基于模型参考自适应Smith预估器的反馈式AGC厚度控制系统翻译
自动化专业常用英语词汇[1]
后验估计 a posteriori estimate先验估计 a priori estimate交流电子传动 AC (alternating current) electric drive验收测试 acceptance testing可及性 accessibility累积误差 accumulated error交-直-交变频器 AC-DC-AC frequency converter主动姿态稳定 active attitude stabilization驱动器,执行机构 actuator线性适应元 adaline适应层 adaptation layer适应遥测系统 adaptive telemeter system伴随算子 adjoint operator容许误差 admissible error集结矩阵 aggregation matrix层次分析法 AHP (analytic hierarchy process)放大环节 amplifying element模数转换 analog-digital conversion信号器 annunciator天线指向控制 antenna pointing control抗积分饱卷 anti-integral windup姿态轨道控制系统 AOCS (attritude and orbit control system) 非周期分解 aperiodic decomposition近似推理 approximate reasoning关节型机器人 articulated robot配置问题,分配问题 assignment problem联想记忆模型 associative memory model联想机 associatron渐进稳定性 asymptotic stability实际位姿漂移 attained pose drift姿态捕获 attitude acquisition姿态角速度 attitude angular velocity姿态扰动 attitude disturbance姿态机动 attitude maneuver吸引子 attractor可扩充性 augment ability增广系统 augmented system自动-手动操作器 automatic manual station自动机 automaton自治系统 autonomous system间隙特性 backlash characteristics基座坐标系 base coordinate system贝叶斯分类器 Bayes classifier方位对准 bearing alignment波纹管压力表 bellows pressure gauge收益成本分析 benefit-cost analysis双线性系统 bilinear system生物控制论 biocybernetics生物反馈系统 biological feedback system黑箱测试法 black box testing approach盲目搜索 blind search块对角化 block diagonalization玻耳兹曼机 Boltzman machine自下而上开发 bottom-up development边界值分析 boundary value analysis头脑风暴法 brainstorming method广度优先搜索 breadth-first search蝶阀 butterfly valve计算机辅助工程 CAE (computer aided engineering)清晰性 calrity计算机辅助制造 CAM (computer aided manufacturing) 偏心旋转阀 Camflex valve规范化状态变量 canonical state variable电容式位移传感器 capacitive displacement transducer 膜盒压力表 capsule pressure gauge计算机辅助研究开发 CARD直角坐标型机器人 Cartesian robot串联补偿 cascade compensation突变论 catastrophe theory集中性 centrality链式集结 chained aggregation混沌 chaos特征轨迹 characteristic locus化学推进 chemical propulsion经典信息模式 classical information pattern分类器 classifier临床控制系统 clinical control system闭环极点 closed loop pole闭环传递函数 closed loop transfer function聚类分析 cluster analysis粗-精控制 coarse-fine control蛛网模型 cobweb model系数矩阵 coefficient matrix认知科学 cognitive science认知机 cognitron单调关联系统 coherent system组合决策 combination decision组合爆炸 combinatorial explosion压力真空表 combined pressure and vacuum gauge指令位姿 command pose相伴矩阵 companion matrix房室模型 compartmental model相容性,兼容性 compatibility补偿网络 compensating network补偿,矫正 compensation柔顺,顺应 compliance组合控制 composite control可计算一般均衡模型 computable general equilibrium model条件不稳定性 conditionally instability组态 configuration[NextPage} 连接机制 connectionism连接性 connectivity守恒系统 conservative system一致性 consistency约束条件 constraint condition消费函数 consumption function上下文无关语法 context-free grammar连续离散事件混合系统仿真 continuous discrete event hybrid system simulation 连续工作制 continuous duty控制精度 control accuracy控制柜 control cabinet控制力矩陀螺 control moment gyro控制屏,控制盘 control panel控制[式}自整角机 control synchro控制系统综合 control system synthesis控制时程 control time horizon可控指数 controllability index可控规范型 controllable canonical form控制仪表 controlling instrument合作对策 cooperative game可协调条件 coordinability condition协调策略 coordination strategy协调器 coordinator转折频率 corner frequency共态变量 costate variable费用效益分析 cost-effectiveness analysis轨道和姿态耦合 coupling of orbit and attitude临界阻尼 critical damping临界稳定性 critical stability穿越频率,交越频率 cross-over frequency电流[源}型逆变器 current source inverter截止频率 cut-off frequency控制论 cybernetics循环遥控 cyclic remote control圆柱坐标型机器人 cylindrical robot微分控制器 D controller阻尼振荡 damped oscillation阻尼器 damper阻尼比 damping ratio数据采集 data acquisition数据加密 data encryption数据预处理 data preprocessing数据处理器 data processor直流发电机-电动机组传动 DC generator-motor set drive分散性 decentrality分散随机控制 decentralized stochastic control决策空间 decision space决策支持系统 decision support system分解集结法 decomposition-aggregation approach解耦参数 decoupling parameter演绎与归纳混合建模法 deductive-inductive hybrid modeling method 延时遥测 delayed telemetry导出树 derivation tree微分反馈 derivative feedback描述函数 describing function希望值 desired value消旋体 despinner目的站 destination检出器 detector确定性自动机 deterministic automaton偏差 deviation偏差报警器 deviation alarm数据流图 DFD诊断模型 diagnostic model对角主导矩阵 diagonally dominant matrix膜片压力表 diaphragm pressure gauge差分方程模型 difference equation model微分动力学系统 differential dynamical system微分对策 differential game差压液位计 differential pressure level meter差压变送器 differential pressure transmitter差动变压器式位移传感器 differential transformer displacement transducer 微分环节 differentiation element数字滤波器 digital filer数字信号处理 digital signal processing数字化 digitization数字化仪 digitizer[NextPage} 尺度传感器 dimension transducer直接协调 direct coordination解裂 disaggregation失协调 discoordination离散事件动态系统 discrete event dynamic system离散系统仿真语言 discrete system simulation language判别函数 discriminant function位移振幅传感器 displacement vibration amplitude transducer耗散结构 dissipative structure分布参数控制系统 distributed parameter control system扰动 distrubance扰动补偿 disturbance compensation多样性 diversity可分性 divisibility领域知识 domain knowledge主导极点 dominant pole剂量反应模型 dose-response model双重调制遥测系统 dual modulation telemetering system对偶原理 dual principle双自旋稳定 dual spin stabilization负载比 duty ratio能耗制动 dynamic braking动态特性 dynamic characteristics动态偏差 dynamic deviation动态误差系数 dynamic error coefficient动它吻合性 dynamic exactness动态投入产出模型 dynamic input-output model计量经济模型 econometric model经济控制论 economic cybernetics经济效益 economic effectiveness经济评价 economic evaluation经济指数 economic index经济指标 economic indicator电涡流厚度计 eddy current thickness meter有效性 effectiveness效益理论 effectiveness theory需求弹性 elasticity of demand电动执行机构 electric actuator电导液位计 electric conductance levelmeter电动传动控制设备 electric drive control gear电-液转换器 electric hydraulic converter电-气转换器 electric pneumatic converter电液伺服阀 electrohydraulic servo vale电磁流量传感器 electromagnetic flow transducer电子配料秤 electronic batching scale电子皮带秤 electronic belt conveyor scale电子料斗秤 electronic hopper scale仰角 elevation异常停止 emergency stop经验分布 empirical distribution内生变量 endogenous variable均衡增长 equilibrium growth平衡点 equilibrium point等价类划分 equivalence partitioning工效学 ergonomics误差 error纠错剖析 error-correction parsing估计量 estimate估计理论 estimation theory评价技术 evaluation technique事件链 event