纳米三氧化二镧-二氧化钛光催化活性的研究

合集下载

纳米TiO2材料的制备及其光催化性能研究

纳米TiO2材料的制备及其光催化性能研究

纳米TiO2材料的制备及其光催化性能研究随着经济的发展,人们生活水平的提高,人们逐渐意识到可持续发展的重要。

环境问题已严重影响现代文明的发展,有机污染物具有持久性的特点而长期威胁人类健康,开发和设计仅利用太阳能即可完成对有机污染物降解的新材料将会是解决环境问题的有效方法之一。

纳米TiO2作为一种光催化材料,具有优异的物理和化学性质,因而被广泛应用和重点研究。

本文就纳米TiO2材料的制备及其光催化性能展开探讨。

标签:纳米TiO2;光催化;制备方法;光催化效能引言半导体光催化技术是解决环境污染与能源短缺等问题的有效途径之一。

以二氧化钛为代表的光催化剂在染料敏化太阳能电池、锂离子电池、光伏器件以及光催化领域表现出明显的使用优势.但是TiO2本身的弱可见光吸收、低电导率、高载流子复合速率限制了其在工业生产中的进一步使用。

科技工作者一般通过掺杂、半导体复合、燃料敏化、表界面性质改性等方法提高TiO2的光电化学性能,使其能在生产实践中广泛应用。

1、TiO2材料简介TiO2在自然界中的主要存在形态为金红石、锐钛矿和板钛矿三种晶型,其中金红石是TiO2的高温相,锐钛矿和板钛矿两种形态是TiO2的低温相。

在三种晶型中光催化活性最好的为锐钛矿型TiO2。

锐钛矿型TiO2的禁带宽度为3.2eV 与之对应的激发波长为387nm。

所以,TiO2作为光催化剂在紫外光条件下具有催化活性,在可见光下一般没有活性。

只有对它的结构进行改性,使它的禁带宽度得以缩小,才可以实现材料在可见光条件下的催化降解反应。

改性的方式目前主要有以下几种方法:通过改变晶体内部结构来改变催化剂禁带宽度的离子掺杂方法,通过形成异质结改变能带结构的半导体复合法,提高催化剂对光的吸收能力的表面光敏化法,增大催化剂比表面积使晶粒细化的负载载体法等。

光催化材料中电子e一和空穴h十的浓度会影响有机物的降解速度。

粒径的减小能够使表面原子增加,使光催化剂吸收光的效率显著提高,使其表面e一和h十的浓度增大,从而提高光催化剂的催化活性。

二氧化钛光催化性能

二氧化钛光催化性能
一锌钡白还要 白5倍,因此是调 制白油漆的最好颜料。世界上 用作颜料的二氧化 钛,一年多到几十万吨。二氧化钛可以加在纸里,使纸变白并且不透明,效果 比其他物质大10倍,因此,钞票 纸和美术品 用纸就要加 二氧化钛。此 夕卜,为了 使塑料的颜色变浅,使人造丝光泽柔和,有时也要添加二氧化钛。在橡胶工业 上,二氧化钛 还被用作为白色橡胶的填料。
原理,致力提高光催化效率。
Fujishima和Honda的研究工作引起了人们对半导体在光作用下能否用于污染 控制的兴趣,而半导体光电化学的研究结果为开展这一工作奠定了基础。从七十年代
初期以来,国外许多学者竞相开展这方面的研究。1976年,J. H. Cary报道了TiO?水 浊液在近紫外光的照射下可使多氯联苯脱氯,注意到TiO2水体系在光照条件下可非
日常生活废水中含有大量的表面活性剂,这种废水不但容易产生异味和泡沫,而且 还会影响废水的生化。表面活性剂不但很难降解,有时还会产生有毒或不溶解的中间
体。研究证明,采用纳米TiO2催化剂分解表面活性剂可以取得较好的效果。虽然表面 活性剂中的烷基链较难完全被纳米TiO2催化剂氧化成CO2,但表面活性剂中芳环的破
纳米二氧化钛光催化性能的研究
摘要:介绍实验室制备金红石型二氧化钛的一种方法,并通过XRD扫描分析其相 态,经扫描电子显微镜观察所制备的二氧化钛的形貌和尺寸, 最后在紫外光照射下研 究其对有机物的降解。
关键词:制备;TiO2;纳米材料;光催化。
1
早在1929年人们就知道了涂料的“钛白”现象,即涂料中的二氧化钛能使颜料褪 色。后来的研究发现,造成这一现象的原因是TiO2的光敏化行为,即TiO2的光敏化引 起油漆中有机物粘合剂的光降解,从而导致尤其涂料的不稳定。20世纪70年代和80

