( ) A.直线2x = B.直线2x =-C.直线1x =D.直线1x =-2.已知抛物线2114y x =+具有如下性质:该抛物线上任意一点到定点(0,2)F 的距离与到x 轴的距离始终相等.如图,点M 的坐标为,P 是抛物线2114y x =+上一个动点,则PM F 的周长的最小值是( )A.3B.4C.5D.63.若抛物线经过(0,1),(1,0)-,(1,0)三点,则此抛物线的解析式为( ) A.21y x =+B.21y x =-C.21y x =-+D.21y x =--4.一次函数y abx c =+与二次函数2y ax bx c =++在同一平面直角坐标系中的图象可能是( )A. B.C. D.5.已知点()13,A y ,2(4,)B y ,()33,C y -均在抛物线224y x x m =-+上,下列说法中正确的是( ) A.321y y y <<B.213y y y <<C.312y y y <<D.123y y y <<6.已知点(,2018),(,2018)M m N n 是二次函数22017y ax bx =++图像上的两个不同的点,则当x m n =+时,其函数值y =( )A.2019B.2018C.2017D.20167.已知函数2y ax bx c =++的图象如图所示,则|||||2|a b c a b c a b +++-+++=( )A.23a b +B.2c b -C.2a b -D.2b c -8.已知二次函数2(0)y ax bx c a =++≠的部分图象如图所示,对称轴为32x =,且经过点(1,0)-.下列结论:①30a b +=;②若点11(,)2y ,()23,y 是抛物线上的两点,则12y y <;③1030b c -=;④若y c ≤,则03x ≤≤.其中正确的有( )A.1个B.2个C.3个D.4个9.在平面直角坐标系xOy 中,我们把对称轴相同的抛物线叫做同轴抛物线.已知抛物线26y x x =-+的顶点为M ,它的某条同轴抛物线的顶点为N ,且10MN =,那么点N 的坐标是____.10.如图,抛物线223y x x =+-与x 轴交于A ,B 两点,与y 轴交于点C ,点P 是抛物线对称轴上任意一点,若点D ,E ,F 分别是BC ,BP ,PC 的中点,连接DE ,DF ,则DE DF +的最小值为___________.11.如图,对于抛物线211y x x =-++,2221y x x =-++,2331y x x =-++,给出下列结论: ①这三条抛物线都经过点(0,1)C ;②抛物线3y 的对称轴可由抛物线1y ,的对称轴向右平移1个单位而得到; ③这三条抛物线的顶点在同一条直线上;④这三条抛物线与直线1y =的交点中,相邻图两点之间的距离相等.其中正确结论的序号是________.12.抛物线213y x bx c =-++经过点A 和点(0,3)B ,且这个抛物线的对称轴为直线l ,顶点为C .(1)求抛物线的解析式. (2)连接AB 、AC 、BC ,求ABC 的面积.答案以及解析1.答案:C 解析:223623(1)5,y x x x =-++=--+∴抛物线的对称轴为直线1x =.2.答案:C解析:过点M 作ME x ⊥轴于点E ,交抛物线2114y x =+于点P ,此时PM F 的周长最小,(0,2)F 、M ,3ME ∴=,2FM ==,PMF ∴周长的最小值325ME FM =+=+=.故选C.3.答案:C解析:设抛物线解析式为(1)(1)y a x x =+-.把(0,1)代入得1(1)1a ⨯⨯-=,解得1a =-,所以抛物线的解析式为(1)(1)y x x =-+⋅-,即21y x =-+.故选C. 4.答案:B解析:A 选项,由抛物线可知,0a >,0b <,0c >,则0ab <,由直线可知,0ab >,0c >,故本选项不合题意;B 选项,由抛物线可知,0a <,0b <,0c >,则0ab >,由直线可知,0ab >,0c >,故本选项符合题意;C 选项,由抛物线可知,0a >,0b <,0c <,则0ab <,由直线可知,0ab >,0c <,故本选项不合题意;D 选项,由抛物线可知,0a <,0b >,0c >,则0ab <,由直线可知,0ab <,0c <,故本选项不合题意.故选B. 5.答案:D解析:抛物线224y x x m =-+,∴抛物线的开口向上,对称轴是直线4122x -=-=⨯,∴抛物线上的点离对称轴越远,对应的函数值就越大.点()33,C y -离对称轴最远,点()13,A y 离对称轴最近,123y y y ∴<<.故选D.6.答案:C解析:当x m =和x n =时,y 的值相等,22b m n x a +∴=-=,,bm n a∴+=-∴当x m n =+时,2()()20172017b by a b a a=-+-+=.故选C.7.答案:C解析:由图可知,0,01,0,02ba c abc a><-<=++<,所以20,0,0a b a b b >->+<<,则||||a b c a b c +++-++|2|22a b a b a b a b a b +=--+-++=-.故选C.8.答案:B解析:对称轴322b x a =-=,3b a ∴=-,30a b ∴+=,①正确;抛物线开口向上,点11,2y ⎛⎫ ⎪⎝⎭到对称轴距离大于点()23,y 的距离,12y y ∴>,故②错误;经过点(1,0)-,0a b c ∴-+=,对称轴322b x a =-=,13a b ∴=-,103b bc ∴--+=,34c b ∴=,430b c ∴-=,故③错误;对称轴32x =,∴点(0,)c 的对称点为(3,)c ,开口向上,y c ∴≤时,03x ≤≤.故④正确;故选:B. 9.答案:(3,-1)或(3,19)解析:抛物线226(3)9,y x x x =-+=--+∴顶点M 的坐标为(3,9).当点N 在点M 的下方时,10MN =,∴点N 的坐标为(3,-1);当点N 在点M 的上方时,10MN =,∴点N 的坐标为(3,19).故答案为(3,-1)或(3,19).10.解析:连接AC ,交对称轴于点P ,则此时PC PB +最小,点D ,E ,F 分别是BC ,BP ,PC 的中点,12DE PC ∴=,12DF PB =-,抛物线223y x x =+-与x 轴交于A ,B 两点,由2023x x =+-,解得13x =-,21x =,(3,0)A ∴-,(1,0)B .则3OA =.当0x =时,3y =-,(0,3)C ∴-,故3CO =,AC PB PC ∴=+=DE DF +的最小值为2.11.答案:①②④解析:①当0x =时,分别代入抛物线1y ,2y ,3y ,得1231y y y ===,①正确. ②抛物线211y x x =-++,抛物线2331y x x =-++的对称轴分别为直线12x =,直线32x =, 直线12x =向右平移1个单位得到直线32x =,②正确. ③抛物线22115124y x x x ⎛⎫=-++=--+ ⎪⎝⎭,顶点坐标为15,24⎛⎫⎪⎝⎭;抛物线22221(1)2y x x x =-++=--+,顶点坐标为(1,2); 抛物线2233133124y x x x ⎛⎫=-++=--+ ⎪⎝⎭,顶点半标为313,24⎛⎫⎪⎝⎭,∴顶点不在同一条直线上,③错误.④点(0,1)关于三条抛物线对称轴的对称点分别是(1,1),(2,1),(3,1),∴这三条抛物线与直线1y =的交点中,相邻两点之间的距离都是1,④正确.故填①②④.12.答案:解:(1)抛物线213y x bx c =-++经过A 、(0,3)B ,90,3,c c ⎧-++=⎪∴⎨=⎪⎩解得b =.∴抛物线的解析式为2133y x =-++.(2)由(1)知,抛物线的对称轴为直线x把x =2133y x =-+,得4y =,则点C 的坐标为.设线段AB 所在直线为y kx b '=+,将点A 、(0,3)B 分别代入,得到直线AB 的解析式为3y x =+. 设抛物线的对称轴l 与直线AB 交于点D ,l 与x 轴交于点E .设点D 的坐标为)m ,代入3y =+,解得2m =.∴点D 的坐标为,2CD CE DE ∴=-=.过点B 作BF l ⊥于点F ,则BF OE =,BF AE OE AE OA ∴+=+==1122ABCBCDACDSSSCD BF CD AE ∴=+=⋅+⋅ 11()222CD BF AE =+=⨯⨯=。
江苏省南京2022-2023学年九年级下学期第四周数学周测(含答案)
2022-2023学年南京九下第四周周测一.选择题(共6小题)1.2021年3月15日,南京市鸡鸣寺樱花大道约有61800人前来赏樱,用科学记数法表示61800是( )A.0.618×105B.6.18×104C.61.8×103D.618×1022.下列计算中,结果是a6的是( )A.a4+a4B.a2•a3C.(a3)2D.a10÷a23.实数a,b在数轴上对应的点的位置如图所示,下列结论正确的是( )A.a>b B.﹣a<b C.a>﹣b D.|a|>|b|4.如图,点A,B,C在⊙O上,BC∥OA,∠A=20°,则∠B的度数为( )A.10°B.20°C.40°D.50°5.如果将Rt△ABC各边的长度都扩大到原来的2倍,那么锐角∠A的正切值( )A.扩大到原来的2倍B.扩大到原来的4倍C.没有变化D.缩小到原来的一半6.已知一次函数y=kx+b与正比例函数y=kbx(b为常数,kb≠0),则两个函数的图象在同一直角坐标系中可能是( )A.B.C.D.二.填空题(共10小题)7.13的平方根是 ;9的算术平方根是 .8.﹣3的相反数是 ,﹣2的倒数是 .9.若式子在实数范围内有意义,则x的取值范围是 .10.把多项式2x2﹣2分解因式的结果是 .11.计算的结果是 .12.设x1,x2是关于x的方程x2+4x+m=0的两个根,且x1+x2﹣x1x2=2,则m = .13.如图,圆锥的底面圆的半径是3,其母线长是9,则圆锥侧面展开图的扇形的圆心角度数是 °.14.若二次函数y=x2+4x+m的图象全部在x轴的上方,则m的取值范围是 .15.已知A为直线y=﹣2x+2上一点,且点A到两坐标轴距离相等,则点A的坐标是 .16.如图,在矩形ABCD中,AB=4,AD=3,M,N分别是BC,DC边上的点,若⊙O经过点A,且与BC,DC分别相切于点M,N,则⊙O的半径为 .三.解答题(共8小题)17.计算:(1)(2)(3).18.先化简,再求代数式(﹣)÷的值,其中x=2cos45°+1.19.(1)抛掷一枚质地均匀的硬币1次,抛掷的结果是正面朝上的概率是 .(2)抛掷一枚质地均匀的硬币2次,2次抛掷的结果都是正面朝上的概率是多少?20.如图,AB为⊙O的弦,OC⊥OA交AB于点P,交过点B的直线于点C,且CB=CP.(1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若sin A=,OA=8,求CB的长.21.如图,已知线段AB,用两种不同的方法作一个含30°角的直角三角形ABC,使其斜边为AB(用直尺和圆规作图,不写作法,保留作图痕迹).22.如图,某电影院的观众席成“阶梯状”,每一级台阶的水平宽度都为1m,垂直高度都为0.3m.测得在C点的仰角∠ACE=42°,测得在D点的仰角∠ADF=35°.求银幕AB的高度.(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.7,sin42°≈0.67,cos42°≈0.74,tan42°≈0.9)23.小明从A地匀速前往B地,同时小亮从B地匀速前往A地,两人离B地的路程y(m)与行驶时间x(min)之间的函数图象如图所示.(1)A地与B地的距离为 m,小明的速度是 m/min;(2)求出点P的坐标,并解释其实际意义;(3)设两人之间的距离s(m),在图②中,画出s与x的函数图象(请标出必要的数据);(4)当两人之间的距离小于3000m时,则x的取值范围是 .24.如图,在△ABC中,D是BC边上的点,过点D作DE⊥BC交AC边于点E,垂足为D,过点D作DF⊥AB,垂足为F,连接EF,经过点D,E,F的⊙O与边BC另一个公共点为G.(1)连接GF,求证△BGF∽△DEF;(2)若AB=AC,BC=4,tan C=2,①当CD=1.5时,求⊙O的半径;②当点D在BC边上运动时,⊙O半径的最小值为 .2022-2023学年南京一中实验学校九下第四周周测卷参考答案与试题解析一.选择题(共6小题)1.2021年3月15日,南京市鸡鸣寺樱花大道约有61800人前来赏樱,用科学记数法表示61800是( )A.0.618×105B.6.18×104C.61.8×103D.618×102【解答】解:61800=6.18×104.故选:B.2.下列计算中,结果是a6的是( )A.a4+a4B.a2•a3C.(a3)2D.a10÷a2【解答】解:A、a4+a4=2a4,故A不符合题意;B、a2•a3=a5,故B不符合题意;C、(a3)2=a6,故C符合题意;D、a10÷a2=a8,故D不符合题意;故选:C.3.