初二数学课件-2020北师大版数学八年级下册2.6《一元一次不等式组》(第1课时)练习课件 推荐

合集下载

北师大版数学八下第二章一元一次不等式和一元一次不等式组复习与回顾(1)课件

北师大版数学八下第二章一元一次不等式和一元一次不等式组复习与回顾(1)课件

例3.某种商品的进价为600元,出售时标价为900元, 后来由于该商品积压,商店准备打折出售,但要保 持利润不低于20%,则最多可以打多少折?
例4.某单位急需用车,但以不准备买车,他们准备和一个个体车主或一国营出 租车公司中一家签订月租车合同,设汽车每月行驶x千米,应付给个体车主有 月租费用是y1元,应付给国营出租车公司的月租费用是y2元,y1、y2分别与x 之间的函数关系(两条射线)如图所示,回答下列问题: (1)分别写出y1、y2与x的函数关系式? (2)每月行驶的路程在什么范围内,租国营出租车公司的车合算?在什么范 围内租个体车主的车合算? (3)每月行驶的路程是多少千米时,租两家车的费用相同? (4)如果这个单位估计每月行驶的路程为2300米,那么这个单位租哪家的车 y(元) 合算?
3000 2500 2000
1000
O
500
1000
1500
2000
ห้องสมุดไป่ตู้x(千米)
建立数学模型
实 际 问 题 与 一 元 一 次 不 等 式 组
实际问题 符号表达
1.关键语句
2.用代数式表示各过程量
计算问题
3.解不等式的基本方法
( )
本节课的心得笔记
一元一次不等式的解题步骤: 1.去分母
实际问题 注意: 与一元一 符号表达 3.移项 次不等式 不等式两边都乘以(或除以)同一个负数,不等号的方向改变. 计算问题 (组 ) 实际问题
例1、已知实数a、b、c在数轴上对应的点如图所示,则下列式中正确的是( (A)cb>ab (B)ac>ab (C)ac>bc (D)c+b>a+b
跟踪练习: 1、若m<n,则下列各式中正确的是( ) A. m-3>n-3 B. 3m>3n C. -3m>-3n D.

一元一次不等式(第2课时)(课件)八年级数学下册(北师大版)

一元一次不等式(第2课时)(课件)八年级数学下册(北师大版)

随堂练习
解:(1)设该种商品每次降价的百分率为x%, 依题意得:400×(1-x%)2=324, 解得:x=10,或x=190(舍去). 答:该种商品每次降价的百分率为10%.
随堂练习
(2)设第一次降价后售出该种商品m件,则第二次降价后售出该 种商品(100-m)件, 第一次降价后的单件利润为:400×(1-10%)-300=60(元/件); 第二次降价后的单件利润为:324-300=24(元/件). 依题意得:
探究新知
例3:青年志愿者爱心小分队赴山村送温暖,准备为困 难村民购买一些米面.已知购买1袋大米、4袋面粉,共 需240元;购买2袋大米、1袋面粉,共需165元. (1)求每袋大米和面粉各多少元? (2)如果爱心小分队计划购买这些米面共40袋,总费用 不超过2 140元,那么至少购买多少袋面粉?
探究新知
(比如有的时候只能取整数)
谢谢~
随堂练习
6.2021年5月14日至15日,“一带一路”国际合作高峰论坛在北京 举行,本届论坛期间,中国同30多个国家签署经贸合作协议,某 厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家 和地区.已知2件甲种商品与3件乙种商品的销售收入相同,3件 甲种商品比2件乙种商品的销售收入多1500元.
10
≥ 5%
探究新知
例1:某种商品进价为200元,标价为300元出售,商场规定可以打折销售, 但其利润率不能少于5%. 请你计算一下,这种商品最多可以按几折销售?
不等关系:(出售价-进价)÷进价≥利润率 解:设该商品可以打 x 折销售.
则 (300×0.1x-200)÷200≥5%. 解得 x ≥ 7. 答:这种商品最多可以按七折销售.
解:(1)设每袋大米x元,每袋面粉y元,根据题意,得:

八年级数学北师大版初二下册--第二单元 2.6《一元一次不等式组》课件

八年级数学北师大版初二下册--第二单元 2.6《一元一次不等式组》课件
(2)设商店所获利润为y(单位:元),购进篮球的个数为 x(单位:个),请写出y与x之间的函数关系式(不要 求写出x的取值范围).
(3)若要使商店的进货成本在4 300元的限额内,且全 部销售完后所获利润不低于1 400元,请你列举出 商店所有进货方案,并求出最大利润是多少?
解:(1)设购进篮球m个,排球n个,
根据题意得
ìïïíïïî
x+3 y=1.4, 2x+5 y=2.5.
解得
ìïïíïïî
x=0.5, y=0.3.
答:每台大型收割机1 h收割小麦0.5公顷,每台小型收割
机1 h收割小麦0.3公顷.
(2)设大型m)台,
根据题意得
w=300×2m+200×2(10-m)=200m+4 000.
ìïïíïïî
8m+(5 20-m)³ 20-m ³ 2.
148,
解得16≤m≤18.
∵m取整数,
∴m可取16,17,18.
故有三种派车方案:
方案一:大型运输车16辆,小型运输车4辆;
方案二:大型运输车17辆,小型运输车3辆;
方案三:大型运输车18辆,小型运输车2辆.
应用 6 租车方案
8.【 中考•绵阳】江南农场收割小麦,已知1台大型 收割机和3台小型收割机1 h可以收割小麦1.4公顷, 2台大型收割机和5台小型收割机1 h可以收割小 麦2.5公顷. (1)每台大型收割机和每台小型收割机1 h收割小 麦各多少公顷?
解得35≤x≤37.5.
∵x为整数,∴x=35,36,37.
方案如下:
方案 一 二 三
A型口罩 35 36 37
B型口罩 15 14 13
设购买口罩需要y元, 则y=5x+7(50-x)=-2x+350,k=-2<0, ∴y随x增大而减小, ∴x=37时,y的值最小. 答:有3种购买方案,其中方案三最省钱.