chain进化系统 evolutionary system外生变量 exogenous variable希望特性 expected characteristics外扰 external disturbance事实 fact base故障诊断 failure diagnosis快变模态 fast mode可行性研究 feasibility study可行协调 feasible coordination可行域 feasible region特征检测 feature detection特征抽取 feature extraction反馈补偿 feedback compensation前馈通路 feedforward path功能电刺激 FES (functional electrical stimulation) 现场总线 field bus有限自动机 finite automaton工厂信息协议 FIP (factory information protocol)一阶谓词逻辑 first order predicate logic固定顺序机械手 fixed sequence manipulator定值控制 fixed set point control流量传感器 flow sensor/transducer流量变送器 flow transmitter涨落 fluctuation柔性制造系统 FMS (flexible manufacturing system)强迫振荡 forced oscillation形式语言理论 formal language theory形式神经元 formal neuron正向通路 forward path正向推理 forward reasoning分形体,分维体 fractal变频器 frequency converter频域模型降阶法 frequency domain model reduction method 频域响应 frequency response全阶观测器 full order observer功能分解 functional decomposition功能相似 functional simularity模糊逻辑 fuzzy logic对策树 game tree闸阀 gate valve一般均衡理论 general equilibrium theory广义最小二乘估计 generalized least squares estimation 生成函数 generation function地磁力矩 geomagnetic torque几何相似 geometric similarity框架轮 gimbaled wheel全局渐进稳定性 global asymptotic stability全局最优 global optimum球形阀 globe valve目标协调法 goal coordination method文法推断 grammatical inference图搜索 graphic search重力梯度力矩 gravity gradient torque成组技术 group technology制导系统 guidance system陀螺漂移率 gyro drift rate陀螺体 gyrostat霍尔式位移传感器 Hall displacement transducer半实物仿真 hardware-in-the-loop simulation和谐偏差 harmonious deviation和谐策略 harmonious strategy启发式推理 heuristic inference隐蔽振荡 hidden oscillation层次结构图 hierarchical chart递阶控制 hierarchical control递阶规划 hierarchical planning内稳态 homeostasis同态系统 homomorphic model横向分解 horizontal decomposition内分泌控制 hormonal control液压步进马达 hydraulic step motor超循环理论 hypercycle theory积分控制器 I controller可辨识性 identifiability智能决策支持系统 IDSS (intelligent decision support system)图像识别 image recognition冲量 impulse冲击函数,脉冲函数 impulse function点动 inching不相容原理 incompatibility principle增量运动控制 incremental motion control品质因数 index of merit电感式位移传感器 inductive force transducer归纳建模法 inductive modeling method工业自动化 industrial automation惯性姿态敏感器 inertial attitude sensor惯性坐标系 inertial coordinate system惯性轮 inertial wheel推理机 inference engine无穷维系统 infinite dimensional system信息采集 information acquisition红外线气体分析器 infrared gas analyzer固有非线性 inherent nonlinearity固有调节 inherent regulation初始偏差 initial deviation发起站 initiator入轨姿势 injection attitude投入产出模型 input-output model不稳定性 instability指令级语言 instruction level language绝对误差积分准则 integral of absolute value of error criterion 平方误差积分准则 integral of squared error criterion积分性能准则 integral performance criterion积算仪器 integration instrument整体性 integrity智能终端 intelligent terminal互联系统,关联系统 interacted system互联预估法,关联预估法 interactive prediction approach 互联 interconnection断续工作制 intermittent duty内扰 internal disturbance不变嵌入原理 invariant embedding principle库伦论 inventory theory逆奈奎斯特图 inverse Nyquist diagram[NextPage} 逆变器 inverter投资决策 investment decision解释结构建模法 ISM (interpretive structure modeling) 同构模型 isomorphic model迭代协调 iterative coordination喷气推进 jet propulsion分批控制 job-lot control关节 joint卡尔曼-布西滤波器 Kalman-Bucy filer知识库管理系统 KBMS (knowledge base management system) 知识顺应 knowledge accomodation知识获取 knowledge acquisition知识同化 knowledge assimilation知识表达 knowledge representation梯形图 ladder diagram滞后超前补偿 lag-lead compensation拉格朗日对偶性 Lagrange duality拉普拉斯变换 Laplace transform大系统 large scale system侧抑制网络 lateral inhibition network最小成本投入 least cost input最小二乘准则 least squares criterion物位开关 level switch天平动阻尼 libration damping极限环 limit cycle直线运动电气传动 linear motion electric drive直行程阀 linear motion valve线性规划 linear programming线性化方法 linearization technique称重传感器 load cell局部渐近稳定性 local asymptotic stability局部最优 local optimum对数幅相图 log magnitude-phase diagram长期记忆 long term memory线性二次调节器问题 LQR (linear quadratic regulator problem)集总参数模型 lumped parameter model李雅普诺夫渐近稳定性定理 Lyapunov theorem of asymptotic stability宏观经济系统 macro-economic system磁卸载 magnetic dumping磁致弹性称重传感器 magnetoelastic weighing cell幅值裕度 magnitude margin幅值比例尺 magnitude scale factor幅频特性 magnitude-frequency characteristic机械手 manipulator人机协调 man-machine coordination手动操作器 manual station制造自动化协议 MAP (manufacturing automation protocol)边际效益 marginal effectiveness梅森增益公式Mason‘s gain formula主站 master station匹配准则 matching criterion最大似然估计 maximum likelihood estimation最大超调量 maximum overshoot极大值原理 maximum principle模型库 MB (model base)均方误差准则 mean-square error criterion最经济控制 MEC (most economic control)机理模型 mechanism model元知识 meta-knowledge冶金自动化 metallurgical automation最小实现 minimal realization最小相位系统 minimum phase system最小方差估计 minimum variance estimation副回路 minor loop弹体-目标相对运动仿真器 missile-target relative movement simulator 模态集结 modal aggregation模态变换 modal transformation模型置信度 model confidence模型逼真度 model fidelity模型参考适应控制系统 model reference adaptive control system模型验证 model verification模块化 modularization可动空间 motion space平均故障间隔时间 MTBF (mean time between failures) 平均无故障时间 MTTF (mean time to failures)多属性效用函数 multi-attributive utility function 多重判据 multicriteria多级递阶结构 multilevel hierarchical structure多回路控制 multiloop control[NextPage} 多目标决策 multi-objective decision多态逻辑 multistate logic多段递阶控制 multistratum hierarchical control多变量控制系统 multivariable control system肌电控制 myoelectric control纳什最优性 Nash optimality自然语言生成 natural language generation最近邻 nearest-neighbor必然性侧度 necessity measure负反馈 negative feedback神经集合 neural assembly神经网络计算机 neural network computer尼科尔斯图 Nichols chart思维科学 noetic science非单调关联系统 noncoherent system非合作博弈 noncooperative game非平衡态 nonequilibrium state非线性环节 nonlinear element非单调逻辑 nonmonotonic logic非参数训练 nonparametric training不可逆电气传动 nonreversible electric drive非奇异摄动 nonsingular perturbation非平稳随机过程 non-stationary random process核辐射物位计 nuclear radiation levelmeter章动敏感器 nutation sensor奈奎斯特稳定判据 Nyquist stability criterion目标函数 objective function可观测指数 observability index可观测规范型 observable canonical form在线帮助 on-line assistance通断控制 on-off control开环极点 open loop pole运筹学模型 operational research model光纤式转速表 optic fiber tachometer最优轨迹 optimal trajectory最优化技术 optimization technique轨道陀螺罗盘 orbit gyrocompass轨道摄动 orbit perturbation轨道交会 orbital