实数a,b在数轴上对应的点的位置如图所示,下列结论正确的是( )A.a>b B.﹣a<b C.a>﹣b D.|a|>|b|【解答】解:由数轴可得a<0<b,|a|>|b|,﹣a>b,a<﹣b.故选:D.4.如图,点A,B,C在⊙O上,BC∥OA,∠A=20°,则∠B的度数为( )A.10°B.20°C.40°D.50°【解答】解:如图,∵BC∥OA,∠A=20°,∴∠A=∠C=20°,∠AOB=∠B,∵=,∴∠AOB=2∠C=40°.∴∠B=∠AOB=40°.故选:C.5.如果将Rt△ABC各边的长度都扩大到原来的2倍,那么锐角∠A的正切值( )A.扩大到原来的2倍B.扩大到原来的4倍C.没有变化D.缩小到原来的一半【解答】解:在Rt△ABC,tan A=.当各边长度都扩大到原来的2倍时,tan A==.故选:C.6.已知一次函数y=kx+b与正比例函数y=kbx(b为常数,kb≠0),则两个函数的图象在同一直角坐标系中可能是( )A.B.C.D.【解答】解:根据一次函数的图象分析可得:A、由一次函数y=kx+b图象可知k<0,b>0,kb<0;正比例函数y=kbx的图象可知kb>0,矛盾,故此选项错误;B、由一次函数y=kx+b图象可知k>0,b<0;即kb<0,与正比例函数y=kbx的图象可知kb>0,矛盾,故此选项错误;C、由一次函数y=kx+b图象可知k>0,b>0;即kb>0,与正比例函数y=kbx的图象可知kb<0,矛盾,故此选项错误;D、由一次函数y=kx+b图象可知k<0,b>0;即kb<0,与正比例函数y=kbx的图象可知kb<0,一致,故此选项正确;故选:D.二.填空题(共10小题)7.13的平方根是 ± ;9的算术平方根是 3 .【解答】解:13的平方根是±,9的算术平方根是3.故答案为:±,3.8.﹣3的相反数是 3 ,﹣2的倒数是 ﹣ .【解答】解:由相反数的定义可知,﹣3的相反数是3,因为﹣2×=1,所以﹣2的倒数是﹣,故答案为:3,﹣.9.若式子在实数范围内有意义,则x的取值范围是 x≥2 .【解答】解:由题意,得x﹣2≥0,解得x≥2,故答案为:x≥2.10.把多项式2x2﹣2分解因式的结果是 2(x+1)(x﹣1) .【解答】解:2x2﹣2=2(x2﹣1)=2(x+1)(x﹣1)故答案为:2(x+1)(x﹣1).11.计算的结果是 .【解答】解:原式===3.故答案为:3.12.设x1,x2是关于x的方程x2+4x+m=0的两个根,且x1+x2﹣x1x2=2,则m= ﹣6 .【解答】解:∵设x1,x2是关于x的方程x2+4x+m=0的两个根,∴x1+x2=﹣4,x1•x2=m,∴x1+x2﹣x1•x2=﹣4﹣m=2.∴m=﹣6,故答案为:﹣6.13.如图,圆锥的底面圆的半径是3,其母线长是9,则圆锥侧面展开图的扇形的圆心角度数是 120 °.【解答】解:圆锥底面周长=2×3π=6π,∴扇形的圆心角的度数=6π×180÷9π=120°.故答案为:120.14.若二次函数y=x2+4x+m的图象全部在x轴的上方,则m的取值范围是 m>16 .【解答】解:∵抛物线全部在x轴上方,a=>0,∴Δ<0,即△=16﹣m<0,∴m>16.故答案为:m>16.15.已知A为直线y=﹣2x+2上一点,且点A到两坐标轴距离相等,则点A的坐标是 (,)或(2,﹣2) .【解答】解:当点A在第一象限时,y=x,∴﹣2x+2=x,解得:x=,∴此时点A的坐标为(,);当点A在第二或第四象限时,y=﹣x,∴﹣2x+2=﹣x,解得:x=2,∴此时点A的坐标为(2,﹣2).综上所述,点A的坐标是(,)或(2,﹣2).故答案为:(,)或(2,﹣2).16.如图,在矩形ABCD中,AB=4,AD=3,M,N分别是BC,DC边上的点,若⊙O经过点A,且与BC,DC分别相切于点M,N,则⊙O的半径为 7﹣2 .【解答】解:连接OA、ON、OM,延长NO交AB于E,如图,设⊙O的半径为r,∵⊙O与BC,DC分别相切于点M,N,∴OM⊥BC,ON⊥CD,∵AB∥CD,∴NE⊥AB,∵∠B=∠C=90°,∴四边形BMOE、四边形OMCN都为矩形,∴BE=OM=r,OE=BM,CM=ON=r,∴OE=BM=BC﹣MC=3﹣r,AE=AB﹣BE=4﹣r,在Rt△AOE中,(3﹣r)2+(4﹣r)2=r2,整理得r2﹣14r+25=0,解得r1=7﹣2,r2=7+2(舍去),∴⊙O的半径为7﹣2.故答案为7﹣2.三.解答题(共8小题)17.计算:(1)(2)(3).【解答】解:(1)原式=﹣(3﹣1)=﹣2=3﹣﹣2=1﹣;(2)原式=﹣2﹣6×=3﹣6﹣3=﹣6;(3)原式=9﹣(﹣1)﹣3+1=9﹣+1﹣3+1=8﹣.18.先化简,再求代数式(﹣)÷的值,其中x=2cos45°+1.【解答】解:(﹣)÷===,当x=2cos45°+1=2×+1=+1时,原式==.19.(1)抛掷一枚质地均匀的硬币1次,抛掷的结果是正面朝上的概率是 .(2)抛掷一枚质地均匀的硬币2次,2次抛掷的结果都是正面朝上的概率是多少?【解答】解:(1)∵一枚硬币只有正反两面,∴抛掷一枚硬币,硬币落地后,正面朝上的概率是;故答案为:.(2)共有正反,正正,反正,反反4种可能,则2次抛掷的结果都是正面朝上的概率为.20.如图,AB为⊙O的弦,OC⊥OA交AB于点P,交过点B的直线于点C,且CB=CP.(1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若sin A=,OA=8,求CB的长.【解答】解:(1)直线BC与⊙O相切,理由:如图,连接OB,∵OA=OB,∴∠A=∠OBA,∵CP=CB,∴∠CPB=∠CBP,∵∠APO=∠CPB,∴∠APO=∠CBP,∵OC⊥OA,∴∠A+∠APO=90°,∴∠OBA+∠CBP=90°,∴∠OBC=90°,∵OB为半径,∴直线BC与⊙O相切;(2)在Rt△AOP中,sin A=,∵sin A=,∴设OP=x,则AP=5x,∵OP2+OA2=AP2,∴,解得:x=或﹣(不符合题意,舍去),∴OP=×=4,∵∠OBC=90°,∴BC2+OB2=OC2,∵CP=CB,OB=OA=8,∴BC2+82=(BC+4)2,解得:BC=6,∴CB的长为6.21.如图,已知线段AB,用两种不同的方法作一个含30°角的直角三角形ABC,使其斜边为AB(用直尺和圆规作图,不写作法,保留作图痕迹).【解答】解:如下图:△ABC即为所求.22.如图,某电影院的观众席成“阶梯状”,每一级台阶的水平宽度都为1m,垂直高度都为0.3m.测得在C点的仰角∠ACE=42°,测得在D点的仰角∠ADF=35°.求银幕AB的高度.(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.7,sin42°≈0.67,cos42°≈0.74,tan42°≈0.9)【解答】解:延长CE、DF交AB于H、G,由题意知,∠AGD=∠AHC=90°,在Rt△AGD中,∠ADG=35°,∴tan35°=,即DG=,在Rt△ACH中,∠ACH=42°,∴tan42°=,即CH=,∵AH=AG+GH,GH=0.3,∴CH=,∵DG﹣CH=1,∴﹣=1,∴﹣=1解得:AG=4.2,∴AB=AG+GH+BH=4.2+0.3+0.6=5.1.答:银幕AB的高度约为5.1m.23.小明从A地匀速前往B地,同时小亮从B地匀速前往A地,两人离B地的路程y(m)与行驶时间x(min)之间的函数图象如图所示.(1)A地与B地的距离为 3600 m,小明的速度是 120 m/min;(2)求出点P的坐标,并解释其实际意义;(3)设两人之间的距离s(m),在图②中,画出s与x的函数图象(请标出必要的数据);(4)当两人之间的距离小于3000m时,则x的取值范围是 <x< .【解答】解:(1)由图象知,A地与B地的距离为3600m,小明的速度为=120m/min,故答案为:3600,120;(2)如图①所示:设OC所在直线解析式y=kx,把(60,3600)代入解析得:3600=60k,解得k=60,∴OC所在直线解析式为y=60x;设DE所在直线的解析式为y=mx+n,把(0,3600),(30,0)代入解析式得:,解得,∴DE所在直线的解析式为y=﹣120x+3600;联立方程组得:,解得∴点P的坐标为(20,1200),点P的坐标实际意义为:出发20分钟时,两人在离B地1200米处相遇;(3)由(2)知,当x=20时,两人相遇s=0,当x=30时,小明到达B地,此时,两人相距(60+120)×10=1800(m),当x=60时,小亮到达A地,此时,两人相距3600m,两人之间的距离s与x的函数图象如图②所示:(4)相遇前两人之间的距离小于3000m时,则60x﹣(﹣120x+3600)<3000,解得x<,相遇后两人之间的距离小于3000m时,则﹣120x+3600﹣60x<3000,解得x>,∴两人之间的距离小于3000m时,x的取值范围是<x<,故答案为:<x<.24.如图,在△ABC中,D是BC边上的点,过点D作DE⊥BC交AC边于点E,垂足为D,过点D作DF⊥AB,垂足为F,连接EF,经过点D,E,F的⊙O与边BC另一个公共点为G.(1)连接GF,求证△BGF∽△DEF;(2)若AB=AC,BC=4,tan C=2,①当CD=1.5时,求⊙O的半径;②当点D在BC边上运动时,⊙O半径的最小值为 .【解答】解:(1)如图:∵DE⊥BC,DF⊥AB,∴∠EDB=∠BFD=90°,在Rt△BFD中,∠B+∠BDF=90°,∵∠EDF+∠BDF=∠EDB=90°,∴∠B=∠EDF,∵四边形EFGD是⊙O的内接四边形,∴∠FGB=∠FED,∴△BGF∽△DEF;(2)①连接EG,如图:∵AB=AC,∴∠B=∠C,∴tan B=tan C=2,Rt△EDC中,∠EDC=90°,∴tan C==2,∵DC=1.5,∴DE=2DC=3,Rt△BFD中,∠BFD=90°,∴tan B==2,∵△BGF∽△DEF,∴=,∴=2,∴BG=,∴GD=BC﹣BG﹣DC=1,Rt△GED中,∠GDE=90°,∴GD2+DE2=GE2,∴GE==,∵D在⊙O上,且∠GDE=90°,∴GE是⊙O的直径,∴r=GE=;②如图:设DC=x,同①的道理,∵tan C==2,∴DE=2x,∵tan B==tan C=2,且△BGF∽△DEF,有=,∴BG=x,∴GD=4﹣2x,Rt△GDE中,GD2+DE2=GE2,∴GE2=(4﹣2x)2+(2x)2=8x2﹣18x+16=8(x﹣1)2+8,∴当x=1时,GE2有最小值,最小值为8,∴GE的最小值为2,半径最小值是,故答案为:.。
(必考题)初中数学九年级数学上册第五单元《投影与视图》测试(有答案解析)(4)
一、选择题1.如图所示几何体的左视图正确的是()A.B.C.D.2.如图所示几何体的俯视图是()A.B.C.D.3.如图,在直角坐标系中,点P(2,2)是一个光源.木杆AB两端的坐标分别为(0,1),(3,1).则木杆AB在x轴上的投影长为()A.3 B.5 C.6 D.74.将如图的R t ABC绕直角边旋转一周,所得几何体的正投影是()A.直角三角形B.等腰三角形C.等边三角形D.圆5.用大小和形状完全相同的小正方体木块搭成一个几何体,使得它的正视图和俯视图如图所示,则搭成这样的一个几何体至少需要小正方体木块的个数为()A.13个B.16个C.19个D.22个6.如图所示的几何体是由5个相同的小正方体组成的,下列有关三视图面积的说法中正确的是()A.左视图面积最大B.俯视图面积最小C.左视图与主视图面积相等D.俯视图与主视图面积相等7.对于一个圆柱的三种视图,小明同学求出其中两种视图的面积分别为6和10,则该圆柱第三种视图的面积为()A.6 B.10 C.4 D.6或108.由m个相同的正方体组成一个立体图形,下面的图形分别是从正面和上面看它得到的平面图形,则m的最小值是()A.6 B.5 C.4 D.39.一个密封的圆柱体容器中装了一半的水,如果将该容器水平放置如图,那么稳定后的水面形状为().A.B.C.D.10.如图是某兴趣社制作的模型,则它的俯视图是()A.B.C.D.11.如图是一段空心的钢管,则它的主视图是()A.B.C.D.12.如图,下列关于物体的主视图画法正确的是()A.B.C.D.二、填空题13.如图,一个 5 ⨯ 5 ⨯ 5 的正方体,先在它的前后方向正中央开凿一个“十字形”的孔(打通),再在它的上下方向正中央也开凿一个“十字形”的孔(打通),最后在它的左右方向正中央开凿一个“十字形”的孔(打通),这样得到一个被凿空了的几何体,则凿掉部分的体积为_____.14.太阳光透过一个矩形玻璃窗户,照射在地面上,影子的形状可能是_____.(说出一种形状即可)15.由若干个相同的小立方体搭成的一个几何体的主视图和俯视图如图所示,俯视图的方格中的字母和数字表示该位置上小立方体的个数,则x=______,y=________.16.如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是_______.17.一个立体图形的三视图如图所示,这个立体图形的名称是__.18.