新北师大版八年级数学下册2.6一元一次不等式组(第一课时)导学案

新北师大版八年级数学下册2.6一元一次不等式组(第一课时)导学案
哲觉中学八年级数学学科导学案(个案)
主备人:苏 勇审核人:审批人:编号:
执教人:苏 勇使用时间:2014年04月15日学生姓名:班级:八年级(7)班
课题:
2.6、一元一次不等式组(第一课时)
课型:
新授课
教师复备栏或学生笔记栏
学习目标:
1、理解一元一次不等式组及其解的意义;
2、初步感知利用一元一次不等式解集的数轴表示求不等式组的解和解集的方法;
2、一元一次不等式组里各个不等式的解集的_________________,叫做这个一元一次不等式组的解集.
3、求不等式组解集的过程叫做_____________________.
4、解下列不等式,并在数轴上表示:
自我评价:
小组长评价:
合作探究:
活动一:
某校今年冬季烧煤取暖时间为4个月.如果每月比计划多烧5t煤,那么取暖用煤总量将超过100t;如果每月比计划少烧5t煤,那么取暖用煤总量不足68t.该校计划每月烧煤多少吨?
即学即练:
1.下列式子是一元一次不等式组的是().
活动二:
(1)写出满足上面一元一次不等式①的几个未知数x的值:.
(2)写出满足上面一元一次不等式②的几个未知数x的值:.
(3)试找出几个符合上面一元一次不等式组(*)的未知数x的值:.
思考:(1)一元一次不等式①的未知数x的值都符合一元一次不等式组(*)吗?一元一次不等式②的未知数x的值呢?
(2)一元一次不等式组(*)的未知数x的值都满足一元一次不等式①吗?都满足一元一次不等式②吗?
由此,你想到怎么求一个一元一次不等式组的解了吗?
满足每个一元一次不等式的未知数的值即为一元一次不等式组的解.
所有一元一次不等式的解构成了一元一次不等式的解集.

2-4-1一元一次不等式 课件 2022—2023学年北师大版数学八年级下册

2-4-1一元一次不等式 课件 2022—2023学年北师大版数学八年级下册

开放训练,体现应用
例1 (教材第46页例1)解不等式3-x<2x+6,并把它的解集表示
在数轴上.
解:移项,得-x-2x<6-3.
合并同类项,得-3x<3.
两边都除以-3,得x>-1.
这个不等式的解集在数轴上表示如图所示:
开放训练,体现应用
例2
−2
(教材第47页例2)解不等式
2
≥7−,并把它的来自集表示在12−1
(1)3(x-1)<4(x- )-3;(2)
2
3
解:(1)去括号,得3x-3<4x-2-3.
移项,得3x-4x<3-2-3.
合并同类项,得-x<-2.
9+2

6
≤ 1.
解:(2)去分母,得2(2x-1)-(9x+
2)≤6.
去括号,得4x-2-9x-2≤6.
移项,得4x-9x≤6+2+2.
−1
,并把它的解集表示在数轴上.
6
解:去分母,得2(y+1)-3(y-1)≥y-1.
去括号,得2y+2-3y+3≥y-1.
移项,得2y-3y-y≥-2-3-1.
合并同类项,得-2y≥-6.
两边都除以-2,得y≤3.
这个不等式的解集在数轴上表示如图:
课堂检测,巩固新知
−2
3.求不等式
4

+4
6
两边都除以-1,得x>2.
合并同类项,得-5x≤10.
这个不等式的解集在数轴上表示如图所示
两边都除以-5,得x≥-2.

这个不等式的解集在数轴上表示如图所示

开放训练,体现应用
4.已知关于x的方程2(x-2a)+2=x-a+1的解满足不等式x-5≥4a,

一元一次不等式与一次函数(第2课时)(课件)八年级数学下册(北师大版)