纳米二氧化钛的性质及应用进展

纳米二氧化钛的性质及应用进展

二、纳米二氧化氧化钛在光学领域具有广泛的应用,其中最具代表性的是光催化。纳 米二氧化钛在紫外光下能够高效降解有机污染物,如挥发性有机物、染料、农药 等。通过光催化反应,这些污染物可以被分解为无害的二氧化碳和水,从而达到 净化环境的目的。此外,纳米二氧化钛还可以用于光电催化制氢、太阳能电池等 领域。
一、纳米二氧化钛的性质
纳米二氧化钛是一种白色粉末,具有高透明度、高分散性和低能耗等特点。 其晶体结构包括锐钛矿型和金红石型两种,前者具有较好的光催化性能,后者则 具有较高的稳定性和耐候性。纳米二氧化钛的制备方法主要包括化学气相沉积、 液相法、溶胶-凝胶法等,其中最为常用的是液相法。
纳米二氧化钛具有优异的光学性能,其带隙能约为3.2 eV,对应于紫外光的 吸收波长范围。因此,纳米二氧化钛在紫外光下具有高效的光催化性能,可用于 降解有机污染物、抗菌消毒等领域。此外,纳米二氧化钛还具有较好的化学稳定 性和耐候性,使其在室外环境下仍能保持较高的活性。
六、结论
纳米二氧化钛作为一种重要的无机纳米材料,由于其独特的物理化学性质, 在光学、电子、医药等领域具有广泛的应用前景。本次演示对纳米二氧化钛的应 用研究进展进行了详细探讨,总结了其研究现状、成果与不足,并指出了未来的 研究方向。随着纳米技术的不断发展和新材料领域的不断创新,相信纳米二氧化 钛在未来将会在更多领域得到广泛应用,为人类社会的发展和进步做出贡献。
然而,纳米二氧化钛的应用仍存在一些问题和不足之处。首先,其制备过程 较为复杂,需要严格控制制备条件,以保证其结构和性能的稳定性。其次,纳米 二氧化钛的应用过程中可能存在一定的环境风险,需要加强对其生态毒理学的研 究和控制。最后,纳米二氧化钛的大规模生产和应用还需要进一步完善产业链和 市场推广。
结论

纳米二氧化钛光催化氧化机理的研究进展

纳米二氧化钛光催化氧化机理的研究进展

纳米二氧化钛光催化氧化机理的研究进展摘要:纳米二氧化钛作为一种重要的光催化剂,在降解污染物方面得到了广泛应用。

由于对二氧化钛进行改性可以有效地提高其光催化活性,使得对其改性也成为研究的热点.本文系统地阐述了纳米二氧化钛的光催化反应机理,光催化活性的影响因素,掺杂改性方法。

关键词:纳米二氧化钛;光催化氧化;催化技术改进能源枯竭、环境污染已成为人类急需解决的两大难题,研究开发经济有效、不污染环境的能源成为全球性的战略目标。

光催化技术作为太阳能的化学转化及储存以及在环境污染处理方面的应用正蓬勃发展起来。

在众多半导体光催化剂(TiO2、WO2、ZnS、SnO3、SrTiO3、ZnO等)中,TiO2以其化学稳定性高、耐光腐蚀且具有较大的禁带宽度(Eq=3.2 eV),氧化还原电位高,光催化反应驱动力大,光催化活性高且无毒、低成本等优点,已成为目前光催化研究领域中最活跃的方向之一。

1、光催化反应机理半导体具有特殊的电子结构,价带充满、导带空闲和禁带较宽。

作为半导体材料如TiO2、ZnO等,其能带是不连续的,价带和导带之间存在一个禁带,其禁带宽度(带隙能,Eg)为数个电子伏特。

当用光子能量大于或等于禁带宽度的光照射半导体材料时,其价电子被激发,越过禁带进入导带,同时在价带上形成相应的空穴,即产生所谓电子一空穴对。

在光催化的过程中,空穴具有极强的获取电子的能力(TiO2价带上空穴氧化还原电位为+2.7ev),能将水中的OH-和H:O分子转化为氧化能力和反应活性极强的羟基自由基?OH,而吸附在TiO2,表面的物质或溶剂中的游离氧则俘获电子形成?O等活性极强的自由基,这些自由基都具有很强的化学活性,能与各种无机、有机污染物反应生成无毒无害的CO、HO和无机物等。

光激发产生的电子和空穴可经历多种变化途径,其中最主要的是捕获和复合两个相互竞争的过程对光催化反应来说,光生空穴的捕获并与给体或受体发生作用才是有效的,如果没有适当的电子或空穴捕获剂,分离的电子和空穴可在半导体粒子内部或表面复合并放出热能,选用适当的表面空位或捕获剂捕获空位或电子,可使复合过程受抑制,如果将有关电子受体或给体(捕获剂)预先吸附在催化剂表面,界面电子传递和被捕获过程就会更有效,更具有竞争力。

纳米二氧化钛的制备及其光催化活性测试

纳米二氧化钛的制备及其光催化活性测试

纳米二氧化钛的制备及其光催化活性测试一、实验目的:① 了解纳米二氧化钛的粒性和物性。

② 研究二氧化钛光催化降解甲基橙和亚甲基蓝水溶液的过程和性质。

③ 了解光催化剂的一种评价方法。

二、实验原理:本实验采用金属醇盐水解法制备纳米二氧化钛,反应方程式有Ti(O-C 4H 9)4+4H 2OTi(OH)44C 4H 9OH+Ti(OH)4+Ti(O-C 4H 9)42TiO 2+4C 4H 9OH Ti(OH)4Ti(OH)4+2TiO 24H 2O+三、仪器及试剂试剂:钛酸正四丁脂,无水乙醇,盐酸,去离子水仪器:电热炉、恒温水浴箱、50mL 量筒和10 mL 量筒各一个、烧杯(100 mL)两个、玻璃棒、抽滤瓶、布氏漏斗、滤纸、PH 试纸。

四、实验步骤① 纳米TiO2的制备观察水解① 配置甲基橙溶液称取一定量甲基橙,加水溶解,移入250ml 容量瓶,定容。

② 光催化活性测试200ml 烧杯 加100ml 去离子水 500ml 烧杯 200ml 无水乙醇,10ml 钛酸四丁酯混合离心分离 一份500℃1h一份300℃1h一份常温1h计算降解率测吸光度离心取上清液取样每隔日光灯照射超声波分散份甲基橙不同温度分别加入−→−−→−−→−−→−−→−−−−−−−−→−10min 15min 42iO 0.15g T五、数据记录及处理 温度 光+100℃光+300℃TiO 2光+500℃TiO 2不加TiO2+光照暗+300℃ TiO 20min 0.678 0.678 0.678 0.678 1.034 10min 0.681 0.578 0.711 0.809 0.832 20min 0.680 0.348 0.449 0.929 30min 0.680 0.216 0.331对数据作图如下由以上得:500度光催化前 甲基橙溶液A=0.678 光催化30分钟后 甲基橙溶液A=0.331甲基橙的光降解率 W%=(0.678-0.331)/0.678×100%=51.2% 300度光催化前 甲基橙溶液A=0.678光催化30分钟后甲基橙溶液A=0.216甲基橙的光降解率W%=(0.678-0.216)/0.678×100%=68.1%100度光催化前后无大变化,降解率W%=0 无催化活性六、结果讨论①300度光催化活性最好,500度次之,100度几乎无光催化活性。

