湖北省十堰市2017年中考数学真题试题(含解析)

合集下载

湖北省十堰市2017年中考数学真题试题(含解析)(中考真题)

湖北省十堰市2017年中考数学真题试题(含解析)(中考真题)
AB = BC ∵在△ABF 和△BCG 中, ABF = BCG = 90 ,
BF = CG
∴△ABF≌△BCG,∴∠BAF=∠CBG,
∵∠BAF+∠BFA=90°,∴∠CBG+∠BFA=90°,即 AF⊥BG;①正确;
CBG = NBF ②∵在△BNF 和△BCG 中, BCG = BNF = 90 ,
3 ,cos∠OAB= OA = 1 ,
2
AB 2
设 M(x,y),∴CF=﹣y,ED=x,∴sin∠OAB= CF ,∴AC=﹣ 2 3 y,
AC
3
∵cos∠OAB=cos∠EDB= ED ,∴BD=2x,∵ACBD=4 BD
3 ,∴﹣ 2 3 y×2x=4 3
3,
∴xy=﹣3,∵M 在反比例函数的图象上,∴k=xy=﹣3,
湖北省十堰市 2017 年中考数学真题试题
一、选择题: 1.气温由﹣2℃上升 3℃后是( )℃. A.1 B.3 C.5 D.﹣5 【答案】A. 【解析】 试题分析:由题意,得﹣2+3=+(3﹣2)=1, 故选:A. 考点:有理数的加法 2.如图的几何体,其左视图是( )
A.
B.
C.
D.
【答案】B. 【解析】 试题分析:根据从左边看得到的图象是左视图, 从左边看第一层是两个小正方形,第二层左边一个小正方 形, 故选:B. 考点:简单组合体的三视图 3.如图,AB∥DE,FG⊥BC 于 F,∠CDE=40°,则∠FGB=( )
11
11
MG 8
④连接 AG,FG,根据③中结论,
则 NG=BG﹣BN= 7 13 ,∵S =S +S = 四边形 CGNF △CFG △GNF 1 CGCF+ 1 NFNG=1+ 14 = 27 ,

2017年湖北省十堰市中考数学真题试卷

2017年湖北省十堰市中考数学真题试卷

2017年湖北省十堰市中考数学试卷一、选择题:1.(3分)气温由﹣2℃上升3℃后是()℃.A.1 B.3 C.5 D.﹣52.(3分)如图的几何体,其左视图是()A.B.C.D.3.(3分)如图,AB∥DE,FG⊥BC于F,∠CDE=40°,则∠FGB=()A.40°B.50°C.60°D.70°4.(3分)下列运算正确的是()A.B.C.D.5.(3分)某交警在一个路口统计的某时段来往车辆的车速情况如表:则上述车速的中位数和众数分别是()A.50,8 B.50,50 C.49,50 D.49,86.(3分)下列命题错误的是()A.对角线互相平分的四边形是平行四边形B.对角线相等的平行四边形是矩形C.一条对角线平分一组对角的四边形是菱形D.对角线互相垂直的矩形是正方形7.(3分)甲、乙二人做某种机械零件,甲每小时比乙多做6个,甲做90个所用的时间与做60个所用的时间相等.设甲每小时做x个零件,下面所列方程正确的是()A.B.C.D.8.(3分)如图,已知圆柱的底面直径BC=,高AB=3,小虫在圆柱表面爬行,从C点爬到A点,然后再沿另一面爬回C点,则小虫爬行的最短路程为()A.B.C.D.9.(3分)如图,10个不同的正偶数按下图排列,箭头上方的每个数都等于其下方两数的和,如,表示a1=a2+a3,则a1的最小值为()A.32 B.36 C.38 D.4010.(3分)如图,直线y=x﹣6分别交x轴,y轴于A,B,M是反比例函数y=(x>0)的图象上位于直线上方的一点,MC∥x轴交AB于C,MD⊥MC交AB于D,AC•BD=4,则k的值为()A.﹣3 B.﹣4 C.﹣5 D.﹣6二、填空题11.(3分)某颗粒物的直径是0.0000025,把0.0000025用科学记数法表示为.12.(3分)若a﹣b=1,则代数式2a﹣2b﹣1的值为.13.(3分)如图,菱形ABCD中,AC交BD于O,DE⊥BC于E,连接OE,若∠ABC=140°,则∠OED=.14.(3分)如图,△ABC内接于⊙O,∠ACB=90°,∠ACB的角平分线交⊙O于D.若AC=6,BD=5,则BC的长为.15.(3分)如图,直线y=kx和y=ax+4交于A(1,k),则不等式kx﹣6<ax+4<kx的解集为.16.(3分)如图,正方形ABCD中,BE=EF=FC,CG=2GD,BG分别交AE,AF于M,N.下列结论:①AF⊥BG;②BN=NF;③=;④S四边形CGNF=S四边形ANGD.其中正确的结论的序号是.三、解答题(本大题共9小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(5分)计算:|﹣2|+﹣(﹣1)2017.18.(6分)化简:(+)÷.19.(7分)如图,海中有一小岛A,它周围8海里内有暗礁,渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏东60°方向上,航行12海里到达D点,这时测得小岛A在北偏东30°方向上.如果渔船不改变航线继续向东航行,有没有触礁的危险?20.(9分)某中学艺术节期间,学校向学生征集书画作品,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作品的数量进行了分析统计,制作了两幅不完整的统计图.请根据以上信息,回答下列问题:(1)杨老师采用的调查方式是(填“普查”或“抽样调查”);(2)请你将条形统计图补充完整,并估计全校共征集多少件作品?(3)如果全校征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.21.(7分)已知关于x的方程x2+(2k﹣1)x+k2﹣1=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)若x1,x2满足x12+x22=16+x1x2,求实数k的值.22.(8分)某超市销售一种牛奶,进价为每箱24元,规定售价不低于进价.现在的售价为每箱36元,每月可销售60箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱,设每箱牛奶降价x元(x为正整数),每月的销量为y箱.(1)写出y与x中间的函数关系书和自变量x的取值范围;(2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元?23.(8分)已知AB为⊙O的直径,BC⊥AB于B,且BC=AB,D为半圆⊙O上的一点,连接BD并延长交半圆⊙O的切线AE于E.(1)如图1,若CD=CB,求证:CD是⊙O的切线;(2)如图2,若F点在OB上,且CD⊥DF,求的值.24.(10分)已知O为直线MN上一点,OP⊥MN,在等腰Rt△ABO中,∠BAO=90°,AC∥OP交OM于C,D为OB的中点,DE⊥DC交MN于E.(1)如图1,若点B在OP上,则①AC OE(填“<”,“=”或“>”);②线段CA、CO、CD满足的等量关系式是;(2)将图1中的等腰Rt△ABO绕O点顺时针旋转α(0°<α<45°),如图2,那么(1)中的结论②是否成立?请说明理由;(3)将图1中的等腰Rt△ABO绕O点顺时针旋转α(45°<α<90°),请你在图3中画出图形,并直接写出线段CA、CO、CD满足的等量关系式.25.(12分)抛物线y=x2+bx+c与x轴交于A(1,0),B(m,0),与y轴交于C.(1)若m=﹣3,求抛物线的解析式,并写出抛物线的对称轴;(2)如图1,在(1)的条件下,设抛物线的对称轴交x轴于D,在对称轴左侧的抛物线上有一点E,使S=S△ACD,求点E的坐标;△ACE(3)如图2,设F(﹣1,﹣4),FG⊥y于G,在线段OG上是否存在点P,使∠OBP=∠FPG?若存在,求m的取值范围;若不存在,请说明理由.2017年湖北省十堰市中考数学试卷参考答案与试题解析一、选择题:1.(3分)(2017•十堰)气温由﹣2℃上升3℃后是()℃.A.1 B.3 C.5 D.﹣5【分析】根据有理数的加法,可得答案.【解答】解:由题意,得﹣2+3=+(3﹣2)=1,故选:A.【点评】本题考查了有理数的加法,异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减较小的绝对值.2.(3分)(2017•十堰)如图的几何体,其左视图是()A.B.C.D.【分析】根据从左边看得到的图象是左视图,可得答案.【解答】解:从左边看第一层是两个小正方形,第二层左边一个小正方形,故选:B.【点评】本题考查了简单组合体的三视图,从左边看得到的图象是左视图.3.(3分)(2017•十堰)如图,AB∥DE,FG⊥BC于F,∠CDE=40°,则∠FGB=()A.40°B.50°C.60°D.70°【分析】先根据平行线的性质,得到∠B=∠CDE=40°,直观化FG⊥BC,即可得出∠FGB的度数.【解答】解:∵AB∥DE,∠CDE=40°,∴∠B=∠CDE=40°,又∵FG⊥BC,∴∠FGB=90°﹣∠B=50°,故选:B.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.4.(3分)(2017•十堰)下列运算正确的是()A.B.C.D.【分析】根据二次根式的加减法对A、D进行判断;根据二次根式的乘法法则对B进行判断;根据二次根式的除法法则对D进行判断.【解答】解:A、与不能合并,所以A选项错误;B、原式=6×2=12,所以B选项错误;C、原式==2,所以C选项准确;D、原式=2,所以D选项错误.故选C.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.5.(3分)(2017•十堰)某交警在一个路口统计的某时段来往车辆的车速情况如表:则上述车速的中位数和众数分别是()A.50,8 B.50,50 C.49,50 D.49,8【分析】把这组数据按照从小到大的顺序排列,第10、11个数的平均数是中位数,在这组数据中出现次数最多的是50,得到这组数据的众数.【解答】解:要求一组数据的中位数,把这组数据按照从小到大的顺序排列,第10、11两个数的平均数是50,所以中位数是50,在这组数据中出现次数最多的是50,即众数是50.故选:B.【点评】本题考查一组数据的中位数和众数,在求中位数时,首先要把这列数字按照从小到大或从的大到小排列,找出中间一个数字或中间两个数字的平均数即为所求.6.(3分)(2017•十堰)下列命题错误的是()A.对角线互相平分的四边形是平行四边形B.对角线相等的平行四边形是矩形C.一条对角线平分一组对角的四边形是菱形D.对角线互相垂直的矩形是正方形【分析】利用平行四边形、矩形、菱形及正方形的判定定理分别判断后即可确定正确的选项.【解答】解:A、对角线互相平分的四边形是平行四边形是正确的,不符合题意;B、对角线相等的平行四边形是矩形是正确的,不符合题意;C、一条对角线平分一组对角的四边形不一定是菱形,原来的说法错误,符合题意;D、对角线互相垂直的矩形是正方形是正确的,不符合题意.故选C.【点评】本题考查了命题与定理的知识,解题的关键是了解平行四边形、矩形、菱形及正方形的判定定理,难度不大.7.(3分)(2017•十堰)甲、乙二人做某种机械零件,甲每小时比乙多做6个,甲做90个所用的时间与做60个所用的时间相等.设甲每小时做x个零件,下面所列方程正确的是()A.B.C.D.【分析】设甲每小时做x个零件,根据题意可得,甲做90个所用的时间与乙做60个所用的时间相等,据此列方程.【解答】解:设甲每小时做x个零件,则乙每小时做(x﹣6)个零件,由题意得,=.故选A.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.8.(3分)(2017•十堰)如图,已知圆柱的底面直径BC=,高AB=3,小虫在圆柱表面爬行,从C点爬到A点,然后再沿另一面爬回C点,则小虫爬行的最短路程为()A.B.C.D.【分析】要求最短路径,首先要把圆柱的侧面展开,利用两点之间线段最短,然后利用勾股定理即可求解.【解答】解:把圆柱侧面展开,展开图如右图所示,点A、C的最短距离为线段AC的长.在RT△ADC中,∠ADC=90°,CD=AB=3,AD为底面半圆弧长,AD=3,所以AC=3,∴从C点爬到A点,然后再沿另一面爬回C点,则小虫爬行的最短路程为2AC=6,故选D.【点评】本题考查了平面展开﹣最短路径问题,解题的关键是会将圆柱的侧面展开,并利用勾股定理解答.9.(3分)(2017•十堰)如图,10个不同的正偶数按下图排列,箭头上方的每个数都等于其下方两数的和,如,表示a1=a2+a3,则a1的最小值为()A.32 B.36 C.38 D.40【分析】由a1=a7+3(a8+a9)+a10知要使a1取得最小值,则a8+a9应尽可能的小,取a8=2、a9=4,根据a5=a8+a9=6,则a7、a10中不能有6,据此对于a7、a10,分别取8、10、12、14检验可得,从而得出答案.【解答】解:∵a1=a2+a3=a4+a5+a5+a6=a7+a8+a8+a9+a8+a9+a9+a10=a7+3(a8+a9)+a10,∴要使a1取得最小值,则a8+a9应尽可能的小,取a8=2、a9=4,∵a5=a8+a9=6,则a7、a10中不能有6,若a10=8,则a6=a9+a10=12,∴a7=14,则a4=14+2=16、a2=16+6=22、a3=6+12=18、a1=18+22=40;综上,a1的最小值为40,故选:D.【点评】本题主要考查数字的变化类,根据题目要求得出a1取得最小值的切入点是解题的关键.10.(3分)(2017•十堰)如图,直线y=x﹣6分别交x轴,y轴于A,B,M是反比例函数y=(x>0)的图象上位于直线上方的一点,MC∥x轴交AB于C,MD⊥MC交AB于D,AC•BD=4,则k的值为()A.﹣3 B.﹣4 C.﹣5 D.﹣6【分析】过点D作DE⊥y轴于点E,过点C作CF⊥x轴于点F,然后求出OA与OB的长度,即可求出∠OAB的正弦值与余弦值,再设M(x,y),从而可表示出BD与AC的长度,根据AC•BD=4列出即可求出k的值.【解答】解:过点D作DE⊥y轴于点E,过点C作CF⊥x轴于点F,令x=0代入y=x﹣6,∴y=﹣6,∴B(0,﹣6),∴OB=6,令y=0代入y=x﹣6,∴x=2,∴(2,0),∴OA=2,∴勾股定理可知:AB=4,∴sin∠OAB==,cos∠OAB==设M(x,y),∴CF=﹣y,ED=x,∴sin∠OAB=,∴AC=﹣y,∵cos∠OAB=cos∠EDB=,∴BD=2x,∵AC•BD=4,∴﹣y×2x=4,∴xy=﹣3,∵M在反比例函数的图象上,∴k=xy=﹣3,故选(A)【点评】本题考查反比例函数与一次函数的综合问题,解题的关键是根据∠OAB 的锐角三角函数值求出BD、AC,本题属于中等题型.二、填空题11.(3分)(2017•十堰)某颗粒物的直径是0.0000025,把0.0000025用科学记数法表示为 2.5×10﹣6.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000025用科学记数法表示为2.5×10﹣6,故答案为:2.5×10﹣6.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.(3分)(2017•十堰)若a﹣b=1,则代数式2a﹣2b﹣1的值为1.【分析】原式前两项提取2变形后,将a﹣b=1代入计算即可求出值.【解答】解:∵a﹣b=1,∴原式=2(a﹣b)﹣1=2﹣1=1.故答案为:1.【点评】此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.13.(3分)(2017•十堰)如图,菱形ABCD中,AC交BD于O,DE⊥BC于E,连接OE,若∠ABC=140°,则∠OED=20°.【分析】由菱形的性质可知O为BD中点,所以OE为直角三角形BED斜边上的中线,由此可得OE=OB,根据等腰三角形的性质和已知条件即可求出∠OED的度数.【解答】解:∵四边形ABCD是菱形,∴DO=OB,∵DE⊥BC于E,∴OE为直角三角形BED斜边上的中线,∴OE=BD,∴OB=OE,∴∠OBE=∠OEB,∵∠ABC=140°,∴∠OBE=70°,∴∠OED=90°﹣70°=20°,故答案为:20°.【点评】本题考查了菱形的性质、直角三角形斜边上中线的性质,得到OE为直角三角形BED斜边上的中线是解题的关键.14.(3分)(2017•十堰)如图,△ABC内接于⊙O,∠ACB=90°,∠ACB的角平分线交⊙O于D.若AC=6,BD=5,则BC的长为8.【分析】连接BD,根据CD是∠ACB的平分线可知∠ACD=∠BCD=45°,故可得出AD=BD,再由AB是⊙O的直径可知△ABD是等腰直角三角形,利用勾股定理求出AB的长,在Rt△ABC中,利用勾股定理可得出BC的长.【解答】解:连接BD,∵∠ACB=90°,∴AB是⊙O的直径.∵ACB的角平分线交⊙O于D,∴∠ACD=∠BCD=45°,∴AD=BD=5.∵AB是⊙O的直径,∴△ABD是等腰直角三角形,∴AB===10.∵AC=6,∴BC===8.故答案为:8.【点评】本题考查的是圆周角定理,熟知直径所对的圆周角是直角是解答此题的关键.15.(3分)(2017•十堰)如图,直线y=kx和y=ax+4交于A(1,k),则不等式kx﹣6<ax+4<kx的解集为1<x<.【分析】根据题意得由OB=4,OC=6,根据直线y=kx平行于直线y=kx﹣6,得到===,分别过A,D作AM⊥x轴于M,DN⊥x轴于N,则AM∥DN∥y 轴,根据平行线分线段成比例定理得到==,得到ON=,求得D点的横坐标是,于是得到结论.【解答】解:如图,由y=kx﹣6与y=ax+4得OB=4,OC=6,∵直线y=kx平行于直线y=kx﹣6,∴===,分别过A,D作AM⊥x轴于M,DN⊥x轴于N,则AM∥DN∥y轴,∴==,∵A(1,k),∴OM=1,∴MN=,∴ON=,∴D点的横坐标是,∴1<x<时,kx﹣6<ax+4<kx,故答案为:1<x<.【点评】本题考查了一次函数与一元一次不等式,此类题目,利用数形结合的思想求解是解题的关键.16.(3分)(2017•十堰)如图,正方形ABCD中,BE=EF=FC,CG=2GD,BG分别交AE,AF于M,N.下列结论:①AF⊥BG;②BN=NF;③=;④S=S四边形CGNF.其中正确的结论的序号是①③.四边形ANGD【分析】①易证△ABF≌△BCG,即可解题;②易证△BNF∽△BCG,即可求得的值,即可解题;③作EH⊥AF,令AB=3,即可求得MN,BM的值,即可解题;④连接AG,FG,根据③中结论即可求得S四边形CGNF 和S四边形ANGD,即可解题.【解答】解:①∵四边形ABCD为正方形,∴AB=BC=CD,∵BE=EF=FC,CG=2GD,∴BF=CG,∵在△ABF和△BCG中,,∴△ABF≌△BCG,∴∠BAF=∠CBG,∵∠BAF+∠BFA=90°,∴∠CBG+∠BFA=90°,即AF⊥BG;①正确;②∵在△BNF和△BCG中,,∴△BNF∽△BCG,∴==,∴BN=NF;②错误;③作EH⊥AF,令AB=3,则BF=2,BE=EF=CF=1,AF==,∵S△ABF=AF•BN=AB•BF,∴BN=,NF=BN=,∴AN=AF﹣NF=,∵E是BF中点,∴EH是△BFN的中位线,∴EH=,NH=,BN∥EH,∴AH=,=,解得:MN=,∴BM=BN﹣MN=,MG=BG﹣BM=,∴=;③正确;④连接AG,FG,根据③中结论,则NG=BG﹣BN=,∵S四边形CGNF=S△CFG+S△GNF=CG•CF+NF•NG=1+=,S四边形ANGD=S△ANG+S△ADG=AN•GN+AD•DG=+=,∴S四边形CGNF ≠S四边形ANGD,④错误;故答案为①③.【点评】本题考查了全等三角形的判定和性质,考查了相似三角形的判定和对应边比例相等的性质,本题中令AB=3求得AN,BN,NG,NF的值是解题的关键.三、解答题(本大题共9小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(5分)(2017•十堰)计算:|﹣2|+﹣(﹣1)2017.【分析】原式利用绝对值的代数意义,立方根定义,以及乘方的意义计算即可得到结果.【解答】解:原式=2﹣2+1=1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(6分)(2017•十堰)化简:(+)÷.【分析】根据分式的加法和除法可以解答本题.【解答】解:(+)÷====.【点评】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.19.(7分)(2017•十堰)如图,海中有一小岛A,它周围8海里内有暗礁,渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏东60°方向上,航行12海里到达D点,这时测得小岛A在北偏东30°方向上.如果渔船不改变航线继续向东航行,有没有触礁的危险?【分析】过A作AC⊥BD于点C,求出∠CAD、∠CAB的度数,求出∠BAD和∠ABD,根据等边对等角得出AD=BD=12,根据含30度角的直角三角形性质求出CD,根据勾股定理求出AD即可.【解答】解:只要求出A到BD的最短距离是否在以A为圆心,以8海里的圆内或圆上即可,如图,过A作AC⊥BD于点C,则AC的长是A到BD的最短距离,∵∠CAD=30°,∠CAB=60°,∴∠BAD=60°﹣30°=30°,∠ABD=90°﹣60°=30°,∴∠ABD=∠BAD,∴BD=AD=12海里,∵∠CAD=30°,∠ACD=90°,∴CD=AD=6海里,由勾股定理得:AC==6≈10.392>8,即渔船继续向正东方向行驶,没有触礁的危险.【点评】考查了勾股定理的应用和解直角三角形,此题是一道方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.20.(9分)(2017•十堰)某中学艺术节期间,学校向学生征集书画作品,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作品的数量进行了分析统计,制作了两幅不完整的统计图.请根据以上信息,回答下列问题:(1)杨老师采用的调查方式是抽样调查(填“普查”或“抽样调查”);(2)请你将条形统计图补充完整,并估计全校共征集多少件作品?(3)如果全校征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.【分析】(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查.(2)由题意得:所调查的4个班征集到的作品数为:6÷=24(件),C班作品的件数为:24﹣4﹣6﹣4=10(件);继而可补全条形统计图;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好抽中一男一女的情况,再利用概率公式即可求得答案.【解答】解:(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查.故答案为抽样调查.(2)所调查的4个班征集到的作品数为:6÷=24件,平均每个班=6件,C班有10件,∴估计全校共征集作品6×30=180件.条形图如图所示,(3)画树状图得:∵共有20种等可能的结果,两名学生性别相同的有8种情况,∴恰好抽中一男一女的概率为:=.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.同时考查了概率公式.21.(7分)(2017•十堰)已知关于x的方程x2+(2k﹣1)x+k2﹣1=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)若x1,x2满足x12+x22=16+x1x2,求实数k的值.【分析】(1)根据方程的系数结合根的判别式,即可得出△=﹣4k+5≥0,解之即可得出实数k的取值范围;(2)由根与系数的关系可得x1+x2=1﹣2k、x1•x2=k2﹣1,将其代入x12+x22=(x1+x2)2﹣2x•x2=16+x1•x2中,解之即可得出k的值.1【解答】解:(1)∵关于x的方程x2+(2k﹣1)x+k2﹣1=0有两个实数根x1,x2,∴△=(2k﹣1)2﹣4(k2﹣1)=﹣4k+5≥0,解得:k≤,∴实数k的取值范围为k≤.(2)∵关于x的方程x2+(2k﹣1)x+k2﹣1=0有两个实数根x1,x2,∴x1+x2=1﹣2k,x1•x2=k2﹣1.∵x12+x22=(x1+x2)2﹣2x1•x2=16+x1•x2,∴(1﹣2k)2﹣2×(k2﹣1)=16+(k2﹣1),即k2﹣4k﹣12=0,解得:k=﹣2或k=6(不符合题意,舍去).∴实数k的值为﹣2.【点评】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)根据方程的系数结合根的判别式,找出△=﹣4k+5≥0;(2)根据根与系数的关系结合x12+x22=16+x1x2,找出关于k的一元二次方程.22.(8分)(2017•十堰)某超市销售一种牛奶,进价为每箱24元,规定售价不低于进价.现在的售价为每箱36元,每月可销售60箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱,设每箱牛奶降价x元(x 为正整数),每月的销量为y箱.(1)写出y与x中间的函数关系书和自变量x的取值范围;(2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元?【分析】(1)根据价格每降低1元,平均每天多销售10箱,由每箱降价x元,多卖10x,据此可以列出函数关系式;(2)由利润=(售价﹣成本)×销售量列出函数关系式,求出最大值.【解答】解:(1)根据题意,得:y=60+10x,由36﹣x≥24得x≤12,∴1≤x≤12,且x为整数;(2)设所获利润为W,则W=(36﹣x﹣24)(10x+60)=﹣10x2+60x+720=﹣10(x﹣3)2+810,∴当x=3时,W取得最大值,最大值为810,答:超市定价为33元时,才能使每月销售牛奶的利润最大,最大利润是810元.【点评】本题主要考查二次函数的应用,由利润=(售价﹣成本)×销售量列出函数关系式求最值,用二次函数解决实际问题是解题的关键.23.(8分)(2017•十堰)已知AB为⊙O的直径,BC⊥AB于B,且BC=AB,D为半圆⊙O上的一点,连接BD并延长交半圆⊙O的切线AE于E.(1)如图1,若CD=CB,求证:CD是⊙O的切线;(2)如图2,若F点在OB上,且CD⊥DF,求的值.【分析】(1)连接DO,CO,易证△CDO≌△CBO,即可解题;(2)连接AD,易证△ADF∽△BDC和△ADE∽△BDA,根据相似三角形对应边比例相等的性质即可解题.【解答】解:(1)连接DO,CO,∵BC⊥AB于B,∴∠ABC=90°,在△CDO与△CBO中,,∴△CDO≌△CBO,∴∠CDO=∠CBO=90°,∴OD⊥CD,∴CD是⊙O的切线;(2)连接AD,∵AB是直径,∴∠ADB=90°,∴∠ADF+∠BDF=90°,∠DAB+∠DBA=90°,∵∠BDF+∠BDC=90°,∠CBD+∠DBA=90°,∴∠ADF=∠BDC,∠DAB=∠CBD,∵在△ADF和△BDC中,,∴△ADF∽△BDC,∴=,∵∠DAE+∠DAB=90°,∠E+∠DAE=90°,∴∠E=∠DAB,∵在△ADE和△BDA中,,∴△ADE∽△BDA,∴=,∴=,即=,∵AB=BC,∴=1.【点评】本题考查了相似三角形的判定和性质,考查了全等三角形的判定和性质,本题中求证△ADF∽△BDC和△ADE∽△BDA是解题的关键.24.(10分)(2017•十堰)已知O为直线MN上一点,OP⊥MN,在等腰Rt△ABO 中,∠BAO=90°,AC∥OP交OM于C,D为OB的中点,DE⊥DC交MN于E.(1)如图1,若点B在OP上,则①AC=OE(填“<”,“=”或“>”);②线段CA、CO、CD满足的等量关系式是AC2+CO2=CD2;(2)将图1中的等腰Rt△ABO绕O点顺时针旋转α(0°<α<45°),如图2,那么(1)中的结论②是否成立?请说明理由;(3)将图1中的等腰Rt△ABO绕O点顺时针旋转α(45°<α<90°),请你在图3中画出图形,并直接写出线段CA、CO、CD满足的等量关系式CO﹣CA=CD.【分析】(1)①如图1,证明AC=OC和OC=OE可得结论;②根据勾股定理可得:AC2+CO2=CD2;(2)如图2,(1)中的结论②不成立,作辅助线,构建全等三角形,证明A、D、O、C四点共圆,得∠ACD=∠AOB,同理得:∠EFO=∠EDO,再证明△ACO≌△EOF,得OE=AC,AO=EF,根据勾股定理得:AC2+OC2=FO2+OE2=EF2,由直角三角形中最长边为斜边可得结论;(3)如图3,连接AD,则AD=OD证明△ACD≌△OED,根据△CDE是等腰直角三角形,得CE2=2CD2,等量代换可得结论(OC﹣OE)2=(OC﹣AC)2=2CD2,开方后是:OC﹣AC=CD.【解答】解:(1)①AC=OE,理由:如图1,∵在等腰Rt△ABO中,∠BAO=90°,∴∠ABO=∠AOB=45°,∵OP⊥MN,∴∠COP=90°,∴∠AOC=45°,∵AC∥OP,∴∠CAO=∠AOB=45°,∠ACO=∠POE=90°,∴AC=OC,连接AD,∵BD=OD,∴AD=OD,AD⊥OB,∴AD∥OC,∴四边形ADOC是正方形,∴∠DCO=45°,∴AC=OD,∴∠DEO=45°,∴CD=DE,∴OC=OE,∴AC=OE;②在Rt△CDO中,∵CD2=OC2+OD2,∴CD2=AC2+OC2;故答案为:AC2+CO2=CD2;(2)如图2,(1)中的结论②不成立,理由是:连接AD,延长CD交OP于F,连接EF,∵AB=AO,D为OB的中点,∴AD⊥OB,∴∠ADO=90°,∵∠CDE=90°,∴∠ADO=∠CDE,∴∠ADO﹣∠CDO=∠CDE﹣∠CDO,即∠ADC=∠EDO,∵∠ADO=∠ACO=90°,∴∠ADO+∠ACO=180°,∴A、D、O、C四点共圆,∴∠ACD=∠AOB,同理得:∠EFO=∠EDO,∴∠EFO=∠AOC,∵△ABO是等腰直角三角形,∴∠AOB=45°,∴∠DCO=45°,∴△COF和△CDE是等腰直角三角形,∴OC=OF,∵∠ACO=∠EOF=90°,∴△ACO≌△EOF,∴OE=AC,AO=EF,∴AC2+OC2=FO2+OE2=EF2,Rt△DEF中,EF>DE=DC,∴AC2+OC2>DC2,所以(1)中的结论②不成立;(3)如图3,结论:OC﹣CA=CD,理由是:连接AD,则AD=OD,同理:∠ADC=∠EDO,∵∠CAB+∠CAO=∠CAO+∠AOC=90°,∴∠CAB=∠AOC,∵∠DAB=∠AOD=45°,∴∠DAB﹣∠CAB=∠AOD﹣∠AOC,即∠DAC=∠DOE,∴△ACD≌△OED,∴AC=OE,CD=DE,∴△CDE是等腰直角三角形,∴CE2=2CD2,∴(OC﹣OE)2=(OC﹣AC)2=2CD2,∴OC﹣AC=CD,故答案为:OC﹣AC=CD.【点评】本题是几何变换的综合题,考查了三角形全等的性质和判定、等腰直角三角形的性质和判定、旋转的性质、勾股定理、四点共圆的性质等知识,并运用了类比的思想解决问题,有难度,尤其是第二问,结论不成立,要注意辅助线的作法;本题的2、3问能标准作图是关键.25.(12分)(2017•十堰)抛物线y=x2+bx+c与x轴交于A(1,0),B(m,0),与y轴交于C.(1)若m=﹣3,求抛物线的解析式,并写出抛物线的对称轴;(2)如图1,在(1)的条件下,设抛物线的对称轴交x轴于D,在对称轴左侧=S△ACD,求点E的坐标;的抛物线上有一点E,使S△ACE(3)如图2,设F(﹣1,﹣4),FG⊥y于G,在线段OG上是否存在点P,使∠OBP=∠FPG?若存在,求m的取值范围;若不存在,请说明理由.【分析】(1)利用待定系数法求二次函数的解析式,并配方求对称轴;=10,根据不规则(2)如图1,设E(m,m2+2m﹣3),先根据已知条件求S△ACE三角形面积等于铅直高度与水平宽度的积列式可求得m的值,并根据在对称轴左侧的抛物线上有一点E,则点E的横坐标小于﹣1,对m的值进行取舍,得到E的坐标;(3)设点P(0,y).分两种情况:①当m<0时,如图2,△POB∽△FGP,根据对应线段成比例即可求出m的取值范围;②当m>0时,如图3,△POB∽△FGP,根据对应线段成比例即可求出m的取值范围.【解答】解:(1)当m=﹣3时,B(﹣3,0),把A(1,0),B(﹣3,0)代入到抛物线y=x2+bx+c中得:,解得,∴抛物线的解析式为:y=x2+2x﹣3=(x+1)2﹣4;对称轴是:直线x=﹣1;(2)如图1,设E(m,m2+2m﹣3),由题意得:AD=1+1=2,OC=3,S△ACE=S△ACD=×AD•OC=×2×3=10,设直线AE的解析式为:y=kx+b,把A(1,0)和E(m,m2+2m﹣3)代入得,,解得:,∴直线AE的解析式为:y=(m+3)x﹣m﹣3,∴F(0,﹣m﹣3),∵C(0,﹣3),∴FC=﹣m﹣3+3=﹣m,=FC•(1﹣m)=10,∴S△ACE﹣m(1﹣m)=20,m2﹣m﹣20=0,(m+4)(m﹣5)=0,m1=﹣4,m2=5(舍),∴E(﹣4,5);(3)设点P(0,y).①当m<0时,如图2,△POB∽△FGP得=∴m=y2+4y=(y+2)2﹣4∵﹣4<y<0,∴﹣4≤m<0.②当m>0时,如图3,△POB∽△FGP∴=∴m=﹣y2﹣4y=﹣(y+2)2+4∴﹣4<y<0∴0<m≤4综上所述,m的取值范围是﹣4≤m≤4且m≠0.【点评】本题是二次函数的综合题,考查了利用待定系数法求函数的解析式、配方法求对称轴、等腰直角三角形的性质和判定、三角形面积的求法,及三角形全等的判定与性质.2017年湖北省黄石市中考数学试卷1.(3分)下列各数是有理数的是()A.﹣ B.C.D.π2.(3分)地球绕太阳公转的速度约为110000km/h,则110000用科学记数法可表示为()A.0.11×106B.1.1×105C.0.11×105D.1.1×1063.(3分)下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.(3分)下列运算正确的是()A.a0=0 B.a2+a3=a5 C.a2•a﹣1=a D.+=5.(3分)如图,该几何体主视图是()A.B.C.D.6.(3分)下表是某位男子马拉松长跑运动员近6次的比赛成绩(单位:分钟)则这组成绩的中位数和平均数分别为()A.137、138 B.138、137 C.138、138 D.137、1397.(3分)如图,△ABC中,E为BC边的中点,CD⊥AB,AB=2,AC=1,DE=,则∠CDE+∠ACD=()A.60°B.75°C.90°D.105°8.(3分)如图,是二次函数y=ax2+bx+c的图象,对下列结论①ab>0,②abc>0,③<1,其中错误的个数是()A.3 B.2 C.1 D.09.(3分)如图,已知⊙O为四边形ABCD的外接圆,O为圆心,若∠BCD=120°,AB=AD=2,则⊙O的半径长为()A.B.C.D.10.(3分)如图,已知凸五边形ABCDE的边长均相等,且∠DBE=∠ABE+∠CBD,AC=1,则BD必定满足()A.BD<2 B.BD=2C.BD>2 D.以上情况均有可能二、填空题11.(3分)因式分解:x2y﹣4y=.12.(3分)分式方程=﹣2的解为.13.(3分)如图,已知扇形OAB的圆心角为60°,扇形的面积为6π,则该扇形的弧长为.14.(3分)如图所示,为了测量出一垂直水平地面的某高大建筑物AB的高度,一测量人员在该建筑物附近C处,测得建筑物顶端A处的仰角大小为45°,随后沿直线BC向前走了100米后到达D处,在D处测得A处的仰角大小为30°,则建筑物AB的高度约为米.(注:不计测量人员的身高,结果按四舍五入保留整数,参考数据:≈1.41,≈1.73)15.(3分)甲、乙两位同学各抛掷一枚质地均匀的骰子,他们抛掷的点数分别记为a、b,则a+b=9的概率为.16.(3分)观察下列格式:=1﹣=+=1﹣+﹣=++=1﹣+﹣+﹣=…。