如图,从一个棱长为4cm的正方体的一个顶点挖去一个棱长为1cm的正方体后,从任何角度所能看到的所有面的面积为_____.19.如图所示的几何体都是由棱长为1个单位的正方体摆成的,经计算可得第(1)个几何体的表面积为6个平方单位,第(2)个几何体的表面积为18个平方单位,第(3)个几何体的表面积是36个平方单位,…依次规律,则第(20)个几何体的表面积是______个平方单位.20.在如图所示的几何体中,其三视图中有三角形的是________.(填序号)三、解答题21.如图,正三棱柱的底面周长为18,截去一个底面周长为6的正三棱柱,求所得几何体的俯视图的周长.【答案】16【分析】依题意可得截去三棱柱底面三角形边长是2,进而可得所求几何体的俯视图是一个梯形,-=,据此计算即可.其上底是2,下底是6,两腰是624【详解】解:依题意可得截去三棱柱底面三角形边长是2,-=,所得几何体的俯视图是一个梯形,其上底是2,下底是6,两腰是624+++=.故周长是244616故答案为:16.【点睛】本题考查了常见的几何体和几何体的三视图,正确理解题意、掌握解答的方法是关键.22.如图是由若干个大小相同的小正方体搭成的几何体,请画出从正面、左面、上面看到的这个几何体的形状图.【答案】图见解析.【分析】根据几何体的三视图(主视图、左视图、俯视图)的定义即可得.【详解】画图如下:【点睛】本题考查了三视图,熟练掌握三视图的画法是解题关键.23.一个零件的主视图、左视图、俯视图如图所示(尺寸单位:厘米),求这个零件的表面积.【答案】900cm 2【分析】由题意可得这个零件是长方体,再根据长方体的表面积公式解答即可.【详解】解:由题意可得:这个零件是长方体,且这个零件的表面积=()2101221015212152900cm⨯⨯+⨯⨯+⨯⨯=.答:这个零件的表面积是900cm 2.【点睛】本题考查了几何体的三视图和长方体表面积的计算,正确理解题意、明确求解的方法是关键.24.画出下面几何体从三个方向看到的三种形状图.【答案】见解析【分析】从正面看,得到从左往右3列正方形的个数依次为1,3,2;从左面看得到从左往右2列正方形的个数依次为3,1;从上面看得到从左往右3列正方形的个数依次为1,2,1,依此画出图形即可.【详解】解:如图所示:.【点睛】此题主要考查了三视图的画法,注意三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形.25.仓库里有以下四种规格且数量足够多的长方形、正方形的铁片(单位:分米).从中选5块铁片,焊接成一个无盖的长方体(或正方体)铁盒(不浪费材料),甲型盒是由2块规格①,1块规格②和2块规格③焊接而成的铁盒,乙型盒是容积最小的铁盒.(1)甲型盒的容积为________立方分米;乙型盒的容积为________立方分米;(直接写出答案)(2)现取两个装满水的乙型盒,再将其内部所有的水都倒入一个水平放置的甲型盒,甲型盒中水的高度是多少分米?(铁片厚度忽略不计)【答案】(1)40,8;(2)甲型盒中水的高度是2分米【分析】(1)甲型盒是由2块规格①、1块规格②和2块规格③焊接而成的铁盒,可得一个长为2分米,宽为4分米,高为5分米的长方体,其中规格②为长方体的底,可求体积为40立方分米,乙型盒是容积最小,即长宽高最小,可得到长宽高都为2分米的正方体,体积为8立方分米,(2)甲盒的底面为长2分米,宽为4分米的长方形,根据体积相等,可求出高度.【详解】(1)因为甲型盒是由2块规格①,1块规格②和2块规格③焊接而成的,⨯⨯=(立方分米).所以甲型盒的容积为24540乙型盒容积最小,即长、宽、高最小,因此乙型盒为长、宽、高均为2分米的正方体,⨯⨯=(立方分米),容积为2228故答案为40,8.(2)甲型盒的底面积为248⨯=(平方分米),两个乙型盒中的水的体积为8216⨯=(立方分米),所以甲型盒内水的高度为1682÷=(分米).答:甲型盒中水的高度是2分米.【点睛】考查长方体、正方体的展开与折叠,长方体、正方体的体积的计算方法,掌握折叠后的长方体或正方体的棱长以及体积相等是解决问题的关键.26.学习投影后,小明、小颖利用灯光下自己的影子长度来测量一路灯的高度,并探究影子长度的变化规律.如图,在同一时间,身高为1.6m 的小明()AB 的影子BC 长是3m ,而小颖()EH 刚好在路灯灯泡的正下方H 点,并测得6m HB =.(1)请在图中画出形成影子的光线,并确定路灯灯泡所在的位置G ;(2)求路灯灯泡的垂直高度GH ;(3)如果小明沿线段BH 向小颖(点H )走去,当小明走到BH 中点B 1处时,请在图中画出此时小明的影长B 1C 1,并求B 1C 1的长;【答案】(1)见解析;(2)路灯灯泡的垂直高度GH 是4.8m ;(3)小明的影子11B C 的长是32m . 【分析】 (1)根据题意,连接CA ,HE 并延长相交于点G ,即为所求路灯灯泡的位置,作出图形即可;(2)根据题意得到△ABC ∽△GHC ,根据相似三角形的性质得到AB BC GH HC=,代入即可求出答案, (3)与(2)类似得到△111A B C ∽△GH 1C ,根据相似三角形的性质推出11111A B B C GH HC =,代入即可求出答案,连接G 1A 延长交HC 于点1C ,即得小明的影子.【详解】(1)如图,连接CA ,HE 并延长相交于点G ,即为所求路灯灯泡的位置,作出图形即可;(2)由题意得:易得△ABC ∽△GHC , ∴AB BC GH HC =, ∴ 1.636+3GH =, 解得:GH=4.8,答:路灯灯泡的垂直高度GH 是4.8m ;故答案为:4.8;(3)连接G 1A 延长交HC 于点1C ,则1B 1C 即为小明的影子,在(1)中作图即得,与(2)类似,易证△111A B C ∽△GH 1C , ∴11111A B B C GH HC =, 设11B C 长为xm ,1B 为HB 的中点, 则1.64.83x x =+, 解得:x=32, 即11B C =32m , 答:小明的影子11B C 的长是32m ; 故答案为:32. 【点睛】 本题主要考查了相似三角形的性质,相似三角形的应用,解一元一次方程等知识点的理解和掌握,把实际问题转化成数学问题是解此题的关键,题型较好,用的数学思想是转化的思想.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】找到从几何体的左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【详解】解:从几何体的左面看所得到的图形是:故选:A.【点睛】本题考查了简单几何体的三视图,关键是掌握左视图所看的位置.2.D解析:D【分析】直接找出从上面看到的图形即可.【详解】解:该几何体的俯视图为,故选:D.【点睛】本题考查几何体的三视图,注意看不到的边要用虚线表示出来.3.C解析:C【分析】利用中心投影,延长PA、PB分别交x轴于A′、B′,作PE⊥x轴于E,交AB于D,如图,证明△PAB∽△PA′B′,然后利用相似比可求出A'B'的长.【详解】延长PA、PB分别交x轴于A′、B′,作PE⊥x轴于E,交AB于D,如图∵P (2,2),A (0,1),B (3,1).∴PD =1,PE =2,AB =3,∵AB ∥A ′B ′,∴△PAB ∽△PA ′B ′, ∴AB AD A B AE ='',即312A B ='' ∴A ′B ′=6,故选:C .【点睛】 本题考查了中心投影和三角形相似,引出辅助线利用三角形相似的性质求解是本题的关键.4.B解析:B【分析】首先得到旋转后得到的几何体,找到从正面看所得到的图形即可.【详解】解:Rt △ABC 绕直角边AC 旋转一周,所得几何体是圆锥,而圆锥的正投影(主视图)是等腰三角形,故选:B .【点睛】本题考查了平行投影,解题的关键是掌握正投影的概念.5.A解析:A【分析】由几何体的正视图和俯视图,我们可以判断出这个几何体由一些相同的小正方体构成,其中根据俯视图我们可以判断该几何体共有7摞小正方体组成,然后根据主视图推算每摞小正方体的最少个数,即可得到答案.【详解】根据俯视图我们可以判断该几何体共有7摞小正方体组成,根据正视图,可得:左边2摞,最高层数为3,故小正方体最少有3+1=4个,中间2摞,最高层数为2,故小正方体最少有2+1=3个,右边3摞,最高层数为4,故小正方体最少有4+1+1=6个,故小正方体最少有13个.故选A .【点睛】本题主要考查几何体的三视图,掌握三视图的定义,是解题的关键.6.D解析:D【分析】利用视图的定义分别得出三视图进而求出其面积即可.【详解】解:如图所示:则俯视图与主视图面积相等.故选:D.【点睛】此题主要考查了简单组合体的三视图,正确把握三视图的定义是解题关键.7.D解析:D【分析】一个圆柱的三视图是圆和长方形,所以另外一种视图也是同样的长方形.【详解】一个圆柱的三视图是圆和长方形,所以另外一种视图也是同样的长方形,如果视图是长方形的面积是6,另外一种视图的面积也是6,如果视图是长方形的面积是10,另外一种视图的面积也是10.故选:D【点睛】考核知识点:三视图.理解圆柱体三视图特点是关键.8.C解析:C【分析】根据主视图和俯视图可先确定该几何体右侧只有一个正方体,再判断左侧可能的结果数即得答案.【详解】解:由主视图可知该几何体共两列,且左侧一列高两层,右侧一列高一层;由俯视图可知该几何体左侧两行,右侧一行,于是,可确定右侧只有一个小正方体,而左侧可能是一行单层一行两层,也可能两行都是两层.所以图中的小正方体最少4块,最多5块.故选:C.【点睛】本题主要考查了几何体的三视图和空间观念,熟练掌握几何体的三视图、把平面图形和立体图形有机结合是解答的关键.9.A解析:A【分析】根据垂直于圆柱底面的截面是矩形,可得答案.【详解】由水平面与圆柱的底面垂直,得水面的形状是长方形.故选:A.【点睛】本题考查了截几何体和认识立体图形.解题的关键是能够正确认识立体图形,明确垂直于圆柱底面的截面是长方形,平行圆柱底面的截面是圆形.10.B解析:B【分析】根据俯视图即从物体的上面观察得得到的视图,进而得出答案.【详解】该几何体的俯视图是:由两个长方形组成的矩形,且矩形的之间有纵向的线段隔开.故选B.【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.解答此题时要有一定的生活经验.11.B解析:B【分析】根据主视图的画法解答即可.【详解】A.不是三视图,故本选项错误;B是主视图,故本选项正确;C.不是三视图,故本选项错误;D.是俯视图,故本选项错误故选:B.【点睛】本题考查了由三视图判断几何体,解题的关键是根据主视图的画法判断.12.C解析:C【分析】根据主视图是从正面看到的图形,进而得出答案.【详解】主视图是从正面看这个几何体得到的正投影,空心圆柱从正面看是一个长方形,加两条虚竖线,画法正确的是:.故选C.【点睛】本题考查了三视图的知识,关键是找准主视图所看的方向.二、填空题13.49【分析】分别计算前后上下左右方向凿掉的体积然后求和即可【详解】前后方向凿掉部分的体积为5525上下方向又凿掉了522214左右方向又凿掉了5210凿掉部分的总体积为2514解析:49【分析】分别计算前后、上下、左右方向凿掉的体积,然后求和即可.【详解】前后方向凿掉部分的体积为 5 ⨯ 5 = 25 ,上下方向又凿掉了 5 ⨯ 2 + 2 ⨯ 2 = 14 ,左右方向又凿掉了5 ⨯ 2 = 10 ,∴凿掉部分的总体积为 25 + 14 + 10 = 49【点睛】本题考查不规则图形的几何体的体积,关键是找到凿掉小正方形的个数.14.矩形或正方形或平行四边形【解析】解:矩形在阳光下的投影对边应该是相等的影子的形状可能是矩形正方形平行四边形故答案为:矩形或正方形或平行四边形解析:矩形或正方形或平行四边形【解析】解:矩形在阳光下的投影对边应该是相等的,影子的形状可能是矩形、正方形、平行四边形.故答案为:矩形或正方形或平行四边形.15.1或23【分析】由俯视图可知该组合体有两行两列左边一列前一行有两个正方体结合主视图可知左边一列叠有2个正方体从而求解【详解】解:由俯视图可知该组合体有两行两列左边一列前一行有两个正方体结合主视图可知解析:1或2 3【分析】由俯视图可知,该组合体有两行两列,左边一列前一行有两个正方体,结合主视图可知左边一列叠有2个正方体,从而求解【详解】解:由俯视图可知,该组合体有两行两列,左边一列前一行有两个正方体,结合主视图可知左边一列叠有2个正方体,故x=1或2;由主视图右边一列可知,右边一列最高可以叠3个正方体,故y=3.故答案为1或2;3.16.72【解析】分析:∵由主视图得出长方体的长是6宽是2这个几何体的体积是36∴设高为h则6×2×h=36解得:h=3∴它的表面积是:2×3×2+2×6×2+3×6×2=72解析:72【解析】分析:∵由主视图得出长方体的长是6,宽是2,这个几何体的体积是36,∴设高为h,则6×2×h=36,解得:h=3.∴它的表面积是:2×3×2+2×6×2+3×6×2=72.17.正四棱柱【分析】由主视图和左视图可确定是柱体再由俯视图可确定具体形状【详解】解:由主视图和左视图可确定是柱体再由俯视图可确定是正四棱柱故答案为:正四棱柱【点睛】本题考查了由三视图还原立体图形掌握立体解析:正四棱柱.