一元一次不等式与一次函数(第2课时)(课件)八年级数学下册(北师大版)
思考:10至25人的含义是什么?
探究新知
解:设该单位参加这次旅游的人数是 x 人,选择甲旅行 社时,所需的费用为 y 1 元,选择乙旅行社时,所需的费 用为 y 2 元,则 y 1 = 200 × 0.75 x, 即 y 1 = 150 x; y 2 = 200 × 0.8(x - 1),即 y 2 = 160 x - 160.
探究新知
例 3 : 为绿 化 校园 , 某校 计 划购 进 A, B两 种 树苗 , 共 21 棵.已知A种树苗每棵90元,B种树苗每棵70元.设购买B种 树苗x棵,购买两种树苗所需费用为y元. (1)y与x的函数关系式为________; (2)若购买B种树苗的数量少于A种树苗的数量,请给出一种
千米收取的费用比乙租赁公司多 D.除去月固定租赁费,甲租赁公司平均每
千米收取的费用比乙租赁公司少
随堂练习
4.某电信公司有甲、乙两种手机收费业务.甲种业务规定 月租费10元,每通话1 min收费0.3元;乙种业务不收月 租费,但每通话1 min收费0.4元.你认为何时选择甲种业 务对顾客更合算?何时选择乙种业务对顾客更合算?
情境导入
一次函数与一元一次不等式的关系是什么? 一次函数与一元一次不等式的关系: 任何一元一次不等式都可以化为ax+b>0或ax+b<0(a,b为 常数,a≠0)的形式,所以解一元一次不等式就可以看成当一次 函数的值大于或小于0时,求相应的自变量的取值范围. 从 图 象 上 看 , ax + b > 0 或 ax + b < 0 的 解 集 是 使 直 线 y = ax + b(a≠0)位于x轴的上方或下方的部分对应的x的取值范围.
探究新知
核心知识点一: 一元一次不等式与一次函数的综合应用
例1:某电信公司有甲、乙两种手机收费业务.甲种业务规 定月租费10元,每通话1min收费0.3 元;乙种业务不收月租 费,但每通话1min收费0.4 元. 你认为何时选择甲种业务对 顾客更合算?何时选择乙种业务对顾客更合算?

八年级数学北师大版初二下册--第二单元 《一元一次不等式与一元一次不等式组回顾与思考》课件

八年级数学北师大版初二下册--第二单元  《一元一次不等式与一元一次不等式组回顾与思考》课件

1 -5 -4 -3 -2 -1 -11 2 3 4 x
解:(1)x=1;(2).x<1;(3).x>1
-2
归纳:利用两个一次函数的图象求一元一次不等 式的解集:关键是确定两个一次函数图象的交点 坐标.
知识点三:一元一次不等式组
(一)一元一次不等式组: 一般地,关于同一未知数的几个一元一次不等式合在
性质3:不等式的两边乘以(或除以)同一个负数,不等 号的方向改变。
即:如果a>b,c<0,那么ac<bc,a/c<b/c.
1.设a>b,用“<”或“>”填空:
(1)a-3 > b-3 (2) a > b (3)-4a < -4b 22
2.单项选择: (1)由x>y 得ax>ay的条件是( A ) A.a>0 B.a<0 C.a≥0 D.a≤0 (2)由x>y得ax≤ay的条件是( D ) A.a>0 B.a<0 C.a≥0 D.a≤0 (3)由a>b得am2>bm2 的条件是( C ) A.m>0 B.m<0 C.m≠0 D.m是任意有理数
2.高速公路施工需要爆破,根据现场实际情况,操作 人员点燃导火线后,要在炸药爆破前跑到400米外的 安全区域,已知导火索燃烧速度是1.2厘米/秒,人跑 步的速度是5米/秒,问导火索至少需要多长? 分析:导火索燃烧的时间≥人跑出400米外的时间.
解:设导火索至少需要x厘米长,据题意有:
x 1.2

400 5
1.解不等式 2x 1 5 x 5 ,并把它的解集在数轴上 34
表示出来. 解: 去分母得: 4(2x 1) 12(5 x 5) 4 去括号得: 8x-4≥15x-60
移项得: 8x-15x≥-60+4
合并同类项得:
-7x≥-56

北师大版2019-2020八年级数学下册第二章 一元一次不等式与一元一次不等式组章末复习课件(共60张)

北师大版2019-2020八年级数学下册第二章 一元一次不等式与一元一次不等式组章末复习课件(共60张)
分析 先求出不等式组的解集, 即x的取值范围, 然后根据不等式组 的整数解的个数确定其整数解, 再借助数轴进行直观分析得到b的 取值范围.
章末复习
解 解不等式组, 得xx≤≥b4,.5. 由题意知原不等式组有解, 所以原不等式 组的解集为4.5≤x≤b, 如图2-Z-2所示, 将x≥4.5表示在数轴上. 由整数解 有3个, 可知整数解为5, 6, 7.结合图形可知7≤b<8.
章末复习
链接1 [南宁中考]若m>n, 则下列不等式正确的是( ).
解析 ①分别求出两个不等式的解集;②求两个不等式解集的公共部分; ③在两个不等式解集的公共部分中确定整数解.
章末复习
解:解不等式 3x-1<x+5,得 x<3. 解不等式x-2 3<x-1,得 x>-1. ∴不等式组的解集为-1<x<3,它的整数解为 0,1,2.
章末复习
专题三 根据不等式(组)的解集确定字母的值(取值范围)
分析 由题意可得不等关系:购买乒乓球的花费+购买球拍的花≤200元, 由此可列不等式解决问题.
章末复习
解 设购买 x个球拍. 根据题意, 得1.5×20+22x≤200.
解这个不等式,
得x≤
8 711
. 因为x取整数,
所以x的最大值为7.
故孔明应该买7个球拍.
章末复习
相关题4 为加强中小学生安全和禁毒教育, 某校组织了“防溺水、 交通安全、禁毒”知识竞赛, 为奖励在竞赛中表现优异的班级, 学校准备从体育用品商场一次性购买若干个足球和篮球(每个足 球的价格相同, 每个篮球的价格相同). 已知购买1个足球和1个篮 球共需159元;1个足球的价格比1个篮球的价格的2倍少9元. (1)足球和篮球的单价各是多少? (2)根据学校实际情况, 需一次性购买足球和篮球共20个, 但要求 购买足球和篮球的总费用不超过1550元, 学校最多可以购买多少 个足球?