2017十堰市中考数学试卷

2017十堰市中考数学试卷

2017年湖北省十堰市中考数学试卷一、选择题:1.(3分)气温由﹣2℃上升3℃后是()℃.A.1 B.3 C.5 D.﹣52.(3分)如图的几何体,其左视图是()A.B.C.D.3.(3分)如图,AB∥DE,FG⊥BC于F,∠CDE=40°,则∠FGB=()A.40°B.50°C.60°D.70°4.(3分)下列运算正确的是()A.B.C.D.5.(3分)某交警在一个路口统计的某时段来往车辆的车速情况如表:则上述车速的中位数和众数分别是()A.50,8 B.50,50 C.49,50 D.49,86.(3分)下列命题错误的是()A.对角线互相平分的四边形是平行四边形B.对角线相等的平行四边形是矩形C.一条对角线平分一组对角的四边形是菱形D.对角线互相垂直的矩形是正方形7.(3分)甲、乙二人做某种机械零件,甲每小时比乙多做6个,甲做90个所用的时间与做60个所用的时间相等.设甲每小时做x个零件,下面所列方程正确的是()A.B.C.D.8.(3分)如图,已知圆柱的底面直径BC=,高AB=3,小虫在圆柱表面爬行,从C点爬到A点,然后再沿另一面爬回C点,则小虫爬行的最短路程为()A.B.C.D.9.(3分)如图,10个不同的正偶数按下图排列,箭头上方的每个数都等于其下方两数的和,如,表示a1=a2+a3,则a1的最小值为()A.32 B.36 C.38 D.4010.(3分)如图,直线y=x﹣6分别交x轴,y轴于A,B,M是反比例函数y=(x>0)的图象上位于直线上方的一点,MC∥x轴交AB于C,MD⊥MC交AB于D,AC•BD=4,则k的值为()A.﹣3 B.﹣4 C.﹣5 D.﹣6二、填空题11.(3分)某颗粒物的直径是0.0000025,把0.0000025用科学记数法表示为.12.(3分)若a﹣b=1,则代数式2a﹣2b﹣1的值为.13.(3分)如图,菱形ABCD中,AC交BD于O,DE⊥BC于E,连接OE,若∠ABC=140°,则∠OED=.14.(3分)如图,△ABC内接于⊙O,∠ACB=90°,∠ACB的角平分线交⊙O于D.若AC=6,BD=5,则BC的长为.15.(3分)如图,直线y=kx和y=ax+4交于A(1,k),则不等式kx﹣6<ax+4<kx的解集为.16.(3分)如图,正方形ABCD中,BE=EF=FC,CG=2GD,BG分别交AE,AF于M,N.下列结论:①AF⊥BG;②BN=NF;③=;④S四边形CGNF=S四边形ANGD.其中正确的结论的序号是.三、解答题(本大题共9小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(5分)计算:|﹣2|+﹣(﹣1)2017.18.(6分)化简:(+)÷.19.(7分)如图,海中有一小岛A,它周围8海里内有暗礁,渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏东60°方向上,航行12海里到达D点,这时测得小岛A在北偏东30°方向上.如果渔船不改变航线继续向东航行,有没有触礁的危险?20.(9分)某中学艺术节期间,学校向学生征集书画作品,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作品的数量进行了分析统计,制作了两幅不完整的统计图.请根据以上信息,回答下列问题:(1)杨老师采用的调查方式是(填“普查”或“抽样调查”);(2)请你将条形统计图补充完整,并估计全校共征集多少件作品?(3)如果全校征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.21.(7分)已知关于x的方程x2+(2k﹣1)x+k2﹣1=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)若x1,x2满足x12+x22=16+x1x2,求实数k的值.22.(8分)某超市销售一种牛奶,进价为每箱24元,规定售价不低于进价.现在的售价为每箱36元,每月可销售60箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱,设每箱牛奶降价x元(x为正整数),每月的销量为y箱.(1)写出y与x中间的函数关系书和自变量x的取值范围;(2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元?23.(8分)已知AB为⊙O的直径,BC⊥AB于B,且BC=AB,D为半圆⊙O上的一点,连接BD并延长交半圆⊙O的切线AE于E.(1)如图1,若CD=CB,求证:CD是⊙O的切线;(2)如图2,若F点在OB上,且CD⊥DF,求的值.24.(10分)已知O为直线MN上一点,OP⊥MN,在等腰Rt△ABO中,∠BAO=90°,AC∥OP交OM于C,D为OB的中点,DE⊥DC交MN于E.(1)如图1,若点B在OP上,则①AC OE(填“<”,“=”或“>”);②线段CA、CO、CD满足的等量关系式是;(2)将图1中的等腰Rt△ABO绕O点顺时针旋转α(0°<α<45°),如图2,那么(1)中的结论②是否成立?请说明理由;(3)将图1中的等腰Rt△ABO绕O点顺时针旋转α(45°<α<90°),请你在图3中画出图形,并直接写出线段CA、CO、CD满足的等量关系式.25.(12分)抛物线y=x2+bx+c与x轴交于A(1,0),B(m,0),与y轴交于C.(1)若m=﹣3,求抛物线的解析式,并写出抛物线的对称轴;(2)如图1,在(1)的条件下,设抛物线的对称轴交x轴于D,在对称轴左侧的抛物线上有一点E,使S=S△ACD,求点E的坐标;△ACE(3)如图2,设F(﹣1,﹣4),FG⊥y于G,在线段OG上是否存在点P,使∠OBP=∠FPG?若存在,求m的取值范围;若不存在,请说明理由.2017年湖北省十堰市中考数学试卷参考答案与试题解析一、选择题:1.(3分)(2017•十堰)气温由﹣2℃上升3℃后是()℃.A.1 B.3 C.5 D.﹣5【分析】根据有理数的加法,可得答案.【解答】解:由题意,得﹣2+3=+(3﹣2)=1,故选:A.【点评】本题考查了有理数的加法,异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减较小的绝对值.2.(3分)(2017•十堰)如图的几何体,其左视图是()A.B.C.D.【分析】根据从左边看得到的图象是左视图,可得答案.【解答】解:从左边看第一层是两个小正方形,第二层左边一个小正方形,故选:B.【点评】本题考查了简单组合体的三视图,从左边看得到的图象是左视图.3.(3分)(2017•十堰)如图,AB∥DE,FG⊥BC于F,∠CDE=40°,则∠FGB=()A.40°B.50°C.60°D.70°【分析】先根据平行线的性质,得到∠B=∠CDE=40°,直观化FG⊥BC,即可得出∠FGB的度数.【解答】解:∵AB∥DE,∠CDE=40°,∴∠B=∠CDE=40°,又∵FG⊥BC,∴∠FGB=90°﹣∠B=50°,故选:B.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.4.(3分)(2017•十堰)下列运算正确的是()A.B.C.D.【分析】根据二次根式的加减法对A、D进行判断;根据二次根式的乘法法则对B进行判断;根据二次根式的除法法则对D进行判断.【解答】解:A、与不能合并,所以A选项错误;B、原式=6×2=12,所以B选项错误;C、原式==2,所以C选项准确;D、原式=2,所以D选项错误.故选C.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.5.(3分)(2017•十堰)某交警在一个路口统计的某时段来往车辆的车速情况如表:则上述车速的中位数和众数分别是()A.50,8 B.50,50 C.49,50 D.49,8【分析】把这组数据按照从小到大的顺序排列,第10、11个数的平均数是中位数,在这组数据中出现次数最多的是50,得到这组数据的众数.【解答】解:要求一组数据的中位数,把这组数据按照从小到大的顺序排列,第10、11两个数的平均数是50,所以中位数是50,在这组数据中出现次数最多的是50,即众数是50.故选:B.【点评】本题考查一组数据的中位数和众数,在求中位数时,首先要把这列数字按照从小到大或从的大到小排列,找出中间一个数字或中间两个数字的平均数即为所求.6.(3分)(2017•十堰)下列命题错误的是()A.对角线互相平分的四边形是平行四边形B.对角线相等的平行四边形是矩形C.一条对角线平分一组对角的四边形是菱形D.对角线互相垂直的矩形是正方形【分析】利用平行四边形、矩形、菱形及正方形的判定定理分别判断后即可确定正确的选项.【解答】解:A、对角线互相平分的四边形是平行四边形是正确的,不符合题意;B、对角线相等的平行四边形是矩形是正确的,不符合题意;C、一条对角线平分一组对角的四边形不一定是菱形,原来的说法错误,符合题意;D、对角线互相垂直的矩形是正方形是正确的,不符合题意.故选C.【点评】本题考查了命题与定理的知识,解题的关键是了解平行四边形、矩形、菱形及正方形的判定定理,难度不大.7.(3分)(2017•十堰)甲、乙二人做某种机械零件,甲每小时比乙多做6个,甲做90个所用的时间与做60个所用的时间相等.设甲每小时做x个零件,下面所列方程正确的是()A.B.C.D.【分析】设甲每小时做x个零件,根据题意可得,甲做90个所用的时间与乙做60个所用的时间相等,据此列方程.【解答】解:设甲每小时做x个零件,则乙每小时做(x﹣6)个零件,由题意得,=.故选A.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.8.(3分)(2017•十堰)如图,已知圆柱的底面直径BC=,高AB=3,小虫在圆柱表面爬行,从C点爬到A点,然后再沿另一面爬回C点,则小虫爬行的最短路程为()A.B.C.D.【分析】要求最短路径,首先要把圆柱的侧面展开,利用两点之间线段最短,然后利用勾股定理即可求解.【解答】解:把圆柱侧面展开,展开图如右图所示,点A、C的最短距离为线段AC的长.在RT△ADC中,∠ADC=90°,CD=AB=3,AD为底面半圆弧长,AD=3,所以AC=3,∴从C点爬到A点,然后再沿另一面爬回C点,则小虫爬行的最短路程为2AC=6,故选D.【点评】本题考查了平面展开﹣最短路径问题,解题的关键是会将圆柱的侧面展开,并利用勾股定理解答.9.(3分)(2017•十堰)如图,10个不同的正偶数按下图排列,箭头上方的每个数都等于其下方两数的和,如,表示a1=a2+a3,则a1的最小值为()A.32 B.36 C.38 D.40【分析】由a1=a7+3(a8+a9)+a10知要使a1取得最小值,则a8+a9应尽可能的小,取a8=2、a9=4,根据a5=a8+a9=6,则a7、a10中不能有6,据此对于a7、a10,分别取8、10、12、14检验可得,从而得出答案.【解答】解:∵a1=a2+a3=a4+a5+a5+a6=a7+a8+a8+a9+a8+a9+a9+a10=a7+3(a8+a9)+a10,∴要使a1取得最小值,则a8+a9应尽可能的小,取a8=2、a9=4,∵a5=a8+a9=6,则a7、a10中不能有6,若a10=8,则a6=a9+a10=12,∴a7=14,则a4=14+2=16、a2=16+6=22、a3=6+12=18、a1=18+22=40;综上,a1的最小值为40,故选:D.【点评】本题主要考查数字的变化类,根据题目要求得出a1取得最小值的切入点是解题的关键.10.(3分)(2017•十堰)如图,直线y=x﹣6分别交x轴,y轴于A,B,M是反比例函数y=(x>0)的图象上位于直线上方的一点,MC∥x轴交AB于C,MD⊥MC交AB于D,AC•BD=4,则k的值为()A.﹣3 B.﹣4 C.﹣5 D.﹣6【分析】过点D作DE⊥y轴于点E,过点C作CF⊥x轴于点F,然后求出OA与OB的长度,即可求出∠OAB的正弦值与余弦值,再设M(x,y),从而可表示出BD与AC的长度,根据AC•BD=4列出即可求出k的值.【解答】解:过点D作DE⊥y轴于点E,过点C作CF⊥x轴于点F,令x=0代入y=x﹣6,∴y=﹣6,∴B(0,﹣6),∴OB=6,令y=0代入y=x﹣6,∴x=2,∴(2,0),∴OA=2,∴勾股定理可知:AB=4,∴sin∠OAB==,cos∠OAB==设M(x,y),∴CF=﹣y,ED=x,∴sin∠OAB=,∴AC=﹣y,∵cos∠OAB=cos∠EDB=,∴BD=2x,∵AC•BD=4,∴﹣y×2x=4,∴xy=﹣3,∵M在反比例函数的图象上,∴k=xy=﹣3,故选(A)【点评】本题考查反比例函数与一次函数的综合问题,解题的关键是根据∠OAB 的锐角三角函数值求出BD、AC,本题属于中等题型.二、填空题11.(3分)(2017•十堰)某颗粒物的直径是0.0000025,把0.0000025用科学记数法表示为 2.5×10﹣6.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000025用科学记数法表示为2.5×10﹣6,故答案为:2.5×10﹣6.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.(3分)(2017•十堰)若a﹣b=1,则代数式2a﹣2b﹣1的值为1.【分析】原式前两项提取2变形后,将a﹣b=1代入计算即可求出值.【解答】解:∵a﹣b=1,∴原式=2(a﹣b)﹣1=2﹣1=1.故答案为:1.【点评】此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.13.(3分)(2017•十堰)如图,菱形ABCD中,AC交BD于O,DE⊥BC于E,连接OE,若∠ABC=140°,则∠OED=20°.【分析】由菱形的性质可知O为BD中点,所以OE为直角三角形BED斜边上的中线,由此可得OE=OB,根据等腰三角形的性质和已知条件即可求出∠OED的度数.【解答】解:∵四边形ABCD是菱形,∴DO=OB,∵DE⊥BC于E,∴OE为直角三角形BED斜边上的中线,∴OE=BD,∴OB=OE,∴∠OBE=∠OEB,∵∠ABC=140°,∴∠OBE=70°,∴∠OED=90°﹣70°=20°,故答案为:20°.【点评】本题考查了菱形的性质、直角三角形斜边上中线的性质,得到OE为直角三角形BED斜边上的中线是解题的关键.14.(3分)(2017•十堰)如图,△ABC内接于⊙O,∠ACB=90°,∠ACB的角平分线交⊙O于D.若AC=6,BD=5,则BC的长为8.【分析】连接BD,根据CD是∠ACB的平分线可知∠ACD=∠BCD=45°,故可得出AD=BD,再由AB是⊙O的直径可知△ABD是等腰直角三角形,利用勾股定理求出AB的长,在Rt△ABC中,利用勾股定理可得出BC的长.【解答】解:连接BD,∵∠ACB=90°,∴AB是⊙O的直径.∵ACB的角平分线交⊙O于D,∴∠ACD=∠BCD=45°,∴AD=BD=5.∵AB是⊙O的直径,∴△ABD是等腰直角三角形,∴AB===10.∵AC=6,∴BC===8.故答案为:8.【点评】本题考查的是圆周角定理,熟知直径所对的圆周角是直角是解答此题的关键.15.(3分)(2017•十堰)如图,直线y=kx和y=ax+4交于A(1,k),则不等式kx﹣6<ax+4<kx的解集为1<x<.【分析】根据题意得由OB=4,OC=6,根据直线y=kx平行于直线y=kx﹣6,得到===,分别过A,D作AM⊥x轴于M,DN⊥x轴于N,则AM∥DN∥y轴,根据平行线分线段成比例定理得到==,得到ON=,求得D点的横坐标是,于是得到结论.【解答】解:如图,由y=kx﹣6与y=ax+4得OB=4,OC=6,∵直线y=kx平行于直线y=kx﹣6,∴===,分别过A,D作AM⊥x轴于M,DN⊥x轴于N,则AM∥DN∥y轴,∴==,∵A(1,k),∴OM=1,∴MN=,∴ON=,∴D点的横坐标是,∴1<x<时,kx﹣6<ax+4<kx,故答案为:1<x<.【点评】本题考查了一次函数与一元一次不等式,此类题目,利用数形结合的思想求解是解题的关键.16.(3分)(2017•十堰)如图,正方形ABCD中,BE=EF=FC,CG=2GD,BG分别交AE,AF于M,N.下列结论:①AF⊥BG;②BN=NF;③=;④S=四边形CGNFS四边形ANGD.其中正确的结论的序号是①③.【分析】①易证△ABF≌△BCG,即可解题;②易证△BNF∽△BCG,即可求得的值,即可解题;③作EH⊥AF,令AB=3,即可求得MN,BM的值,即可解题;④连接AG,FG,根据③中结论即可求得S四边形CGNF 和S四边形ANGD,即可解题.【解答】解:①∵四边形ABCD为正方形,∴AB=BC=CD,∵BE=EF=FC,CG=2GD,∴BF=CG,∵在△ABF和△BCG中,,∴△ABF≌△BCG,∴∠BAF=∠CBG,∵∠BAF+∠BFA=90°,∴∠CBG+∠BFA=90°,即AF⊥BG;①正确;②∵在△BNF和△BCG中,,∴△BNF∽△BCG,∴==,∴BN=NF;②错误;③作EH⊥AF,令AB=3,则BF=2,BE=EF=CF=1,AF==,∵S△ABF=AF•BN=AB•BF,∴BN=,NF=BN=,∴AN=AF﹣NF=,∵E是BF中点,∴EH是△BFN的中位线,∴EH=,NH=,BN∥EH,∴AH=,=,解得:MN=,∴BM=BN﹣MN=,MG=BG﹣BM=,∴=;③正确;④连接AG,FG,根据③中结论,则NG=BG﹣BN=,∵S四边形CGNF=S△CFG+S△GNF=CG•CF+NF•NG=1+=,S四边形ANGD=S△ANG+S△ADG=AN•GN+AD•DG=+=,∴S四边形CGNF ≠S四边形ANGD,④错误;故答案为①③.【点评】本题考查了全等三角形的判定和性质,考查了相似三角形的判定和对应边比例相等的性质,本题中令AB=3求得AN,BN,NG,NF的值是解题的关键.三、解答题(本大题共9小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(5分)(2017•十堰)计算:|﹣2|+﹣(﹣1)2017.【分析】原式利用绝对值的代数意义,立方根定义,以及乘方的意义计算即可得到结果.【解答】解:原式=2﹣2+1=1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(6分)(2017•十堰)化简:(+)÷.【分析】根据分式的加法和除法可以解答本题.【解答】解:(+)÷====.【点评】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.19.(7分)(2017•十堰)如图,海中有一小岛A,它周围8海里内有暗礁,渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏东60°方向上,航行12海里到达D点,这时测得小岛A在北偏东30°方向上.如果渔船不改变航线继续向东航行,有没有触礁的危险?【分析】过A作AC⊥BD于点C,求出∠CAD、∠CAB的度数,求出∠BAD和∠ABD,根据等边对等角得出AD=BD=12,根据含30度角的直角三角形性质求出CD,根据勾股定理求出AD即可.【解答】解:只要求出A到BD的最短距离是否在以A为圆心,以8海里的圆内或圆上即可,如图,过A作AC⊥BD于点C,则AC的长是A到BD的最短距离,∵∠CAD=30°,∠CAB=60°,∴∠BAD=60°﹣30°=30°,∠ABD=90°﹣60°=30°,∴∠ABD=∠BAD,∴BD=AD=12海里,∵∠CAD=30°,∠ACD=90°,∴CD=AD=6海里,由勾股定理得:AC==6≈10.392>8,即渔船继续向正东方向行驶,没有触礁的危险.【点评】考查了勾股定理的应用和解直角三角形,此题是一道方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.20.(9分)(2017•十堰)某中学艺术节期间,学校向学生征集书画作品,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作品的数量进行了分析统计,制作了两幅不完整的统计图.请根据以上信息,回答下列问题:(1)杨老师采用的调查方式是抽样调查(填“普查”或“抽样调查”);(2)请你将条形统计图补充完整,并估计全校共征集多少件作品?(3)如果全校征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.【分析】(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查.(2)由题意得:所调查的4个班征集到的作品数为:6÷=24(件),C班作品的件数为:24﹣4﹣6﹣4=10(件);继而可补全条形统计图;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好抽中一男一女的情况,再利用概率公式即可求得答案.【解答】解:(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查.故答案为抽样调查.(2)所调查的4个班征集到的作品数为:6÷=24件,平均每个班=6件,C班有10件,∴估计全校共征集作品6×30=180件.条形图如图所示,(3)画树状图得:∵共有20种等可能的结果,两名学生性别相同的有8种情况,∴恰好抽中一男一女的概率为:=.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.同时考查了概率公式.21.(7分)(2017•十堰)已知关于x的方程x2+(2k﹣1)x+k2﹣1=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)若x1,x2满足x12+x22=16+x1x2,求实数k的值.【分析】(1)根据方程的系数结合根的判别式,即可得出△=﹣4k+5≥0,解之即可得出实数k的取值范围;(2)由根与系数的关系可得x1+x2=1﹣2k、x1•x2=k2﹣1,将其代入x12+x22=(x1+x2)2﹣2x•x2=16+x1•x2中,解之即可得出k的值.1【解答】解:(1)∵关于x的方程x2+(2k﹣1)x+k2﹣1=0有两个实数根x1,x2,∴△=(2k﹣1)2﹣4(k2﹣1)=﹣4k+5≥0,解得:k≤,∴实数k的取值范围为k≤.(2)∵关于x的方程x2+(2k﹣1)x+k2﹣1=0有两个实数根x1,x2,∴x1+x2=1﹣2k,x1•x2=k2﹣1.∵x12+x22=(x1+x2)2﹣2x1•x2=16+x1•x2,∴(1﹣2k)2﹣2×(k2﹣1)=16+(k2﹣1),即k2﹣4k﹣12=0,解得:k=﹣2或k=6(不符合题意,舍去).∴实数k的值为﹣2.【点评】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)根据方程的系数结合根的判别式,找出△=﹣4k+5≥0;(2)根据根与系数的关系结合x12+x22=16+x1x2,找出关于k的一元二次方程.22.(8分)(2017•十堰)某超市销售一种牛奶,进价为每箱24元,规定售价不低于进价.现在的售价为每箱36元,每月可销售60箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱,设每箱牛奶降价x元(x 为正整数),每月的销量为y箱.(1)写出y与x中间的函数关系书和自变量x的取值范围;(2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元?【分析】(1)根据价格每降低1元,平均每天多销售10箱,由每箱降价x元,多卖10x,据此可以列出函数关系式;(2)由利润=(售价﹣成本)×销售量列出函数关系式,求出最大值.【解答】解:(1)根据题意,得:y=60+10x,由36﹣x≥24得x≤12,∴1≤x≤12,且x为整数;(2)设所获利润为W,则W=(36﹣x﹣24)(10x+60)=﹣10x2+60x+720=﹣10(x﹣3)2+810,∴当x=3时,W取得最大值,最大值为810,答:超市定价为33元时,才能使每月销售牛奶的利润最大,最大利润是810元.【点评】本题主要考查二次函数的应用,由利润=(售价﹣成本)×销售量列出函数关系式求最值,用二次函数解决实际问题是解题的关键.23.(8分)(2017•十堰)已知AB为⊙O的直径,BC⊥AB于B,且BC=AB,D为半圆⊙O上的一点,连接BD并延长交半圆⊙O的切线AE于E.(1)如图1,若CD=CB,求证:CD是⊙O的切线;(2)如图2,若F点在OB上,且CD⊥DF,求的值.【分析】(1)连接DO,CO,易证△CDO≌△CBO,即可解题;(2)连接AD,易证△ADF∽△BDC和△ADE∽△BDA,根据相似三角形对应边比例相等的性质即可解题.【解答】解:(1)连接DO,CO,∵BC⊥AB于B,∴∠ABC=90°,在△CDO与△CBO中,,∴△CDO≌△CBO,∴∠CDO=∠CBO=90°,∴OD⊥CD,∴CD是⊙O的切线;(2)连接AD,∵AB是直径,∴∠ADB=90°,∴∠ADF+∠BDF=90°,∠DAB+∠DBA=90°,∵∠BDF+∠BDC=90°,∠CBD+∠DBA=90°,∴∠ADF=∠BDC,∠DAB=∠CBD,∵在△ADF和△BDC中,,∴△ADF∽△BDC,∴=,∵∠DAE+∠DAB=90°,∠E+∠DAE=90°,∴∠E=∠DAB,∵在△ADE和△BDA中,,∴△ADE∽△BDA,∴=,∴=,即=,∵AB=BC,∴=1.【点评】本题考查了相似三角形的判定和性质,考查了全等三角形的判定和性质,本题中求证△ADF∽△BDC和△ADE∽△BDA是解题的关键.24.(10分)(2017•十堰)已知O为直线MN上一点,OP⊥MN,在等腰Rt△ABO 中,∠BAO=90°,AC∥OP交OM于C,D为OB的中点,DE⊥DC交MN于E.(1)如图1,若点B在OP上,则①AC=OE(填“<”,“=”或“>”);②线段CA、CO、CD满足的等量关系式是AC2+CO2=CD2;(2)将图1中的等腰Rt△ABO绕O点顺时针旋转α(0°<α<45°),如图2,那么(1)中的结论②是否成立?请说明理由;(3)将图1中的等腰Rt△ABO绕O点顺时针旋转α(45°<α<90°),请你在图3中画出图形,并直接写出线段CA、CO、CD满足的等量关系式CO﹣CA=CD.【分析】(1)①如图1,证明AC=OC和OC=OE可得结论;②根据勾股定理可得:AC2+CO2=CD2;(2)如图2,(1)中的结论②不成立,作辅助线,构建全等三角形,证明A、D、O、C四点共圆,得∠ACD=∠AOB,同理得:∠EFO=∠EDO,再证明△ACO≌△EOF,得OE=AC,AO=EF,根据勾股定理得:AC2+OC2=FO2+OE2=EF2,由直角三角形中最长边为斜边可得结论;(3)如图3,连接AD,则AD=OD证明△ACD≌△OED,根据△CDE是等腰直角三角形,得CE2=2CD2,等量代换可得结论(OC﹣OE)2=(OC﹣AC)2=2CD2,开方后是:OC﹣AC=CD.【解答】解:(1)①AC=OE,理由:如图1,∵在等腰Rt△ABO中,∠BAO=90°,∴∠ABO=∠AOB=45°,∵OP⊥MN,∴∠COP=90°,∴∠AOC=45°,∵AC∥OP,∴∠CAO=∠AOB=45°,∠ACO=∠POE=90°,∴AC=OC,连接AD,∵BD=OD,∴AD=OD,AD⊥OB,∴AD∥OC,∴四边形ADOC是正方形,∴∠DCO=45°,∴AC=OD,∴∠DEO=45°,∴CD=DE,∴OC=OE,∴AC=OE;②在Rt△CDO中,∵CD2=OC2+OD2,∴CD2=AC2+OC2;故答案为:AC2+CO2=CD2;(2)如图2,(1)中的结论②不成立,理由是:连接AD,延长CD交OP于F,连接EF,∵AB=AO,D为OB的中点,∴AD⊥OB,∴∠ADO=90°,∵∠CDE=90°,∴∠ADO=∠CDE,∴∠ADO﹣∠CDO=∠CDE﹣∠CDO,即∠ADC=∠EDO,∵∠ADO=∠ACO=90°,∴∠ADO+∠ACO=180°,∴A、D、O、C四点共圆,∴∠ACD=∠AOB,同理得:∠EFO=∠EDO,∴∠EFO=∠AOC,∵△ABO是等腰直角三角形,∴∠AOB=45°,∴∠DCO=45°,∴△COF和△CDE是等腰直角三角形,∴OC=OF,∵∠ACO=∠EOF=90°,∴△ACO≌△EOF,∴OE=AC,AO=EF,∴AC2+OC2=FO2+OE2=EF2,Rt△DEF中,EF>DE=DC,∴AC2+OC2>DC2,所以(1)中的结论②不成立;(3)如图3,结论:OC﹣CA=CD,理由是:连接AD,则AD=OD,同理:∠ADC=∠EDO,∵∠CAB+∠CAO=∠CAO+∠AOC=90°,∴∠CAB=∠AOC,∵∠DAB=∠AOD=45°,∴∠DAB﹣∠CAB=∠AOD﹣∠AOC,即∠DAC=∠DOE,∴△ACD≌△OED,∴AC=OE,CD=DE,∴△CDE是等腰直角三角形,∴CE2=2CD2,∴(OC﹣OE)2=(OC﹣AC)2=2CD2,∴OC﹣AC=CD,故答案为:OC﹣AC=CD.【点评】本题是几何变换的综合题,考查了三角形全等的性质和判定、等腰直角三角形的性质和判定、旋转的性质、勾股定理、四点共圆的性质等知识,并运用了类比的思想解决问题,有难度,尤其是第二问,结论不成立,要注意辅助线的作法;本题的2、3问能标准作图是关键.25.(12分)(2017•十堰)抛物线y=x2+bx+c与x轴交于A(1,0),B(m,0),与y轴交于C.(1)若m=﹣3,求抛物线的解析式,并写出抛物线的对称轴;(2)如图1,在(1)的条件下,设抛物线的对称轴交x轴于D,在对称轴左侧=S△ACD,求点E的坐标;的抛物线上有一点E,使S△ACE(3)如图2,设F(﹣1,﹣4),FG⊥y于G,在线段OG上是否存在点P,使∠OBP=∠FPG?若存在,求m的取值范围;若不存在,请说明理由.【分析】(1)利用待定系数法求二次函数的解析式,并配方求对称轴;=10,根据不规则(2)如图1,设E(m,m2+2m﹣3),先根据已知条件求S△ACE三角形面积等于铅直高度与水平宽度的积列式可求得m的值,并根据在对称轴左侧的抛物线上有一点E,则点E的横坐标小于﹣1,对m的值进行取舍,得到E的坐标;(3)分两种情况:①当B在原点的左侧时,构建辅助圆,根据直径所对的圆周角是直角,只要满足∠BPF=90°就可以构成∠OBP=∠FPG,如图2,求出圆E与y轴有一个交点时的m 值,则可得取值范围;②当B在原点的右侧时,只有△OBP是等腰直角三角形,△FPG也是等腰直角三角形时满足条件,直接计算即可.【解答】解:(1)当m=﹣3时,B(﹣3,0),把A(1,0),B(﹣3,0)代入到抛物线y=x2+bx+c中得:,解得,∴抛物线的解析式为:y=x2+2x﹣3=(x+1)2﹣4;对称轴是:直线x=﹣1;(2)如图1,设E(m,m2+2m﹣3),由题意得:AD=1+1=2,OC=3,S△ACE=S△ACD=×AD•OC=×2×3=10,设直线AE的解析式为:y=kx+b,把A(1,0)和E(m,m2+2m﹣3)代入得,,解得:,∴直线AE的解析式为:y=(m+3)x﹣m﹣3,∴F(0,﹣m﹣3),∵C(0,﹣3),∴FC=﹣m﹣3+3=﹣m,=FC•(1﹣m)=10,∴S△ACE﹣m(1﹣m)=20,m2﹣m﹣20=0,(m+4)(m﹣5)=0,m1=﹣4,m2=5(舍),∴E(﹣4,5);(3)如图2,当B在原点的左侧时,连接BF,以BF为直径作圆E,当⊙E与y 轴相切时,设切点为P,∴∠BPF=90°,∴∠FPG+∠OPB=90°,∵∠OPB+∠OBP=90°,∴∠OBP=∠FPG,连接EP,则EP⊥OG,∵BE=EF,∴EP是梯形的中位线,∴OP=PG=2,∵FG=1,tan∠FPG=tan∠OBP=,∴=,∴m=﹣4,∴当﹣4≤m<0时,在线段OG上存在点P,使∠OBP=∠FPG;如图3,当B在原点的右侧时,要想满足∠OBP=∠FPG,则∠OBP=∠OPB=∠FPG,∴OB=OP,∴△OBP是等腰直角三角形,△FPG也是等腰直角三角形,∴FG=PG=1,∴OB=OP=3,∴m=3,综上所述,当﹣4≤m<0或m=3时,在线段OG上存在点P,使∠OBP=∠FPG.【点评】本题是二次函数的综合题,考查了利用待定系数法求函数的解析式、配方法求对称轴、等腰直角三角形的性质和判定、三角形面积的求法,并与圆相结合,根据同角的余角相等解决第3问更简单.参与本试卷答题和审题的老师有:2300680618;szl;gsls;HJJ;sjzx;HLing;王学峰;三界无我;神龙杉;fangcao;wd1899;CJX;499807835;sks;zgm666;nhx600;弯弯的小河;曹先生;tcm123(排名不分先后)菁优网2017年7月19日。

十堰市2017年中考数学试题含答案

十堰市2017年中考数学试题含答案

十堰市2017年中考数学试题及答案一.选择题1.气温由-2℃上升3℃后是( ) ℃. A .1 B .3 C .5 D .-5 2.如图的几何体,其左视图是( )3.如图,AB ∥DE ,FG ⊥BC 于F ,∠CDE =40º,则∠FGB =( )ºA .40B .50C .60D .704.下列运算正确的是( )A .2+3= 5B .22×32=6 2C .8÷2=2D .32-2=3 5.某交警在一个路口统计的某时段来往车辆的车速情况如下表:则上述车速的中位数和众数分别是( )A .50,8B .50,50C .49,50D .49,8 6.下列命题错误的是( )A .对角线互相平分的四边形是平行四边形B .对角线相等的平行四边形是矩形C .一条对角线平分一组对角的四边形是菱形D .对角线互相垂直的矩形是正方形 7. 甲、乙二人做某种机械零件,甲每小时比乙多做6个,甲做90个所用的时间与做60 个所用的时间相等,设甲每小时做x 个零件,下面所列方程正确的是( )9060906090609060....6666A B C D x x x x x xx x====-+-+ 8.如图,已知圆柱的底面直径BC = 6π,高AB =3,小虫在圆柱表面爬行,从C 点爬到A 点,然后再沿另一面爬回C 点,则小虫爬行的最短路程为( )A. B. C. D.9. 如图,10个不同的正偶数按下图排列,箭头上方的每个数都等于其下方两数的和,如,表示a 1=a 2+a 3,则a 1的最小值为( )A B .36 C .38 D .4010. 如图,直线6y =-分别交x 轴,y 轴于A ,B ,M 是反比例函数>ky x x=(0)的图象上位于直线上方的一点, MC ∥x 轴交AB 于C , MD ⊥MC 交AB 于D , AC ·BD =k 的值为( )A .-3B .-4C .-5D .-6 二.填空题11.某颗粒物的直径是0.0000025米,把0.0000025用科学计数法表示为 . 12.若a -b =1,则代数式2a -2b -1的值为 .13.如图,菱形ABCD 中,AC 交BD 于O ,DE ⊥BC 于E.连接OE ,若∠ABC =140º, 则∠OED = .14.如图,△ABC 内接于⊙O ,∠ACB =90º,∠ACB 的角平分线交⊙O 于D ,若AC =6,32BD =BC 的长为 .15.如图,直线y =kx 和y =ax +4交于A(1,k),则不等式kx -6<ax +4<kx 的解集为 .16.如图,正方形ABCD 中,BE =EF =FC ,CG =2GD ,BG 分别交AE ,AF 于M ,N . 下列结论:①AF ⊥BG ;②BN = 4 3NF ;③BM MG = 3 8;④S 四边形CGNF = 12S 四边形ANGD . 其中正确的结论的序号是 .三.解答题17.(5分)计算:201721-(-).18. (5分)化简:222+111a a a a a +--+()÷. 19.(7分)如图,海中有一小岛A ,他它周围8海里内 有暗礁,渔船跟踪鱼群由西向东航行,在B 点测得 小岛A 在北偏东60°方向上,航行12海里到达D 点, 这时测得小岛A 在北偏东30°方向上.如果渔船不改 变航线继续向东航行,有没有触礁的危险?20.(9分)某中学艺术节期间,学校向学生征集书画作品,杨老师从全校30个班中随机抽取了4个班 (用A,B,C,D表示),对征集到的作品的数量进行了分析统计,制作了两幅不完整的统计图.请根据以上信息,回答下列问题:(1)杨老师采取的调查方式是(填“普查”或“抽样调查”);(2)请你将条形统计图补充完整,并估计全校共征集多少件作品?(3)如果全校征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名的两名学生性别相同的概率.21. (7分) 已知关于x的方程x2+(2k-1)x+k2-1=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)若x1,x2满足x12+x22=16+x1x2,求实数k的值.22. (8分) 某超市销售一种牛奶,进价为每箱24元,规定售价不低于进价.现在的售价为每箱36元,每月可销售60箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱.设每箱牛奶降价x元 (x为正整数),每月的销量为y箱.(1)写出y与x之间的函数关系式和自变量x的取值范围;(2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元?23. (8分)已知AB为半⊙O的直径,BC⊥AB于B,且BC=AB,D为半⊙O上的一点,连接BD并延长交半⊙O的切线AE于E.(1) 如图1,若CD =CB ,求证:CD 是⊙O 的切线;(2) 如图2,若F 点在OB 上,且CD ⊥DF,求AEAF 的值.24. (10分)已知O 为直线MN 上一点,OP ⊥MN ,在等腰Rt △ABO 中,∠BAO =90º,AC ∥OP交OM 于C ,D 为OB 的中点,DE ⊥DC 交MN 于E .(1) 如图1,若点B 在OP 上,则①AC OE(填“<”,“=”或“>”);②线段CA 、CO 、CD 满足的等量关系式是 ; (2)将图1中的等腰Rt △ABO 绕O 点顺时针旋转α(0º<α<45º),如图2,那么(1)中的结论②是否成立?请说明理由;(3) 将图1中的等腰Rt △ABO 绕O 点顺时针旋转α(45º<α<90º),请你在图3中画出图形,并直接写出线段CA 、CO 、CD 满足的等量关系式 ;25. (12分)抛物线y =x 2+bx +c 与x 轴交于A(1,0),B(m ,0),与y 轴交于C. (1) 若m =-3,求抛物线的解析式,并写出抛物线的对称轴;(2) 如图1,在(1)的条件下,设抛物线的对称轴交x 轴于D ,在对称轴左侧的抛物图2线上有一点E,使S△ACE =103S△ACD,求E点的坐标;(3) 如图2,设F(-1,-4),FG⊥y轴于G,在线段OG上是否存在点P,使∠OBP=∠FPG? 若存在,求m的取值范围;若不存在,请说明理由.x x参考答案 一、选择题:二、填空题:11、2.5×10-6; 12、1; 13、20°; 14、8; 15、1<x <2.5; 16、①③. 第16题解析:(1)可证△ABF ≌△BCG ,得AF ⊥BG ; (2)32BN BC NF CG ==,所以②不正确;(3)设正方形的边长为3,则 GH=2,HP=23,得GP=83由GP//BC 得△GPM ~△BME ∴83138BM BE MG GP ==÷= ∴③正确.(4)设正方形的边长为3,则S △BCG = S △ABF =12332⨯⨯=∴S CGNF =S △ABM =22273313AB BG ⎛⎫⨯=⨯= ⎪⎝⎭∵S ABGD =113=2+⨯()36 ∴S ANGD =27516-=1313∴S CGNF :S ANGD =27:51≠1:2 ∴④不正确.∴正确的选项为①③.17、解:原式=2-2+1=1;18、解:原式=2221313(1)(1)(1)(1)(1)(1)1a a a a a a a a a a a a a a ⎛⎫-+--+⨯=⨯= ⎪+-+-+-+⎝⎭;19、解析:由∠BAD=∠B=30°可得AD=BD=12∵∠ADC=60°, ∴AC=128> ∴没有触礁的危险. 20、解: (1)抽样调查(2)C 班高度为10;24÷4×30=180(件); (3)P=2521、(1)k ≤54; (2)k =-2. 22、(1)y =10x+60,1≤x ≤12,且x 为整数; (2)设利润为W 元,由题意得, w=(36-x-24)(10x+60)整理得,w =-10x 2+60x+720=-10(x-3)2+810 ∵a= -10<0,且1≤x ≤12 ∴当x=3时,w 有最大值810 ∴售价为36-3=33答:当定价为33元/箱时,每月牛奶销售利润最大,最大利润是810元.23、(1)证明:略;(此问简单) (2)连接AD. ∵DF ⊥DC∴∠1+∠BDF=90°∵AB 是⊙O 的直径[来源:]∴∠2+∠BDF=90° C DBA∵∠3+∠EAD =90°,∠E+∠EAD =90° ∴∠3=∠E又∵∠ADE=∠ADB=90° ∴△AD E ~△ABD ∴AE ADAB BD = ∴AE AFAB BC=AE AB∴∠1=∠2又∵∠3+∠ABD=90°, ∠4+∠ABD=90° ∴∠3=∠4 ∴△ADF ~△BCDAF ADBC BD24、(1)①AC=OE ;②; (2)结论②仍然成立. 理由:连接AD. ∵△OAB 是等腰直角三角形,且D 为OB 的中点 ∴AD ⊥OB ,AD=DO ∴∠ADO=90° ∴∠ADC+∠CDO=90° ∵DE ⊥CD∴∠CDE=∠ODE+∠CDO=90° ∴∠ADC=∠ODE ∵AC ⊥MN ∴∠ACO=90°∴∠CAD+∠DOC=360°-90°-90°=180° ∵∠DOE+∠DOC=180° ∴∠CAD=∠DOE 在△ACD 和△DOE 中 ∠ADC=∠ODE ∠DAC=∠DOE AD=DO∴△ACD ≌△DOE (ASA ) ∴AC=OE ,CD=DE ∵∠CDE=90°∴△CDE 是等腰直角三角形 ∴ECNM O∴(3)如右图所示,解析:连接AD ,先证明△ACD ≌△DOF (ASA ),得CA=OF ,CD=DF ; 然后证明△CDF 是等腰直角三角形,得:,所以25、(1)y=x 2+2x-3(2)∵点A (1,0),C (0,-3) ∴直线AC 为y= 3x-3∴过点D (-1,0)且平行于AC 的直线L 1为:y= 3x+3 ∴直线AC 向上平移6个单位得到直线L 1∴将直线AC 向上平移106203⨯=个单位得到直线L 2:y=3x+17联立方程组,y=x 2+2x-3 y=3x+17 解得,x 1=-4 x 1=5y 1=5 y 1=32 (不合题意,舍去) ∴点E 坐标为(-4,5)(3)设点P (0,y )①当m <0时,如图所示,易证△POB ~△FPG ,得OB OPPG FG = ∴41m yy --=+ ∴m=y 2+4y=(y+2)2-4 ∵-4<y <0L2L1xyODCBA第 11 页 共 11 页 ∴-4≤m <0②当m >0时,如图所示,易证△POB ~△FPG ,得 OB OP PG FG= ∴41m y y -=+ ∴m= -y 2 -4y= -(y+2)2+4∵-4<y <0∴0<m ≤4综上所述,m 的取值范围是:-4≤m ≤4,且m。

2017年湖北省十堰市中考数学试卷

2017年湖北省十堰市中考数学试卷

2017年湖北省十堰市中考数学试卷一、选择题.(本大题共10小题,每小题3分,共30分)1.的倒数是()A.2 B.﹣2 C.D.﹣2.下面几何体中,其主视图与俯视图相同的是()A.B.C.D.3.一次数学测验中,某小组五位同学的成绩分别是:110,105,90,95,90,则这五个数据的中位数是()A.90 B.95 C.100 D.1054.下列运算正确的是()A.a2•a3=a6B.(﹣a3)2=﹣a6C.(ab)2=ab2D.2a3÷a=2a25.如图,以点O为位似中心,将△ABC缩小后得到△A′B′C′,已知OB=3OB′,则△A′B′C′与△ABC的面积比为()A.1:3 B.1:4 C.1:5 D.1:96.如图,AB∥EF,CD⊥EF于点D,若∠ABC=40°,则∠BCD=()A.140° B.130° C.120° D.110°7.用换元法解方程﹣=3时,设=y,则原方程可化为()A.y=﹣3=0 B.y﹣﹣3=0 C.y﹣+3=0 D.y﹣+3=08.如图所示,小华从A点出发,沿直线前进10米后左转24,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是()A.140米B.150米C.160米D.240米9.如图,从一张腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为()A.10cm B.15cm C.10cm D.20cm10.如图,将边长为10的正三角形OAB放置于平面直角坐标系xOy中,C是AB边上的动点(不与端点A,B重合),作CD⊥OB于点D,若点C,D都在双曲线y=上(k>0,x>0),则k的值为()A.25B.18C.9D.9二、填空题.(本大题共6小题,每小题3分,共18分)11.武当山机场于2017年2月5日正式通航以来,截至5月底,旅客吞吐最近92000人次,92000用科学记数法表示为.12.计算:|﹣4|﹣()﹣2=.13.某种药品原来售价100元,连续两次降价后售价为81元,若每次下降的百分率相同,则这个百分率是.14.如图,在▱ABCD中,AB=2cm,AD=4cm,AC⊥BC,则△DBC比△ABC的周长长cm.15.在综合实践课上,小聪所在小组要测量一条河的宽度,如图,河岸EF∥MN,小聪在河岸MN上点A 处用测角仪测得河对岸小树C位于东北方向,然后沿河岸走了30米,到达B处,测得河对岸电线杆D位于北偏东30°方向,此时,其他同学测得CD=10米.请根据这些数据求出河的宽度为米.(结果保留根号)16.已知关于x的二次函数y=ax2+bx+c的图象经过点(﹣2,y1),(﹣1,y2),(1,0),且y1<0<y2,对于以下结论:①abc>0;②a+3b+2c≤0;③对于自变量x的任意一个取值,都有x2+x≥﹣;④在﹣2<x<﹣1中存在一个实数x0,使得x0=﹣,其中结论错误的是(只填写序号).三、解答题.(本大题共9小题,共72分)17.化简:.18.x取哪些整数值时,不等式5x+2>3(x﹣1)与x≤2﹣都成立?19.如图,AB∥CD,E是CD上一点,BE交AD于点F,EF=BF.求证:AF=DF.20.为了提高科技创新意识,我市某中学在“2017年科技节”活动中举行科技比赛,包括“航模”、“机器人”、“环保”、“建模”四个类别(2017•十堰)已知关于x的方程(x﹣3)(x﹣2)﹣p2=0.(1)求证:无论p取何值时,方程总有两个不相等的实数根;(2)设方程两实数根分别为x1,x2,且满足,求实数p的值.22.一茶叶专卖店经销某种品牌的茶叶,该茶叶的成本价是80元/kg,销售单价不低于120元/kg.且不高于180元/kg,经销一段时间后得到如下数据:设y与x的关系是我们所学过的某一种函数关系.(1)直接写出y与x的函数关系式,并指出自变量x的取值范围;(2)当销售单价为多少时,销售利润最大?最大利润是多少?23.如图,将矩形纸片ABCD(AD>AB)折叠,使点C刚好落在线段AD上,且折痕分别与边BC,AD 相交,设折叠后点C,D的对应点分别为点G,H,折痕分别与边BC,AD相交于点E,F.(1)判断四边形CEGF的形状,并证明你的结论;(2)若AB=3,BC=9,求线段CE的取值范围.24.如图1,AB为半圆O的直径,D为BA的延长线上一点,DC为半圆O的切线,切点为C.(1)求证:∠ACD=∠B;(2)如图2,∠BDC的平分线分别交AC,BC于点E,F;①求tan∠CFE的值;②若AC=3,BC=4,求CE的长.25.如图1,在平面直角坐标系xOy中,抛物线y=ax2+1经过点A(4,﹣3),顶点为点B,点P为抛物线上的一个动点,l是过点(0,2)且垂直于y轴的直线,过P作PH⊥l,垂足为H,连接PO.(1)求抛物线的解析式,并写出其顶点B的坐标;(2)①当P点运动到A点处时,计算:PO=,PH=,由此发现,PO PH (填“>”、“<”或“=”);②当P点在抛物线上运动时,猜想PO与PH有什么数量关系,并证明你的猜想;(3)如图2,设点C(1,﹣2),问是否存在点P,使得以P,O,H为顶点的三角形与△ABC相似?若存在,求出P点的坐标;若不存在,请说明理由.2017年湖北省十堰市中考数学试卷参考答案与试题解析一、选择题.(本大题共10小题,每小题3分,共30分)1.的倒数是()A.2 B.﹣2 C.D.﹣【考点】倒数.【分析】根据乘积为的1两个数倒数,可得一个数的倒数.【解答】解:的倒数是2,故选:A.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.下面几何体中,其主视图与俯视图相同的是()A.B.C.D.【考点】简单几何体的三视图.【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行分析.【解答】解:A、圆柱主视图是矩形,俯视图是圆;B、圆锥主视图是三角形,俯视图是圆;C、正方体的主视图与俯视图都是正方形;D、三棱柱的主视图是矩形与俯视图都是三角形;故选:C.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.3.一次数学测验中,某小组五位同学的成绩分别是:110,105,90,95,90,则这五个数据的中位数是()A.90 B.95 C.100 D.105【考点】中位数.【分析】根据中位数的概念,找出正确选项.【解答】解:将数据按照从小到大的顺序排列为:90,90,95,105,110,则中位数为:95.故选B.【点评】本题考查了中位数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.4.下列运算正确的是()A.a2•a3=a6B.(﹣a3)2=﹣a6C.(ab)2=ab2D.2a3÷a=2a2【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】分别利用同底数幂的乘除运算法则以及积的乘方运算法则和幂的乘方运算法则分别化简求出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、(﹣a3)2=a6,故此选项错误;C、(ab)2=a2b2,故此选项错误;D、2a3÷a=2a2,正确.故选:D.【点评】此题主要考查了同底数幂的乘除运算以及积的乘方运算和幂的乘方运算等知识,正确应用相关运算法则是解题关键.5.如图,以点O为位似中心,将△ABC缩小后得到△A′B′C′,已知OB=3OB′,则△A′B′C′与△ABC的面积比为()A.1:3 B.1:4 C.1:5 D.1:9【考点】位似变换.【分析】先求出位似比,根据位似比等于相似比,再由相似三角形的面积比等于相似比的平方即可.【解答】解:∵OB=3OB′,∴,∵以点O为位似中心,将△ABC缩小后得到△A′B′C′,∴△A′B′C′∽△ABC,∴=.∴=,故选D【点评】此题是位似变换,主要考查了位似比等于相似比,相似三角形的面积比等于相似比的平方,解本题的关键是掌握位似的性质.6.如图,AB∥EF,CD⊥EF于点D,若∠ABC=40°,则∠BCD=()A.140° B.130° C.120° D.110°【考点】平行线的性质.【分析】直接利用平行线的性质得出∠B=∠BCD,∠ECD=90°,进而得出答案.【解答】解:过点C作EC∥AB,由题意可得:AB∥EF∥EC,故∠B=∠BCD,∠ECD=90°,则∠BCD=40°+90°=130°.故选:B.【点评】此题主要考查了平行线的判定与性质,作出正确辅助线是解题关键.7.用换元法解方程﹣=3时,设=y,则原方程可化为()A.y=﹣3=0 B.y﹣﹣3=0 C.y﹣+3=0 D.y﹣+3=0【考点】换元法解分式方程.【分析】直接利用已知将原式用y替换得出答案.【解答】解:∵设=y,∴﹣=3,可转化为:y﹣=3,即y﹣﹣3=0.故选:B.【点评】此题主要考查了换元法解分式方程,正确得出y与x值间的关系是解题关键.8.如图所示,小华从A点出发,沿直线前进10米后左转24,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是()A.140米B.150米C.160米D.240米【考点】多边形内角与外角.【分析】多边形的外角和为360°每一个外角都为24°,依此可求边数,再求多边形的周长.【解答】解:∵多边形的外角和为360°,而每一个外角为24°,∴多边形的边数为360°÷24°=15,∴小明一共走了:15×10=150米.故选B.【点评】本题考查多边形的内角和计算公式,多边形的外角和.关键是根据多边形的外角和及每一个外角都为24°求边数.9.如图,从一张腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为()A.10cm B.15cm C.10cm D.20cm【考点】圆锥的计算.【分析】根据等腰三角形的性质得到OE的长,再利用弧长公式计算出弧CD的长,设圆锥的底面圆的半径为r,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长得到r,然后利用勾股定理计算出圆锥的高.【解答】解:过O作OE⊥AB于E,∵OA=OD=60cm,∠AOB=120°,∴∠A=∠B=30°,∴OE=OA=30cm,∴弧CD的长==20π,设圆锥的底面圆的半径为r,则2πr=20π,解得r=10,∴圆锥的高==20.故选D.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.10.如图,将边长为10的正三角形OAB放置于平面直角坐标系xOy中,C是AB边上的动点(不与端点A,B重合),作CD⊥OB于点D,若点C,D都在双曲线y=上(k>0,x>0),则k的值为()A.25B.18C.9D.9【考点】反比例函数图象上点的坐标特征;平行线的性质;等边三角形的性质.【分析】过点A作AE⊥OB于点E,根据正三角形的性质以及三角形的边长可找出点A、B、E的坐标,再由CD⊥OB,AE⊥OB可找出CD∥AE,即得出,令该比例=n,根据比例关系找出点D、C的坐标,利用反比例函数图象上点的坐标特征即可得出关于k、n的二元一次方程组,解方程组即可得出结论.【解答】解:过点A作AE⊥OB于点E,如图所示.∵△OAB为边长为10的正三角形,∴点A的坐标为(10,0)、点B的坐标为(5,5),点E的坐标为(,).∵CD⊥OB,AE⊥OB,∴CD∥AE,∴.设=n(0<n<1),∴点D的坐标为(,),点C的坐标为(5+5n,5﹣5n).∵点C、D均在反比例函数y=图象上,∴,解得:.故选C.【点评】本题考查了反比例函数图象上点的坐标特征、平行线的性质以及等边三角形的性质,解题的关键是找出点D、C的坐标.本题属于中档题,稍显繁琐,解决该题型题目时,巧妙的借助了比例来表示点的坐标,根据反比例函数图象上点的坐标特征找出方程组是关键.二、填空题.(本大题共6小题,每小题3分,共18分)11.武当山机场于2017年2月5日正式通航以来,截至5月底,旅客吞吐最近92000人次,92000用科学记数法表示为9.2×104.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将92000用科学记数法表示为:9.2×104.故答案为:9.2×104.【点评】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.计算:|﹣4|﹣()﹣2=﹣2.【考点】实数的运算;负整数指数幂.【分析】直接利用立方根的性质以及绝对值的性质、负整数指数幂的性质分别化简求出答案.【解答】解:|﹣4|﹣()﹣2=|2﹣4|﹣4=2﹣4=﹣2.故答案为:﹣2.【点评】此题主要考查了实数运算,根据相关运算法则正确化简是解题关键.13.某种药品原来售价100元,连续两次降价后售价为81元,若每次下降的百分率相同,则这个百分率是10%.【考点】一元二次方程的应用.【专题】增长率问题.【分析】设平均每次降价的百分率为x,那么第一次降价后的售价是原来的(1﹣x),那么第二次降价后的售价是原来的(1﹣x)2,根据题意列方程解答即可.【解答】解:设平均每次降价的百分率为x,根据题意列方程得100×(1﹣x)2=81,解得x1=0.1=10%,x2=1.9(不符合题意,舍去).答:这两次的百分率是10%.故答案为:10%.【点评】本题考查一元二次方程的应用,要掌握求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.14.如图,在▱ABCD中,AB=2cm,AD=4cm,AC⊥BC,则△DBC比△ABC的周长长4cm.【考点】平行四边形的性质.【分析】根据平行四边形的性质得到AB=CD=2cm,AD=BC=4cm,AO=CO,BO=DO,根据勾股定理得到OC=3cm,BD=10cm,于是得到结论.【解答】解:在▱ABCD中,∵AB=CD=2cm,AD=BC=4cm,AO=CO,BO=DO,∵AC⊥BC,∴AC==6cm,∴OC=3cm,∴BO==5cm,∴BD=10cm,∴△DBC的周长﹣△ABC的周长=BC+CD+BD﹣(AB+BC+AC)=BD﹣AC=10﹣6=4cm,故答案为:4.【点评】本题考查了平行四边形的性质,勾股定理,熟练掌握平行四边形的性质是解题的关键.15.在综合实践课上,小聪所在小组要测量一条河的宽度,如图,河岸EF∥MN,小聪在河岸MN上点A 处用测角仪测得河对岸小树C位于东北方向,然后沿河岸走了30米,到达B处,测得河对岸电线杆D位于北偏东30°方向,此时,其他同学测得CD=10米.请根据这些数据求出河的宽度为(30+10)米.(结果保留根号)【考点】解直角三角形的应用-方向角问题.【分析】如图作BH⊥EF,CK⊥MN,垂足分别为H、K,则四边形BHCK是矩形,设CK=HB=x,根据tan30°=列出方程即可解决问题.【解答】解:如图作BH⊥EF,CK⊥MN,垂足分别为H、K,则四边形BHCK是矩形,设CK=HB=x,∵∠CKA=90°,∠CAK=45°,∴∠CAK=∠ACK=45°,∴AK=CK=x,BK=HC=AK﹣AB=x﹣30,∴HD=x﹣30+10=x﹣20,在RT△BHD中,∵∠BHD=30°,∠HBD=30°,∴tan30°=,∴=,解得x=30+10.∴河的宽度为(30+10)米.【点评】本题考查解直角三角形的应用、方向角、三角函数等知识,解题的关键是添加辅助线构造直角三角形,学会利用三角函数的定义,列出方程解决问题,属于中考常考题型.16.已知关于x的二次函数y=ax2+bx+c的图象经过点(﹣2,y1),(﹣1,y2),(1,0),且y1<0<y2,对于以下结论:①abc>0;②a+3b+2c≤0;③对于自变量x的任意一个取值,都有x2+x≥﹣;④在﹣2<x<﹣1中存在一个实数x0,使得x0=﹣,其中结论错误的是②(只填写序号).【考点】二次函数图象与系数的关系;二次函数图象上点的坐标特征. 【分析】①正确.画出函数图象即可判断.②错误.因为a+b+c=0,所以a+3b+2c=a+3b ﹣2a ﹣2b=b ﹣a ,又a ﹣b+c >0,所以b ﹣a <c ,故b ﹣a 可以是正数,由此可以周长判断.③正确.利用函数y ′=x 2+x=(x 2+x )=(x+)2﹣,根据函数的最值问题即可解决.④令y=0则ax 2+bx ﹣a ﹣b=0,设它的两个根为x 1,1,则x 1•1==﹣,求出x 1即可解决问题.【解答】解:由题意二次函数图象如图所示,∴a <0.b <0,c >0, ∴abc >0,故①正确. ∵a+b+c=0, ∴c=﹣a ﹣b ,∴a+3b+2c=a+3b ﹣2a ﹣2b=b ﹣a , 又∵x=﹣1时,y >0, ∴a ﹣b+c >0, ∴b ﹣a <c , ∵c >O ,∴b ﹣a 可以是正数, ∴a+3b+2c ≤0,故②错误. 故答案为②.∵函数y ′=x 2+x=(x 2+x )=(x+)2﹣,∵>0,∴函数y ′有最小值﹣,∴x2+x≥﹣,故③正确.∵y=ax2+bx+c的图象经过点(1,0),∴a+b+c=0,∴c=﹣a﹣b,令y=0则ax2+bx﹣a﹣b=0,设它的两个根为x1,1,∵x1•1==﹣,∴x1=﹣,∵﹣2<x1<x2,∴在﹣2<x<﹣1中存在一个实数x0,使得x0=﹣,故④正确,【点评】本题考查二次函数的图象与系数的关系、二次函数图象上的点的坐标特征,解题的关键是灵活应用二次函数的性质解决问题,学会构建二次函数解决最值问题,属于中考填空题中的压轴题.三、解答题.(本大题共9小题,共72分)17.化简:.【考点】分式的加减法.【分析】首先把第一个分式的分子、分母分解因式后约分,再通分,然后根据分式的加减法法则分母不变,分子相加即可.【解答】解:=++2=++2=++==【点评】本题考查了分式的加减法法则、分式的通分、约分以及因式分解;熟练掌握分式的通分是解决问题的关键.18.x取哪些整数值时,不等式5x+2>3(x﹣1)与x≤2﹣都成立?【考点】一元一次不等式的整数解.【分析】根据题意分别求出每个不等式解集,根据口诀:大小小大中间找,确定两不等式解集的公共部分,即可得整数值.【解答】解:根据题意解不等式组,解不等式①,得:x>﹣,解不等式②,得:x≤1,∴﹣<x≤1,故满足条件的整数有﹣2、﹣1、0、1.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.如图,AB∥CD,E是CD上一点,BE交AD于点F,EF=BF.求证:AF=DF.【考点】全等三角形的判定与性质.【专题】证明题.【分析】欲证明AF=DF只要证明△ABF≌△DEF即可解决问题.【解答】证明:∵AB∥CD,∴∠B=∠FED,在△ABF和△DEF中,,∴△ABF≌△DEF,∴AF=DF.【点评】本题考查全等三角形的判定和性质,平行线的性质等知识,解题的关键是熟练掌握全等三角形的判断和性质,熟练掌握平行线的性质,属于基础题,中考常考题型.20.为了提高科技创新意识,我市某中学在“2017年科技节”活动中举行科技比赛,包括“航模”、“机器人”、“环保”、“建模”四个类别(2017•十堰)已知关于x的方程(x﹣3)(x﹣2)﹣p2=0.(1)求证:无论p取何值时,方程总有两个不相等的实数根;(2)设方程两实数根分别为x1,x2,且满足,求实数p的值.【考点】根的判别式.【分析】(1)化成一般形式,求根的判别式,当△>0时,方程总有两个不相等的实数根;(2)根据根与系的关系求出两根和与两根积,再把变形,化成和与乘积的形式,代入计算,得到一个关于p的一元二次方程,解方程.【解答】证明:(1)(x﹣3)(x﹣2)﹣p2=0,x2﹣5x+6﹣p2=0,△=(﹣5)2﹣4×1×(6﹣p2)=25﹣24+4p2=1+4p2,∵无论p取何值时,总有4p2≥0,∴1+4p2>0,∴无论p取何值时,方程总有两个不相等的实数根;(2)x1+x2=5,x1x2=6﹣p2,∵,∴(x1+x2)2﹣2x1x2=3x1x2,∴52=5(6﹣p2),∴p=±1.【点评】本题考查了根的判别式和根与系数的关系,注意熟记以下知识点:(1)一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.(2)一元二次方程ax2+bx+c=0(a≠0)的两实数根分别为x1,x2,则有,.22.一茶叶专卖店经销某种品牌的茶叶,该茶叶的成本价是80元/kg,销售单价不低于120元/kg.且不高于180元/kg,经销一段时间后得到如下数据:设y与x的关系是我们所学过的某一种函数关系.(1)直接写出y与x的函数关系式,并指出自变量x的取值范围;(2)当销售单价为多少时,销售利润最大?最大利润是多少?【考点】一次函数的应用.【分析】(1)首先由表格可知:销售单价没涨10元,就少销售5kg,即可得y与x是一次函数关系,则可求得答案;(2)首先设销售利润为w元,根据题意可得二次函数,然后求最值即可.【解答】解:(1)∵由表格可知:销售单价没涨10元,就少销售5kg,∴y与x是一次函数关系,∴y与x的函数关系式为:y=100﹣0.5(x﹣120)=﹣0.5x+160,∵销售单价不低于120元/kg.且不高于180元/kg,∴自变量x的取值范围为:120≤x≤180;(2)设销售利润为w元,则w=(x﹣80)(﹣0.5x+160)=﹣x2+200x﹣12800=﹣(x﹣200)2+7200,∵a=﹣<0,∴当x<200时,y随x的增大而增大,∴当x=180时,销售利润最大,最大利润是:w=﹣(180﹣200)2+7200=7000(元),答:当销售单价为180元时,销售利润最大,最大利润是7000元.【点评】此题考查了二次函数与一次函数的应用.注意理解题意,找到等量关系是关键.23.如图,将矩形纸片ABCD(AD>AB)折叠,使点C刚好落在线段AD上,且折痕分别与边BC,AD 相交,设折叠后点C,D的对应点分别为点G,H,折痕分别与边BC,AD相交于点E,F.(1)判断四边形CEGF的形状,并证明你的结论;(2)若AB=3,BC=9,求线段CE的取值范围.【考点】翻折变换(折叠问题).【分析】(1)由四边形ABCD是矩形,根据折叠的性质,易证得△EFG是等腰三角形,即可得GF=EC,又由GF∥EC,即可得四边形CEGF为平行四边形,根据邻边相等的平行四边形是菱形,即可得四边形BGEF 为菱形;(2)如图1,当G与A重合时,CE取最大值,由折叠的性质得CD=DG,∠CDE=∠GDE=45°,推出四边形CEGD是矩形,根据矩形的性质即可得到CE=CD=AB=3;如图2,当F与D重合时,CE取最小值,由折叠的性质得AE=CE,根据勾股定理即可得到结论.【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠GFE=∠FEC,∵图形翻折后点G与点C重合,EF为折线,∴∠GEF=∠FEC,∴∠GFE=∠FEG,∴GF=GE,∵图形翻折后BC与GE完全重合,∴BE=EC,∴GF=EC,∴四边形CEGF为平行四边形,∴四边形CEGF为菱形;(2)解:如图1,当F与D重合时,CE取最小值,由折叠的性质得CD=DG,∠CDE=∠GDE=45°,∵∠ECD=90°,∴∠DEC=45°=∠CDE,∴CE=CD=DG,∵DG∥CE,∴四边形CEGD是矩形,∴CE=CD=AB=3;如图2,当G与A重合时,CE取最大值,由折叠的性质得AE=CE,∵∠B=90°,∴AE2=AB2+BE2,即CE2=32+(9﹣CE)2,∴CE=5,∴线段CE的取值范围3≤CE≤5.【点评】本题考查了翻折变换﹣折叠问题,菱形的判定,线段的最值问题,矩形的性质,勾股定理,正确的作出图形是解题的关键.24.如图1,AB为半圆O的直径,D为BA的延长线上一点,DC为半圆O的切线,切点为C.(1)求证:∠ACD=∠B;(2)如图2,∠BDC的平分线分别交AC,BC于点E,F;①求tan∠CFE的值;②若AC=3,BC=4,求CE的长.【考点】切线的性质.【分析】(1)利用等角的余角相等即可证明.(2)①只要证明∠CEF=∠CFE即可.②由△DCA∽△DBC,得===,设DC=3k,DB=4k,由CD2=DA•DB,得9k2=(4k﹣5)•4k,由此求出DC,DB,再由△DCE∽△DBF,得=,设EC=CF=x,列出方程即可解决问题.【解答】(1)证明:如图1中,连接OC.∵OA=OC,∴∠1=∠2,∵CD是⊙O切线,∴OC⊥CD,∴∠DCO=90°,∴∠3+∠2=90°,∵AB是直径,∴∠1+∠B=90°,∴∠3=∠B.(2)解:①∵∠CEF=∠ECD+∠CDE,∠CFE=∠B+∠FDB,∵∠CDE=∠FDB,∠ECD=∠B,∴∠CEF=∠CFE,∵∠ECF=90°,∴∠CEF=∠CFE=45°,∴tan∠CFE=tan45°=1.②在RT△ABC中,∵AC=3,BC=4,∴AB==5,∵∠CDA=∠BDC,∠DCA=∠B,∴△DCA∽△DBC,∴===,设DC=3k,DB=4k,∵CD2=DA•DB,∴9k2=(4k﹣5)•4k,∴k=,∴CD=,DB=,∵∠CDE=∠BDF,∠DCE=∠B,∴△DCE∽△DBF,∴=,设EC=CF=x,∴=,∴x=.∴CE=.【点评】本题考查切线的性质、相似三角形的判定和性质、勾股定理等知识,解题的关键是正确寻找相似三角形,利用相似三角形的性质解决问题,学会用方程的思想思考问题,属于中考常考题型.25.如图1,在平面直角坐标系xOy中,抛物线y=ax2+1经过点A(4,﹣3),顶点为点B,点P为抛物线上的一个动点,l是过点(0,2)且垂直于y轴的直线,过P作PH⊥l,垂足为H,连接PO.(1)求抛物线的解析式,并写出其顶点B的坐标;(2)①当P点运动到A点处时,计算:PO=5,PH=5,由此发现,PO=PH(填“>”、“<”或“=”);②当P点在抛物线上运动时,猜想PO与PH有什么数量关系,并证明你的猜想;(3)如图2,设点C(1,﹣2),问是否存在点P,使得以P,O,H为顶点的三角形与△ABC相似?若存在,求出P点的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)利用待定系数法即可解决问题.(2)①求出PO、PH即可解决问题.②结论:PO=PH.设点P坐标(m,﹣m2+1),利用两点之间距离公式求出PH、PO即可解决问题.(3)首先判断PH与BC,PO与AC是对应边,设点P(m,﹣m2+1),由=列出方程即可解决问题.【解答】(1)解:∵抛物线y=ax2+1经过点A(4,﹣3),∴﹣3=16a+1,∴a=﹣,∴抛物线解析式为y=﹣x2+1,顶点B(0,1).(2)①当P点运动到A点处时,∵PO=5,PH=5,∴PO=PH,故答案分别为5,5,=.②结论:PO=PH.理由:设点P坐标(m,﹣m2+1),∵PH=2﹣(﹣m2+1)=m2+1PO==m2+1,∴PO=PH.(3)∵BC==,AC==,AB==4∴BC=AC,∵PO=PH,又∵以P,O,H为顶点的三角形与△ABC相似,∴PH与BC,PO与AC是对应边,∴=,设点P(m,﹣m2+1),∴=,解得m=±1,∴点P坐标(1,)或(﹣1,).【点评】本题考查二次函数综合题、待定系数法、相似三角形的判定和性质等知识,解题的关键是记住两点之间的距离公式,学会转化的思想,用方程去解决问题,属于中考压轴题.。