rendezvous序参数 order parameter定向控制 orientation control始发站 originator振荡周期 oscillating period输出预估法 output prediction method椭圆齿轮流量计 oval wheel flowmeter总体设计 overall design过阻尼 overdamping交叠分解 overlapping decomposition比例控制器 P control帕德近似 Pade approximation帕雷托最优性 Pareto optimality被动姿态稳定 passive attitude stabilization路径可重复性 path repeatability模式基元 pattern primitive主成分分析法 PCA (principal component analysis)峰值时间 peak time罚函数法 penalty function method感知器 perceptron周期工作制 periodic duty计划评审技术 PERT (program evaluation and review technique)摄动理论 perturbation theory悲观值 pessimistic value相位超前 phase lead相轨迹 phase locus相轨迹 phase trajectory光电式转速传感器 photoelectric tachometric transducer短句结构文法 phrase-structure grammar物理符号系统 physical symbol system压电式力传感器 piezoelectric force transducer示教再现式机器人 playback robot可编程序逻辑控制器 PLC (programmable logic controller)反接制动 plug braking旋塞阀 plug valve气动执行机构 pneumatic actuator点位控制 point-to-point control极坐标型机器人 polar robot极点配置 pole assignment零极点相消 pole-zero cancellation多项式输入 polynomial input投资搭配理论 portfolio theory位姿过调量 pose overshoot电位器式位移传感器 posentiometric displacement transducer 位置测量仪 position measuring instrument正反馈 positive feedback电力系统自动化 power system automation模式识别 PR (pattern recognition)谓词逻辑 predicate logic电接点压力表 pressure gauge with electric contact压力变送器 pressure transmitter价格协调 price coordination[NextPage} 主协调 primal coordination主频区 primary frequency zone大道原理 principle of turnpike优先级 priority面向过程的仿真 process-oriented simulation生产预算 production budget产生式规则 production rule利润预测 profit forecast程序设定操作器 program set station比例控制 proportional control比例微分控制器 proportional plus derivative controller协议工程 protocol engineering原型 prototype伪随机序列 pseudo random sequence伪速率增量控制 pseudo-rate-increment control脉冲持续时间 pulse duration脉冲调频控制系统 pulse frequency modulation control system 脉冲调宽控制系统 pulse width modulation control system下推自动机 pushdown automaton脉宽调制逆变器 PWM inverter质量管理 QC (quality control)二次型性能指标 quadratic performance index定性物理模型 qualitative physical model量化噪声 quantized noise准线性特性 quasilinear characteristics排队论 queuing theory射频敏感器 radio frequency sensor斜坡函数 ramp function随机扰动 random disturbance随机过程 random process速率积分陀螺 rate integrating gyro比值操作器 ratio station可达性 reachability反作用轮控制 reaction wheel control实时遥测 real time telemetry可实现性,能实现性 realizability感受野 receptive field直角坐标型机器人 rectangular robot整流器 rectifier递推估计 recursive estimation降阶观测器 reduced order observer冗余信息 redundant information再入控制 reentry control回馈制动,再生制动 regenerative braking区域规划模型 regional planning model调节装载 regulating device调节 regulation关系代数 relational algebra继电器特性 relay characteristic遥控操作器 remote manipulator遥调 remote regulating远程设定点调整器 remote set point adjuster 交会和对接 rendezvous and docking再现性 reproducibility热电阻 resistance thermometer sensor归结原理 resolution principle资源分配 resource allocation响应曲线 response curve回差矩阵 return difference matrix回比矩阵 return ratio matrix回响 reverberation可逆电气传动 reversible electric drive关节型机器人 revolute robot转速传感器 revolution speed transducer重写规则 rewriting rule刚性航天动力学 rigid spacecraft dynamics 风险分析 risk decision机器人编程语言 robot programming language [NextPage} 机器人学 robotics鲁棒控制 robust control鲁棒性 robustness辊缝测量仪 roll gap measuring instrument根轨迹 root locus腰轮流量计 roots flowmeter浮子流量计,转子流量计 rotameter偏心旋转阀 rotary eccentric plug valve角行程阀 rotary motion valve旋转变压器 rotating transformer劳思近似判据 Routh approximation method路径问题 routing problem采样控制系统 sampled-data control system采样控制系统 sampling control system饱和特性 saturation characteristics标量李雅普诺夫函数 scalar Lyapunov function平面关节型机器人 SCARA (selective compliance assembly robot arm) 情景分析法 scenario analysis method物景分析 scene analysis自力式控制器 self-operated controller自组织系统 self-organizing system自繁殖系统 self-reproducing system自校正控制 self-tuning control语义网络 semantic network半实物仿真 semi-physical simulation敏感元件 sensing element灵敏度分析 sensitivity analysis感觉控制 sensory control顺序分解 sequential decomposition序贯最小二乘估计 sequential least squares estimation伺服控制,随动控制 servo control伺服马达 servomotor过渡时间 settling time六分仪 sextant短期计划 short term planning短时程协调 short time horizon coordination信号检测和估计 signal detection and estimation信号重构 signal reconstruction相似性 similarity仿真中断 simulated interrupt仿真框图 simulation block diagram仿真实验 simulation experiment仿真速度 simulation velocity仿真器 simulator单轴转台 single axle table单自由度陀螺 single degree of freedom gyro单级过程 single level process单值非线性 single value nonlinearity奇异吸引子 singular attractor奇异摄动 singular perturbation汇点 sink受役系统 slaved system慢变子系统 slow subsystem欠实时仿真 slower-than-real-time simulation [NextPage} 社会控制论 socio-cybernetics社会经济系统 socioeconomic system软件心理学 software psychology太阳帆板指向控制 solar array pointing control电磁阀 solenoid valve源点 source比冲 specific impulse调速系统 speed control system自旋轴 spin axis自旋体 spinner稳定性判据 stability criterion稳定极限 stability limit镇定,稳定 stabilization施塔克尔贝格决策理论 Stackelberg decision theory 状态方程模型 state equation model状态空间描述 state space description静态特性曲线 static characteristics curve定点精度 station accuracy平稳随机过程 stationary random process统计模式识别 statistic pattern recognition统计分析 statistical analysis稳态偏差 steady state deviation稳态误差系数 steady state error coefficient阶跃函数 step function步进控制 step-by-step control逐步精化 stepwise refinement随机有限自动机 stochastic finite automaton应变式称重传感器 strain gauge load cell策略函数 strategic function强耦合系统 strongly coupled system主观频率 subjective probability次优性 suboptimality监督学习 supervised training计算机监控系统 supervisory computer control system 自持振荡 sustained oscillation旋进流量计 swirlmeter切换点 switching point符号处理 symbolic processing突触可塑性 synaptic plasticity协同学 synergetics句法分析 syntactic analysis系统评价 system assessment[NextPage} 系统工程 system engineering系统同态 system homomorphism系统同构 system isomorphism系统学 systematologys-domain s域转速表 tachometer靶式流量变送器 target flow transmitter作业周期 task cycle示教编程 teaching programming远动学 telemechanics频分遥测系统 telemetering system of frequency division type 遥测 telemetry目的系统 teleological system目的论 teleology温度传感器 temperature transducer模版库 template base张力计 tensiometer纹理 texture定理证明 theorem proving治疗模型 therapy model热电偶 thermocouple温度计 thermometer厚度计 thickness meter三位控制器 three state controller三轴姿态稳定 three-axis attitude stabilization推力矢量控制系统 thrust vector control system推力器 thruster时间常数 