【分析】由主视图和左视图可确定是柱体,再由俯视图可确定具体形状.【详解】解:由主视图和左视图可确定是柱体,再由俯视图可确定是正四棱柱.故答案为:正四棱柱.【点睛】本题考查了由三视图还原立体图形,掌握立体图形的三视图的形状,注意解题所用的方法.18.cm2【分析】观察图发现:挖去小正方体后减少了三个面又增加了三个面剩下物体的表面积和原来的表面积相等【详解】解:挖去小正方体后剩下物体的表面积与原来的表面积相比较没变化即从任何角度所能看到的所有面的解析:cm2【分析】观察图发现:挖去小正方体后,减少了三个面,又增加了三个面,剩下物体的表面积和原来的表面积相等.【详解】解:挖去小正方体后,剩下物体的表面积与原来的表面积相比较没变化,cm,即从任何角度所能看到的所有面的面积为16×6=96296cm.故答案为:2【点睛】本题考查几何体的表面积,解题关键是熟知:挖去小正方体后,剩下物体的表面姐和原来的相等.19.1260【分析】结合图形发现每一个图形的表面积得出规律计算即可;【详解】结合图形发现:(1)中个平方单位(2)中个平方单位以此推论可得第(20)个图形的表面积是个平方单位故答案为:1260【点睛】本解析:1260【分析】结合图形,发现每一个图形的表面积得出规律计算即可;【详解】结合图形,发现:(1)中166⨯=个平方单位,(2)中()12618+⨯=个平方单位,以此推论可得第(20)个图形的表面积是()122061260++⋅⋅⋅+⨯=个平方单位. 故答案为:1260.【点睛】本题主要考查了与图形有关的规律题型,结合图形表面积的计算是解题的关键. 20.②③【分析】主视图左视图俯视图是分别从物体正面左面和上面看所得到的图形据此作答【详解】①圆柱体的主视图是矩形左视图是矩形俯视图是圆②圆锥的主视图左视图是等腰三角形俯视图是带有圆心的圆③三棱锥的主视图解析:②③【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,据此作答.【详解】①圆柱体的主视图是矩形,左视图是矩形,俯视图是圆,②圆锥的主视图、左视图是等腰三角形,俯视图是带有圆心的圆,③三棱锥的主视图、左视图是矩形,俯视图是三角形,④球的三视图完全相同,都是圆.∴其三视图中有三角形的是②③.故答案为:②③.【点睛】本题主要考查三视图的知识,熟练掌握常见几何体的三视图是解题的关键.三、解答题21.无22.无23.无24.无25.无26.无。
广东省深圳宝安第一外国语学校2024-2025学年九年级上学期数学周测(无答案)
宝安第一外国语学校九年级(上)周练(一)2024.09.11一.选择题(共8小题,每题有且仅有一个答案,每题3分,共24分)1.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小敏做摸球试验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是试验中的一组统计数据:I 根据上表,请估计随机摸出一个球摸到白球的概率是( )A.0.49B.0.60C.0.72D.0.402.下列四组线段中,不是成比例线段的是( )A.a =3,b =6,c =2,d =4B.a =1,b =2,c =6,d =23C.a =4,b =6,c =5,d =10D.a =2,b =5,c =15,d =233.小高有三件运动上衣,分别为蓝色、白色和红色,有两条运动裤,分别是黑色和红色,一天他准备去运动场锻炼,随手拿出一件运动上衣和一条运动裤,则恰好都是红色的概率为( )A.16B.35C.13D.254.如图,菱形ABCD 的边长为5,对角线AC ,BD 交于点O ,OA =1,则菱形ABCD 的面积为( )A.5B.25C.2D.45.如图,四边形ABCD 是平行四边形,下列结论中错误的是( )A.当∠ABC=90°时,@ABCD 是矩形B.当AC⊥BD时, ▱ABCD 是菱形C.当▱ABCD 是正方形时,AC =BDD.当@ABCD 是菱形时,AB =AC6.电影《长津湖》讲述了一段波澜壮阔的历史,一上映就获得全国人民的追摔,某地第一天票房约3亿元,以后每天票房按相同的增长率增长,三天后票房收入累计达10亿元,若把增长率记作x ,则方程可以列为( )A.3(1+x )=10B.3(1+x )2=10C.3+3(1+x )2=10D.3+3(1+x )+3(1+x )2=107.如图,在矩形ABCD 中,AB =3,BC =4.连接AC ,按下列方法作图:以点C 为圆心,适当长为半径画弧.分别交CA ,CD 于点E ,F;分别以点E ,F 为圆心,大于12EF 的长为半径画弧,两弧交于点G;连接CG 交AD 于点H ,则S△ACH的面积是( )摸球的次数n10020030050080010003000摸到白球的次数m 651241783024815991803摸到白球的频率Ⅲn0.650.620.5930.6040.6010.5990.601A.154B.54C.1D.348.图,在正方形ABCD中,O为对角线AC、BD的交点,E、F分别为边BC、CD上一点,且OE⊥OF,接EF.若∠AOE=150°,DF=3,则EF的长为( )A.23B.2+3C.3+1D.3(第4题) (第5题) (第7题) (第8题)二.填空题(共5小题,每题3分,共15分)9.若x=0是关于x的一元二次方程(k+3)x2+4x+k2-9=0的一个根,则k= .10.若xy=34,则x+y2y=______11.用如图所示的两个可以自由转动的转盘进行“配紫色”游戏:游戏者同时转动两个转盘,若其中一个转盘转出了红色,另一个转盘转出了蓝色,那么他就赢了.则游戏者获胜的概率为________.12.若m,n是方程x2-2022x-1=0的两个根,则m2-2024m-2n的值为_______.13.如图,在正方形ABCD中,点E为BC的中点,连接AE,点F在AB上,连接CF交AE于点G,∠BFC=2∠EGC,若BF-FG=2,则CD的长为_____.第11题图第13题图三.解答题(共7小题,共61分)14.(8分)(1)以配方法解方程:2x2+4x-2=0 (2)以公式法解方程:2x(x-3)=3+x(3)以因式分解法解方程(x-3)2=2x-6 (4)以十字相乘法解方程:x2-2x-15=015.(2+5=7分)已知:如图1,四边形ABCD四条边上的中点分别为E、F、G、H,顺次连接EF、FG、 GH、HE, 得到四边形 EFGH(即四边形ABCD 的中点四边形).(1)四边形EFGH的形状是______.(2)如图2,当AC与BD满足条件时,四边形EFGH是菱形,证明你的结论.16.(2+5=7分)小明参加某超市的“翻牌抽奖”活动,如图,4张背面完全相同的卡片,正面分别四句“国是家,孝为先,善作魂,知礼仪”的讲文明树新风的宣传语.(1)如果随机翻1张牌,那么翻“孝为先”的概率为_____________(2)如果四张卡片分别对应价值为25,20,15,10(单位:元)的4件奖品.小明随机翻且第一次翻过的牌不再参加下次翻牌,求小明两次所获奖品总值为40元的概率?17.(4+4=8分)社区利用一块矩形空地ABCD建了一个小型停车场,其布局如图所示.已知AD=52m ,AB=28m,阴影部分设计为停车位,要铺花砖,其余部分均为宽度为x米的道路.已知铺花砖的面积为640m2.(1)求道路的宽是多少米?(2)该停车场共有车位50个,据调查分析,当每个车位的月租金为200元时,可全部租出;若每个车位的月租金每上涨5元,就会少租出1个车位.当每个车位的月租金上涨多少元时,停车场的月租金收入为10125元?8.(4+4=8分)如图,在平行四边形ABCD中,∠BAD的平分线AE交BC于点E,∠ABC的平分线BF交AD于点F,AE与BF相交于点O,连接EF.(1)求证:四边形ABEF是菱形;(2)若AE=6,BF=8,CE=2,求平行四边形ABCD的面积.19.(3+4+4=11分)小华在学完了八下教材《一元二次方程根与系数的关系(韦达定理)》一节内容后,对一元三次方程根与系数的关系产生了浓厚兴趣,决定一探究竞.下面是他收集的素材,汇总如下,请根据紧材帮助他完成相应任务:20.(1+3+6+2=12分)数学课上,师生们以“利用正方形和矩形纸片折叠特殊角”为主题开展数学活动(1)操作判断小明利用正方形纸片进行折叠,过程如下:步骤① :如图1,对折正方形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;步骤② :连接AF,BF,可以判定△ABF的形状是:_____.(直接写出结论)小华利用矩形纸片进行折叠,过程如下:如图2,先类似小明的步骤①,得到折痕EF后把纸片展平;在BC上选一点P,沿AP折叠AB,例恰好落在折痕EF上的一点M处,连接AM.小华得出的结论是:∠BAP=∠PAM=∠MAD=30°.请你帮助小华说明理由.(2)迁移探究小明受小华的启发,继续利用正方形纸片进行探究,过程如下:如图3,第一步与步骤①一样;然后连接AF,将AD沿AF折叠,使点D落在正方形内的一点!连接FM并延长交BC于点P,连接AP,可以得到:∠PAF= °(直接写出结论);同正方形的边长是4,可以求出BP的长,请你完成求解过程.(3)拓展应用如图4,在矩形ABCD中,AB=15,BC=18.点P为BC上的一点(不与B点重合,可以与C将△ABP沿着AP 折叠,点B的对应点为M落在矩形的内部,连结MA1,MD,当△MAD是以的等腰三角形时,可求得BP的长为_______________.(直接写出结论)。
2020-2021学年新人教版九年级数学上册周末练习及答案
2020-2021学年度第一学期九年级数学周测练习题12.09姓名:_______________班级:_______________得分:_______________一选择题:1.下列各组数中,成比例的是( )A.﹣7,﹣5,14,5B.﹣6,﹣8,3,4C.3,5,9,12D.2,3,6,122.如果从1、2、3这三个数字中任意选取两个数字组成一个两位数,那么这个两位数是偶数的概率等于( )(A); (B); (C);(D).3.已知2x=3y=4z,则x:y:z是 ( )A.2:3:4B.4:3:2C.7:6:5D.6:4:34.如图,在△ABC中,DE∥BC,分别交AB,AC于点D,E.若AD=2,DB=4,则的值为( )A. B. C. D.5.如图,⊙O为△ABC的外接圆,∠A=72°,则∠BCO的度数为( )A.15°B.18°C.2020D.28°6.如图,在同一时刻,身高1.6米的小丽在阳光下的影长为2.5米,一棵大树的影长为5米,则这棵树的高度为( )A.7.8米B.3.2米C.2.3米D.1.5米7.函数y=ax﹣a与y=(a≠0)在同一直角坐标系中的图象可能是( )A. B. C. D.8.如图,正方形ABCD的两边BC、AB分别在平面直角坐标系的x轴、y轴的正半轴上,正方形A′B′C′D′与正方形ABCD是以AC的中点O′为中心的位似图形,已知AC=3,若点A′的坐标为(1,2),则正方形A′B′C′D′与正方形ABCD的相似比是( ). B. C. D.9.如图,D、E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE:S△COA=1:25,则S△BDE 与S△CDE的比是( )A.1:3B.1:4C.1:5D.1:2510.如图,在△ABC 中,∠C=90°,BC=3,D,E 分别在 AB、AC上,将△ADE沿DE翻折后,点A正好落在点A′处,若A′为CE的中点,则折痕DE的长为( )A. B.3 C.2 D.111.如图是一次函数y1=kx-b和反比例函数y2=的图象,观察图象写出y1>y2时,x的取值范围是( )A.x>3B.x>-2或x>3C.x<-2或0<x<3D.-2<x<0或x>312.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,O是△ABC的内心,以O为圆心,r为半径的圆与线段AB有交点,则r的取值范围是 ( )A.r≥1D.1≤r≤4B.1≤r≤C.1≤r≤二填空题:13.若双曲线的图象经过第二、四象限,则k的取值范围是.14.如图,点P是□ABCD边AB上的一点,射线CP交DA的延长线于点E,则图中相似的三角形有________对.15.如图,在△ABC中,D、E分别是边AB、AC上的点,DE∥BC,AD:DB=1:2,S△ADE=1,则S四边形BCED的值为_______.16.现有两个不透明盒子,其中一个装有标号分别为1,2的两张卡片,另一个装有标号分别为1,2,3的三张卡片,卡片除标号外其他均相同.若从两个盒子中各随机抽取一张卡片,则两张卡片标号恰好相同概率是________.17.菱形OABC的顶点O是原点,顶点B在轴上,菱形的两条对角线的长分别是8和6(),反比例函数的图像经过,则的值为.18.在Rt△ABC中,∠C=90°,AC=5,BC=12,若以C点为圆心、r为半径所作的圆与斜边AB只有一个公共点,则r的范围是.19.点P1(﹣1,y1),P2(3,y2),P3(5,y3)均在二次函数y=﹣x2+2x+c图象上,则y1,y2,y3大小关系是.2020图,平面直角坐标系中,分别以点A(﹣2,3),B(3,4)为圆心,以1、2为半径作⊙A、⊙B,M、N分别是⊙A、⊙B上的动点,P为x轴上的动点,则PM+PN的最小值等于.三作图题:21.已知△ABC在平面直角坐标系中的位置如图所示.(1)分别写出图中点A和点C的坐标;(2)画出△ABC绕点C按顺时针方向旋转90°后的△A′B′C′;(3)求点A旋转到点A′所经过的路线长(结果保留π).22.如图,已知△ABC中,AE交BC于点D,∠C=∠E,AD:DE=3:5,AE=8,BD=4,求D C的长.23.某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体实验.测得成人服药后血液中药物深度y(微克/毫升)与服药时间x小时之间的函数关系如图所示(当4≤x≤10时,y与x成反比).(1)根据图象分别求出血液中药物浓度上升和下降阶段y与x之间的函数关系式;(2)问血液中药物浓度不低于4微克/毫升的持续时间为多少小时?24.如图,已知⊙O的半径OC垂直弦AB于点H,连接BC,过点A作弦AE∥BC,过点C作CD∥BA交EA延长线于点D,延长CO交AE于点F.(1)求证:CD为⊙O的切线;(2)若BC=10,AB=16,求OF的长.25.如图,AB是⊙O的直径,点P在BA的延长线上,弦CD⊥AB,垂足为E,且PC2=PE·PO.(1)求证:PC是⊙O的切线;(2)若OE︰EA=1︰2,PA=6,求⊙O的半径;26.如图,在矩形ABCD中,AB=12cm,BC=8cm .点E、F、G分别从点A、B、C三点同时出发,沿矩形的边按逆时针方向移动。