TiO2催化剂

TiO2催化剂

纳米TiO2催化剂的制备改性、表征及在光催化氧化过程中的性能研究自从上世纪七十年代以来,二氧化钛在环境治理方面的研究被迅速开展起来。

二氧化钛最大的优点是无毒、抗腐蚀,由于具有稳定的物理和化学性质被广泛地用作催化剂和载体。

其中研究最多的是二氧化钛在光催化氧化过程中的应用。

当物质所具有的尺寸属于纳米级别(<100nm),其特殊的表面效应和体积效应决定了其具有特殊的化学性质。

由于纳米颗粒表面原子数与其总原子数之比随粒径变小而急剧增大,表面原子的晶场环境和结合能与内部原子大相径庭,从而使其具有很大的化学活性。

另外,纳米颗粒因其表面原子周围缺少相邻原子会存在许多悬空键,具有不饱和性质,这些因素将导致纳米颗粒的特殊吸附现象,反应活性和催化性质。

纳米二氧化钛催化剂由于其特殊的表面状态和表面能,具有很高的活性和吸附能力是一种性能优良的催化剂。

纳米材料的制备可分为物理方法和化学方法两大类。

物理方法包括机械研磨法、沉积法和熔融法等,其中最常见的为机械粉碎法。

物理方法通常能耗大、成本高、尺寸可控性差,可取之处在于所得材料的微晶结构较为完善、表面缺陷相对较小。

化学方法在微粒粒度、粒度分布、微粒表面控制方面有一定优越性,主要包括:化学气相沉积法、液相法、溶胶—凝胶法、固相反应法、辐射合成法。

1.纳米二氧化钛的制备纳米二氧化钛的合成方法很多中溶胶—凝胶法以其工艺简单、反应温度低、能耗小、且引入杂质的可能性小、制得的产品粒度小、纯度高、分散性好等优点,成为合成超细二氧化钛的主要方法。

溶胶—凝胶技术是指金属的有机或无机化合物经过溶液、溶胶、凝胶而固化,再经热处理而成为氧化物或其他固体化合物的方法,所需要的烧结温度比传统的固相反应法低200~500℃。

采用溶胶—凝胶法制备纳米二氧化钛,选择钛酸丁酯作为前驱物,令其均匀混合于无水乙醇中并发生水解与缩聚反应,形成稳定的溶胶体系,溶胶再经过陈化转变为凝胶,最后对凝胶进行热处理得到超细的二氧化钛颗粒。

稀土掺杂在光催化中的应用

稀土掺杂在光催化中的应用

现在共掺杂TiO2光催化剂中,0.1%La/0.3%Eu/TiO2的催化
活性最高。
稀土的共掺杂
• 掺杂改性是拓宽可见光谱范围和提高量子效率的重要方法, 然而研究发现,单元素掺杂往往只能够兼顾到其中的一面, 因此,共掺杂得到逐步的发展。
• 选择两种或多种离子对TiO2共掺杂改性,期望利用共掺杂离
子间的协同作用提供电子和空穴陷阱,抑制电子-空穴的复 合,提高光催化活性;同时,利用各掺杂离子的优势互补来 拓宽TiO2的吸收光谱范围,提高其在可见光下的光催化能力 。
Байду номын сангаас 稀土与金属元素的共掺杂
• 稀土元素半径较大,易造成晶格畸变,形成氧空位,而金属
和稀土元素都可以充当电子或空穴的捕获中心,因此二者的
协同作用共掺杂TiO2,有助于提高其光催化性能。
• 王东升等采用溶胶-凝胶法制备了Ag和Sm共掺杂的TiO2,当掺
杂1.0%Sm-1.2%Ag(摩尔分数)时,产物的光催化效果最佳, 经400W的高雅汞灯照射45min,对甲基橙的降解率达99.4%。
稀土单元素掺杂
• 谷科成等以TNT为降解物研究了镧掺杂纳米TiO2的光催化活 性,发现镧的掺杂减小了晶粒尺寸,并使TiO2的晶型转变温 度升高,其中2%(摩尔分数)La—TiO2的光催化效果最好, 紫外光下照射30 min能去除76.8%的TNT有机物。 • 赵伟伟等以钛酸丁酯为前驱体,采用溶胶一凝胶法制备掺铈 的TiO2粉末,结果表明,铈的掺杂会造成晶格不同程度的膨 胀,并影响光催化材料的比表面积,当掺杂量为0.3%且焙 烧温度为400℃时,紫外光下对甲基橙的降解率最高,1h能 达到98%左右。
化领域中得到广泛应用。
稀土作为催化剂,适用范围很广。几乎涉及所有的催化反 应。无论是氧化还原型,还是酸碱性,均相或多相,都充分显示了 稀土催化剂性能的多样。

纳米二氧化钛的制备与光催化性能研究毕业论文

纳米二氧化钛的制备与光催化性能研究毕业论文

毕业设计(论文)纳米二氧化钛的制备与光催化性能研究1 绪论二氧化钛,化学式为TiO2,俗称钛白粉,多用于光触媒、化妆品,能靠紫外线消毒及杀菌,现正广泛开发,将来有机会成为新工业。