北师版八年级数学下册课件 第二章 一元一次不等式与一元一次不等式组 确定不等式(组)中参数的值或范围

北师版八年级数学下册课件 第二章 一元一次不等式与一元一次不等式组 确定不等式(组)中参数的值或范围

无解,那
A.m≤-1 么m的取值范围为( )
A
B.m<-1
C.-1<m≤0
D.-1≤m<0
式(组)②覆盖,特别地,若一个不等式(组)
无解,则它被其他任意不等式(组)覆盖.例
如:不等式x>1被不等式x>0覆盖,不等
式组
无解,被其他任意不等式
(组)覆盖.
(1)下列不等式(组)中,能被不等式x<-2 覆盖的是 D ;
13.(2018·黑龙江)若关于x的一元一次不等式组 有2个负整数解,则a的取值范围是
-3≤a<-2 ____________.
14.新定义:对非负数x“四舍五入”到个位的 值记为<x>,即当n为非负数时,若n- ≤x<n
+ ,则<x>=n.
例如:<0>=<0.49>=0,<0.5>=<1.49>=1,<2> =2,<3.5>=<4.23>=4,…
B.m<2
C.-2<m≤2 D.-2≤m<2
5.如果关于x的不等式x>2a-1的最小整数解
A.0<a<为2 x=3,则a的取值范围是(
C
)
B.a<2
C.≤a<2
D.a≤2
6.不等式组
的解集是3<x<a
A.a>1 +2,则a的取值范围是( )
D
B.a≤3
C.a<1或a>3
D.1<a≤3
7.已知关于x的不等式
类型四 已知不等式组的解集的情况确定参数
的取值范围
15.若关于x的不等式组
有实数解,则Aa的取值
范围是( )
A.a<4
B.a≤4
C.a>4
D.a≥4
16.(2018·贵港)若关于x的不等式组 A.a≤-3无解,则a的取值范围是( ) A

北师版八年级数学下册作业课件 第二章一元一次不等式与一元一次不等式组 第1课时 一元一次不等式的解法

北师版八年级数学下册作业课件 第二章一元一次不等式与一元一次不等式组 第1课时 一元一次不等式的解法
不等式
第 1 课时 一元一次不等式的解法
1.不等式的两边都是
,只含有一个未
知数,并且整未式知数的最高次数是_______,像这
1
样的不等式,叫做一元一次不等式.
练习1:下列不等式中,属于一元一B 次不等式的是( )
A.4>1
B.3x-2<4
C. <2
∴-x+2>-1+2,即-x+2>1. ∴数轴上表示数-x+2的点在A点的右边. ∵-2x+3-(-x+2)=-x+1,x<1,∴-x+1>0, ∴-2x+3-(-x+2)>0,∴-2x+3>-x+2, ∴数轴上表示数-x+2的点在B点的左边. 综上所述,数轴上表示数-x+2的点应落在线段AB上.
16.已知一元一次不等式mx-3>2x+m.
A5..去在分解母,不得等5(式错2+误3x的)>一3(2步x-是的1)(过程中) ,开始B 出现
B.去括号,得10+5x>6x-3 C.移项,得5x-6x>-3-10 D.系数化为1,得x<13
6.若代数 +1的值不小于
-B 1的值,
则x的取值范围是( )
7.关于x的一元一次不等式ax-2>0的解集在 数轴上表示如图所示,则关于y的方程ay+2=0
B 的解为( )
A.y=-2 B.y=2 C.y=-1 D.y=1
8.一元一次不等式2x-7≤5-2x的正整数解是1,2,3.
1,2,3,
9.解下列一元一次不等式,并把它们的解集在
数轴上表示出来.
(1)(2018·桂林)
<x+1;
解:x<2,不等式的解集在数轴上表示如下:
(2)(2018·盐城)3x-1≥2(x-1).
(1)若它的解集是
,求m的取值范围;
(2)若它的解集是x> ,试问:这样的m是否存在?如果 存在,求出它的

北师大版八年级数学下册《一元一次不等式和一元一次不等式组——不等式的解集》教学PPT课件(4篇)

北师大版八年级数学下册《一元一次不等式和一元一次不等式组——不等式的解集》教学PPT课件(4篇)

创设情境
为确保安全,引火线的长度应满足什么条件?
引火线长度
4cm
6cm
燃放者撤离到安全 区域外的时间
引火线燃烧完所用 时间
结论
大于 10÷4=2.5(s)
0.04÷0.02=2(s)
0.06÷0.02=3(s)
不安全
安全
学习目标
1.经历探索发现不等关系的过程,进一步体会模型思想. 2.探索并掌握不等式的基本性质,体会类比的思想方法. 3.会解一元一次不等式(组)并直观表示其解集,发展几何直观. 4.能够用一元一次不等式解决一些简单的实际问题. 5.体会不等式、函数、方程之间的联系.
A.X>2
B. X>4
C.X>-2
D. X>-4
学习目标 情境导入 例题讲解
巩固提升 归纳总结 当堂检测 课后作业
4.如图所示的不等式的解集是___x_<__3_______.
5.在数轴上表示下列不等式的解集.
(1)X<-2.5;
(2) X>2.5;
(3) X≥3
-3 -2.5 -2 -1
0
0
1
2 2.5 3
A.
B.
C.
D.
4.关于x的不等式的解集在数轴上表示如图所示,则该不等式的解集 x≤2 .
学习目标 情境导入 例题讲解
巩固提升 归纳总结 当堂检测 课后作业
不等式
数学知识
思想方法
不等式的 解
不等式 的解集
用数轴表示不 等式的解集
类比思 想
数形结合 思想
学习目标 情境导入 例题讲解
巩固提升 归纳总结 当堂检测 课后作业
不等式的解集 解不等式