九年级数学上册 周测练习题及答案
2016-2017 学年度第一学期九年级数学一选择题:周测练习题12.2姓名:_班级:_得分:_1.下列说法正确的有几个( )①经过三个点一定可以作圆;②任意一个圆一定有内接三角形,并且只有一个内接三角形;③任意一个三角形一定有一个外接圆并且只有一个外接圆;④垂直于弦的直径必平分弦;⑤经过不在同一直线上的四个点一定可以作圆.A.3B.2C.1D.0 2.如图,在平面直角坐标系xOy 中,△ABC 顶点的横、纵坐标都是整数.若将△ABC 以某点为旋转中心,顺时针旋转 90°得到△DEF,则旋转中心的坐标是()A.(0,0)B.(1,0)C.(1,﹣1)D.(2.5,0.5)第2 题图第3 题图第4 题图 3.如图,正三角形ABC 内接于圆O,动点P 在圆周的劣弧AB 上,且不与A,B 重合,则∠BPC 等于( )A.30°B.60°C.90°D.45°4.如图,△ABC 内接于⊙O,∠OBC=40°,则∠A 的度数为()A.80°B.100°C.110°D.130°5.如图,在⊙O 的内接四边形ABCD 中,AB 是直径,∠BCD=120°,过D 点的切线PD 与直线AB 交于点P,则∠ADP 的度数为( )A.40°B.35°C.30°D.45°第5 题图第6 题图6.如图,正方形ABCD 的边长为6,点E,F 分别在AB,AD 上,若CE=3,且∠ECF=45°,则CF 长为( )A.2B.3C.D.7.如图,在正方形ABCD 中,E 是BC 的中点,F 是CD 上的一点,AE⊥EF,下列结论:①∠BAE=30°;②CE2=AB•CF;③CF=FD;④△ABE∽△AEF.其中正确的有( )A.1 个B.2 个C.3 个D.4 个8.如图所示,半径为1 的圆和边长为1 的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过时间为t,正方形除去圆部分的面积为S(阴影部分),则S 与t 的大致图象为( )A. B. C. D.9.如图,正六边形的边长为π,半径是1 的⊙O 从与AB 相切于点D 的位置出发,在正六边形外部按顺时针方向沿正六边形滚动,又回到与AB 相切于点D 的位置,则⊙O 自转了( )A.4 周B.5 周C.6 周D.7 周第9 题图第10 题图第11 题图10.如图,一个半径为r 的圆形纸片在边长为a()的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片“不能接触到的部分”的面积是()A. B. C. D.11.如图,AB 是⊙O 的直径,M 是⊙O 上一点,MN⊥AB,垂足为N,P、Q 分别是弧AM、弧BM 上一点(不与端点重合).若∠MNP=∠MNQ.下面结论:①∠PNA=∠QNB;②∠P+∠Q=180°;③∠Q=∠PMN;④PM=QM;⑤MN2=PN•QN.正确的结论有()A.2 个B.3 个C.4 个D.5 个12.如图所示,已知△ABC 中,BC=8,BC 上的高h=4,D 为BC 上一点,EF∥BC,交AB 于点E,交AC 于点F(EF不过A、B),设E 到BC 的距离为x.则△DEF 的面积y 关于x 的函数的图象大致为( )A. B. C. D.二填空题:13.两个相似多边形相似比为 1:2,且它们的周长和为 90,则这两个相似多边形的周长分别是,.14.如图,点P 是▱ABCD 边AB 上的一点,射线CP 交DA 的延长线于点E,则图中相似的三角形有对.第14 题图第15 题图第16 题图15.如图,点E 在正方形ABCD 的边CD 上,把△ADE 绕点A 顺时针旋转90°至△ABF 位置,如果AB=,∠EAD=30°,那么点E 与点F 之间的距离等于.16.小明把如图所示的矩形纸板挂在墙上,玩飞镖游戏图中△ABC 外接圆的圆心坐标是.17.在Rt△ABC 中,∠C=90°,AC=5,BC=12,若以C 点为圆心、r 为半径所作的圆与斜边AB 只有一个公共点,则r 的范围是.第17 题图第18 题图第19 题图18.如图,正方形ABCD 中,E 为AB 的中点,AF⊥DE 于点O,则=.19.如图,在Rt△ABC 中,∠ABC=90°,AB=BC=,将△ABC 绕点C 逆时针旋转60°,得到△MNC,连接BM,则BM 的长是.20.如图,一块直角三角板ABC 的斜边AB 与量角器的直径恰好重合,点D 对应的刻度是58°,则∠ACD 的度数为.21.如图,正三角形ABC 的边长为4,D、E、F 分别为BC、CA、AB 的中点,以A、B、C 三点为圆心,2 为半径作圆,则图中的阴影面积为.第21 题图第22 题图22.如图,平面直角坐标系中,分别以点A(﹣2,3),B(3,4)为圆心,以1、2 为半径作⊙A、⊙B,M、N 分别是⊙A、⊙B 上的动点,P 为x 轴上的动点,则PM+PN 的最小值等于.三简答题:23.如图,正方形网格中,△为格点三角形(即三角形的顶点都在格点上).(1)把△沿方向平移后,点移到点,在网格中画出平移后的△;(2)把△绕点按逆时针旋转,在网格中画出旋转后的△;(3)如果网格中小正方形的边长为,求点经过(1)、(2)变换的路径总长.24.如图是一个转盘,(转盘被等分成四个扇形),上面标有红黄蓝三种颜色,小明和小强做游戏,规定:转到红色,小明赢,转到黄色,小强赢(若转到分界线,再重转一次).(1)小颖认为转盘上共有三种不同的颜色,所以,指针停在红色、黄色或蓝色区域的概率都是,他们的游戏对小明和小强都是公平的,你认为呢?请说明理由.(2)若你认为游戏不公平,请你设计一种方案,使他们的游戏公平.25.如图,在△ABC 中,D 为AC 边上一点,∠DBC=∠A.(1)求证:△ACD∽△ABC;(2)如果 BC=,AC=3,求CD 的长来.26.如图,AB 是⊙O 的直径,CD 是⊙O 的弦,AB,CD 的延长线交于点E,已知AB=2DE.(1)若∠E=20°,求∠AOC 的度数;(2)若∠E=α,求∠AOC 的度数.27.如图,点B、C、D 都在⊙O 上,过C 点作CA∥BD 交OD 的延长线于点A,连接BC,∠B=∠A=30°,BD=2.(1)求证:AC 是⊙O 的切线;(2)求由线段AC、AD 与弧CD 所围成的阴影部分的面积.(结果保留π)28.如图,AB 是⊙O 的直径,C 是弧BD 的中点,CE⊥AB 于 E,BD 交CE 于点F.(1)求证:CF=BF;(2)若CD=6,AC=8,则⊙O 的半径为,CE 的长是.29.如图,在△ABC 中,∠ABC=90°,边AC 的垂直平分线交BC 于点D,交AC 于点E,连接BE,BE 是△DEC 外接圆的切线.(1)求∠C;(2)若CD=2,求BE.30.如图,已知是的直径,点在上,过点的直线与的延长线交于点,,.(1)求证:是的切线;(2)求证:;(3)点是弧AB 的中点,交于点,若,求MN ·MC 的值.参考答案1、B.2、C3、B4、D5、C6、A7、B8、D.9、B. 10、C. 11、B. 12、D13、30,60.14、3 15、16、(5,2).17、5<r≤12 或.18、19、+120、61°21、4﹣2π.22、﹣323、(1)作图略;(2)作图略;(3),弧所以总长=.24、【解答】解:(1)游戏不公平.理由如下:共有 4 种等可能的结果数,其中指针停在红色的结果数为,指针停在黄色的结果数为1,指针停蓝色区域的结果数为2,所以小明赢的概率== ,小强赢的概率= ,所以小明赢的概率大,游戏不公平;(2)可设计为:转到蓝色,小明赢,转到黄色,小强赢(若转到分界线,再重转一次).25、(1)证明:∵∠DBC=∠A∠DCB=∠BAC ∴△ACD∽△ABC .(2)解:∵△ACD∽△ABC∴BC:AC=CD:BC∵BC= ,AC=3∴CD=2.26、解:(1)∵AB=2DE,又 OA=OB=OC=OD,∴OD=OC=DE.∴∠DOE=∠E=20°.∴∠CDO=∠DOE+∠E=40°=∠C.∴∠AOC=∠C+∠E=60°.(2)由(1)可知:∠DOE=∠E=α,∠C=∠ODC=2∠E,∴∠AOC=∠C+∠E=3α.27【解答】(1)证明:连接OC,交BD 于E,∵∠B=30°,∠B= ∠COD,∴∠COD=60°,∵∠A=30°,∴∠OCA=90°,即OC⊥AC,∴AC 是⊙O 的切线;(2)解:∵AC∥BD,∠OCA=90°,∴∠OED=∠OCA=90°,∴DE= BD= ,∵sin∠COD= ,∴OD=2,=×2×2 ﹣=2 ﹣.在Rt△ACO 中,tan∠COA=,∴AC=2 ,∴S阴影28、解:(1) 证明:∵AB 是⊙O 的直径,∴∠ACB﹦90°又∵CE⊥AB,∴∠CEB﹦90°∴∠2=90°-∠A=∠1又∵C 是弧BD 的中点,∴∠1=∠A ∴∠1=∠2,∴ CF=BF(2)⊙O 的半径为5 , CE 的长是﹒﹒29、【解答】解:(1)连接OE,∵BE 是△DEC 外接圆的切线,∴∠BEO=90°,∵∠ABC=90°,E 是AC 的中点,∴BE=AE=EC=AC,∴∠EBC=∠ECB,∵OE=OC,∴∠OEC=∠OCE,∴∠BOE=2∠OCE,即∠BOE=2∠EBC,∴∠EBC=30°,∴∠C=30°;(2)∵CD=2,∴OE=OD=OC=1,∵∠EBC=30°,∠BEO=90°,∴BO=2OE=2,∴BD=1,BC=3,由切割线定理得,BE2=BD•BC=3,∴BE= .30、解:(1)∵,又∵.又∵是的直径,,,即,而是的半径,是的切线.(2)∵,,又∵,.(3)连接,∵点是弧AB 的中点,,而,,,∴MN·MC=BM2,又∵是的直径,AM=BM,.∵,∴MN·MC=BM2=8。
北师大版2020九年级数学上册1.3正方形的性质与判定自主学习基础过关测试题4(附答案详解)
