力与牛顿试题
高考物理牛顿运动定律题20套(带答案)含解析
高考物理牛顿运动定律题20套(带答案)含解析一、高中物理精讲专题测试牛顿运动定律1.如图所示,质量为M=0.5kg 的物体B 和质量为m=0.2kg 的物体C ,用劲度系数为k=100N/m 的竖直轻弹簧连在一起.物体B 放在水平地面上,物体C 在轻弹簧的上方静止不动.现将物体C 竖直向下缓慢压下一段距离后释放,物体C 就上下做简谐运动,且当物体C 运动到最高点时,物体B 刚好对地面的压力为0.已知重力加速度大小为g=10m/s 2.试求:①物体C 做简谐运动的振幅;②当物体C 运动到最低点时,物体C 的加速度大小和此时物体B 对地面的压力大小. 【答案】①0.07m ②35m/s 2 14N 【解析】 【详解】①物体C 放上之后静止时:设弹簧的压缩量为0x . 对物体C ,有:0mg kx = 解得:0x =0.02m设当物体C 从静止向下压缩x 后释放,物体C 就以原来的静止位置为平衡位置上下做简谐运动,振幅A =x当物体C 运动到最高点时,对物体B ,有:0()Mg k A x =- 解得:A =0.07m②当物体C 运动到最低点时,设地面对物体B 的支持力大小为F ,物体C 的加速度大小为a .对物体C ,有:0()k A x mg ma +-= 解得:a =35m/s 2对物体B ,有:0()F Mg k A x =++ 解得:F =14N所以物体B 对地面的压力大小为14N2.如图,质量分别为m A =1kg 、m B =2kg 的A 、B 两滑块放在水平面上,处于场强大小E=3×105N/C 、方向水平向右的匀强电场中,A 不带电,B 带正电、电荷量q=2×10-5C .零时刻,A 、B 用绷直的细绳连接(细绳形变不计)着,从静止同时开始运动,2s 末细绳断开.已知A 、B 与水平面间的动摩擦因数均为μ=0.1,重力加速度大小g=10m/s 2.求:(1)前2s 内,A 的位移大小; (2)6s 末,电场力的瞬时功率. 【答案】(1) 2m (2) 60W 【解析】 【分析】 【详解】(1)B 所受电场力为F=Eq=6N ;绳断之前,对系统由牛顿第二定律:F-μ(m A +m B )g=(m A +m B )a 1 可得系统的加速度a 1=1m/s 2; 由运动规律:x=12a 1t 12 解得A 在2s 内的位移为x=2m ;(2)设绳断瞬间,AB 的速度大小为v 1,t 2=6s 时刻,B 的速度大小为v 2,则v 1=a 1t 1=2m/s ;绳断后,对B 由牛顿第二定律:F-μm B g=m B a 2 解得a 2=2m/s 2;由运动规律可知:v 2=v 1+a 2(t 2-t 1) 解得v 2=10m/s电场力的功率P=Fv ,解得P=60W3.如图所示,水平地面上固定着一个高为h 的三角形斜面体,质量为M 的小物块甲和质量为m 的小物块乙均静止在斜面体的顶端.现同时释放甲、乙两小物块,使其分别从倾角为α、θ的斜面下滑,且分别在图中P 处和Q 处停下.甲、乙两小物块与斜面、水平面间的动摩擦因数均为μ.设两小物块在转弯处均不弹起且不损耗机械能,重力加速度取g.求:小物块(1)甲沿斜面下滑的加速度; (2)乙从顶端滑到底端所用的时间;(3)甲、乙在整个运动过程发生的位移大小之比. 【答案】(1) g(sin α-()2sin sin cos hg θθμθ-【解析】 【详解】(1) 由牛顿第二定律可得F 合=Ma 甲Mg sin α-μ·Mg cos α=Ma 甲 a 甲=g(sin α-μcos α)(2) 设小物块乙沿斜面下滑到底端时的速度为v ,根据动能定理得W 合=ΔE k mgh -μmgcos θ·θsin h=212mv v=cos 21sin gh θμθ⎛⎫- ⎪⎝⎭a 乙=g (sin θ-μcos θ) t =()2sin sin cos hg θθμθ-(3) 如图,由动能定理得Mgh -μ·Mg cos α·sin hα-μ·Mg (OP -cos sin h αα)=0mgh -μmg cos θ·θsin h-μmg (OQ -cos sin h θθ)=0 OP=OQ根据几何关系得222211x h OP x h OQ ++甲乙4.高铁的开通给出行的人们带来了全新的旅行感受,大大方便了人们的工作与生活.高铁每列车组由七节车厢组成,除第四节车厢为无动力车厢外,其余六节车厢均具有动力系统,设每节车厢的质量均为m ,各动力车厢产生的动力相同,经测试,该列车启动时能在时间t 内将速度提高到v ,已知运动阻力是车重的k 倍.求: (1)列车在启动过程中,第五节车厢对第六节车厢的作用力;(2)列车在匀速行驶时,第六节车厢失去了动力,若仍要保持列车的匀速运动状态,则第五节车厢对第六节车厢的作用力变化多大? 【答案】(1)13m (v t +kg ) (2)1415kmg 【解析】 【详解】(1)列车启动时做初速度为零的匀加速直线运动,启动加速度为a =vt① 对整个列车,由牛顿第二定律得:F -k ·7mg =7ma ②设第五节对第六节车厢的作用力为T ,对第六、七两节车厢进行受力分析,水平方向受力如图所示,由牛顿第二定律得26F+T -k ·2mg =2ma , ③ 联立①②③得T =-13m (vt+kg ) ④ 其中“-”表示实际作用力与图示方向相反,即与列车运动相反. (2)列车匀速运动时,对整体由平衡条件得F ′-k ·7mg =0 ⑤设第六节车厢有动力时,第五、六节车厢间的作用力为T 1,则有:26F '+T 1-k ·2mg =0 ⑥ 第六节车厢失去动力时,仍保持列车匀速运动,则总牵引力不变,设此时第五、六节车厢间的作用力为T 2, 则有:5F '+T 2-k ·2mg =0, ⑦ 联立⑤⑥⑦得T 1=-13kmg T 2=35kmg 因此作用力变化ΔT =T 2-T 1=1415kmg5.在水平长直的轨道上,有一长度为L 的平板车在外力控制下始终保持速度v 0做匀速直线运动.某时刻将一质量为m 的小滑块轻放到车面的中点,滑块与车面间的动摩擦因数为μ,此时调节外力,使平板车仍做速度为v 0的匀速直线运动.(1)若滑块最终停在小车上,滑块和车之间因为摩擦产生的内能为多少?(结果用m ,v 0表示)(2)已知滑块与车面间动摩擦因数μ=0.2,滑块质量m =1kg ,车长L =2m ,车速v 0=4m/s ,取g =10m/s 2,当滑块放到车面中点的同时对该滑块施加一个与车运动方向相同的恒力F ,要保证滑块不能从车的左端掉下,恒力F 大小应该满足什么条件? 【答案】(1)2012m v (2)6F N ≥【解析】解:根据牛顿第二定律,滑块相对车滑动时的加速度mga g mμμ==滑块相对车滑动的时间:0v t a=滑块相对车滑动的距离2002v s v t g=-滑块与车摩擦产生的内能Q mgs μ= 由上述各式解得2012Q mv =(与动摩擦因数μ无关的定值) (2)设恒力F 取最小值为1F ,滑块加速度为1a ,此时滑块恰好达到车的左端,则: 滑块运动到车左端的时间011v t a = 由几何关系有:010122v t Lv t -= 由牛顿定律有:11F mg ma μ+= 联立可以得到:10.5s t=,16F N =则恒力F 大小应该满足条件是:6F N ≥.6.某天,张叔叔在上班途中沿人行道向一公交车站走去,发现一辆公交车正从身旁的平直公路驶过,此时,张叔叔的速度是1m/s ,公交车的速度是15m/s ,他们距车站的距离为50m .假设公交车在行驶到距车站25m 处开始刹车.刚好到车站停下,停车10s 后公交车又启动向前开去.张叔叔的最大速度是6m/s ,最大起跑加速度为2.5m/s 2,为了安全乘上该公交车,他用力向前跑去,求:(1)公交车刹车过程视为匀减速运动,其加速度大小是多少. (2)分析张叔叔能否在该公交车停在车站时安全上车. 【答案】(1)4.5m/s 2 (2)能 【解析】试题分析:(1)公交车的加速度221110 4.5/2v a m s x -==- 所以其加速度大小为24.5/m s (2)汽车从相遇处到开始刹车时用时:11153x x t s v -==汽车刹车过程中用时:1210103v t s a -== 张叔叔以最大加速度达到最大速度用时:32322v v t s a -== 张叔叔加速过程中的位移:2323·72v v x t m +== 以最大速度跑到车站的时间243437.26x x t s s v -==≈ 因341210t t t t s +<++,张叔叔可以在汽车还停在车站时安全上车. 考点:本题考查了牛顿第二定律、匀变速直线运动的规律.7.2019年1月3日10时26分.中国嫦娥四号探测器成功着陆在月球背面南极艾特肯盆地内的冯·卡门撞击坑内。
高考物理牛顿运动定律题20套(带答案)含解析
高考物理牛顿运动定律题20套(带答案)含解析一、高中物理精讲专题测试牛顿运动定律1.如图所示,倾角θ的足够长的斜面上,放着两个相距L 0、质量均为m 的滑块A 和B ,滑块A 的下表面光滑,滑块B 与斜面间的动摩擦因数tan μθ=.由静止同时释放A 和B ,此后若A 、B 发生碰撞,碰撞时间极短且为弹性碰撞.已知重力加速度为g ,求:(1)A 与B 开始释放时,A 、B 的加速度A a 和B a ;(2)A 与B 第一次相碰后,B 的速率B v ;(3)从A 开始运动到两滑块第二次碰撞所经历的时间t .【答案】(1)sin A a g θ=;0B a =(202sin gL θ3)023sin L g θ【解析】【详解】解:(1)对B 分析:sin cos B mg mg ma θμθ-= 0B a =,B 仍处于静止状态对A 分析,底面光滑,则有:mg sin A ma θ=解得:sin A a g θ=(2) 与B 第一次碰撞前的速度,则有:202A A v a L = 解得:02sin A v gL θ=所用时间由:1v A at =,解得:012sin L g t θ=对AB ,由动量守恒定律得:1A B mv mv mv =+ 由机械能守恒得:2221111222A B mv mv mv =+ 解得:100,2sin B v v gL θ==(3)碰后,A 做初速度为0的匀加速运动,B 做速度为2v 的匀速直线运动,设再经时间2t 发生第二次碰撞,则有:2212A A x a t =22B x v t =第二次相碰:A B x x = 解得:0222sin L t g θ= 从A 开始运动到两滑块第二次碰撞所经历的的时间:12t t t =+解得:023sin L t g θ=2.如图所示,足够长的木板与水平地面间的夹角θ可以调节,当木板与水平地面间的夹角为37°时,一小物块(可视为质点)恰好能沿着木板匀速下滑.若让该物块以大小v 0=10m/s 的初速度从木板的底端沿木板上滑,随着θ的改变,物块沿木板滑行的距离x 将发生变化.取g =10m/s 2,sin37°=0.6,cos37°=0.8.(1)求物块与木板间的动摩擦因数μ;(2)当θ满足什么条件时,物块沿木板向上滑行的距离最小,并求出该最小距离.【答案】(1) 0.75(2) 4m【解析】【详解】(1)当θ=37°时,设物块的质量为m ,物块所受木板的支持力大小为F N ,对物块受力分析,有:mg sin37°=μF NF N -mg cos37°=0解得:μ=0.75(2)设物块的加速度大小为a ,则有:mg sin θ+μmg cos θ=ma设物块的位移为x ,则有:v 02=2ax解得:()202sin cos v x g θμθ=+ 令tan α=μ,可知当α+θ=90°,即θ=53°时x 最小最小距离为:x min =4m3.我国的动车技术已达世界先进水平,“高铁出海”将在我国“一带一路”战略构想中占据重要一席.所谓的动车组,就是把带动力的动力车与非动力车按照预定的参数组合在一起.某中学兴趣小组在模拟实验中用4节小动车和4节小拖车组成动车组,总质量为m=2kg ,每节动车可以提供P 0=3W 的额定功率,开始时动车组先以恒定加速度21/a m s =启动做匀加速直线运动,达到额定功率后保持功率不变再做变加速直线运动,直至动车组达到最大速度v m =6m/s 并开始匀速行驶,行驶过程中所受阻力恒定,求:(1)动车组所受阻力大小和匀加速运动的时间;(2)动车组变加速运动过程中的时间为10s ,求变加速运动的位移.【答案】(1)2N 3s (2)46.5m【解析】(1)动车组先匀加速、再变加速、最后匀速;动车组匀速运动时,根据P=Fv 和平衡条件求解摩擦力,再利用P=Fv 求出动车组恰好达到额定功率的速度,即匀加速的末速度,再利用匀变速直线运动的规律即可求出求匀加速运动的时间;(2)对变加速过程运用动能定理,即可求出求变加速运动的位移.(1)设动车组在运动中所受阻力为f ,动车组的牵引力为F ,动车组以最大速度匀速运动时:F=动车组总功率:m P Fv =,因为有4节小动车,故04P P =联立解得:f=2N设动车组在匀加速阶段所提供的牵引力为Fʹ,匀加速运动的末速度为v '由牛顿第二定律有:F f ma '-=动车组总功率:P F v ='',运动学公式:1v at '=解得匀加速运动的时间:13t s =(2)设动车组变加速运动的位移为x ,根据动能定理:221122m Pt fx mv mv =-'- 解得:x=46.5m4.如图甲所示,光滑水平面上有一质量为M = 1kg 的足够长木板。