time constant时序控制器 time schedule controller定常系统,非时变系统 time-invariant system分时控制 time-sharing control时变参数 time-varying parameter自上而下测试 top-down testing拓扑结构 topological structure全面质量管理 TQC (total quality control)跟踪误差 tracking error权衡分析 trade-off analysis传递函数矩阵 transfer function matrix转换文法 transformation grammar瞬态偏差 transient deviation过渡过程 transient process转移图 transition diagram电远传压力表 transmissible pressure gauge变送器 transmitter趋势分析 trend analysis三重调制遥测系统 triple modulation telemetering system 涡轮流量计 turbine flowmeter[NextPage} 图灵机 Turing machine双时标系统 two-time scale system超声物位计 ultrasonic levelmeter非调速电气传动 unadjustable speed electric drive无偏估计 unbiased estimation欠阻尼 underdamping一致渐近稳定性 uniformly asymptotic stability不间断工作制,长期工作制 uninterrupted duty单位圆 unit circle单元测试 unit testing非监督学习 unsupervised learing上级问题 upper level problem城市规划 urban planning效用函数 utility function价值工程 value engineering可变增益,可变放大系数 variable gain变结构控制 variable structure control system向量李雅普诺夫函数 vector Lyapunov function速度误差系数 velocity error coefficient速度传感器 velocity transducer纵向分解 vertical decomposition振弦式力传感器 vibrating wire force transducer振动计 vibrometer粘性阻尼 viscous damping电压源型逆变器 voltage source inverter旋进流量计 vortex precession flowmeter涡街流量计 vortex shedding flowmeter方法库 WB (way base)称重传感器 weighing cell权因子 weighting factor加权法 weighting method惠特克-香农采样定理 Whittaker-Shannon sampling theorem维纳滤波 Wiener filtering计算机辅助设计工作站 work station for computer aided design w-plane w平面零和对策模型 zero sum game model零基预算 zero-based budget零输入响应 zero-input response零状态响应 zero-state responsez-transform z变换1. U-bolt ==> U形螺丝2. u shape hanger chains ==> u形曲链片吊挂装置3. u shaped manometer ==> u形压力计4. ubitron ==> 波动射束注入器5. uhf ==> 特高频6. uhf band pass filter ==> 特高频带通滤波器7. uhf converter ==> 特高频变频器8. uhf preamplifier stage ==> 特高频前置放大器9. uhf tuner ==> 特高频调谐器10. uhf vision transmitter ==> 特高频图象发射机11. uhsi ==> 超高速集成电路12. UHV ==> 超高真空,特高压13. UHV AC system ==> 特高压交流电力系统14. UHV AC system planning ==> 特高压交流电力系统规划15. UHV AC transmission line ==> 特高压交流输电线路16. UHV DC control and protection system ==> 特高压直流电力系统控制保护装置17. UHV DC system ==> 特高压直流电力系统18. UHV DC system planning ==> 特高压直流电力系统规划19. UHV DC system technologies ==> 特高压直流电力系统技术20. UHV DC transmission line ==> 特高压直流输电线路21. UHV reactors ==> 特高压交流系统电抗器22. UHV series compensation ==> 特高压交流系统变压器串补23. UHV substation ==> 特高压变电站24. UHV surge arresters ==> 特高压交流系统避雷器25. UHV switchgears ==> 特高压交流系统开关26. UHV transformers ==> 特高压变压器,特高压交流系统变压器27. UHV transmission ==> 特高压输电28. UHV transmission line ==> 特高压输电线路29. UHV, Ultra high voltage ==> 特高压30. UHVAC ==> 特高压交流系统31. UHVDC ==> 特高压直流系统32. ujt ==> 单结型晶体管33. ULF, ultra low frequency ==> 超低频34. ulg ==> 通用逻辑门35. ulsi ==> 超大规模集成化36. ultimate pressure ==> 极限压力37. ultimate resolution ==> 极限分辨力38. ultraaudion ==> 超三极管39. ultrabroad band light modulator ==> 超宽频带光调制器40. ultraclean area ==> 超净区域41. ultrafilter ==> 超细过滤器42. ultrafine geometry ==> 超精细几何形状43. ultrafine resolution ==> 超精细分辨力44. ultrahigh frequency ==> 特高频45. ultrahigh speed integration ==> 超高速集成电路46. ultrahigh vacuum ==> 超高真空47. ultrahigh vacuum evaporation ==> 超高真空蒸发48. ultralarge scale integration ==> 超大规模集成化49. ultralow backstreaming ==> 超低漏泄50. ultralow noise microwave cryoelectronic system ==> 超低噪声微波低温电子学系统51. ultrapure photoresist ==> 超高纯度光刻胶52. ultrapure water ==> 超纯水53. ultrashort laser pulse ==> 超短激光脉冲54. ultrashort light pulse ==> 超短光脉冲55. ultrashort wave transmitter ==> 超短波发射机56. ultrashort waves ==> 超短波57. ultrasonic bond ==> 超声焊接58. ultrasonic bonder ==> 超声焊机59. ultrasonic bonding ==> 超声焊接60. ultrasonic cleaner ==> 超声清洗器61. ultrasonic cleaning ==> 超声清洗62. ultrasonic etcher ==> 超声腐蚀装置63. ultrasonic frequency ==> 超音频64. ultrasonic holography ==> 超声全息照相术65. ultrasonic probe ==> 超声波探针66. ultrasonic seal ==> 超声封接67. ultrasonic soldering ==> 超声焊68. ultrasonic vapor degreaser ==> 超声蒸汽去油机69. ultrasonic wave ==> 超声波70. ultrasonic wedge bonding ==> 超声楔焊71. ultrasonic welder ==> 超声焊接机72. ultrasonic welding ==> 超声焊接73. ultrasonic wire bonding ==> 超声波线焊74. ultrasonics ==> 超声学75. ultrasound ==> 超声76. ultrasound delay line ==> 超声延迟线77. ultrathin membrane ==> 超薄膜78. ultratrace impurity ==> 超痕量杂质79. ultraudion ==> 超三极管80. ultraviolet exposure ==> 紫外线曝光81. ultraviolet filter ==> 紫外线滤光器82. ultraviolet laser ==> 紫外激光器83. ultraviolet lithography ==> 紫外线光刻84. ultraviolet ozone cleaning ==> 紫外线臭氧清洗85. ultraviolet projection system ==> 紫外投影装置86. ultraviolet radiation ==> 紫外线87. ultraviolet resist ==> 紫外线敏感光刻胶88. ultraviolet spectral range ==> 紫外光谱范围89. ultraviolet spectrum ==> 紫外光谱90. ultraviolet sterilizer ==> 紫外线杀菌器91. ultraviolet transparency ==> 紫外透迷92. umbrella antenna ==> 伞形天线93. un-uniform pollution ==> 不均匀污秽94. unattended processing ==> 无人处理95. unattended system ==> 无人监视系统96. unbalance ==> 不平衡97. unblanking circuit ==> 正程增辉电路98. uncased ==> 未罩外壳的99. uncased component ==> 无封装元件100. uncertain region ==> 不确定范围,不可辨区101. uncertainty of measurement ==> 测量的不确定度102. uncertainty of principle ==> 测不准原理103. uncertainty of range ==> 不确定范围104. uncertainty of relation ==> 不定关系105. uncharacteristic harmonics ==> 非特征谐波106. unclad optical fiber ==> 无包壳光纤107. uncollimated rays ==> 非准直光束108. uncompensated germanium ==> 未补偿的锗109. unconnected gate ==> 独立门110. uncontrolled multivibrator ==> 非稳态多谐振荡器111. uncooled photodetector ==> 非冷却光电探测器112. uncoupled lightguides ==> 非耦合光波导113. uncoupled mode ==> 非耦合模式114. undamped wave ==> 无衰耗波115. underbunching ==> 群聚不足116. undercoat ==> 底层117. undercooling ==> 过冷118. undercut ==> 坡口,钻蚀119. undercut profile ==> 钻蚀断面图120. underdevelopment ==> 显影不足121. underetch ==> 钻蚀122. underflow ==> 地流,潜流,下溢123. underfrequency relay ==> 低频继电器124. underground antenna ==> 地下天线125. underground cable ==> 地下电缆126. underlayer ==> 底层127. undershoot ==> 负尖峰128. undervoltage blocking circuit ==> 低电压闭锁回路129. underwater antenna ==> 水下天线130. underwater television ==> 水下电视131. underwater visibility ==> 水下可见度132. undistorted image ==> 无失真图象133. undistorted picture ==> 无失真图象134. undistorted wave ==> 无失真波135. undoped region ==> 无掺杂区136. undulater ==> 波绞机137. undulating light ==> 脉动光138. undulation effect ==> 波动效应139. undulator ==> 波纹机140. undulatory