2017年湖北省十堰市中考数学试卷和解析答案

2017年湖北省十堰市中考数学试卷和解析答案

2017年湖北省十堰市中考数学试卷一、选择题:1.(3分)气温由﹣2℃上升3℃后是()℃.A.1 B.3 C.5 D.﹣52.(3分)如图的几何体,其左视图是()A.B.C.D.3.(3分)如图,AB∥DE,FG⊥BC于F,∠CDE=40°,则∠FGB=()A.40°B.50° C.60° D.70°4.(3分)下列运算正确的是()A.B.C.D.5.(3分)某交警在一个路口统计的某时段往车辆的车速情况如表:则上述车速的中位数和众数分别是()A.50,8 B.50,50 C.49,50 D.49,86.(3分)下列命题错误的是()A.对角线互相平分的四边形是平行四边形B.对角线相等的平行四边形是矩形C.一条对角线平分一组对角的四边形是菱形D.对角线互相垂直的矩形是正方形7.(3分)甲、乙二人做某种机械零件,甲每小时比乙多做6个,甲做90个所用的时间与做60个所用的时间相等.设甲每小时做x个零件,下面所列方程正确的是()A.B.C.D.8.(3分)如图,已知圆柱的底面直径BC=,高AB=3,小虫在圆柱表面爬行,从C点爬到A 点,然后再沿另一面爬回C点,则小虫爬行的最短路程为()A.B.C.D.9.(3分)如图,10个不同的正偶数按下图排列,箭头上方的每个数都等于其下方两数的和,如,表示a1=a2+a3,则a1的最小值为()A.32 B.36 C.38 D.4010.(3分)如图,直线y=x﹣6分别交x轴,y轴于A,B,M是反比例函数y=(x>0)的图象上位于直线上方的一点,MC∥x轴交AB于C,MD⊥MC交AB于D,AC•BD=4,则k的值为()A.﹣3 B.﹣4 C.﹣5 D.﹣6二、填空题11.(3分)某颗粒物的直径是0.0000025,把0.0000025用科学记数法表示为.12.(3分)若a﹣b=1,则代数式2a﹣2b﹣1的值为.13.(3分)如图,菱形ABCD中,AC交BD于O,DE⊥BC于E,连接OE,若∠ABC=140°,则∠OED= .14.(3分)如图,△ABC内接于⊙O,∠ACB=90°,∠ACB的角平分线交⊙O于D.若AC=6,BD=5,则BC的长为.15.(3分)如图,直线y=kx和y=ax+4交于A(1,k),则不等式kx﹣6<ax+4<kx的解集为.16.(3分)如图,正方形ABCD中,BE=EF=FC,CG=2GD,BG分别交AE,AF于M,N.下列结论:①AF⊥BG;②BN=NF;③=;④S四边形CGNF=S四边形ANGD.其中正确的结论的序号是.三、解答题(本大题共9小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(5分)计算:|﹣2|+﹣(﹣1)2017.18.(6分)化简:(+)÷.19.(7分)如图,海中有一小岛A,它周围8海里内有暗礁,渔船跟踪鱼群由西向东航行,在B 点测得小岛A在北偏东60°方向上,航行12海里到达D点,这时测得小岛A在北偏东30°方向上.如果渔船不改变航线继续向东航行,有没有触礁的危险?20.(9分)某中学艺术节期间,学校向学生征集书画作品,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作品的数量进行了分析统计,制作了两幅不完整的统计图.请根据以上信息,回答下列问题:(1)杨老师采用的调查方式是(填“普查”或“抽样调查”);(2)请你将条形统计图补充完整,并估计全校共征集多少件作品?(3)如果全校征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.21.(7分)已知关于x的方程x2+(2k﹣1)x+k2﹣1=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)若x1,x2满足x12+x22=16+x1x2,求实数k的值.22.(8分)某超市销售一种牛奶,进价为每箱24元,规定售价不低于进价.现在的售价为每箱36元,每月可销售60箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱,设每箱牛奶降价x元(x为正整数),每月的销量为y箱.(1)写出y与x中间的函数关系书和自变量x的取值范围;(2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元?23.(8分)已知AB为⊙O的直径,BC⊥AB于B,且BC=AB,D为半圆⊙O上的一点,连接BD并延长交半圆⊙O的切线AE于E.(1)如图1,若CD=CB,求证:CD是⊙O的切线;(2)如图2,若F点在OB上,且CD⊥DF,求的值.24.(10分)已知O为直线MN上一点,OP⊥MN,在等腰Rt△ABO中,∠BAO=90°,AC∥OP交OM 于C,D为OB的中点,DE⊥DC交MN于E.(1)如图1,若点B在OP上,则①AC OE(填“<”,“=”或“>”);②线段CA、CO、CD满足的等量关系式是;(2)将图1中的等腰Rt△ABO绕O点顺时针旋转α(0°<α<45°),如图2,那么(1)中的结论②是否成立?请说明理由;(3)将图1中的等腰Rt△ABO绕O点顺时针旋转α(45°<α<90°),请你在图3中画出图形,并直接写出线段CA、CO、CD满足的等量关系式.25.(12分)抛物线y=x2+bx+c与x轴交于A(1,0),B(m,0),与y轴交于C.(1)若m=﹣3,求抛物线的解析式,并写出抛物线的对称轴;(2)如图1,在(1)的条件下,设抛物线的对称轴交x轴于D,在对称轴左侧的抛物线上有一点E,使S△ACE=S△ACD,求点E的坐标;(3)如图2,设F(﹣1,﹣4),FG⊥y于G,在线段OG上是否存在点P,使∠OBP=∠FPG?若存在,求m的取值范围;若不存在,请说明理由.2017年湖北省十堰市中考数学试卷参考答案与试题解析一、选择题:1.(3分)(2017•十堰)气温由﹣2℃上升3℃后是()℃.A.1 B.3 C.5 D.﹣5【分析】根据有理数的加法,可得答案.【解答】解:由题意,得﹣2+3=+(3﹣2)=1,故选:A.【点评】本题考查了有理数的加法,异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减较小的绝对值.2.(3分)(2017•十堰)如图的几何体,其左视图是()A.B.C.D.【分析】根据从左边看得到的图象是左视图,可得答案.【解答】解:从左边看第一层是两个小正方形,第二层左边一个小正方形,故选:B.【点评】本题考查了简单组合体的三视图,从左边看得到的图象是左视图.3.(3分)(2017•十堰)如图,AB∥DE,FG⊥BC于F,∠CDE=40°,则∠FGB=()A.40°B.50° C.60° D.70°【分析】先根据平行线的性质,得到∠B=∠CDE=40°,直观化FG⊥BC,即可得出∠FGB的度数.【解答】解:∵AB∥DE,∠CDE=40°,∴∠B=∠CDE=40°,又∵FG⊥BC,∴∠FGB=90°﹣∠B=50°,故选:B.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.4.(3分)(2017•十堰)下列运算正确的是()A.B.C.D.【分析】根据二次根式的加减法对A、D进行判断;根据二次根式的乘法法则对B进行判断;根据二次根式的除法法则对D进行判断.【解答】解:A、与不能合并,所以A选项错误;B、原式=6×2=12,所以B选项错误;C、原式==2,所以C选项准确;D、原式=2,所以D选项错误.故选C.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.5.(3分)(2017•十堰)某交警在一个路口统计的某时段往车辆的车速情况如表:则上述车速的中位数和众数分别是()A.50,8 B.50,50 C.49,50 D.49,8【分析】把这组数据按照从小到大的顺序排列,第10、11个数的平均数是中位数,在这组数据中出现次数最多的是50,得到这组数据的众数.【解答】解:要求一组数据的中位数,把这组数据按照从小到大的顺序排列,第10、11两个数的平均数是50,所以中位数是50,在这组数据中出现次数最多的是50,即众数是50.故选:B.【点评】本题考查一组数据的中位数和众数,在求中位数时,首先要把这列数字按照从小到大或从的大到小排列,找出中间一个数字或中间两个数字的平均数即为所求.6.(3分)(2017•十堰)下列命题错误的是()A.对角线互相平分的四边形是平行四边形B.对角线相等的平行四边形是矩形C.一条对角线平分一组对角的四边形是菱形D.对角线互相垂直的矩形是正方形【分析】利用平行四边形、矩形、菱形及正方形的判定定理分别判断后即可确定正确的选项.【解答】解:A、对角线互相平分的四边形是平行四边形是正确的,不符合题意;B、对角线相等的平行四边形是矩形是正确的,不符合题意;C、一条对角线平分一组对角的四边形不一定是菱形,原的说法错误,符合题意;D、对角线互相垂直的矩形是正方形是正确的,不符合题意.故选C.【点评】本题考查了命题与定理的知识,解题的关键是了解平行四边形、矩形、菱形及正方形的判定定理,难度不大.7.(3分)(2017•十堰)甲、乙二人做某种机械零件,甲每小时比乙多做6个,甲做90个所用的时间与做60个所用的时间相等.设甲每小时做x个零件,下面所列方程正确的是()A.B.C.D.【分析】设甲每小时做x个零件,根据题意可得,甲做90个所用的时间与乙做60个所用的时间相等,据此列方程.【解答】解:设甲每小时做x个零件,则乙每小时做(x﹣6)个零件,由题意得,=.故选A.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.8.(3分)(2017•十堰)如图,已知圆柱的底面直径BC=,高AB=3,小虫在圆柱表面爬行,从C点爬到A点,然后再沿另一面爬回C点,则小虫爬行的最短路程为()A.B.C.D.【分析】要求最短路径,首先要把圆柱的侧面展开,利用两点之间线段最短,然后利用勾股定理即可求解.【解答】解:把圆柱侧面展开,展开图如右图所示,点A、C的最短距离为线段AC的长.在RT△ADC中,∠ADC=90°,CD=AB=3,AD为底面半圆弧长,AD=3,所以AC=3,∴从C点爬到A点,然后再沿另一面爬回C点,则小虫爬行的最短路程为2AC=6,故选D.【点评】本题考查了平面展开﹣最短路径问题,解题的关键是会将圆柱的侧面展开,并利用勾股定理解答.9.(3分)(2017•十堰)如图,10个不同的正偶数按下图排列,箭头上方的每个数都等于其下方两数的和,如,表示a1=a2+a3,则a1的最小值为()A.32 B.36 C.38 D.40【分析】由a1=a7+3(a8+a9)+a10知要使a1取得最小值,则a8+a9应尽可能的小,取a8=2、a9=4,根据a5=a8+a9=6,则a7、a10中不能有6,据此对于a7、a10,分别取8、10、12、14检验可得,从而得出答案.【解答】解:∵a1=a2+a3=a4+a5+a5+a6=a7+a8+a8+a9+a8+a9+a9+a10=a7+3(a8+a9)+a10,∴要使a1取得最小值,则a8+a9应尽可能的小,取a8=2、a9=4,∵a5=a8+a9=6,则a7、a10中不能有6,若a10=8,则a6=a9+a10=12,∴a7=14,则a4=14+2=16、a2=16+6=22、a3=6+12=18、a1=18+22=40;综上,a1的最小值为40,故选:D.【点评】本题主要考查数字的变化类,根据题目要求得出a1取得最小值的切入点是解题的关键.10.(3分)(2017•十堰)如图,直线y=x﹣6分别交x轴,y轴于A,B,M是反比例函数y=(x>0)的图象上位于直线上方的一点,MC∥x轴交AB于C,MD⊥MC交AB于D,AC•BD=4,则k的值为()A.﹣3 B.﹣4 C.﹣5 D.﹣6【分析】过点D作DE⊥y轴于点E,过点C作CF⊥x轴于点F,然后求出OA与OB的长度,即可求出∠OAB的正弦值与余弦值,再设M(x,y),从而可表示出BD与AC的长度,根据AC•BD=4列出即可求出k的值.【解答】解:过点D作DE⊥y轴于点E,过点C作CF⊥x轴于点F,令x=0代入y=x﹣6,∴y=﹣6,∴B(0,﹣6),∴OB=6,令y=0代入y=x﹣6,∴x=2,∴(2,0),∴OA=2,∴勾股定理可知:AB=4,∴sin∠OAB==,cos∠OAB==设M(x,y),∴CF=﹣y,ED=x,∴sin∠OAB=,∴AC=﹣y,∵cos∠OAB=cos∠EDB=,∴BD=2x,∵AC•BD=4,∴﹣y×2x=4,∴xy=﹣3,∵M在反比例函数的图象上,∴k=xy=﹣3,故选(A)【点评】本题考查反比例函数与一次函数的综合问题,解题的关键是根据∠OAB的锐角三角函数值求出BD、AC,本题属于中等题型.二、填空题11.(3分)(2017•十堰)某颗粒物的直径是0.0000025,把0.0000025用科学记数法表示为 2.5×10﹣6.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000025用科学记数法表示为2.5×10﹣6,故答案为:2.5×10﹣6.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.(3分)(2017•十堰)若a﹣b=1,则代数式2a﹣2b﹣1的值为 1 .【分析】原式前两项提取2变形后,将a﹣b=1代入计算即可求出值.【解答】解:∵a﹣b=1,∴原式=2(a﹣b)﹣1=2﹣1=1.故答案为:1.【点评】此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.13.(3分)(2017•十堰)如图,菱形ABCD中,AC交BD于O,DE⊥BC于E,连接OE,若∠ABC=140°,则∠OED= 20°.【分析】由菱形的性质可知O为BD中点,所以OE为直角三角形BED斜边上的中线,由此可得OE=OB,根据等腰三角形的性质和已知条件即可求出∠OED的度数.【解答】解:∵四边形ABCD是菱形,∴DO=OB,∵DE⊥BC于E,∴OE为直角三角形BED斜边上的中线,∴OE=BD,∴OB=OE,∴∠OBE=∠OEB,∵∠ABC=140°,∴∠OBE=70°,∴∠OED=90°﹣70°=20°,故答案为:20°.【点评】本题考查了菱形的性质、直角三角形斜边上中线的性质,得到OE为直角三角形BED斜边上的中线是解题的关键.14.(3分)(2017•十堰)如图,△ABC内接于⊙O,∠ACB=90°,∠ACB的角平分线交⊙O于D.若AC=6,BD=5,则BC的长为8 .【分析】连接BD,根据CD是∠ACB的平分线可知∠ACD=∠BCD=45°,故可得出AD=BD,再由AB 是⊙O的直径可知△ABD是等腰直角三角形,利用勾股定理求出AB的长,在Rt△ABC中,利用勾股定理可得出BC的长.【解答】解:连接BD,∵∠ACB=90°,∴AB是⊙O的直径.∵ACB的角平分线交⊙O于D,∴∠ACD=∠BCD=45°,∴AD=BD=5.∵AB是⊙O的直径,∴△ABD是等腰直角三角形,∴AB===10.∵AC=6,∴BC===8.故答案为:8.【点评】本题考查的是圆周角定理,熟知直径所对的圆周角是直角是解答此题的关键.15.(3分)(2017•十堰)如图,直线y=kx和y=ax+4交于A(1,k),则不等式kx﹣6<ax+4<kx的解集为1<x<.【分析】根据题意得由OB=4,OC=6,根据直线y=kx平行于直线y=kx﹣6,得到===,分别过A,D作AM⊥x轴于M,DN⊥x轴于N,则AM∥DN∥y轴,根据平行线分线段成比例定理得到==,得到ON=,求得D点的横坐标是,于是得到结论.【解答】解:如图,由y=kx﹣6与y=ax+4得OB=4,OC=6,∵直线y=kx平行于直线y=kx﹣6,∴===,分别过A,D作AM⊥x轴于M,DN⊥x轴于N,则AM∥DN∥y轴,∴==,∵A(1,k),∴OM=1,∴MN=,∴ON=,∴D点的横坐标是,∴1<x<时,kx﹣6<ax+4<kx,故答案为:1<x<.【点评】本题考查了一次函数与一元一次不等式,此类题目,利用数形结合的思想求解是解题的关键.16.(3分)(2017•十堰)如图,正方形ABCD中,BE=EF=FC,CG=2GD,BG分别交AE,AF于M,N.下列结论:①AF⊥BG;②BN=NF;③=;④S四边形CGNF=S四边形ANGD.其中正确的结论的序号是①③.【分析】①易证△ABF≌△BCG,即可解题;②易证△BNF∽△BCG,即可求得的值,即可解题;③作EH⊥AF,令AB=3,即可求得MN,BM的值,即可解题;④连接AG,FG,根据③中结论即可求得S四边形CGNF和S四边形ANGD,即可解题.【解答】解:①∵四边形ABCD为正方形,∴AB=BC=CD,∵BE=EF=FC,CG=2GD,∴BF=CG,∵在△ABF和△BCG中,,∴△ABF≌△BCG,∴∠BAF=∠CBG,∵∠BAF+∠BFA=90°,∴∠CBG+∠BFA=90°,即AF⊥BG;①正确;②∵在△BNF和△BCG中,,∴△BNF∽△BCG,∴==,∴BN=NF;②错误;③作EH⊥AF,令AB=3,则BF=2,BE=EF=CF=1,AF==,∵S△ABF=AF•BN=AB•BF,∴BN=,NF=BN=,∴AN=AF﹣NF=,∵E是BF中点,∴EH是△BFN的中位线,∴EH=,NH=,BN∥EH,∴AH=,=,解得:MN=,∴BM=BN﹣MN=,MG=BG﹣BM=,∴=;③正确;④连接AG,FG,根据③中结论,则NG=BG﹣BN=,∵S四边形CGNF=S△CFG+S△GNF=CG•CF+NF•NG=1+=,S四边形ANGD=S△ANG+S△ADG=AN•GN+AD•DG=+=,∴S四边形CGNF≠S四边形ANGD,④错误;故答案为①③.【点评】本题考查了全等三角形的判定和性质,考查了相似三角形的判定和对应边比例相等的性质,本题中令AB=3求得AN,BN,NG,NF的值是解题的关键.三、解答题(本大题共9小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(5分)(2017•十堰)计算:|﹣2|+﹣(﹣1)2017.【分析】原式利用绝对值的代数意义,立方根定义,以及乘方的意义计算即可得到结果.【解答】解:原式=2﹣2+1=1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(6分)(2017•十堰)化简:(+)÷.【分析】根据分式的加法和除法可以解答本题.【解答】解:(+)÷====.【点评】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.19.(7分)(2017•十堰)如图,海中有一小岛A,它周围8海里内有暗礁,渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏东60°方向上,航行12海里到达D点,这时测得小岛A在北偏东30°方向上.如果渔船不改变航线继续向东航行,有没有触礁的危险?【分析】过A作AC⊥BD于点C,求出∠CAD、∠CAB的度数,求出∠BAD和∠ABD,根据等边对等角得出AD=BD=12,根据含30度角的直角三角形性质求出CD,根据勾股定理求出AD即可.【解答】解:只要求出A到BD的最短距离是否在以A为圆心,以8海里的圆内或圆上即可,如图,过A作AC⊥BD于点C,则AC的长是A到BD的最短距离,∵∠CAD=30°,∠CAB=60°,∴∠BAD=60°﹣30°=30°,∠ABD=90°﹣60°=30°,∴∠ABD=∠BAD,∴BD=AD=12海里,∵∠CAD=30°,∠ACD=90°,∴CD=AD=6海里,由勾股定理得:AC==6≈10.392>8,即渔船继续向正东方向行驶,没有触礁的危险.【点评】考查了勾股定理的应用和解直角三角形,此题是一道方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.20.(9分)(2017•十堰)某中学艺术节期间,学校向学生征集书画作品,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作品的数量进行了分析统计,制作了两幅不完整的统计图.请根据以上信息,回答下列问题:(1)杨老师采用的调查方式是抽样调查(填“普查”或“抽样调查”);(2)请你将条形统计图补充完整,并估计全校共征集多少件作品?(3)如果全校征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.【分析】(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查.(2)由题意得:所调查的4个班征集到的作品数为:6÷=24(件),C班作品的件数为:24﹣4﹣6﹣4=10(件);继而可补全条形统计图;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好抽中一男一女的情况,再利用概率公式即可求得答案.【解答】解:(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查.故答案为抽样调查.(2)所调查的4个班征集到的作品数为:6÷=24件,平均每个班=6件,C班有10件,∴估计全校共征集作品6×30=180件.条形图如图所示,(3)画树状图得:∵共有20种等可能的结果,两名学生性别相同的有8种情况,∴恰好抽中一男一女的概率为:=.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.同时考查了概率公式.21.(7分)(2017•十堰)已知关于x的方程x2+(2k﹣1)x+k2﹣1=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)若x1,x2满足x12+x22=16+x1x2,求实数k的值.【分析】(1)根据方程的系数结合根的判别式,即可得出△=﹣4k+5≥0,解之即可得出实数k的取值范围;(2)由根与系数的关系可得x1+x2=1﹣2k、x1•x2=k2﹣1,将其代入x12+x22=(x1+x2)2﹣2x1•x2=16+x1•x2中,解之即可得出k的值.【解答】解:(1)∵关于x的方程x2+(2k﹣1)x+k2﹣1=0有两个实数根x1,x2,∴△=(2k﹣1)2﹣4(k2﹣1)=﹣4k+5≥0,解得:k≤,∴实数k的取值范围为k≤.(2)∵关于x的方程x2+(2k﹣1)x+k2﹣1=0有两个实数根x1,x2,∴x1+x2=1﹣2k,x1•x2=k2﹣1.∵x12+x22=(x1+x2)2﹣2x1•x2=16+x1•x2,∴(1﹣2k)2﹣2×(k2﹣1)=16+(k2﹣1),即k2﹣4k﹣12=0,解得:k=﹣2或k=6(不符合题意,舍去).∴实数k的值为﹣2.【点评】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)根据方程的系数结合根的判别式,找出△=﹣4k+5≥0;(2)根据根与系数的关系结合x12+x22=16+x1x2,找出关于k的一元二次方程.22.(8分)(2017•十堰)某超市销售一种牛奶,进价为每箱24元,规定售价不低于进价.现在的售价为每箱36元,每月可销售60箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱,设每箱牛奶降价x元(x为正整数),每月的销量为y箱.(1)写出y与x中间的函数关系书和自变量x的取值范围;(2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元?【分析】(1)根据价格每降低1元,平均每天多销售10箱,由每箱降价x元,多卖10x,据此可以列出函数关系式;(2)由利润=(售价﹣成本)×销售量列出函数关系式,求出最大值.【解答】解:(1)根据题意,得:y=60+10x,由36﹣x≥24得x≤12,∴1≤x≤12,且x为整数;(2)设所获利润为W,则W=(36﹣x﹣24)(10x+60)=﹣10x2+60x+720=﹣10(x﹣3)2+810,∴当x=3时,W取得最大值,最大值为810,答:超市定价为33元时,才能使每月销售牛奶的利润最大,最大利润是810元.【点评】本题主要考查二次函数的应用,由利润=(售价﹣成本)×销售量列出函数关系式求最值,用二次函数解决实际问题是解题的关键.23.(8分)(2017•十堰)已知AB为⊙O的直径,BC⊥AB于B,且BC=AB,D为半圆⊙O上的一点,连接BD并延长交半圆⊙O的切线AE于E.(1)如图1,若CD=CB,求证:CD是⊙O的切线;(2)如图2,若F点在OB上,且CD⊥DF,求的值.【分析】(1)连接DO,CO,易证△CDO≌△CBO,即可解题;(2)连接AD,易证△ADF∽△BDC和△ADE∽△BDA,根据相似三角形对应边比例相等的性质即可解题.【解答】解:(1)连接DO,CO,∵BC⊥AB于B,∴∠ABC=90°,在△CDO与△CBO中,,∴△CDO≌△CBO,∴∠CDO=∠CBO=90°,∴OD⊥CD,∴CD是⊙O的切线;(2)连接AD,∵AB是直径,∴∠ADB=90°,∴∠ADF+∠BDF=90°,∠DAB+∠DBA=90°,∵∠BDF+∠BDC=90°,∠CBD+∠DBA=90°,∴∠ADF=∠BDC,∠DAB=∠CBD,∵在△ADF和△BDC中,,∴△ADF∽△BDC,∴=,∵∠DAE+∠DAB=90°,∠E+∠DAE=90°,∴∠E=∠DAB,∵在△ADE和△BDA中,,∴△ADE∽△BDA,∴=,∴=,即=,∵AB=BC,∴=1.【点评】本题考查了相似三角形的判定和性质,考查了全等三角形的判定和性质,本题中求证△ADF∽△BDC和△ADE∽△BDA是解题的关键.24.(10分)(2017•十堰)已知O为直线MN上一点,OP⊥MN,在等腰Rt△ABO中,∠BAO=90°,AC∥OP交OM于C,D为OB的中点,DE⊥DC交MN于E.(1)如图1,若点B在OP上,则①AC = OE(填“<”,“=”或“>”);②线段CA、CO、CD满足的等量关系式是AC2+CO2=CD2;(2)将图1中的等腰Rt△ABO绕O点顺时针旋转α(0°<α<45°),如图2,那么(1)中的结论②是否成立?请说明理由;(3)将图1中的等腰Rt△ABO绕O点顺时针旋转α(45°<α<90°),请你在图3中画出图形,并直接写出线段CA、CO、CD满足的等量关系式CO﹣CA=CD .【分析】(1)①如图1,证明AC=OC和OC=OE可得结论;②根据勾股定理可得:AC2+CO2=CD2;(2)如图2,(1)中的结论②不成立,作辅助线,构建全等三角形,证明A、D、O、C四点共圆,得∠ACD=∠AOB,同理得:∠EFO=∠EDO,再证明△ACO≌△EOF,得OE=AC,AO=EF,根据勾股定理得:AC2+OC2=FO2+OE2=EF2,由直角三角形中最长边为斜边可得结论;(3)如图3,连接AD,则AD=OD证明△ACD≌△OED,根据△CDE是等腰直角三角形,得CE2=2CD2,等量代换可得结论(OC﹣OE)2=(OC﹣AC)2=2CD2,开方后是:OC﹣AC=CD.【解答】解:(1)①AC=OE,理由:如图1,∵在等腰Rt△ABO中,∠BAO=90°,∴∠ABO=∠AOB=45°,∵OP⊥MN,∴∠COP=90°,∴∠AOC=45°,∵AC∥OP,∴∠CAO=∠AOB=45°,∠ACO=∠POE=90°,∴AC=OC,连接AD,∵BD=OD,∴AD=OD,AD⊥OB,∴AD∥OC,∴四边形ADOC是正方形,∴∠DCO=45°,∴AC=OD,∴∠DEO=45°,∴CD=DE,∴OC=OE,∴AC=OE;②在Rt△CDO中,∵CD2=OC2+OD2,∴CD2=AC2+OC2;故答案为:AC2+CO2=CD2;(2)如图2,(1)中的结论②不成立,理由是:连接AD,延长CD交OP于F,连接EF,∵AB=AO,D为OB的中点,∴AD⊥OB,∴∠ADO=90°,∵∠CDE=90°,∴∠ADO=∠CDE,∴∠ADO﹣∠CDO=∠CDE﹣∠CDO,即∠ADC=∠EDO,∵∠ADO=∠ACO=90°,∴∠ADO+∠ACO=180°,∴A、D、O、C四点共圆,∴∠ACD=∠AOB,同理得:∠EFO=∠EDO,∴∠EFO=∠AOC,∵△ABO是等腰直角三角形,∴∠AOB=45°,∴∠DCO=45°,∴△COF和△CDE是等腰直角三角形,∴OC=OF,∵∠ACO=∠EOF=90°,∴△ACO≌△EOF,∴OE=AC,AO=EF,∴AC2+OC2=FO2+OE2=EF2,Rt△DEF中,EF>DE=DC,∴AC2+OC2>DC2,所以(1)中的结论②不成立;(3)如图3,结论:OC﹣CA=CD,理由是:连接AD,则AD=OD,同理:∠ADC=∠EDO,∵∠CAB+∠CAO=∠CAO+∠AOC=90°,∴∠CAB=∠AOC,∵∠DAB=∠AOD=45°,∴∠DAB﹣∠CAB=∠AOD﹣∠AOC,即∠DAC=∠DOE,∴△ACD≌△OED,∴AC=OE,CD=DE,∴△CDE是等腰直角三角形,∴CE2=2CD2,∴(OC﹣OE)2=(OC﹣AC)2=2CD2,∴OC﹣AC=CD,故答案为:OC﹣AC=CD.【点评】本题是几何变换的综合题,考查了三角形全等的性质和判定、等腰直角三角形的性质和判定、旋转的性质、勾股定理、四点共圆的性质等知识,并运用了类比的思想解决问题,有难度,尤其是第二问,结论不成立,要注意辅助线的作法;本题的2、3问能标准作图是关键.25.(12分)(2017•十堰)抛物线y=x2+bx+c与x轴交于A(1,0),B(m,0),与y轴交于C.(1)若m=﹣3,求抛物线的解析式,并写出抛物线的对称轴;(2)如图1,在(1)的条件下,设抛物线的对称轴交x轴于D,在对称轴左侧的抛物线上有一点E,使S△ACE=S△ACD,求点E的坐标;(3)如图2,设F(﹣1,﹣4),FG⊥y于G,在线段OG上是否存在点P,使∠OBP=∠FPG?若存在,求m的取值范围;若不存在,请说明理由.【分析】(1)利用待定系数法求二次函数的解析式,并配方求对称轴;(2)如图1,设E(m,m2+2m﹣3),先根据已知条件求S△ACE=10,根据不规则三角形面积等于铅直高度与水平宽度的积列式可求得m的值,并根据在对称轴左侧的抛物线上有一点E,则点E的横坐标小于﹣1,对m的值进行取舍,得到E的坐标;(3)设点P(0,y).分两种情况:①当m<0时,如图2,△POB∽△FGP,根据对应线段成比例即可求出m的取值范围;②当m>0时,如图3,△POB∽△FGP,根据对应线段成比例即可求出m的取值范围.【解答】解:(1)当m=﹣3时,B(﹣3,0),把A(1,0),B(﹣3,0)代入到抛物线y=x2+bx+c中得:,解得,∴抛物线的解析式为:y=x2+2x﹣3=(x+1)2﹣4;对称轴是:直线x=﹣1;(2)如图1,设E(m,m2+2m﹣3),由题意得:AD=1+1=2,OC=3,S△ACE=S△ACD=×AD•OC=×2×3=10,设直线AE的解析式为:y=kx+b,把A(1,0)和E(m,m2+2m﹣3)代入得,,解得:,∴直线AE的解析式为:y=(m+3)x﹣m﹣3,∴F(0,﹣m﹣3),∵C(0,﹣3),∴FC=﹣m﹣3+3=﹣m,∴S△ACE=FC•(1﹣m)=10,﹣m(1﹣m)=20,m2﹣m﹣20=0,(m+4)(m﹣5)=0,m1=﹣4,m2=5(舍),∴E(﹣4,5);(3)设点P(0,y).①当m<0时,如图2,△POB∽△FGP得=∴m=y2+4y=(y+2)2﹣4∵﹣4<y<0,∴﹣4≤m<0.②当m>0时,如图3,△POB∽△FGP∴=∴=∴m=﹣y2﹣4y=﹣(y+2)2+4∴﹣4<y<0∴0<m≤4综上所述,m的取值范围是﹣4≤m≤4且m≠0.【点评】本题是二次函数的综合题,考查了利用待定系数法求函数的解析式、配方法求对称轴、等腰直角三角形的性质和判定、三角形面积的求法,及三角形全等的判定与性质.。