高中物理牛顿运动定律题20套(带答案)
高中物理牛顿运动定律题20套(带答案)一、高中物理精讲专题测试牛顿运动定律1.如图所示,质量M=0.4kg 的长木板静止在光滑水平面上,其右侧与固定竖直挡板问的距离L=0.5m ,某时刻另一质量m=0.1kg 的小滑块(可视为质点)以v 0=2m /s 的速度向右滑上长木板,一段时间后长木板与竖直挡板发生碰撞,碰撞过程无机械能损失。
已知小滑块与长木板间的动摩擦因数μ=0.2,重力加速度g=10m /s 2,小滑块始终未脱离长木板。
求:(1)自小滑块刚滑上长木板开始,经多长时间长木板与竖直挡板相碰;(2)长木板碰撞竖直挡板后,小滑块和长木板相对静止时,小滑块距长木板左端的距离。
【答案】(1)1.65m (2)0.928m 【解析】 【详解】解:(1)小滑块刚滑上长木板后,小滑块和长木板水平方向动量守恒:解得:对长木板:得长木板的加速度:自小滑块刚滑上长木板至两者达相同速度:解得:长木板位移:解得:两者达相同速度时长木板还没有碰竖直挡板解得:(2)长木板碰竖直挡板后,小滑块和长木板水平方向动量守恒:最终两者的共同速度:小滑块和长木板相对静止时,小滑块距长木板左端的距离:2.地震发生后,需要向灾区运送大量救灾物资,在物资转运过程中大量使用了如图所示的传送带.已知某传送带与水平面成37θ=角,皮带的AB 部分长 5.8L m =,皮带以恒定的速率4/v m s =按图示方向传送,若在B 端无初速度地放置一个质量50m kg =的救灾物资(P 可视为质点),P 与皮带之间的动摩擦因数0.5(μ=取210/g m s =,sin370.6)=,求:()1物资P 从B 端开始运动时的加速度. ()2物资P 到达A 端时的动能.【答案】()1物资P 从B 端开始运动时的加速度是()210/.2m s 物资P 到达A 端时的动能是900J . 【解析】 【分析】(1)选取物体P 为研究的对象,对P 进行受力分析,求得合外力,然后根据牛顿第三定律即可求出加速度;(2)物体p 从B 到A 的过程中,重力和摩擦力做功,可以使用动能定律求得物资P 到达A 端时的动能,也可以使用运动学的公式求出速度,然后求动能. 【详解】(1)P 刚放上B 点时,受到沿传送带向下的滑动摩擦力的作用,sin mg F ma θ+=;cos N F mg θ=N F F μ=其加速度为:21sin cos 10/a g g m s θμθ=+=(2)解法一:P 达到与传送带有相同速度的位移210.82v s m a == 以后物资P 受到沿传送带向上的滑动摩擦力作用 根据动能定理:()()2211sin 22A mg F L s mv mv θ--=- 到A 端时的动能219002kA A E mv J == 解法二:P 达到与传送带有相同速度的位移210.82v s m a == 以后物资P 受到沿传送带向上的滑动摩擦力作用,P 的加速度22sin cos 2/a g g m s θμθ=-=后段运动有:222212L s vt a t -=+, 解得:21t s =,到达A 端的速度226/A v v a t m s =+=动能219002kA A E mv J == 【点睛】传送带问题中,需要注意的是传送带的速度与物体受到之间的关系,当二者速度相等时,即保持相对静止.属于中档题目.3.我国科技已经开启“人工智能”时代,“人工智能”已经走进千家万户.某天,东东呼叫了外卖,外卖小哥把货物送到他家阳台正下方的平地上,东东操控小型无人机带动货物,由静止开始竖直向上做匀加速直线运动,一段时间后,货物又匀速上升53s ,最后再匀减速1s 恰好到达他家阳台且速度为零.货物上升过程中,遥控器上显示无人机在加速、匀速、减速过程中对货物的作用力F 1、F 2和F 3大小分别为20.8N 、20.4N 和18.4N ,货物受到的阻力恒为其重力的0.02倍.g 取10m/s 2.计算: (1)货物的质量m ;(2)货物上升过程中的最大动能E km 及东东家阳台距地面的高度h . 【答案】(1) m =2kg (2)2112km E mv J == h =56m 【解析】 【分析】 【详解】(1)在货物匀速上升的过程中 由平衡条件得2F mg f =+ 其中0.02f mg = 解得2kg m =(2)设整个过程中的最大速度为v ,在货物匀减速运动阶段 由牛顿运动定律得33–mg f F ma += 由运动学公式得330v a t =- 解得1m v s = 最大动能211J 2m k E mv == 减速阶段的位移3310.5m 2x vt == 匀速阶段的位移2253m x vt ==加速阶段,由牛顿运动定律得11––F mg f ma =,由运动学公式得2112a x v =,解得1 2.5m x =阳台距地面的高度12356m h x x x =++=4.某种弹射装置的示意图如图所示,光滑的水平导轨MN 右端N 处于倾斜传送带理想连接,传送带长度L=15.0m ,皮带以恒定速率v=5m/s 顺时针转动,三个质量均为m=1.0kg 的滑块A 、B 、C 置于水平导轨上,B 、C 之间有一段轻弹簧刚好处于原长,滑块B 与轻弹簧连接,C 未连接弹簧,B 、C 处于静止状态且离N 点足够远,现让滑块A 以初速度v 0=6m/s 沿B 、C 连线方向向B 运动,A 与B 碰撞后粘合在一起.碰撞时间极短,滑块C 脱离弹簧后滑上倾角θ=37°的传送带,并从顶端沿传送带方向滑出斜抛落至地面上,已知滑块C 与传送带之间的动摩擦因数μ=0.8,重力加速度g=10m/s 2,sin37°=0.6,cos37°=0.8.(1)滑块A 、B 碰撞时损失的机械能; (2)滑块C 在传送带上因摩擦产生的热量Q ;(3)若每次实验开始时滑块A 的初速度v 0大小不相同,要使滑块C 滑离传送带后总能落至地面上的同一位置,则v 0的取值范围是什么?(结果可用根号表示) 【答案】(1)9J E ∆= (2)8J Q =03313m/s 397m/s 22v ≤≤ 【解析】试题分析:(1)A 、B 碰撞过程水平方向的动量守恒,由此求出二者的共同速度;由功能关系即可求出损失的机械能;(2)A 、B 碰撞后与C 作用的过程中ABC 组成的系统动量守恒,应用动量守恒定律与能量守恒定律可以求出C 与AB 分开后的速度,C 在传送带上做匀加速直线运动,由牛顿第二定律求出加速度,然后应用匀变速直线运动规律求出C 相对于传送带运动时的相对位移,由功能关系即可求出摩擦产生的热量.(3)应用动量守恒定律、能量守恒定律与运动学公式可以求出滑块A 的最大速度和最小速度.(1)A 与B 位于光滑的水平面上,系统在水平方向的动量守恒,设A 与B 碰撞后共同速度为1v ,选取向右为正方向,对A 、B 有:012mv mv = 碰撞时损失机械能()220111222E mv m v ∆=- 解得:9E J ∆=(2)设A 、B 碰撞后,弹簧第一次恢复原长时AB 的速度为B v ,C 的速度为C v 由动量守恒得:122B C mv mv mv =+ 由机械能守恒得:()()222111122222B C m v m v mv =+ 解得:4/c v m s =C 以c v 滑上传送带,假设匀加速的直线运动位移为x 时与传送带共速由牛顿第二定律得:210.4/a gcos gsin m s μθθ=-=由速度位移公式得:2212C v v a x -=联立解得:x=11.25m <L 加速运动的时间为t ,有:12.5Cv v t s a -== 所以相对位移x vt x ∆=- 代入数据得: 1.25x m ∆=摩擦生热·8Q mgcos x J μθ=∆= (3)设A 的最大速度为max v ,滑块C 与弹簧分离时C 的速度为1c v ,AB 的速度为1B v ,则C 在传送带上一直做加速度为2a 的匀减速直线运动直到P 点与传送带共速则有:22212c v v a L -=根据牛顿第二定律得:2212.4/a gsin gcos m s θμθ=--=-联立解得:1/c v s =设A 的最小速度为min v ,滑块C 与弹簧分离时C 的速度为2C v ,AB 的速度为1B v ,则C 在传送带上一直做加速度为1a 的匀加速直线运动直到P 点与传送带共速则有:22112c v v a L -=解得:2/c v s =对A 、B 、C 和弹簧组成的系统从AB 碰撞后到弹簧第一次恢复原长的过程中 系统动量守恒,则有:112max B C mv mv mc =+ 由机械能守恒得:()()22211111122222B C m v m v mv =+解得:13/2max c v v s ==同理得:/min v s =0//s v s ≤≤5.5s 后系统动量守恒,最终达到相同速度v′,则()12mv Mv m M v +='+ 解得v′=0.6m/s ,即物块和木板最终以0.6m/s 的速度匀速运动.(3)物块先相对木板向右运动,此过程中物块的加速度为a 1,木板的加速度为a 2,经t 1时间物块和木板具有相同的速度v′′, 对物块受力分析:1mg ma μ= 对木板:2F mg Ma μ+= 由运动公式:021v v a t =-''11v a t ''=解得:113t s =2/3v m s '=' 此过程中物块相对木板前进的距离:01122v v v s t t '-'''+= 解得s=0.5m ;t 1后物块相对木板向左运动,这再经t 2时间滑落,此过程中板的加速度a 3,物块的加速度仍为a 1,对木板:3-F mg Ma μ= 由运动公式:222122321122v t a t v t a t s ''⎛⎫---= ⎪⎝⎭'' 解得233t s =故经过时间12310.913t t t s +=+=≈ 物块滑落.6.一长木板静止在水平地面上,木板长5l m =,小茗同学站在木板的左端,也处于静止状态,现小茗开始向右做匀加速运动,经过2s 小茗从木板上离开,离开木板时小茗的速度为v=4m/s ,已知木板质量M =20kg ,小茗质量m =50kg ,g 取10m/s 2,求木板与地面之间的动摩擦因数μ(结果保留两位有效数字).【答案】0.13 【解析】 【分析】对人分析,由速度公式求得加速度,由牛顿第二定律求人受到木板的摩擦力大小;由运动学的公式求出长木板的加速度,由牛顿第二定律求木板与地面之间的摩擦力大小和木板与地面之间的动摩擦因数. 【详解】对人进行分析,由速度时间公式:v=a 1t 代入数据解得:a 1=2m/s 2 在2s 内人的位移为:x 1=2112a t 代入数据解得:x 1=4m由于x 1=4m <5m ,可知该过程中木板的位移:x 2=l-x 1=5-4=1m 对木板:x 2=2212a t可得:a 2=0.5m/s 2对木板进行分析,根据牛顿第二定律:f-μ(M+m )g=Ma 2根据牛顿第二定律,板对人的摩擦力f=ma 1 代入数据解得:f=100N 代入数据解得:μ=90.1370≈. 【点睛】本题主要考查了相对运动问题,应用牛顿第二定律和运动学公式,再结合位移间的关系即可解题.本题也可以根据动量定理解答.7.我国科技已经开启“人工智能”时代,“人工智能”己经走进千家万户.某天,小陈叫了外卖,外卖小哥把货物送到他家阳台正下方的平地上,小陈操控小型无人机带动货物,由静止开始竖直向上做匀加速直线运动,一段时间后,货物又匀速上升53s ,最后再匀减速1s 恰好到达他家阳台且速度为零.货物上升过程中,遥控器上显示无人机在上升过程的最大速度为1m/s ,高度为56m .货物质量为2kg ,受到的阻力恒为其重力的0.02倍,重力加速度大小g=10m/s 2.