motion ==> 波动141. uneven surface ==> 粗糙表面142. unevenness ==> 粗糙度143. unexcited level ==> 未激能级144. unfilled level ==> 未满能级145. unflatness ==> 非平滑性146. uniaxial anisotropy ==> 单轴各向异性147. unidirectional aerial ==> 单向天线148. unidirectional antenna ==> 单向天线149. unidirectional microphone ==> 单向传声器150. unidirectional pulse ==> 单向脉冲151. unidirectional pulses ==> 单向脉冲152. unidirectional transmission ==> 单向传输153. uniform irradiation ==> 均匀辐照154. uniform lightguide ==> 均匀光波导155. uniform motion ==> 等速运动规律156. uniform waveguide ==> 均匀波导157. uniformity ==> 均匀性158. uniformity of illumination ==> 照鸣匀度159. unijunction transistor ==> 单结型晶体管160. unilateral matching ==> 单向匹配161. unilateral optical track record ==> 单向光学轨道记录162. unilayer ==> 单层163. unimodal laser ==> 单模激光器164. unimolecular film ==> 单分子膜165. unimolecular layer ==> 单分子层166. unintelligibility ==> 不清晰度167. union ==> 活接头,管节168. unipolar fet ==> 单极场效应晶体管169. unipolar integrated circuit ==> 单极型集成电路170. unipolar technology ==> 单极工艺171. unipolar transistor ==> 单极晶体管172. uniray ==> 通用阵列173. unit ==> 单位174. unit automatic exchange ==> 内部自动电话交换机175. unit call ==> 通话单位。
基于全部参数自适应Smith预估补偿的永磁同步电机滑模前馈控制及扰动抑制
基于全部参数自适应Smith预估补偿的永磁同步电机滑模前
馈控制及扰动抑制
朱其新;王嘉祺;朱永红
【期刊名称】《兵工学报》
【年(卷),期】2024(45)2
【摘要】在永磁同步电机控制系统中,逆变器的延迟效应会降低系统的跟踪性能和稳定裕度。
引入Smith预估补偿器可以补偿延迟环节对系统性能的影响,但Smith 预估补偿器要求延迟时间和被控对象模型参数已知,这不符合实际情况。
为此提出时变模型自适应预估方法,分别对延迟时间和被控对象模型参数进行自适应估计,实现Smith预估补偿器的全参数自适应。
设计基于位置输出超前值预测和扰动抑制的滑模前馈控制器,与全参数自适应Smith预估补偿控制相结合,确保控制系统的全局稳定,降低系统对参数不确定的敏感性,并提高系统的抗扰性。
仿真结果表明,与传统及多种改进的Smith预估补偿方法相比,该方法有着更高的跟踪精度,即使在非理想条件下,对参数不确定依然具有较强的鲁棒性,对随机扰动依然具有较强的干扰抑制能力。
【总页数】12页(P417-428)
【作者】朱其新;王嘉祺;朱永红
【作者单位】苏州科技大学机械工程学院;苏州市共融机器人技术重点实验室;江苏省智能共融机器人工程研究中心;景德镇陶瓷大学机电工程学院
【正文语种】中文
【中图分类】TP13
【相关文献】
1.基于扰动观测器的永磁同步电机电流环自适应滑模控制
2.基于滑模观测器扰动抑制的永磁同步电机模型预测控制方法
3.基于转动惯量辨识与扰动补偿的永磁同步电机滑模控制
4.基于扰动补偿和非奇异终端滑模器的永磁同步电机矢量控制
5.基于摩擦和扰动补偿的永磁直线同步电机滑模控制
因版权原因,仅展示原文概要,查看原文内容请购买。
《自动控制原理》部分中英文词汇对照表(英文解释)
《自动控制原理》部分中英文词汇对照表AAcceleration 加速度Angle of departure分离角Asymptotic stability渐近稳定性Automation自动化Auxiliary equation辅助方程BBacklash间隙Bandwidth带宽Block diagram方框图Bode diagram波特图CCauchy’s theorem高斯定理Characteristic equation特征方程Closed-loop control system闭环控制系统Constant常数Control system控制系统Controllability可控性Critical damping临界阻尼DDamping constant阻尼常数Damping ratio阻尼比DC control system直流控制系统Dead zone死区Delay time延迟时间Derivative control 微分控制Differential equations微分方程Digital computer compensator数字补偿器Dominant poles主导极点Dynamic equations动态方程EError coefficients误差系数Error transfer function误差传递函数FFeedback反馈Feedback compensation反馈补偿Feedback control systems反馈控制系统Feedback signal反馈信号Final-value theorem终值定理Frequency-domain analysis频域分析Frequency-domain design频域设计Friction摩擦GGain增益Generalized error coefficients广义误差系数IImpulse response脉冲响应Initial state初始状态Initial-value theorem初值定理Input vector输入向量Integral control积分控制Inverse z-transformation反Z变换JJordan block约当块Jordan canonical form约当标准形LLag-lead controller滞后-超前控制器Lag-lead network 滞后-超前网络Laplace transform拉氏变换Lead-lag controller超前-滞后控制器Linearization线性化Linear systems线性系统MMass质量Mathematical models数学模型Matrix矩阵Mechanical systems机械系统NNatural undamped frequency自然无阻尼频率Negative feedback负反馈Nichols chart尼科尔斯图Nonlinear control systems非线性控制系统Nyquist criterion柰奎斯特判据OObservability可观性Observer观测器Open-loop control system开环控制系统Output equations输出方程Output vector输出向量PParabolic input抛物线输入Partial fraction expansion部分分式展开PD controller比例微分控制器Peak time峰值时间Phase-lag controller相位滞后控制器Phase-lead controller相位超前控制器Phase margin相角裕度PID controller比例、积分微分控制器Polar plot极坐标图Poles definition极点定义Positive feedback正反馈Prefilter 前置滤波器Principle of the argument幅角原理RRamp error constant斜坡误差常数Ramp input斜坡输入Relative stability相对稳定性Resonant frequency共振频率Rise time上升时间调节时间 accommodation timeRobust system鲁棒系统Root loci根轨迹Routh tabulation(array)劳斯表SSampling frequency采样频率Sampling period采样周期Second-order system二阶系统Sensitivity灵敏度Series compensation串联补偿Settling time调节时间Signal flow graphs信号流图Similarity transformation相似变换Singularity奇点Spring弹簧Stability稳定性State diagram状态图State equations状态方程State feedback状态反馈State space状态空间State transition equation状态转移方程State transition matrix状态转移矩阵State variables状态变量State vector状态向量Steady-state error稳态误差Steady-state response稳态响应Step error constant阶跃误差常数Step input阶跃输入TTime delay时间延迟Time-domain analysis时域分析Time-domain design时域设计Time-invariant systems时不变系统Time-varying systems时变系统Type number型数Torque constant扭矩常数Transfer function转换方程Transient response暂态响应Transition matrix转移矩阵UUnit step response单位阶跃响应VVandermonde matrix范德蒙矩阵Velocity control system速度控制系统Velocity error constant速度误差常数ZZero-order hold零阶保持z-transfer function Z变换函数z-transform Z变换。
Smith预估器在轧制过程监控AGC的应用_讲稿_
Smith预估器在轧制过程监控AGC的应用摘要针对板带轧制过程监控AGC系统,给出的系统的传递函数结构框图。
提出了带钢样本长度跟踪的概念,解决了传统算法中滞后时间随轧制速度变化这一问题。
将Smith预估控制方法用于监控AGC系统,给出了调节器分别为比例和积分形式下的控制率。
控制算法表明,无论是比例还是积分控制器,只要系统的放大倍数选择合适,控制器的第一步就可以将误差完全消除。
通过对这两种控制算法的动态和稳态特性进行分析比较,积分控制算法具有更大的灵活性和更高的静态精度。
与传统控制方法相比,本文提出的算法即有非常快的响应速度,又具有较高的静态控制精度。
1 引言在轧钢过程中,好多控制对象存在着严重的滞后时间。
这种纯滞后往往是由于物料或能量的传输过程引起的,或者是由于过程测量传感器的客观布置引起的。
从控制理论可知,对象纯滞后时间τ的存在对控制系统是极为不利的。
它使控制系统的稳定性降低,特别是衡量纯滞后对系统影响程度的特性参数τ/T≥0.5的对象(这里T为对象的时间常数),若采用常规PID控制是很难获得良好控制质量的。
关于大滞后控制系统方面,虽然国内作过不少研究工作,但在工程实践上有效的方法还不多。
在美国、日本、德国和我国使用较多的一种方法是纯滞后补偿。
这种方法不但采用专用补偿装置用于模拟控制,而且较普遍地采用计算机程序来实现,用于离散控制系统,如日本山武-Honeywell公司的TDCS-3000系统中就把这种纯滞后补偿控制作为通用的标准控制规律,并以专用程序来实现。
2大滞后补偿原理为了便于说明问题,我们先假设一个如图1所示的单回路控制系统。
图中G c(s)表示调节器的传递函数,G p(s)e-τ s表示对象的传递函数,其中G p(s)为对象不包含纯滞后部分的传递函数,e-τ s为对象纯滞后部分的传递函数。
图1 常规的反馈控制系统图1的闭环传递函数为:s p c sp c S e s G s G e s G s G s G ττ−−+=)()(1)()()( (1)系统传递函数分母中包含有纯滞后环节e -τ s ,使系统的稳定性降低,如果τ足够大的话,系统是不稳定的。
基于自适应Smith预估器的炉温控制系统
器
f e 1
-
z j 1 1 一
1 ]
_ — 1 L L r
: z) i 一_ K 卜 z【 ( l l
J
与 过 程 的 时 间 常 数 T之 比 大 于 03则 说 该 过 程 是 具 有 大 迟 延 的 工 艺 . 过 程 。 当 TI增 加 , 程 中 的相 位 滞 后 增 加 , 上 述 现 象 更 为 突 出 , 厂’ 过 使 有
1 a0 -
( 7 )
l al n
带入式() : ) — 1为 G :=
e TL  ̄- T
T A +l s
这 样 就 可 以在 线 对 被 控 生 产 过 程 对 象 进 行 S t 估 补 偿 了 。 mi h预
【 摘 要 】 对 目前 工 业 炉 控 制 系 统 中 存 在 的 大 纯 滞 后 现 象 , 出一 种 基 于 自适 应 S t 估 器的 炉 温控 制 系统 , 体 介 绍 了控 制 系统 的 针 提 mi h预 具
结构与算法 。 常规 的 PD 控 制 ,mi I S t 估 控 制 和 自适 应 s t 估 控 制 在 计 算 机 上仿 真 结 果表 明 自适 应 S i h预 mi h预 mt 估 控 制 具 有 超 调 量 更 小 , 整 h预 调 时 间更 快 . 度 更 高等 特 点 。 精 【 键词 】 温控制 ; 关 炉 自适 应 S t 估 器 ; 识 mi h预 辨