2017年湖北省十堰市中考数学真题试卷

2017年湖北省十堰市中考数学真题试卷

2017年湖北省十堰市中考数学试卷一、选择题:1.(3分)气温由﹣2℃上升3℃后是()℃.A.1 B.3 C.5 D.﹣52.(3分)如图的几何体,其左视图是()A.B.C.D.3.(3分)如图,AB∥DE,FG⊥BC于F,∠CDE=40°,则∠FGB=()A.40°B.50°C.60°D.70°4.(3分)下列运算正确的是()A.B.C.D.5.(3分)某交警在一个路口统计的某时段来往车辆的车速情况如表:则上述车速的中位数和众数分别是()A.50,8 B.50,50 C.49,50 D.49,86.(3分)下列命题错误的是()A.对角线互相平分的四边形是平行四边形B.对角线相等的平行四边形是矩形C.一条对角线平分一组对角的四边形是菱形D.对角线互相垂直的矩形是正方形7.(3分)甲、乙二人做某种机械零件,甲每小时比乙多做6个,甲做90个所用的时间与做60个所用的时间相等.设甲每小时做x个零件,下面所列方程正确的是()A.B.C.D.8.(3分)如图,已知圆柱的底面直径BC=,高AB=3,小虫在圆柱表面爬行,从C点爬到A点,然后再沿另一面爬回C点,则小虫爬行的最短路程为()A.B.C.D.9.(3分)如图,10个不同的正偶数按下图排列,箭头上方的每个数都等于其下方两数的和,如,表示a1=a2+a3,则a1的最小值为()A.32 B.36 C.38 D.4010.(3分)如图,直线y=x﹣6分别交x轴,y轴于A,B,M是反比例函数y=(x>0)的图象上位于直线上方的一点,MC∥x轴交AB于C,MD⊥MC交AB于D,AC•BD=4,则k的值为()A.﹣3 B.﹣4 C.﹣5 D.﹣6二、填空题11.(3分)某颗粒物的直径是0.0000025,把0.0000025用科学记数法表示为.12.(3分)若a﹣b=1,则代数式2a﹣2b﹣1的值为.13.(3分)如图,菱形ABCD中,AC交BD于O,DE⊥BC于E,连接OE,若∠ABC=140°,则∠OED=.14.(3分)如图,△ABC内接于⊙O,∠ACB=90°,∠ACB的角平分线交⊙O于D.若AC=6,BD=5,则BC的长为.15.(3分)如图,直线y=kx和y=ax+4交于A(1,k),则不等式kx﹣6<ax+4<kx的解集为.16.(3分)如图,正方形ABCD中,BE=EF=FC,CG=2GD,BG分别交AE,AF于M,N.下列结论:①AF⊥BG;②BN=NF;③=;④S四边形CGNF=S四边形ANGD.其中正确的结论的序号是.三、解答题(本大题共9小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(5分)计算:|﹣2|+﹣(﹣1)2017.18.(6分)化简:(+)÷.19.(7分)如图,海中有一小岛A,它周围8海里内有暗礁,渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏东60°方向上,航行12海里到达D点,这时测得小岛A在北偏东30°方向上.如果渔船不改变航线继续向东航行,有没有触礁的危险?20.(9分)某中学艺术节期间,学校向学生征集书画作品,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作品的数量进行了分析统计,制作了两幅不完整的统计图.请根据以上信息,回答下列问题:(1)杨老师采用的调查方式是(填“普查”或“抽样调查”);(2)请你将条形统计图补充完整,并估计全校共征集多少件作品?(3)如果全校征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.21.(7分)已知关于x的方程x2+(2k﹣1)x+k2﹣1=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)若x1,x2满足x12+x22=16+x1x2,求实数k的值.22.(8分)某超市销售一种牛奶,进价为每箱24元,规定售价不低于进价.现在的售价为每箱36元,每月可销售60箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱,设每箱牛奶降价x元(x为正整数),每月的销量为y箱.(1)写出y与x中间的函数关系书和自变量x的取值范围;(2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元?23.(8分)已知AB为⊙O的直径,BC⊥AB于B,且BC=AB,D为半圆⊙O上的一点,连接BD并延长交半圆⊙O的切线AE于E.(1)如图1,若CD=CB,求证:CD是⊙O的切线;(2)如图2,若F点在OB上,且CD⊥DF,求的值.24.(10分)已知O为直线MN上一点,OP⊥MN,在等腰Rt△ABO中,∠BAO=90°,AC∥OP交OM于C,D为OB的中点,DE⊥DC交MN于E.(1)如图1,若点B在OP上,则①AC OE(填“<”,“=”或“>”);②线段CA、CO、CD满足的等量关系式是;(2)将图1中的等腰Rt△ABO绕O点顺时针旋转α(0°<α<45°),如图2,那么(1)中的结论②是否成立?请说明理由;(3)将图1中的等腰Rt△ABO绕O点顺时针旋转α(45°<α<90°),请你在图3中画出图形,并直接写出线段CA、CO、CD满足的等量关系式.25.(12分)抛物线y=x2+bx+c与x轴交于A(1,0),B(m,0),与y轴交于C.(1)若m=﹣3,求抛物线的解析式,并写出抛物线的对称轴;(2)如图1,在(1)的条件下,设抛物线的对称轴交x轴于D,在对称轴左侧的抛物线上有一点E,使S=S△ACD,求点E的坐标;△ACE(3)如图2,设F(﹣1,﹣4),FG⊥y于G,在线段OG上是否存在点P,使∠OBP=∠FPG?若存在,求m的取值范围;若不存在,请说明理由.2017年湖北省十堰市中考数学试卷参考答案与试题解析一、选择题:1.(3分)(2017•十堰)气温由﹣2℃上升3℃后是()℃.A.1 B.3 C.5 D.﹣5【分析】根据有理数的加法,可得答案.【解答】解:由题意,得﹣2+3=+(3﹣2)=1,故选:A.【点评】本题考查了有理数的加法,异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减较小的绝对值.2.(3分)(2017•十堰)如图的几何体,其左视图是()A.B.C.D.【分析】根据从左边看得到的图象是左视图,可得答案.【解答】解:从左边看第一层是两个小正方形,第二层左边一个小正方形,故选:B.【点评】本题考查了简单组合体的三视图,从左边看得到的图象是左视图.3.(3分)(2017•十堰)如图,AB∥DE,FG⊥BC于F,∠CDE=40°,则∠FGB=()A.40°B.50°C.60°D.70°【分析】先根据平行线的性质,得到∠B=∠CDE=40°,直观化FG⊥BC,即可得出∠FGB的度数.【解答】解:∵AB∥DE,∠CDE=40°,∴∠B=∠CDE=40°,又∵FG⊥BC,∴∠FGB=90°﹣∠B=50°,故选:B.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.4.(3分)(2017•十堰)下列运算正确的是()A.B.C.D.【分析】根据二次根式的加减法对A、D进行判断;根据二次根式的乘法法则对B进行判断;根据二次根式的除法法则对D进行判断.【解答】解:A、与不能合并,所以A选项错误;B、原式=6×2=12,所以B选项错误;C、原式==2,所以C选项准确;D、原式=2,所以D选项错误.故选C.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.5.(3分)(2017•十堰)某交警在一个路口统计的某时段来往车辆的车速情况如表:则上述车速的中位数和众数分别是()A.50,8 B.50,50 C.49,50 D.49,8【分析】把这组数据按照从小到大的顺序排列,第10、11个数的平均数是中位数,在这组数据中出现次数最多的是50,得到这组数据的众数.【解答】解:要求一组数据的中位数,把这组数据按照从小到大的顺序排列,第10、11两个数的平均数是50,所以中位数是50,在这组数据中出现次数最多的是50,即众数是50.故选:B.【点评】本题考查一组数据的中位数和众数,在求中位数时,首先要把这列数字按照从小到大或从的大到小排列,找出中间一个数字或中间两个数字的平均数即为所求.6.(3分)(2017•十堰)下列命题错误的是()A.对角线互相平分的四边形是平行四边形B.对角线相等的平行四边形是矩形C.一条对角线平分一组对角的四边形是菱形D.对角线互相垂直的矩形是正方形【分析】利用平行四边形、矩形、菱形及正方形的判定定理分别判断后即可确定正确的选项.【解答】解:A、对角线互相平分的四边形是平行四边形是正确的,不符合题意;B、对角线相等的平行四边形是矩形是正确的,不符合题意;C、一条对角线平分一组对角的四边形不一定是菱形,原来的说法错误,符合题意;D、对角线互相垂直的矩形是正方形是正确的,不符合题意.故选C.【点评】本题考查了命题与定理的知识,解题的关键是了解平行四边形、矩形、菱形及正方形的判定定理,难度不大.7.(3分)(2017•十堰)甲、乙二人做某种机械零件,甲每小时比乙多做6个,甲做90个所用的时间与做60个所用的时间相等.设甲每小时做x个零件,下面所列方程正确的是()A.B.C.D.【分析】设甲每小时做x个零件,根据题意可得,甲做90个所用的时间与乙做60个所用的时间相等,据此列方程.【解答】解:设甲每小时做x个零件,则乙每小时做(x﹣6)个零件,由题意得,=.故选A.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.8.(3分)(2017•十堰)如图,已知圆柱的底面直径BC=,高AB=3,小虫在圆柱表面爬行,从C点爬到A点,然后再沿另一面爬回C点,则小虫爬行的最短路程为()A.B.C.D.【分析】要求最短路径,首先要把圆柱的侧面展开,利用两点之间线段最短,然后利用勾股定理即可求解.【解答】解:把圆柱侧面展开,展开图如右图所示,点A、C的最短距离为线段AC的长.在RT△ADC中,∠ADC=90°,CD=AB=3,AD为底面半圆弧长,AD=3,所以AC=3,∴从C点爬到A点,然后再沿另一面爬回C点,则小虫爬行的最短路程为2AC=6,故选D.【点评】本题考查了平面展开﹣最短路径问题,解题的关键是会将圆柱的侧面展开,并利用勾股定理解答.9.(3分)(2017•十堰)如图,10个不同的正偶数按下图排列,箭头上方的每个数都等于其下方两数的和,如,表示a1=a2+a3,则a1的最小值为()A.32 B.36 C.38 D.40【分析】由a1=a7+3(a8+a9)+a10知要使a1取得最小值,则a8+a9应尽可能的小,取a8=2、a9=4,根据a5=a8+a9=6,则a7、a10中不能有6,据此对于a7、a10,分别取8、10、12、14检验可得,从而得出答案.【解答】解:∵a1=a2+a3=a4+a5+a5+a6=a7+a8+a8+a9+a8+a9+a9+a10=a7+3(a8+a9)+a10,∴要使a1取得最小值,则a8+a9应尽可能的小,取a8=2、a9=4,∵a5=a8+a9=6,则a7、a10中不能有6,若a10=8,则a6=a9+a10=12,∴a7=14,则a4=14+2=16、a2=16+6=22、a3=6+12=18、a1=18+22=40;综上,a1的最小值为40,故选:D.【点评】本题主要考查数字的变化类,根据题目要求得出a1取得最小值的切入点是解题的关键.10.(3分)(2017•十堰)如图,直线y=x﹣6分别交x轴,y轴于A,B,M是反比例函数y=(x>0)的图象上位于直线上方的一点,MC∥x轴交AB于C,MD⊥MC交AB于D,AC•BD=4,则k的值为()A.﹣3 B.﹣4 C.﹣5 D.﹣6【分析】过点D作DE⊥y轴于点E,过点C作CF⊥x轴于点F,然后求出OA与OB的长度,即可求出∠OAB的正弦值与余弦值,再设M(x,y),从而可表示出BD与AC的长度,根据AC•BD=4列出即可求出k的值.【解答】解:过点D作DE⊥y轴于点E,过点C作CF⊥x轴于点F,令x=0代入y=x﹣6,∴y=﹣6,∴B(0,﹣6),∴OB=6,令y=0代入y=x﹣6,∴x=2,∴(2,0),∴OA=2,∴勾股定理可知:AB=4,∴sin∠OAB==,cos∠OAB==设M(x,y),∴CF=﹣y,ED=x,∴sin∠OAB=,∴AC=﹣y,∵cos∠OAB=cos∠EDB=,∴BD=2x,∵AC•BD=4,∴﹣y×2x=4,∴xy=﹣3,∵M在反比例函数的图象上,∴k=xy=﹣3,故选(A)【点评】本题考查反比例函数与一次函数的综合问题,解题的关键是根据∠OAB 的锐角三角函数值求出BD、AC,本题属于中等题型.二、填空题11.(3分)(2017•十堰)某颗粒物的直径是0.0000025,把0.0000025用科学记数法表示为 2.5×10﹣6.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000025用科学记数法表示为2.5×10﹣6,故答案为:2.5×10﹣6.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.(3分)(2017•十堰)若a﹣b=1,则代数式2a﹣2b﹣1的值为1.【分析】原式前两项提取2变形后,将a﹣b=1代入计算即可求出值.【解答】解:∵a﹣b=1,∴原式=2(a﹣b)﹣1=2﹣1=1.故答案为:1.【点评】此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.13.(3分)(2017•十堰)如图,菱形ABCD中,AC交BD于O,DE⊥BC于E,连接OE,若∠ABC=140°,则∠OED=20°.【分析】由菱形的性质可知O为BD中点,所以OE为直角三角形BED斜边上的中线,由此可得OE=OB,根据等腰三角形的性质和已知条件即可求出∠OED的度数.【解答】解:∵四边形ABCD是菱形,∴DO=OB,∵DE⊥BC于E,∴OE为直角三角形BED斜边上的中线,∴OE=BD,∴OB=OE,∴∠OBE=∠OEB,∵∠ABC=140°,∴∠OBE=70°,∴∠OED=90°﹣70°=20°,故答案为:20°.【点评】本题考查了菱形的性质、直角三角形斜边上中线的性质,得到OE为直角三角形BED斜边上的中线是解题的关键.14.(3分)(2017•十堰)如图,△ABC内接于⊙O,∠ACB=90°,∠ACB的角平分线交⊙O于D.若AC=6,BD=5,则BC的长为8.【分析】连接BD,根据CD是∠ACB的平分线可知∠ACD=∠BCD=45°,故可得出AD=BD,再由AB是⊙O的直径可知△ABD是等腰直角三角形,利用勾股定理求出AB的长,在Rt△ABC中,利用勾股定理可得出BC的长.【解答】解:连接BD,∵∠ACB=90°,∴AB是⊙O的直径.∵ACB的角平分线交⊙O于D,∴∠ACD=∠BCD=45°,∴AD=BD=5.∵AB是⊙O的直径,∴△ABD是等腰直角三角形,∴AB===10.∵AC=6,∴BC===8.故答案为:8.【点评】本题考查的是圆周角定理,熟知直径所对的圆周角是直角是解答此题的关键.15.(3分)(2017•十堰)如图,直线y=kx和y=ax+4交于A(1,k),则不等式kx﹣6<ax+4<kx的解集为1<x<.【分析】根据题意得由OB=4,OC=6,根据直线y=kx平行于直线y=kx﹣6,得到===,分别过A,D作AM⊥x轴于M,DN⊥x轴于N,则AM∥DN∥y 轴,根据平行线分线段成比例定理得到==,得到ON=,求得D点的横坐标是,于是得到结论.【解答】解:如图,由y=kx﹣6与y=ax+4得OB=4,OC=6,∵直线y=kx平行于直线y=kx﹣6,∴===,分别过A,D作AM⊥x轴于M,DN⊥x轴于N,则AM∥DN∥y轴,∴==,∵A(1,k),∴OM=1,∴MN=,∴ON=,∴D点的横坐标是,∴1<x<时,kx﹣6<ax+4<kx,故答案为:1<x<.【点评】本题考查了一次函数与一元一次不等式,此类题目,利用数形结合的思想求解是解题的关键.16.(3分)(2017•十堰)如图,正方形ABCD中,BE=EF=FC,CG=2GD,BG分别交AE,AF于M,N.下列结论:①AF⊥BG;②BN=NF;③=;④S=S四边形CGNF.其中正确的结论的序号是①③.四边形ANGD【分析】①易证△ABF≌△BCG,即可解题;②易证△BNF∽△BCG,即可求得的值,即可解题;③作EH⊥AF,令AB=3,即可求得MN,BM的值,即可解题;④连接AG,FG,根据③中结论即可求得S四边形CGNF 和S四边形ANGD,即可解题.【解答】解:①∵四边形ABCD为正方形,∴AB=BC=CD,∵BE=EF=FC,CG=2GD,∴BF=CG,∵在△ABF和△BCG中,,∴△ABF≌△BCG,∴∠BAF=∠CBG,∵∠BAF+∠BFA=90°,∴∠CBG+∠BFA=90°,即AF⊥BG;①正确;②∵在△BNF和△BCG中,,∴△BNF∽△BCG,∴==,∴BN=NF;②错误;③作EH⊥AF,令AB=3,则BF=2,BE=EF=CF=1,AF==,∵S△ABF=AF•BN=AB•BF,∴BN=,NF=BN=,∴AN=AF﹣NF=,∵E是BF中点,∴EH是△BFN的中位线,∴EH=,NH=,BN∥EH,∴AH=,=,解得:MN=,∴BM=BN﹣MN=,MG=BG﹣BM=,∴=;③正确;④连接AG,FG,根据③中结论,则NG=BG﹣BN=,∵S四边形CGNF=S△CFG+S△GNF=CG•CF+NF•NG=1+=,S四边形ANGD=S△ANG+S△ADG=AN•GN+AD•DG=+=,∴S四边形CGNF ≠S四边形ANGD,④错误;故答案为①③.【点评】本题考查了全等三角形的判定和性质,考查了相似三角形的判定和对应边比例相等的性质,本题中令AB=3求得AN,BN,NG,NF的值是解题的关键.三、解答题(本大题共9小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(5分)(2017•十堰)计算:|﹣2|+﹣(﹣1)2017.【分析】原式利用绝对值的代数意义,立方根定义,以及乘方的意义计算即可得到结果.【解答】解:原式=2﹣2+1=1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(6分)(2017•十堰)化简:(+)÷.【分析】根据分式的加法和除法可以解答本题.【解答】解:(+)÷====.【点评】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.19.(7分)(2017•十堰)如图,海中有一小岛A,它周围8海里内有暗礁,渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏东60°方向上,航行12海里到达D点,这时测得小岛A在北偏东30°方向上.如果渔船不改变航线继续向东航行,有没有触礁的危险?【分析】过A作AC⊥BD于点C,求出∠CAD、∠CAB的度数,求出∠BAD和∠ABD,根据等边对等角得出AD=BD=12,根据含30度角的直角三角形性质求出CD,根据勾股定理求出AD即可.【解答】解:只要求出A到BD的最短距离是否在以A为圆心,以8海里的圆内或圆上即可,如图,过A作AC⊥BD于点C,则AC的长是A到BD的最短距离,∵∠CAD=30°,∠CAB=60°,∴∠BAD=60°﹣30°=30°,∠ABD=90°﹣60°=30°,∴∠ABD=∠BAD,∴BD=AD=12海里,∵∠CAD=30°,∠ACD=90°,∴CD=AD=6海里,由勾股定理得:AC==6≈10.392>8,即渔船继续向正东方向行驶,没有触礁的危险.【点评】考查了勾股定理的应用和解直角三角形,此题是一道方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.20.(9分)(2017•十堰)某中学艺术节期间,学校向学生征集书画作品,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作品的数量进行了分析统计,制作了两幅不完整的统计图.请根据以上信息,回答下列问题:(1)杨老师采用的调查方式是抽样调查(填“普查”或“抽样调查”);(2)请你将条形统计图补充完整,并估计全校共征集多少件作品?(3)如果全校征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.【分析】(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查.(2)由题意得:所调查的4个班征集到的作品数为:6÷=24(件),C班作品的件数为:24﹣4﹣6﹣4=10(件);继而可补全条形统计图;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好抽中一男一女的情况,再利用概率公式即可求得答案.【解答】解:(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查.故答案为抽样调查.(2)所调查的4个班征集到的作品数为:6÷=24件,平均每个班=6件,C班有10件,∴估计全校共征集作品6×30=180件.条形图如图所示,(3)画树状图得:∵共有20种等可能的结果,两名学生性别相同的有8种情况,∴恰好抽中一男一女的概率为:=.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.同时考查了概率公式.21.(7分)(2017•十堰)已知关于x的方程x2+(2k﹣1)x+k2﹣1=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)若x1,x2满足x12+x22=16+x1x2,求实数k的值.【分析】(1)根据方程的系数结合根的判别式,即可得出△=﹣4k+5≥0,解之即可得出实数k的取值范围;(2)由根与系数的关系可得x1+x2=1﹣2k、x1•x2=k2﹣1,将其代入x12+x22=(x1+x2)2﹣2x•x2=16+x1•x2中,解之即可得出k的值.1【解答】解:(1)∵关于x的方程x2+(2k﹣1)x+k2﹣1=0有两个实数根x1,x2,∴△=(2k﹣1)2﹣4(k2﹣1)=﹣4k+5≥0,解得:k≤,∴实数k的取值范围为k≤.(2)∵关于x的方程x2+(2k﹣1)x+k2﹣1=0有两个实数根x1,x2,∴x1+x2=1﹣2k,x1•x2=k2﹣1.∵x12+x22=(x1+x2)2﹣2x1•x2=16+x1•x2,∴(1﹣2k)2﹣2×(k2﹣1)=16+(k2﹣1),即k2﹣4k﹣12=0,解得:k=﹣2或k=6(不符合题意,舍去).∴实数k的值为﹣2.【点评】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)根据方程的系数结合根的判别式,找出△=﹣4k+5≥0;(2)根据根与系数的关系结合x12+x22=16+x1x2,找出关于k的一元二次方程.22.(8分)(2017•十堰)某超市销售一种牛奶,进价为每箱24元,规定售价不低于进价.现在的售价为每箱36元,每月可销售60箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱,设每箱牛奶降价x元(x 为正整数),每月的销量为y箱.(1)写出y与x中间的函数关系书和自变量x的取值范围;(2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元?【分析】(1)根据价格每降低1元,平均每天多销售10箱,由每箱降价x元,多卖10x,据此可以列出函数关系式;(2)由利润=(售价﹣成本)×销售量列出函数关系式,求出最大值.【解答】解:(1)根据题意,得:y=60+10x,由36﹣x≥24得x≤12,∴1≤x≤12,且x为整数;(2)设所获利润为W,则W=(36﹣x﹣24)(10x+60)=﹣10x2+60x+720=﹣10(x﹣3)2+810,∴当x=3时,W取得最大值,最大值为810,答:超市定价为33元时,才能使每月销售牛奶的利润最大,最大利润是810元.【点评】本题主要考查二次函数的应用,由利润=(售价﹣成本)×销售量列出函数关系式求最值,用二次函数解决实际问题是解题的关键.23.(8分)(2017•十堰)已知AB为⊙O的直径,BC⊥AB于B,且BC=AB,D为半圆⊙O上的一点,连接BD并延长交半圆⊙O的切线AE于E.(1)如图1,若CD=CB,求证:CD是⊙O的切线;(2)如图2,若F点在OB上,且CD⊥DF,求的值.【分析】(1)连接DO,CO,易证△CDO≌△CBO,即可解题;(2)连接AD,易证△ADF∽△BDC和△ADE∽△BDA,根据相似三角形对应边比例相等的性质即可解题.【解答】解:(1)连接DO,CO,∵BC⊥AB于B,∴∠ABC=90°,在△CDO与△CBO中,,∴△CDO≌△CBO,∴∠CDO=∠CBO=90°,∴OD⊥CD,∴CD是⊙O的切线;(2)连接AD,∵AB是直径,∴∠ADB=90°,∴∠ADF+∠BDF=90°,∠DAB+∠DBA=90°,∵∠BDF+∠BDC=90°,∠CBD+∠DBA=90°,∴∠ADF=∠BDC,∠DAB=∠CBD,∵在△ADF和△BDC中,,∴△ADF∽△BDC,∴=,∵∠DAE+∠DAB=90°,∠E+∠DAE=90°,∴∠E=∠DAB,∵在△ADE和△BDA中,,∴△ADE∽△BDA,∴=,∴=,即=,∵AB=BC,∴=1.【点评】本题考查了相似三角形的判定和性质,考查了全等三角形的判定和性质,本题中求证△ADF∽△BDC和△ADE∽△BDA是解题的关键.24.(10分)(2017•十堰)已知O为直线MN上一点,OP⊥MN,在等腰Rt△ABO 中,∠BAO=90°,AC∥OP交OM于C,D为OB的中点,DE⊥DC交MN于E.(1)如图1,若点B在OP上,则①AC=OE(填“<”,“=”或“>”);②线段CA、CO、CD满足的等量关系式是AC2+CO2=CD2;(2)将图1中的等腰Rt△ABO绕O点顺时针旋转α(0°<α<45°),如图2,那么(1)中的结论②是否成立?请说明理由;(3)将图1中的等腰Rt△ABO绕O点顺时针旋转α(45°<α<90°),请你在图3中画出图形,并直接写出线段CA、CO、CD满足的等量关系式CO﹣CA=CD.【分析】(1)①如图1,证明AC=OC和OC=OE可得结论;②根据勾股定理可得:AC2+CO2=CD2;(2)如图2,(1)中的结论②不成立,作辅助线,构建全等三角形,证明A、D、O、C四点共圆,得∠ACD=∠AOB,同理得:∠EFO=∠EDO,再证明△ACO≌△EOF,得OE=AC,AO=EF,根据勾股定理得:AC2+OC2=FO2+OE2=EF2,由直角三角形中最长边为斜边可得结论;(3)如图3,连接AD,则AD=OD证明△ACD≌△OED,根据△CDE是等腰直角三角形,得CE2=2CD2,等量代换可得结论(OC﹣OE)2=(OC﹣AC)2=2CD2,开方后是:OC﹣AC=CD.【解答】解:(1)①AC=OE,理由:如图1,∵在等腰Rt△ABO中,∠BAO=90°,∴∠ABO=∠AOB=45°,∵OP⊥MN,∴∠COP=90°,∴∠AOC=45°,∵AC∥OP,∴∠CAO=∠AOB=45°,∠ACO=∠POE=90°,∴AC=OC,连接AD,∵BD=OD,∴AD=OD,AD⊥OB,∴AD∥OC,∴四边形ADOC是正方形,∴∠DCO=45°,∴AC=OD,∴∠DEO=45°,∴CD=DE,∴OC=OE,∴AC=OE;②在Rt△CDO中,∵CD2=OC2+OD2,∴CD2=AC2+OC2;故答案为:AC2+CO2=CD2;(2)如图2,(1)中的结论②不成立,理由是:连接AD,延长CD交OP于F,连接EF,∵AB=AO,D为OB的中点,∴AD⊥OB,∴∠ADO=90°,∵∠CDE=90°,∴∠ADO=∠CDE,∴∠ADO﹣∠CDO=∠CDE﹣∠CDO,即∠ADC=∠EDO,∵∠ADO=∠ACO=90°,∴∠ADO+∠ACO=180°,∴A、D、O、C四点共圆,∴∠ACD=∠AOB,同理得:∠EFO=∠EDO,∴∠EFO=∠AOC,∵△ABO是等腰直角三角形,∴∠AOB=45°,∴∠DCO=45°,∴△COF和△CDE是等腰直角三角形,∴OC=OF,∵∠ACO=∠EOF=90°,∴△ACO≌△EOF,∴OE=AC,AO=EF,∴AC2+OC2=FO2+OE2=EF2,Rt△DEF中,EF>DE=DC,∴AC2+OC2>DC2,所以(1)中的结论②不成立;(3)如图3,结论:OC﹣CA=CD,理由是:连接AD,则AD=OD,同理:∠ADC=∠EDO,∵∠CAB+∠CAO=∠CAO+∠AOC=90°,∴∠CAB=∠AOC,∵∠DAB=∠AOD=45°,∴∠DAB﹣∠CAB=∠AOD﹣∠AOC,即∠DAC=∠DOE,∴△ACD≌△OED,∴AC=OE,CD=DE,∴△CDE是等腰直角三角形,∴CE2=2CD2,∴(OC﹣OE)2=(OC﹣AC)2=2CD2,∴OC﹣AC=CD,故答案为:OC﹣AC=CD.【点评】本题是几何变换的综合题,考查了三角形全等的性质和判定、等腰直角三角形的性质和判定、旋转的性质、勾股定理、四点共圆的性质等知识,并运用了类比的思想解决问题,有难度,尤其是第二问,结论不成立,要注意辅助线的作法;本题的2、3问能标准作图是关键.25.(12分)(2017•十堰)抛物线y=x2+bx+c与x轴交于A(1,0),B(m,0),与y轴交于C.(1)若m=﹣3,求抛物线的解析式,并写出抛物线的对称轴;(2)如图1,在(1)的条件下,设抛物线的对称轴交x轴于D,在对称轴左侧=S△ACD,求点E的坐标;的抛物线上有一点E,使S△ACE(3)如图2,设F(﹣1,﹣4),FG⊥y于G,在线段OG上是否存在点P,使∠OBP=∠FPG?若存在,求m的取值范围;若不存在,请说明理由.【分析】(1)利用待定系数法求二次函数的解析式,并配方求对称轴;=10,根据不规则(2)如图1,设E(m,m2+2m﹣3),先根据已知条件求S△ACE三角形面积等于铅直高度与水平宽度的积列式可求得m的值,并根据在对称轴左侧的抛物线上有一点E,则点E的横坐标小于﹣1,对m的值进行取舍,得到E的坐标;(3)设点P(0,y).分两种情况:①当m<0时,如图2,△POB∽△FGP,根据对应线段成比例即可求出m的取值范围;②当m>0时,如图3,△POB∽△FGP,根据对应线段成比例即可求出m的取值范围.【解答】解:(1)当m=﹣3时,B(﹣3,0),把A(1,0),B(﹣3,0)代入到抛物线y=x2+bx+c中得:,解得,∴抛物线的解析式为:y=x2+2x﹣3=(x+1)2﹣4;对称轴是:直线x=﹣1;(2)如图1,设E(m,m2+2m﹣3),由题意得:AD=1+1=2,OC=3,S△ACE=S△ACD=×AD•OC=×2×3=10,设直线AE的解析式为:y=kx+b,把A(1,0)和E(m,m2+2m﹣3)代入得,,解得:,∴直线AE的解析式为:y=(m+3)x﹣m﹣3,∴F(0,﹣m﹣3),∵C(0,﹣3),∴FC=﹣m﹣3+3=﹣m,=FC•(1﹣m)=10,∴S△ACE﹣m(1﹣m)=20,m2﹣m﹣20=0,(m+4)(m﹣5)=0,m1=﹣4,m2=5(舍),∴E(﹣4,5);(3)设点P(0,y).①当m<0时,如图2,△POB∽△FGP得=∴m=y2+4y=(y+2)2﹣4∵﹣4<y<0,∴﹣4≤m<0.②当m>0时,如图3,△POB∽△FGP∴=∴m=﹣y2﹣4y=﹣(y+2)2+4∴﹣4<y<0∴0<m≤4综上所述,m的取值范围是﹣4≤m≤4且m≠0.【点评】本题是二次函数的综合题,考查了利用待定系数法求函数的解析式、配方法求对称轴、等腰直角三角形的性质和判定、三角形面积的求法,及三角形全等的判定与性质.2017年湖北省黄石市中考数学试卷1.(3分)下列各数是有理数的是()A.﹣ B.C.D.π2.(3分)地球绕太阳公转的速度约为110000km/h,则110000用科学记数法可表示为()A.0.11×106B.1.1×105C.0.11×105D.1.1×1063.(3分)下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.(3分)下列运算正确的是()A.a0=0 B.a2+a3=a5 C.a2•a﹣1=a D.+=5.(3分)如图,该几何体主视图是()A.B.C.D.6.(3分)下表是某位男子马拉松长跑运动员近6次的比赛成绩(单位:分钟)则这组成绩的中位数和平均数分别为()A.137、138 B.138、137 C.138、138 D.137、1397.(3分)如图,△ABC中,E为BC边的中点,CD⊥AB,AB=2,AC=1,DE=,则∠CDE+∠ACD=()A.60°B.75°C.90°D.105°8.(3分)如图,是二次函数y=ax2+bx+c的图象,对下列结论①ab>0,②abc>0,③<1,其中错误的个数是()A.3 B.2 C.1 D.09.(3分)如图,已知⊙O为四边形ABCD的外接圆,O为圆心,若∠BCD=120°,AB=AD=2,则⊙O的半径长为()A.B.C.D.10.(3分)如图,已知凸五边形ABCDE的边长均相等,且∠DBE=∠ABE+∠CBD,AC=1,则BD必定满足()A.BD<2 B.BD=2C.BD>2 D.以上情况均有可能二、填空题11.(3分)因式分解:x2y﹣4y=.12.(3分)分式方程=﹣2的解为.13.(3分)如图,已知扇形OAB的圆心角为60°,扇形的面积为6π,则该扇形的弧长为.14.(3分)如图所示,为了测量出一垂直水平地面的某高大建筑物AB的高度,一测量人员在该建筑物附近C处,测得建筑物顶端A处的仰角大小为45°,随后沿直线BC向前走了100米后到达D处,在D处测得A处的仰角大小为30°,则建筑物AB的高度约为米.(注:不计测量人员的身高,结果按四舍五入保留整数,参考数据:≈1.41,≈1.73)15.(3分)甲、乙两位同学各抛掷一枚质地均匀的骰子,他们抛掷的点数分别记为a、b,则a+b=9的概率为.16.(3分)观察下列格式:=1﹣=+=1﹣+﹣=++=1﹣+﹣+﹣=…。

2017十堰中考数学试题及答案

2017十堰中考数学试题及答案

2017十堰中考数学试题及答案一、选择题(每题3分,共30分)1. 已知a、b、c是三角形的三边,且a^2 + b^2 = c^2,那么这个三角形是直角三角形。

2. 函数y = 3x - 2的图象经过第一、三、四象限。

3. 一个数的相反数是它本身,这个数是0。

4. 一个数的绝对值总是非负数。

5. 已知一个角的补角是120°,那么这个角的度数是60°。

6. 一个数的平方根有两个,且互为相反数。

7. 一组数据的平均数是5,中位数是4,众数是3,那么这组数据的极差是8。

8. 一个多边形的内角和是720°,那么这个多边形的边数是5。

9. 在一个直角三角形中,一个锐角是30°,那么另一个锐角是60°。

10. 一个数的立方根只有一个。

二、填空题(每题3分,共30分)11. 一个数的平方是25,那么这个数是±5。

12. 一个数的立方是-8,那么这个数是-2。

13. 一个数的倒数是2,那么这个数是1/2。

14. 一个数的绝对值是3,那么这个数可以是3或-3。

15. 一个角的余角是45°,那么这个角是45°。

16. 一个数的平方根是3,那么这个数是9。

17. 一个数的立方根是-8,那么这个数是-2。

18. 一组数据的平均数是6,中位数是5,众数是4,那么这组数据的极差是8。

19. 一个多边形的内角和是900°,那么这个多边形的边数是6。

20. 在一个直角三角形中,一个锐角是45°,那么另一个锐角也是45°。

三、解答题(每题10分,共40分)21. 已知一个直角三角形的两条直角边长分别为3和4,求斜边的长度。

解:根据勾股定理,斜边的长度为√(3^2 + 4^2) = √(9 + 16) =√25 = 5。

22. 已知一个等腰三角形的底边长为6,两腰相等,求腰长。

解:设腰长为x,则根据等腰三角形的性质,底边的一半与腰构成的直角三角形中,底边的一半为3,腰长为x,根据勾股定理,有3^2 +x^2 = 6^2,解得x = √(36 - 9) = √27 = 3√3。