求 (1)无人机匀加速上升的高度;(2)上升过程中,无人机对货物的最大作用力. 【答案】(1)2.5m ;(2)20.8N 【解析】 【详解】(1)无人机匀速上升的高度:h 2=vt 2 无人机匀减速上升的高度:h 3=2v t 3 无人机匀加速上升的高度:h 1=h -h 2-h 3 联立解得:h 1=2.5 m(2)货物匀加速上升过程:v 2=2ah 1货物匀加速上升的过程中,无人机对货物的作用力最大,由牛顿运动定律得: F -mg -0.02mg =ma 联立解得:F =20.8 N8.如图所示,一个质量m =2 kg 的滑块在倾角为θ=37°的固定斜面上,受到一个大小为40 N 的水平推力F 作用,以v 0=20 m/s 的速度沿斜面匀速上滑.(sin 37°=0.6,取g =10 m/s 2)(1)求滑块与斜面间的动摩擦因数;(2)若滑块运动到A 点时立即撤去推力F ,求这以后滑块再返回A 点经过的时间. 【答案】(1)0.5;(2)225s +() 【解析】【分析】 【详解】(1)滑块在水平推力作用下沿斜面向上匀速运动时,合力为零,则有 Fcos37°=mgsin37°+μ(mgcos37°+Fsin37°) 代入解得,μ=0.5(2)撤去F 后,滑块上滑过程:根据牛顿第二定律得:mgsin37°+μmgcos37°=ma 1, 得,a 1=g (sin37°+μcos37°) 上滑的时间为0112v t s a == 上滑的位移为01202v x t m == 滑块下滑过程:mgsin37°-μmgcos37°=ma 2, 得,a 2=g (sin37°-μcos37°)由于下滑与上滑的位移大小相等,则有x=12a 2t 22 解得,22225xt s a ==故 t=t 1+t 2=(2+25)s 【点睛】本题分析滑块的受力情况和运动情况是关键,由牛顿第二定律和运动学公式结合是处理动力学问题的基本方法.9.如图所示为一升降机由静止开始下降..过程中的速度图像,升降机及其载重总质量为2.0t .(1)由图象判断出升降机在哪段时间内出现超重、失重现象;(2)分别求出第2S 内、第5S 内、第7S 内悬挂升降机的钢索的拉力大小.(g 取10m/s 2)【答案】(1)6s -8s 超重;0—2s 失重 (2)41.210N ⨯ 4210N ⨯ 2.8×104N【解析】试题分析:当物体对接触面的压力大于物体的真实重力时,就说物体处于超重状态,此时有向上的加速度;当物体对接触面的压力小于物体的真实重力时,就说物体处于失重状态,此时有向下的加速度;速度时间图象的斜率表示加速度,根据牛顿第二定律求出各段时间内悬挂升降机的钢索的拉力大小.(1)由速度时间图象可知,0-2s 内,升降机向下做匀加速运动,加速度向下,处于失重状态,6s-8s 内升降机减速下降,加速度方向向上,处于超重状态. (2)由加速度定义:∆=∆v a t根据图象得0~2s 内2218/4/2v a m s m s t ∆===∆ 根据牛顿第二定律得:4?11 1.210F mg ma N =-=⨯2s ~6s 内,加速度a 2=0,即匀速运动 悬挂升降机的钢索的拉力F 2=mg =2×104 N 6s ~8s 内,加速度为:22308/4/2v a m s m s t ∆-===-∆ 根据牛顿第二定律得:433 2.810?F mg ma N =-=⨯ 点睛:本题主要考查了对超重失重现象的理解及牛顿第二定律的直接应用,属于基础题.10.如图所示,质量为M=8kg 的小车停放在光滑水平面上,在小车右端施加一水平恒力F ,当小车向右运动速度达 到时,在小车的右端轻轻放置一质量m=2kg 的小物块,经过t 1=2s 的时间,小物块与小车保持相对静止。
牛顿运动定律会考复习
一、牛顿运动定律1 、一个置于水平地面上的物体受到的重力为 G,当用力 F 竖直向下压它时,它对地面的压力等于_______________2 、一个做直线运动的物体受到的合外力的方向与物体运动的方向一致,当合外力增大时,则物体运动的加速度将_________速度的将____________.3、下列物理量中属于标量的是 ______________.A.力B.功C.动量D.加速度E.温度F.热量4 、质量为 4 千克的物体静止在光滑的水平地面上,受到 10 牛的水平力作用 2 秒,则物体速度达到_____________m/s。
5 、一轻弹簧上端固定,下端挂一重物,平衡时弹簧伸长了 4cm ,再将重物向下拉 1cm,然后放手,则在刚释放的瞬间,重物的加速度是 ____________ 。
6 、质量为 2.0kg 的物体,从离地面 16m 高处,由静止开始加速下落,经 2s 落地,则物体下落的加速度的大小是 m/s2,下落过程中物体所受阻力的大小是 N。
(g取 10m/s2 )7、一个物体受到 4N 的力作用时,产生的加速度是 2m/s2. 要使它产生 3m/s2 的加速度,需要施加多大的力8 、一个铁块在 8N 的外力作用下,产生的加速度是 4m/s2. 它在 12N 的外力作用下,产生的加速度是多大?9、质量是 1.0kg 的物体受到互成120°角的两个力的作用,这两个力都是 10N,这个物体产生的加速度是多大?10、汽车满载时总质量是4.0×103kg,牵引力是4.8×103N 。
从静止开始运动,经过 10s 前进了 40m.求汽车受到的阻力。
11、一个质量为 2 千克的物体放在水平地面上,它与地面的滑动摩擦系数为 =0.2,物体受到大小为 5 牛的水平拉力作用,由静止开始运动。
(g 取 10m/s2 )问:(1) 物体受到的滑动摩擦力是多大?(2) 经过 4 秒钟,物体运动的位移是多少?12、一个原来静止在水平面上的物体,质量是 2.0kg,在水平方向受到 4.4 牛的拉力,物体跟平面的滑动摩擦力是 2.2N.求物体 4.0s 末的速度和 4.0s 内发生的位移。
牛顿定律测试题
牛顿定律测试题一、选择题1. 牛顿第一定律也被称为:A. 质量定律B. 加速度定律C. 动量定律D. 作用-反作用定律2. 牛顿第二定律表达了什么关系?A. 力和加速度的关系B. 质量和加速度的关系C. 力和速度的关系D. 质量和力的关系3. 牛顿第三定律描述了什么?A. 力的大小与物体加速度相关B. 力的作用和反作用相等且方向相反C. 力的作用和反作用不相等D. 力的作用和速度成反比二、填空题1. 牛顿第一定律指出:若物体所受的合力为零,则物体将保持________。
2. 牛顿第二定律的数学表达式为:力 =________。
3. 牛顿第三定律又称为作用-________定律。
三、简答题1. 解释牛顿第一定律的内容,并给出一个日常生活中的例子。
2. 简述牛顿第二定律的数学表达式和意义。
3. 用一个例子解释牛顿第三定律的概念。
注意:请在答案后面标明题号和答案内容。
参考答案:一、选择题1. A2. B3. B二、填空题1. 静止或匀速直线运动状态2. 力 = 质量 ×加速度3. 反作用三、简答题1. 牛顿第一定律,也称为惯性定律,指出当物体所受的合力为零时,物体将保持静止或匀速直线运动的状态。
例如,当汽车突然停止时,人体会继续向前运动,因为人体具有惯性,继续保持运动状态。
2. 牛顿第二定律的数学表达式为力 = 质量 ×加速度。
这个定律指出,物体所受的合力与物体的质量成正比,与物体的加速度成正比。
从数学角度上可以表示为 F = ma,其中 F 表示物体所受的合力,m 表示物体的质量,a 表示物体的加速度。
这个定律告诉我们,由于质量不同,物体在相同的力作用下会获得不同的加速度。
3. 牛顿第三定律也称为作用-反作用定律,它指出力的作用和反作用总是相等且方向相反。
例如,当我们划船时,我们用桨划水向后,船向前移动。
这是因为我们划水时施加了一个向后的力,根据牛顿第三定律,水会给船以相同大小的向前的力,从而推动船向前移动。
物理牛顿运动定律专题练习(及答案)含解析
物理牛顿运动定律专题练习(及答案)含解析一、高中物理精讲专题测试牛顿运动定律1.质量为2kg的物体在水平推力F的作用下沿水平面做直线运动,一段时间后撤去F,其运动的图象如图所示取m/s2,求:(1)物体与水平面间的动摩擦因数;(2)水平推力F的大小;(3)s内物体运动位移的大小.【答案】(1)0.2;(2)5.6N;(3)56m。
【解析】【分析】【详解】(1)由题意可知,由v-t图像可知,物体在4~6s内加速度:物体在4~6s内受力如图所示根据牛顿第二定律有:联立解得:μ=0.2(2)由v-t图像可知:物体在0~4s内加速度:又由题意可知:物体在0~4s内受力如图所示根据牛顿第二定律有:代入数据得:F=5.6N(3)物体在0~14s内的位移大小在数值上为图像和时间轴包围的面积,则有:【点睛】在一个题目之中,可能某个过程是根据受力情况求运动情况,另一个过程是根据运动情况分析受力情况;或者同一个过程运动情况和受力情况同时分析,因此在解题过程中要灵活处理.在这类问题时,加速度是联系运动和力的纽带、桥梁.2.如图所示.在距水平地面高h =0.80m 的水平桌面一端的边缘放置一个质量m =0.80kg 的木块B ,桌面的另一端有一块质量M =1.0kg 的木块A 以初速度v 0=4.0m/s 开始向着木块B 滑动,经过时间t =0.80s 与B 发生碰撞,碰后两木块都落到地面上,木块B 离开桌面后落到地面上的D 点.设两木块均可以看作质点,它们的碰撞时间极短,且已知D 点距桌面边缘的水平距离s =0.60m ,木块A 与桌面间的动摩擦因数μ=0.25,重力加速度取g =10m/s 2.求:(1)木块B 离开桌面时的速度大小; (2)两木块碰撞前瞬间,木块A 的速度大小; (3)两木块碰撞后瞬间,木块A 的速度大小. 【答案】(1) 1.5m/s (2) 2.0m/s (3) 0.80m/s 【解析】 【详解】(1)木块离开桌面后均做平抛运动,设木块B 离开桌面时的速度大小为2v ,在空中飞行的时间为t ′.根据平抛运动规律有:212h gt =,2s v t '= 解得:2 1.5m/s 2gv h== (2)木块A 在桌面上受到滑动摩擦力作用做匀减速运动,根据牛顿第二定律,木块A 的加速度:22.5m/s Mga Mμ==设两木块碰撞前A 的速度大小为v ,根据运动学公式,得0 2.0m/s v v at =-=(3)设两木块碰撞后木块A 的速度大小为1v ,根据动量守恒定律有:2Mv Mv mv =+1解得:210.80m/s Mv mv v M-==.3.如图所示,传送带水平部分x ab =0.2m ,斜面部分x bc =5.5m ,bc 与水平方向夹角α=37°,一个小物体A 与传送带间的动摩擦因数μ=0.25,传送带沿图示方向以速率v =3m/s 运动,若把物体A 轻放到a 处,它将被传送带送到c 点,且物体A 不脱离传送带,经b 点时速率不变.(取g =10m/s 2,sin37°=0.6)求:(1)物块从a 运动到b 的时间; (2)物块从b 运动到c 的时间. 【答案】(1)0.4s ;(2)1.25s . 【解析】 【分析】根据牛顿第二定律求出在ab 段做匀加速直线运动的加速度,结合运动学公式求出a 到b 的运动时间.到达b 点的速度小于传送带的速度,根据牛顿第二定律求出在bc 段匀加速运动的加速度,求出速度相等经历的时间,以及位移的大小,根据牛顿第二定律求出速度相等后的加速度,结合位移时间公式求出速度相等后匀加速运动的时间,从而得出b 到c 的时间. 【详解】(1)物体A 轻放在a 处瞬间,受力分析由牛顿第二定律得:1mg ma μ=解得:21 2.5m/s a =A 与皮带共速需要发生位移:219 1.8m 0.2m 25v x m a ===>共故根据运动学公式,物体A 从a 运动到b :21112ab x a t =代入数据解得:10.4s t =(2)到达b 点的速度:111m/s 3m/s b v a t ==<由牛顿第二定律得:22sin 37mg f ma ︒+=2cos37N mg =︒且22f N μ=代入数据解得:228m/s a =物块在斜面上与传送带共速的位移是:2222b v vs a -=共代入数据解得:0.5m 5.5m s =<共时间为:2231s 0.25s 8b v v t a --=== 因为22sin 376m/s cos372m/s g g μ︒=︒=>,物块继续加速下滑 由牛顿第二定律得:23sin 37mg f ma ︒-= 2cos37N mg =︒,且22f N μ=代入数据解得:234m/s a =设从共速到下滑至c 的时间为t 3,由23331 2bc x s vt a t -=+共,得: 31s t =综上,物块从b 运动到c 的时间为:23 1.25s t t +=4.