北师大版2020九年级数学上册1.3正方形的性质与判定自主学习基础过关测试题4(附答案详解)1.下列命题中,假命题是( )A .对角线互相垂直平分的四边形是菱形B .对角线相等且互相平分的四边形是矩形C .对角线互相垂直且相等的四边形是正方形D .对角线互相平分的四边形是平行四边形2.如图,平面内三点A 、B 、C ,4AB =,3AC =,以BC 为对角线作正方形BDCE ,连接AD ,则AD 的最大值是 ( )A .5B .7C .72D .7223.如图,在正方形ABCD 中,点G 是对角线AC 上一点,且CG =CB ,连接BG ,取BG 上任意一点H ,分别作HM ⊥AC 于点M ,HN ⊥BC 于点N ,若正方形的边长为2,则HM +HN 的值为( )A .2B .1C .3D .224.如图,正方形ABCD 与正三角形AEF 的顶点A 重合,将△AEF 绕顶点A 旋转,在旋转过程中,当BE=DF 时,∠BAE 的大小可以是( ).A .15°B .165°C .15°或165°D .90°5.下列说法正确的是( )A .平行四边形对角线相等B .矩形的对角线互相垂直C .菱形的四个角都相等D .正方形的对角线互相平分6.如图,AC 、BD 是四边形ABCD 的对角线,若E 、F 、G 、H 分别是BD 、BC 、AC 、AD 的中点,顺次连接E 、F 、G 、H 四点,得到四边形EFGH ,则下列结论不正确的是( )A .四边形EFGH 一定是平行四边形B .当AB =CD 时,四边形EFGH 是菱形C .当AC ⊥BD 时,四边形EFGH 是矩形 D .四边形EFGH 可能是正方形7.如图,在矩形ABCD 中,6AB =,8BC =,若P 是BD 上的一个动点,则PB PC PD ++的最小值是( )A .16B .15.2C .15D .14.88.下列说法中,错误的是( )A .平行四边形的对角线互相平分B .矩形的对角线互相垂直C .菱形的对角线互相垂直平分D .正方形的对角线相等9.以下四个命题①两条对角线互相平分的四边形是平行四边形;②两条对角线相等的四边形是矩形;③两条对角线互相垂直的平行四边形是菱形;④有一组邻边相等且有一个角是直角的四边形是正方形,其中是真命题的是( )A .①②B .③④C .①③D .②④ 10.如图,已知矩形ABCD 的对角线AC ,BD 的长为6 cm ,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点,则四边形EFGH 的周长为( ) .A .18 cmB .16 cmC .15 cmD .12 cm . 11.如图,已知正方形ABCD 的顶点A(1,1),B(3,1),直线y=2x+b 交边AB 于点E ,交边CD 于点F ,则直线y=2x+b 在y 轴上的截距b 的变化范围是__________.12.如图,D 为△ABC 内部一点,E 、F 两点分别在AB 、BC 上,且四边形DEBF 为矩形,直线CD 交AB 于G 点.若CF =6,BF =9,AG =8,则△ADC 的面积为_________.13.菱形、矩形与正方形的形状有差异,我们将菱形、矩形与正方形的接近程度称为菱形或矩形的“接近度”.设菱形相邻两个内角的度数分别为mn 、﹒ (1)若我们将菱形的“接近度”定义为m n -,于是m n -越小,菱形就接近正方形.若菱形的一个内角为70︒,则“接近度”=________;(2)若我们将菱形的“接近度”定义为()m m n n <,则菱形的“接近度”=________时,菱形就是正方形.14.如图,在ABC ∆中,AB AC =,4BC =,12ABC S ∆=,点,D E 分别是,AB BC 的中点,点F 在AC 上,且FD AB ⊥.若点P 为线段DF 上一动点,连接,BP EP ,则BPE ∆周长的最小值是__________.15.已知,如图,正方形ABCD 中,6,AB E =为BC 边上任意一点,将ABE ∆沿直线AE 翻折后得到',AB E ∆延长'EB 交CD 于点F ,且F 点为CD 的三等分点,则BE =__________.16.如图,在正方形ABCD 的外侧,作等边三角形ADE ,则∠BED =____度.17.如图,四边形的两条对角线AC 、BD 相交所成的锐角为60︒,当8AC BD +=时,四边形ABCD 的面积的最大值是______.18.已知▱ABCD ,过点A 作BC 的垂线,垂足为E ,∠BAE =30°,BC =2,AE =3,则点B 到直线AC 的距离为_____.19.如图,将边长为8cm 的正方形ABCD 折叠,使点D 落在AB 边的中点E 处,折痕为FH ,点C 落在Q 处,EQ 与BC 交于点G ,则△EBG 的周长是___cm.20.如图,正方形ABCD 的周长为20cm ,顺次连结正方形ABCD 各边的中点,得到四边形EFGH ,则四边形EFGH 的面积等于________.21.如图1,在正方形ABCD 中,P 是对角线BD 上的一点,点E 在AD 的延长线上,且P A =PE ,PE 交CD 于F .(1)证明:△APD ≌△CPD ;(2)求∠CPE 的度数;(3)如图2,把正方形ABCD 改为菱形ABCD ,其他条件不变,当∠ABC =120°时,连接CE ,试探究线段AP 与线段CE 的数量关系,并说明理由.22.如图①,正方形ABCD 的边长为4,动点E 从点A 出发,以每秒2个单位的速度沿A ﹣D ﹣A 连续做往返运动;动点G 从点A 出发,以每秒1个单位的速度沿AB 方向运动.E 、G 两点同时出发,当点G 到达点B 时停止运动,点E 也随之停止.过点G 作FG ⊥AB 交AC 于点F ,以FG 为一直角边向右作等腰直角三角形FGH ,使∠FGH =90°.设点G 的运动时间为t (秒),△FGH 与正方形ABCD 重叠部分图形的周长为l .(1)当t =1时,l = .(2)当t =3时,求l 的值.(3)设DE =y ,在图②的坐标系中,画出y 与t 的函数图象.(4)当四边形DEGF 是平行四边形时,求t 的值.23.如图,在平面直角坐标系中,长方形OABC 的顶点,A B 的坐标分别为()6,0A ,()6,4B ,D 是BC 的中点,动点P 从O 点出发,以每秒1个单位长度的速度,沿着O A B D →→→运动,设点P 运动的时间为t 秒(013t <<).(1)点D 的坐标是______;(2)当点P 在AB 上运动时,点P 的坐标是______(用t 表示);(3)求POD 的面积S 与t 之间的函数表达式,并写出对应自变量t 的取值范围. 24.如图,在正方形ABCD 的外侧,作等边三角形ADE ,线段BE 与AC 交于点F . (1)求∠AEB 和∠BFC 的度数;(2)若AD =6,求BE 2的值.25.如图,四边形ABCD 是正方形,G 是直线BC 上的任意一点,DE ⊥直线AG 于点E .BF ⊥直线AG 于点F .(1)如图1,若点G 在线段BC 上,判断AF ,BF ,EF 之间的数量关系,并说明理由. (2)若点G 在CB 延长线上,直接写出AF ,BF ,EF 之间的数量关系.(3)若点G 在BC 延长线上,直接写出AF ,BF ,EF 之间的数量关系.26.在△ABC 中,∠BAC =90°,AD 是 BC 边上的中线,点 E 为 AD 的中点,过点 A 作 AF ∥BC 交 BE 的延长线于点 F ,连接 CF .(1)求证:AD =AF ;(2)填空:①当∠ACB = °时,四边形 ADCF 为正方形;②连接 DF ,当∠ACB = °时,四边形 ABDF 为菱形.27.(1)已知四边形ABCD 是边长为6cm 的正方形,P Q ,是正方形边上的两个动点,点P 从点A 出发,以2/cm s 的速度沿A B C →→方向运动,点Q 同时从点D 出发以1/cm s 速度沿→D C 方向运动.设点P 运动的时间为()06t t <<.①如图1,点P 在AB 边上,PQ AC ,相交于点O ,当PQ AC ,互相平分时,求t 的值;②如图2,点P 在BC 边上,AP BQ ,相交于点H ,当AP BQ ⊥时,求t 的值.(2)如图,在小正方形的边长为1的正方形网格中,点A B ,在格点上.①线段AB 的长是_____________;②在网格中用无刻度的直尺,以AB 为边画矩形ABCD ,使这个矩形的面积是132. 要求:保留画图痕迹,并说明点C D ,的位置如何找到的.28.已知:如图,平行四边形ABCD 中,O 是CD 的中点,连接AO 并延长,交BC 的延长线于点E .(1)求证:△AOD ≌△EOC ;(2)连接AC 、DE ,当∠B =∠AEB =45°时,求证四边形 ACED 是正方形.29.如图1,在边长为4的菱形ABCD 中,AC 为其对角线,∠ABC=60°点M 、N 分别是边BC 、边CD 上的动点,且MB=NC .连接AM 、AN 、MN .MN 交AC 于点P .(1)△AMN是什么特殊的三角形?说明理由.并求其面积最小值;(2)求点P到直线CD距离的最大值;(3)如图2,已知MB=NC=1,点E、F分别是边AM、边AN上的动点,连接EF、PF,EF+PF是否存在最小值?若存在,求出最小值及此时AE、AF的长;若不存在,请说明理由.30.在正方形ABCD中,N是DC的中点,M是AD上异于D的点,且NMB MBC∠=∠,求AMMD的值。
九年级数学上册周周清4检测内容22-2_22-3新版新人教版
检测内容:22.2-22.3 得分 卷后分 评价一、选择题(每小题4分,共28分)1.(益阳中考)关于抛物线y =x 2-2x +1,下列说法错误的是(D )A .开口向上B .与x 轴有两个重合的交点C .对称轴是直线x =1D .当x >1时,y 随x 的增大而减小2.已知二次函数y =x 2-4x +m 的图象与x 轴有两个交点,若其中一个交点的坐标为(1,0),则另一个交点的坐标为(B )A .(-1,0)B .(3,0)C .(5,0)D .(-6,0)3.如图,抛物线y =ax 2+bx +c (a≠0)与x 轴的两交点是A (-1,0),B (3,0),则由图可知y <0时,x 的取值范围是(D )A .-1<x <3B .3<x <-1C .x >-1或x <3D .x <-1或x >3第3题图 第4题图4.某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1 m 宽的门,已知计划中的材料可建墙体(不包括门)总长为27 m ,则能建成的饲养室面积最大为(A )A .75 m 2B .752 m 2 C .48 m 2 D .2252m 2 5.(2019·临沂)从地面竖直向上抛出一小球,小球的高度h (单位:m )与小球运动时间t (单位:s )之间的函数关系如图所示.下列结论:①小球在空中经过的路程是40 m ;②小球抛出3 s 后,速度越来越快;③小球抛出3 s 时速度为0;④小球的高度h =30 m 时,t =1.5 s .其中正确的是(D )A .①④B .①②C .②③④D .②③第5题图第7题图 6. (2019·潍坊)抛物线y =x 2+bx +3的对称轴为直线x =1.若关于x 的一元二次方程x 2+bx +3-t =0(t 为实数)在-1<x <4的范围内有实数根,则t 的取值范围是(A )A .2≤t <11B .t ≥2C .6<t <11D .2≤t <67.抛物线y =ax 2+bx +c (a≠0)的部分图象如图所示,与x 轴的一个交点坐标为(4,0),抛物线的对称轴是直线x =1,下列结论中:①abc>0;②2a+b =0;③方程ax 2+bx +c =3有两个不相等的实数根;④抛物线与x 轴的另一个交点坐标是(2,0);⑤若点A (m,n )在该抛物线上,则am 2+bm +c≤a+b +c.其中说法正确的有( C )A .5个B .4个C .3个D .2个二、填空题(每小题4分,共20分)8.若关于x 的一元二次方程x 2+bx +c =0的两个根分别为x 1=1,x 2=2,那么抛物线y =x 2+bx +c 的对称轴为直线 x =32W. 9.已知二次函数y =-x 2+ax -a +1的图象顶点在x 轴上,则a = 2 W.10.在同一坐标系下,抛物线y 1=-x 2+4x 和直线y 2=2x 的图象如图所示,那么不等式-x 2+4x >2x 的解集是 0<x <2 W. 第10题图 第12题图11.某商人将单价为8元的商品按每件10元出售,每天可销售100件,已知这种商品每提高2元,其销量就要减少10件,为了使每天所赚利润最多,该商人应将销售价(为偶数)提高 8或10 元.12.函数y =x 2+bx +c 与函数y =x 的图象如图所示,有以下结论:①b 2-4c >0;②b+c=0;③b<0;④方程组⎩⎪⎨⎪⎧y =x 2+bx +c ,y =x 的解为⎩⎪⎨⎪⎧x 1=1,y 1=1, ⎩⎪⎨⎪⎧x 2=3,y 2=3; ⑤当1<x <3时,x 2+(b -1)x +c >0.其中正确的有 ②③④ W.(填序号)三、解答题(共52分)13.(10分)(南京中考)已知二次函数y =2(x -1)(x -m -3)(m 为常数).(1)求证:不论m 为何值,该函数的图象与x 轴总有公共点;(2)当m 取什么值时,该函数的图象与y 轴的交点在x 轴的上方?解:(1)证明:当y =0时,2(x -1)(x -m -3)=0,解得x 1=1,x 2=m +3.当m +3=1,即m =-2时,方程有两个相等的实数根;当m +3≠1,即m≠-2时,方程有两个不相等的实数根.∴不论m 为何值,该函数的图象与x 轴总有公共点(2)当x =0时,y =2(x -1)(x -m -3)=2m +6,∴该函数的图象与y 轴交点的纵坐标为2m +6,∴当2m +6>0,即m >-3时,该函数的图象与y 轴的交点在x 轴的上方14.(12分)随着新农村的建设和旧城的改造,我们的家园越来越美丽,小明家附近广场中央新修了个圆形喷水池,在水池中心竖直安装了一根高为2米的喷水管,它喷出的抛物线形水柱在与池中心的水平距离为1米处达到最高,水柱落地处离池中心3米.(1)请你建立适当的平面直角坐标系,并求出水柱抛物线的函数解析式;(2)求出水柱的最大高度是多少?解:(1)如图所示,以水管与地面交点为原点,原点与水柱落地点所在直线为x 轴,水管所在直线为y 轴,建立平面直角坐标系,设抛物线的解析式为,y =a (x -1)2+h,代入(0,2)和(3,0)得⎩⎪⎨⎪⎧4a +h =0,a +h =2, 解得a =-23 ,h =83 ,∴抛物线的解析式为y =-23 (x -1)2+83 ,即y =-23 x 2+43x +2(0≤x≤3) (2)水柱的最大高度为83m 15.