2017年湖北省十堰市中考数学试卷

2017年湖北省十堰市中考数学试卷

2017年湖北省十堰市中考数学试卷一、选择题:1.(3分)气温由﹣2℃上升3℃后是( )℃.A .1B .3C .5D .﹣52.(3分)如图的几何体,其左视图是( )A .B .C .D .3.(3分)如图,AB ∥DE ,FG ⊥BC 于F ,∠CDE=40°,则∠FGB=( )A .40°B .50°C .60°D .70°4.(3分)下列运算正确的是( )A .√2+√3=√5B .2√2×3√2=6√2C .√8÷√2=2D .3√2−√2=35.(3分)某交警在一个路口统计的某时段来往车辆的车速情况如表:车速(km/h )48 49 50 51 52 车辆数(辆)5 4 8 21则上述车速的中位数和众数分别是( )A .50,8B .50,50C .49,50D .49,86.(3分)下列命题错误的是( )A .对角线互相平分的四边形是平行四边形B .对角线相等的平行四边形是矩形C .一条对角线平分一组对角的四边形是菱形D .对角线互相垂直的矩形是正方形7.(3分)甲、乙二人做某种机械零件,甲每小时比乙多做6个,甲做90个所用的时间与做60个所用的时间相等.设甲每小时做x 个零件,下面所列方程正确的是( )A .90x =60x−6B .90x =60x+6C .90x−6=60xD .90x+6=60x8.(3分)如图,已知圆柱的底面直径BC=6π,高AB=3,小虫在圆柱表面爬行,从C 点爬到A 点,然后再沿另一面爬回C 点,则小虫爬行的最短路程为( )A .3√2B .3√5C .6√5D .6√29.(3分)如图,10个不同的正偶数按下图排列,箭头上方的每个数都等于其下方两数的和,如,表示a 1=a 2+a 3,则a 1的最小值为( )A .32B .36C .38D .4010.(3分)如图,直线y=√3x﹣6分别交x轴,y轴于A,B,M是反比例函数y=k x(x>0)的图象上位于直线上方的一点,MC∥x轴交AB于C,MD⊥MC交AB 于D,AC•BD=4√3,则k的值为()A.﹣3 B.﹣4 C.﹣5 D.﹣6二、填空题11.(3分)某颗粒物的直径是0.0000025,把0.0000025用科学记数法表示为.12.(3分)若a﹣b=1,则代数式2a﹣2b﹣1的值为.13.(3分)如图,菱形ABCD中,AC交BD于O,OE⊥BC于E,连接OE,若∠ABC=140°,则∠OED=.14.(3分)如图,△ABC内接于⊙O,∠ACB=90°,∠ACB的角平分线交⊙O于D.若AC=6,BD=5√2,则BC的长为.15.(3分)如图,直线y=kx和y=ax+4交于A(1,k),则不等式kx﹣6<ax+4<kx 的解集为 .16.(3分)如图,正方形ABCD 中,BE=EF=FC ,CG=2GD ,BG 分别交AE ,AF 于M ,N .下列结论:①AF ⊥BG ;②BN=43NF ;③BM MG =38;④S 四边形CGNF =12S 四边形ANGD .其中正确的结论的序号是 .三、解答题(本大题共9小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(5分)计算:|﹣2|+√−83﹣(﹣1)2017.18.(6分)化简:(2a+1+a+2a 2−1)÷a a−1. 19.(7分)如图,海中有一小岛A ,它周围8海里内有暗礁,渔船跟踪鱼群由西向东航行,在B 点测得小岛A 在北偏东60°方向上,航行12海里到达D 点,这时测得小岛A 在北偏东30°方向上.如果渔船不改变航线继续向东航行,有没有触礁的危险?20.(9分)某中学艺术节期间,学校向学生征集书画作品,杨老师从全校30个班中随机抽取了4个班(用A ,B ,C ,D 表示),对征集到的作品的数量进行了分析统计,制作了两幅不完整的统计图.请根据以上信息,回答下列问题:(1)杨老师采用的调查方式是(填“普查”或“抽样调查”);(2)请你将条形统计图补充完整,并估计全校共征集多少件作品?(3)如果全校征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.21.(7分)已知关于x的方程x2+(2k﹣1)x+k2﹣1=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)若x1,x2满足x12+x22=16+x1x2,求实数k的值.22.(8分)某超市销售一种牛奶,进价为每箱24元,规定售价不低于进价.现在的售价为每箱36元,每月可销售60箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱,设每箱牛奶降价x元(x为正整数),每月的销量为y箱.(1)写出y与x中间的函数关系书和自变量x的取值范围;(2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元?23.(8分)已知AB为⊙O的直径,BC⊥AB于B,且BC=AB,D为半圆⊙O上的一点,连接BD并延长交半圆⊙O的切线AE于E.(1)如图1,若CD=CB,求证:CD是⊙O的切线;(2)如图2,若F点在OB上,且CD⊥DF,求AEAF的值.24.(10分)已知O为直线MN上一点,OP⊥MN,在等腰Rt△ABO中,∠BAO=90°,AC∥OP交OM于C,D为OB的中点,DE⊥DC交MN于E.(1)如图1,若点B在OP上,则①AC OE(填“<”,“=”或“>”);②线段CA、CO、CD满足的等量关系式是;(2)将图1中的等腰Rt△ABO绕O点顺时针旋转α(0°<α<45°),如图2,那么(1)中的结论②是否成立?请说明理由;(3)将图1中的等腰Rt△ABO绕O点顺时针旋转α(45°<α<90°),请你在图3中画出图形,并直接写出线段CA、CO、CD满足的等量关系式.25.(12分)抛物线y=x2+bx+c与x轴交于A(1,0),B(m,0),与y轴交于C.(1)若m=﹣3,求抛物线的解析式,并写出抛物线的对称轴;(2)如图1,在(1)的条件下,设抛物线的对称轴交x轴于D,在对称轴左侧的抛物线上有一点E,使S△ACE =103S△ACD,求点E的坐标;(3)如图2,设F(﹣1,﹣4),FG⊥y于G,在线段OG上是否存在点P,使∠OBP=∠FPG?若存在,求m的取值范围;若不存在,请说明理由.2017年湖北省十堰市中考数学试卷参考答案与试题解析一、选择题:1.(3分)(2017•十堰)气温由﹣2℃上升3℃后是()℃.A.1 B.3 C.5 D.﹣5【分析】根据有理数的加法,可得答案.【解答】解:由题意,得﹣2+3=+(3﹣2)=1,故选:A.【点评】本题考查了有理数的加法,异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减较小的绝对值.2.(3分)(2017•十堰)如图的几何体,其左视图是()A.B.C.D.【分析】根据从左边看得到的图象是左视图,可得答案.【解答】解:从左边看第一层是两个小正方形,第二层左边一个小正方形,故选:B.【点评】本题考查了简单组合体的三视图,从左边看得到的图象是左视图.3.(3分)(2017•十堰)如图,AB∥DE,FG⊥BC于F,∠CDE=40°,则∠FGB=()A.40°B.50°C.60°D.70°【分析】先根据平行线的性质,得到∠B=∠CDE=40°,直观化FG⊥BC,即可得出∠FGB的度数.【解答】解:∵AB∥DE,∠CDE=40°,∴∠B=∠CDE=40°,又∵FG⊥BC,∴∠FGB=90°﹣∠B=50°,故选:B.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.4.(3分)(2017•十堰)下列运算正确的是()A.√2+√3=√5B.2√2×3√2=6√2C.√8÷√2=2 D.3√2−√2=3【分析】根据二次根式的加减法对A、D进行判断;根据二次根式的乘法法则对B进行判断;根据二次根式的除法法则对D进行判断.【解答】解:A、√2与√3不能合并,所以A选项错误;B、原式=6×2=12,所以B选项错误;C、原式=√8÷2=2,所以C选项准确;D、原式=2√2,所以D选项错误.故选C.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.5.(3分)(2017•十堰)某交警在一个路口统计的某时段来往车辆的车速情况如表:车速(km/h)484950515254821车辆数(辆)则上述车速的中位数和众数分别是()A.50,8 B.50,50 C.49,50 D.49,8【分析】把这组数据按照从小到大的顺序排列,第10、11个数的平均数是中位数,在这组数据中出现次数最多的是50,得到这组数据的众数.【解答】解:要求一组数据的中位数,把这组数据按照从小到大的顺序排列,第10、11两个数的平均数是50,所以中位数是50,在这组数据中出现次数最多的是50,即众数是50.故选:B.【点评】本题考查一组数据的中位数和众数,在求中位数时,首先要把这列数字按照从小到大或从的大到小排列,找出中间一个数字或中间两个数字的平均数即为所求.6.(3分)(2017•十堰)下列命题错误的是()A.对角线互相平分的四边形是平行四边形B.对角线相等的平行四边形是矩形C.一条对角线平分一组对角的四边形是菱形D.对角线互相垂直的矩形是正方形【分析】利用平行四边形、矩形、菱形及正方形的判定定理分别判断后即可确定正确的选项.【解答】解:A 、对角线互相平分的四边形是平行四边形,正确,不符合题意;B 、对角线相等的平行四边形是矩形,正确,不符合题意;C 、一条对角线平分一组对角的四边形可能是菱形或者正方形,错误,符合题意;D 、对角线互相垂直的矩形是正方形,正确,不符合题意,故选C .【点评】本题考查了命题与定理的知识,解题的关键是了解平行四边形、矩形、菱形及正方形的判定定理,难度不大.7.(3分)(2017•十堰)甲、乙二人做某种机械零件,甲每小时比乙多做6个,甲做90个所用的时间与做60个所用的时间相等.设甲每小时做x 个零件,下面所列方程正确的是( )A .90x =60x−6B .90x =60x+6C .90x−6=60xD .90x+6=60x【分析】设甲每小时做x 个零件,根据题意可得,甲做90个所用的时间与乙做60个所用的时间相等,据此列方程.【解答】解:设甲每小时做x 个零件,则乙每小时做(x ﹣6)个零件,由题意得,90x =60x−6. 故选A .【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.8.(3分)(2017•十堰)如图,已知圆柱的底面直径BC=6π,高AB=3,小虫在圆柱表面爬行,从C 点爬到A 点,然后再沿另一面爬回C 点,则小虫爬行的最短路程为( )A .3√2B .3√5C .6√5D .6√2【分析】要求最短路径,首先要把圆柱的侧面展开,利用两点之间线段最短,然后利用勾股定理即可求解.【解答】解:把圆柱侧面展开,展开图如右图所示,点A、C的最短距离为线段AC的长.在RT△ADC中,∠ADC=90°,CD=AB=3,AD为底面半圆弧长,AD=3,所以AC=3√2,∴从C点爬到A点,然后再沿另一面爬回C点,则小虫爬行的最短路程为2AC=6√2,故选D.【点评】本题考查了平面展开﹣最短路径问题,解题的关键是会将圆柱的侧面展开,并利用勾股定理解答.9.(3分)(2017•十堰)如图,10个不同的正偶数按下图排列,箭头上方的每个数都等于其下方两数的和,如,表示a1=a2+a3,则a1的最小值为()A.32 B.36 C.38 D.40【分析】由a1=a7+3(a8+a9)+a10知要使a1取得最小值,则a8+a9应尽可能的小,取a8=2、a9=4,根据a5=a8+a9=6,则a7、a10中不能有6,据此对于a7、a8,分别取8、10、12检验可得,从而得出答案.【解答】解:∵a1=a2+a3=a4+a5+a5+a6=a7+a8+a8+a9+a8+a9+a9+a10=a7+3(a8+a9)+a10,∴要使a1取得最小值,则a8+a9应尽可能的小,取a8=2、a9=4,∵a5=a8+a9=6,则a7、a10中不能有6,若a7=8、a10=10,则a4=10=a10,不符合题意,舍去;若a7=10、a10=8,则a4=12、a6=4+8=12,不符合题意,舍去;若a7=10、a10=12,则a4=10+2=12、a6=4+12=16、a2=12+6=18、a3=6+16=22、a1=18+22=40,符合题意;综上,a1的最小值为40,故选:D.【点评】本题主要考查数字的变化类,根据题目要求得出a1取得最小值的切入点是解题的关键.10.(3分)(2017•十堰)如图,直线y=√3x﹣6分别交x轴,y轴于A,B,M是反比例函数y=kx(x>0)的图象上位于直线上方的一点,MC∥x轴交AB于C,MD⊥MC交AB于D,AC•BD=4√3,则k的值为()A.﹣3 B.﹣4 C.﹣5 D.﹣6【分析】过点D作DE⊥y轴于点E,过点C作CF⊥x轴于点F,然后求出OA与OB的长度,即可求出∠OAB的正弦值与余弦值,再设M(x,y),从而可表示出BD与AC的长度,根据AC•BD=4√3列出即可求出k的值.【解答】解:过点D作DE⊥y轴于点E,过点C作CF⊥x轴于点F,令x=0代入y=√3x﹣6,∴y=﹣6,∴B(0,﹣6),∴OB=6,令y=0代入y=√3x﹣6,∴x=2√3,∴(2√3,0),∴OA=2√3,∴勾股定理可知:AB=4√3,∴sin∠OAB=OBAB=√32,cos∠OAB=OAAB=12设M(x,y),∴CF=﹣y,ED=x,∴sin∠OAB=CF AC,∴AC=﹣2√33y,∵cos∠OAB=cos∠EDB=ED BD,∴BD=2x,∵AC•BD=4√3,∴﹣2√33y×2x=4√3,∴xy=﹣3,∵M在反比例函数的图象上,∴k=xy=﹣3,故选(A)【点评】本题考查反比例函数与一次函数的综合问题,解题的关键是根据∠OAB 的锐角三角函数值求出BD、AC,本题属于中等题型.二、填空题11.(3分)(2017•十堰)某颗粒物的直径是0.0000025,把0.0000025用科学记数法表示为 2.5×10﹣6.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000025用科学记数法表示为2.5×10﹣6,故答案为:2.5×10﹣6.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.(3分)(2017•十堰)若a﹣b=1,则代数式2a﹣2b﹣1的值为1.【分析】原式前两项提取2变形后,将a﹣b=1代入计算即可求出值.【解答】解:∵a﹣b=1,∴原式=2(a﹣b)﹣1=2﹣1=1.故答案为:1.【点评】此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.13.(3分)(2017•十堰)如图,菱形ABCD中,AC交BD于O,OE⊥BC于E,连接OE,若∠ABC=140°,则∠OED=20°.【分析】由菱形的性质可知O为BD中点,所以OE为直角三角形BED斜边上的中线,由此可得OE=OB,根据等腰三角形的性质和已知条件即可求出∠OED的度数.【解答】解:∵四边形ABCD是菱形,∴DO=OB,∵DE⊥BC于E,∴OE为直角三角形BED斜边上的中线,∴OE=12 BD,∴OB=OE,∴∠OBE=∠OEB,∵∠ABC=140°,∴∠OBE=70°,∴∠OED=90°﹣70°=20°,故答案为:20°.【点评】本题考查了菱形的性质、直角三角形斜边上中线的性质,得到OE为直角三角形BED斜边上的中线是解题的关键.14.(3分)(2017•十堰)如图,△ABC内接于⊙O,∠ACB=90°,∠ACB的角平分线交⊙O于D.若AC=6,BD=5√2,则BC的长为8.【分析】连接BD,根据CD是∠ACB的平分线可知∠ACD=∠BCD=45°,故可得出AD=BD,再由AB是⊙O的直径可知△ABD是等腰直角三角形,利用勾股定理求出AB的长,在Rt△ABC中,利用勾股定理可得出BC的长.【解答】解:连接BD,∵∠ACB=90°,∴AB是⊙O的直径.∵ACB的角平分线交⊙O于D,∴∠ACD=∠BCD=45°,∴AD=BD=5√2.∵AB是⊙O的直径,∴△ABD是等腰直角三角形,∴AB=√AD2+BD2=√(5√2)2+(5√2)2=10.∵AC=6,∴BC=√AB2−AC2=√102−62=8.故答案为:8.【点评】本题考查的是圆周角定理,熟知直径所对的圆周角是直角是解答此题的关键.15.(3分)(2017•十堰)如图,直线y=kx和y=ax+4交于A(1,k),则不等式kx﹣6<ax+4<kx的解集为1<x<52.【分析】根据题意得由OB=4,OC=6,根据直线y=kx 平行于直线y=kx ﹣6,得到BA AD =BO OC =46=23,分别过A ,D 作AM ⊥x 轴于M ,DN ⊥x 轴于N ,则AM ∥DN ∥y 轴,根据平行线分线段成比例定理得到OM MN =BA AD =23,得到ON=52,求得D 点的横坐标是52,于是得到结论. 【解答】解:如图,由y=kx ﹣6与y=ax +4得OB=4,OC=6,∵直线y=kx 平行于直线y=kx ﹣6,∴BA AD =BO OC =46=23, 分别过A ,D 作AM ⊥x 轴于M ,DN ⊥x 轴于N ,则AM ∥DN ∥y 轴,∴OM MN =BA AD =23, ∵A (1,k ),∴OM=1,∴MN=32, ∴ON=52, ∴D 点的横坐标是52, ∴1<x <52时,kx ﹣6<ax +4<kx , 故答案为:1<x <52.【点评】本题考查了一次函数与一元一次不等式,此类题目,利用数形结合的思想求解是解题的关键.16.(3分)(2017•十堰)如图,正方形ABCD中,BE=EF=FC,CG=2GD,BG分别交AE,AF于M,N.下列结论:①AF⊥BG;②BN=43NF;③BMMG=38;④S四边形CGNF=12S四边形ANGD.其中正确的结论的序号是①③.【分析】①易证△ABF≌△BCG,即可解题;②易证△BNF∽△BCG,即可求得BNNF的值,即可解题;③作EH⊥AF,令AB=3,即可求得MN,BM的值,即可解题;④连接AG,FG,根据③中结论即可求得S四边形CGNF 和S四边形ANGD,即可解题.【解答】解:①∵四边形ABCD为正方形,∴AB=BC=CD,∵BE=EF=FC,CG=2GD,∴BF=CG,∵在△ABF和△BCG中,{AB=BC∠ABF=∠BCG=90°BF=CG,∴△ABF≌△BCG,∴∠BAF=∠CBG ,∵∠BAF +∠BFA=90°,∴∠CBG +∠BFA=90°,即AF ⊥BG ;①正确; ②∵在△BNF 和△BCG 中,{∠CBG =∠NBF ∠BCG =∠BNF =90°, ∴△BNF ∽△BCG ,∴BN NF =BC CG =32, ∴BN=23NF ;②错误; ③作EH ⊥AF ,令AB=3,则BF=2,BE=EF=CF=1,AF=√AB 2+BF 2=√13,∵S △ABF =12AF•BN=12AB•BF , ∴BN=6√1313,NF=23BN=4√1313, ∴AN=AF ﹣NF=9√1313, ∵E 是BF 中点,∴EH 是△BFN 的中位线,∴EH=3√1313,NH=2√1313,BN ∥EH , ∴AH=11√1313,AN AH =MN EH ,解得:MN=27√13143, ∴BM=BN ﹣MN=3√1311,MG=BG ﹣BM=8√1311, ∴BM MG =38;③正确; ④连接AG ,FG ,根据③中结论,则NG=BG ﹣BN=7√1313, ∵S 四边形CGNF =S △CFG +S △GNF =12CG•CF +12NF•NG=1+1413=2713, S 四边形ANGD =S △ANG +S △ADG =12AN•GN +12AD•DG=2713+32=9326, ∴S 四边形CGNF ≠12S 四边形ANGD ,④错误; 故答案为 ①③.【点评】本题考查了全等三角形的判定和性质,考查了相似三角形的判定和对应边比例相等的性质,本题中令AB=3求得AN ,BN ,NG ,NF 的值是解题的关键.三、解答题(本大题共9小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(5分)(2017•十堰)计算:|﹣2|+√−83﹣(﹣1)2017.【分析】原式利用绝对值的代数意义,立方根定义,以及乘方的意义计算即可得到结果.【解答】解:原式=2﹣2+1=1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(6分)(2017•十堰)化简:(2a+1+a+2a −1)÷a a−1. 【分析】根据分式的加法和除法可以解答本题.【解答】解:(2a+1+a+2a 2−1)÷a a−1 =2(a−1)+a+2(a+1)(a−1)⋅a−1a =2a−2+a+2a(a+1)=3a a(a+1)=3a+1. 【点评】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.19.(7分)(2017•十堰)如图,海中有一小岛A,它周围8海里内有暗礁,渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏东60°方向上,航行12海里到达D点,这时测得小岛A在北偏东30°方向上.如果渔船不改变航线继续向东航行,有没有触礁的危险?【分析】过A作AC⊥BD于点C,求出∠CAD、∠CAB的度数,求出∠BAD和∠ABD,根据等边对等角得出AD=BD=12,根据含30度角的直角三角形性质求出CD,根据勾股定理求出AD即可.【解答】解:只要求出A到BD的最短距离是否在以A为圆心,以8海里的圆内或圆上即可,如图,过A作AC⊥BD于点C,则AC的长是A到BD的最短距离,∵∠CAD=30°,∠CAB=60°,∴∠BAD=60°﹣30°=30°,∠ABD=90°﹣60°=30°,∴∠ABD=∠BAD,∴BD=AD=12海里,∵∠CAD=30°,∠ACD=90°,∴CD=12AD=6海里,由勾股定理得:AC=√122−62=6√3≈10.392>8,即渔船继续向正东方向行驶,没有触礁的危险.【点评】考查了勾股定理的应用和解直角三角形,此题是一道方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.20.(9分)(2017•十堰)某中学艺术节期间,学校向学生征集书画作品,杨老师从全校30个班中随机抽取了4个班(用A ,B ,C ,D 表示),对征集到的作品的数量进行了分析统计,制作了两幅不完整的统计图.请根据以上信息,回答下列问题:(1)杨老师采用的调查方式是 抽样调查 (填“普查”或“抽样调查”);(2)请你将条形统计图补充完整,并估计全校共征集多少件作品?(3)如果全校征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.【分析】(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查.(2)由题意得:所调查的4个班征集到的作品数为:6÷90360=24(件),C 班作品的件数为:24﹣4﹣6﹣4=10(件);继而可补全条形统计图;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好抽中一男一女的情况,再利用概率公式即可求得答案.【解答】解:(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查. 故答案为抽样调查.(2)所调查的4个班征集到的作品数为:6÷90360=24件, 平均每个班244=6件,C 班有10件, ∴估计全校共征集作品6×30=180件.条形图如图所示,(3)画树状图得:∵共有20种等可能的结果,两名学生性别相同的有8种情况,∴恰好抽中一男一女的概率为:820=25.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.同时考查了概率公式.21.(7分)(2017•十堰)已知关于x的方程x2+(2k﹣1)x+k2﹣1=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)若x1,x2满足x12+x22=16+x1x2,求实数k的值.【分析】(1)根据方程的系数结合根的判别式,即可得出△=﹣4k+5≥0,解之即可得出实数k的取值范围;(2)由根与系数的关系可得x1+x2=1﹣2k、x1•x2=k2﹣1,将其代入x12+x22=(x1+x2)2﹣2x1•x2=16+x1•x2中,解之即可得出k的值.【解答】解:(1)∵关于x的方程x2+(2k﹣1)x+k2﹣1=0有两个实数根x1,x2,∴△=(2k﹣1)2﹣4(k2﹣1)=﹣4k+5≥0,解得:k≤5 4,∴实数k的取值范围为k≤5 4.(2)∵关于x的方程x2+(2k﹣1)x+k2﹣1=0有两个实数根x1,x2,∴x1+x2=1﹣2k,x1•x2=k2﹣1.∵x12+x22=(x1+x2)2﹣2x1•x2=16+x1•x2,∴(1﹣2k)2﹣2×(k2﹣1)=16+(k2﹣1),即k2﹣4k﹣12=0,解得:k=﹣2或k=6(不符合题意,舍去).∴实数k的值为﹣2.【点评】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)根据方程的系数结合根的判别式,找出△=﹣4k+5≥0;(2)根据根与系数的关系结合x12+x22=16+x1x2,找出关于k的一元二次方程.22.(8分)(2017•十堰)某超市销售一种牛奶,进价为每箱24元,规定售价不低于进价.现在的售价为每箱36元,每月可销售60箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱,设每箱牛奶降价x元(x 为正整数),每月的销量为y箱.(1)写出y与x中间的函数关系书和自变量x的取值范围;(2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元?【分析】(1)根据价格每降低1元,平均每天多销售10箱,由每箱降价x元,多卖10x,据此可以列出函数关系式;(2)由利润=(售价﹣成本)×销售量列出函数关系式,求出最大值.【解答】解:(1)根据题意,得:y=60+10x,由36﹣x≥24得x≤12,∴1≤x≤12,且x为整数;(2)设所获利润为W,则W=(36﹣x﹣24)(10x+60)=﹣10x2+60x+720=﹣10(x﹣3)2+810,∴当x=3时,W取得最大值,最大值为810,答:超市定价为33元时,才能使每月销售牛奶的利润最大,最大利润是810元.【点评】本题主要考查二次函数的应用,由利润=(售价﹣成本)×销售量列出函数关系式求最值,用二次函数解决实际问题是解题的关键.23.(8分)(2017•十堰)已知AB为⊙O的直径,BC⊥AB于B,且BC=AB,D为半圆⊙O上的一点,连接BD并延长交半圆⊙O的切线AE于E.(1)如图1,若CD=CB,求证:CD是⊙O的切线;(2)如图2,若F点在OB上,且CD⊥DF,求AEAF的值.【分析】(1)连接DO,CO,易证△CDO≌△CBO,即可解题;(2)连接AD,易证△ADF∽△BDC和△ADE∽△BDA,根据相似三角形对应边比例相等的性质即可解题.【解答】解:(1)连接DO,CO,∵BC⊥AB于B,∴∠ABC=90°,在△CDO与△CBO中,{CD=CB OD=OB OC=OC,∴△CDO ≌△CBO ,∴∠CDO=∠CBO=90°,∴OD ⊥CD ,∴CD 是⊙O 的切线;(2)连接AD ,∵AB 是直径,∴∠ADB=90°,∴∠ADF +∠BDF=90°,∠DAB +∠DBA=90°,∵∠BDF +∠BDC=90°,∠CBD +∠DBA=90°,∴∠ADF=∠BDC ,∠DAB=∠CBD ,∵在△ADF 和△BDC 中,{∠ADF =∠BDC ∠DAB =∠CBD, ∴△ADF ∽△BDC ,∴AD BD =AF BC, ∵∠DAE +∠DAB=90°,∠E +∠DAE=90°,∴∠E=∠DAB ,∵在△ADE 和△BDA 中,{∠ADE =∠BDA =90°∠E =∠DAB, ∴△ADE ∽△BDA ,∴AE AB =AD BD, ∴AE AB =AF BC ,即AE AF =AB BC, ∵AB=BC ,∴AE AF=1. 【点评】本题考查了相似三角形的判定和性质,考查了全等三角形的判定和性质,本题中求证△ADF∽△BDC和△ADE∽△BDA是解题的关键.24.(10分)(2017•十堰)已知O为直线MN上一点,OP⊥MN,在等腰Rt△ABO 中,∠BAO=90°,AC∥OP交OM于C,D为OB的中点,DE⊥DC交MN于E.(1)如图1,若点B在OP上,则①AC=OE(填“<”,“=”或“>”);②线段CA、CO、CD满足的等量关系式是AC2+CO2=CD2;(2)将图1中的等腰Rt△ABO绕O点顺时针旋转α(0°<α<45°),如图2,那么(1)中的结论②是否成立?请说明理由;(3)将图1中的等腰Rt△ABO绕O点顺时针旋转α(45°<α<90°),请你在图3中画出图形,并直接写出线段CA、CO、CD满足的等量关系式CO﹣CA=√2CD.【分析】(1)①如图1,证明AC=OC和OC=OE可得结论;②根据勾股定理可得:AC2+CO2=CD2;(2)如图2,(1)中的结论②不成立,作辅助线,构建全等三角形,证明A、D、O、C四点共圆,得∠ACD=∠AOB,同理得:∠EFO=∠EDO,再证明△ACO≌△EOF,得OE=AC,AO=EF,根据勾股定理得:AC2+OC2=FO2+OE2=EF2,由直角三角形中最长边为斜边可得结论;(3)如图3,连接AD,则AD=OD证明△ACD≌△OED,根据△CDE是等腰直角三角形,得CE2=2CD2,等量代换可得结论(OC﹣OE)2=(OC﹣AC)2=2CD2,开方后是:OC﹣AC=√2CD.【解答】解:(1)①AC=OE,理由:如图1,∵在等腰Rt△ABO中,∠BAO=90°,∴∠ABO=∠AOB=45°,∵OP⊥MN,∴∠COP=90°,∴∠AOC=45°,∵AC∥OP,∴∠CAO=∠AOB=45°,∠ACO=∠POE=90°,∴AC=OC,连接AD,∵BD=OD,∴AD=OD,AD⊥OB,∴AD∥OC,∴四边形ADOC是正方形,∴∠DCO=45°,∴AC=OD,∴∠DEO=45°,∴CD=DE,∴OC=OE,∴AC=OE;②在Rt△CDO中,∵CD2=OC2+OD2,∴CD2=AC2+OC2;故答案为:AC2+CO2=CD2;(2)如图2,(1)中的结论②不成立,理由是:连接AD,延长CD交OP于F,连接EF,∵AB=AO,D为OB的中点,∴AD⊥OB,∴∠ADO=90°,∵∠CDE=90°,∴∠ADO=∠CDE,∴∠ADO﹣∠CDO=∠CDE﹣∠CDO,即∠ADC=∠EDO,∵∠ADO=∠ACO=90°,∴∠ADO+∠ACO=180°,∴A、D、O、C四点共圆,∴∠ACD=∠AOB,同理得:∠EFO=∠EDO,∴∠EFO=∠AOC,∵△ABO是等腰直角三角形,∴∠AOB=45°,∴∠DCO=45°,∴△COF和△CDE是等腰直角三角形,∴OC=OF,∵∠ACO=∠EOF=90°,∴△ACO≌△EOF,∴OE=AC,AO=EF,∴AC2+OC2=FO2+OE2=EF2,Rt△DEF中,EF>DE=DC,∴AC2+OC2>DC2,所以(1)中的结论②不成立;(3)如图3,结论:OC﹣CA=√2CD,理由是:连接AD,则AD=OD,同理:∠ADC=∠EDO,∵∠CAB+∠CAO=∠CAO+∠AOC=90°,∴∠CAB=∠AOC,∵∠DAB=∠AOD=45°,∴∠DAB﹣∠CAB=∠AOD﹣∠AOC,即∠DAC=∠DOE,∴△ACD≌△OED,∴AC=OE,CD=DE,∴△CDE是等腰直角三角形,∴CE2=2CD2,∴(OC﹣OE)2=(OC﹣AC)2=2CD2,∴OC﹣AC=√2CD,故答案为:OC﹣AC=√2CD.【点评】本题是几何变换的综合题,考查了三角形全等的性质和判定、等腰直角三角形的性质和判定、旋转的性质、勾股定理、四点共圆的性质等知识,并运用了类比的思想解决问题,有难度,尤其是第二问,结论不成立,要注意辅助线的作法;本题的2、3问能标准作图是关键.25.(12分)(2017•十堰)抛物线y=x2+bx+c与x轴交于A(1,0),B(m,0),与y轴交于C.(1)若m=﹣3,求抛物线的解析式,并写出抛物线的对称轴;(2)如图1,在(1)的条件下,设抛物线的对称轴交x轴于D,在对称轴左侧的抛物线上有一点E,使S△ACE =103S△ACD,求点E的坐标;(3)如图2,设F(﹣1,﹣4),FG⊥y于G,在线段OG上是否存在点P,使∠OBP=∠FPG?若存在,求m的取值范围;若不存在,请说明理由.【分析】(1)利用待定系数法求二次函数的解析式,并配方求对称轴;(2)如图1,设E(m,m2+2m﹣3),先根据已知条件求S△ACE=10,根据不规则三角形面积等于铅直高度与水平宽度的积列式可求得m的值,并根据在对称轴左侧的抛物线上有一点E,则点E的横坐标小于﹣1,对m的值进行取舍,得到E的坐标;(3)分两种情况:①当B在原点的左侧时,构建辅助圆,根据直径所对的圆周角是直角,只要满足∠BPF=90°就可以构成∠OBP=∠FPG,如图2,求出圆E与y轴有一个交点时的m 值,则可得取值范围;②当B在原点的右侧时,只有△OBP是等腰直角三角形,△FPG也是等腰直角三角形时满足条件,直接计算即可.【解答】解:(1)当m=﹣3时,B (﹣3,0),把A (1,0),B (﹣3,0)代入到抛物线y=x 2+bx +c 中得:{1+b +c =09−3b +c =0,解得{b =2c =−3, ∴抛物线的解析式为:y=x 2+2x ﹣3=(x +1)2﹣4;对称轴是:直线x=﹣1;(2)如图1,设E (m ,m 2+2m ﹣3),由题意得:AD=1+1=2,OC=3,S △ACE =103S △ACD =103×12AD•OC=53×2×3=10,设直线AE 的解析式为:y=kx +b ,把A (1,0)和E (m ,m 2+2m ﹣3)代入得,{k +b =0mk +b =m 2+2m −3,解得:{k =m +3b =−m −3,∴直线AE 的解析式为:y=(m +3)x ﹣m ﹣3,∴F (0,﹣m ﹣3),∵C (0,﹣3),∴FC=﹣m ﹣3+3=﹣m ,∴S △ACE =12FC•(1﹣m )=10,﹣m (1﹣m )=20,m 2﹣m ﹣20=0,(m +4)(m ﹣5)=0,m 1=﹣4,m 2=5(舍),∴E (﹣4,5);(3)如图2,当B 在原点的左侧时,连接BF ,以BF 为直径作圆E ,当⊙E 与y 轴相切时,设切点为P ,∴∠BPF=90°,∴∠FPG +∠OPB=90°,∵∠OPB +∠OBP=90°,∴∠OBP=∠FPG ,连接EP ,则EP ⊥OG ,∵BE=EF ,∴EP 是梯形的中位线,∴OP=PG=2,∵FG=1,tan ∠FPG=tan ∠OBP=FG PG =OP OB, ∴12=2−m, ∴m=﹣4,∴当﹣4≤m <0时,在线段OG 上存在点P ,使∠OBP=∠FPG ;如图3,当B 在原点的右侧时,要想满足∠OBP=∠FPG ,则∠OBP=∠OPB=∠FPG ,∴OB=OP ,∴△OBP 是等腰直角三角形,△FPG 也是等腰直角三角形,∴FG=PG=1,∴OB=OP=3,∴m=3,综上所述,当﹣4≤m <0或m=3时,在线段OG 上存在点P ,使∠OBP=∠FPG .【点评】本题是二次函数的综合题,考查了利用待定系数法求函数的解析式、配方法求对称轴、等腰直角三角形的性质和判定、三角形面积的求法,并与圆相结合,根据同角的余角相等解决第3问更简单.。

2017十堰中考数学试题及答案

2017十堰中考数学试题及答案

2017十堰中考数学试题及答案一、选择题(本题共10小题,每小题3分,共30分。

每小题给出的四个选项中,只有一个是正确的,请将正确选项的字母填在题后的括号内。

)1. 下列各数中,是无理数的是()A. 0.1010010001…(每两个1之间0的个数依次加1)B. 3.14C. √2D. 0.5答案:C2. 函数y=x²-6x+5的图象开口方向是()A. 向上B. 向下C. 向左D. 向右答案:A3. 下列选项中,不是单项式的是()A. 2xB. 3x²yC. 5D. x²+y²答案:D4. 已知a=3,b=-1,则a²+b²的值是()A. 10B. 9C. 8D. 7答案:A5. 一个数的相反数是-5,则这个数是()A. 5B. -5C. 0D. 1答案:A6. 下列各组数中,是同类项的是()A. 3x²y与-2xyB. 2x²y与-3x²yC. 2x²y与3x²zD. 2x²y与3x答案:B7. 已知等腰三角形的两边长分别为3和6,则其周长是()A. 12B. 15C. 18D. 9答案:B8. 已知一个角的补角是120°,则这个角的度数是()A. 60°B. 120°C. 30°D. 90°答案:C9. 下列各组数中,是勾股数的是()A. 3,4,5B. 5,12,13C. 6,8,10D. 7,24,25答案:B10. 一个数的绝对值是5,则这个数是()A. 5B. -5C. 5或-5D. 0答案:C二、填空题(本题共5小题,每小题3分,共15分。

)11. 已知一个数的平方是25,则这个数是________。

答案:±512. 一个角的余角是30°,则这个角是________。

答案:60°13. 一个数的立方是-8,则这个数是________。

2017年湖北省十堰市中考数学试卷含答案.docx

2017年湖北省十堰市中考数学试卷含答案.docx

2017 年中考数学真题试题2017 年湖北省十堰市中考数学试卷参考答案与试题解析一、选择题:1.气温由﹣ 2℃上升 3℃后是()℃.A.1B.3C.5D.﹣ 5【分析】根据有理数的加法,可得答案.【解答】解:由题意,得﹣2+3=+(3﹣2)=1,故选: A.【点评】本题考查了有理数的加法,异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减较小的绝对值.2.如图的几何体,其左视图是()A.B.C.D.【分析】根据从左边看得到的图象是左视图,可得答案.【解答】解:从左边看第一层是两个小正方形,第二层左边一个小正方形,故选: B.【点评】本题考查了简单组合体的三视图,从左边看得到的图象是左视图.3.如图, AB∥DE, FG⊥BC于 F,∠ CDE=40°,则∠ FGB=()2017 年中考数学真题试题A.40°B.50°C.60°D.70°【分析】先根据平行线的性质,得到∠ B=∠CDE=40°,直观化 FG⊥BC,即可得出∠ FGB的度数.【解答】解:∵ AB∥DE,∠ CDE=40°,∴∠ B=∠ CDE=40°,又∵ FG⊥ BC,∴∠ FGB=90°﹣∠ B=50°,故选: B.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.4.下列运算正确的是()A.B.C.D.【分析】根据二次根式的加减法对A、D 进行判断;根据二次根式的乘法法则对B 进行判断;根据二次根式的除法法则对 D 进行判断.【解答】解: A、与不能合并,所以 A 选项错误;B、原式 =6× 2=12,所以 B 选项错误;C、原式 ==2,所以 C 选项准确;D、原式 =2,所以D选项错误.故选 C.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.5.某交警在一个路口统计的某时段来往车辆的车速情况如表:车速( km/h )4849505152车辆数(辆)54821则上述车速的中位数和众数分别是()A.50,8B.50,50 C.49, 50 D.49, 8【分析】把这组数据按照从小到大的顺序排列,第10、11 个数的平均数是中位数,在这组数据中出现次数最多的是50,得到这组数据的众数.【解答】解:要求一组数据的中位数,把这组数据按照从小到大的顺序排列,第10、11 两个数的平均数是50,所以中位数是 50,在这组数据中出现次数最多的是50,即众数是 50.故选: B.【点评】本题考查一组数据的中位数和众数,在求中位数时,首先要把这列数字按照从小到大或从的大到小排列,找出中间一个数字或中间两个数字的平均数即为所求.6.下列命题错误的是()A.对角线互相平分的四边形是平行四边形B.对角线相等的平行四边形是矩形C.一条对角线平分一组对角的四边形是菱形D.对角线互相垂直的矩形是正方形【分析】利用平行四边形、矩形、菱形及正方形的判定定理分别判断后即可确定正确的选项.【解答】解: A、对角线互相平分的四边形是平行四边形,正确,不符合题意;B、对角线相等的平行四边形是矩形,正确,不符合题意;C、一条对角线平分一组对角的四边形可能是菱形或者正方形,错误,符合题意;D、对角线互相垂直的矩形是正方形,正确,不符合题意,故选 C.【点评】本题考查了命题与定理的知识,解题的关键是了解平行四边形、矩形、菱形及正方形的判定定理,难度不大.7.甲、乙二人做某种机械零件,甲每小时比乙多做 6 个,甲做 90 个所用的时间与做60 个所用的时间相等.设甲每小时做x 个零件,下面所列方程正确的是()A.B.C.D.【分析】设甲每小时做x 个零件,根据题意可得,甲做90 个所用的时间与乙做60个所用的时间相等,据此列方程.【解答】解:设甲每小时做x 个零件,则乙每小时做(x﹣ 6)个零件,由题意得,=.故选 A.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.8.如图,已知圆柱的底面直径BC=,高AB=3,小虫在圆柱表面爬行,从C 点爬到 A 点,然后再沿另一面爬回 C 点,则小虫爬行的最短路程为()A.B.C.D.【分析】要求最短路径,首先要把圆柱的侧面展开,利用两点之间线段最短,然后利用勾股定理即可求解.【解答】解:把圆柱侧面展开,展开图如右图所示,点A、C 的最短距离为线段AC的长.在RT△ ADC中,∠ ADC=90°,CD=AB=3,AD 为底面半圆弧长,AD=3,所以 AC=3 ,∴从 C 点爬到 A 点,然后再沿另一面爬回 C 点,则小虫爬行的最短路程为2AC=6,故选 D.2017 年中考数学真题试题【点评】本题考查了平面展开﹣最短路径问题,解题的关键是会将圆柱的侧面展开,并利用勾股定理解答.9.如图, 10 个不同的正偶数按下图排列,箭头上方的每个数都等于其下方两数的和,如,表示 a1=a2+a3,则 a1的最小值为()A.32 B.36 C.38D.40【分析】由 a1=a7+3( a8+a9) +a10知要使 a1取得最小值,则 a8+a9应尽可能的小,取a8=2、 a9=4,根据 a5=a8+a9=6,则 a7、a10中不能有 6,据此对于 a7、 a8,分别取8、10、 12 检验可得,从而得出答案.【解答】解:∵ a1=a2+a3=a4+a5+a5+a6=a7+a8+a8+a9+a8+a9+a9+a10=a7+3( a8+a9) +a10,∴要使 a1取得最小值,则 a8+a9应尽可能的小,取a8=2、 a9=4,∵ a5=a8+a9=6,则 a7、a10中不能有 6,若 a7=8、 a10=10,则 a4=10=a10,不符合题意,舍去;2017 年中考数学真题试题若a7=10、a10=8,则 a4=12、a6=4+8=12,不符合题意,舍去;若a7=10、 a10=12,则 a4=10+2=12、 a6=4+12=16、 a2=12+6=18、 a3=6+16=22、a1=18+22=40,符合题意;综上, a1的最小值为 40,故选: D.【点评】本题主要考查数字的变化类,根据题目要求得出a1取得最小值的切入点是解题的关键.10.如图,直线 y= x﹣ 6 分别交 x 轴, y 轴于 A, B, M 是反比例函数 y=(x > 0)的图象上位于直线上方的一点,MC∥ x 轴交 AB于 C,MD⊥MC 交 AB 于 D,ACBD=4,则k的值为()A.﹣ 3 B.﹣ 4 C.﹣ 5 D.﹣ 6【分析】过点 D 作 DE⊥y 轴于点 E,过点 C 作 CF⊥ x 轴于点 F,然后求出 OA 与OB 的长度,即可求出∠ OAB 的正弦值与余弦值,再设 M (x,y),从而可表示出BD 与 AC的长度,根据 ACBD=4 列出即可求出 k 的值.【解答】解:过点 D 作 DE⊥ y 轴于点 E,过点 C 作 CF⊥x 轴于点 F,令x=0 代入 y= x﹣6,∴ y=﹣6,∴B(0,﹣6),∴ OB=6,令 y=0 代入 y= x﹣6,∴ x=2,2017 年中考数学真题试题∴( 2,0),∴OA=2 ,∴勾股定理可知: AB=4 ,∴sin∠OAB= = ,cos∠OAB= =设M (x,y),∴CF=﹣y, ED=x,∴ sin∠OAB= ,∴ AC=﹣y,∵cos∠ OAB=cos∠ EDB= ,∴BD=2x,∵ACBD=4 ,∴﹣y× 2x=4,∴xy=﹣ 3,∵M 在反比例函数的图象上,∴ k=xy=﹣3,故选( A)【点评】本题考查反比例函数与一次函数的综合问题,解题的关键是根据∠ OAB 的锐角三角函数值求出 BD、 AC,本题属于中等题型.二、填空题11.某颗粒物的直径是0.0000025,把 0.0000025 用科学记数法表示为 2.5×10﹣ 6.【分析】绝对值小于 1 的正数也可以利用科学记数法表示,一般形式为 a× 10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0 的个数所决定.【解答】解: 0.0000025 用科学记数法表示为 2.5×10﹣6,故答案为: 2.5× 10﹣6.【点评】本题考查用科学记数法表示较小的数,一般形式为a× 10﹣n,其中1≤| a| < 10,n 为由原数左边起第一个不为零的数字前面的0 的个数所决定.12.若 a﹣ b=1,则代数式 2a﹣2b﹣ 1 的值为1.【分析】原式前两项提取 2 变形后,将 a﹣b=1 代入计算即可求出值.【解答】解:∵ a﹣b=1,∴原式 =2(a﹣ b)﹣ 1=2﹣1=1.故答案为: 1.【点评】此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.13.如图,菱形 ABCD中,AC 交 BD 于 O,OE⊥ BC于 E,连接 OE,若∠ABC=140°,则∠ OED= 20° .【分析】由菱形的性质可知 O 为 BD 中点,所以 OE为直角三角形 BED斜边上的中线,由此可得OE=OB,根据等腰三角形的性质和已知条件即可求出∠OED 的度数.【解答】解:∵四边形 ABCD是菱形,∴DO=OB,∵DE⊥BC于 E,∴OE为直角三角形 BED斜边上的中线,∴OE= BD,∴OB=OE,∴∠ OBE=∠OEB,∵∠ ABC=140°,∴∠ OBE=70°,∴∠ OED=90°﹣70°=20°,故答案为: 20°.【点评】本题考查了菱形的性质、直角三角形斜边上中线的性质,得到 OE为直角三角形 BED斜边上的中线是解题的关键.14.如图,△ABC内接于⊙ O,∠ ACB=90°,∠ACB的角平分线交⊙ O 于 D.若AC=6, BD=5 ,则 BC的长为 8 .【分析】连接 BD,根据 CD是∠ ACB的平分线可知∠ ACD=∠ BCD=45°,故可得出AD=BD,再由 AB 是⊙ O 的直径可知△ ABD 是等腰直角三角形,利用勾股定理求出AB 的长,在 Rt△ ABC中,利用勾股定理可得出 BC的长.【解答】解:连接 BD,∵∠ ACB=90°,∴ AB是⊙ O 的直径.∵ ACB的角平分线交⊙ O 于 D,∴∠ ACD=∠BCD=45°,∴ AD=BD=5 .∵ AB是⊙ O 的直径,∴△ ABD是等腰直角三角形,∴ AB===10.∵AC=6,∴ BC===8.故答案为: 8.【点评】本题考查的是圆周角定理,熟知直径所对的圆周角是直角是解答此题的关键.15.如图,直线 y=kx 和 y=ax+4 交于 A( 1, k),则不等式kx﹣6<ax+4< kx 的解集为1< x<.【分析】根据题意得由 OB=4,OC=6,根据直线 y=kx 平行于直线 y=kx﹣ 6,得到== = ,分别过 A, D 作 AM⊥ x 轴于 M,DN⊥x 轴于 N,则 AM∥ DN∥y 轴,根据平行线分线段成比例定理得到= =,得到ON=,求得D点的横坐标是,于是得到结论.【解答】解:如图,由 y=kx﹣6 与 y=ax+4 得 OB=4,OC=6,∵直线 y=kx平行于直线 y=kx﹣6,∴= = =,2017 年中考数学真题试题分别过 A, D 作 AM⊥ x 轴于 M ,DN⊥ x 轴于 N,则AM∥DN∥y 轴,∴ = = ,∵A(1,k),∴ OM=1,∴ MN= ,∴ON= ,∴D 点的横坐标是,∴1< x<时, kx﹣ 6< ax+4<kx,故答案为: 1<x<.【点评】本题考查了一次函数与一元一次不等式,此类题目,利用数形结合的思想求解是解题的关键.16.如图,正方形 ABCD中,BE=EF=FC,CG=2GD,BG分别交 AE,AF 于 M,N.下列结论:① AF⊥BG;②BN=NF;③= ;④S 四边形CGNFS 四边形 ANGD.其中正确=的结论的序号是①③ .2017 年中考数学真题试题【分析】①易证△ ABF≌△ BCG,即可解题;②易证△ BNF∽△ BCG,即可求得的值,即可解题;③作 EH⊥AF,令 AB=3,即可求得 MN,BM 的值,即可解题;④连接 AG,FG,根据③中结论即可求得S 四边形CGNF和 S四边形ANGD,即可解题.【解答】解:①∵四边形 ABCD为正方形,∴AB=BC=CD,∵BE=EF=FC,CG=2GD,∴ BF=CG,∵在△ ABF和△ BCG中,,∴△ ABF≌△ BCG,∴∠ BAF=∠CBG,∵∠ BAF+∠BFA=90°,∴∠ CBG+∠BFA=90°,即 AF⊥BG;①正确;②∵在△ BNF和△ BCG中,,∴△ BNF∽△ BCG,∴= =,∴ BN= NF;②错误;③作 EH⊥AF,令 AB=3,则 BF=2,BE=EF=CF=1,AF==,2017 年中考数学真题试题∵ S △ ABF = AFBN= ABBF ,∴ BN=,NF= BN= ,∴ AN=AF ﹣ NF=,∵ E 是 BF 中点,∴ EH 是△ BFN 的中位线,∴ EH=,NH= ,BN ∥EH ,∴ AH=,=,解得: MN=∴ BM=BN ﹣MN=,MG=BG ﹣ BM=,,∴= ;③正确;④连接 AG ,FG ,根据③中结论,则 NG=BG ﹣BN=,=S = CGCF+ NFNG=1+=,∵ S 四边形 CGNF △ CFG +S △GNFS=S= ANGN+ ADDG=+ =,四边形 ANGD △ANG+S △ ADG∴ S 四边形 CGNF ≠ S 四边形 ANGD ,④错误;故答案为 ①③.【点评】本题考查了全等三角形的判定和性质, 考查了相似三角形的判定和对应边比例相等的性质,本题中令 AB=3求得 AN ,BN , NG , NF 的值是解题的关键.三、解答题(本大题共 9 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤 .)17.计算: | ﹣2|+﹣(﹣ 1)2017.【分析】原式利用绝对值的代数意义,立方根定义,以及乘方的意义计算即可得到结果.【解答】解:原式 =2﹣2+1=1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.化简:(+)÷.【分析】根据分式的加法和除法可以解答本题.【解答】解:(+)÷====.【点评】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.19.如图,海中有一小岛A,它周围8 海里内有暗礁,渔船跟踪鱼群由西向东航行,在 B 点测得小岛 A 在北偏东 60°方向上,航行 12 海里到达 D 点,这时测得小岛A 在北偏东 30°方向上.如果渔船不改变航线继续向东航行,有没有触礁的危险?【分析】过 A 作 AC⊥BD 于点 C,求出∠ CAD、∠ CAB的度数,求出∠ BAD 和∠ABD,根据等边对等角得出AD=BD=12,根据含30 度角的直角三角形性质求出CD,根据勾股定理求出AD 即可.【解答】解:只要求出 A 到 BD 的最短距离是否在以 A 为圆心,以 8 海里的圆内或圆上即可,如图,过 A 作 AC⊥BD 于点 C,则 AC 的长是 A 到 BD的最短距离,∵∠ CAD=30°,∠ CAB=60°,∴∠ BAD=60°﹣30°=30°,∠ ABD=90°﹣ 60°=30°,∴∠ ABD=∠BAD,∴BD=AD=12海里,∵∠ CAD=30°,∠ ACD=90°,∴CD= AD=6海里,由勾股定理得: AC==6 ≈10.392>8,即渔船继续向正东方向行驶,没有触礁的危险.【点评】考查了勾股定理的应用和解直角三角形,此题是一道方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.20.某中学艺术节期间,学校向学生征集书画作品,杨老师从全校 30 个班中随机抽取了 4 个班(用 A,B,C,D 表示),对征集到的作品的数量进行了分析统计,制作了两幅不完整的统计图.请根据以上信息,回答下列问题:。