如图甲所示,质量为m=2kg 的物体置于倾角为θ=37°的足够长的固定斜面上,t=0时刻对物体施以平行于斜面向上的拉力F ,t 1=0.5s 时撤去该拉力,整个过程中物体运动的速度与时间的部分图象如图乙所示,不计空气阻力,g=10m /s 2,sin37°=0.6,cos37°=0.8.求:(1)物体与斜面间的动摩擦因数μ (2)拉力F 的大小(3)物体沿斜面向上滑行的最大距离s . 【答案】(1)μ=0.5 (2) F =15N (3)s =7.5m【解析】 【分析】由速度的斜率求出加速度,根据牛顿第二定律分别对拉力撤去前、后过程列式,可拉力和物块与斜面的动摩擦因数为 μ.根据v-t 图象面积求解位移. 【详解】(1)由图象可知,物体向上匀减速时加速度大小为:2210510/10.5a m s -==- 此过程有:mgsinθ+μmgcosθ=ma 2 代入数据解得:μ=0.5(2)由图象可知,物体向上匀加速时加速度大小为:a 1=210/0.5m s =20m/s 2 此过程有:F-mgsinθ-μmgcosθ=ma 1 代入数据解得:F=60N(3)由图象可知,物体向上滑行时间1.5s ,向上滑行过程位移为:s =12×10×1.5=7.5m 【点睛】本题首先挖掘速度图象的物理意义,由斜率求出加速度,其次求得加速度后,由牛顿第二定律求解物体的受力情况.5.现有甲、乙两汽车正沿同一平直马路同向匀速行驶,甲车在前,乙车在后,它们行驶的速度均为10m/s .当两车快要到一十字路口时,甲车司机看到绿灯已转换成了黄灯,于是紧急刹车(反应时间忽略不计),乙车司机为了避免与甲车相撞也紧急刹车,但乙车司机反应较慢(反应时间为0.5s ).已知甲车紧急刹车时制动力为车重的0.4倍,乙车紧急刹车时制动力为车重的0.5倍,g 取10m/s 2.(1)若甲车司机看到黄灯时车头距警戒线15m ,他采取上述措施能否避免闯警戒线? (2)为保证两车在紧急刹车过程中不相撞,甲、乙两车行驶过程中至少应保持多大距离?【答案】(1)见解析(2)2.5m 【解析】 【分析】(1)根据甲车刹车时的制动力求出加速度,再根据位移时间关系求出刹车时的位移,从而比较判定能否避免闯红灯;(2)根据追及相遇条件,由位移关系分析安全距离的大小. 【详解】(1)甲车紧急刹车的加速度为210.44/a g m s ==甲车停下来所需时间0112.5v t s a ==甲滑行距离 20112.52v x m a == 由于12.5 m <15 m ,所以甲车能避免闯红灯;(2)乙车紧急刹车的加速度大小为:220.55/a g m s ==设甲、乙两车行驶过程中至少应保持距离0x ,在乙车刹车2t 时刻两车速度相等,0120022()v a t t v a t -+=-解得2 2.0t s =此过程中乙的位移: 220002121152x v t v t a t m =+-= 甲的位移:210021021()()12.52x v t t a t t m =+-+= 所以两车安全距离至少为:012 2.5x x x m =-= 【点睛】解决本题的关键利用牛顿第二定律求出加速度,再根据运动学公式进行求解.注意速度大者减速追速度小者,判断能否撞上,应判断速度相等时能否撞上,不能根据两者停下来后比较两者的位移去判断.6.如图甲所示,在平台上推动物体压缩轻质弹簧至P 点并锁定.解除锁定,物体释放,物体离开平台后水平抛出,落在水平地面上.以P 点为位移起点,向右为正方向,物体在平台上运动的加速度a 与位移x 的关系如图乙所示.已知物体质量为2kg ,物体离开平台后下落0.8m 的过程中,水平方向也运动了0.8m ,g 取10m/s 2,空气阻力不计.求:(1)物体与平台间的动摩擦因数及弹簧的劲度系数; (2)物体离开平台时的速度大小及弹簧的最大弹性势能. 【答案】(1)0.2μ=,400/k N m =(2)2/v m s =, 6.48p E J = 【解析】 【详解】(1)由图象知,弹簧最大压缩量为0.18x m ∆=,物体开始运动时加速度2134/a m s =,离开弹簧后加速度大小为222/a m s =.由牛顿第二定律1k x mg ma μ⋅∆-=①,2mg ma μ=②联立①②式,代入数据解得0.2μ=③400/k N m =④(2)物体离开平台后,由平抛运动规律得:212h gt =⑤ d vt =⑥物体沿平台运动过程由能量守恒定律得:212p E mgx mv μ-=⑦ 联立①②⑤⑥⑦式,代入数据得2/v m s =⑧6.48p E J =⑨7.木块A 、B 质量分别为5A m kg =和7B m kg =,与原长为020l cm =、劲度系数为100/k N m =轻弹簧相连接,A 、B 系统置于水平地面上静止不动,此时弹簧被压缩了5c m .已知A 、B 与水平地面之间的动摩擦因数均为0.2μ=,可认为最大静摩擦力等于滑动摩擦力,现用水平推力F=2N 作用在木块A 上,如图所示(g 取10m/s 2),(1)求此时A ,B 受到的摩擦力的大小和方向;(2)当水平推力不断增大,求B 即将开始滑动时,A 、B 之间的距离 (3)若水平推力随时间变化满足以下关系12(),2F t N =+ 求A 、B 都仍能保持静止状态的时间,并作出在A 开始滑动前A 受到的摩擦力图像.(规定向左为正方向)【答案】(1)3,A f N =向右,3,B f N =向左;(2)11cm ,(3).【解析】试题分析:(1)分析A 、B 的最大静摩擦力大小关系,根据平衡条件进行求解;(2)当B 要开始滑动时弹簧弹力不变,则A 、B 的距离等于原长减去压缩量;(3)A 开始滑动时B 静止,则弹簧弹力不变,求出此时的时间,在A 没有滑动前,根据平衡条件求出A f t -的表达式,并作出图象.(1)由:max 10A A f f m g N μ===静动,max 14B B f f m g N μ===静动 此时假设A 、B 均仍保持静止状态由题得:5F kx N ==弹 对A 有:A F F f -=弹max 3A A f N f ∴=<方向向右;对B 有:B F f =弹max 5B B f N f ∴=<方向向左 则假设成立(2)当B 要开始滑动时,此时,max F f =弹静 由max B f f m g μ==静动 则:B kx m g μ'=0.1414B m gx m cm kμ∴='==A 、B 间距离: 011s l x cm '=-=(3)在A 没有开始滑动前,A 处于静止状态,弹簧弹力不变 则有:A F f F +=弹 得:13()2A f F F t N =-=-弹 设t 时刻A 开始滑动,此时B 静止,弹簧弹力不变 对A: max A F f F +=弹 代入数据解得:t=26s作出在A 开始滑动前A 受到的摩擦力A f t -图象如图所示8.草逐渐成为我们浙江一项新兴娱乐活动。
高中物理牛顿运动定律的应用试题(有答案和解析)及解析
高中物理牛顿运动定律的应用试题(有答案和解析)及解析一、高中物理精讲专题测试牛顿运动定律的应用1.质量为m =0.5 kg 、长L =1 m 的平板车B 静止在光滑水平面上,某时刻质量M =l kg 的物体A (视为质点)以v 0=4 m/s 向右的初速度滑上平板车B 的上表面,在A 滑上B 的同时,给B 施加一个水平向右的拉力.已知A 与B 之间的动摩擦因数μ=0.2,重力加速度g 取10 m/s 2.试求:(1)如果要使A 不至于从B 上滑落,拉力F 大小应满足的条件; (2)若F =5 N ,物体A 在平板车上运动时相对平板车滑行的最大距离. 【答案】(1)1N 3N F ≤≤ (2)0.5m x ∆= 【解析】 【分析】物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度,结合牛顿第二定律和运动学公式求出拉力的最小值.另一种临界情况是A 、B 速度相同后,一起做匀加速直线运动,根据牛顿第二定律求出拉力的最大值,从而得出拉力F 的大小范围. 【详解】(1)物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度v 1,则:222011-22A Bv v v L a a =+ 又: 011-=A Bv v v a a 解得:a B =6m/s 2再代入F +μMg =ma B 得:F =1N若F <1N ,则A 滑到B 的右端时,速度仍大于B 的速度,于是将从B 上滑落,所以F 必须大于等于1N当F 较大时,在A 到达B 的右端之前,就与B 具有相同的速度,之后,A 必须相对B 静止,才不会从B 的左端滑落,则由牛顿第二定律得: 对整体:F =(m +M )a 对物体A :μMg =Ma 解得:F =3N若F 大于3N ,A 就会相对B 向左滑下 综上所述,力F 应满足的条件是1N≤F ≤3N(2)物体A 滑上平板车B 以后,做匀减速运动,由牛顿第二定律得:μMg =Ma A 解得:a A =μg =2m/s 2平板车B 做匀加速直线运动,由牛顿第二定律得:F +μMg =ma B 解得:a B =14m/s 2两者速度相同时物体相对小车滑行最远,有:v 0-a A t =a B t 解得:t =0.25s A 滑行距离 x A =v 0t -12a A t 2=1516m B 滑行距离:x B =12a B t 2=716m 最大距离:Δx =x A -x B =0.5m 【点睛】解决本题的关键理清物块在小车上的运动情况,抓住临界状态,结合牛顿第二定律和运动学公式进行求解.2.如图所示为货场使用的传送带的模型,传送带倾斜放置,与水平面夹角为37θ=︒,传送带AB 足够长,传送带以大小为2m/s υ=的恒定速率顺时针转动。
高三物理牛顿第三定律试题答案及解析
高三物理牛顿第三定律试题答案及解析1. -根轻质弹簧竖直悬挂在天花板上,下端悬挂一小球,小球和弹簧的受力如右图所示,下列说法正确的是()A.F1的施力者是弹簧B.F2的反作用力是F1C.F3的施力者是地球D.F2的反作用力是F3【答案】D【解析】由图知,F1的施力者是弹地球,故A错误;F2的反作用力是F3,故B错误;D正确;F3的施力者是小球,故C错误。
【考点】本题考查力、牛顿第三定律2.(20分)根据玻尔理论,电子绕氢原子核运动可以看作是仅在库仑引力作用下的匀速圆周运动,已知电子的电荷量为e,质量为m,电子在第1轨道运动的半径为r1,静电力常量为k。
(1)电子绕氢原子核做圆周运动时,可等效为环形电流,试计算电子绕氢原子核在第1轨道上做圆周运动的周期及形成的等效电流的大小;(2)氢原子在不同的能量状态,对应着电子在不同的轨道上绕核做匀速圆周运动,电子做圆周运动的轨道半径满足rn =n2r1,其中n为量子数,即轨道序号,rn为电子处于第n轨道时的轨道半径。
电子在第n轨道运动时氢原子的能量En为电子动能与“电子-原子核”这个系统电势能的总和。
理论证明,系统的电势能Ep 和电子绕氢原子核做圆周运动的半径r存在关系:Ep=-k(以无穷远为电势能零点)。
请根据以上条件完成下面的问题。
①试证明电子在第n轨道运动时氢原子的能量En 和电子在第1轨道运动时氢原子的能量E1满足关系式②假设氢原子甲核外做圆周运动的电子从第2轨道跃迁到第1轨道的过程中所释放的能量,恰好被量子数n=4的氢原子乙吸收并使其电离,即其核外在第4轨道做圆周运动的电子脱离氢原子核的作用范围。
不考虑电离前后原子核的动能改变,试求氢原子乙电离后电子的动能。
【答案】(1)(2)①证明见解析;②Ek=。
【解析】(1)设电子绕氢原子核在第1轨道上做圆周运动的周期为T1,形成的等效电流大小为I1,根据牛顿第二定律有(2分)则有(1分)又因为(2分)有(1分)(2)①设电子在第1轨道上运动的速度大小为v1,根据牛顿第二定律有(1分)电子在第1轨道运动的动能(1分)电子在第1轨道运动时氢原子的能量 E1= -k="-" k(2分)同理,电子在第n轨道运动时氢原子的能量 En=-k=-k(2分)又因为 rn =n2r1则有 En=-k=-k命题得证。
高中物理必修一:牛顿定律测试及答案1