八年级数学北师大版下册名师说课稿:第二章课题 一元一次不等式组及其解集

八年级数学北师大版下册名师说课稿:第二章课题 一元一次不等式组及其解集

八年级数学北师大版下册名师说课稿:第二章课题一元一次不等式组及其解集一. 教材分析本次说课的教材是北师大版八年级数学下册第二章课题《一元一次不等式组及其解集》。

本节课的内容是在学生已经掌握了不等式的概念、性质和一元一次不等式的解法的基础上进行学习的。

通过本节课的学习,使学生理解不等式组的含义,掌握不等式组的解法,以及会用图像法表示不等式组的解集,培养学生解决实际问题的能力。

二. 学情分析学生在学习本节课之前,已经掌握了一元一次不等式的相关知识,具备了一定的逻辑思维能力和解决问题的能力。

但是,对于不等式组的解法和解集的表示方法,可能还存在一定的困难。

因此,在教学过程中,要注重引导学生,激发学生的学习兴趣,帮助学生理解和掌握不等式组的知识。

三. 说教学目标1.知识与技能目标:使学生理解不等式组的含义,掌握不等式组的解法,以及会用图像法表示不等式组的解集。

2.过程与方法目标:通过自主学习、合作交流的方式,培养学生解决实际问题的能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的逻辑思维能力,使学生感受到数学在生活中的应用。

四. 说教学重难点1.教学重点:不等式组的解法和不等式组的解集的表示方法。

2.教学难点:不等式组的解集的图像表示方法。

五. 说教学方法与手段1.教学方法:采用自主学习、合作交流、启发引导的教学方法,让学生在解决问题的过程中,掌握不等式组的知识。

2.教学手段:利用多媒体课件、黑板、粉笔等教学手段,辅助教学。

六. 说教学过程1.导入新课:通过复习一元一次不等式的知识,引出不等式组的概念,激发学生的学习兴趣。

2.自主学习:让学生自主探究不等式组的解法,引导学生发现解法的规律。

3.合作交流:学生分组讨论,分享解法经验,互相学习,共同提高。

4.教师讲解:教师讲解不等式组的解集的表示方法,特别是图像法的含义和画法。

5.练习巩固:让学生通过练习题,巩固所学知识,提高解题能力。

6.总结提升:教师引导学生总结不等式组的知识,使学生形成系统化的知识结构。

初二数学2.6一元一次不等式组课件

初二数学2.6一元一次不等式组课件

-7
-6 -5
-4 -3 -2
-1 0
5 x 2
解:原不等式组的解集为
-3
-2 -1 0
1
2
3
4
5
1 x 4
解:原不等式组的解集为
-6
-5
-4
-3 -2
-1
0
1
4 x 0
反思 : 4道题目有何共同点 ? 它们的解又有何共同点 ? 大小小大中间找 X大于小的数 ,而小于大的数 ,解集找中间.
因此,原不等式组的解集为:
1/3<x<6
议一议:
你能总结一下解一元一次不等式组的解题步骤吗?
(1)求出不等式组中各个不等式的解集;
(2)利用数轴,找出这些不等式解集的公共 部分; (3) 表示出这个不等式组的解集.
例1. 在同一数轴上表示出两个不等式的解集,并写出不等式组的解集:
第一组
第二组
第三组
记作:
4( x + 5) 100
(1)
4( x 5) 68 ( 2)
一般地,关于同一未知数的几个一元 一次不等式合在一起,就组成一个一 元一次不等式组
2 y 7 6 (1) 3 x + 3 1
x 1 ( 2) x 2
x + 2 1 2 a 7 1 (3) 1 ( 4) 1 3a + 3 0 x 3+x <4+2x 5x-3<4x-1 7+2x>6+3x
将两个解集表示在同一个数轴上:
一元一次不等式组中各个不等式的解集的公共部分, 叫做这个 一元一次不等式组的解集
此不等式组的解集为 : 20<x<22