【精校】2017年湖北省十堰市中考真题数学

【精校】2017年湖北省十堰市中考真题数学

2017年湖北省十堰市中考真题数学一、选择题1.气温由-2℃上升3℃后是( )℃.A.1B.3C.5D.-5解析:由题意,得-2+3=+(3-2)=1.答案:A.2.如图的几何体,其左视图是( )A.B.C.D.解析:从左边看第一层是两个小正方形,第二层左边一个小正方形.答案:B.3.如图,AB∥DE,FG⊥BC于F,∠CDE=40°,则∠FGB=( )A.40°B.50°C.60°D.70°解析:∵AB∥DE,∠CDE=40°,∴∠B=∠CDE=40°,又∵FG⊥BC,∴∠FGB=90°-∠B=50°.答案:B.4.下列运算正确的是( )=B.==2=D.3解析:根据二次根式的加减法对A、D进行判断;根据二次根式的乘法法则对B进行判断;根据二次根式的除法法则对D进行判断.答案:C.5.某交警在一个路口统计的某时段来往车辆的车速情况如表:则上述车速的中位数和众数分别是( )A.50,8B.50,50C.49,50D.49,8解析:要求一组数据的中位数,把这组数据按照从小到大的顺序排列,第10、11两个数的平均数是50,所以中位数是50,在这组数据中出现次数最多的是50,即众数是50.答案:B.6.下列命题错误的是( )A.对角线互相平分的四边形是平行四边形B.对角线相等的平行四边形是矩形C.一条对角线平分一组对角的四边形是菱形D.对角线互相垂直的矩形是正方形解析:A、对角线互相平分的四边形是平行四边形是正确的,不符合题意;B、对角线相等的平行四边形是矩形是正确的,不符合题意;C、一条对角线平分一组对角的四边形不一定是菱形,原来的说法错误,符合题意;D、对角线互相垂直的矩形是正方形是正确的,不符合题意.答案:C.7.甲、乙二人做某种机械零件,甲每小时比乙多做6个,甲做90个所用的时间与做60个所用的时间相等.设甲每小时做x个零件,下面所列方程正确的是( )A.90606 x x=-B.90606 x x=+C.90606x x=-D.90606x x=+解析:设甲每小时做x个零件,根据题意可得,甲做90个所用的时间与乙做60个所用的时间相等,据此列方程.答案:A.8.如图,已知圆柱的底面直径BC=6π,高AB=3,小虫在圆柱表面爬行,从C点爬到A点,然后再沿另一面爬回C点,则小虫爬行的最短路程为( )解析:要求最短路径,首先要把圆柱的侧面展开,利用两点之间线段最短,然后利用勾股定理即可求解.答案:D.9.如图,10个不同的正偶数按下图排列,箭头上方的每个数都等于其下方两数的和,如,表示a1=a2+a3,则a1的最小值为( )A.32B.36C.38D.40解析:由a1=a7+3(a8+a9)+a10知要使a1取得最小值,则a8+a9应尽可能的小,取a8=2、a9=4,根据a5=a8+a9=6,则a7、a10中不能有6,据此对于a7、a8,分别取8、10、12检验可得,从而得出答案.答案:D.10.如图,直线分别交x轴,y轴于A,B,M是反比例函数y=kx(x>0)的图象上位于直线上方的一点,MC∥x轴交AB于C,MD⊥MC交AB于D,AC·,则k的值为( )A.-3B.-4C.-5D.-6解析:过点D作DE⊥y轴于点E,过点C作CF⊥x轴于点F,然后求出OA与OB的长度,即可求出∠OAB的正弦值与余弦值,再设M(x,y),从而可表示出BD与AC的长度,根据AC·BD=4列出即可求出k的值.答案:A.二、填空题11.某颗粒物的直径是0.0000025,把0.0000025用科学记数法表示为_____.解析:0.0000025用科学记数法表示为2.5×10-6.答案:2.5×10-6.12.若a-b=1,则代数式2a-2b-1的值为_____.解析:∵a-b=1,∴原式=2(a-b)-1=2-1=1.答案:1.13.如图,菱形ABCD中,AC交BD于O,DE⊥BC于E,连接OE,若∠ABC=140°,则∠OED=_____.解析:由菱形的性质可知O为BD中点,所以OE为直角三角形BED斜边上的中线,由此可得OE=OB,根据等腰三角形的性质和已知条件即可求出∠OED的度数.答案:20°.14.如图,△ABC内接于⊙O,∠ACB=90°,∠ACB的角平分线交⊙O于D.若AC=6,,则BC的长为_____.解析:连接BD,根据CD是∠ACB的平分线可知∠ACD=∠BCD=45°,故可得出AD=BD,再由AB是⊙O的直径可知△ABD是等腰直角三角形,利用勾股定理求出AB的长,在Rt△ABC中,利用勾股定理可得出BC的长.答案:8.15.如图,直线y=kx和y=ax+4交于A(1,k),则不等式kx-6<ax+4<kx的解集为_____.解析:根据题意得由OB=4,OC=6,根据直线y=kx 平行于直线y=kx-6,得到4263BA BO AD OC ===,分别过A ,D 作AM ⊥x 轴于M ,DN ⊥x 轴于N ,则AM ∥DN ∥y 轴,根据平行线分线段成比例定理得到23OM BA MN AD ==,得到ON=52,求得D 点的横坐标是52,于是得到结论. 答案:1<x <52.16.如图,正方形ABCD 中,BE=EF=FC ,CG=2GD ,BG 分别交AE ,AF 于M ,N.下列结论:①AF ⊥BG ;②BN=43NF ;③38BM MG =;④S 四边形CGNF =12S 四边形ANGD .其中正确的结论的序号是_____.解析:①易证△ABF ≌△BCG ,即可解题; ②易证△BNF ∽△BCG ,即可求得BNNF的值,即可解题; ③作EH ⊥AF ,令AB=3,即可求得MN ,BM 的值,即可解题;④连接AG ,FG ,根据③中结论即可求得S 四边形CGNF 和S 四边形ANGD ,即可解题. 答案:①③.三、解答题(本大题共9小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.计算:2017.解析:原式利用绝对值的代数意义,立方根定义,以及乘方的意义计算即可得到结果. 答案:原式=2-2+1=1.18.化简:222111a a a a a +⎛⎫+÷⎪+--⎝⎭. 解析:根据分式的加法和除法可以解答本题. 答案:222111a a a a a +⎛⎫+÷⎪+--⎝⎭=()()()212111a a a a a a -++-⋅+- =()2221a a a a -+++=()31aa a +=31a +.19.如图,海中有一小岛A ,它周围8海里内有暗礁,渔船跟踪鱼群由西向东航行,在B 点测得小岛A 在北偏东60°方向上,航行12海里到达D 点,这时测得小岛A 在北偏东30°方向上.如果渔船不改变航线继续向东航行,有没有触礁的危险?解析:过A 作AC ⊥BD 于点C ,求出∠CAD 、∠CAB 的度数,求出∠BAD 和∠ABD ,根据等边对等角得出AD=BD=12,根据含30度角的直角三角形性质求出CD ,根据勾股定理求出AD 即可. 答案:只要求出A 到BD 的最短距离是否在以A 为圆心,以8海里的圆内或圆上即可, 如图,过A 作AC ⊥BD 于点C ,则AC 的长是A 到BD 的最短距离,∵∠CAD=30°,∠CAB=60°,∴∠BAD=60°-30°=30°,∠ABD=90°-60°=30°, ∴∠ABD=∠BAD , ∴BD=AD=12海里,∵∠CAD=30°,∠ACD=90°, ∴CD=12AD=6海里,由勾股定理得:=10.392>8,即渔船继续向正东方向行驶,没有触礁的危险.20.某中学艺术节期间,学校向学生征集书画作品,杨老师从全校30个班中随机抽取了4个班(用A ,B ,C ,D 表示),对征集到的作品的数量进行了分析统计,制作了两幅不完整的统计图.请根据以上信息,回答下列问题:(1)杨老师采用的调查方式是_____(填“普查”或“抽样调查”);(2)请你将条形统计图补充完整,并估计全校共征集多少件作品?(3)如果全校征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.解析:(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查.(2)由题意得:所调查的4个班征集到的作品数为:6÷90360=24(件),C班作品的件数为:24-4-6-4=10(件);继而可补全条形统计图;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好抽中一男一女的情况,再利用概率公式即可求得答案.答案:(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查.(2)所调查的4个班征集到的作品数为:6÷90360=24件,平均每个班244=6件,C班有10件,∴估计全校共征集作品6×30=180件. 条形图如图所示,(3)画树状图得:∵共有20种等可能的结果,两名学生性别相同的有8种情况,∴恰好抽中一男一女的概率为:82 205.21.已知关于x的方程x2+(2k-1)x+k2-1=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)若x1,x2满足x12+x22=16+x1x2,求实数k的值.解析:(1)根据方程的系数结合根的判别式,即可得出△=-4k+5≥0,解之即可得出实数k 的取值范围;(2)由根与系数的关系可得x1+x2=1-2k、x1·x2=k2-1,将其代入x12+x22=(x1+x2)2-2x1·x2=16+x1·x2中,解之即可得出k的值.答案:(1)∵关于x的方程x2+(2k-1)x+k2-1=0有两个实数根x1,x2,∴△=(2k-1)2-4(k2-1)=-4k+5≥0,解得:k≤54,∴实数k的取值范围为k≤54.(2)∵关于x的方程x2+(2k-1)x+k2-1=0有两个实数根x1,x2,∴x1+x2=1-2k,x1·x2=k2-1.∵x12+x22=(x1+x2)2-2x1·x2=16+x1·x2,∴(1-2k)2-2×(k2-1)=16+(k2-1),即k2-4k-12=0,解得:k=-2或k=6(不符合题意,舍去).∴实数k的值为-2.22.某超市销售一种牛奶,进价为每箱24元,规定售价不低于进价.现在的售价为每箱36元,每月可销售60箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱,设每箱牛奶降价x元(x为正整数),每月的销量为y箱.(1)写出y与x中间的函数关系书和自变量x的取值范围;(2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元?解析:(1)根据价格每降低1元,平均每天多销售10箱,由每箱降价x元,多卖10x,据此可以列出函数关系式;(2)由利润=(售价-成本)×销售量列出函数关系式,求出最大值.答案:(1)根据题意,得:y=60+10x,由36-x≥24得x≤12,∴1≤x≤12,且x为整数;(2)设所获利润为W,则W=(36-x-24)(10x+60)=-10x2+60x+720=-10(x-3)2+810,∴当x=3时,W 取得最大值,最大值为810,答:超市定价为33元时,才能使每月销售牛奶的利润最大,最大利润是810元.23.已知AB 为⊙O 的直径,BC ⊥AB 于B ,且BC=AB ,D 为半圆⊙O 上的一点,连接BD 并延长交半圆⊙O 的切线AE 于E.(1)如图1,若CD=CB ,求证:CD 是⊙O 的切线; (2)如图2,若F 点在OB 上,且CD ⊥DF ,求AEAF的值. 解析:(1)连接DO ,CO ,易证△CDO ≌△CBO ,即可解题; (2)连接AD ,易证△ADF ∽△BDC 和△ADE ∽△BDA ,根据相似三角形对应边比例相等的性质即可解题.答案:(1)连接DO ,CO ,∵BC ⊥AB 于B , ∴∠ABC=90°,在△CDO 与△CBO 中,CD CB OD OB OC OC =⎧⎪=⎨⎪=⎩,∴△CDO ≌△CBO , ∴∠CDO=∠CBO=90°, ∴OD ⊥CD ,∴CD 是⊙O 的切线; (2)连接AD ,∵AB是直径,∴∠ADB=90°,∴∠ADF+∠BDF=90°,∠DAB+∠DBA=90°,∵∠BDF+∠BDC=90°,∠CBD+∠DBA=90°,∴∠ADF=∠BDC,∠DAB=∠CBD,∵在△ADF和△BDC中,ADF BDCDAB CBD ∠=∠⎧⎨∠=∠⎩,∴△ADF∽△BDC,∴AD AF BD BC=,∵∠DAE+∠DAB=90°,∠E+∠DAE=90°,∴∠E=∠DAB,∵在△ADE和△BDA中,90ADE BDAE DAB∠=∠=︒⎧⎨∠=∠⎩,∴△ADE∽△BDA,∴AE AD AB BD=,∴AE AFAB BC=,即AE ABAF BC=,∵AB=BC,∴AEAF=1.24.已知O为直线MN上一点,OP⊥MN,在等腰Rt△ABO中,∠BAO=90°,AC∥OP交OM于C,D为OB的中点,DE⊥DC交MN于E.(1)如图1,若点B在OP上,则①AC_____OE(填“<”,“=”或“>”);②线段CA、CO、CD满足的等量关系式是_____;(2)将图1中的等腰Rt△ABO绕O点顺时针旋转α(0°<α<45°),如图2,那么(1)中的结论②是否成立?请说明理由;(3)将图1中的等腰Rt△ABO绕O点顺时针旋转α(45°<α<90°),请你在图3中画出图形,并直接写出线段CA、CO、CD满足的等量关系式_____.解析:(1)①如图1,证明AC=OC和OC=OE可得结论;②根据勾股定理可得:AC2+CO2=CD2;(2)如图2,(1)中的结论②不成立,作辅助线,构建全等三角形,证明A、D、O、C四点共圆,得∠ACD=∠AOB,同理得:∠EFO=∠EDO,再证明△ACO≌△EOF,得OE=AC,AO=EF,根据勾股定理得:AC2+OC2=FO2+OE2=EF2,由直角三角形中最长边为斜边可得结论;(3)如图3,连接AD,则AD=OD证明△ACD≌△OED,根据△CDE是等腰直角三角形,得CE2=2CD2,等量代换可得结论(OC-OE)2=(OC-AC)2=2CD2,开方后是:CD.答案:(1)①AC=OE,理由:如图1,∵在等腰Rt△ABO中,∠BAO=90°,∴∠ABO=∠AOB=45°,∵OP⊥MN,∴∠COP=90°,∴∠AOC=45°,∵AC∥OP,∴∠CAO=∠AOB=45°,∠ACO=∠POE=90°,∴AC=OC,连接AD,∵BD=OD,∴AD=OD,AD⊥OB,∴AD∥OC,∴四边形ADOC是正方形,∴∠DCO=45°,∴AC=OD,∴∠DEO=45°,∴CD=DE,∴OC=OE,∴AC=OE;②在Rt△CDO中,∵CD2=OC2+OD2,∴CD2=AC2+OC2;(2)如图2,(1)中的结论②不成立,理由是:连接AD,延长CD交OP于F,连接EF,∵AB=AO,D为OB的中点,∴AD⊥OB,∴∠ADO=90°,∵∠CDE=90°,∴∠ADO=∠CDE,∴∠ADO-∠CDO=∠CDE-∠CDO,即∠ADC=∠EDO,∵∠ADO=∠ACO=90°,∴∠ADO+∠ACO=180°,∴A、D、O、C四点共圆,∴∠ACD=∠AOB,同理得:∠EFO=∠EDO,∴∠EFO=∠AOC,∵△ABO是等腰直角三角形,∴∠AOB=45°,∴∠DCO=45°,∴△COF和△CDE是等腰直角三角形,∴OC=OF,∵∠ACO=∠EOF=90°,∴△ACO≌△EOF,∴OE=AC,AO=EF,∴AC2+OC2=FO2+OE2=EF2,Rt△DEF中,EF>DE=DC,∴AC2+OC2>DC2,所以(1)中的结论②不成立;(3)如图3,结论:CD,理由是:连接AD,则AD=OD,同理:∠ADC=∠EDO,∵∠CAB+∠CAO=∠CAO+∠AOC=90°,∴∠CAB=∠AOC,∵∠DAB=∠AOD=45°,∴∠DAB-∠CAB=∠AOD-∠AOC,即∠DAC=∠DOE,∴△ACD≌△OED,∴AC=OE,CD=DE,∴△CDE是等腰直角三角形,∴CE2=2CD2,∴(OC-OE)2=(OC-AC)2=2CD2,∴CD.25.抛物线y=x2+bx+c与x轴交于A(1,0),B(m,0),与y轴交于C.(1)若m=-3,求抛物线的解析式,并写出抛物线的对称轴;(2)如图1,在(1)的条件下,设抛物线的对称轴交x 轴于D ,在对称轴左侧的抛物线上有一点E ,使S △ACE =103S △ACD ,求点E 的坐标; (3)如图2,设F(-1,-4),FG ⊥y 于G ,在线段OG 上是否存在点P ,使∠OBP=∠FPG ?若存在,求m 的取值范围;若不存在,请说明理由.解析:(1)利用待定系数法求二次函数的解析式,并配方求对称轴;(2)如图1,设E(m ,m 2+2m-3),先根据已知条件求S △ACE =10,根据不规则三角形面积等于铅直高度与水平宽度的积列式可求得m 的值,并根据在对称轴左侧的抛物线上有一点E ,则点E 的横坐标小于-1,对m 的值进行取舍,得到E 的坐标;(3)分两种情况:①当B 在原点的左侧时,构建辅助圆,根据直径所对的圆周角是直角,只要满足∠BPF=90°就可以构成∠OBP=∠FPG ,如图2,求出圆E 与y 轴有一个交点时的m 值,则可得取值范围; ②当B 在原点的右侧时,只有△OBP 是等腰直角三角形,△FPG 也是等腰直角三角形时满足条件,直接计算即可.答案:(1)当m=-3时,B(-3,0),把A(1,0),B(-3,0)代入到抛物线y=x 2+bx+c 中得:10930b c b c ++=⎧⎨-+=⎩,解得23b c =⎧⎨=-⎩, ∴抛物线的解析式为:y=x 2+2x-3=(x+1)2-4;对称轴是:直线x=-1;(2)如图1,设E(m ,m 2+2m-3),由题意得:AD=1+1=2,OC=3,S △ACE =103S △ACD =103×12AD ·OC=53×2×3=10, 设直线AE 的解析式为:y=kx+b ,把A(1,0)和E(m ,m 2+2m-3)代入得,2023k b mk b m m +=⎧⎨+=+-⎩,解得:33k m b m =+⎧⎨=--⎩, ∴直线AE 的解析式为:y=(m+3)x-m-3,∴F(0,-m-3),∵C(0,-3),∴FC=-m-3+3=-m ,∴S △ACE =12FC ·(1-m)=10, -m(1-m)=20,m 2-m-20=0,(m+4)(m-5)=0,m 1=-4,m 2=5(舍),∴E(-4,5);(3)如图2,当B 在原点的左侧时,连接BF ,以BF 为直径作圆E ,当⊙E 与y 轴相切时,设切点为P ,∴∠BPF=90°,∴∠FPG+∠OPB=90°,∵∠OPB+∠OBP=90°,∴∠OBP=∠FPG,连接EP,则EP⊥OG,∵BE=EF,∴EP是梯形的中位线,∴OP=PG=2,∵FG=1,tan∠FPG=tan∠OBP=FG OP PG OB=,∴122m =-,∴m=-4,∴当-4≤m<0时,在线段OG上存在点P,使∠OBP=∠FPG;如图3,当B在原点的右侧时,要想满足∠OBP=∠FPG,则∠OBP=∠OPB=∠FPG,∴OB=OP,∴△OBP是等腰直角三角形,△FPG也是等腰直角三角形,∴FG=PG=1,∴OB=OP=3,∴m=3,综上所述,当-4≤m<0或m=3时,在线段OG上存在点P,使∠OBP=∠FPG.考试考高分的小窍门1、提高课堂注意力2、记好课堂笔记3、做家庭作业4、消除焦虑、精中精力、5、不忙答题,先摸卷情、不要畏惧考试。

2017年湖北省十堰市中考数学试卷

2017年湖北省十堰市中考数学试卷

2017年湖北省十堰市中考数学试卷一、选择题:1.(3分)气温由﹣2℃上升3℃后是()℃.A.1 B.3 C.5 D.﹣52.(3分)如图的几何体,其左视图是()A.B.C.D.3.(3分)如图,AB∥DE,FG⊥BC于F,∠CDE=40°,则∠FGB=()A.40°B.50°C.60°D.70°4.(3分)下列运算正确的是()A.√2+√3=√5B.2√2×3√2=6√2C.√8÷√2=2 D.3√2−√2=3 5.(3分)某交警在一个路口统计的某时段来往车辆的车速情况如表:车速(km/h)4849505152车辆数(辆)54821则上述车速的中位数和众数分别是()A.50,8 B.50,50 C.49,50 D.49,86.(3分)下列命题错误的是()A.对角线互相平分的四边形是平行四边形B.对角线相等的平行四边形是矩形C.一条对角线平分一组对角的四边形是菱形D .对角线互相垂直的矩形是正方形7.(3分)甲、乙二人做某种机械零件,甲每小时比乙多做6个,甲做90个所用的时间与做60个所用的时间相等.设甲每小时做x 个零件,下面所列方程正确的是( )A .90x =60x−6B .90x =60x+6C .90x−6=60xD .90x+6=60x8.(3分)如图,已知圆柱的底面直径BC=6π,高AB=3,小虫在圆柱表面爬行,从C 点爬到A 点,然后再沿另一面爬回C 点,则小虫爬行的最短路程为( )A .3√2B .3√5C .6√5D .6√29.(3分)如图,10个不同的正偶数按下图排列,箭头上方的每个数都等于其下方两数的和,如,表示a 1=a 2+a 3,则a 1的最小值为( )A .32B .36C .38D .4010.(3分)如图,直线y=√3x ﹣6分别交x 轴,y 轴于A ,B ,M 是反比例函数y=k x(x >0)的图象上位于直线上方的一点,MC ∥x 轴交AB 于C ,MD ⊥MC 交AB 于D ,AC•BD=4√3,则k 的值为( )A.﹣3 B.﹣4 C.﹣5 D.﹣6二、填空题11.(3分)某颗粒物的直径是0.0000025,把0.0000025用科学记数法表示为.12.(3分)若a﹣b=1,则代数式2a﹣2b﹣1的值为.13.(3分)如图,菱形ABCD中,AC交BD于O,OE⊥BC于E,连接OE,若∠ABC=140°,则∠OED=.14.(3分)如图,△ABC内接于⊙O,∠ACB=90°,∠ACB的角平分线交⊙O于D.若AC=6,BD=5√2,则BC的长为.15.(3分)如图,直线y=kx和y=ax+4交于A(1,k),则不等式kx﹣6<ax+4<kx的解集为.16.(3分)如图,正方形ABCD 中,BE=EF=FC ,CG=2GD ,BG 分别交AE ,AF 于M ,N .下列结论:①AF ⊥BG ;②BN=43NF ;③BM MG =38;④S 四边形CGNF =12S 四边形ANGD .其中正确的结论的序号是 .三、解答题(本大题共9小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(5分)计算:|﹣2|+√−83﹣(﹣1)2017.18.(6分)化简:(2a+1+a+2a 2−1)÷a a−1. 19.(7分)如图,海中有一小岛A ,它周围8海里内有暗礁,渔船跟踪鱼群由西向东航行,在B 点测得小岛A 在北偏东60°方向上,航行12海里到达D 点,这时测得小岛A 在北偏东30°方向上.如果渔船不改变航线继续向东航行,有没有触礁的危险?20.(9分)某中学艺术节期间,学校向学生征集书画作品,杨老师从全校30个班中随机抽取了4个班(用A ,B ,C ,D 表示),对征集到的作品的数量进行了分析统计,制作了两幅不完整的统计图.请根据以上信息,回答下列问题:(1)杨老师采用的调查方式是(填“普查”或“抽样调查”);(2)请你将条形统计图补充完整,并估计全校共征集多少件作品?(3)如果全校征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.21.(7分)已知关于x的方程x2+(2k﹣1)x+k2﹣1=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)若x1,x2满足x12+x22=16+x1x2,求实数k的值.22.(8分)某超市销售一种牛奶,进价为每箱24元,规定售价不低于进价.现在的售价为每箱36元,每月可销售60箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱,设每箱牛奶降价x元(x为正整数),每月的销量为y箱.(1)写出y与x中间的函数关系书和自变量x的取值范围;(2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元?23.(8分)已知AB为⊙O的直径,BC⊥AB于B,且BC=AB,D为半圆⊙O上的一点,连接BD并延长交半圆⊙O的切线AE于E.(1)如图1,若CD=CB,求证:CD是⊙O的切线;(2)如图2,若F点在OB上,且CD⊥DF,求AEAF的值.24.(10分)已知O为直线MN上一点,OP⊥MN,在等腰Rt△ABO中,∠BAO=90°,AC∥OP交OM于C,D为OB的中点,DE⊥DC交MN于E.(1)如图1,若点B在OP上,则①AC OE(填“<”,“=”或“>”);②线段CA、CO、CD满足的等量关系式是;(2)将图1中的等腰Rt△ABO绕O点顺时针旋转α(0°<α<45°),如图2,那么(1)中的结论②是否成立?请说明理由;(3)将图1中的等腰Rt△ABO绕O点顺时针旋转α(45°<α<90°),请你在图3中画出图形,并直接写出线段CA、CO、CD满足的等量关系式.25.(12分)抛物线y=x2+bx+c与x轴交于A(1,0),B(m,0),与y轴交于C.(1)若m=﹣3,求抛物线的解析式,并写出抛物线的对称轴;(2)如图1,在(1)的条件下,设抛物线的对称轴交x轴于D,在对称轴左侧的抛物线上有一点E,使S△ACE =103S△ACD,求点E的坐标;(3)如图2,设F(﹣1,﹣4),FG⊥y于G,在线段OG上是否存在点P,使∠OBP=∠FPG?若存在,求m的取值范围;若不存在,请说明理由.2017年湖北省十堰市中考数学试卷参考答案与试题解析一、选择题:1.(3分)(2017•十堰)气温由﹣2℃上升3℃后是()℃.A.1 B.3 C.5 D.﹣5【分析】根据有理数的加法,可得答案.【解答】解:由题意,得﹣2+3=+(3﹣2)=1,故选:A.【点评】本题考查了有理数的加法,异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减较小的绝对值.2.(3分)(2017•十堰)如图的几何体,其左视图是()A.B.C.D.【分析】根据从左边看得到的图象是左视图,可得答案.【解答】解:从左边看第一层是两个小正方形,第二层左边一个小正方形,故选:B.【点评】本题考查了简单组合体的三视图,从左边看得到的图象是左视图.3.(3分)(2017•十堰)如图,AB∥DE,FG⊥BC于F,∠CDE=40°,则∠FGB=()A.40°B.50°C.60°D.70°【分析】先根据平行线的性质,得到∠B=∠CDE=40°,直观化FG⊥BC,即可得出∠FGB的度数.【解答】解:∵AB∥DE,∠CDE=40°,∴∠B=∠CDE=40°,又∵FG⊥BC,∴∠FGB=90°﹣∠B=50°,故选:B.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.4.(3分)(2017•十堰)下列运算正确的是()A.√2+√3=√5B.2√2×3√2=6√2C.√8÷√2=2 D.3√2−√2=3【分析】根据二次根式的加减法对A、D进行判断;根据二次根式的乘法法则对B进行判断;根据二次根式的除法法则对D进行判断.【解答】解:A、√2与√3不能合并,所以A选项错误;B、原式=6×2=12,所以B选项错误;C、原式=√8÷2=2,所以C选项准确;D、原式=2√2,所以D选项错误.故选C.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.5.(3分)(2017•十堰)某交警在一个路口统计的某时段来往车辆的车速情况如表:车速(km/h)4849505152车辆数(辆)54821则上述车速的中位数和众数分别是()A.50,8 B.50,50 C.49,50 D.49,8【分析】把这组数据按照从小到大的顺序排列,第10、11个数的平均数是中位数,在这组数据中出现次数最多的是50,得到这组数据的众数.【解答】解:要求一组数据的中位数,把这组数据按照从小到大的顺序排列,第10、11两个数的平均数是50,所以中位数是50,在这组数据中出现次数最多的是50,即众数是50.故选:B.【点评】本题考查一组数据的中位数和众数,在求中位数时,首先要把这列数字按照从小到大或从的大到小排列,找出中间一个数字或中间两个数字的平均数即为所求.6.(3分)(2017•十堰)下列命题错误的是()A.对角线互相平分的四边形是平行四边形B.对角线相等的平行四边形是矩形C.一条对角线平分一组对角的四边形是菱形D.对角线互相垂直的矩形是正方形【分析】利用平行四边形、矩形、菱形及正方形的判定定理分别判断后即可确定正确的选项.【解答】解:A、对角线互相平分的四边形是平行四边形,正确,不符合题意;B、对角线相等的平行四边形是矩形,正确,不符合题意;C、一条对角线平分一组对角的四边形可能是菱形或者正方形,错误,符合题意;D、对角线互相垂直的矩形是正方形,正确,不符合题意,故选C.【点评】本题考查了命题与定理的知识,解题的关键是了解平行四边形、矩形、菱形及正方形的判定定理,难度不大.7.(3分)(2017•十堰)甲、乙二人做某种机械零件,甲每小时比乙多做6个,甲做90个所用的时间与做60个所用的时间相等.设甲每小时做x 个零件,下面所列方程正确的是( )A .90x =60x−6B .90x =60x+6C .90x−6=60xD .90x+6=60x【分析】设甲每小时做x 个零件,根据题意可得,甲做90个所用的时间与乙做60个所用的时间相等,据此列方程.【解答】解:设甲每小时做x 个零件,则乙每小时做(x ﹣6)个零件,由题意得,90x =60x−6. 故选A .【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.8.(3分)(2017•十堰)如图,已知圆柱的底面直径BC=6π,高AB=3,小虫在圆柱表面爬行,从C 点爬到A 点,然后再沿另一面爬回C 点,则小虫爬行的最短路程为( )A .3√2B .3√5C .6√5D .6√2【分析】要求最短路径,首先要把圆柱的侧面展开,利用两点之间线段最短,然后利用勾股定理即可求解.【解答】解:把圆柱侧面展开,展开图如右图所示,点A 、C 的最短距离为线段AC 的长.在RT△ADC中,∠ADC=90°,CD=AB=3,AD为底面半圆弧长,AD=3,所以AC=3√2,∴从C点爬到A点,然后再沿另一面爬回C点,则小虫爬行的最短路程为2AC=6√2,故选D.【点评】本题考查了平面展开﹣最短路径问题,解题的关键是会将圆柱的侧面展开,并利用勾股定理解答.9.(3分)(2017•十堰)如图,10个不同的正偶数按下图排列,箭头上方的每个数都等于其下方两数的和,如,表示a1=a2+a3,则a1的最小值为()A.32 B.36 C.38 D.40【分析】由a1=a7+3(a8+a9)+a10知要使a1取得最小值,则a8+a9应尽可能的小,取a8=2、a9=4,根据a5=a8+a9=6,则a7、a10中不能有6,据此对于a7、a8,分别取8、10、12检验可得,从而得出答案.【解答】解:∵a1=a2+a3=a4+a5+a5+a6=a7+a8+a8+a9+a8+a9+a9+a10=a7+3(a8+a9)+a10,∴要使a1取得最小值,则a8+a9应尽可能的小,取a8=2、a9=4,∵a5=a8+a9=6,则a7、a10中不能有6,若a7=8、a10=10,则a4=10=a10,不符合题意,舍去;若a7=10、a10=8,则a4=12、a6=4+8=12,不符合题意,舍去;若a7=10、a10=12,则a4=10+2=12、a6=4+12=16、a2=12+6=18、a3=6+16=22、a1=18+22=40,符合题意;综上,a1的最小值为40,故选:D.【点评】本题主要考查数字的变化类,根据题目要求得出a1取得最小值的切入点是解题的关键.10.(3分)(2017•十堰)如图,直线y=√3x﹣6分别交x轴,y轴于A,B,M是反比例函数y=kx(x>0)的图象上位于直线上方的一点,MC∥x轴交AB于C,MD⊥MC交AB于D,AC•BD=4√3,则k的值为()A.﹣3 B.﹣4 C.﹣5 D.﹣6【分析】过点D作DE⊥y轴于点E,过点C作CF⊥x轴于点F,然后求出OA与OB的长度,即可求出∠OAB的正弦值与余弦值,再设M(x,y),从而可表示出BD与AC的长度,根据AC•BD=4√3列出即可求出k的值.【解答】解:过点D作DE⊥y轴于点E,过点C作CF⊥x轴于点F,令x=0代入y=√3x﹣6,∴y=﹣6,∴B(0,﹣6),∴OB=6,令y=0代入y=√3x﹣6,∴x=2√3,∴(2√3,0),∴OA=2√3,∴勾股定理可知:AB=4√3,∴sin∠OAB=OBAB=√32,cos∠OAB=OAAB=12设M(x,y),∴CF=﹣y,ED=x,∴sin∠OAB=CF AC,∴AC=﹣2√33y,∵cos∠OAB=cos∠EDB=ED BD,∴BD=2x,∵AC•BD=4√3,∴﹣2√33y×2x=4√3,∴xy=﹣3,∵M在反比例函数的图象上,∴k=xy=﹣3,故选(A)【点评】本题考查反比例函数与一次函数的综合问题,解题的关键是根据∠OAB 的锐角三角函数值求出BD、AC,本题属于中等题型.二、填空题11.(3分)(2017•十堰)某颗粒物的直径是0.0000025,把0.0000025用科学记数法表示为 2.5×10﹣6.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000025用科学记数法表示为2.5×10﹣6,故答案为:2.5×10﹣6.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.(3分)(2017•十堰)若a﹣b=1,则代数式2a﹣2b﹣1的值为1.【分析】原式前两项提取2变形后,将a﹣b=1代入计算即可求出值.【解答】解:∵a﹣b=1,∴原式=2(a﹣b)﹣1=2﹣1=1.故答案为:1.【点评】此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.13.(3分)(2017•十堰)如图,菱形ABCD中,AC交BD于O,OE⊥BC于E,连接OE,若∠ABC=140°,则∠OED=20°.【分析】由菱形的性质可知O为BD中点,所以OE为直角三角形BED斜边上的中线,由此可得OE=OB,根据等腰三角形的性质和已知条件即可求出∠OED的度数.【解答】解:∵四边形ABCD是菱形,∴DO=OB,∵DE⊥BC于E,∴OE为直角三角形BED斜边上的中线,∴OE=12 BD,∴OB=OE,∴∠OBE=∠OEB,∵∠ABC=140°,∴∠OBE=70°,∴∠OED=90°﹣70°=20°,故答案为:20°.【点评】本题考查了菱形的性质、直角三角形斜边上中线的性质,得到OE为直角三角形BED斜边上的中线是解题的关键.14.(3分)(2017•十堰)如图,△ABC内接于⊙O,∠ACB=90°,∠ACB的角平分线交⊙O于D.若AC=6,BD=5√2,则BC的长为8.【分析】连接BD,根据CD是∠ACB的平分线可知∠ACD=∠BCD=45°,故可得出AD=BD,再由AB是⊙O的直径可知△ABD是等腰直角三角形,利用勾股定理求出AB的长,在Rt△ABC中,利用勾股定理可得出BC的长.【解答】解:连接BD,∵∠ACB=90°,∴AB是⊙O的直径.∵ACB 的角平分线交⊙O 于D ,∴∠ACD=∠BCD=45°,∴AD=BD=5√2.∵AB 是⊙O 的直径,∴△ABD 是等腰直角三角形,∴AB=√AD 2+BD 2=√(5√2)2+(5√2)2=10.∵AC=6,∴BC=√AB 2−AC 2=√102−62=8.故答案为:8.【点评】本题考查的是圆周角定理,熟知直径所对的圆周角是直角是解答此题的关键.15.(3分)(2017•十堰)如图,直线y=kx 和y=ax +4交于A (1,k ),则不等式kx ﹣6<ax +4<kx 的解集为 1<x <52.【分析】根据题意得由OB=4,OC=6,根据直线y=kx 平行于直线y=kx ﹣6,得到BA AD =BO OC =46=23,分别过A ,D 作AM ⊥x 轴于M ,DN ⊥x 轴于N ,则AM ∥DN ∥y 轴,根据平行线分线段成比例定理得到OM MN =BA AD =23,得到ON=52,求得D 点的横坐标是52,于是得到结论.【解答】解:如图,由y=kx ﹣6与y=ax +4得OB=4,OC=6,∵直线y=kx 平行于直线y=kx ﹣6,∴BA AD =BO OC =46=23, 分别过A ,D 作AM ⊥x 轴于M ,DN ⊥x 轴于N ,则AM ∥DN ∥y 轴,∴OM MN =BA AD =23, ∵A (1,k ),∴OM=1,∴MN=32, ∴ON=52, ∴D 点的横坐标是52, ∴1<x <52时,kx ﹣6<ax +4<kx , 故答案为:1<x <52.【点评】本题考查了一次函数与一元一次不等式,此类题目,利用数形结合的思想求解是解题的关键.16.(3分)(2017•十堰)如图,正方形ABCD 中,BE=EF=FC ,CG=2GD ,BG 分别交AE ,AF 于M ,N .下列结论:①AF ⊥BG ;②BN=43NF ;③BM MG =38;④S 四边形CGNF =12S 四边形ANGD .其中正确的结论的序号是 ①③ .【分析】①易证△ABF ≌△BCG ,即可解题;②易证△BNF ∽△BCG ,即可求得BN NF 的值,即可解题;③作EH ⊥AF ,令AB=3,即可求得MN ,BM 的值,即可解题;④连接AG ,FG ,根据③中结论即可求得S 四边形CGNF 和S 四边形ANGD ,即可解题.【解答】解:①∵四边形ABCD 为正方形,∴AB=BC=CD ,∵BE=EF=FC ,CG=2GD ,∴BF=CG ,∵在△ABF 和△BCG 中,{AB =BC ∠ABF =∠BCG =90°BF =CG,∴△ABF ≌△BCG ,∴∠BAF=∠CBG ,∵∠BAF +∠BFA=90°,∴∠CBG +∠BFA=90°,即AF ⊥BG ;①正确;②∵在△BNF 和△BCG 中,{∠CBG =∠NBF ∠BCG =∠BNF =90°, ∴△BNF ∽△BCG ,∴BN NF =BC CG =32, ∴BN=23NF ;②错误; ③作EH ⊥AF ,令AB=3,则BF=2,BE=EF=CF=1,AF=√AB 2+BF 2=√13,∵S △ABF =12AF•BN=12AB•BF , ∴BN=6√1313,NF=23BN=4√1313, ∴AN=AF ﹣NF=9√1313, ∵E 是BF 中点,∴EH 是△BFN 的中位线,∴EH=3√1313,NH=2√1313,BN ∥EH , ∴AH=11√1313,AN AH =MN EH ,解得:MN=27√13143, ∴BM=BN ﹣MN=3√1311,MG=BG ﹣BM=8√1311, ∴BM MG =38;③正确; ④连接AG ,FG ,根据③中结论,则NG=BG ﹣BN=7√1313, ∵S 四边形CGNF =S △CFG +S △GNF =12CG•CF +12NF•NG=1+1413=2713, S 四边形ANGD =S △ANG +S △ADG =12AN•GN +12AD•DG=2713+32=9326, ∴S 四边形CGNF ≠12S 四边形ANGD ,④错误; 故答案为 ①③.【点评】本题考查了全等三角形的判定和性质,考查了相似三角形的判定和对应边比例相等的性质,本题中令AB=3求得AN ,BN ,NG ,NF 的值是解题的关键.三、解答题(本大题共9小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(5分)(2017•十堰)计算:|﹣2|+√−83﹣(﹣1)2017.【分析】原式利用绝对值的代数意义,立方根定义,以及乘方的意义计算即可得到结果.【解答】解:原式=2﹣2+1=1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(6分)(2017•十堰)化简:(2a+1+a+2a−1)÷aa−1.【分析】根据分式的加法和除法可以解答本题.【解答】解:(2a+1+a+2a−1)÷aa−1=2(a−1)+a+2(a+1)(a−1)⋅a−1a=2a−2+a+2 a(a+1)=3a a(a+1)=3a+1.【点评】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.19.(7分)(2017•十堰)如图,海中有一小岛A,它周围8海里内有暗礁,渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏东60°方向上,航行12海里到达D点,这时测得小岛A在北偏东30°方向上.如果渔船不改变航线继续向东航行,有没有触礁的危险?【分析】过A作AC⊥BD于点C,求出∠CAD、∠CAB的度数,求出∠BAD和∠ABD,根据等边对等角得出AD=BD=12,根据含30度角的直角三角形性质求出CD,根据勾股定理求出AD即可.【解答】解:只要求出A到BD的最短距离是否在以A为圆心,以8海里的圆内或圆上即可,如图,过A作AC⊥BD于点C,则AC的长是A到BD的最短距离,∵∠CAD=30°,∠CAB=60°,∴∠BAD=60°﹣30°=30°,∠ABD=90°﹣60°=30°,∴∠ABD=∠BAD,∴BD=AD=12海里,∵∠CAD=30°,∠ACD=90°,∴CD=12AD=6海里,由勾股定理得:AC=√122−62=6√3≈10.392>8,即渔船继续向正东方向行驶,没有触礁的危险.【点评】考查了勾股定理的应用和解直角三角形,此题是一道方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.20.(9分)(2017•十堰)某中学艺术节期间,学校向学生征集书画作品,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作品的数量进行了分析统计,制作了两幅不完整的统计图.请根据以上信息,回答下列问题:(1)杨老师采用的调查方式是 抽样调查 (填“普查”或“抽样调查”);(2)请你将条形统计图补充完整,并估计全校共征集多少件作品?(3)如果全校征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.【分析】(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查.(2)由题意得:所调查的4个班征集到的作品数为:6÷90360=24(件),C 班作品的件数为:24﹣4﹣6﹣4=10(件);继而可补全条形统计图;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好抽中一男一女的情况,再利用概率公式即可求得答案.【解答】解:(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查. 故答案为抽样调查.(2)所调查的4个班征集到的作品数为:6÷90360=24件, 平均每个班244=6件,C 班有10件, ∴估计全校共征集作品6×30=180件.条形图如图所示,(3)画树状图得:∵共有20种等可能的结果,两名学生性别相同的有8种情况,∴恰好抽中一男一女的概率为:820=25.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.同时考查了概率公式.21.(7分)(2017•十堰)已知关于x的方程x2+(2k﹣1)x+k2﹣1=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)若x1,x2满足x12+x22=16+x1x2,求实数k的值.【分析】(1)根据方程的系数结合根的判别式,即可得出△=﹣4k+5≥0,解之即可得出实数k的取值范围;(2)由根与系数的关系可得x1+x2=1﹣2k、x1•x2=k2﹣1,将其代入x12+x22=(x1+x2)2﹣2x1•x2=16+x1•x2中,解之即可得出k的值.【解答】解:(1)∵关于x的方程x2+(2k﹣1)x+k2﹣1=0有两个实数根x1,x2,∴△=(2k﹣1)2﹣4(k2﹣1)=﹣4k+5≥0,解得:k≤5 4,∴实数k的取值范围为k≤5 4.(2)∵关于x的方程x2+(2k﹣1)x+k2﹣1=0有两个实数根x1,x2,∴x1+x2=1﹣2k,x1•x2=k2﹣1.∵x12+x22=(x1+x2)2﹣2x1•x2=16+x1•x2,∴(1﹣2k)2﹣2×(k2﹣1)=16+(k2﹣1),即k2﹣4k﹣12=0,解得:k=﹣2或k=6(不符合题意,舍去).∴实数k的值为﹣2.【点评】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)根据方程的系数结合根的判别式,找出△=﹣4k+5≥0;(2)根据根与系数的关系结合x12+x22=16+x1x2,找出关于k的一元二次方程.22.(8分)(2017•十堰)某超市销售一种牛奶,进价为每箱24元,规定售价不低于进价.现在的售价为每箱36元,每月可销售60箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱,设每箱牛奶降价x元(x 为正整数),每月的销量为y箱.(1)写出y与x中间的函数关系书和自变量x的取值范围;(2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元?【分析】(1)根据价格每降低1元,平均每天多销售10箱,由每箱降价x元,多卖10x,据此可以列出函数关系式;(2)由利润=(售价﹣成本)×销售量列出函数关系式,求出最大值.【解答】解:(1)根据题意,得:y=60+10x,由36﹣x≥24得x≤12,∴1≤x≤12,且x为整数;(2)设所获利润为W,则W=(36﹣x﹣24)(10x+60)=﹣10x2+60x+720=﹣10(x﹣3)2+810,∴当x=3时,W取得最大值,最大值为810,答:超市定价为33元时,才能使每月销售牛奶的利润最大,最大利润是810元.【点评】本题主要考查二次函数的应用,由利润=(售价﹣成本)×销售量列出函数关系式求最值,用二次函数解决实际问题是解题的关键.23.(8分)(2017•十堰)已知AB为⊙O的直径,BC⊥AB于B,且BC=AB,D为半圆⊙O上的一点,连接BD并延长交半圆⊙O的切线AE于E.(1)如图1,若CD=CB,求证:CD是⊙O的切线;(2)如图2,若F点在OB上,且CD⊥DF,求AEAF的值.【分析】(1)连接DO,CO,易证△CDO≌△CBO,即可解题;(2)连接AD,易证△ADF∽△BDC和△ADE∽△BDA,根据相似三角形对应边比例相等的性质即可解题.【解答】解:(1)连接DO,CO,∵BC⊥AB于B,∴∠ABC=90°,在△CDO与△CBO中,{CD=CB OD=OB OC=OC,∴△CDO≌△CBO,∴∠CDO=∠CBO=90°,∴OD⊥CD,∴CD是⊙O的切线;(2)连接AD,∵AB 是直径,∴∠ADB=90°,∴∠ADF +∠BDF=90°,∠DAB +∠DBA=90°,∵∠BDF +∠BDC=90°,∠CBD +∠DBA=90°,∴∠ADF=∠BDC ,∠DAB=∠CBD ,∵在△ADF 和△BDC 中,{∠ADF =∠BDC ∠DAB =∠CBD, ∴△ADF ∽△BDC ,∴AD BD =AF BC, ∵∠DAE +∠DAB=90°,∠E +∠DAE=90°,∴∠E=∠DAB ,∵在△ADE 和△BDA 中,{∠ADE =∠BDA =90°∠E =∠DAB, ∴△ADE ∽△BDA ,∴AE AB =AD BD, ∴AE AB =AF BC ,即AE AF =AB BC, ∵AB=BC ,∴AE AF=1. 【点评】本题考查了相似三角形的判定和性质,考查了全等三角形的判定和性质,本题中求证△ADF ∽△BDC 和△ADE ∽△BDA 是解题的关键.24.(10分)(2017•十堰)已知O 为直线MN 上一点,OP ⊥MN ,在等腰Rt △ABO 中,∠BAO=90°,AC ∥OP 交OM 于C ,D 为OB 的中点,DE ⊥DC 交MN 于E .(1)如图1,若点B在OP上,则①AC=OE(填“<”,“=”或“>”);②线段CA、CO、CD满足的等量关系式是AC2+CO2=CD2;(2)将图1中的等腰Rt△ABO绕O点顺时针旋转α(0°<α<45°),如图2,那么(1)中的结论②是否成立?请说明理由;(3)将图1中的等腰Rt△ABO绕O点顺时针旋转α(45°<α<90°),请你在图3中画出图形,并直接写出线段CA、CO、CD满足的等量关系式CO﹣CA=√2CD.【分析】(1)①如图1,证明AC=OC和OC=OE可得结论;②根据勾股定理可得:AC2+CO2=CD2;(2)如图2,(1)中的结论②不成立,作辅助线,构建全等三角形,证明A、D、O、C四点共圆,得∠ACD=∠AOB,同理得:∠EFO=∠EDO,再证明△ACO≌△EOF,得OE=AC,AO=EF,根据勾股定理得:AC2+OC2=FO2+OE2=EF2,由直角三角形中最长边为斜边可得结论;(3)如图3,连接AD,则AD=OD证明△ACD≌△OED,根据△CDE是等腰直角三角形,得CE2=2CD2,等量代换可得结论(OC﹣OE)2=(OC﹣AC)2=2CD2,开方后是:OC﹣AC=√2CD.【解答】解:(1)①AC=OE,理由:如图1,∵在等腰Rt△ABO中,∠BAO=90°,∴∠ABO=∠AOB=45°,∵OP⊥MN,∴∠COP=90°,∴∠AOC=45°,∵AC∥OP,∴∠CAO=∠AOB=45°,∠ACO=∠POE=90°,∴AC=OC,连接AD,∵BD=OD,∴AD=OD,AD⊥OB,∴AD∥OC,∴四边形ADOC是正方形,∴∠DCO=45°,∴AC=OD,∴∠DEO=45°,∴CD=DE,∴OC=OE,∴AC=OE;②在Rt△CDO中,∵CD2=OC2+OD2,∴CD2=AC2+OC2;故答案为:AC2+CO2=CD2;(2)如图2,(1)中的结论②不成立,理由是:连接AD,延长CD交OP于F,连接EF,∵AB=AO,D为OB的中点,∴AD⊥OB,∴∠ADO=90°,∵∠CDE=90°,∴∠ADO=∠CDE,∴∠ADO﹣∠CDO=∠CDE﹣∠CDO,即∠ADC=∠EDO,∵∠ADO=∠ACO=90°,∴∠ADO+∠ACO=180°,∴A、D、O、C四点共圆,∴∠ACD=∠AOB,同理得:∠EFO=∠EDO,∴∠EFO=∠AOC,∵△ABO是等腰直角三角形,∴∠AOB=45°,∴∠DCO=45°,∴△COF和△CDE是等腰直角三角形,∴OC=OF,∵∠ACO=∠EOF=90°,∴△ACO≌△EOF,∴OE=AC,AO=EF,∴AC2+OC2=FO2+OE2=EF2,Rt△DEF中,EF>DE=DC,∴AC2+OC2>DC2,所以(1)中的结论②不成立;(3)如图3,结论:OC﹣CA=√2CD,理由是:连接AD,则AD=OD,同理:∠ADC=∠EDO,∵∠CAB+∠CAO=∠CAO+∠AOC=90°,∴∠CAB=∠AOC,∵∠DAB=∠AOD=45°,∴∠DAB﹣∠CAB=∠AOD﹣∠AOC,即∠DAC=∠DOE,∴△ACD≌△OED,∴AC=OE,CD=DE,∴△CDE是等腰直角三角形,∴CE2=2CD2,∴(OC﹣OE)2=(OC﹣AC)2=2CD2,∴OC﹣AC=√2CD,故答案为:OC﹣AC=√2CD.【点评】本题是几何变换的综合题,考查了三角形全等的性质和判定、等腰直角三角形的性质和判定、旋转的性质、勾股定理、四点共圆的性质等知识,并运用了类比的思想解决问题,有难度,尤其是第二问,结论不成立,要注意辅助线的作法;本题的2、3问能标准作图是关键.25.(12分)(2017•十堰)抛物线y=x 2+bx +c 与x 轴交于A (1,0),B (m ,0),与y 轴交于C .(1)若m=﹣3,求抛物线的解析式,并写出抛物线的对称轴;(2)如图1,在(1)的条件下,设抛物线的对称轴交x 轴于D ,在对称轴左侧的抛物线上有一点E ,使S △ACE =103S △ACD ,求点E 的坐标; (3)如图2,设F (﹣1,﹣4),FG ⊥y 于G ,在线段OG 上是否存在点P ,使∠OBP=∠FPG ?若存在,求m 的取值范围;若不存在,请说明理由.【分析】(1)利用待定系数法求二次函数的解析式,并配方求对称轴;(2)如图1,设E (m ,m 2+2m ﹣3),先根据已知条件求S △ACE =10,根据不规则三角形面积等于铅直高度与水平宽度的积列式可求得m 的值,并根据在对称轴左侧的抛物线上有一点E ,则点E 的横坐标小于﹣1,对m 的值进行取舍,得到E 的坐标;(3)分两种情况:①当B 在原点的左侧时,构建辅助圆,根据直径所对的圆周角是直角,只要满足∠BPF=90°就可以构成∠OBP=∠FPG ,如图2,求出圆E 与y 轴有一个交点时的m 值,则可得取值范围;②当B 在原点的右侧时,只有△OBP 是等腰直角三角形,△FPG 也是等腰直角三角形时满足条件,直接计算即可.【解答】解:(1)当m=﹣3时,B (﹣3,0),把A (1,0),B (﹣3,0)代入到抛物线y=x 2+bx +c 中得:{1+b +c =09−3b +c =0,解得{b =2c =−3,∴抛物线的解析式为:y=x 2+2x ﹣3=(x +1)2﹣4;对称轴是:直线x=﹣1;(2)如图1,设E (m ,m 2+2m ﹣3),由题意得:AD=1+1=2,OC=3,S △ACE =103S △ACD =103×12AD•OC=53×2×3=10,设直线AE 的解析式为:y=kx +b ,把A (1,0)和E (m ,m 2+2m ﹣3)代入得,{k +b =0mk +b =m 2+2m −3,解得:{k =m +3b =−m −3,∴直线AE 的解析式为:y=(m +3)x ﹣m ﹣3,∴F (0,﹣m ﹣3),∵C (0,﹣3),∴FC=﹣m ﹣3+3=﹣m ,∴S △ACE =12FC•(1﹣m )=10,﹣m (1﹣m )=20,m 2﹣m ﹣20=0,(m +4)(m ﹣5)=0,m 1=﹣4,m 2=5(舍),∴E (﹣4,5);(3)如图2,当B 在原点的左侧时,连接BF ,以BF 为直径作圆E ,当⊙E 与y 轴相切时,设切点为P ,∴∠BPF=90°,∴∠FPG +∠OPB=90°,∵∠OPB +∠OBP=90°,∴∠OBP=∠FPG ,连接EP ,则EP ⊥OG ,∵BE=EF ,∴EP 是梯形的中位线,∴OP=PG=2,∵FG=1,tan ∠FPG=tan ∠OBP=FG PG =OP OB, ∴12=2−m, ∴m=﹣4,∴当﹣4≤m <0时,在线段OG 上存在点P ,使∠OBP=∠FPG ;如图3,当B 在原点的右侧时,要想满足∠OBP=∠FPG ,则∠OBP=∠OPB=∠FPG ,∴OB=OP ,∴△OBP 是等腰直角三角形,△FPG 也是等腰直角三角形,∴FG=PG=1,∴OB=OP=3,∴m=3,综上所述,当﹣4≤m <0或m=3时,在线段OG 上存在点P ,使∠OBP=∠FPG .【点评】本题是二次函数的综合题,考查了利用待定系数法求函数的解析式、配方法求对称轴、等腰直角三角形的性质和判定、三角形面积的求法,并与圆相结合,根据同角的余角相等解决第3问更简单.参与本试卷答题和审题的老师有:2300680618;szl;gsls;HJJ;sjzx;HLing;王学峰;三界无我;神龙杉;fangcao;wd1899;CJX;499807835;sks;zgm666;nhx600;弯弯的小河;曹先生;tcm123(排名不分先后)菁优网2017年7月7日。