高一物理《牛顿运动定律》测试题总分100分,时间90分钟一.选择题(每题4分,共40分,每题至少有一个选项正确,选不全得2分)1.关于力学单位制,下列说法正确的是( )A .kg 、m/s 、N 是导出单位B .kg 、m 、s 是基本单位C .在国际单位制中,质量的单位是g ,也可以是kgD .在国际单位制中,牛顿第二定律的表达式是F=ma2.物理知识渗透于我们的生活,以下警示语中与惯性知识无关的是( )A .汽车后窗贴有“保持车距”B .公路旁立有“雨天路滑,减速慢行”C .公共场所标有“禁止吸烟”D .交通规则写有“行车时系好安全带”3.下列对牛顿第二定律的表达式F =ma 及其变形公式的理解正确的是( )A .由F =ma 可知,物体所受的合力与物体的质量成正比,与物体的加速度成反比B .由m =F a可知,物体的质量与其所受合力成正比,与其运动的加速度成反比 C .由a =F m可知,物体的加速度与其所受合力成正比,与其质量成反比 D .由m =F a可知,物体的质量可以通过测量它的加速度和它所受的合力求出4.下列说法正确的是 ( )A .拔河比赛时,胜方拉对方的力大于败方拉对方的力B .马能拉车前进是因为马对车的拉力大于车对马的拉力C .太阳对地球的吸引力与地球对太阳的吸引力大小一定相等D .用铁锤钉钉子,锤对钉的打击力与钉对锤的作用力大小一定相等5.理想实验有时更能深刻地反映自然规律。
伽利略设想了一个理想实验,其中有一个是经验事实,其余是推论。
①减小第二个斜面的倾角,小球在这斜面上仍然要达到原来的高度②两个对接的斜面,让静止的小球沿一个斜面滚下,小球将滚上另一个斜面③如果没有摩擦,小球将上升到原来释放时的高度④继续减小第二个斜面的倾角,最后使它成水平面,小球要沿水平面作持续的匀速运动.在上述的设想步骤中,有的属于可靠的事实,有的则是理想化的推论。
下列关于事实和推论的分类正确的是( )A .①是事实,②③④是推论B .②是事实,①③④是推论C .③是事实,①②④是推论D .④是事实,①②③是推论6.如图,一辆有动力驱动的小车上有一水平放置的弹簧,其左端固定在小车上,右端与一小球相连.设在某一段时间内小球与小车相对静止且弹簧处于压缩状态,若忽略小球与小车间的摩擦力,则在此段时间内小车可能是()A.向右做加速运动B.向右做减速运动C.向左做加速运动D.向左做减速运动7.设雨滴从很高处竖直下落,所受空气阻力f和其速度υ成正比.则雨滴的运动情况是()A.先加速后减速,最后静止B.先加速后匀速C.先加速后减速直至匀速D.加速度逐渐减小到零8.一辆小车在水平地面上行驶,悬挂的摆球相对小车静止并与竖直方向成α角(如下图所示)下列关于小车运动情况,说法正确的是()A.加速度方向向左,大小为g tanαB.加速度方向向右,大小为g tanαC.加速度方向向左,大小为g sinαD.加速度方向向右,大小为g sinα9.建筑工人用图3所示的定滑轮装置运送建筑材料.质量为70kg的工人站在地面上,通过定滑轮将20kg的建筑材料以m/s2的加速度拉升,忽略绳子和定滑轮的质量及定滑轮的摩擦,则工人对地面的压力大小为(g取10 m/s2) B ()A.510 N B.490 N C.890 N D.910 N10.如图所示,一质量为M的楔形木块放在水平桌面上,它的顶角为90°,两底角为α和β;a、b为两个位于斜面上质量均为m的小木块.已知所有接触面都是光滑的.现发现a、b沿斜面下滑,而楔形木块静止不动,这时楔形木块对水平桌面的压力等于()A.Mg+mg B.Mg+2mgC.Mg+mg(sinα+sinβ)D.Mg+mg(cosα+cosβ)二.填空题(每题4分,共20分)。
牛顿第一定律(含答案)
牛顿第一定律一、单选题(共10道,每道10分)1.关于运动和力的关系,以下说法中正确的是( )A.物体不受力的作用时,一定保持静止状态B.速度大小不变的物体,一定不受力的作用C.做曲线运动的物体,一定受到力的作用D.只要有力作用在物体上,它的运动状态就一定改变答案:C解题思路:A:物体不受力的作用时,保持静止或做匀速直线运动,故A错误;B:速度大小不变的物体,如果运动方向发生变化,则运动状态发生变化,即物体受到力的作用,故B错误;C、做曲线运动的物体,运动方向不断变化,运动状态不断变化,一定受到力的作用,故C 正确;D、如果作用在物体上的力是平衡力,则物体的运动状态不变,如果是非平衡力,则物体的运动状态发生改变,故D错误。
故选C。
试题难度:三颗星知识点:运动和力的关系2.地球同步卫星绕地球旋转,如果卫星受到的一切外力消失,那么卫星将( )A.立即停止运动B.逐渐慢下来,最后静止C.做匀速圆周运动D.做匀速直线运动答案:D解题思路:做圆周运动的物体如果外力突然消失,物体的运动状态将不再发生变化,即要保持在力刚消失时的速度大小和运动方向。
即沿引力消失瞬间的切线方向飞出。
做匀速直线运动。
试题难度:三颗星知识点:牛顿第一定律;惯性3.超市的购物小车被推离人手后,向前运动最终停下来。
在这一过程中,下列说法正确( )A.小车受到的推力越来越小B.小车不受力的作用C.小车由于惯性继续向前运动D.小车受到的是平衡力答案:C解题思路:(1)购物小车被推开后不再受到推力的作用,之所以向前运动是因为小车具有惯性,仍要保持原来的运动状态。
故选项A错误,C正确;(2)小车运动状态变了,必然要受到力。
离开人手后的小车不再受到推力的作用,但要受到摩擦阻力的作用。
故B选项错误;(3)小车在运动过程中运动状态变了,所以受力不平衡。
故D选项错误。
试题难度:三颗星知识点:运动和力的关系4.如图所示,铅球由a处向右上方推出,在空中划出一道弧线后落到地面b处,铅球在飞行过程中,不断改变的是( )A.惯性的大小B.运动的方向C.受到重力的大小D.受到力的个数答案:B解题思路:A:整个过程中,小球的质量不变,所以惯性的大小不变,A错误;B:小球做曲线运动,所以运动方向不断改变,B正确;C:小球质量不变,所受重力不变,C错误;D:小球始终受重力和空气阻力作用,D错误。
测试卷牛顿第二定律
《牛顿第二定律》同步测试题班级姓名A卷满分: 100 分时间: 45分钟一、选择题(共12 小题,每题 5 分,共 60 分)1.在牛顿第二定律的公式 F = kma 中,对于比率系数k 的数值,以下说法中正确的选项是()A .在任何状况下, k 都等于 1B. k 的数值是由质量、加快度和力的大小所决定的C. k 的数值是由质量、加快度和力的单位所决定的D.只有质量、加快度和力分别用kg、 m/s、 N 做单位, k 的数值才等于 12.从牛顿第二定律公式可得,对某一物体来说,它的质量()A .跟外力成正比B .跟合外力成正比C.跟加快度成正比D.跟合外力以及加快度都没关3.要使物体的加快度加倍,以下可行的方法是()A .合外力增添 2 倍,质量不变B.质量减半,合外力不变C.合外力增添到本来的 2 倍,质量减半 D.合外力增添到本来的 2 倍,质量不变4.从牛顿第二定律可知,不论怎么小的力都能够使物体产生加快度.可是用较小的力去推地面上很重的物体时,物体仍旧静止,这是因为()A .推力比静摩擦力小物体B .物体有加快度,但太小,不易被觉察C.物体所受推力比物体的重力小 D .物体所受的合外力仍为零5.正在加快上涨的气球,下边悬挂重物的绳索忽然断开,此时()A .重物的加快度立刻发生改变B.重物的速度立刻发生改变C.气球的速度立刻改变D .气球的加快度立刻增大6.力 F 作用在本来静止的质量为m 的物体上经过时间 t,物体的位移为x,则()A .同样的力在同样时间内使质量为nm 的物体挪动 x/n 的距离B.同样的力在 nt 时间内使质量为nm 的物体挪动 nx 的距离C. nF 的力在时间 nt 内使质量为 nm 的物体挪动 nx 的距离D. nF 的力在时间 t 内使质量为 nm 的物体挪动 x 的距离7.如图 1 所示,一物块位于圆滑水平桌面上,用一大小为F、方向如下图的力去推它,使它以加快度 a 向右运动.若保持力的方向不变而增鼎力的大小,则()A . a 变大B .a 不变 C. a 变小D.因为物块的质量未知,故不可以确立 a 变化的趋向8.在研究物体的受力与运动间关系时,作用在物体上的合外力不等于零的状况下,同学们对物体的速度有以下猜想,此中正确的选项是()A .物体的速度将必定愈来愈大B.物体的速度将必定愈来愈小C.物体的速度将有可能不变D.物体的速度将必定改变9.一个小金属车的质量是小木车的质量的 2 倍,把它们搁置在圆滑水平面上,用一个力作用在静止的小金属车上,获取2m/s2 的加快度.假如用同样的力作用在静止的小木车上,经过 2 s,小木车的速度是()A . 2 m/sB . 4 m/s C. 6 m/s D. 8 m/s10.本来做匀加快直线运动的物体,当它的合外力渐渐减小时()A.它的加快度将减小,它的速度也减小B.它的加快度将减小,它的速度在增添C.它的加快度和速度都保持不变D.状况复杂,加快度和速度的变化均没法确立11.放在粗拙水平面上的物体,在水平力 F 作用下产生的加快度为a1,当水平力变成 2F 时,物体的加快度为 a2,则()A . a2=2a1B .a2> 2a1C. a1< a2< 2a1 D.上术三种可能都存在12.如图 2 所示,位于圆滑固定斜面上的小物块P 遇到一水平向右的推力 F 的作用.已知物块 P 沿斜面加快下滑.现保持 F 的方向不变,使其减小,则加快度()A .必定变小B.必定变大C.必定不变D.可能变小,可能变大,也可能不变二、填空题(共 3 小题,每题 5 分,共 15 分)13.质量为 m1、m2 的两物体分别遇到同样的合外力 F 的作用,产生的加快度分别是 6 m/s2和 3 m/s2,当质量是 M = m1 +m2 的物体也遇到同样的合外力 F 的作用时,产生的加快度是_____________ .14.某物体遇到 3 N 的作使劲时,加快度为 0.75 m/s2,看作使劲增添到10 N 时,加快度增加到 _________m/s2.假如作使劲保持 3 N 不变,而把物体的质量减小到本来的一半,这时物体的加快度为__________ m/s2 .15.某个质量为100 kg 的物体着落时,遇到的空气阻力与它的速度成正比.当着落速度为10 m/s 时,其加快度为 6 m/s2,当速度为 ________m/s 时,它将匀速着落( g 取三、计算题(共 2 小题, 25 分)10 m/s2).16.如图F1和F23 所示,两个用轻线相连的位于圆滑水平面上的物块,质量分别为m1、m2,拉力方向相反,与轻线沿同一水平直线,且F1> F2.试求在两个物块运动过程中轻线的拉力.17.如图 4 所示,在动力小车上固定向来角硬杆 ABC ,分别系在水平直杆 AB 两头的轻弹簧和细绳将小球 P 悬吊起来.轻弹簧的劲度系数为 k,小球 P 的质量为 m,当小车沿水平川面以加快度 a 向右运动而达稳固状态时,轻弹簧恰保持竖直,而细绳与竖直方向的夹角为θ,试求此时弹簧的形变量.B 卷满分: 30 分时间: 20 分钟一、选择题(共 2 小题,每题 5 分,共 10分)1.如图 5 甲所示,某人正经过定滑轮将质量为m 的货物提高到高处.滑轮的质量和摩擦均不计,货物获取的加快度a与绳索对货物竖直向上的拉力 F 之间的函数关系如图 5 乙所示.由图能够判断()A .图线与纵轴的交点M 的值B.图线与横轴的交点N 的值C.图线的斜率等于物体的质量mD.图线的斜率等于物体质量的倒数二、填空题(共 1 小题,共 5 分)3.如图 6 所示,质量为m 的物体 P 与车厢的竖直面间的动摩擦因数为μ,要使物体 P 不下滑,车厢的加快度的最小值为___________,方向为 ______________.三、计算题( 15 分)4.在倾斜角为θ的长斜面上,一带有帆船的滑块从静止开始沿斜面下滑,滑块(连同帆船)的质量为m,滑块与斜面间的动摩擦因数为μ、帆船遇到向后的空气阻力与滑块下滑的速度大小成正比,即 f = kv .滑块从静止开始沿斜面下滑的v- t 图象如图7 所示,图中的倾斜直线是 t= 0 时辰速度图线的切线.(1)由图象求滑块下滑的最大加快度和最大速度的大小;(2)若 m= 2kg,θ= 37o, g= 10m/s2,求出μ和 k 的值.( sin37o= 0.6,cos37o= 0.8)C 卷满分: 20 分时间: 10 分钟计算题(共20 分)金属块m 用压缩的竖直轻弹簧卡在一个矩形箱中,如图 3 所示,在箱的上顶板和下底板装有压力传感器,箱能够沿竖直轨道运动,当箱以a=2.0 m/s2 的加快度竖直向上作匀减速运动时,上顶板的压力传感器显示的压力为10.0 N .( g=10 m/s2 )(1)若上顶板压力传感器的示数是下底板压力传感器的示数的一半,试判断箱的运动状况.(2)要使上顶板压力传感器的示数为零,箱沿竖直方向运动的状况可能是如何的?参照答案A 卷满分: 100 分时间: 45 分钟一、选择题(共12 小题,每题 5 分,共 60 分)1. CD 2.D 3.BD 4.D 5. AD 6.D 7. A 8. D 9. D10. B分析:物体本来做匀加快直线运动,因此合外力渐渐减小时,加快度减小,而速度仍在增添.11. B分析:因为有摩擦力,且当 F 变成 2F 时,它不变,因此 a2> 2a1.12. B分析:对小物块受力剖析后,由牛顿第二定律得mgsin θ- Fcos θ = ma,F 减小,则 a 增大,故 B 正确.二、填空题(共 3 小题,每题 5 分,共 15 分)13. 2 m/s214. 2.5; 1.515. 25三、计算题(共 2 小题, 25 分)16.分析:对整体,由牛顿第二定律得F1- F2=( m1+ m2 ) a对 m2,设轻线的拉力为 F,由牛顿第二定律得 F- F2= m2a 解以上两式得17.分析:对小球作如图的受力剖析,由牛顿第二定律得Fsin θ= maFcos β +kx= mg由以上两式得x= m(g- acot θ)/k议论:① a< gtan θ伸长量 x= m(g- acot θ)/k②a= gtan θ=x0 即弹簧处于自然长度③a> gtan θ压缩量 x= m(acot θ- g)/kB 卷满分: 30 分时间: 20 分钟一、选择题(共 2 小题,每题 5 分,共 10 分)1. ABD分析:当拉力等于零时,物体只遇到重力的作用,加快度是重力加快度,方向向下,当物体加快度为零时,拉力和重力相等,此时图线与横轴订交,图线的斜率表示加快度的变化量和拉力变化量的比值,因为重力大小不变,也是和协力变化量的比值,比值的大小是质量的倒数。