北师大数学八年级下册第二章-含参数一元一次不等式(组)经典讲义

北师大数学八年级下册第二章-含参数一元一次不等式(组)经典讲义

第03讲_含参数一元一次不等式(组)知识图谱含参数一元一次不等式(组)知识精讲含字母的一元一次不等式(组)未知数的系数含有字母或常数项含有字母的一元一次不等式(组) 未知数的系数含有字母若0a >,axb >的解为b x a >; 若0a <,ax b >的解为bx a<;若0a =,则当0b ≥时,ax b >无解, 当0b <时,ax b >的解为任何实数已知23a ≠,解关于x 的不等式()()14321a x a x ++<-- 原不等式化为:()()13214a x a x +--<--()325a x -<-(1)当320a ->时,即23a >时,不等式的解为523x a <-;(2)当320a -<,即23a <时,不等式的解为523x a >-参数取值范围首先把不等式的解集用含有字母的代数式表示出来,然后把它与已知解集联系起来求解,在求解过程中可以利用数轴进行分析.五.易错点1.注意参数取值范围导致的变号问题.2.分清参数和未知数,不要混淆.3.解连续不等式时要注意拆分为不等式组.三点剖析一.考点:含参的一元一次方程(组).二.重难点:参数与解集之间的关系,整数解问题,不等式与方程综合. 三.易错点:注意参数取值范围导致的变号问题.解含参一元一次不等式(组)例题1、 解关于x 的不等式:ax ﹣x ﹣2>0. 【答案】 当a ﹣1=0,则ax ﹣x ﹣2>0为空集,当a ﹣1>0,则x >21a -,当a ﹣1<0,则x <21a -【解析】 ax ﹣x ﹣2>0. (a ﹣1)x >2,当a ﹣1=0,则ax ﹣x ﹣2>0为空集,当a ﹣1>0,则x >21a -,当a ﹣1<0,则x <21a -.例题2、 已知a 、b 为常数,解关于x 的不等式22ax x b ->+ 【答案】 2a >时,()212b x a +>- 2a <时,()212b x a +<-2a =时,①如果10b +≥,不等式无解;②如果10b +<,则不等式的解为任何实数 【解析】 原不等式可化为()()221a x b ->+,(1)当20a ->,即2a >时,不等式的解为()212b x a +>-; (2)当20a -<,即2a <时,不等式的解为()212b x a +<-;(3)当20a -=,即2a =时,有 ①:如果10b +≥,不等式无解;②如果10b +<,则不等式的解为任何实数.例题3、 已知a 、b 为常数,若0ax b +>的解集为23x >,则0bx a -<的解集是( ) A.32x >B.32x <C.32x >-D.32x <-【答案】 C 【解析】 该题考查的是解不等式.0ax b +>的解集为23x >,化简得2=3b a - 且a>00bx a -<的解集为a x b >,32x >-.所以该题的答案是C .例题4、 已知23a ≠,解关于x 的不等式()()14321a x a x ++<--【答案】 当23a >时,不等式的解为523x a <-;当23a <时,不等式的解为523x a >-【解析】 原不等式化为:()()13214a x a x +--<-- ()325a x -<-,因为23a ≠,所以320a -≠,即32a -为正数或负数.(1)当320a ->时,即23a >时,不等式的解为523x a <-;(2)当320a -<,即23a <时,不等式的解为523x a>-例题5、 已知关于x 的不等式22m mx ->12x ﹣1.(1)当m=1时,求该不等式的解集;(2)m 取何值时,该不等式有解,并求出解集.【答案】 (1)x <2(2)当m≠﹣1时,不等式有解,当m >﹣1时,不等式解集为x <2;当x <﹣1时,不等式的解集为x >2【解析】 (1)当m=1时,不等式为22x ->2x﹣1,去分母得:2﹣x >x ﹣2, 解得:x <2;(2)不等式去分母得:2m ﹣mx >x ﹣2, 移项合并得:(m+1)x <2(m+1), 当m≠﹣1时,不等式有解,当m >﹣1时,不等式解集为x <2; 当m <﹣1时,不等式的解集为x >2.随练1、 解关于x 的不等式22241x x a a a-≥+.【答案】当2a >-且0a ≠时,有2x a ≤-;当2a =-时,x 为任意数不等式都成立; 当2a <-时,有2x a ≥-【解析】 因为0a ≠,所以20a >,将原不等式去分母,整理得()224a x a +≤-.当2a >-且0a ≠时,有2x a ≤-;当2a =-时,x 为任意数不等式都成立;当2a <-时,有2x a ≥-.随练2、 已知23a ≠,解关于x 的不等式()()14321a x a x ++<--.【答案】 当23a >时,不等式的解为523x a <-;当23a <时,不等式的解为523x a >-【解析】 原不等式化为:()325a x -<-,因为23a ≠,所以320a -≠,即32a -为正数或负数. (1)当320a ->时,即23a >时,不等式的解为523x a <-;(2)当320a -<,即23a <时,不等式的解为523x a >-随练3、 解下列关于x 的不等式组:()23262111x a x x x +⎧->⎪⎨⎪+>-⎩;【答案】 13a >时,32x a >+;13a ≤时,3x >【解析】 原不等式组可化为323x a x >+⎧⎨>⎩.当323a +>,即13a >时,不等式组的解集为32x a >+.当323a +≤,即13a ≤时,不等式组的解集为3x >随练4、 已知a ,b 为实数,若不等式ax +b <0的解集为12x >,则不等式b (x -1)-a <0的解集为( )A.x >-1B.x <-1C.a b x b +>D.a b x b+< 【答案】 B【解析】 暂无解析随练5、已知关于x 的不等式()2340a b x a b -+->的解集是1x >.则关于x 的不等式()4230a b x a b -+->的解集是____________.