基于Smith预估器和自适应模糊PID的温控系统
基于Smith预估器和自适应模糊PID的温控系统
许玉忠
【期刊名称】《南通大学学报(自然科学版)》
【年(卷),期】2016(015)001
【摘要】针对常规温度PID控制系统由于温度惯性大、单向升温和滞后大等特性存在超调量较大、抗干扰性差等问题,提出一种新的电阻炉温度控制系统.该系统采用自适应模糊PID控制算法,在此基础上结合Smith预估补偿器,实现软切换,并采用MATLAB软件进行仿真.仿真结果表明,基于Smith预估补偿器的自适应模糊PID控制相比常规PID控制具有良好的控制性能.
【总页数】5页(P24-28)
【作者】许玉忠
【作者单位】乌鲁瓦提水利枢纽管理局,新疆和田 848000
【正文语种】中文
【中图分类】TP273.3
【相关文献】
1.基于自适应Smith预估器的炉温控制系统 [J], 刘爱梅;曹爱红;靳继勇
2.基于Smith预估器的自适应模糊PID在电缆线径控制系统中的应用 [J], 周克良;王荡荡;韩李珂
3.基于Smith预估器的温控系统设计与仿真 [J], 王荣
4.基于Smith预估器的PCR仪时滞温控系统 [J], 许秀锋;陆敏恂;周爱国;林宝照
5.基于Smith预估器的自适应模糊PID在电缆线径控制系统中的应用 [J], 周克良;王荡荡;韩李珂;;;
因版权原因,仅展示原文概要,查看原文内容请购买。
参数不确定史密斯预估器的自适应控制
参数不确定史密斯预估器的自适应控制丁晓迪;崔宝同【摘要】The adaptive control for Smith predictor with uncertain parameters was studied.Since model mismatch is caused by uncertain parameters,the plant can no longer track the original referencemodel.Traditional Smith predictor combined with the algorithm of model reference adaptive control (MRAC)was adopted to regulate the plant.The uncertainty of gain and time con-stant were adjusted using the control algorithm,the uncertain structural perturbations were regulated through choosing better adaptive law.The adaptive law was obtained using Lyapunov function.The effectiveness of the proposed method was verified by simulation using MATLAB.%研究参数不确定史密斯预估器的自适应控制问题。
不确定性参数引起系统的模型失配,控制对象无法追踪原始的参考模型,采用模型参考自适应控制算法对控制对象进行调节;增益和时间常数的不确定性可通过模型失配时的控制算法进行补偿,结构扰动的不确定性采用合适的自适应率进行自调节;选取李雅普诺夫函数,求出自适应律。
自动化专业英语原文和翻译
自动化专业英语原文和翻译引言概述:自动化专业是现代工程技术领域中的重要学科,涵盖了自动控制系统、机器人技术、工业自动化等多个方面。
在学习和实践中,掌握和理解自动化专业的英文术语和翻译是非常重要的。
本文将从五个大点出发,详细阐述自动化专业英语原文和翻译的相关内容。
正文内容:1. 自动控制系统(Automatic Control System)1.1 控制器(Controller)1.2 传感器(Sensor)1.3 执行器(Actuator)1.4 反馈(Feedback)1.5 稳定性(Stability)2. 机器人技术(Robotics)2.1 机器人(Robot)2.2 机械臂(Manipulator)2.3 传感器(Sensor)2.4 视觉系统(Vision System)2.5 自主导航(Autonomous Navigation)3. 工业自动化(Industrial Automation)3.1 自动化生产线(Automated Production Line)3.2 人机界面(Human-Machine Interface)3.3 传感器网络(Sensor Network)3.4 电气控制(Electrical Control)3.5 数据采集(Data Acquisition)4. 自动化软件(Automation Software)4.1 PLC编程(PLC Programming)4.2 HMI设计(HMI Design)4.3 数据分析(Data Analysis)4.4 模拟仿真(Simulation)4.5 系统集成(System Integration)5. 自动化工程(Automation Engineering)5.1 项目管理(Project Management)5.2 自动化设计(Automation Design)5.3 系统调试(System Debugging)5.4 故障诊断(Fault Diagnosis)5.5 性能优化(Performance Optimization)总结:综上所述,自动化专业英语原文和翻译是自动化工程师必备的技能之一。
基于Simulink的时滞过程Smith预估控制与IMC控制方法研究
基于Simulink 的时滞过程Smith 预估控制与IMC 控制方法研究摘要:Simulation experiment, if adopted PID control algorithm, the system showeda larger overshoot, but using control without overshoot. If keep the controller and the model parameters constant, change the object parameters that mismatch model to Smith-predictor, Smith-predictor algorithm oscillation occurs and, the system stability were destroyed at this time.The improved Smith – predictor algorithm not only can keep the system stability but also decreases oscillation frequency, increases convergence speed.Keywords: Simulink; Smith-predictorSmith 预估器控制理论Smith 控制的工作原理是将被控对象在基本扰动作用下的动态特性,简化为一个纯迟延与一个一阶惯性环节相串联的数学模型,预估器根据这个输入的数学模型,预先估计出所采用的控制作用对被控量的可能的影响,而不必等到被控量有所反映之后再去采取控制动作,这有利于改善控制系统的动态性能。
当采用单回路控制系统时,如图1.1所示,控制器的传递函数为)(s W T图1.1 单回路控制系统当被控对象的传递函数为s o o e s W s W τ-=)()('时,从设定值作用至被控变量的闭环传递函数是(1-1) 扰动作用至被控变量的闭环传递函数是so T s o e s W s W e s W s F s Y ττ--+=)()(1)()()('' (1-2) so T so e s W s W es W W T s R s Y ττ--+=)()(1)()s ()()(''如果以上两式特征方程中的s e τ-项可以消除,则迟延对闭环极点的不利影响将不复存在。
基于鲁棒二自由度增益自适应Smith预估器的冷轧厚度计型AGC
1 鲁棒二自由度自适应 Smith 厚度计 型 AGC
厚度计型 AGC 和监控 AGC 的协调作用是提高 冷轧厚度精度的有效手段. 它是按机架弹跳方程 , 从机架的实际轧制力和机架辊缝位置, 计算出轧机
收稿日期 : 2006- 06- 15 修回日期 : 2006- 12- 10 作者简 介 : 陈 连 贵 ( 1970 ) ) , 男 , 工 程 师 , 博 士 研 究 生 ; 杨 卫 东 ( 1952 ) ) , 男 , 教授 , 博士生导师
、 e
- Sm s
分别是实际过程滞
后环节和 Sm it h 预估滞后环节, SP 、 Sm 分别为实际 过程与预测过程的时滞常数 . Smith 预测控制模型只是对冷轧厚度控制对象 的一定程度的近似 . 由于冷轧操作条件的改变以及 各种干扰因素的影响 , 冷轧厚度对象实际上是渐变 的 . 随着时间的推移 , 预测模型和实际对象模型的 差别会逐步扩大, 可能超出控制系统所能容忍的范 围 . 因此, 通过自适应环节可以使预测模型逼近实
T 1 + T 2 + 01 5 S 1 , a 1= , 01 5 T 1 T 2 S 01 5 T 1 T 2 S a 2= T 1 T 2 + 01 5 S T 1 + 01 5 S T2 , 01 5 T 1 T 2 S 1 - 01 5 S ,b = . 015 T 1 T 2 S 1 01 5 T 1 T 2 S
( 19)
20 000 ( 28) 2 s + 200 s + 20 000 考虑到 F 1 机架低速轧制和测厚仪的时滞[ 9] , 滞后 k p G p( s ) = 时间定为 10 s; 另外 AGC 控制周期[ 10 ] 定为 20 ms . 根据式 ( 26) , 通过简单计算可初步选定 PI 控制 器和滤波器为: k( s ) = 11 5+ F ( s) = 31 0 s ( 29)
的电气专业名词中英对照表
low intensity AOL 低光强航空障碍灯 high intensity AOL 高光强航空障碍灯
AQR = automatic reactive power regulator 自动无功功率调整器
arcing chamber 灭弧室 armature 电枢 ASS = automatic synchronizing system 自 动同期系统
cable laying 电缆敷设 cable laying & list 电缆敷设及清册 cable mezzanine 电缆夹层 cable raceway system 电缆通道系统 cable rack 电缆支架 cable shaft 电缆竖井 cable support 电缆支架 cable suspender 电缆吊架 cable terminal 电缆终端头 cable tray 电缆桥架 cable trench 电缆沟 cable tunnel 电缆隧道 cable vault 电缆夹层 control cable with copper tape shield 铜 带屏蔽的控制电缆 call 呼叫 call back 回叫 call signal 呼叫信号 external calling 外部呼叫 internal calling 内部呼叫 calling 主叫 detail calling record 呼叫详细记录 candle power distribution curve 配光曲 线 capability 能力 out-of-phase breaking capability 失步开 断能力 pressure relief capability 压力释放能力 rated closing capability 额定关合能力 short-line fault breaking capability 近区 故障开断能力 transient overvoltage capability 暂态过 电压能力 capability of switching long no-load line 分合长空载线路能力
史密斯预估控制策略在厚规格轧制中的应用
史密斯预估控制策略在厚规格轧制中的应用史密斯预估控制(Smith Predictor Control)是一种经典的控制策略,主要用于处理存在传输延迟的系统。
在厚规格轧制中,轧机控制系统面临着多种挑战,包括传输延迟、不确定性和非线性。
史密斯预估控制策略可以帮助解决这些挑战,并改善轧机生产性能。
在厚规格轧制中,通常需要对板材实施厚度控制。
然而,由于传输延迟的存在,控制器接收到的输入信号可能已经过时,导致控制器无法实时调整输出。
史密斯预估控制策略通过预估被控对象的输出,使得控制器能够更准确地估计未来的状态,并相应地调整输出信号。
这种预估可以通过传输延迟和系统模型来实现。
首先,需要建立被控对象的数学模型。
该模型需要考虑到厚规格轧机的物理特性和传输延迟。
通常采用状态空间模型或传递函数模型来描述轧机控制系统。
然后,根据模型,使用史密斯预估器来预估该系统的未来状态。
史密斯预估器由两部分组成,即传输函数预估器和状态预估器。
传输函数预估器根据已知的传输延迟和系统模型预估未来的输出。
状态预估器则根据传输函数预估器的输出以及系统模型预估未来的状态。
两者结合起来,可以提供一个准确的未来状态估计值,从而使控制器能够及时调整输出。
在史密斯预估控制策略中,控制器的设计也非常关键。
控制器需要根据实时的状态估计值和期望的输出信号来计算出最优的控制输出。
常用的控制器设计方法包括PID控制和模型预测控制。
PID控制是一种经典的控制方法,通过调整比例、积分和微分增益来实现控制目标。
模型预测控制则是在史密斯预估的基础上,通过优化控制计算来实现优化控制。
在厚规格轧制中,史密斯预估控制策略的应用可以带来多项优势。
首先,它可以处理传输延迟和不确定性,提高控制系统的鲁棒性和稳定性。
其次,它可以提供准确的未来状态预测,使控制器能够及时调整输出信号,从而实现更好的控制性能。
此外,史密斯预估控制还可以适应非线性系统,并根据实际情况进行调整和优化。
总之,史密斯预估控制策略在厚规格轧制中具有广泛的应用前景。
自动控制-中英翻译