高一物理牛顿运动定律试题答案及解析
高一物理牛顿运动定律试题答案及解析1.如图所示,台秤上放有一杯水,杯内底部处用线系着一小木球浮在水中,若细线突然断开,试分析在小木球上浮的过程中,台秤的示数如何变化?A.增大B.减小C.不变D.以上三种情况都有可能【答案】B【解析】若细线突然断开,小木球上浮的过程中,水向下运动,有向下的加速度,系统处于失重状态,台秤的示数减小,B正确。
2.关于力和运动的关系,下列选项中正确的是A.若物体的速度不断增大,则物体所受的合力一定不为0B.若物体的位移不断增大,则物体所受的合力一定不为0C.若物体的位移与时间的平方成正比,则物体所受的合力一定为0D.若物体的加速度不变,则物体所受合力一定为0【答案】A【解析】只要物体速度变化,则一定存在加速度,所以合外力一定不为零;A对,D错。
位移增大,不一定速度变化,可以是匀速运动,所以合力可以为零,B错;位移与时间的平方成正比,则物体肯定不是做匀速运动,所以加速度一定不为零,合力一定不为零,C错;3.如图所示,空间存在着场强为E=2.5×102 N/C、方向竖直向上的匀强电场,在电场内一长为L =0.5 m的绝缘细线,一端固定在O点,另一端拴着质量为m=0.5 kg、电荷量为q=4×10-2 C 的小球.现将细线拉直到水平位置,使小球由静止释放,当小球运动到最高点时细线受到的拉力恰好达到它能承受的最大值而断裂.取g=10 m/s2.求:(1)小球的电性;(2)细线能承受的最大拉力;(3)当细线断裂后,小球继续运动到与O点水平方向距离为L时(仍在匀强电场中),小球距O点的高度.【答案】(1)正(2)(3)0.625 m【解析】(1)由小球运动到最高点可知,小球带正电.(2)设小球运动到最高点时速度为v,对该过程由动能定理有,①在最高点对小球进行受力分析,由圆周运动和牛顿第二定律得,②由①②式解得,(3)小球在细线断裂后,在竖直方向的加速度设为a,则③设小球在水平方向运动位移为L的过程中,所经历的时间为t,则④设竖直方向上的位移为x,则⑤由①③④⑤解得x=0.125 m所以小球距O点的高度为x+L=0.625 m【考点】考查了牛顿第二定律,圆周运动,动能定理4.如图所示,用细绳把小球悬挂起来,当小球静止时,下列说法中正确的是()A.小球对细绳的拉力和细绳对小球的拉力是一对作用力和反作用力B.小球受到的重力和小球对细绳的拉力是一对作用力和反作用力C.小球受到的重力和细绳对小球的拉力是一对平衡力D.小球受到的重力和小球对细绳的拉力是一对平衡力【答案】AC【解析】解:对小球受力分析,受地球对其的重力,细线对其向上的拉力,小球保持静止状态,加速度为零,合力为零,故重力和拉力是一对平衡力;细线对小球的拉力的反作用力是小球对细线的向下的拉力,这两个力是一对相互作用力,故AC正确,BD错误故选:AC.【考点】作用力和反作用力.分析:一对平衡力与“作用力与反作用力“的共同的特点:二力都是大小相等,方向相反,作用在同一条直线上.一对平衡力与“作用力与反作用力“的区别:作用力与反作用力描述的是两个物体间相互作用的规律,二力平衡描述的是一个物体在二力作用下处在平衡状态.点评:本题涉及三力,重力、细线对小球的拉力和小球对细线的拉力,其中重力和细线对小球的拉力是平衡力(因为小球处于平衡状态),细线对小球的拉力和小球对细线的拉力是相互作用力;平衡力和相互作用力是很容易混淆的,要注意其最明显的区别在于是否同体.5.(12分)如图所示为某高楼电梯上升的速度-时间图像,试求:(1)在t1=5s、t2=8s时刻的速度;(2)求出各段的加速度;(3)画出电梯上升的加速度-时间图像.【答案】(1)v1=10m/s;v2=5m/s(2)0s~2s :5m/s2;2s~5s :0m/s2;5s~8s :-1.7m/s2;(3)图线如图:【解析】(1)由图线可知在t1=5s时的速度是10m/s;在t2=8s时刻的速度是5m/s;(2)0s~2s :5m/s2;2s~5s :a2=0m/s2;5s~8s :;(3)电梯上升的加速度-时间图像:【考点】v-t图线.【名师】此题考查了v-t图线在实际生活中的应用问题;要了解图线的物理意义:斜率大小等于物体的加速度大小,斜率的符号反映加速度的方向;图线与坐标轴围成的面积等于物体的位移;做题时要会分段处理;此题难度不大.6.两物体都做匀变速直线运动,在给定的时间间隔t内()A.加速度大的,其位移一定大B.初速度大的,其位移一定大C.末速度大的,其位移一定大D.平均速度大的,其位移一定大【答案】D【解析】解:A、根据x=知,加速度大,位移不一定大,还与初速度有关.故A错误.B、根据x=知,初速度大的,位移不一定大,还与加速度有关.故B错误.C、末速度大,位移不一定大,还与初速度有关.故C错误.D、根据,时间一定,平均速度大,位移一定大.故D正确.故选D.【考点】匀变速直线运动的速度与时间的关系;匀变速直线运动的位移与时间的关系.分析:根据匀变速直线运动位移时间公式x=和平均速度公式去判断一定时间内的位移大小.点评:解决本题的关键掌握匀变速直线运动的位移时间公式x=和平均速度公式.7.如图所示,为做直线运动质点的v﹣t图象,则下列说法正确的是()A.质点在0~2s内做匀加速直线运动B.质点在2~6s内处于静止状态C.质点t=8s时的位移为零D.质点在8~10s内做匀加速直线运动【答案】AD【解析】解:A、质点在0~2s内速度均匀增大,做匀加速直线运动.故A正确.B、质点在2~6s内速度不变,做匀速直线运动,故B错误.C、根据面积表示位移,可知质点t=8s时的位移为 x=m=36m,故C错误.D、质点在8~10s内沿负方向做匀加速直线运动,故D错误.故选:AD【考点】匀变速直线运动的图像.【分析】v﹣t图象中倾斜的直线表示匀变速直线运动,平行于时间轴的直线表示匀速直线运动.图象与坐标轴所围的面积表示位移.由此分析.【点评】本题的解题关键是抓住两个数学意义来分析和理解图象的物理意义:速度图象的斜率等于加速度、速度图象与坐标轴所围“面积”大小等于位移.明确v﹣t图象中倾斜的直线表示匀变速直线运动,平行于时间轴的直线表示匀速直线运动.8.一物体以20m/s的速度沿光滑斜面向上做匀变速直线运动,加速度大小为a=5m/s2.如果斜面足够长,那么当速度大小变为10m/s时物体所通过的路程可能是多少?【答案】物体通过路程可能为30m,可能为50m.【解析】解:当末速度的方向与初速度方向相同,根据速度位移公式得,物体通过的路程s=.若末速度的方向与初速度方向相反,则物体向上做匀减速运动的位移,向下做匀加速运动的位移,则路程s=x1+x2=40+10m=50m.答:物体通过路程可能为30m,可能为50m.【考点】匀变速直线运动的位移与时间的关系.【分析】当末速度的方向与初速度方向相同,直接结合匀变速直线运动的速度位移公式求出物体通过的路程.当末速度的方向与初速度方向相反,根据速度位移公式分别求出向上匀减速运动的位移和向下匀加速运动的位移,从而得出路程.【点评】解决本题的关键掌握匀变速直线运动的速度位移公式,并能灵活运用,注意末速度的方向可能与初速度方向相同,可能与初速度方向相反.9.跳伞运动员从300m高空无初速度跳伞下落,他自由下落4s后打开降落伞,以恒定的加速度做匀减速运动,到达地面时的速度为4.0m/s,g=10m/s2.求:(1)运动员打开降落伞处离地面的高度;(2)运动员打开伞后运动的加速度;(3)运动员在空中运动的总时间.【答案】(1)运动员打开降落伞处离地面的高度为220m;(2)运动员打开伞后运动的加速度为﹣3.6m/s2;(3)运动员在空中运动的总时间为14s.【解析】解:竖直向下方向为正方向.(1)运动员自由下落4s的位移为运动员打开降落伞处离地面的高度为:h2=h﹣h1=300﹣80m=220m(2)运动员自由下落4s末的速度为:v1=gt1=10×4m/s=40m/s打开降落伞后做匀减速直线运动,根据速度位移关系有:2可得加速度==﹣3.6m/s2(3)打开降落伞后做匀减速时间达到地面的时间为:所以运动在空中下落的总时间为:t=t1+t2=4+10s=14s答:(1)运动员打开降落伞处离地面的高度为220m;(2)运动员打开伞后运动的加速度为﹣3.6m/s2;(3)运动员在空中运动的总时间为14s.【考点】匀变速直线运动的位移与时间的关系;匀变速直线运动的速度与时间的关系.【分析】(1)根据自由落体运动的规律求得物体下落4s的高度,从而求得离地面的高度;(2)根据匀减速运动的速度位移关系求得打开伞后的加速度;(3)求得匀减速下落的时间和自由落体运动的时间即为在空中下落的总时间.【点评】掌握匀变速直线运动的位移时间关系和速度时间关系是正确解题的关键,不难属于基础题.10.某研究性学习小组,为探究电梯起动和制动时的加速度大小,董趣同学站在体重计上乘电梯从1层到10层,之后又从10层返回到1层,并用照相机进行记录,请认真观察分析下列图片,得出正确的判断是()A.根据图乙和图丙,可估测电梯向上起动时的加速度B.根据图甲和图乙,可估测电梯向上制动时的加速度C.根据图甲和图戊,可估测电梯向下制动时的加速度D.根据图丁和图戊,可估测电梯向下起动时的加速度【答案】C【解析】解:A、图2表示电梯加速上升时这位同学超重时的示数,图3,表示向上减速时的示数,由此两图不能够求出的是电梯向上起动时的加速度,所以A错误.B、图1表示电梯静止时的示数,图2显示加速上升时的示数,此时能够求出的是电梯向上加速时的加速度,所以B错误.C、图1表示电梯静止时的示数,图5表示电梯减速下降时的示数,此时能够求出的是电梯向下减速时的加速度,所以C正确.D、图4表示电梯加速下降时的示数,图5表示电梯减速下降时的示数,此时不能够求出电梯向下起动时的加速度,所以D错误.故选C【考点】加速度.【分析】图甲表示电梯静止时体重计的示数,乙图表示电梯加速上升时这位同学超重时的示数,丙图表示电梯减速上升时这位同学失重时的示数,丁图表示电梯加速下降时这位同学失重时的示数,戊图表示电梯减速下降时这位同学超重时的示数,根据牛顿第二定律可以应用图甲和另外某一图示求出相应状态的加速度.【点评】本题主要考查了对超重失重现象的理解,人处于超重或失重状态时,人的重力并没变,只是对支持物的压力变了.11.(20分)下列是《驾驶员守则》中的安全距离图示(如图)和部分安全距离表格.请根据图表计算:(1)如果驾驶员的反应时间一定,请求出表格中的A 的数据; (2)如果路面情况相同,请求出表格中的B 、C 的数据;(3)如果路面情况相同,一名喝了酒的驾驶员发现前面50 m 处有一队学生正在横过马路,此时他的车速为72 km/h.而他的反应时间比正常时慢了0.1 s ,请问他能在50 m 内停下来吗? 【答案】(1)20;(2)40;60;(3)不能 【解析】(1)反应时间为,即解得A =20 m.