二氧化钛可由金红石用酸分解提取,或由四氯化钛分解得到。

二氧化钛性质稳定,大量用作油漆中的白色颜料,它具有良好的遮盖能力,和铅白相似,但不像铅白会变黑[1];它又具有锌白一样的持久性。

二氧化钛还用作搪瓷的消光剂,可以产生一种很光亮的、硬而耐酸的搪瓷釉罩面。

在过去的研究中,用半导体粉末对水、油和空气中的有毒有机化合物进行光催化降解和完全矿化引起了人们的大量关注。

由于抗光腐蚀性,化学稳定性,成本低,无毒和强氧化性,二氧化钛被作为应用最广泛的光催化剂来光降解水和空气中的有毒化合物。

但是二氧化钛具有较大的带隙(锐钛矿相二氧化钛为3.20ev)因此,只有较小一段太阳光区域,大约为2%~3%紫外光区可被应用[2]。

人们尝试用各种制备方法,如贵金属掺杂、氧化物复合、表面修饰等等方法,防止和减少电子与空穴的复合,提高催化剂的光催化活性。

众所周知,吸附和催化的效率与固体的孔径及表面积有关,因此,对二氧化钛进行修饰、改性及增大比表面积是提高光量子效率和增大反应速率的一个有效的方法与途径。

1.1 TiO2的结构与基本性质1.1.1物理常数及结构特征表1 TiO的物理常数1.1.2 TiO2的结构特征在自然界中,TiO2存在三种晶型结构,即金红石、锐钛矿和板钛矿。

这些结构的区别取决于TiO68-八面体的连接方式,图1-1是TiO68-八面体的两种连接方式,锐钛矿结构是由TiO68-八面体共边组成,而金红石和板钛矿结构则是由TiO68-八面体共顶点且共边组成。

锐钛矿TiO2中的每个八面体与周围8个八面体相连,金红石TiO2中每个八面体与周围10个八面体相连。

事实上锐钛矿可以看做是一种四面体结构,而金红石和板钛矿则是晶格稍有畸变的八面体结构[3]。

简单地认为锐钛矿比金红石活性高是不严谨的,它们的活性受其晶化过程的一些因素影响。

二氧化钛光催化抑菌性及其抑菌机理的研究

二氧化钛光催化抑菌性及其抑菌机理的研究
本实验研究材料 TiO2 是用新工艺掺杂(非金属 EDTA 和柠檬酸)改性在 90℃低温 下制备的,并对其作了一些表征。首先,用滴板比较菌斑大小和稀疏的方法,定性研究 了标准纳米二氧化钛和 5 种掺杂自制二氧化钛粉体对细菌如大肠杆菌、金黄色葡萄球菌 、 枯草芽孢杆菌及真菌如酵母菌、白色念珠菌的抗菌性能。然后,根据定性抑菌结果,选 取了对其有抗菌作用的四种菌,并设定了适当的菌浓度、二氧化钛质量浓度以及光催化 取样时间,用计数法定量分析了标准纳米二氧化钛和 5 种掺杂自制二氧化钛粉体的光催 化抗菌性能。最后,选取了金黄色葡萄球菌为代表菌,考察了初始菌浓度、TiO2 质量浓 度对几种代表二氧化钛杀菌效果的影响,并用扫描电镜观察了抑菌前后菌体形态结构的 变化以初步探索二氧化钛光催化抗菌原理。得到如下实验结果:
With TiCl4 as the raw materia l, using low-temperature aging method, There were four kinds of mixed crysta lline form of TiO2 powder which were prepared with adding EDTA and citric acid and a kind of pure rutile phase of TiO2 powder which was prepared without adding additive. Scanned with electron microscopy, It showed that the size of standard TiO2 was nano-scale, the surface area was large, the dispersion was poor, The size of Self-made TiO2

催化剂纳米二氧化钛的作用

催化剂纳米二氧化钛的作用

催化剂纳米二氧化钛(TiO2)具有多种作用,主要集中在以下几个方面:
1. 光催化作用:
纳米二氧化钛在紫外线照射下具有很强的光催化活性。

当其吸收紫外光后,能产生电子-空穴对,这些载流子参与氧化还原反应,能够分解空气中的有害气体如甲醛、苯、氨气以及某些有机污染物,将其转化为无害的二氧化碳和水。

因此,纳米二氧化钛被广泛应用于空气净化、水质净化等领域。

2. 抗菌性能:
光催化作用也能有效杀灭细菌和病毒,通过生成的羟基自由基等强氧化性物质破坏微生物细胞膜和DNA结构,从而实现高效抗菌和抗病毒功能。

这种特性使得纳米二氧化钛常用于制备具有自清洁、抗菌效果的涂层材料,比如应用于建材表面、医疗设备表面处理等。

3. 紫外线屏蔽:
由于二氧化钛对紫外线有较高的反射率和吸收率,所以它是一种高效的紫外线屏蔽剂,可以添加到化妆品、涂料、塑料等材料中,保护人体皮肤或产品免受紫外线伤害,延长产品的使用寿命和提高其耐候性。

4. 新能源应用:
在能源领域,纳米二氧化钛也被研究作为光电化学电池的光阳极材料,利用其光生电荷分离的能力来转化太阳能为电能。

5. 其他功能:
还可作为催化剂载体,支持负载其他活性成分进行催化反应;同时,在某些特定条件下,纳米二氧化钛还可以表现出优异的导电性和良好的化学稳定性,进一步拓宽了其在传感器制造、环保材料、药物传递系统等方面的应用潜力。

纳米二氧化钛光催化应用

纳米二氧化钛光催化应用

纳米二氧化钛光催化应用纳米二氧化钛是近年来发展起来的一种新型高性能材料,其粒子尺寸在1~100nm,表面能和表面张力随粒径的下降急剧增大而使其具有块状材料所不具备的量子尺寸效应、体积效应、表面效应和宏观隧道效应。