【答案】 13x <-【解析】 ()2340a b x a b -+->, 移项得:()232a b x a b ->-,由已知解集为1x >,得到20a b ->,变形得:322a bx a b ->-,可得:3212a ba b-=-,整理得:a b =, ()4230a a x a a ∴-+->,即0a >,∴不等式()4230a b x a b -+->可化为()4230a a x a a -+->. 两边同时除以a 得:31x ->,解得:13x <-.随练6、 已知实数a 是不等于3的常数,解不等式组2x 3311x 2a x 022-+-⎧⎪⎨-+⎪⎩≥()< ,并依据a 的取值情况写出其解集. 【答案】 当a >3时,不等式组的解集为x ≤3,当a <3时,不等式组的解集为x <a【解析】 2x 3311x 2a x 022-+-⎧⎪⎨-+⎪⎩≥(①②)<, 解①得:x ≤3,解①得:x <a ,∵实数a 是不等于3的常数,∴当a >3时,不等式组的解集为x ≤3, 当a <3时,不等式组的解集为x <a .随练7、 关于x 的不等式组2131x a x +>⎧⎨->⎩.(1)若不等式组的解集是1<x <2,求a 的值;(2)若不等式组无解,求a 的取值范围. 【答案】 (1)a=3;(2)a≤2【解析】 (1)解不等式2x+1>3得:x >1, 解不等式a ﹣x >1得:x <a ﹣1, ∵不等式组的解集是1<x <2,∴a ﹣1=2, 解得:a=3;(2)∵不等式组无解, ∴a ﹣1≤1, 解得:a≤2.参数与解集之间的关系例题1、 若关于x 的一元一次不等式组011x a x x ->⎧⎨->-⎩无解,则a 的取值范围是 .【答案】 a≥2.【解析】 由x ﹣a >0得,x >a ;由1﹣x >x ﹣1得,x <1, ∵此不等式组的解集是空集, ∴a≥1.例题2、 已知关于x 的不等式组301(2)342x a x x -≥⎧⎪⎨->+⎪⎩有解,求实数a 的取值范围,并写出该不等式组的解集.【答案】 a <﹣6,3a≤x <﹣2.【解析】 解不等式3x ﹣a≥0,得:x≥3a,解不等式12(x ﹣2)>3x+4,得:x <﹣2,由题意得:3a<﹣2,解得:a <﹣6,∴不等式组的解集为3a≤x <﹣2.例题3、 如果关于x 的不等式(a+1)x >a+1的解集为x <1,那么a 的取值范围是( ) A.a <﹣1 B.a <0 C.a >﹣1 D.a >0或a <﹣1 【答案】 A【解析】 (a+1)x >a+1, 当a+1>0时,x >1, 当a+1<0时,x <1, ∵解集为x <1, ∴a+1<0, a <﹣1. 故选:A .例题4、 当1≤x≤4时,mx ﹣4<0,则m 的取值范围是( ) A.m >1 B.m <1 C.m >4 D.m <4 【答案】 B【解析】 设y=mx ﹣4,由题意得,当x=1时,y <0,即m ﹣4<0, 解得m <4,当x=4时,y <0,即4m ﹣4<0, 解得,m <1,则m 的取值范围是m <1,例题5、 若不等式(a ﹣3)x >1的解集为x <13a -,则a 的取值范围是 .【答案】 a <3.【解析】 ∵(a ﹣3)x >1的解集为x <13a -, ∴不等式两边同时除以(a ﹣3)时不等号的方向改变, ∴a ﹣3<0, ∴a <3.故答案为:a <3.例题6、 如果关于x 的不等式()122a x a +>+的解集是2x <,则a 的取值范围是( ) A.0a < B.1a <-C.1a >D.1a >-【答案】 B【解析】 将原不等式与其解集进行比较,在不等式的变形过程中利用了不等式的性质三,因此有10a +<,故1a <-例题7、 若不等式组()322110b x x a -<--⎧⎨->⎩的解集为﹣2<x <4,求出a 、b 的值.【答案】 a=﹣10,b=3.【解析】 解不等式10﹣x <﹣(a ﹣2),得:x >a+8,解不等式3b ﹣2x >1,得:x <312b -,∵解集为﹣2<x <4, ∴314282a b ⎧⎪⎨-=+=-⎪⎩,解得:a=﹣10,b=3.随练1、 已知关于x 的不等式(m -2)x >2m -4的解集为x <2,则m 的取值范围是________. 【答案】 m <2【解析】 不等式(m -2)x >2m -4的解集为x <2, ∴m -2<0,m <2.随练2、 关于x 的不等式组()3141x x x m ⎧->-⎪⎨<⎪⎩的解集为x <3,那么m 的取值范围是 .【答案】 m≥3【解析】 ()3141x x x m ->-⋅⋅⋅⎧⎪⎨<⋅⋅⋅⎪⎩①②,解①得x <3,∵不等式组的解集是x <3, ∴m≥3.故答案是:m≥3.随练3、 若关于x 的一元一次不等式组202x m x m -<⎧⎨+>⎩有解,则m 的取值范围为( )A.23m >-B.23m ≤C.23m >D.23m ≤-【答案】 C【解析】 202x m x m -<⎧⎨+>⎩①②,解不等式①得,x <2m , 解不等式②得,x >2-m , ∵不等式组有解, ∴2m >2-m ,∴23m >.随练4、 若不等式组0422x a x x +⎧⎨->-⎩≥有解,则实数a 的取值范围是( )A.a≥-2B.a <-2C.a≤-2D.a >-2【答案】 D【解析】 0422x a x x +⎧⎨->-⎩≥,解不等式x +a≥0得,x≥-a ,由不等式4-2x >x -2得,x <2,∵不等式组:不等式组0422x a x x +⎧⎨->-⎩≥有解,∴a >-2,随练5、 已知不等式31(x ﹣m )>2﹣m . (1)若上面不等式的解集为x >3,求m 的值.(2)若满足x >3的每一个数都能使上面的不等式成立,求m 的取值范围. 【答案】 (1)23(2)m≥23 【解析】 (1)解不等式可得x >6﹣2m ,∵不等式的解集为x >3, ∴6﹣2m=3,解得m=23;(2)∵原不等式可化为x >6﹣2m ,满足x >3的每一个数都能使不等式成立, ∴6﹣2m≤3,解得m≥23.整数解问题例题1、 关于x 的不等式-1<x≤a 有3个正整数解,则a 的取值范围是________. 【答案】 3≤a <4【解析】 ∵不等式-1<x≤a 有3个正整数解, ∴这3个整数解为1、2、3, 则3≤a <4.例题2、 关于x 的不等式0x b ->恰有两个负整数解,则b 的取值范围是( ) A.32?b -<<- B.32?b -<≤- C.32b -≤≤- D.32b -≤<- 【答案】 D【解析】 本题主要考查一元一次不等式及其解法。