湖北省十堰市中考数学真题试题(含答案)

湖北省十堰市中考数学真题试题(含答案)

2017年十堰市初中毕业生升学考试数学试题注意事项:1.本卷共有4页,共有25小题,满分120分,考试时限120分钟.2.答题前,考生先将自己的姓名、准考证号填写在试卷和答题卡指定的位置,并认真核对条形码上的准考证号和姓名,在答题卡规定的位置贴好条形码.3.考生必须保持答题卡的整洁,考试结束后,请将本试卷和答题卡一并上交. 一. 选择题1.气温由-2℃上升3℃后是( ) ℃.A .1B .3C .5D .-52.如图的几何体,其左视图是( )3.如图,AB ∥DE ,FG ⊥BC 于F ,∠CDE =40º,则∠FGB =( )ºA .40B .50C .60D .704.下列运算正确的是( )A .2+3= 5B .22×32=6 2C .8÷2=2D .32-2=35.某交警在一个路口统计的某时段来往车辆的车速情况如下表:则上述车速的中位数和众数分别是( )A .50,8B .50,50C .49,50D .49,86.下列命题错误的是( )A .对角线互相平分的四边形是平行四边形B .对角线相等的平行四边形是矩形C .一条对角线平分一组对角的四边形是菱形D .对角线互相垂直的矩形是正方形7. 甲、乙二人做某种机械零件,甲每小时比乙多做6个,甲做90个所用的时间与做60 个所用的时间相等,设甲每小时做x 个零件,下面所列方程正确的是( )9060906090609060....6666A B C D x x x x x xx x====-+-+8.如图,已知圆柱的底面直径BC = 6π,高AB =3,小虫在圆柱表面爬行,从C 点爬到A 点,然后再沿另一面爬回C 点,则小虫爬行的最短路程为( )A. B. C. D.9. 如图,10个不同的正偶数按下图排列,箭头上方的每个数都等于其下方两数的和,如a 1=a 2+a 3,则a 1的最小值为( )A .32B .36C .38D .4010. 如图,直线6y =-分别交x 轴,y 轴于A ,B ,M 是反比例函数>ky x x=(0)的图象上位于直线上方的一点, MC ∥x 轴交AB 于C , MD ⊥MC 交AB 于D ,AC ·BD =k 的值为( ) A .-3 B .-4 C .-5 D .-6二. 填空题11.某颗粒物的直径是0.0000025米,把0.0000025用科学计数法表示为 . 12.若a -b =1,则代数式2a -2b -1的值为 .13.如图,菱形ABCD 中,AC 交BD 于O ,DE ⊥BC 于E .连接OE ,若∠ABC =140º, 则∠OED = .14.如图,△ABC 内接于⊙O ,∠ACB =90º,∠ACB 的角平分线交⊙O 于D ,若AC =6,BD =BC 的长为 .15.如图,直线y =kx 和y =ax +4交于A (1,k ),则不等式kx -6<ax +4<kx 的解集为 . 16.如图,正方形ABCD 中,BE =EF =FC ,CG =2GD ,BG 分别交AE ,AF 于M ,N .下列结论:①AF ⊥BG ;②BN = 4 3NF ;③BM MG = 3 8;④S 四边形CGNF = 12S 四边形ANGD . 其中正确的结论的序号是 .3210BxB三.解答题17.(5分)计算:201721-(-).18. (5分)化简:222+111a a a a a +--+()÷.19.(7分)如图,海中有一小岛A ,他它周围8海里内 有暗礁,渔船跟踪鱼群由西向东航行,在B 点测得 小岛A 在北偏东60°方向上,航行12海里到达D 点, 这时测得小岛A 在北偏东30°方向上.如果渔船不改 变航线继续向东航行,有没有触礁的危险?20.(9分)某中学艺术节期间,学校向学生征集书画作品,杨老师从全校30个班中随机抽取了4个班 (用A ,B ,C ,D 表示),对征集到的作品的数量进行了分析统计,制作了两幅不完整的统计图.请根据以上信息,回答下列问题:(1)杨老师采取的调查方式是 (填“普查”或“抽样调查”); (2)请你将条形统计图补充完整,并估计全校共征集多少件作品?(3)如果全校征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名的两名学生性别相同的概率.作品数量扇形统计图作品数量条形统计图21. (7分) 已知关于x 的方程x 2+(2k -1)x +k 2-1=0有两个实数根x 1,x 2. (1)求实数k 的取值范围;(2)若x 1,x 2满足x 12+x 22=16+x 1x 2,求实数k 的值.22. (8分) 某超市销售一种牛奶,进价为每箱24元,规定售价不低于进价.现在的售价为每箱36元,每月可销售60箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱.设每箱牛奶降价x 元 (x 为正整数),每月的销量为y 箱. (1)写出y 与x 之间的函数关系式和自变量x 的取值范围;(2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元?23. (8分)已知AB 为半⊙O 的直径,BC ⊥AB 于B ,且BC =AB ,D 为半⊙O 上的一点,连接BD 并延长交半⊙O 的切线AE 于E .(1) 如图1,若CD =CB ,求证:CD 是⊙O 的切线;(2) 如图2,若F 点在OB 上,且CD ⊥DF ,求AEAF 的值.24. (10分)已知O 为直线MN 上一点,OP ⊥MN ,在等腰Rt△ABO 中,∠BAO =90º,AC ∥OP 交OM 于C ,D 为OB 的中点,DE ⊥DC 交MN 于E .(1) 如图1,若点B 在OP 上,则①AC OE (填“<”,“=”或“>”);②线段CA 、CO 、CD 满足的等量关系式是 ;(2) 将图1中的等腰Rt△ABO 绕O 点顺时针旋转α(0º<α<45º),如图2,那么(1)中的结论②是否成立?请说明理由;(3) 将图1中的等腰Rt△ABO 绕O 点顺时针旋转α(45º<α<90º),请你在图3中画出图形,并直接写出线段CA 、CO 、CD 满足的等量关系式 ;C25. (12分)抛物线y =x 2+bx +c 与x 轴交于A (1,0),B (m ,0),与y 轴交于C . (1) 若m =-3,求抛物线的解析式,并写出抛物线的对称轴;(2) 如图1,在(1)的条件下,设抛物线的对称轴交x 轴于D ,在对称轴左侧的抛物线上有一点E ,使S △ACE = 103S △ACD ,求E 点的坐标;(3) 如图2,设F (-1,-4),FG ⊥y 轴于G ,在线段OG 上是否存在点P ,使∠OBP =∠FPG ? 若存在,求m 的取值范围;若不存在,请说明理由.图2xx十堰2017年中考数学试题参考答案一、选择题:二、填空题:11、2.5×10-6; 12、1; 13、20°; 14、8; 15、1<x <2.5; 16、①③. 第16题解析:(1)可证△ABF ≌△BCG ,得AF ⊥BG ; (2)32BN BC NF CG ==,所以②不正确; (3)设正方形的边长为3,则 GH=2,HP=23,得GP=83由GP//BC 得△GPM ~△BME ∴83138BM BE MG GP ==÷= ∴③正确.(4)设正方形的边长为3,则 S △BCG = S △AB F =12332⨯⨯= ∴S CGNF =S △ABM =22273313AB BG ⎛⎫⨯=⨯= ⎪⎝⎭∵S ABGD =113=2+⨯()36 ∴S ANGD =27516-=1313∴S CGNF :S ANGD =27:51≠1:2 ∴④不正确. ∴正确的选项为①③.17、解:原式=2-2+1=1;18、解:原式=2221313(1)(1)(1)(1)(1)(1)1a a a a a a a a a a a a a a ⎛⎫-+--+⨯=⨯= ⎪+-+-+-+⎝⎭;19、解析:由∠BAD=∠B=30°可得AD=BD=12∵∠ADC=60°, ∴AC=128> ∴没有触礁的危险. 20、解: (1)抽样调查(2)C 班高度为10;24÷4×30=180(件); (3)P=2521、(1)k ≤54; (2)k =-2. 22、(1)y =10x +60,1≤x ≤12,且x 为整数; (2)设利润为W 元,由题意得,w =(36-x -24)(10x +60)整理得,w =-10x 2+60x +720=-10(x -3)2+810 ∵a = -10<0,且1≤x ≤12 ∴当x =3时,w 有最大值810 ∴售价为36-3=33答:当定价为33元/箱时,每月牛奶销售利润最大,最大利润是810元.23、(1)证明:略;(此问简单) (2)连接AD. ∵DF ⊥DC ∴∠1+∠BDF=90° ∵AB 是⊙O 的直径 ∴∠2+∠BDF=90° ∴∠1=∠2又∵∠3+∠ABD=90°, ∠4+∠ABD=90° ∴∠3=∠4 ∴△ADF ~△BCDAF ADBC BD=CDBA4321FOE D CBA∵∠3+∠EAD =90°,∠E+∠EAD =90° ∴∠3=∠E又∵∠ADE=∠ADB=90° ∴△AD E ~△ABD∴AE ADAB BD =∴AE AFAB BC = ∴1AE ABAF BC==24、(1)①AC =OE ;②CA +CO; (2)结论②仍然成立. 理由:连接AD. ∵△OAB 是等腰直角三角形,且D 为OB 的中点 ∴AD ⊥OB ,AD=DO ∴∠ADO=90° ∴∠ADC+∠CDO=90° ∵DE ⊥CD∴∠CDE=∠ODE+∠CDO=90° ∴∠ADC=∠ODE ∵AC ⊥MN ∴∠ACO=90°∴∠CAD+∠DOC=360°-90°-90°=180° ∵∠DOE+∠DOC=180° ∴∠CAD=∠DOE 在△ACD 和△DOE 中 ∠ADC=∠ODE ∠DAC=∠DOEAD=DO∴△ACD ≌△DOE (ASA ) ∴AC=OE ,CD=DE ∵∠CDE=90°∴△CDE 是等腰直角三角形 ∴OE+CO ∴CA +CO(3)如右图所示,CO -CA 解析:连接AD ,先证明△ACD ≌△DOF (ASA ),得CA=OF ,CD=DF ; 然后证明△CDF 是等腰直角三角形,得: ,所以CO -CACNM25、(1)y =x 2+2x -3(2)∵点A (1,0),C (0,-3) ∴直线AC 为y= 3x-3∴过点D (-1,0)且平行于AC 的直线L 1为:y= 3x+3 ∴直线AC 向上平移6个单位得到直线L 1 ∴将直线AC 向上平移106203⨯=个单位得到直线L 2:y=3x+17 联立方程组,y =x 2+2x -3y=3x+17 解得,x 1=-4 x 1=5 y 1=5 y 1=32 (不合题意,舍去) ∴点E 坐标为(-4,5)(3)设点P (0,y )①当m <0时,如图所示,易证△POB ~△FPG ,得OBOPPG FG = ∴41m yy --=+ ∴m=y 2+4y=(y+2)2-4 ∵-4<y <0 ∴-4≤m <0②当m >0时,如图所示,易证△POB ~△FPG ,得OB OPPG FG = ∴41m yy -=+ ∴m= -y 2 -4y= -(y+2)2+4 ∵-4<y <0 ∴0<m ≤4综上所述,m 的取值范围是:-4≤m ≤4,且m ≠0.L2L1xyODCBA。

2017年最新湖北省十堰市中考数学试题(word版,含答案)

2017年最新湖北省十堰市中考数学试题(word版,含答案)
这时测得小岛A在北偏东30°方向上.如果渔船不改
变航线继续向东航行,有没有触礁的危险?
20.(9分)某中学艺术节期间,学校向学生征集书画作品,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作品的数量进行了分析统计,制作了两幅不完整的统计图.请根据以上信息,回答下列问题:
(1)杨老师采取的调查方式是(填“普查”或“抽样调查”);
C.一条对角线平分一组对角的四边形是菱形D.对角线互相垂直的矩形是正方形
7.甲、乙二人做某种机械零件,甲每小时比乙多做6个,甲做90个所用的时间与做60
个所用的时间相等,设甲每小时做x个零件,下面所列方程正确的是( )
8.如图,已知圆柱的底面直径BC= ,高AB=3,小虫在圆柱表面爬行,从C点爬到A点,然后再沿另一面爬回C点,则小虫爬行的最短路程为( )
A. B. C. D.
9.如图,10个不同的正偶数按下图排列,箭头上方的每个数都等于其下方两数的和,如 ,表示a1=a2+a3,则a1的最小值为( )
A.32B.36C.38D.40
10.如图,直线 分别交x轴,y轴于A,B,M是反比例函数
的图象上位于直线上方的一点,MC∥x轴交AB于C,MD⊥MC交AB于D,
下列结论:①AF⊥BG;②BN= NF;③ = ;④S四边形CGNF= S四边形ANGD.
其中正确的结论的序号是.
三.解答题
17.(5分)计算: .
18. (5分)化简: .
19.(7分)如图,海中有一小岛A,他它周围8海里内
有暗礁,渔船跟踪鱼群由西向东航行,在B点测得
小岛A在北偏东60°方向上,航行12海里到达D点,
(2)如图2,若F点在OB上,且CD⊥DF,求 的值.

【真卷】2017年湖北省十堰市中考数学试卷含参考答案

【真卷】2017年湖北省十堰市中考数学试卷含参考答案

2017年湖北省十堰市中考数学试卷一、选择题:1.(3分)气温由﹣2℃上升3℃后是()℃.A.1 B.3 C.5 D.﹣52.(3分)如图的几何体,其左视图是()A.B.C.D.3.(3分)如图,AB∥DE,FG⊥BC于F,∠CDE=40°,则∠FGB=()A.40°B.50°C.60°D.70°4.(3分)下列运算正确的是()A.B.C.D.5.(3分)某交警在一个路口统计的某时段来往车辆的车速情况如表:则上述车速的中位数和众数分别是()A.50,8 B.50,50 C.49,50 D.49,86.(3分)下列命题错误的是()A.对角线互相平分的四边形是平行四边形B.对角线相等的平行四边形是矩形C.一条对角线平分一组对角的四边形是菱形D.对角线互相垂直的矩形是正方形7.(3分)甲、乙二人做某种机械零件,甲每小时比乙多做6个,甲做90个所用的时间与乙60个所用的时间相等.设甲每小时做x个零件,下面所列方程正确的是()A.B.C.D.8.(3分)如图,已知圆柱的底面直径BC=,高AB=3,小虫在圆柱表面爬行,从C点爬到A点,然后再沿另一面爬回C点,则小虫爬行的最短路程为()A.B.C.D.9.(3分)如图,10个不同的正偶数按下图排列,箭头上方的每个数都等于其下方两数的和,如,表示a1=a2+a3,则a1的最小值为()A.32 B.36 C.38 D.4010.(3分)如图,直线y=x﹣6分别交x轴,y轴于A,B,M是反比例函数y=(x>0)的图象上位于直线上方的一点,MC∥x轴交AB于C,MD⊥MC交AB于D,AC•BD=4,则k的值为()A.﹣3 B.﹣4 C.﹣5 D.﹣6二、填空题11.(3分)某颗粒物的直径是0.0000025,把0.0000025用科学记数法表示为.12.(3分)若a﹣b=1,则代数式2a﹣(2b﹣1)的值是.13.(3分)如图,菱形ABCD中,AC交BD于O,DE⊥BC于E,连接OE,若∠ABC=140°,则∠OED=.14.(3分)如图,△ABC内接于⊙O,∠ACB=90°,∠ACB的角平分线交⊙O于D.若AC=6,BD=5,则BC的长为.15.(3分)如图,直线y=kx和y=ax+4交于A(1,k),则不等式kx﹣6<ax+4<kx的解集为.16.(3分)如图,正方形ABCD中,BE=EF=FC,CG=2GD,BG分别交AE,AF于M,N.下列结论:①AF⊥BG;②BN=NF;③=;④S四边形CGNF=S四边形ANGD.其中正确的结论的序号是.三、解答题(本大题共9小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(5分)计算:|﹣2|+﹣(﹣1)2017.18.(6分)化简:(+)÷.19.(7分)如图,海中有一小岛A,它周围8海里内有暗礁,渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏东60°方向上,航行12海里到达D点,这时测得小岛A在北偏东30°方向上.如果渔船不改变航线继续向东航行,有没有触礁的危险?20.(9分)某中学艺术节期间,学校向学生征集书画作品,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作品的数量进行了分析统计,制作了两幅不完整的统计图.请根据以上信息,回答下列问题:(1)杨老师采用的调查方式是(填“普查”或“抽样调查”);(2)请你将条形统计图补充完整,并估计全校共征集多少件作品?(3)如果全校征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.21.(7分)已知关于x的方程x2+(2k﹣1)x+k2﹣1=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)若x1,x2满足x12+x22=16+x1x2,求实数k的值.22.(8分)某超市销售一种牛奶,进价为每箱24元,规定售价不低于进价.现在的售价为每箱36元,每月可销售60箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱,设每箱牛奶降价x元(x为正整数),每月的销量为y箱.(1)写出y与x之间的函数关系式和自变量x的取值范围;(2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元?23.(8分)已知AB为⊙O的直径,BC⊥AB于B,且BC=AB,D为半圆⊙O上的一点,连接BD并延长交半圆⊙O的切线AE于E.(1)如图1,若CD=CB,求证:CD是⊙O的切线;(2)如图2,若F点在OB上,且CD⊥DF,求的值.24.(10分)已知O为直线MN上一点,OP⊥MN,在等腰Rt△ABO中,∠BAO=90°,AC∥OP交OM于C,D为OB的中点,DE⊥DC交MN于E.(1)如图1,若点B在OP上,则①AC OE(填“<”,“=”或“>”);②线段CA、CO、CD满足的等量关系式是;(2)将图1中的等腰Rt△ABO绕O点顺时针旋转α(0°<α<45°),如图2,那么(1)中的结论②是否成立?请说明理由;(3)将图1中的等腰Rt△ABO绕O点顺时针旋转α(45°<α<90°),请你在图3中画出图形,并直接写出线段CA、CO、CD满足的等量关系式.25.(12分)抛物线y=x2+bx+c与x轴交于A(1,0),B(m,0),与y轴交于C.(1)若m=﹣3,求抛物线的解析式,并写出抛物线的对称轴;(2)如图1,在(1)的条件下,设抛物线的对称轴交x轴于D,在对称轴左侧的抛物线上有一点E,使S=S△ACD,求点E的坐标;△ACE(3)如图2,设F(﹣1,﹣4),FG⊥y于G,在线段OG上是否存在点P,使∠OBP=∠FPG?若存在,求m的取值范围;若不存在,请说明理由.2017年湖北省十堰市中考数学试卷参考答案与试题解析一、选择题:1.(3分)气温由﹣2℃上升3℃后是()℃.A.1 B.3 C.5 D.﹣5【解答】解:由题意,得﹣2+3=+(3﹣2)=1,故选:A.2.(3分)如图的几何体,其左视图是()A.B.C.D.【解答】解:从左边看第一层是两个小正方形,第二层左边一个小正方形,故选:B.3.(3分)如图,AB∥DE,FG⊥BC于F,∠CDE=40°,则∠FGB=()A.40°B.50°C.60°D.70°【解答】解:∵AB∥DE,∠CDE=40°,∴∠B=∠CDE=40°,又∵FG⊥BC,∴∠FGB=90°﹣∠B=50°,故选:B.4.(3分)下列运算正确的是()A.B.C.D.【解答】解:A、与不能合并,所以A选项错误;B、原式=6×2=12,所以B选项错误;C、原式==2,所以C选项准确;D、原式=2,所以D选项错误.故选C.5.(3分)某交警在一个路口统计的某时段来往车辆的车速情况如表:则上述车速的中位数和众数分别是()A.50,8 B.50,50 C.49,50 D.49,8【解答】解:要求一组数据的中位数,把这组数据按照从小到大的顺序排列,第10、11两个数的平均数是50,所以中位数是50,在这组数据中出现次数最多的是50,即众数是50.故选:B.6.(3分)下列命题错误的是()A.对角线互相平分的四边形是平行四边形B.对角线相等的平行四边形是矩形C.一条对角线平分一组对角的四边形是菱形D.对角线互相垂直的矩形是正方形【解答】解:A、对角线互相平分的四边形是平行四边形是正确的,不符合题意;B、对角线相等的平行四边形是矩形是正确的,不符合题意;C、一条对角线平分一组对角的四边形不一定是菱形,原来的说法错误,符合题意;D、对角线互相垂直的矩形是正方形是正确的,不符合题意.故选C.7.(3分)甲、乙二人做某种机械零件,甲每小时比乙多做6个,甲做90个所用的时间与乙60个所用的时间相等.设甲每小时做x个零件,下面所列方程正确的是()A.B.C.D.【解答】解:设甲每小时做x个零件,则乙每小时做(x﹣6)个零件,由题意得,=.故选A.8.(3分)如图,已知圆柱的底面直径BC=,高AB=3,小虫在圆柱表面爬行,从C点爬到A点,然后再沿另一面爬回C点,则小虫爬行的最短路程为()A.B.C.D.【解答】解:把圆柱侧面展开,展开图如右图所示,点A、C的最短距离为线段AC的长.在RT△ADC中,∠ADC=90°,CD=AB=3,AD为底面半圆弧长,AD=3,所以AC=3,∴从C点爬到A点,然后再沿另一面爬回C点,则小虫爬行的最短路程为2AC=6,故选D.9.(3分)如图,10个不同的正偶数按下图排列,箭头上方的每个数都等于其下方两数的和,如,表示a1=a2+a3,则a1的最小值为()A.32 B.36 C.38 D.40【解答】解:∵a1=a2+a3=a4+a5+a5+a6=a7+a8+a8+a9+a8+a9+a9+a10=a7+3(a8+a9)+a10,∴要使a1取得最小值,则a8+a9应尽可能的小,取a8=2、a9=4,∵a5=a8+a9=6,则a7、a10中不能有6,若a10=8,则a6=a9+a10=12,∴a7=14,则a4=14+2=16、a2=16+6=22、a3=6+12=18、a1=18+22=40;故选:D10.(3分)如图,直线y=x﹣6分别交x轴,y轴于A,B,M是反比例函数y=(x>0)的图象上位于直线上方的一点,MC∥x轴交AB于C,MD⊥MC交AB于D,AC•BD=4,则k的值为()A.﹣3 B.﹣4 C.﹣5 D.﹣6【解答】解:过点D作DE⊥y轴于点E,过点C作CF⊥x轴于点F,令x=0代入y=x﹣6,∴y=﹣6,∴B(0,﹣6),∴OB=6,令y=0代入y=x﹣6,∴x=2,∴(2,0),∴OA=2,∴勾股定理可知:AB=4,∴sin∠OAB==,cos∠OAB==设M(x,y),∴CF=﹣y,ED=x,∴sin∠OAB=,∴AC=﹣y,∵cos∠OAB=cos∠EDB=,∴BD=2x,∵AC•BD=4,∴﹣y×2x=4,∴xy=﹣3,∵M在反比例函数的图象上,故选(A)二、填空题11.(3分)某颗粒物的直径是0.0000025,把0.0000025用科学记数法表示为 2.5×10﹣6.【解答】解:0.0000025用科学记数法表示为2.5×10﹣6,故答案为:2.5×10﹣6.12.(3分)若a﹣b=1,则代数式2a﹣(2b﹣1)的值是3.【解答】解:整理代数式得,2a﹣2b+1=2(a﹣b)+1,∵a﹣b=1,∴原式=2+1=3.13.(3分)如图,菱形ABCD中,AC交BD于O,DE⊥BC于E,连接OE,若∠ABC=140°,则∠OED=20°.【解答】解:∵四边形ABCD是菱形,∵DE⊥BC于E,∴OE为直角三角形BED斜边上的中线,∴OE=BD,∴OB=OE,∴∠OBE=∠OEB,∵∠ABC=140°,∴∠OBE=70°,∴∠OED=90°﹣70°=20°,故答案为:20°.14.(3分)如图,△ABC内接于⊙O,∠ACB=90°,∠ACB的角平分线交⊙O于D.若AC=6,BD=5,则BC的长为8.【解答】解:连接AD,∵∠ACB=90°,∴AB是⊙O的直径.∵ACB的角平分线交⊙O于D,∴∠ACD=∠BCD=45°,∴AD=BD=5.∵AB是⊙O的直径,∴△ABD是等腰直角三角形,∴AB===10.∵AC=6,∴BC===8.故答案为:8.15.(3分)如图,直线y=kx和y=ax+4交于A(1,k),则不等式kx﹣6<ax+4<kx的解集为1<x<.【解答】解:如图,由y=kx﹣6与y=ax+4得OB=4,OC=6,∵直线y=kx平行于直线y=kx﹣6,∴===,分别过A,D作AM⊥x轴于M,DN⊥x轴于N,则AM∥DN∥y轴,∴==,∵A(1,k),∴OM=1,∴MN=,∴ON=,∴D点的横坐标是,∴1<x<时,kx﹣6<ax+4<kx,故答案为:1<x<.16.(3分)如图,正方形ABCD中,BE=EF=FC,CG=2GD,BG分别交AE,AF于M,N.下列结论:①AF⊥BG;②BN=NF;③=;④S四边形CGNF=S四边形ANGD.其中正确的结论的序号是①③.【解答】解:①∵四边形ABCD为正方形,∴AB=BC=CD,∵BE=EF=FC,CG=2GD,∴BF=CG,∵在△ABF和△BCG中,,∴△ABF≌△BCG,∴∠BAF=∠CBG,∵∠BAF+∠BFA=90°,∴∠CBG+∠BFA=90°,即AF⊥BG;①正确;②∵在△BNF和△BCG中,,∴△BNF∽△BCG,∴==,∴BN=NF;②错误;③作EH⊥AF,令AB=3,则BF=2,BE=EF=CF=1,AF==,∵S△ABF=AF•BN=AB•BF,∴BN=,NF=BN=,∴AN=AF﹣NF=,∵E是BF中点,∴EH是△BFN的中位线,∴EH=,NH=,BN∥EH,∴AH=,=,解得:MN=,∴BM=BN﹣MN=,MG=BG﹣BM=,∴=;③正确;④连接AG,FG,根据③中结论,则NG=BG﹣BN=,∵S四边形CGNF=S△CFG+S△GNF=CG•CF+NF•NG=1+=,S四边形ANGD=S△ANG+S△ADG=AN•GN+AD•DG=+=,∴S四边形CGNF ≠S四边形ANGD,④错误;故答案为①③.三、解答题(本大题共9小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(5分)计算:|﹣2|+﹣(﹣1)2017.【解答】解:原式=2﹣2+1=1.18.(6分)化简:(+)÷.【解答】解:(+)÷====.19.(7分)如图,海中有一小岛A,它周围8海里内有暗礁,渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏东60°方向上,航行12海里到达D点,这时测得小岛A在北偏东30°方向上.如果渔船不改变航线继续向东航行,有没有触礁的危险?【解答】解:只要求出A到BD的最短距离是否在以A为圆心,以8海里的圆内或圆上即可,如图,过A作AC⊥BD于点C,则AC的长是A到BD的最短距离,∵∠CAD=30°,∠CAB=60°,∴∠BAD=60°﹣30°=30°,∠ABD=90°﹣60°=30°,∴∠ABD=∠BAD,∴BD=AD=12海里,∵∠CAD=30°,∠ACD=90°,∴CD=AD=6海里,由勾股定理得:AC==6≈10.392>8,即渔船继续向正东方向行驶,没有触礁的危险.20.(9分)某中学艺术节期间,学校向学生征集书画作品,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作品的数量进行了分析统计,制作了两幅不完整的统计图.请根据以上信息,回答下列问题:(1)杨老师采用的调查方式是抽样调查(填“普查”或“抽样调查”);(2)请你将条形统计图补充完整,并估计全校共征集多少件作品?(3)如果全校征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.【解答】解:(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查.故答案为抽样调查.(2)所调查的4个班征集到的作品数为:6÷=24件,平均每个班=6件,C班有10件,∴估计全校共征集作品6×30=180件.条形图如图所示,(3)画树状图得:∵共有20种等可能的结果,两名学生性别相同的有8种情况,∴恰好抽中一男一女的概率为:=.21.(7分)已知关于x的方程x2+(2k﹣1)x+k2﹣1=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)若x1,x2满足x12+x22=16+x1x2,求实数k的值.【解答】解:(1)∵关于x的方程x2+(2k﹣1)x+k2﹣1=0有两个实数根x1,x2,∴△=(2k﹣1)2﹣4(k2﹣1)=﹣4k+5≥0,解得:k≤,∴实数k的取值范围为k≤.(2)∵关于x的方程x2+(2k﹣1)x+k2﹣1=0有两个实数根x1,x2,∴x1+x2=1﹣2k,x1•x2=k2﹣1.∵x12+x22=(x1+x2)2﹣2x1•x2=16+x1•x2,∴(1﹣2k)2﹣2×(k2﹣1)=16+(k2﹣1),即k2﹣4k﹣12=0,解得:k=﹣2或k=6(不符合题意,舍去).∴实数k的值为﹣2.22.(8分)某超市销售一种牛奶,进价为每箱24元,规定售价不低于进价.现在的售价为每箱36元,每月可销售60箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱,设每箱牛奶降价x元(x为正整数),每月的销量为y箱.(1)写出y与x之间的函数关系式和自变量x的取值范围;(2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元?【解答】解:(1)根据题意,得:y=60+10x,由36﹣x≥24得x≤12,∴1≤x≤12,且x为整数;(2)设所获利润为W,则W=(36﹣x﹣24)(10x+60)=﹣10x2+60x+720=﹣10(x﹣3)2+810,∴当x=3时,W取得最大值,最大值为810,答:超市定价为33元时,才能使每月销售牛奶的利润最大,最大利润是810元.23.(8分)已知AB为⊙O的直径,BC⊥AB于B,且BC=AB,D为半圆⊙O上的一点,连接BD并延长交半圆⊙O的切线AE于E.(1)如图1,若CD=CB,求证:CD是⊙O的切线;(2)如图2,若F点在OB上,且CD⊥DF,求的值.【解答】解:(1)连接DO,CO,∵BC⊥AB于B,∴∠ABC=90°,在△CDO与△CBO中,,∴△CDO≌△CBO,∴∠CDO=∠CBO=90°,∴OD⊥CD,∴CD是⊙O的切线;(2)连接AD,∵AB是直径,∴∠ADB=90°,∴∠ADF+∠BDF=90°,∠DAB+∠DBA=90°,∵∠BDF+∠BDC=90°,∠CBD+∠DBA=90°,∴∠ADF=∠BDC,∠DAB=∠CBD,∵在△ADF和△BDC中,,∴△ADF∽△BDC,∴=,∵∠DAE+∠DAB=90°,∠E+∠DAE=90°,∴∠E=∠DAB,∵在△ADE和△BDA中,,∴△ADE∽△BDA,∴=,∴=,即=,∵AB=BC,∴=1.24.(10分)已知O为直线MN上一点,OP⊥MN,在等腰Rt△ABO中,∠BAO=90°,AC∥OP交OM于C,D为OB的中点,DE⊥DC交MN于E.(1)如图1,若点B在OP上,则①AC=OE(填“<”,“=”或“>”);②线段CA、CO、CD满足的等量关系式是AC2+CO2=CD2;(2)将图1中的等腰Rt△ABO绕O点顺时针旋转α(0°<α<45°),如图2,那么(1)中的结论②是否成立?请说明理由;(3)将图1中的等腰Rt△ABO绕O点顺时针旋转α(45°<α<90°),请你在图3中画出图形,并直接写出线段CA、CO、CD满足的等量关系式CO﹣CA=CD.【解答】解:(1)①AC=OE,理由:如图1,∵在等腰Rt△ABO中,∠BAO=90°,∴∠ABO=∠AOB=45°,∵OP⊥MN,∴∠COP=90°,∴∠AOC=45°,∵AC∥OP,∴∠CAO=∠AOB=45°,∠ACO=∠POE=90°,∴AC=OC,连接AD,∵BD=OD,∴AD=OD,AD⊥OB,∴AD∥OC,∴四边形ADOC是正方形,∴∠DCO=45°,∴AC=OD,∴∠DEO=45°,∴CD=DE,∴OC=OE,∴AC=OE;②在Rt△CDO中,∵CD2=OC2+OD2,∴CD2=AC2+OC2;故答案为:AC2+CO2=CD2;(2)如图2,(1)中的结论②不成立,理由是:连接AD,延长CD交OP于F,连接EF,∵AB=AO,D为OB的中点,∴AD⊥OB,∴∠ADO=90°,∵∠CDE=90°,∴∠ADO=∠CDE,∴∠ADO﹣∠CDO=∠CDE﹣∠CDO,即∠ADC=∠EDO,∵∠ADO=∠ACO=90°,∴∠ADO+∠ACO=180°,∴A、D、O、C四点共圆,∴∠ACD=∠AOB,同理得:∠EFO=∠EDO,∴∠EFO=∠AOC,∵△ABO是等腰直角三角形,∴∠AOB=45°,∴∠DCO=45°,∴△COF和△CDE是等腰直角三角形,∴OC=OF,∵∠ACO=∠EOF=90°,∴△ACO≌△EOF,∴OE=AC,AO=EF,∴AC2+OC2=FO2+OE2=EF2,Rt△DEF中,EF>DE=DC,∴AC2+OC2>DC2,所以(1)中的结论②不成立;(3)如图3,结论:OC﹣CA=CD,理由是:连接AD,则AD=OD,同理:∠ADC=∠EDO,∵∠CAB+∠CAO=∠CAO+∠AOC=90°,∴∠CAB=∠AOC,∵∠DAB=∠AOD=45°,∴∠DAB﹣∠CAB=∠AOD﹣∠AOC,即∠DAC=∠DOE,∴△ACD≌△OED,∴AC=OE,CD=DE,∴△CDE是等腰直角三角形,∴CE2=2CD2,∴(OC﹣OE)2=(OC﹣AC)2=2CD2,∴OC﹣AC=CD,故答案为:OC﹣AC=CD.25.(12分)抛物线y=x2+bx+c与x轴交于A(1,0),B(m,0),与y轴交于C.(1)若m=﹣3,求抛物线的解析式,并写出抛物线的对称轴;(2)如图1,在(1)的条件下,设抛物线的对称轴交x轴于D,在对称轴左侧=S△ACD,求点E的坐标;的抛物线上有一点E,使S△ACE(3)如图2,设F(﹣1,﹣4),FG⊥y于G,在线段OG上是否存在点P,使∠OBP=∠FPG?若存在,求m的取值范围;若不存在,请说明理由.【解答】解:(1)当m=﹣3时,B(﹣3,0),把A(1,0),B(﹣3,0)代入到抛物线y=x2+bx+c中得:,解得,∴抛物线的解析式为:y=x2+2x﹣3=(x+1)2﹣4;对称轴是:直线x=﹣1;(2)如图1,设E(m,m2+2m﹣3),由题意得:AD=1+1=2,OC=3,S△ACE=S△ACD=×AD•OC=×2×3=10,设直线AE的解析式为:y=kx+b,把A(1,0)和E(m,m2+2m﹣3)代入得,,解得:,∴直线AE的解析式为:y=(m+3)x﹣m﹣3,∴F(0,﹣m﹣3),∵C(0,﹣3),∴FC=﹣m﹣3+3=﹣m,∴S=FC•(1﹣m)=10,△ACE﹣m(1﹣m)=20,m2﹣m﹣20=0,(m+4)(m﹣5)=0,m1=﹣4,m2=5(舍),∴E(﹣4,5);(3)设点P(0,y).①当m<0时,如图2,△POB∽△FGP,得=,∴,∴m=y2+4y=(y+2)2﹣4,∵﹣4<y<0,∴﹣4≤m<0.②当m>0时,如图3,△POB∽△FGP,∴=,∴=,∴m=﹣y2﹣4y=﹣(y+2)2+4,∴﹣4<y<0,∴0<m≤4,综上所述,m的取值范围是﹣4≤m≤4且m≠0._____________________________________________________________________________。