与常规材料相比,纳米二氧化钛具有比表面积大、磁性强、光吸收性好、表面活性大、热导性好、分散性好等独特的性能,同时还具有光化学性质稳定、催化效率高、氧化能力强、无毒、价格便宜等优点,在化妆品、塑料、涂料、精细陶瓷、催化剂及环保领域应用广泛。

无机抗菌剂纳米二氧化钛是一种N型半导体,受到波长小于387.5nm 的紫外光的照射时,价带上的电子跃迁到导带,激发电离出电子同时产生正电性的空穴,产生电子–空穴对(e--h+),并与其表面吸附的O2 和OH- 作用生成超氧化物阴离子自由基O2-和羟基自由基·OH,新生成的这两种自由基非常活泼,当遇到细菌时直接攻击细菌的细胞壁、细胞膜或细胞内的组成成分,对绿脓杆菌、大肠杆菌、金黄葡萄球菌、沙门氏菌、牙枝菌和曲菌及癌细胞等有很强的杀灭能力。

以·OH为例,·OH有很强的氧化能力,它攻击有机物的不饱和键或抽取其氢原子,反应产生的新自由基将会激发链式反应,致使细菌蛋白质的多肽链断裂和糖类解聚,杀死细菌并使之分解。

美国得克萨斯大学研究人员将大肠杆菌和纳米二氧化钛混合液在大于380nm 的光线下照射,发现大肠杆菌以一级反应动力方程被迅速杀死。

东森公司研制的纳米二氧化钛对23 种有害细菌具有明显的杀菌、抑菌效果。

日本已经开发出了用纳米二氧化钛被覆的抗菌陶瓷品,其制造工艺是先将纳米二氧化钛加水制成浆料,涂在陶瓷砖表面,经高温锻烧即得到1cm厚具有杀菌性能的纳米二氧化钛薄膜产品。

该产品在光照射下能完全杀死表面细菌;若要使其在微弱光下亦有抗菌性能,可在纳米二氧化钛浆料中添加银、铜离子化合物。

添加约1%纳米二氧化钛的抗菌塑料,可广泛应用于食品包装、电器、家具、餐具、公共设施等,以防止病菌的繁殖和交叉感染。

纳米二氧化钛光催化

纳米二氧化钛光催化

纳米二氧化钛光催化
纳米二氧化钛光催化是一种新型的环保技术,它利用纳米二氧化钛的光催化性质,将光能转化为化学能,从而实现对有害物质的降解和清除。

这种技术具有高效、低成本、易操作等优点,被广泛应用于环境治理、能源开发等领域。

纳米二氧化钛的光催化性质是指在光照下,纳米二氧化钛表面会产生电子和空穴,这些电子和空穴可以参与化学反应,从而实现对有害物质的降解。

这种光催化反应的原理类似于光合作用,但是它不需要光合色素和光合酶等复杂的生物分子,因此具有更高的效率和更广泛的适用性。

纳米二氧化钛光催化技术可以应用于水处理、空气净化、废气治理等领域。

例如,在水处理中,纳米二氧化钛可以将有机物、重金属等有害物质降解为无害的物质,从而实现水的净化和回收利用。

在空气净化中,纳米二氧化钛可以将空气中的有害气体如甲醛、苯等降解为二氧化碳和水,从而净化空气。

在废气治理中,纳米二氧化钛可以将废气中的有害物质如二氧化硫、氮氧化物等降解为无害物质,从而减少环境污染。

纳米二氧化钛光催化技术的应用还不仅限于环境治理领域,它还可以应用于能源开发领域。

例如,纳米二氧化钛可以作为太阳能电池的光敏材料,将太阳能转化为电能。

此外,纳米二氧化钛还可以应用于光催化水分解,将水分解为氢气和氧气,从而实现清洁能源的
生产。

纳米二氧化钛光催化技术是一种具有广泛应用前景的环保技术,它可以实现对有害物质的高效降解和清除,同时还可以应用于能源开发领域。

随着技术的不断发展和完善,相信纳米二氧化钛光催化技术将会在未来的环保和能源领域发挥越来越重要的作用。

纳米二氧化钛光催化及其在污水处理与分析检测中的应用研究

纳米二氧化钛光催化及其在污水处理与分析检测中的应用研究

纳米二氧化钛光催化及其在污水处理与分析检测中的应用研究纳米二氧化钛光催化及其在污水处理与分析检测中的应用研究近年来,随着环境污染问题的日益严重,人们对污水处理和分析检测技术的需求也越来越迫切。