因路面情况相同,故知刹车时的加速度相同, 由v 2 =2ax 得 对第一组刹车数据分析,加速度为分析第三组数据知,刹车距离为:所以停车距离为:C =A +B =60 m. 正常情况下司机的反应时间为而喝酒情况下司机的反应距离为 由v 2=2ax 知,此时司机的刹车距离为L =s +x =52.4 m,52.4 m>50 m ,故不能在50 m 内停下来. 【考点】匀变速直线运动的规律12. 物体由A 向B 做匀变速直线运动,所用时间为t ,在时到达D 点,C 为AB 的中点,以v C 和v D 分别表示物体在C 点和D 点时的速度,以下叙述中正确的是:( ) A .若物体做匀加速运动,则v C >v D B .若物体做匀减速运动,则v C >v DC .不论物体做匀加速运动,还是做匀减速运动,都有v C <v DD .如果不确定物体做匀加速运动或匀减速运动,则无法比较v C 和v D 的大小【答案】AB【解析】根据匀变速直线运动的规律,物体在中间时刻D 的速度为;物体在中间位置C 的速度为:;由数学知识可知,恒成立,则v C >v D ,故选项AB 正确,CD 错误;故选AB.【考点】匀变速直线运动的规律13. (8分)跳伞运动员做低空跳伞表演,他离开飞机后先做自由落体运动,当距地面120 m 时打开降落伞,开伞后运动员以大小为12.5 m/s 2的加速度做匀减速运动,到达地面时的速度为5 m/s ,求:(1)运动员离开飞机瞬间距地面的高度;(2)离开飞机后,经多长时间到达地面.(g 取10 m/s 2) 【答案】(1)271.25 m ;(2)9.5 s【解析】(1)由v12-v2=2ah2解出v=55 m/s. (2分)又因为v02=2gh1解出h1=151.25 m. (2分)所以h=h1+h2=271.25 m. (1分)(2)又因为t1==5.5 s, (1分)t2==4 s, (1分)所以t=t1+t2=9.5 s,(1分)【考点】匀变速直线运动的规律【名师】本题难度较小,自由落体运动其实就是初速度为零的匀加速直线运动,灵活应用匀变速运动规律求解本题。
物理牛顿运动定律题20套(带答案)
物理牛顿运动定律题20套(带答案)一、高中物理精讲专题测试牛顿运动定律1.质量为2kg的物体在水平推力F的作用下沿水平面做直线运动,一段时间后撤去F,其运动的图象如图所示取m/s2,求:(1)物体与水平面间的动摩擦因数;(2)水平推力F的大小;(3)s内物体运动位移的大小.【答案】(1)0.2;(2)5.6N;(3)56m。
【解析】【分析】【详解】(1)由题意可知,由v-t图像可知,物体在4~6s内加速度:物体在4~6s内受力如图所示根据牛顿第二定律有:联立解得:μ=0.2(2)由v-t图像可知:物体在0~4s内加速度:又由题意可知:物体在0~4s内受力如图所示根据牛顿第二定律有:代入数据得:F=5.6N(3)物体在0~14s内的位移大小在数值上为图像和时间轴包围的面积,则有:【点睛】在一个题目之中,可能某个过程是根据受力情况求运动情况,另一个过程是根据运动情况分析受力情况;或者同一个过程运动情况和受力情况同时分析,因此在解题过程中要灵活处理.在这类问题时,加速度是联系运动和力的纽带、桥梁.2.如图所示,在光滑水平面上有一段质量不计,长为6m 的绸带,在绸带的中点放有两个紧靠着可视为质点的小滑块A 、B ,现同时对A 、B 两滑块施加方向相反,大小均为F=12N 的水平拉力,并开始计时.已知A 滑块的质量mA=2kg ,B 滑块的质量mB=4kg ,A 、B 滑块与绸带之间的动摩擦因素均为μ=0.5,A 、B 两滑块与绸带之间的最大静摩擦力等于滑动摩擦力,不计绸带的伸长,求:(1)t=0时刻,A 、B 两滑块加速度的大小; (2)0到3s 时间内,滑块与绸带摩擦产生的热量.【答案】(1)22121,0.5m ma a ss ==;(2)30J【解析】 【详解】(1)A 滑块在绸带上水平向右滑动,受到的滑动摩擦力为A f ,水平运动,则竖直方向平衡:A N mg =,A A f N =;解得:A f mg μ= ——① A 滑块在绸带上水平向右滑动,0时刻的加速度为1a , 由牛顿第二定律得:1A A F f m a -=——② B 滑块和绸带一起向左滑动,0时刻的加速度为2a 由牛顿第二定律得:2B B F f m a -=——③;联立①②③解得:211m /s a =,220.5m /s a =;(2)A 滑块经t 滑离绸带,此时A B 、滑块发生的位移分别为1x 和2x1221122221212L x x x a t x a t ⎧+=⎪⎪⎪=⎨⎪⎪=⎪⎩代入数据解得:12m x =,21m x =,2s t =2秒时A 滑块离开绸带,离开绸带后A 在光滑水平面上运动,B 和绸带也在光滑水平面上运动,不产生热量,3秒时间内因摩擦产生的热量为:()12A Q f x x =+ 代入数据解得:30J Q =.3.在机场可以看到用于传送行李的传送带,行李随传送带一起前进运动。
力的相互作用与牛顿定律练习题
1、下面单位中是国际单位制中的基本单位的是 ( )A .kg Pa mB .N s mC .摩尔 开尔文 安培D .牛顿 秒 千克2、一汽车在路面情况相同的公路上直线行驶,下面关于车速、惯性、质量和滑行路程的讨论正确的是 ( )A .车速越大,它的惯性越大B .质量越大,它的惯性越大C .车速越大,刹车后滑行的路程越长D .车速越大,刹车后滑行的路程越长,所以惯性越大3、一质量为m 的人站在电梯中,电梯减速下降,加速度大小为g 31(g 为重力加速度)。
人对电梯底部的压力大小为 ( )A .mg 31B .2mgC .mgD .mg 34 4、一轻弹簧上端固定,下端挂一重物,平衡时弹簧伸长了4cm .再将重物向下拉1cm ,然后放手,则在刚释放的瞬间重物的加速度是 ( )A .2.5 m/s 2B .7.5 m/s 2C .10 m/s 2D .12.5 m/s 25、如图所示,一物块位于光滑水平桌面上,用一大小为F 、方向如图所示的力去推它,使它以加速度a 右运动。
若保持力的方向不变而增大力的大小,则 ( ) A .a 变大 B .不变C .a 变小D .因为物块的质量未知,故不能确定a 变化的趋势6、如图所示,两物体A 和B ,质量分别为,m 1和m 2施以水平的推力F ,则物体A 对物体B 的作用力等于 ( ) A .F m m m 211+ B .F m m m 212+C .F D .F m m 12 7、在升降机内,一个人站在磅秤上,发现自己的体重减轻了20%,于是他做出了下列判断中正确的是 ( )A .升降机以0.8g 的加速度加速上升B .升降机以0.2g 的加速度加速下降C .升降机以0.2g 的加速度减速上升D .升降机以0.8g 的加速度减速下降8、竖直向上射出的子弹,到达最高点后又竖直落下,如果子弹所受的空气阻力与子弹的速率大小成正比,则 ( )A .子弹刚射出时的加速度值最大B .子弹在最高点时的加速度值最大C .子弹落地时的加速度值最小D .子弹在最高点时的加速度值最小9、如图,物体A 、B 相对静止,共同沿斜面匀速下滑,正确的是 ( )A . A 与B 间 没有摩擦力B .B 受到斜面的滑动摩擦力为m B g sin θC .斜面受到B 的滑动摩擦力,方向沿斜面向下D .B 与斜面的滑动摩擦因素 μ= tan θ 10、如图所示,一个箱子放在水平地面上,箱内有一固定的竖直杆,在杆上套着一个环.箱和杆的质量为M ,环的质量为m .已知环沿着杆加速下滑,环与杆的摩擦力的大小为f ,则此时箱对地面的压力 ( )A .等于MgB .等于(M+m )gC .等于Mg+fD .等于(M+m )g − fg g g 11、下列说法中,正确的是A. 有摩檫力存在的接触面上,一定同时有弹力存在B. 有弹力存在的接触面上,一定同时有摩檫力存在C. 两个接触且相对匀速运动的物体,其接触面之间一定有摩檫力存在D. 两个接触且没有相对运动的物体,其接触面之间一定没有摩檫力存在12、物体静止在水平桌面上,则A. 物体对桌面的压力和桌面对物体的支持力是一对平衡力B. 桌面对物体的支持力和物体所受重力是一对作用力和反作用力C. 物体对桌面的压力就是物体的重力D. 桌面对物体的支持力大小等于物体的重力大小,这两个力是一对平衡力13、我国发射的“神舟七号”宇宙飞船的返回舱在重返大气层时,速度可达几千米每秒。
牛顿第三定律、牛顿第二定律的应用演练试题
牛顿第三定律、牛顿第二定律的应用演练试题
一、牛顿第三定律
1. 小明站在桌子上,用双手抓住桌子,使桌子不动,此时施加了什么力?
答:小明站在桌子上,用双手抓住桌子,使桌子不动,此时施加的力是相等的反作用力。
2. 一个重物悬挂在一根弹簧上,此时弹簧施加了什么力?
答:一个重物悬挂在一根弹簧上,此时弹簧施加的力是向下的弹力。
3. 一个小球落地,反弹回去,此时施加了什么力?
答:一个小球落地,反弹回去,此时施加的力是地面对小球施加的反作用力。
二、牛顿第二定律
1. 一个小球滚动在地上,此时有什么力在作用?
答:一个小球滚动在地上,此时有重力和摩擦力在作用。
2. 一个小球掉进水里,此时有什么力在作用?
答:一个小球掉进水里,此时有重力和浮力在作用。
3. 一个小球掉进油里,此时有什么力在作用?
答:一个小球掉进油里,此时有重力和油力在作用。
高中物理-专题3.24 与力的分解相关的牛顿运动定律问题(提高篇)(解析版)
2021年高考物理100考点最新模拟题千题精练第三部分 牛顿运动定律专题3.24与力的分解相关的牛顿运动定律问题(提高篇)计算题1.(14分)(2020河北保定一模)一固定的倾角为37°的斜面,斜面长9m ,如图所示。
斜面上一物体在大小为11N 沿斜面向上的拉力F 作用下,沿斜面向上加速运动,加速度大小为1m/s 2;如果将沿斜面向上的拉力改为1N ,物体加速向下运动,加速度大小仍为1m/s 2。
取重力加速度g=10m/s 2,sin37°=0.6,cos37°=0.8,求:(l)物体质量m 及物体与斜面间的动摩擦因数μ;(2)若将物体从斜面顶端由静止释放,物体运动到斜面 底端的时间t 。
【命题意图】 本题以平行斜面的拉力拉物体沿斜面向上加速运动为情景,考查牛顿运动定律、匀变速直线运动规律及其相关知识点,考查的核心素养是“运动和力”的观点。
【解题思路】(1)当F 1=11N 时,物体加速向上运动ma f mg F =--o 1sin37(2分)当F 2=1N 时,物体加速向下运动ma f -F mg =-2o sin37(2分)在斜面上运动,垂直斜面方向o N 37c os mg F =(1分)且N F f μ=(1分)解得0.5=μ,m =1kg (2分)(2)由静止释放物体,物体加速下滑,加速度为a 11o sin37ma f mg =-(2分)l t a =2121(2分) 解得t =3s (2分)2.(2019天津部分学校期末联考)一小滑块以10m/s 的初速度沿倾角为θ=37°的固定斜面上滑。
已知滑块与斜面间的动摩擦因数为0.5,设斜面足够长。
(g=10m/s 2,sin37°=0.6,cos37°=0,8)求:(1)物体上滑的最大位移;(2)物体回到出发点时的速度。
【名师解析】.(10分):(1)根据牛顿第二定律得mg sin θ+μmg cos θ=ma 1解得a 1=g sin θ+μg cos θ 代入数据得a 1=10m/s 2 根据速度位移公式v 02=2as解得s =202v a代入数据得s =5.0m (2)根据牛顿第二定律,下滑的加速度为mg sin θ-μmg cos θ=ma 2 解得a 2=g sin θ-μg cos θ 代入数据得a 2=2m/s 2根据速度位移公式222v a s =解得22v a s =代入数据得v 2 5 m /s =3..(12分)(2019河南天一大联考6)一质量为m =0.1kg 的滑块(可视为质点)从倾角为θ=37°、长为L =6m 的固定粗糙斜面顶端由静止释放,滑块运动到斜面底端时的速度大小为v ,所用的时间为t 。
高考物理牛顿运动定律试题(有答案和解析)含解析
高考物理牛顿运动定律试题(有答案和解析)含解析一、高中物理精讲专题测试牛顿运动定律1.如图所示,一足够长木板在水平粗糙面上向右运动。
某时刻速度为v 0=2m/s ,此时一质量与木板相等的小滑块(可视为质点)以v 1=4m/s 的速度从右侧滑上木板,经过1s 两者速度恰好相同,速度大小为v 2=1m/s ,方向向左。
重力加速度g =10m/s 2,试求:(1)木板与滑块间的动摩擦因数μ1 (2)木板与地面间的动摩擦因数μ2(3)从滑块滑上木板,到最终两者静止的过程中,滑块相对木板的位移大小。