(14分)(2019·辽阳)我市某化工材料经销商购进一种化工材料若干千克,成本为每千克30元,物价部门规定其销售单价不低于成本价且不高于成本价的2倍,经试销发现,日销售量y (千克)与销售单价x (元)符合一次函数关系,如图所示.(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)若在销售过程中每天还要支付其他费用450元,当销售单价为多少时,该公司日获利最大?最大获利是多少元?解:(1)设一次函数关系式为y =kx +b (k≠0),由图象可得,当x =30时,y =140;x =50时,y =100,∴⎩⎪⎨⎪⎧140=30k +b ,100=50k +b , 解得⎩⎪⎨⎪⎧k =-2,b =200, ∴y 与x 之间的关系式为y =-2x +200(30≤x≤60) (2)设该公司日获利为W 元,由题意得W =(x -30)(-2x +200)-450=-2(x -65)2+2 000.∵a =-2<0,∴抛物线开口向下,∵对称轴x =65,∴当x <65时,W 随着x 的增大而增大,∵30≤x ≤60,∴x =60时,W 有最大值,W 最大值=-2×(60-65)2+2 000=1 950.即销售单价为每千克60元时,日获利最大,最大获利为1 950元16.(16分)如图,在平面直角坐标系中,点A (-1,-1),B (3,-3),抛物线y =-12x 2+12x 经过A,O,B 三点,连接OA,OB,AB,线段AB 交y 轴于点C.(1)求点C 的坐标;(2)若点P 为线段OB 上的一个动点(不与O,B 重合),直线PC 与抛物线交于D,E 两点(点D 在y 轴右侧),连接OD,BD.①当△OPC 为等腰三角形时,求点P 的坐标;②求△BOD 面积的最大值,并求出此时点D 的坐标.题图 答图解:(1)设直线AB 的解析式为y =kx +b.∴⎩⎪⎨⎪⎧-1=-k +b ,-3=3k +b , 解得⎩⎪⎨⎪⎧k =-12,b =-32, ∴直线AB 的解析式为y =-12 x -32 ,∴C 点坐标为(0,-32) (2)①∵直线OB 过点O (0,0),B (3,-3),∴直线OB 的解析式为y =-x.∵△OPC为等腰三角形,∴OC =OP 或OP =PC 或OC =PC.设P (x,-x )(0<x <3),当OC =OP 时,x 2+(-x )2=94 ,解得x 1=324 ,x 2=-324 (舍去),此时P 点坐标为(324 ,-324);当OP =PC 时,点P 在线段OC 的中垂线上,此时P 点坐标为(34 ,-34);当OC =PC 时,x 2+(-x +32 )2=94 ,解得x 1=32 ,x 2=0(舍去).此时P 点坐标为P (32 ,-32).综上所述,P 点坐标为(324 ,-324 )或(34 ,-34 )或(32 ,-32) ②过点D 作D G⊥x 轴,垂足为G,交OB 于点Q,过点B 作BH⊥x 轴,垂足为H.设Q (x,-x ),D (x,-12 x 2+12x ),则S △BOD =S △ODQ +S △BDQ =12 DQ·OG+12 DQ·GH=12 DQ (OG +GH )=12 [x +(-12 x 2+12 x )×3=-34 (x -32 )2+2716 ,∵0<x <3,∴当x =32 时,S 取得最大值为2716 ,此时D (32 ,-38)。
北师版九年级数学下册作业课件 第二章 二次函数 周周练(四)
3.二次函数 y=-3x2+12x+1 的图象中,若 y 随 x 的增大而减小,则 x 的取值 范围是( B )
A.x<2 B.x>2 C.x<-2 D.x>-2
4.二次函数的图象如图所示,根据图象可知,抛物线的表达式可能是(
A.y=x2-x-2 B.y=-1 x2-1 x+2
22 C.y=-1 x2-1 x+1
7.(2022·陕西)已知二次函数 y=x2-2x-3 的自变量 x1,x2,x3 对应的函数值分 别为 y1,y2,y3.当-1<x1<0,1<x2<2,x3>3 时,y1,y2,y3 三者之间的大小关系 是( B )
A.y1<y2<y3 B.y2<y1<y3 C.y3<y1<y2 D.y2<y3<y1
第二章 二次函数
周周练(四) 检测内容:2.3—2.4
一、选择题(每小题 4 分,共 32 分) 1.二次函数 y=-x2+4x+5 的最大值为( A ) A.9 B.8 C.7 D.6
2.抛物线 y=1 x2+2x+3 的对称轴是( C ) 2
A.直线 x=1 B.直线 x=-1 C.直线 x=-2 D.直线 x=2
22 D.y=-x2+x+2
D)
5.抛物线 y=x2-2x+m2+2(m 是常数)的顶点在( A ) A.第一象限 B.第二象限 C.第三象限 D.第四象限
6.如果抛物线 y=ax2+2x+c 全部在 x 轴的上方,那么下列结论中正确的是 ( C)
A.a>0,对称轴在 y 轴右侧 B.a<0,对称轴在 y 轴左侧 C.a>0,对称轴在 y 轴左侧 D.a<0,对称轴在 y 轴右侧
Байду номын сангаас
4
4
4
3 4
<0,∴当 x=20 时,y 最大=300.答:矩形面积的最大值
北师九年级数学上册(BS版)周周清 检测内容:4、1~4、4
检测内容:4.1~4.4得分________ 卷后分________ 评价________一、选择题(每小题4分,共24分) 1.若m n =38 ,则n n -m的值为(A )A .85B .118C .113D .352.已知在△ABC 和△DEF 中,∠B =∠E =100°,下列条件不能得到两个三角形相似的是(D )A .∠A =∠DB .AB DE =BC EFC .∠C =∠D D .∠C =40°,∠D =30°3.如图,在△ABC 中,D ,E 分别为AB ,AC 边上的点,DE ∥BC ,BE 与CD 相交于点F ,则下列结论一定正确的是(A )A .AD AB =AE AC B .DF FC =AE ECC .AD DB =DE BC D .DF BF =EF FC第3题图第4题图4.如图,在▱ABCD 中,G 是BC 的延长线上的一点,AG 与BD 交于点E ,与DC 交于点F ,则图中相似三角形共有(D )A .3对B .4对C .5对D .6对5.(安徽中考)如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =12,点D 在边BC 上,点E 在线段AD 上,EF ⊥AC 于点F ,EG ⊥EF 交AB 于点G ,若EF =EG ,则CD 的长为(B )A .3.6B .4C .4.8D .5第5题图第6题图6.如图,直线l 1∥l 2∥l 3,一等腰Rt △ABC 的三个顶点A ,B ,C 分别在l 1,l 2,l 3上,∠ACB =90°,AC 交l 2于点D ,已知l 1与l 2之间的距离为1,l 2与l 3之间的距离为3,则AB BD的值为(A )A .425B .345C .528D .20223二、填空题(每小题5分,共25分)7.(驻马店期末)如图,已知在△ABC 和△DEF 中,AB DE =BC EF ,要使△ABC ∽△DEF ,还需要添加一个条件为__∠B =∠E (答案不唯一)__.(只需填写一个即可)第7题图第8题图8.如图,AB ∥CD ∥EF ,点C ,D 分别在BE ,AF 上,如果BC =4,CE =6,AF =8,那么DF 的长__245__.9.某公司生产一种新型手杖,其长为1 m ,现要在黄金分割点位置安放一个小装饰品,装饰品离手杖上端的距离为2__m .(注:该装饰品离手杖的上端较近)10.如图,已知AB ⊥BD ,ED ⊥BD ,C 是线段BD 的中点,且AC ⊥CE ,ED =1,BD =4,那么AB =__4__.第10题图第11题图11.如图,在梯形ABCD 中,AB ∥CD ,BE ∥AD ,且BE 交CD 于点E ,∠AEB =∠C .如果AB =3,CD =8,那么AD 的长是.三、解答题(共51分)12.(10分)(荥阳市期中)如图,点D 是△ABC 边BC 上一点,连接AD ,过AD 上点E 作EF ∥BD ,交AB 于点F ,过点F 作FG ∥AC 交BC 于点G ,已知AE ED =32,BG =4.(1)求CG 的长;(2)若CD =2,在上述条件和结论下,求EF 的长.解:(1)∵EF ∥BD ,∴AF FB =AE ED =32 ,∵FG ∥AC ,∴BG CG =BF AF =23 ,∵BG =4,∴CG =6(2)∵CD =2,CG =6,∴DG =4,∵BG =4,∴BD =8,∵AF BF =32 ,∴AF AB =35,∵EF ∥BD ,∴EF BD =AF AB ,∴EF 8 =35 ,∴EF =24513.(11分)如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,∠AED =∠B ,射线AG 分别交线段DE ,BC 于点F ,G ,且AD AC =DFCG. (1)求证:△ADF ∽△ACG ; (2)若AD AC =12,求AFFG 的值.解:(1)证明:∵∠AED =∠B ,∠DAE =∠DAE ,∴∠ADF =∠C .又∵AD AC =DFCG ,∴△ADF ∽△ACG(2)∵△ADF ∽△ACG ,∴AD AC =AF AG .又∵AD AC =12,∴AF AG =12 ,∴AF FG =114.(13分)如图,在△ABC 中,点D 在边AB 上,点E 在线段CD 上,且∠ACD =∠B =∠BAE .(1)求证:AD BC =DE AC; (2)当点E 为CD 的中点时,求证:AE 2CE2 =ABCD .证明:(1)∵∠ACD =∠B =∠BAE ,∠BAC =∠BAE +∠CAE ,∠AED =∠ACD +∠CAE ,∴∠AED =∠BAC .∴△AED ∽△BAC ,∴AD BC =DEAC(2)∵∠ADE =∠CDA ,∠DAE =∠ACD ,∴△DAE ∽△DCA ,∴AE AC =DEAD.又∵DE =EC ,∴AE CE =AC AD ,∴AE 2CE 2 =AC 2AD 2 .又∵∠DAC =∠BAC ,∠ACD =∠B ,∴△ACD ∽△ABC ,∴AC 2=AD ·AB ,∴AE 2CE 2 =AD ·AB AD 2=ABAD15.(17分)(1)某学校“智慧方园”数学社团遇到这样一个题目:如图①,在△ABC 中,点O 在线段BC 上,∠BAO =30°,∠OAC =75°,AO =33 ,BO ∶CO =1∶3,求AB 的长.经过社团成员讨论发现,过点B 作BD ∥AC ,交AO 的延长线于点D ,通过构造△ABD 就可以解决问题(如图②).请回答:∠ADB =__75__°,AB =; (2)请参考以上解题思路,解决问题:如图③,在四边形ABCD 中,对角线AC 与BD 相交于点O ,AC ⊥AD ,AO =33 ,∠ABC =∠ACB =75°,BO ∶OD =1∶3,求DC 的长.解:(2)过点B 作BE ∥AD 交AC 于点E ,如图所示,∵AC ⊥AD ,BE ∥AD ,∴∠DAC =∠BEA =90°.又∵∠AOD =∠EOB ,∴△AOD ∽△EOB ,∴BO DO =EO AO =BE DA =13 .∵AO =33 ,∴EO =3 ,∴AE =43 .∵∠ABC =∠ACB =75°,∴∠BAC =30°,AB =AC ,∴AB=2BE .∵在Rt △AEB 中,BE 2+AE 2=AB 2,即(43 )2+BE 2=(2BE )2,解得BE =4,∴AB =AC =8,AD =12.在Rt △CAD 中,AC 2+AD 2=CD 2,即82+122=CD 2,解得CD =413。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年暑期班周测(4):九年级数学一元二次方程1. 用直接开平方法解下列方程:(1)2225x =; (2)21440y -=.2. 解下列方程:(1)2(1)9x -=; (2)2(21)3x +=;(3)2(61)250x --=. (4)281(2)16x -=.3. 用直接开平方法解下列方程:(1)25(21)180y -=; (2)21(31)644x +=;(3)26(2)1x +=; (4)2()(00)ax c b b a -=≠,≥4. 填空(1)28x x ++( )=(x + )2. (2)223x x -+( )=(x - )2. (3)2b y y a -+( )=(y - )2. 5. 用适当的数(式)填空:23x x -+(x =- 2); 2x px -+ =(x - 2) 23223(x x x +-=+ 2)+. 6. 用配方法解下列方程 1).210x x +-= 2).23610x x +-= 3).21(1)2(1)02x x ---+=7. 