纳米材料作为一种新兴材料,在环境领域的应用中引起了广泛关注。

其中,纳米二氧化钛具有良好的光催化性能,被广泛应用于污水处理和分析检测中。

纳米二氧化钛(TiO2)是一种稳定且无毒的化学材料,其晶体结构具有大量表面电荷和活性位点,能够捕获阳光中的光子能量,并将其转化为化学能。

纳米二氧化钛的光催化性能是通过其独特的能带结构所实现的。

当纳米二氧化钛被激发后,电子从价带跃迁到导带,产生电子-空穴对。

这些电子-空穴对能够参与不同类型的反应过程,如氧化、还原、酸碱中和等,进而分解有机物和杀灭有害微生物。

在污水处理方面,纳米二氧化钛光催化技术可以有效降解有机物和去除重金属离子。

纳米二氧化钛的光催化活性能够在短时间内迅速分解有机物,包括污水中的有机染料、化学污染物和抗生素等。

此外,纳米二氧化钛还能够吸附并去除重金属离子,如铅、镉、铜等,从而提高污水的净化效果。

纳米二氧化钛的高光催化活性和低成本使其成为一种理想的污水处理材料。

在分析检测中,纳米二氧化钛光催化还可以用于有机物的富集和分离。

通过将纳米二氧化钛与目标有机物结合,可以实现其在复杂样品中的高效富集和分离。

纳米二氧化钛的强氧化性和选择性吸附性有助于高效分离目标有机物,并能够将其富集到可检测的浓度范围。

此外,纳米二氧化钛还可以结合其他分析技术,如气相色谱-质谱联用、液相色谱-质谱联用等,实现对目标有机物的快速、灵敏和准确的分析检测。

然而,纳米二氧化钛在应用过程中也存在一些问题和挑战。

首先,由于纳米二氧化钛的同质性使其在光催化过程中易发生自相屏蔽效应,限制了其在大规模污水处理中的应用。

其次,纳米二氧化钛的粒径和形状对其光催化性能和稳定性有着重要影响,因此制备高活性和高稳定性的纳米二氧化钛仍然是一个挑战。

二氧化钛光催化技术介绍

二氧化钛光催化技术介绍

納米二氧化鈦光催化技術介紹納米光催化採用二氧化鈦(TiO2)半導體的效應,啟動材料表面吸附氧和水分,產生活性氫氧自由基(OH.)和超氧陰離子自由基(O2-),從而轉化為一種具有安全化學能的活性物質,起到礦化降解環境污染物和抑菌殺菌的作用。

納米二氧化鈦(TiO2)光催化利用自然光即可催化分解細菌和污染物,具有高催化活性、良好的化學穩定性、無二次污染、無刺激性、安全無毒等特點,且能長期有益於生態自然環境,是最具有開發前景的綠色環保催化劑之一。

無毒害的納米TiO2催化材料,充分發揮抗菌、降解有機污染物、除臭、自淨化的功能,這類環保型功能材料實施方便、應用性強,能實用到生活空間的多種場合,發揮其多功能效應,成為我們生活環境中起長期淨化作用的環保材料。

光催化原理- 什麼是光催化光催化[Photocatalyst]是光 [Photo=Light] +催化劑[catalyst]的合成詞。

主要成分是二氧化鈦(TiO2),二氧化鈦本身無毒無害,已廣泛用於食品,醫藥,化妝品等各種領域。

光催化在光的照射下會產生類似光合作用的光催化反應(氧化-還原反應,產生出氧化能力極強的自由氫氧基和活性氧,這些產物可殺滅細菌和分解有機污染物。

並且把有機污染物分解成無污染的水(H2O)和二氧化碳(CO2),同時它具有殺菌、除臭、防汙、親水、防紫外線等功能。

光催化在微弱的光線下也能做反應,若在紫外線的照射下,光催化的活性會加強。

近來, 光催化被譽為未來產業之一的納米技術產品。

- 光催化反應原理TiO2當吸收光能量之後,價帶中的電子就會被激發到導帶,形成帶負電的高活性電子e-,同時在價帶上產生帶正電的空穴h+。

在電場的作用下,電子與空穴發生分離,遷移到粒子表面的不同位置。

熱力學理論表明,分佈在表面的h+可以將吸附在TiO2表面OH-和H2O 分子氧化成(OH.)自由基,而OH.自由基的氧化能力是水體中存在的氧化劑中最強的,能氧化並分解各種有機污染物(甲醛、苯、TVOC等)和細菌及部分無機污染物(氨、NOX等),並將最終降解為CO2、H2O 等無害物質。

纳米二氧化钛的制备及光催化分析

纳米二氧化钛的制备及光催化分析

苏州科技大学材料科技进展化学生物与材料工程学院材料化学专业题目:纳米二氧化钛的制备及光催化*名:**学号:**********指导老师:***起止时间:5月20日——6月8日纳米二氧化钛的制备及光催化吕岩(苏州科技学院,化学与生物工程材料学院,江苏,苏州,215009)摘要:纳米二氧化钛是种重要的纳米材料,其在众多领域有着广泛的应用。

本文主要介绍纳米二氧化钛的多种制备方法,包括化学气相法(化学气相沉积法、化学气相水解法等)、液相法( 溶胶凝胶法、沉淀法、水热合成法等)两大类,并分析了各种工艺的优劣。

并介绍纳米二氧化钛光催化反应原理,基本方法,影响因素,及其广泛的应用。

通过介绍纳米二氧化钛的制备及光催化的研究,更深刻理解其在生产生活中应用。

关键词:纳米TiO2,制备方法,光催化.The study on preparation of nanometer TiO2 and photocatalyticLv Yan(University of Science and Technology of Suzhou,School of Chemical and Biological Engineering Materials,Jiangsu,Suzhou,215009) Abstract: A s an important nanomaterial nanometer TiO2 has wide app lications in many fields, such as environmental production. Preparation methods of nanomaterial TiO2w ere briefly summarized, including chemical gas phase method( CVD and chem ical gas phase hydro lysis method etc. ) and liquid phase method( sol- gelmethod, precipitation method, hydrothermal synthesismethod etc. ). The advan tages and disadvanges o f everym ethod w ere analyzed. Introduce nano TiO2reaction principle, basic method, influence factors, and its wide application. Through the introduction of the preparation of nano TiO2 research, a deeper understanding of its application in the production and living.Key words: nanometer T iO2; preparation method, photocatalysis引言:纳米二氧化钛是一种新型的光催化无机功能材料,由于其粒径在1~ 100 nm 之间, 具有粒径小、比表面积大表面活性高、分散性好等特点, 表现出独特的物理化学性质。