【答案】(1)0.3(2)120(3)2.75m 【解析】 【分析】(1)对小滑块根据牛顿第二定律以及运动学公式进行求解; (2)对木板分析,先向右减速后向左加速,分过程进行分析即可; (3)分别求出二者相对地面位移,然后求解二者相对位移; 【详解】(1)对小滑块分析:其加速度为:2221114/3/1v v a m s m s t --===-,方向向右 对小滑块根据牛顿第二定律有:11mg ma μ-=,可以得到:10.3μ=;(2)对木板分析,其先向右减速运动,根据牛顿第二定律以及运动学公式可以得到:1212v mg mg mt μμ+⋅= 然后向左加速运动,根据牛顿第二定律以及运动学公式可以得到:21222v mg mg mt μμ-⋅= 而且121t t t s +== 联立可以得到:2120μ=,10.5s t =,20.5t s =; (3)在10.5s t=时间内,木板向右减速运动,其向右运动的位移为:1100.52v x t m +=⋅=,方向向右; 在20.5t s =时间内,木板向左加速运动,其向左加速运动的位移为:22200.252v x t m +=⋅=,方向向左; 在整个1t s =时间内,小滑块向左减速运动,其位移为:122.52v v x t m +=⋅=,方向向左 则整个过程中滑块相对木板的位移大小为:12 2.75x x x x m ∆=+-=。
人教版八年级下册物理第八章运动和力 第1节 牛顿第一定律 同步练习题(解析版)
第八章运动和力第1节牛顿第一定律同步练习1.现代汽车除了前、后排座位都有安全带外,还安装有安全气囊系统,这主要是为了减轻下列哪种情况出现时,可能对人身造成的伤害( )A.汽车速度太慢B.汽车转弯C.汽车突然启动D.汽车前端发生严重撞击2.一切物体都具有惯性。
如图所示的四种物体中,惯性最大的是( )3. 如图所示,水平公路上向前行驶的汽车中,有一竖直站立的人突然向前倾。
以下说法正确的是( )A.人向前倾说明人不具有惯性B.B.人向前倾说明车具有惯性C.车突然加速D.D.车突然减速4.下列情景是为了预防惯性造成危害的是( )5. 在汽车刹车时,坐在车里的乘客会向前倾倒。
这种现象可以用以下四句话来解释:①乘客猝不及防,向前倾倒。
②汽车很快停止运动,乘客下半身也很快随车停止运动。
③乘客上半身由于具有惯性,仍然向前运动。
④坐在车里的乘客随汽车向前运动,司机发现情况立即刹车。
以上四句话最合理的排列顺序是( )A.④①②③B.④②③①C.④③②①D.④②①③6. 歼-15着舰时被拦阻索勾住后,速度急剧减小,说明力可以改变物体的;歼-15被拦阻索勾住瞬间,由于,飞行员身上的血液向头部涌去,眼前出现“红视”现象。
7. 为践行“低碳生活,绿色出行”,宜宾市城区内安装了公共自行车网点,越来越多的市民上下班由坐汽车改骑自行车。
某市民在停止蹬车后,行驶在水平路面上的自行车仍继续向前运动一段距离,这是因为自行车具有,自行车最后停下来,这是因为它受到。
8、如图所示,将扑克牌盖在玻璃杯上,再把1元的硬币放在牌上,用手指迅速将扑克牌水平弹出,硬币会怎样?请你用学过的物理知识解释这一现象。
9、如图所示,歼击机从左往右飞到A点正上方的高空时投弹,炸弹最后最有可能落在图中的点。
(选填“A”“B”或“C”)参考答案1.现代汽车除了前、后排座位都有安全带外,还安装有安全气囊系统,这主要是为了减轻下列哪种情况出现时,可能对人身造成的伤害( )A.汽车速度太慢B.汽车转弯C.汽车突然启动D.汽车前端发生严重撞击【解析】选D。
高一物理力的平衡与牛顿定律基础训练
高一物理力的平衡与牛顿定律基础训练【第一部分】1.用绳把球挂靠在光滑墙上,绳的另一端穿过墙孔拉于手中,如图.当缓缓拉动绳子把球吊高时,绳上的拉力T和墙对球的弹力N的变化是( )(A)T和N都不变(B)T和N都变大(C)T增大,N减小(D)T减小,N增大【画出动态分析图】2.如右图所示,A球和B球用轻绳相连静止在光滑的圆柱面上,半个圆柱体静止在水平面上。
已知圆柱体半径比A、B两球的半径大得多,若A球的质量为m,求B球的质量为多少?3.如图所示,半径为R的空心圆筒,其内有A、B两个完全相同的小球,且不计摩擦,重力均为G,半径为r,且R/2 < r < R,则两球间的压力大小和圆筒底部对B的支持力大小为多少?【第二部分】牛顿运动定律基础训练(一)牛顿第一定律:。
牛顿第二定律:。
牛顿第三定律:。
一、选择题1.判断下列各句话正确的是:()A.物体只在不受力作用的情况下才能表现出惯性B.要消除物体的惯性,可以在运动的相反方向上加上外力C.物体惯性的大小与物体是否运动、运动的快慢以及受力无关D.惯性定律可用物体的平衡条件取而代之2.如图2所示,一个劈形物体M,各面均光滑,放在固定的斜面上,上表面水平,在上表面放一个光滑小球m。
劈形物体从静止开始释放,则小球在碰到斜面前的运动轨迹是()A.没斜面向下的直线B.竖直向下的直线C.无规则曲线D.抛物线3.汽车拉着拖车在水平道路上沿直线加速行驶,根据牛顿运动定律可知A.汽车拉着拖车的力大于拖车拉汽车的力mM图2B.汽车拉着拖车的力等于拖车拉汽车的力C.汽车拉着拖车的力大于拖车受到的阻力D.汽车拉着拖车的力等于拖车受到的阻力4.一人从地面竖直向上跳起,这是因为:()A、地面对他的支持力大于他对地面的压力B、地面对他的支持力等于他对地面的压力C、地面对他的支持力大于他的重力D、地面对他的支持力等于他的重力5.歼击机在进入战斗状态时要丢掉副油箱,这样做是为了:()A、减少重力,使运动状态保持稳定B、增大速度,使运动状态易于改变C、增大加速度,使运动状态不易变化D、减小惯性,有利于运动状态的改变6.两木块A、B由同种材料制成,m A>m B,并随木板一起以相同速度向右匀速运动,如图6所示,设木板足够长,当木板突然停止运动后,则()A.若木板光滑,由于A的惯性大,故A、B间距离将增大B.若木板粗糙,由于A受阻力大,故B可能与A相碰C.无论木板是否光滑,A、B间距离将保持不变D.无论木板是否光滑,A、B二物体一定能相碰7.一个物体在几个力作用下处于静止状态,若保持其它力不变,将其中一个力F1逐渐减小到零(方向保持不变),然后又将F1逐渐恢复原状,在这个过程中,物体的()A.加速度增大,速度增大B.加速度减少,速度增大C.加速先减少,速度增大D.加速度先增大后减小,速度增大8.质量为2kg的物体在水平力作用下,沿粗糙水平面作匀加速运动,若水平力增加2N,则物体加速度的增量为()A.1m/s2B.因水平力未知,故无法确定C.因摩擦力大小未知,故无法确定D.一定小于1m/s29.如图9所示,长木板的右端与桌边相齐,木板与桌面之间摩擦因数为μ,今施一水平恒力F将木板推离桌面,在长木板翻转之前,木板的加速度大小的变化情况是A.逐渐增大B.逐渐减小C.保持不变D.先增大后减小10.将一质量为m,放在光滑水平面上的物体通过轻滑轮绕过轻滑轮与墙相连如图12所示,当用水平力F拉动滑轮时,物体产生的加速度是()A.F/m B.F/2m C.2F/m D.F/4m11.在一条倾斜的、静止不动的传送带上,有一铁块正在匀速向下滑动,如果传送带向上加速运动,同一铁块由上端滑到底端所用时间:()A、不变B、增多C、减小D、不能确定12.如图12所示,底板光滑的小车上用两个量程为20N、完全相同的弹簧秤甲和乙系住一个质量为1kg的物块,在水平地面上,当小车作匀速直线运动时,两弹簧秤的示数均为10N,当小车作匀加速直线运动时,弹簧图9图12图6 图12秤甲的示数变为8N 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.质量为10kg 的物体在水平面上向右运动,同时受到水平向左的外力F=20N 的作用,如图所示,若物体
与水平面间的动摩擦因数为0.2,g=10m/s 2,则物体的加速度的大小是
A .0
B .2m/s 2,方向水平向左
C .2m/s 2,方向水平向右
D .4m/s 2,方向水平向左
3.如图所示,在水平轨道的车厢内,用细绳悬挂一个小球,当车厢匀速运动时,悬线保持竖直方向;当发
现悬线如图所示偏斜时,下列说法中正确的是 ( )
A .车可能向右作匀加速直线运动
B .车可能向右作匀减速直线运动
C .车可能向右作匀速直线运动
D .车可能向左作匀加速直线运动
4.物体沿光滑的水平面上在一个水平外力F 的作用下由静止开始作直线运动,如果外力F 方向不变,而大
小逐渐减小直到为零,则物体运动的速度
( )
A .越来越小,最后趋于恒定
B .越来越大,最后趋于恒定
C .越来越小,达到零后又反向运动,然后速度越来越大
D .先越来越大,再越来越小,最后为零
5.下面生活、生产中常见的事例,应用牛顿第三定律的是
( )
①小船靠划桨而前进
②帆船利用风吹来航行③喷气式飞机向后喷出燃气推动飞机前进
④潜艇水下航行是靠尾部螺旋桨工作向后推压水使之前进的 A .只有①③是应用牛顿第三定律 B .只有②④是应用牛顿第三定律
C .①②③是应用牛顿第三定律
D .①③④是应用牛顿第三定律
6.如图所示,物体A 在水平外力F 作用下沿倾角为θ的光滑斜面匀速上 升,若物体质量为m ,那么水平外力F 的大小为
( )
A .θsin mg
B .θcos mg
C .θtan mg
D .θcot mg
7.关于惯性大小,下列说法中正确的是
( )
A .高速运动的物体不容易让它停下来,运动速度大的物体惯性大的物体而没有推动
B .用力推静止在地面上的物体而没有推动,所以静止的物体惯性大
C .“神舟”四号飞船舱内悬挂着彩色气球处于完全失重状态,因而气球没有惯性
D .宇宙中的陨石在飞向地球过程中,由于受空气的摩擦作用而燃烧,惯性将不断减小
8.如图所示,物体M 与m 用轻绳相连,绳通过定滑轮,M 静止在倾角为θ的斜面上,则关于M 与斜面
之间静摩擦力的大小和方向的说法中, 正确的是
( )
A .mg mg -θsin ,沿斜面向上
B .mg Mg -θ
sin ,沿斜面向下
C .θsin Mg mg -,沿斜面向下
D .条件不全,无法判断
10.叠放着的两个物体A 和B ,质量均为2kg ,受到一竖直向下的大小为10N 的力作用时,浮在水面上保
持静止,如右图所示,当撤去F 的瞬间,
A 和
B 的压力大小为(g=10m/s 2) A .20N
B .25N
C .30N
D .35N
1.在物理学史上,正确认识运动和力的关系且推翻“力是维持运动的原因”这个观点的物理学家及建立惯性定律的物理学家分别是
A .亚里士多德、伽利略 B. 伽利略、牛顿 C .伽利略、爱因斯坦 D. 亚里士多德、牛顿 3.书放在水平桌面上,桌面会受到弹力的作用,产生这个弹力的直接原因是
A .书的形变
B .桌面的形变
C
.书和桌面的形变
4.如图所示,一木块受到垂直于倾斜墙面方向的推力F
作用而处于静止状态,下列判断正确的是A .墙面与木块间的弹力可能为零B
.墙面对木块的摩擦力可能为零C .在推力F 逐渐增大过程中,木块将始终维持静止 D .木块所受墙面的摩擦力随推力F 的增大而变化
10.(1)(8分)某校学习兴趣小组在研究“探索小车速度随时间变化的规律”的实验,图是某次实验得出
的纸带,所用电源的频率为50H Z ,舍去前面比较密集的点,从0点开始,每5个连续点取1个计数点,标以1、2、3……。
各计数点与0计数点之间的距离依次为d 1=3cm ,d 2=7.5cm ,d 3=13.5cm ,则(1)物体做 的运动,理由是 ;(2)物体通过1计数点的速度 1= m /s ;(3)物体运动的加速度为a = m /s 2.
(2)(10分)某同学设计了一个探究加速度与物体所 受合外力F 及质量M 的关系实验。
图为实验装置简图,A 为小车,B 为打点计时器,C 为装有砂的砂桶(总质量为m ),D 为一端带有定滑轮的长木板。
①若保持砂和砂桶质量m 不变,改变小车质量M ,分别得到小车加速度a 与质量M 及对应的M
1
数据如表1所示。
表1
根据表1数据,
为直观反映F 不变时a 与M 的关系,请在图所示的方格坐标纸中
选择恰当的物理量建立坐标系,并作出图线。
从图线中得到F 不变时,小车加速度a 与质量M 之间存在的关系是 。
②某同学在探究a 与F 的关系时,把砂和砂桶的总重力当作 小车的合外力F ,作出a -F 图线如图所示,试分析图线不过原点的原因是 ,图线上部弯曲的原因是 。
③在这个实验中,为了探究两个物理量之间的关系,要保持第三个物理量不变,这种探究方法叫做 法。