方程22103x x -+=左边配成一个完全平方式,所得的方程是 .8. 用配方法解方程.23610x x --= 22540x x --=9. 关于x 的方程22291240x a ab b ---=的根1x = ,2x = .10. 关于x 的方程22220x ax b a +-+=的解为11. 用配方法解方程(1)210x x --=; (2)23920x x -+=.12. 用适当的方法解方程(1)23(1)12x +=; (2)2410y y ++=;(3)2884x x -=; (4)2310y y ++=.一元二次方程阶段测试一、填空题(每小题5分,计35分)1、()()023112=++++-m x m x m ,当m=________时,方程为关于x 的一元一次方程;当m__________时,方程为关于x 的一元二次方程2、方程02=-x x 的一次项系数是___________,常数项是__________3、方程062=--x x 的解是_______________________________4、关于x 的方程0132=+-x x _____实数根.(注:填写“有”或“没有”)5、方程12=-px x 的根的判别式是______________________6、若2365422--++x x x 与的值互为相反数,则x=___________7、若一个三角形的三边长均满足方程0862=+-x x ,则此三角形的周长为_____________二、选择题(每小题5分,计25分)8、方程()()104222=-+-x x x 化为一般形式为( )A 、01422=--x xB 、01422=++x xC 、01422=-+x xD 、01422=+-x x9、关于x 的方程0232=+-x ax 是一元二次方程,则( )A 、0>aB 、0≠aC 、1=aD 、0≥a10、用配方法解下列方程,其中应在左右两边同时加上4的是( )A 、522=-x xB 、5422=-x xC 、542=+x xD 、522=+x x11、方程()x x x =-1的根是( )A 、2=xB 、2-=xC 、0221=-=x x ,D 、0221==x x ,12、若()0223233-+=+-x x x x ,则x 的值为( )A 、1或2B 、2C 、1D 、3-三、解答题13、用适当的方法解下列方程(每小题7分,计28分)(1)0342=+-x x ; (2)()()2465-=-+x x ;(3)()()03232=-+-x x x (4)06262=--x x14、(12分)已知一元二次方程0132=-+-m x x .(1)若方程有两个不相等的实数根,求m 的取值范围.(2)若方程有两个相等的实数根,求此时方程的根2015年暑期班周测(2)九年级数学:一元二次方程一、填空题(每小题5分,计35分)1、()x x 6542=+-化成一般形式是___________________________________,其中一次项系数是___________ 2、()22________________3+=++x x x 3、若()()______________054==-+x x x ,则4、若代数式242-+x x 的值为3,则x 的值为_______________________________5、已知一元二次方程022=+-mx mx 有两个相等的实数根,则m 的值为____________________6、已知三角形的两边长分别为1和2,第三边的数值是方程03522=+-x x 的根,则这个三角形的周长为_______________________7、我国政府为解决老百姓看病难的问题,决定下调药品的价格,某种药品经过两次降价,由每盒60元调至52元,若设每次平均降价的百分率为x ,则由题意可列方程为_______________________________________二、选择题(每小题5分,计20分)8、下列方程是一元二次方程的是( )A 、0523=-x xB 、()06122=--xC 、022312=-+x x D 、02122=-+x x 9、方程0562=--x x 左边配成一个完全平方式后,所得方程为( )A 、()4162=-xB 、()432=-xC 、()1432=-xD 、()3662=-x 10、要使方程()()0132=+++-c x b x a 是关于x 的一元二次方程,则( ) A 、0≠a B 、3≠a C 、13-≠≠b a ,且 D 、013≠-≠≠c b a ,且, 11、某种商品因换季准备打折出售,如果按原价的七五折出售,将赔25元,二按原价的九折出售,将赚20元,则这种商品的原价是( )A 、500元B 、400元C 、300元D 、200元三、解答题12、用适当的方法解下列方程(每小题6分,计24分)(1)()9322=-x ; (2)162=-x x ;(3)051632=++x x ; (4)()()2231623-=+x x13、(10分)无论m 为何值时,方程04222=---m mx x 总有两个不相等的实数根吗?给出答案并说明理由15、(10分)已知方程2(m+1)x2+4mx+3m=2,根据下列条件之一求m的值.(1)方程有两个相等的实数根;(2)方程有两个相反的实数根;(3)方程的一个根为0.14、(11分)百货商店服装柜在销售中发现:某品牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?一元二次方程综合测试(二)一、填空题(每小题5分,计40分)1、已知方程2(m+1)x2+4mx+3m-2=0是关于x的一元二次方程,那么m的取值范围是。
2、一元二次方程(1-3x)(x+3)=2x2+1的一般形式是它的二次项系数是;一次项系数是 ;常数项是 。
3、已知关于x 的一元二次方程(2m -1)x 2+3mx+5=0有一根是x=-1,则m= 。
4、 关于x 的方程2310x x -+= 实数根。
(注:填写“有”或“没有”)5、若代数式x 2-2x 与代数式 -9+4x 的值相等,则x 的值为 。
6、在实数范围内定义一种运算 “*” , 其规则为 22a b a b *=-, 根据这个规则, 方程(x+3)*2=0的解为 。
7、在参加足球世界杯预选赛的球队中,每两支队都要进行两次比赛,共要比赛30场,则参赛队有 支。
8、如右图,是一个正方体的展开图,标注了字母A 的面是正方体的正面,如果正方体的左面和右面所标注代数式的值相等,则x 的值是 。
二、选择题(每小题4分,计20分)9、下列方程,是一元二次方程的是( )①3x 2+x=20,②2x 2-3xy+4=0,③x 2-1x =4,④x 2=0,⑤x 2-3x +3=0 A .①② B .①②④⑤ C .①③④ D .①④⑤10,则x 的取值范围是( )A .x ≥7B .x ≤7C .x>7D .x<711、方程(x-3)2=(x-3)的根为( )A .3B .4C .4或3D .-4或312、若c (c ≠0)为关于x 的一元二次方程x 2+bx+c=0的根,则c+b 的值为( )A .1B .-1C .2D .-213、从正方形铁片上截去2cm 宽的一个长方形,剩余矩形的面积为80cm 2,•则原来正方形的面积为( )A .100cm 2B .121cm 2C .144cm 2D .169cm 2三、解答题14、用适当的方法解下列方程(每小题6分,计24分)(1)(3)(1)5x x +-=; (2)231060x x -+=(3)2(3)2(3)x x x -=-; (4)2(3)2(1)7x x x --+=-15、(10分)已知方程2(m+1)x 2+4mx+3m=2,根据下列条件之一求m 的值.(1)方程有两个相等的实数根;(2)方程有两个相反的实数根;(3)方程的一个根为0.16、(11分)某农户在山上种了脐橙果树44株,现进入第三年收获。
收获时,先随意采摘5株果树上的脐橙,称得每株果树上的脐橙质量如下(单位:千克):35,35,34,39,37(1)根据样本平均数估计,这年脐橙的总产量约是多少?(2)若市场上的脐橙售价为每千克5元,则这年该农户卖脐橙的收入将达多少元?(3)已知该农户第一年卖脐橙的收入为5500元,根据以上估算,试求第二年、第三年卖脐橙收入的年平均增长率。
(四)一元一次方程的实际应用(1)与数字有关的问题例11:一个两位数,十位数字与个位数字之和是5,把这个数的个位数字与十位数字对调后,所得的新两位数与原来的两位数的乘积为736,求原来的两位数解:一元二次方程实际应用练习题11:1.一个两位数,个位数字比十位数字大3,个位数字的平方恰好等于这个两位数,则这个两位数是多少?2、某两位数的十位数字是082=-x x 的解,则其十位数字是多少;某两位数的个位数字是方程082=-x x 的解,则其个位数是多少?3、一个两位数,个位上数字比十位数字小4,且个位数字与十位数字的平方和比这两位数小4,设个位数字为x ,求这个两位数?4、一个两位数,个位上的数字是十位数字的平方还多1,若把个位上的数字与十位上的数字对调,所得的两位数比原数大27,求原两位数?5、一个三位数,百位上数字为2,十位上数字比个位上数字小3,这个三位数个位、十位、百位上的数字之积的6倍比这个三位数小20,求这个三位数?例12:三个连续奇数,它们的平方和为251,求这三个数?解:一元二次方程实际应用练习题12:1、 两个数的和为16,积为48,则这两个正整数各是多少?2、 若两个连续正整数的平方和为313,则这两个正整数的和是多少?3、 三个连续正整数中,前两个数的平方和等于第三个数的平方,则这三个数从小到大依次是多少?4、 三个连续偶数,使第三个数的平方等于前两个数的平方和,求这三个数?5、 有四个连续整数,已知它们的和等于其中最大的与最小的两个整数的积,求这四个数?(2)与几何图形面积有关的问题例13:一个直角三角形三边的长是三个连续整数,求这三条边的长和它的面积解:一元二次方程实际应用练习题13:1.直角三角形两直角边的比是8:15,而斜边的长等于6.8cm ,那么这个直角三角形的面积等于多少?2、直角三角形的面积为6,两直角边的和为7,则斜边长为多少?3、用一条长12厘米的铁丝折成一个斜边长是5厘米的直角三角形,则两直角边的长是多少?4、一个三角形的两边长为2和4,第三边长是方程0121022=+-x x 的解,则三角形的周长为多少6、 若三角形的三边长均满足方程0862=+-x x ,则此三角形的周长为多少?例14:一块长80cm ,宽60cm 的薄钢片,在四个角截去四个相同的小正方形,然后将四边折起,做成如图所示的底面积是15002cm 且无盖的长方体盒子. 求截去的小正方形的边长.解:一元二次方程实际应用练习题14:1.一块矩形的地,长是24米,宽是12米,要在它的中央划一块矩形的花坛,四周铺上草地,其宽都相同,花坛占大块矩形面积的95,求草地的宽?2、从一块正方形的木板上锯下2m 宽的长方形木条,剩下部分的面积是482m ,则这块木板的面积是多少?3、有一间长18m ,宽7m 的会议室,在它的中间铺一块地毯,地毯的面积是会议室面积的31,四周未铺地毯处的宽度相同,则求所留宽度是多少?4、一根铁丝长48cm ,围成一个面积为140cm 2的矩形,求这个矩形的长和宽分别是多少?5、建一个面积为480平方米的长方形存车处,存车处的一面靠墙,另三面用铁栅栏围起来,已知铁栅栏的长是92米,求存车处的长和宽各是多少?(3)有关增长率的问题例15:将进货单价为30元的商品按40元售出时,每天能卖出500个. 已知这种商品每涨价1元,其每天销售量就减少10个,为了每天能赚取8000元的利润,且尽量减少库存,售价应定为多少?解:答:一元二次方程实际应用练习题15:1、某商店的童装按标价的九折出售,仍可获利20%,若进价为每件21元,求每件标价为多少元?2、一个小组有若干个人,新年互送贺卡一张,已知全组共送贺卡72张,求这个小组有多少人?3、生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共赠送了182件,求全组有多少名同学?4、有一种植物的主干长出了若干数目的支干,每个支干又长出同样数目的小分支,主干、分支和小分支的总数是111,每个支干长出多少小分支?例16:某工厂1月份产值为50万元,采用先进技术后,第一季度产值共为182万元,2月份和3月份的平均增长率为多少?解:一元二次方程实际应用练习题16:1、某农场的产量两年从50万公斤增加到60.5万公斤,平均每年增产百分之几??2、某化肥厂今年一月份的化肥产量为4万吨,第一季度共生产化肥13.2万吨,问2、3月份平均每月的增长率是多少?3、某超市一月份的营业额为200万元,一月、二月、三月的营业额共1000万元,求平均每月增长率为多少?4、某种粮大户今年产粮20万千克,计划后年产粮达到28.8万千克,若每年粮食增产的百分率相同,求平均每年增产的百分数?5、某钢厂今年一月份产量为4万吨,第一季度共生产13.24万吨,问二、三月份平均每月的增长率是多少?。