纳米二氧化钛的改性及光催化氧化烷烃研究

纳米二氧化钛的改性及光催化氧化烷烃研究

纳米二氧化钛的改性及光催化氧化烷烃研究
纳米二氧化钛的改性及光催化氧化烷烃研究
摘要:催化剂的表面结构是影响催化反应的重要因素之一.利用原位红外(In-situ FT-IR)、X射线衍射(XRD)和紫外-可见漫反射(UV-Vis DRS)等现代物理技术考察了热处理改性对纳米TiO2的表面结构、晶相结构、粒子大小、比表面积和吸光性能的影响,采用In-situ FT-IR光谱着重研究了纳米TiO2催化剂上环己烷光催化降解机制及催化剂的结构特性与催化反应之间的相关性.研究表明,400 ℃条件下热处理纳米TiO2具有最佳光催化活性,适宜的表面结构、晶相结构、吸光能力及晶化度是纳米TiO2光催化剂高催化活性的'主要原因.借助In-situ FT-IR 光谱,观察到环己烷氧化的主要产物是CO2和H2O,同时捕捉到了中间产物CO以及乙酸,提出了环己烷光催化降解的可能机理.作者:马佳彬李新勇曲振平邹龙江陈永英Ma Jiabin Li Xinyong Qu Zhenping Zou Longjiang Chen Yongying 作者单位:大连理工大学环境学院,工业生态与环境工程教育部重点实验室,辽宁,大连,116024 期刊:环境污染与防治ISTICPKU Journal:ENVIRONMENTAL POLLUTION & CONTROL 年,卷(期):2007, 29(1) 分类号:X7 关键词:纳米TiO2 光催化环己烷原位红外机理。

二氧化钛光催化技术介绍

二氧化钛光催化技术介绍

纳米二氧化缺光催化技荷介^纳米光催化探用二氧化金太(TiO2)半^髓的效鹿启攵勤材料表面吸附氧和水分,走生活性氢氧自由基(OH.)和超氧陪雕子自由基(02-), ^而^化舄一希重具有安全化孥能的活性物筲起到碳化降解璞境污染物和抑菌杀殳菌的作用。

纳米二氧化金太(TiO2)光催化利用自然光即可催化分解^菌和污染物,具有高催化活性、良好的化孥穗定性、照二次污染、照刺激性、安全照毒等特黑占,且能畏期有益於生熊自然璞境,是最具有^畿前景的^色璞保催化蒯之一。

然毒害的纳米TiO2催化材料,充分畿撞抗菌、降解有^污染物、除臭、自浮化的功能,是^璞保型功能材料^施方便、雁用性弓鱼,能^ 用到生活空^的多重埸合,畿撞其多功能效废,成舄我仍生活璞境中起畏期浮化作用的璞保材料。

光催化原理-什麽是光催化光催化[Photocatalyst ]是光[Photo二Light] +催化蒯[catalyst]的合成羞司。

主要成分是二氧化金太(Ti02),二氧化金太本身照毒照害,已腐泛用於食品,髻桑,化片攵品等各希重令臭域。

光催化在光的照射下畲走生^似光合作用的光催化反雁(氧化-遢原反雁,走生出氧化能力桎弓鱼的自由氢氧基和活性氧,是些走物可^M^菌和分解有檄污染物。

亚且把有檄污染物分解成照污染的水(H20)和二氧化碳(C02),同畤它具有杀殳菌、除臭、防汗、^水、防紫外^泉等功能。

光催化在微弱的光%泉下也能做反底若在紫外#泉的照射下光催化的活性畲加逾近来,光催化被餐舄未来走棠之一的纳米技彳桁走品。

-光催化反雁原理TiO2富吸收光能量之彳爰,僵带中的雷子就畲被激畿到^带,形成带^雷的高活性雷子e-,同畤在僵带上走生带正雷的空穴h+。

在雷埸的作用下,雷子典空穴畿生分雕,暹移到粒子表面的不同位置。

熟力孥理言禽表明,分怖在表面的h+可以将吸附在TiO2表面OH-和H2O 分子氧化成(OH.)自由基,而OH.自由基的氧化能力是水髓中存在的氧化蒯中最弓鱼的,能氧化亚分解各重有^污染物(甲醛、苯、TVOC等)和^菌及部分照檄污染物(氨、NOX 等),亚将最^降解舄CO2、H2O 等照害物鼻由於OH自由基封反废物^乎MB®性,因而在光催化中起著〉夬定性的作用。

纳米二氧化钛光催化降解有机物研究发展

纳米二氧化钛光催化降解有机物研究发展

纳米二氧化钛光催化降解有机物研究发展1 基本原理1.1纳米微粒的基本理论纳米材料是指尺寸为纳米级的超细材料。

它的微粒尺寸大于原子簇,小于通常的微粒。

由于纳米TiO2特有的处于宏观和微观的之间的介关层次,使其具有不同于常规材料的物理化学性质。

其中就有光催化降解有机物。

1.2纳米TiO2的光催化特性1.2.1 光催化化学反应机理由于TiO2晶粒是一种禁带宽为3.2eV的宽禁带半导体,由填满电子的低能价带和空的高能价带构成。

当光照射在TiO2晶粒表面时,能量大于或等于3.2ev的光子可激发价带电子想导电跃迁,形成电子的一空穴对。

活泼的电子的空穴可以分别从半导体的导带和价带迁移至半导体吸附物界面,而且越过界面,使被西服的物质氧化和还原:同时也存在电子空穴的复合。

当周围介质中存在合适的俘获剂或缺陷时,电子和空穴的符合受到控制,就会在表面发生氧化还原反应,价带空穴是良好的氧化剂,导带电子是良好的还原剂,大多数光催化剂都是直接或间接的利用空穴的氧化能力。

在光催化半导体中,空穴具有更大的反应活性,是携带光电子能的主要部分,在水和空气体系中,可以于表面吸附的H2O 和OH-离子反应形成具有强氧化性的羟基。

表面羟基是光催化反应的强氧化剂,对催化氧化起决定性作用。

电子与表面吸附的分子氧反应,分子氧不仅参与还原反应,还是表面羟基另一个来源。

一方面,电子通过与分子氧反应形成超羟基,有机物被空穴或羟基氧化后在与分子氧反应形成有机样机,相对不活泼的超氧基与有机过氧基合并生成不稳定的有机四氧基,最终分解为CO2和H2O和无机小分子。