automatic controlAutomatic control is relatively artificial control terms ,which refers to correlate with no people directly involved in conditions, the additional equipments or devices to make the machine, equipment or the production process of a certain job of state or parameters automatically set to run the rule.Automatic control technology research will benefit mankind from complicated, risky, tedious work environment free of control and greatly improve the efficiency. Automatic control is a branch of engineering science. It involves using a feedback of dynamic system of the principle of automatic influence, in order to make the output value close with that we set value. From the theory of methods, the mathematical theory is a foundation of Automatic control. As we known today, as automatic control is in the middle of the twentieth century from the control of a branch. The conclusion is based by Norbert wiener, Rudolf kalman proposes.1.The first generation process Control System(PCS)The first generation process Control System is based on 5-13 psi Pneumaticrebefo signal standard ( Pneumatic Control System) PCS before 150 years ,which includes simple on-site operation mode, control theory preliminary form. There does not has been the concept of the control room.2.The second generation process Control System(ACS)The second generation process Control System (ACS or Analog Control System) Analog to produce stats are based on 0-10 mA or 4-20 mA's current Analog signals, the obvious progress of the Control System is that to rule the whole firmly automatic Control field in the whole 25 years. It represents the arrival of the era of electrical automatic control. Control theory has the significant development, the establishment of the three big cybernetics laid the foundation of modern control; The establishment of control function, control room separate model has been used today.3.The third generation of process Control System(CCS)The third generation of process Control System, Computer Control System (CCS) began in t he 70’s ,the application of digital Computer has a great technical advantage, people in measurement, simulation and logic Control field, whichpioneered the use of the third generation process Control System, Computer Control System (CCS). This is called the third generation process control system is automatic control a revolution in the field, it give full play to the computer specialty, so it is widely acknowledged that computer can do all things, naturally produced is called "the centralized control" of the central control computer system, it should be pointed out that the signal transmission system is still the most used with 4-20 mA analog signals, but soon after that, as people focus and reliability of the control aspects of the problem, the out of control risk also focused on, a little wrong will make the whole system to paralysis. So it was quickly developed into the distributed control system (DCS).4.The fourth generation process Control System(DCS)With the rapid development of semiconductor manufacturing technology, the microprocessor to the widespread use of computer technology greatly increased, the reliability of the currently used is the fourth generation process Control System (DCS, or Distributed digital Control System), it is the main features of the whole Control System that there is no longer only a computer, it is a Control System by a computer and some intelligent instruments and intelligent components comprise. So the way of distributed control became the most important characteristic. Another important development exception is the signal transmission among of them are not based on 4-20 mA analog signals, and gradually digital signal to replace analog signals.5.The fifth generation process Control System (FCS)The development of FCS from the DCS, like DCS from CCS over the development as, there is a qualitative leap, that is "Distributed control" developed to " focused control". The way of data transmission is "bus" way. The so-called field-bus is intelligent measurement and control equipment conect all the digital, two-way transmission, with many node of the structure of the branch communications link. Say simply traditional control is a loop, and FCS technology is modules such as controller, actuators, detector etc on a bus to hang up realize communication, of course, transmission is the digital signal. The main bus has Profibus, LonWorks, etc. But the real with DCS FCS difference is to have a more FCS wide development space. Because the traditional DCS technical level while continuously improved, but themost low-end only communication network to the control station level, the control station and the field measurement instrument, the contact between the actuators are still used one-to-one transmission of 4-20 mA analog signals, high cost, low efficiency, maintenance difficulties, can't play the field instruments, to realize the potential of the intelligent field device the work state of comprehensive monitoring and deep management..In the modern science and technology in many fields, automatic control technology is playing a more and more important role. Automatic control theory is the study of the automatic control of common laws technology science. Its initial development stage, is based on the theory of the feedback of automatic adjustment principle, mainly for industrial control, during world war two, in order to design and manufacture the plane and Marine autopilot, gun positioning system, radar tracking system based on feedback and other military equipment, the principle of further promote and perfect the development of the theory of automatic control. After the war, in order to form the full automatic control theory system, which is the transfer function is the foundation of classical control theory, it mainly studies single input and single output, the linear system analysis and set constant design problem.Automatic control of the development, from the start of the happen to form a control theory, the whole that process. Speak Automatic control is refers to