第二章《一元一次不等式与一元一次不等式组》小结与复习-八年级数学下册课件(北师大版)

第二章《一元一次不等式与一元一次不等式组》小结与复习-八年级数学下册课件(北师大版)

巩固练习 拓展提高
6. 某公司为了扩大经营,决定购进6台机器用于生产某种活塞,


现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生 价格(万元/台) 7
5
产活塞的数量如下表所示,经过预算,本次购买机器所耗资金不能
每台日产量(个) 100 60
超过34万元,则按该公司的要求可以有几种购买方案?
> 大于,高出 大于
小于或等于 号

不大于, 小于或 不超过 等于
大于或等于 号

不小于, 大于或
至少
等于
不等号

不相等 不等于
Hale Waihona Puke 创设情境 引入新课比较不等式与等式的基本性质:
变形 两边都加上(或减去)同一个整式 两边都乘以(或除以)同一个正数 两边都乘以(或除以)同一个负数
等式 仍成立 仍成立 仍成立
解不等式的应用问题的步骤包括审、设、列、解、 找、答这几个环节,而在这些步骤中,最重要的是 利用题中的已知条件,列出不等式(组),然后通 过解出不等式(组)确定未知数的范围,利用未知 数的特征(如整数问题),依据条件,找出对应的 未知数的确定数值,以实现确定方案的解答.
巩固练习 拓展提高
7. 暑假期间,两名家长计划带领若干名学生去旅游,他们联系了报价均为每人500元的两家 旅行社,经协商,甲旅行社的优惠条件是:两名家长全额收费,学生都按七折收费;乙旅行社的 优惠条件是家长、学生都按八折收费.假设这两位家长带领x名学生去旅游,他们应该选择哪家旅 行社?
创设情境 引入新课
一元一次不等式与一次函数在决策型应用题中的应用
实际问题
写出两个函数表达式
画出图象
分析图象

北师大版数学八年级下册2.6 一元一次不等式组(第1课时)教学设计(含教学反思)

北师大版数学八年级下册2.6 一元一次不等式组(第1课时)教学设计(含教学反思)

北师大版数学八年级下册
《2.6 一元一次不等式组(第1课时)》教学设计
1.某校今年冬季烧煤取暖时间为4个月,如果每月比计划多烧5吨煤,那么取暖用煤总量将超过100吨;如果每月比计划少烧5吨煤,那么取暖用煤总量不足68吨。

该校计划每月烧煤多少吨?
问题:你能列出一个不等式组吗?你能尝试找出符合上面一元一次不等式组的未知数的值吗?
2.解不等式组:
3.课本第55页随堂练习。

活动目的:
通过学生自己的动手操作,一方面使学生能够体会数学的学习是运用于生活的,另一发面,通过学生解不等式组,可以达到巩固新知识的目的.
活动效果:
考察学生对一元一次不等式组解法的理解和应用,加深对数形结合思想的理解,使学生更好地进行知识的迁移。

此外,教师通过对学生练习的检查,及时发现问题并纠正。

总结归纳:
活动内容:
通过本节课的学习,你有哪些收获?
活动目的:
及时反思,便于学生将数学知识体系化,同时从能力、情感。

北师大版数学八年级下册《一元一次不等式与一次函数》一元一次不等式和一元一次不等式组(第1课时)

北师大版数学八年级下册《一元一次不等式与一次函数》一元一次不等式和一元一次不等式组(第1课时)

知识点二:选择适当的方法解一元一次不等式
【例2】1.如图,函数 y1 2x 和
y2
2 3
x
4
的图象相交于点A.
(1)求点A的坐标; (2)根据图像回答:当为x何值时,
① y1 y2
② y1 y2
③ y1 y2
归纳与小结: 在此问题中,涉及两个函数的比较大小,
我们依然有两种方法: 和
.
巩固练习:直线y=k1x+b与直线y=k2x在同一平面直角坐标系中的图象如图所示, 则关于x的不等式k1x+b>k2x的解为 X<-1 .
2.如图,已知函数y=3x+b和y=ax-3的图象交于点P(-2,-5),则根据图象可得不等式 0>3x+b>ax-3的解集是_______________。
感谢聆听!
《一元一次不等式与一次函 数》一元一次不等式和一元
一次不等式组(第1课时)
北师大版数学八年级下册
生动有趣的课程,搭配各个互动环节助理您教学成功感谢所Fra bibliotek辛勤付出的人民教师
目录
content
01 学习目标 02 课堂学习 03 课堂小结 04 当堂检测
学习目标 1 理解一次函数图象与一元一次不等式的关系 2 能够用图像法解一元一次不等式
题中应灵活选用。
04
当堂检测
Life isn't about waiting for the storm to pass. it's about learning to dance
四、当堂检测 1. 已知一次函数y=2x-5的图象如图所示,借助图象直接写出答案: (1)当x取何值时,2x-5=0? (2)当x取哪些值时,2x-5>0? (3)当x取哪些值时,2x-5<0? (4)当x取哪些值时,2x-5>3?
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档