另一方面,表电子具有超强还原能力,可以除去水体系中的重金属因子。

氧的存在对半导体催化至关重要,没有氧的存在时,半导体的光催化活性则完全被抑制,通常,氧气起着光生电子的清除剂或引入级的作用。

半导体光催化反应的能力尤其能带位置及被吸附物质的还原点失所决定,同是也于晶体结构,晶格缺陷,晶粒尺寸的分布,黥面状态以及制备方面等诸多引述有关,其光谱响应与近代宽度有关。

纳米二氧化钛的制备

纳米二氧化钛的制备

纳米二氧化钛的制备及其光催化活性评价一、实验目的3、了解纳米半导体材料的性质。

4、了解纳米半导体光催化的原理。

二、实验原理二氧化钛,化学式为,俗称钛白粉。

多用于光触媒、化装品,能靠紫外线消毒及杀菌。

以纳米级为代表的具有光催化功能的光半导体材料,因其颗粒细小、比外表积大而具有常规材料所不具备的优点,以及较高的光催化活性、高效的光点转化性能等,在抗菌除雾、空气净化、废水处理、化学合成及燃料敏化太阳能电池等方面显出广阔的应用前景。

1、纳米二氧化钛的制备溶胶凝胶法中,反响物为水、钛酸四丁酯,分相介质为乙醇,冰醋酸可调节体系的酸度防止钛离子水解过度,使钛酸四丁酯在无水乙醇中水解生成,脱水后即可得到。

在后续的热处理过程中,只要控制适当的温度条件和反响时间,就可以得到二氧化钛。

在以乙醇为溶剂,钛酸四丁酯和水发生不同程度的水解反响,钛酸四丁酯在酸性条件下,在乙醇介质中水解反响是分步进行的。

一般认为,在含钛离子溶液中钛离子通常与其它离子相互作用形成复杂的网状基团。

上述溶胶体系静置一段时间后,由于发生胶凝作用,最后形成稳定的凝胶。

此过程中涉及的反响为:2、光催化活性评价光触媒在光照条件下〔可以是不同波长的光照)所起到的催化作用的化学反响,通称为光反响。

光催化一般是多种相态之间的催化反响。

本次试验是进行紫外光催化活性评价,分别通过测量在亚甲基蓝和甲基橙中,反响前后的溶液的吸光度的变化算出降解率来评价制备的二氧化钛的活性。

三、实验仪器与试剂仪器:磁力搅拌器,搅拌磁子,水浴锅,PH试纸,胶头滴管,量筒,玻璃棒,烧杯,坩埚,石棉网,电炉,真空枯燥箱,量杯,充气管,自制紫外灯光催化装置,离心机。

试剂:亚甲基蓝,甲基橙,盐酸,冰醋酸,钛酸丁酯,四氯化钛,硫酸氧钛,纳米二氧化钛,无水乙醇。

四、实验步骤〔1〕二氧化钛的制备1、室温下取10ml钛酸丁酯,缓慢滴入到35ml无水乙醇中,用磁力搅拌器强力搅拌10min,混合均匀,形成黄色澄清溶液A。

二氧化钛纳米管在光催化的介绍和特点中的应用

二氧化钛纳米管在光催化的介绍和特点中的应用

二氧化钛纳米管在光催化的介绍和特点中的应用二氧化钛纳米管在光催化的应用,哎呀,这可真是一个有趣的主题!二氧化钛,咱们就叫它TiO2吧,大家都比较熟悉。

这东西在我们生活中其实很常见,比如说白色颜料、太阳能电池等。

而这些纳米管,可谓是小小的奇迹,表面上看起来不起眼,实际上却有着不一般的能力。

想象一下,微小的TiO2纳米管在阳光照射下,活像一位超级英雄,瞬间变得强大无比,开始处理那些污染物,真是让人感到惊叹。

光催化,听起来好像高大上,其实就是利用光的能量来推动化学反应。

TiO2在这个过程中可是个主力军,阳光一来,它就开始发挥自己的光辉作用。

这个过程就像是一场精彩的表演,TiO2把太阳光变成了能量,随后开始分解空气中的有害物质,嘿,真是环保小能手!想象一下,如果我们的城市都用上这种材料,空气质量可得多好多啊,简直就是让人忍不住想要为它打call!TiO2纳米管的特点也很吸引人,首先是它的表面积大,能和更多的污染物接触。

就像一个大网,能捕捉到那些小小的坏分子。

这玩意儿不仅稳定,耐高温,甚至可以在酸碱环境中保持自己的“酷”。

不管是雨打风吹,它都能安然无恙,继续工作,这点真是让人佩服得五体投地。

更有趣的是,TiO2的光催化过程是自发的,换句话说,太阳一照,它就自动工作,不需要我们再去添油加醋。

这种省心省力的特性,真是让人觉得,哎,这科技真是给力。

想想我们在家里用的那些清洁剂、消毒剂,很多时候都是化学反应的结果。

而TiO2的光催化,简直就像是给环境“洗澡”,不仅干净,还不怕伤害生态,真的是环保的小帮手。

TiO2纳米管的应用可不止于此。

在水处理方面,它也大显身手。

比如说,利用它来处理污水,污染物一碰到TiO2,咻的一声,就被分解得干干净净。

水清了,鱼也快乐了,整个生态系统都得到了保护。

想象一下,能喝到这么干净的水,生活的质量一下子就上去了,真是美滋滋。

说到这里,大家可能会问,TiO2有没有什么缺点呢?当然也有,毕竟没有完美的东西。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档