初中数学2017年湖北省十堰市中考数学试卷

初中数学2017年湖北省十堰市中考数学试卷

2017年湖北省十堰市中考数学试卷一、选择题:1.(3分)气温由﹣2℃上升3℃后是()℃.A.1 B.3 C.5 D.﹣52.(3分)如图的几何体,其左视图是()A.B.C.D.3.(3分)如图,AB∥DE,FG⊥BC于F,∠CDE=40°,则∠FGB=()A.40°B.50°C.60°D.70°4.(3分)下列运算正确的是()A. B.C.D.5.(3分)某交警在一个路口统计的某时段来往车辆的车速情况如表:则上述车速的中位数和众数分别是()A.50,8 B.50,50 C.49,50 D.49,86.(3分)下列命题错误的是()A.对角线互相平分的四边形是平行四边形B.对角线相等的平行四边形是矩形C.一条对角线平分一组对角的四边形是菱形D.对角线互相垂直的矩形是正方形7.(3分)甲、乙二人做某种机械零件,甲每小时比乙多做6个,甲做90个所用的时间与做60个所用的时间相等.设甲每小时做x个零件,下面所列方程正确的是()A.B.C.D.8.(3分)如图,已知圆柱的底面直径BC=,高AB=3,小虫在圆柱表面爬行,从C点爬到A点,然后再沿另一面爬回C点,则小虫爬行的最短路程为()A.B.C.D.9.(3分)如图,10个不同的正偶数按下图排列,箭头上方的每个数都等于其下方两数的和,如,表示a1=a2+a3,则a1的最小值为()A.32 B.36 C.38 D.4010.(3分)如图,直线y=x﹣6分别交x轴,y轴于A,B,M是反比例函数y=(x>0)的图象上位于直线上方的一点,MC∥x轴交AB于C,MD⊥MC交AB于D,AC•BD=4,则k的值为()A.﹣3 B.﹣4 C.﹣5 D.﹣6二、填空题11.(3分)某颗粒物的直径是0.0000025,把0.0000025用科学记数法表示为.12.(3分)若a﹣b=1,则代数式2a﹣2b﹣1的值为.(3分)如图,菱形ABCD中,AC交BD于O,DE⊥BC于E,连接OE,若∠ABC=140°,13.则∠OED= .14.(3分)如图,△ABC内接于⊙O,∠ACB=90°,∠ACB的角平分线交⊙O于D.若AC=6,BD=5,则BC的长为.15.(3分)如图,直线y=kx和y=ax+4交于A(1,k),则不等式kx﹣6<ax+4<kx的解集为.16.(3分)如图,正方形ABCD中,BE=EF=FC,CG=2GD,BG分别交AE,AF于M,N.下列结论:①AF⊥BG;②BN=NF;③=;④S四边形CGNF =S四边形ANGD.其中正确的结论的序号是.三、解答题(本大题共9小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(5分)计算:|﹣2|+﹣(﹣1)2017.18.(6分)化简:(+)÷.19.(7分)如图,海中有一小岛A,它周围8海里内有暗礁,渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏东60°方向上,航行12海里到达D点,这时测得小岛A在北偏东30°方向上.如果渔船不改变航线继续向东航行,有没有触礁的危险?20.(9分)某中学艺术节期间,学校向学生征集书画作品,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作品的数量进行了分析统计,制作了两幅不完整的统计图.请根据以上信息,回答下列问题:(1)杨老师采用的调查方式是(填“普查”或“抽样调查”);(2)请你将条形统计图补充完整,并估计全校共征集多少件作品?(3)如果全校征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.21.(7分)已知关于x的方程x2+(2k﹣1)x+k2﹣1=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)若x1,x2满足x12+x22=16+x1x2,求实数k的值.22.(8分)某超市销售一种牛奶,进价为每箱24元,规定售价不低于进价.现在的售价为每箱36元,每月可销售60箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱,设每箱牛奶降价x元(x为正整数),每月的销量为y箱.(1)写出y与x中间的函数关系书和自变量x的取值范围;(2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元?23.(8分)已知AB为⊙O的直径,BC⊥AB于B,且BC=AB,D为半圆⊙O上的一点,连接BD并延长交半圆⊙O的切线AE于E.(1)如图1,若CD=CB,求证:CD是⊙O的切线;(2)如图2,若F点在OB上,且CD⊥DF,求的值.24.(10分)已知O为直线MN上一点,OP⊥MN,在等腰Rt△ABO中,∠BAO=90°,AC∥OP交OM于C,D为OB的中点,DE⊥DC交MN于E.(1)如图1,若点B在OP上,则①AC OE(填“<”,“=”或“>”);②线段CA、CO、CD满足的等量关系式是;(2)将图1中的等腰Rt△ABO绕O点顺时针旋转α(0°<α<45°),如图2,那么(1)中的结论②是否成立?请说明理由;(3)将图1中的等腰Rt△ABO绕O点顺时针旋转α(45°<α<90°),请你在图3中画出图形,并直接写出线段CA、CO、CD满足的等量关系式.25.(12分)抛物线y=x2+bx+c与x轴交于A(1,0),B(m,0),与y轴交于C.(1)若m=﹣3,求抛物线的解析式,并写出抛物线的对称轴;(2)如图1,在(1)的条件下,设抛物线的对称轴交x轴于D,在对称轴左侧的抛物线上有一点E,使S△ACE =S△ACD,求点E的坐标;(3)如图2,设F(﹣1,﹣4),FG⊥y于G,在线段OG上是否存在点P,使∠OBP=∠FPG?若存在,求m的取值范围;若不存在,请说明理由.2017年湖北省十堰市中考数学试卷参考答案与试题解析一、选择题:1.(3分)(2017•十堰)气温由﹣2℃上升3℃后是()℃.A.1 B.3 C.5 D.﹣5【分析】根据有理数的加法,可得答案.【解答】解:由题意,得﹣2+3=+(3﹣2)=1,故选:A.【点评】本题考查了有理数的加法,异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减较小的绝对值.2.(3分)(2017•十堰)如图的几何体,其左视图是()A.B.C.D.【分析】根据从左边看得到的图象是左视图,可得答案.【解答】解:从左边看第一层是两个小正方形,第二层左边一个小正方形,故选:B.【点评】本题考查了简单组合体的三视图,从左边看得到的图象是左视图.3.(3分)(2017•十堰)如图,AB∥DE,FG⊥BC于F,∠CDE=40°,则∠FGB=()A.40°B.50°C.60°D.70°【分析】先根据平行线的性质,得到∠B=∠CDE=40°,直观化FG⊥BC,即可得出∠FGB的度数.【解答】解:∵AB∥DE,∠CDE=40°,∴∠B=∠CDE=40°,又∵FG⊥BC,∴∠FGB=90°﹣∠B=50°,故选:B.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.4.(3分)(2017•十堰)下列运算正确的是()A. B.C.D.【分析】根据二次根式的加减法对A、D进行判断;根据二次根式的乘法法则对B进行判断;根据二次根式的除法法则对D进行判断.【解答】解:A、与不能合并,所以A选项错误;B、原式=6×2=12,所以B选项错误;C、原式==2,所以C选项准确;D、原式=2,所以D选项错误.故选C.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.5.(3分)(2017•十堰)某交警在一个路口统计的某时段来往车辆的车速情况如表:则上述车速的中位数和众数分别是()A.50,8 B.50,50 C.49,50 D.49,8【分析】把这组数据按照从小到大的顺序排列,第10、11个数的平均数是中位数,在这组数据中出现次数最多的是50,得到这组数据的众数.【解答】解:要求一组数据的中位数,把这组数据按照从小到大的顺序排列,第10、11两个数的平均数是50,所以中位数是50,在这组数据中出现次数最多的是50,即众数是50.故选:B.【点评】本题考查一组数据的中位数和众数,在求中位数时,首先要把这列数字按照从小到大或从的大到小排列,找出中间一个数字或中间两个数字的平均数即为所求.6.(3分)(2017•十堰)下列命题错误的是()A.对角线互相平分的四边形是平行四边形B.对角线相等的平行四边形是矩形C.一条对角线平分一组对角的四边形是菱形D.对角线互相垂直的矩形是正方形【分析】利用平行四边形、矩形、菱形及正方形的判定定理分别判断后即可确定正确的选项.【解答】解:A、对角线互相平分的四边形是平行四边形是正确的,不符合题意;B、对角线相等的平行四边形是矩形是正确的,不符合题意;C、一条对角线平分一组对角的四边形不一定是菱形,原来的说法错误,符合题意;D、对角线互相垂直的矩形是正方形是正确的,不符合题意.故选C.【点评】本题考查了命题与定理的知识,解题的关键是了解平行四边形、矩形、菱形及正方形的判定定理,难度不大.7.(3分)(2017•十堰)甲、乙二人做某种机械零件,甲每小时比乙多做6个,甲做90个所用的时间与做60个所用的时间相等.设甲每小时做x个零件,下面所列方程正确的是()A.B.C.D.【分析】设甲每小时做x个零件,根据题意可得,甲做90个所用的时间与乙做60个所用的时间相等,据此列方程.【解答】解:设甲每小时做x个零件,则乙每小时做(x﹣6)个零件,由题意得,=.故选A.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.8.(3分)(2017•十堰)如图,已知圆柱的底面直径BC=,高AB=3,小虫在圆柱表面爬行,从C点爬到A点,然后再沿另一面爬回C点,则小虫爬行的最短路程为()A.B.C.D.【分析】要求最短路径,首先要把圆柱的侧面展开,利用两点之间线段最短,然后利用勾股定理即可求解.【解答】解:把圆柱侧面展开,展开图如右图所示,点A、C的最短距离为线段AC的长.在RT△ADC中,∠ADC=90°,CD=AB=3,AD为底面半圆弧长,AD=3,所以AC=3,∴从C点爬到A点,然后再沿另一面爬回C点,则小虫爬行的最短路程为2AC=6,故选D.【点评】本题考查了平面展开﹣最短路径问题,解题的关键是会将圆柱的侧面展开,并利用勾股定理解答.9.(3分)(2017•十堰)如图,10个不同的正偶数按下图排列,箭头上方的每个数都等于其下方两数的和,如,表示a1=a2+a3,则a1的最小值为()A.32 B.36 C.38 D.40【分析】由a1=a7+3(a8+a9)+a10知要使a1取得最小值,则a8+a9应尽可能的小,取a8=2、a9=4,根据a5=a8+a9=6,则a7、a10中不能有6,据此对于a7、a10,分别取8、10、12、14检验可得,从而得出答案.【解答】解:∵a1=a2+a3=a4+a5+a5+a6=a7+a8+a8+a9+a8+a9+a9+a10=a7+3(a8+a9)+a10,∴要使a1取得最小值,则a8+a9应尽可能的小,取a8=2、a9=4,∵a5=a8+a9=6,则a7、a10中不能有6,若a10=8,则a6=a9+a10=12,∴a7=14,则a4=14+2=16、a2=16+6=22、a3=6+12=18、a1=18+22=40;综上,a1的最小值为40,故选:D.【点评】本题主要考查数字的变化类,根据题目要求得出a1取得最小值的切入点是解题的关键.10.(3分)(2017•十堰)如图,直线y=x﹣6分别交x轴,y轴于A,B,M是反比例函数y=(x>0)的图象上位于直线上方的一点,MC∥x轴交AB于C,MD ⊥MC交AB于D,AC•BD=4,则k的值为()A.﹣3 B.﹣4 C.﹣5 D.﹣6【分析】过点D作DE⊥y轴于点E,过点C作CF⊥x轴于点F,然后求出OA与OB的长度,即可求出∠OAB的正弦值与余弦值,再设M(x,y),从而可表示出BD与AC的长度,根据AC•BD=4列出即可求出k的值.【解答】解:过点D作DE⊥y轴于点E,过点C作CF⊥x轴于点F,令x=0代入y=x﹣6,∴y=﹣6,∴B(0,﹣6),∴OB=6,令y=0代入y=x﹣6,∴x=2,∴(2,0),∴OA=2,∴勾股定理可知:AB=4,∴sin∠OAB==,cos∠OAB==设M(x,y),∴CF=﹣y,ED=x,∴sin∠OAB=,∴AC=﹣y,∵cos∠OAB=cos∠EDB=,∴BD=2x,∵AC•BD=4,∴﹣y×2x=4,∴xy=﹣3,∵M在反比例函数的图象上,∴k=xy=﹣3,故选(A)【点评】本题考查反比例函数与一次函数的综合问题,解题的关键是根据∠OAB 的锐角三角函数值求出BD、AC,本题属于中等题型.二、填空题11.(3分)(2017•十堰)某颗粒物的直径是0.0000025,把0.0000025用科学记数法表示为 2.5×10﹣6.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000025用科学记数法表示为2.5×10﹣6,故答案为:2.5×10﹣6.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.(3分)(2017•十堰)若a﹣b=1,则代数式2a﹣2b﹣1的值为 1 .【分析】原式前两项提取2变形后,将a﹣b=1代入计算即可求出值.【解答】解:∵a﹣b=1,∴原式=2(a﹣b)﹣1=2﹣1=1.故答案为:1.【点评】此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.13.(3分)(2017•十堰)如图,菱形ABCD中,AC交BD于O,DE⊥BC于E,连接OE,若∠ABC=140°,则∠OED= 20°.【分析】由菱形的性质可知O为BD中点,所以OE为直角三角形BED斜边上的中线,由此可得OE=OB,根据等腰三角形的性质和已知条件即可求出∠OED的度数.【解答】解:∵四边形ABCD是菱形,∴DO=OB,∵DE⊥BC于E,∴OE为直角三角形BED斜边上的中线,∴OE=BD,∴OB=OE,∴∠OBE=∠OEB,∵∠ABC=140°,∴∠OBE=70°,∴∠OED=90°﹣70°=20°,故答案为:20°.【点评】本题考查了菱形的性质、直角三角形斜边上中线的性质,得到OE为直角三角形BED斜边上的中线是解题的关键.14.(3分)(2017•十堰)如图,△ABC内接于⊙O,∠ACB=90°,∠ACB的角平分线交⊙O于D.若AC=6,BD=5,则BC的长为8 .【分析】连接BD,根据CD是∠ACB的平分线可知∠ACD=∠BCD=45°,故可得出AD=BD,再由AB是⊙O的直径可知△ABD是等腰直角三角形,利用勾股定理求出AB的长,在Rt△ABC中,利用勾股定理可得出BC的长.【解答】解:连接BD,∵∠ACB=90°,∴AB是⊙O的直径.∵ACB的角平分线交⊙O于D,∴∠ACD=∠BCD=45°,∴AD=BD=5.∵AB是⊙O的直径,∴△ABD是等腰直角三角形,∴AB===10.∵AC=6,∴BC===8.故答案为:8.【点评】本题考查的是圆周角定理,熟知直径所对的圆周角是直角是解答此题的关键.15.(3分)(2017•十堰)如图,直线y=kx和y=ax+4交于A(1,k),则不等式kx﹣6<ax+4<kx的解集为1<x<.【分析】根据题意得由OB=4,OC=6,根据直线y=kx平行于直线y=kx﹣6,得到===,分别过A,D作AM⊥x轴于M,DN⊥x轴于N,则AM∥DN∥y轴,根据平行线分线段成比例定理得到==,得到ON=,求得D点的横坐标是,于是得到结论.【解答】解:如图,由y=kx﹣6与y=ax+4得OB=4,OC=6,∵直线y=kx平行于直线y=kx﹣6,∴===,分别过A,D作AM⊥x轴于M,DN⊥x轴于N,则AM∥DN∥y轴,∴==,∵A(1,k),∴OM=1,∴MN=,∴ON=,∴D点的横坐标是,∴1<x<时,kx﹣6<ax+4<kx,故答案为:1<x<.【点评】本题考查了一次函数与一元一次不等式,此类题目,利用数形结合的思想求解是解题的关键.16.(3分)(2017•十堰)如图,正方形ABCD 中,BE=EF=FC ,CG=2GD ,BG 分别交AE ,AF 于M ,N .下列结论:①AF ⊥BG ;②BN=NF ;③=;④S四边形CGNF=S四边形ANGD.其中正确的结论的序号是 ①③ .【分析】①易证△ABF ≌△BCG ,即可解题; ②易证△BNF ∽△BCG ,即可求得的值,即可解题;③作EH ⊥AF ,令AB=3,即可求得MN ,BM 的值,即可解题;④连接AG ,FG ,根据③中结论即可求得S 四边形CGNF 和S 四边形ANGD ,即可解题. 【解答】解:①∵四边形ABCD 为正方形, ∴AB=BC=CD ,∵BE=EF=FC ,CG=2GD , ∴BF=CG ,∵在△ABF 和△BCG 中,,∴△ABF ≌△BCG , ∴∠BAF=∠CBG , ∵∠BAF+∠BFA=90°,∴∠CBG+∠BFA=90°,即AF ⊥BG ;①正确; ②∵在△BNF 和△BCG 中,, ∴△BNF ∽△BCG ,∴==,∴BN=NF;②错误;③作EH⊥AF,令AB=3,则BF=2,BE=EF=CF=1,AF==,∵S△ABF=AF•BN=AB•BF,∴BN=,NF=BN=,∴AN=AF﹣NF=,∵E是BF中点,∴EH是△BFN的中位线,∴EH=,NH=,BN∥EH,∴AH=,=,解得:MN=,∴BM=BN﹣MN=,MG=BG﹣BM=,∴=;③正确;④连接AG,FG,根据③中结论,则NG=BG﹣BN=,∵S四边形CGNF =S△CFG+S△GNF=CG•CF+NF•NG=1+=,S四边形ANGD =S△ANG+S△ADG=AN•GN+AD•DG=+=,∴S四边形CGNF ≠S四边形ANGD,④错误;故答案为①③.【点评】本题考查了全等三角形的判定和性质,考查了相似三角形的判定和对应边比例相等的性质,本题中令AB=3求得AN,BN,NG,NF的值是解题的关键.三、解答题(本大题共9小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(5分)(2017•十堰)计算:|﹣2|+﹣(﹣1)2017.【分析】原式利用绝对值的代数意义,立方根定义,以及乘方的意义计算即可得到结果.【解答】解:原式=2﹣2+1=1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(6分)(2017•十堰)化简:(+)÷.【分析】根据分式的加法和除法可以解答本题.【解答】解:(+)÷====.【点评】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.19.(7分)(2017•十堰)如图,海中有一小岛A,它周围8海里内有暗礁,渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏东60°方向上,航行12海里到达D点,这时测得小岛A在北偏东30°方向上.如果渔船不改变航线继续向东航行,有没有触礁的危险?【分析】过A作AC⊥BD于点C,求出∠CAD、∠CAB的度数,求出∠BAD和∠ABD,根据等边对等角得出AD=BD=12,根据含30度角的直角三角形性质求出CD,根据勾股定理求出AD即可.【解答】解:只要求出A到BD的最短距离是否在以A为圆心,以8海里的圆内或圆上即可,如图,过A作AC⊥BD于点C,则AC的长是A到BD的最短距离,∵∠CAD=30°,∠CAB=60°,∴∠BAD=60°﹣30°=30°,∠ABD=90°﹣60°=30°,∴∠ABD=∠BAD,∴BD=AD=12海里,∵∠CAD=30°,∠ACD=90°,∴CD=AD=6海里,由勾股定理得:AC==6≈10.392>8,即渔船继续向正东方向行驶,没有触礁的危险.【点评】考查了勾股定理的应用和解直角三角形,此题是一道方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.20.(9分)(2017•十堰)某中学艺术节期间,学校向学生征集书画作品,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作品的数量进行了分析统计,制作了两幅不完整的统计图.请根据以上信息,回答下列问题:(1)杨老师采用的调查方式是抽样调查(填“普查”或“抽样调查”);(2)请你将条形统计图补充完整,并估计全校共征集多少件作品?(3)如果全校征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.【分析】(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查.(2)由题意得:所调查的4个班征集到的作品数为:6÷=24(件),C班作品的件数为:24﹣4﹣6﹣4=10(件);继而可补全条形统计图;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好抽中一男一女的情况,再利用概率公式即可求得答案.【解答】解:(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查.故答案为抽样调查.(2)所调查的4个班征集到的作品数为:6÷=24件,平均每个班=6件,C班有10件,∴估计全校共征集作品6×30=180件.条形图如图所示,(3)画树状图得:∵共有20种等可能的结果,两名学生性别相同的有8种情况,∴恰好抽中一男一女的概率为:=.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.同时考查了概率公式.21.(7分)(2017•十堰)已知关于x的方程x2+(2k﹣1)x+k2﹣1=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)若x1,x2满足x12+x22=16+x1x2,求实数k的值.【分析】(1)根据方程的系数结合根的判别式,即可得出△=﹣4k+5≥0,解之即可得出实数k的取值范围;(2)由根与系数的关系可得x1+x2=1﹣2k、x1•x2=k2﹣1,将其代入x12+x22=(x1+x2)2﹣2x1•x2=16+x1•x2中,解之即可得出k的值.【解答】解:(1)∵关于x的方程x2+(2k﹣1)x+k2﹣1=0有两个实数根x1,x2,∴△=(2k﹣1)2﹣4(k2﹣1)=﹣4k+5≥0,解得:k≤,∴实数k的取值范围为k≤.(2)∵关于x的方程x2+(2k﹣1)x+k2﹣1=0有两个实数根x1,x2,∴x1+x2=1﹣2k,x1•x2=k2﹣1.∵x12+x22=(x1+x2)2﹣2x1•x2=16+x1•x2,∴(1﹣2k)2﹣2×(k2﹣1)=16+(k2﹣1),即k2﹣4k﹣12=0,解得:k=﹣2或k=6(不符合题意,舍去).∴实数k的值为﹣2.【点评】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)根据方程的系数结合根的判别式,找出△=﹣4k+5≥0;(2)根据根与系数的关系结合x 12+x22=16+x1x2,找出关于k的一元二次方程.22.(8分)(2017•十堰)某超市销售一种牛奶,进价为每箱24元,规定售价不低于进价.现在的售价为每箱36元,每月可销售60箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱,设每箱牛奶降价x元(x 为正整数),每月的销量为y箱.(1)写出y与x中间的函数关系书和自变量x的取值范围;(2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元?【分析】(1)根据价格每降低1元,平均每天多销售10箱,由每箱降价x元,多卖10x,据此可以列出函数关系式;(2)由利润=(售价﹣成本)×销售量列出函数关系式,求出最大值.【解答】解:(1)根据题意,得:y=60+10x,由36﹣x≥24得x≤12,∴1≤x≤12,且x为整数;(2)设所获利润为W,则W=(36﹣x﹣24)(10x+60)=﹣10x2+60x+720=﹣10(x﹣3)2+810,∴当x=3时,W取得最大值,最大值为810,答:超市定价为33元时,才能使每月销售牛奶的利润最大,最大利润是810元.【点评】本题主要考查二次函数的应用,由利润=(售价﹣成本)×销售量列出函数关系式求最值,用二次函数解决实际问题是解题的关键.23.(8分)(2017•十堰)已知AB为⊙O的直径,BC⊥AB于B,且BC=AB,D为半圆⊙O上的一点,连接BD并延长交半圆⊙O的切线AE于E.(1)如图1,若CD=CB,求证:CD是⊙O的切线;(2)如图2,若F点在OB上,且CD⊥DF,求的值.【分析】(1)连接DO,CO,易证△CDO≌△CBO,即可解题;(2)连接AD,易证△ADF∽△BDC和△ADE∽△BDA,根据相似三角形对应边比例相等的性质即可解题.【解答】解:(1)连接DO,CO,∵BC⊥AB于B,∴∠ABC=90°,在△CDO与△CBO中,,∴△CDO≌△CBO,∴∠CDO=∠CBO=90°,∴OD⊥CD,∴CD是⊙O的切线;(2)连接AD,∵AB是直径,∴∠ADB=90°,∴∠ADF+∠BDF=90°,∠DAB+∠DBA=90°,∵∠BDF+∠BDC=90°,∠CBD+∠DBA=90°,∴∠ADF=∠BDC,∠DAB=∠CBD,∵在△ADF和△BDC中,,∴△ADF∽△BDC,∴=,∵∠DAE+∠DAB=90°,∠E+∠DAE=90°,∴∠E=∠DAB,∵在△ADE和△BDA中,,∴△ADE∽△BDA,∴=,∴=,即=,∵AB=BC,∴=1.【点评】本题考查了相似三角形的判定和性质,考查了全等三角形的判定和性质,本题中求证△ADF∽△BDC和△ADE∽△BDA是解题的关键.24.(10分)(2017•十堰)已知O为直线MN上一点,OP⊥MN,在等腰Rt△ABO 中,∠BAO=90°,AC∥OP交OM于C,D为OB的中点,DE⊥DC交MN于E.(1)如图1,若点B在OP上,则①AC = OE(填“<”,“=”或“>”);②线段CA、CO、CD满足的等量关系式是AC2+CO2=CD2;(2)将图1中的等腰Rt△ABO绕O点顺时针旋转α(0°<α<45°),如图2,那么(1)中的结论②是否成立?请说明理由;(3)将图1中的等腰Rt△ABO绕O点顺时针旋转α(45°<α<90°),请你在图3中画出图形,并直接写出线段CA、CO、CD满足的等量关系式CO﹣CA=CD .【分析】(1)①如图1,证明AC=OC和OC=OE可得结论;②根据勾股定理可得:AC2+CO2=CD2;(2)如图2,(1)中的结论②不成立,作辅助线,构建全等三角形,证明A、D、O、C四点共圆,得∠ACD=∠AOB,同理得:∠EFO=∠EDO,再证明△ACO≌△EOF,得OE=AC,AO=EF,根据勾股定理得:AC2+OC2=FO2+OE2=EF2,由直角三角形中最长边为斜边可得结论;(3)如图3,连接AD,则AD=OD证明△ACD≌△OED,根据△CDE是等腰直角三角形,得CE2=2CD2,等量代换可得结论(OC﹣OE)2=(OC﹣AC)2=2CD2,开方后是:OC﹣AC=CD.【解答】解:(1)①AC=OE,理由:如图1,∵在等腰Rt△ABO中,∠BAO=90°,∴∠ABO=∠AOB=45°,∵OP⊥MN,∴∠COP=90°,∴∠AOC=45°,∵AC∥OP,∴∠CAO=∠AOB=45°,∠ACO=∠POE=90°,∴AC=OC,连接AD,∵BD=OD,∴AD=OD,AD⊥OB,∴AD∥OC,∴四边形ADOC是正方形,∴∠DCO=45°,∴AC=OD,∴∠DEO=45°,∴CD=DE,∴OC=OE,∴AC=OE;②在Rt△CDO中,∵CD2=OC2+OD2,∴CD2=AC2+OC2;故答案为:AC2+CO2=CD2;(2)如图2,(1)中的结论②不成立,理由是:连接AD,延长CD交OP于F,连接EF,∵AB=AO,D为OB的中点,∴AD⊥OB,∴∠ADO=90°,∵∠CDE=90°,∴∠ADO=∠CDE,∴∠ADO﹣∠CDO=∠CDE﹣∠CDO,即∠ADC=∠EDO,∵∠ADO=∠ACO=90°,∴∠ADO+∠ACO=180°,∴A、D、O、C四点共圆,∴∠ACD=∠AOB,同理得:∠EFO=∠EDO,∴∠EFO=∠AOC,∵△ABO是等腰直角三角形,∴∠AOB=45°,∴∠DCO=45°,∴△COF和△CDE是等腰直角三角形,∴OC=OF,∵∠ACO=∠EOF=90°,∴△ACO≌△EOF,∴OE=AC,AO=EF,∴AC2+OC2=FO2+OE2=EF2,Rt△DEF中,EF>DE=DC,∴AC2+OC2>DC2,所以(1)中的结论②不成立;(3)如图3,结论:OC﹣CA=CD,理由是:连接AD,则AD=OD,同理:∠ADC=∠EDO,∵∠CAB+∠CAO=∠CAO+∠AOC=90°,∴∠CAB=∠AOC,∵∠DAB=∠AOD=45°,∴∠DAB﹣∠CAB=∠AOD﹣∠AOC,即∠DAC=∠DOE,∴△ACD≌△OED,∴AC=OE,CD=DE,∴△CDE是等腰直角三角形,∴CE2=2CD2,∴(OC﹣OE)2=(OC﹣AC)2=2CD2,∴OC﹣AC=CD,故答案为:OC﹣AC=CD.【点评】本题是几何变换的综合题,考查了三角形全等的性质和判定、等腰直角三角形的性质和判定、旋转的性质、勾股定理、四点共圆的性质等知识,并运用了类比的思想解决问题,有难度,尤其是第二问,结论不成立,要注意辅助线的作法;本题的2、3问能标准作图是关键.25.(12分)(2017•十堰)抛物线y=x2+bx+c与x轴交于A(1,0),B(m,0),与y轴交于C.(1)若m=﹣3,求抛物线的解析式,并写出抛物线的对称轴;(2)如图1,在(1)的条件下,设抛物线的对称轴交x轴于D,在对称轴左侧的抛物线上有一点E,使S△ACE =S△ACD,求点E的坐标;(3)如图2,设F(﹣1,﹣4),FG⊥y于G,在线段OG上是否存在点P,使∠OBP=∠FPG?若存在,求m的取值范围;若不存在,请说明理由.【分析】(1)利用待定系数法求二次函数的解析式,并配方求对称轴;(2)如图1,设E(m,m2+2m﹣3),先根据已知条件求S△ACE=10,根据不规则三角形面积等于铅直高度与水平宽度的积列式可求得m的值,并根据在对称轴左侧的抛物线上有一点E,则点E的横坐标小于﹣1,对m的值进行取舍,得到E的坐标;(3)设点P(0,y).分两种情况:①当m<0时,如图2,△POB∽△FGP,根据对应线段成比例即可求出m的取值范围;②当m>0时,如图3,△POB∽△FGP,根据对应线段成比例即可求出m的取值范围.【解答】解:(1)当m=﹣3时,B(﹣3,0),把A(1,0),B(﹣3,0)代入到抛物线y=x2+bx+c中得:,解得,∴抛物线的解析式为:y=x2+2x﹣3=(x+1)2﹣4;对称轴是:直线x=﹣1;(2)如图1,设E(m,m2+2m﹣3),由题意得:AD=1+1=2,OC=3,S△ACE =S△ACD=×AD•OC=×2×3=10,设直线AE的解析式为:y=kx+b,把A(1,0)和E(m,m2+2m﹣3)代入得,,解得:,∴直线AE的解析式为:y=(m+3)x﹣m﹣3,∴F(0,﹣m﹣3),∵C(0,﹣3),∴FC=﹣m﹣3+3=﹣m,∴S△ACE=FC•(1﹣m)=10,﹣m(1﹣m)=20,m2﹣m﹣20=0,(m+4)(m﹣5)=0,m 1=﹣4,m2=5(舍),∴E(﹣4,5);(3)设点P(0,y).①当m<0时,如图2,△POB∽△FGP 得=∴m=y2+4y=(y+2)2﹣4∵﹣4<y<0,∴﹣4≤m<0.②当m>0时,如图3,△POB∽△FGP∴=∴=∴m=﹣y2﹣4y=﹣(y+2)2+4∴﹣4<y<0∴0<m≤4综上所述,m的取值范围是﹣4≤m≤4且m≠0.【点评】本题是二次函数的综合题,考查了利用待定系数法求函数的解析式、配方法求对称轴、等腰直角三角形的性质和判定、三角形面积的求法,及三角形全等的判定与性质.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖北省十堰市2017年中考数学真题试题一、选择题:1.气温由﹣2℃上升3℃后是()℃.A.1 B.3 C.5 D.﹣5【答案】A.【解析】试题分析:由题意,得﹣2+3=+(3﹣2)=1,故选:A.考点:有理数的加法2.如图的几何体,其左视图是()A.B.C.D.【答案】B.【解析】试题分析:根据从左边看得到的图象是左视图, 从左边看第一层是两个小正方形,第二层左边一个小正方形,故选:B.考点:简单组合体的三视图3.如图,AB∥DE,FG⊥BC于F,∠CDE=40°,则∠FGB=()A.40° B.50° C.60° D.70°【答案】B.【解析】试题分析:由AB ∥DE ,∠CDE=40°, ∴∠B=∠CDE=40°, 又∵FG ⊥BC ,∴∠FGB=90°﹣∠B=50°, 故选:B .考点:平行线的性质4.下列运算正确的是( )A +=B . =C 2=D .3=【答案】C.考点:二次根式的混合运算5.某交警在一个路口统计的某时段来往车辆的车速情况如表:则上述车速的中位数和众数分别是( ) A .50,8 B .50,50 C .49,50 D .49,8【答案】B. 【解析】试题分析:要求一组数据的中位数,把这组数据按照从小到大的顺序排列,第10、11两个数的平均数是50, 所以中位数是50,在这组数据中出现次数最多的是50,即众数是50. 故选:B .考点:中位数和众数6.下列命题错误的是( )A .对角线互相平分的四边形是平行四边形B.对角线相等的平行四边形是矩形C.一条对角线平分一组对角的四边形是菱形D.对角线互相垂直的矩形是正方形【答案】C.考点:命题与定理7.甲、乙二人做某种机械零件,甲每小时比乙多做6个,甲做90个所用的时间与做60个所用的时间相等.设甲每小时做x个零件,下面所列方程正确的是()A.90606x x=-B.90606x x=+C.90606x x=-D.90606x x=+【答案】A.【解析】试题分析:设甲每小时做x个零件,则乙每小时做(x﹣6)个零件,由题意得,90606x x=-.故选A.考点:分式方程8.如图,已知圆柱的底面直径BC=6π,高AB=3,小虫在圆柱表面爬行,从C点爬到A点,然后再沿另一面爬回C点,则小虫爬行的最短路程为()A.B.C.D.【答案】D.【解析】考点:最短路径问题9.如图,10个不同的正偶数按下图排列,箭头上方的每个数都等于其下方两数的和,如,表示a1=a2+a3,则a1的最小值为()A.32 B.36 C.38 D.40【答案】D.【解析】试题分析:由a1=a7+3(a8+a9)+a10知要使a1取得最小值,则a8+a9应尽可能的小,取a8=2、a9=4,根据a5=a8+a9=6,则a7、a10中不能有6,据此对于a7、a8,分别取8、10、12检验可得.∵a1=a2+a3=a4+a5+a5+a6=a7+a8+a8+a9+a8+a9+a9+a10=a7+3(a8+a9)+a10,∴要使a1取得最小值,则a8+a9应尽可能的小,取a8=2、a9=4,∵a5=a8+a9=6,则a7、a10中不能有6,若a7=8、a10=10,则a4=10=a10,不符合题意,舍去;若a7=10、a10=8,则a4=12、a6=4+8=12,不符合题意,舍去;若a 7=10、a 10=12,则a 4=10+2=12、a 6=4+12=16、a 2=12+6=18、a 3=6+16=22、a 1=18+22=40,符合题意; 综上,a 1的最小值为40, 故选:D .考点:数字的变化类10.如图,直线﹣6分别交x 轴,y 轴于A ,B ,M 是反比例函数y=kx(x >0)的图象上位于直线上方的一点,MC ∥x 轴交AB 于C ,MD ⊥MC 交AB 于D ,k 的值为( )A .﹣3B .﹣4C .﹣5D .﹣6 【答案】A. 【解析】试题分析:过点D 作DE ⊥y 轴于点E ,过点C 作CF ⊥x 轴于点F ,令x=0代入﹣6,∴y=﹣6,∴B (0,﹣6),∴OB=6,令y=0代入﹣6,∴0),∴sin ∠OAB=OB AB =cos ∠OAB=12OA AB =,设M (x ,y ),∴CF=﹣y ,ED=x ,∴sin ∠OAB=CF AC ,∴AC=﹣3y ,∵cos ∠OAB=cos ∠EDB=ED BD ,∴BD=2x ,∵ ∴xy=﹣3,∵M 在反比例函数的图象上,∴k=xy=﹣3, 故选(A )考点:反比例函数与一次函数的综合.二、填空题11.某颗粒物的直径是0.0000025,把0.0000025用科学记数法表示为.【答案】2.5×10﹣6.考点:科学记数法12.若a﹣b=1,则代数式2a﹣2b﹣1的值为.【答案】1.【解析】试题分析:∵a﹣b=1,∴原式=2(a﹣b)﹣1=2﹣1=1.故答案为:1.考点:代数式求值13.如图,菱形ABCD中,AC交BD于O,OE⊥BC于E,连接OE,若∠ABC=140°,则∠OED= .【答案】20°.【解析】试题分析:∵四边形ABCD是菱形,∴DO=OB,∵DE⊥BC于E,∴OE为直角三角形BED斜边上的中线,∴OE=12BD,∴OB=OE,∴∠OBE=∠OEB,∵∠ABC=140°,∴∠OBE=70°,∴∠OED=90°﹣70°=20°,故答案为:20°.考点:菱形的性质、直角三角形斜边上中线的性质.14.如图,△ABC内接于⊙O,∠ACB=90°,∠ACB的角平分线交⊙O于D.若AC=6,BC的长为.【答案】8.【解析】试题分析:连接BD,∵∠ACB=90°,∴AB是⊙O的直径.∵ACB的角平分线交⊙O于D,∴∠ACD=∠BCD=45°,∴∵AB是⊙O的直径,∴△ABD是等腰直角三角形,∴=.∵AC=6,∴=.故答案为:8.考点:圆周角定理15.如图,直线y=kx和y=ax+4交于A(1,k),则不等式kx﹣6<ax+4<kx的解集为.【答案】1<x<52 .【解析】试题分析:如图,由y=kx﹣6与y=ax+4得OB=4,OC=6,∵直线y=kx平行于直线y=kx﹣6,∴4263 BA BOAD OC===,分别过A,D作AM⊥x轴于M,DN⊥x轴于N,则AM∥DN∥y轴,∴23OM BAMN AD==,∵A(1,k),∴OM=1,∴MN=32,∴ON=52,∴D点的横坐标是52,∴1<x<52时,kx﹣6<ax+4<kx,故答案为:1<x<52.考点:一次函数,一元一次不等式.16.如图,正方形ABCD中,BE=EF=FC,CG=2GD,BG分别交AE,AF于M,N.下列结论:①AF⊥BG;②BN=43 NF;③38MNMG=;④S四边形CGNF=12S四边形ANGD.其中正确的结论的序号是.【答案】①③. 【解析】试题分析:①易证△ABF ≌△BCG ,即可解题;②易证△BNF ∽△BCG ,即可求得BNNF的值,即可解题;③作EH ⊥AF ,令AB=3,即可求得MN ,BM 的值,即可解题;④连接AG ,FG ,根据③中结论即可求得S 四边形CGNF 和S四边形ANGD,即可解题.①∵四边形ABCD 为正方形,∴AB=BC=CD , ∵BE=EF=FC ,CG=2GD ,∴BF=CG ,∵在△ABF 和△BCG 中,90AB BC ABF BCG BF CG =⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABF ≌△BCG ,∴∠BAF=∠CBG ,∵∠BAF+∠BFA=90°,∴∠CBG+∠BFA=90°,即AF ⊥BG ;①正确;②∵在△BNF 和△BCG 中,90CBG NBFBCG BNF ∠=∠⎧⎨∠=∠=︒⎩,∴△BNF ∽△BCG ,∴32BN BC NF CG ==,∴BN=23NF ;②错误; ③作EH ⊥AF ,令AB=3,则BF=2,BE=EF=CF=1,=,∵S △ABF =12AFBN=12ABBF ,∴BN=13,NF=23BN=13, ∴AN=AF ﹣,∵E 是BF 中点, ∴EH 是△BFN 的中位线,∴EH=13,NH=13,BN ∥EH ,∴AN MN AH EH =,解得:∴BM=BN ﹣,MG=BG ﹣38BM MG =,③正确; ④连接AG ,FG ,根据③中结论,则NG=BG ﹣,∵S 四边形CGNF =S △CFG +S △GNF =12CGCF+12NFNG=1+14271313=, S 四边形ANGD =S △ANG +S △ADG =12ANGN+12ADDG=2739313226+=,∴S 四边形CGNF ≠12S 四边形ANGD ,④错误;故答案为 ①③.考点:全等三角形的判定和性质,相似三角形的判定和性质.三、解答题(本大题共9小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.计算:|﹣1)2017.【答案】1. 【解析】试题分析:原式利用绝对值的代数意义,立方根定义,以及乘方的意义计算即可得到结果. 试题解析:原式=2﹣2+1=1. 考点:实数的运算 18.化简:(21a ++221a a +-)÷1a a - 【答案】31aa + . 【解析】试题分析:根据分式的加法和除法可以解答本题 试题解析:(21a ++221a a +-)÷1a a - =2(1)21(1)(1)a a a a a a-++-⋅+-=222(1)a aa a-+++=33(1)1a aa a a=++.考点:分式的混合运算19.如图,海中有一小岛A,它周围8海里内有暗礁,渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏东60°方向上,航行12海里到达D点,这时测得小岛A在北偏东30°方向上.如果渔船不改变航线继续向东航行,有没有触礁的危险?【答案】渔船继续向正东方向行驶,没有触礁的危险.理由见解析.【解析】试题分析:过A作AC⊥BD于点C,求出∠CAD、∠CAB的度数,求出∠BAD和∠ABD,根据等边对等角得出AD=BD=12,根据含30度角的直角三角形性质求出CD,根据勾股定理求出AD即可.试题解析:只要求出A到BD的最短距离是否在以A为圆心,以8海里的圆内或圆上即可,如图,过A作AC⊥BD于点C,则AC的长是A到BD的最短距离,∵∠CAD=30°,∠CAB=60°,∴∠BAD=60°﹣30°=30°,∠ABD=90°﹣60°=30°,∴∠ABD=∠BAD,∴BD=AD=12海里,∵∠CAD=30°,∠ACD=90°,∴CD=12AD=6海里,由勾股定理得:=≈10.392>8,即渔船继续向正东方向行驶,没有触礁的危险.考点:勾股定理的应用,解直角三角形.20.某中学艺术节期间,学校向学生征集书画作品,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作品的数量进行了分析统计,制作了两幅不完整的统计图.请根据以上信息,回答下列问题:(1)杨老师采用的调查方式是(填“普查”或“抽样调查”);(2)请你将条形统计图补充完整,并估计全校共征集多少件作品?(3)如果全校征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.【答案】(1)抽样调查;(2)全校共征集作品180件; (3)恰好抽中一男一女的概率为25.【解析】试题分析:(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查.(2)由题意得:所调查的4个班征集到的作品数为:6÷90360=24(件),C班作品的件数为:24﹣4﹣6﹣4=10(件);继而可补全条形统计图;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好抽中一男一女的情况,再利用概率公式即可求得答案.试题解析:(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查.故答案为抽样调查.(2)所调查的4个班征集到的作品数为:6÷90360=24件,平均每个班244=6件,C班有10件,∴估计全校共征集作品6×30=180件.条形图如图所示,(3)画树状图得:∵共有20种等可能的结果,两名学生性别相同的有8种情况,∴恰好抽中一男一女的概率为:82 205.考点:条形统计图, 扇形统计图,概率公式.21.已知关于x的方程x2+(2k﹣1)x+k2﹣1=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)若x1,x2满足x12+x22=16+x1x2,求实数k的值.【答案】(1)实数k的取值范围为:k≤54;(2)实数k的值为﹣2.【解析】试题分析:(1)根据方程的系数结合根的判别式,即可得出△=﹣4k+5≥0,解之即可得出实数k的取值范围;(2)由根与系数的关系可得x1+x2=1﹣2k、x1x2=k2﹣1,将其代入x12+x22=(x1+x2)2﹣2x1x2=16+x1x2中,解之即可得出k的值.试题解析:(1)∵关于x的方程x2+(2k﹣1)x+k2﹣1=0有两个实数根x1,x2,∴△=(2k﹣1)2﹣4(k2﹣1)=﹣4k+5≥0,解得:k≤54,∴实数k的取值范围为k≤54.(2)∵关于x的方程x2+(2k﹣1)x+k2﹣1=0有两个实数根x1,x2,∴x1+x2=1﹣2k,x1x2=k2﹣1.∵x12+x22=(x1+x2)2﹣2x1x2=16+x1x2,∴(1﹣2k)2﹣2×(k2﹣1)=16+(k2﹣1),即k2﹣4k﹣12=0,解得:k=﹣2或k=6(不符合题意,舍去).∴实数k的值为﹣2.考点:一元二次方程根与系数的关系,根的判别式.22.某超市销售一种牛奶,进价为每箱24元,规定售价不低于进价.现在的售价为每箱36元,每月可销售60箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱,设每箱牛奶降价x 元(x为正整数),每月的销量为y箱.(1)写出y与x中间的函数关系书和自变量x的取值范围;(2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元?【答案】(1)y与x中间的函数关系书和自变量x的取值范围为:1≤x≤12,且x为整数;(2)超市定价为33元时,才能使每月销售牛奶的利润最大,最大利润是810元.【解析】考点:二次函数的应用23.已知AB为⊙O的直径,BC⊥AB于B,且BC=AB,D为半圆⊙O上的一点,连接BD并延长交半圆⊙O的切线AE于E.(1)如图1,若CD=CB,求证:CD是⊙O的切线;(2)如图2,若F点在OB上,且CD⊥DF,求AEAF的值.【答案】(1)证明见解析;(2)AEAF=1.【解析】试题分析:(1)连接DO,CO,易证△CDO≌△CBO,即可解题;(2)连接AD,易证△ADF∽△BDC和△ADE ∽△BDA,根据相似三角形对应边比例相等的性质即可解题.试题解析:(1)连接DO,CO,∵BC⊥AB于B,∴∠ABC=90°,在△CDO与△CBO中,CD CB OD OB OC OC=⎧⎪=⎨⎪=⎩,∴△CDO≌△CBO,∴∠CDO=∠CBO=90°,∴OD⊥CD,∴CD是⊙O的切线;(2)连接AD,∵AB是直径,∴∠ADB=90°,∴∠ADF+∠BDF=90°,∠DAB+∠DBA=90°,∵∠BDF+∠BDC=90°,∠CBD+∠DBA=90°,∴∠ADF=∠BDC,∠DAB=∠CBD,∵在△ADF和△BDC中,ADF BDCDAB CBD∠=∠⎧⎨∠=∠⎩,∴△ADF∽△BDC,∴AD AFBD BC=,∵∠DAE+∠DAB=90°,∠E+∠DAE=90°,∴∠E=∠DAB,∵在△ADE和△BDA中,90ADE BDAE DAB∠=∠=︒⎧⎨∠=∠⎩,∴△ADE∽△BDA,∴AE ADAB BD=,∴AE AFAB BC=,即AEAF=ABBC,∵AB=BC,∴AEAF=1.考点:相似三角形的判定和性质,全等三角形的判定和性质.24.已知O为直线MN上一点,OP⊥MN,在等腰Rt△ABO中,∠BAO=90°,AC∥OP交OM于C,D为OB的中点,DE⊥DC交MN于E.(1)如图1,若点B在OP上,则①AC OE(填“<”,“=”或“>”);②线段CA、CO、CD满足的等量关系式是;(2)将图1中的等腰Rt△ABO绕O点顺时针旋转α(0°<α<45°),如图2,那么(1)中的结论②是否成立?请说明理由;(3)将图1中的等腰Rt△ABO绕O点顺时针旋转α(45°<α<90°),请你在图3中画出图形,并直接写出线段CA、CO、CD满足的等量关系式.【答案】(1). ①AC=OE, ②线段CA、CO、CD满足的等量关系式是AC2+CO2=CD²;(2).(1)中的结论②不成立,理由见解析;(3)线段CA、CO、CD满足的等量关系式OC﹣.【解析】试题分析:(1)①如图1,证明AC=OC和OC=OE可得结论;②根据勾股定理可得:AC2+CO2=CD2;(2)如图2,(1)中的结论②不成立,作辅助线,构建全等三角形,证明A、D、O、C四点共圆,得∠ACD=∠AOB,同理得:∠EFO=∠EDO,再证明△ACO≌△EOF,得OE=AC,AO=EF,根据勾股定理得:AC2+OC2=FO2+OE2=EF2,由直角三角形中最长边为斜边可得结论;(3)如图3,连接AD,则AD=OD证明△ACD≌△OED,根据△CDE是等腰直角三角形,得CE2=2CD2,等量代换可得结论(OC﹣OE)2=(OC﹣AC)2=2CD2,开方后是:OC﹣.(2)如图2,(1)中的结论②不成立,理由是:连接AD,延长CD交OP于F,连接EF,∵AB=AO,D为OB的中点,∴AD⊥OB,∴∠ADO=90°,∵∠CDE=90°,∴∠ADO=∠CDE,∴∠ADO﹣∠CDO=∠CDE﹣∠CDO,即∠ADC=∠EDO,∵∠ADO=∠ACO=90°,∴∠ADO+∠ACO=180°,∴A、D、O、C四点共圆,∴∠ACD=∠AOB,同理得:∠EFO=∠EDO,∴∠EFO=∠AOC,∵△ABO是等腰直角三角形,∴∠AOB=45°,∴∠DCO=45°,∴△COF和△CDE是等腰直角三角形,∴OC=OF,∵∠ACO=∠EOF=90°,∴△ACO≌△EOF,∴OE=AC,AO=EF,∴AC2+OC2=FO2+OE2=EF2,Rt△DEF中,EF>DE=DC,∴AC2+OC2>DC2,所以(1)中的结论②不成立;(3)如图3,结论:OC﹣,理由是:连接AD,则AD=OD,同理:∠ADC=∠EDO,∵∠CAB+∠CAO=∠CAO+∠AOC=90°,∴∠CAB=∠AOC,∵∠DAB=∠AOD=45°,∴∠DAB﹣∠CAB=∠AOD﹣∠AOC,即∠DAC=∠DOE,∴△ACD≌△OED,∴AC=OE,CD=DE,∴△CDE是等腰直角三角形,∴CE2=2CD2,∴(OC﹣OE)2=(OC﹣AC)2=2CD2,∴OC﹣,故答案为:OC﹣.考点:几何变换的综合题25.抛物线y=x2+bx+c与x轴交于A(1,0),B(m,0),与y轴交于C.(1)若m=﹣3,求抛物线的解析式,并写出抛物线的对称轴;(2)如图1,在(1)的条件下,设抛物线的对称轴交x轴于D,在对称轴左侧的抛物线上有一点E,使S△ACE=10 3S△ACD,求点E的坐标;(3)如图2,设F(﹣1,﹣4),FG⊥y于G,在线段OG上是否存在点P,使∠OBP=∠FPG?若存在,求m 的取值范围;若不存在,请说明理由.【答案】(1)抛物线的解析式为:y=x2+2x﹣3=(x+1)2﹣4;对称轴是:直线x=﹣1;(2)点E的坐标为E (﹣4,5)(3)当﹣4≤m<0或m=3时,在线段OG 上存在点P ,使∠OBP=∠FPG. 【解析】试题解析:(1)当m=﹣3时,B (﹣3,0),把A (1,0),B (﹣3,0)代入到抛物线y=x 2+bx+c 中得:10930b c b c ++=⎧⎨-+=⎩,解得23b c =⎧⎨=-⎩,∴抛物线的解析式为:y=x 2+2x ﹣3=(x+1)2﹣4;对称轴是:直线x=﹣1; (2)如图1,设E (m ,m 2+2m ﹣3), 由题意得:AD=1+1=2,OC=3, S △ACE =103S △ACD =103×12ADOC=53×2×3=10, 设直线AE 的解析式为:y=kx+b ,把A (1,0)和E (m ,m 2+2m ﹣3)代入得,2023k b mk b m m +=⎧⎨+=+-⎩ ,解得:33k m b m =+⎧⎨=--⎩, ∴直线AE 的解析式为:y=(m+3)x ﹣m ﹣3,∴F (0,﹣m ﹣3), ∵C (0,﹣3),∴FC=﹣m ﹣3+3=﹣m ,∴S △ACE =12FC (1﹣m )=10, ﹣m (1﹣m )=20,m 2﹣m ﹣20=0, (m+4)(m ﹣5)=0, m 1=﹣4,m 2=5(舍), ∴E (﹣4,5);(3)如图2,当B 在原点的左侧时,连接BF ,以BF 为直径作圆E ,当⊙E 与y 轴相切时,设切点为P , ∴∠BPF=90°,∴∠FPG+∠OPB=90°,∵∠OPB+∠OBP=90°,∴∠OBP=∠FPG , 连接EP ,则EP ⊥OG ,∵BE=EF,∴EP是梯形的中位线,∴OP=PG=2,∵FG=1,tan∠FPG=tan∠OBP=FG OP PG OB=,∴122m=-,∴m=﹣4,∴当﹣4≤m<0时,在线段OG上存在点P,使∠OBP=∠FPG;如图3,当B在原点的右侧时,要想满足∠OBP=∠FPG,则∠OBP=∠OPB=∠FPG,∴OB=OP,∴△OBP是等腰直角三角形,△FPG也是等腰直角三角形,∴FG=PG=1,∴OB=OP=3,∴m=3,综上所述,当﹣4≤m<0或m=3时,在线段OG上存在点P,使∠OBP=∠FPG.考点:二次函数的综合题.。

相关文档
最新文档