such feedback control system, this is a controller object with a control of the control object, the output signal get it back, after come back for measuring with the signal are compared. According to the error tell controller, which is within the machine work. Let the controller to complete the control effect, make the deviation eliminate or make the controlled objects output tracking what I need to be requirements of the signal. The controlled objects output in general is a physical quantities, for example say me to control a machine speed, is need to come out, to measure the speed control.Saying to hear I have to mention is the "engineering cybernetics qian xuesen". Qian xuesen, written in 1954, when his book in the United States, we wrote the book here also can't get in English, but the former Soviet union very seriously, the former Soviet union immediately translate it into Russian. We see of the former Soviet union was in 1956 put his Russian, translation come out, we see at that time is the Russianversion of, this is in about twenty s the formation process of the main process, the experience is concluded.The robust leaves (Lurie) in the former Soviet union in 1944 about him out to everybody now make nonlinear may know, out to a robust leaves in question, this problem has been not solve, he later to write a book, is to keep the problem. The problem, start to when? I said something about this here two style, British and American of just everybody has to come out, make the person is engineering in make control, the former Soviet union is the application with mechanics in make home mathematician control, so two played the role is not the same. His 1951 book at that time is very hard to understand, hard to read. This work, he brought out the robust, Lurie), (until 1960, someone out to solve a solution, we may know, is that the absolute Popov) Popov (stability. Then out of the stability and is robust to solve this problem, Lurie (in). That is the book was 20 s, twenty century in the late '40 s, 50 s, some of the work has been influence of the twentieth century, but also affects the 60 s to present some nonlinear theory, is his work for the foundation. The twentieth century is in the 40 s, front of the development of the technology is a process, slowly forms a theory. I'm used to in such a schedule to said 50 s, most of the time, call classical control theory; 60 s call the state space method, is actually state space method, but you know, at that time, the name of the called it the modern control theory; Then in the 70 s is the modern the frequency domain method, such a process.The next now is to explain the state space method, finished that modern control theory. The state space method who first brought out? The third book is just of the former Soviet union, these scholars. They make applied mathematics and mechanics, they never get the is used is the state space method. In 1960, it introduced to kalman English world, so the world it is spending in English, that means the country want English country, because it was all don't know, kalman is a Slavic name. In 1960, he, he put the state space method introduced to the United States. But add people to this hype, modern control theory to hype seem very much as gods, was also some people expected is relatively large. This is the development of the ten years later, he found too, like the expected only so! Some problem you didn't also solved. So the time, and some people back to the frequency domain method, is the earliest 50 s is thefrequency domain method, 60 s, 70 s state space and back to the frequency domain method.Of course, this is the spiral, this time the frequency domain method and then add a name, so that the modern the frequency domain method. Think frequency domain to consider the design problems or more appropriate, consider some of the design requirements, I just have this frequency domain method. Just in the modern the frequency domain method development on this momentum, 1981, and wrote you this no said robust, we now everyone make control theory know to robust design. Say you this modern the frequency domain method not robustness, when people do not believe, after the 80 s, the arguments that dispute slowly forms. By 1991, is now of course is that you may be someone the term does not necessarily unification, someone called it the modern control theory, Postmodern after keep control. We now have to go back to see, why do you say that no robustness? One will say, we from the many variable system, it is actually much more variable system into the system. Many variables don't appropriate, there is a lot of input, output a. Many avariable a problem, called the coupling, is between input and output coupling each other. Control, intuitive request was for decoupling control, decoupling control later! Is this the 1 to 1 can form output feedback system, the 2! with the 2 of output can form feedback systems, and the design will be easier.自动控制自动控制(automatic control)是相对人工控制概念而言的,指的是在没有人直接参与的情况下,利用外加的设备或装置,使机器、设备或生产过程的某个工作状态或参数自动地按照预定的规律运行。
前馈与Smith预估厚度自动控制
前馈与Smith预估厚度自动控制
庞鸣静;刘建昌
【期刊名称】《基础自动化》
【年(卷),期】1999(6)6
【摘要】介绍用于四机架冷连轧机的前馈与Smith预估厚度自动控制(AGC)系统。
系统中前馈厚度控制的自对中死区和变结构PD控制器独具特色,Smith预估AGC
是解决测厚仪式AGC中纯滞后问题的成功尝试。
实验结果表明,该AGC系统控制
效果良好。
【总页数】4页(P1-4)
【关键词】薄板;板厚;自动控制;轧机;Smith预估器
【作者】庞鸣静;刘建昌
【作者单位】本溪钢铁公司
【正文语种】中文
【中图分类】TG335.55;TG334.9
【相关文献】
1.双自由度Smith预估和前馈解耦在QCS中的应用 [J], 陈广;张科;马长富
2.Smith预估-串级前馈在SNCR烟气脱硝自动控制的应用 [J], 冯慧山
3.Smith预估控制在冷带轧机液压AGC前馈-反馈控制系统中的应用 [J], 王益群;孙孟辉;张伟;刘建;孙福
4.双自由度Smith预估和前馈解耦在QCS中的应用 [J], 陈广; 张科; 马长富
5.前馈反馈Smith预估模糊PID组合温度控制算法 [J], 张皓;高瑜翔
因版权原因,仅展示原文概要,查看原文内容请购买。
自动控制专业英语write english equivalents of the following key words
第一单元open-loop 开环dynamic system 动态系统multivariable / single variable system 多/单变量reference input 参考输入mathematical model 数学模型description(representation)描述optimization 最优化characteristic 特性subsystem 子系统steady state 稳态nonlinear 非线性superposition theorem 叠加定理closed-loop 闭环feedback 反馈plant 被控对象disturbance input 开环输入synthesis 系统综合optimal control 最优控制adaptive 适应dynamic behavior 动态特性excitation 激励controller 控制器equilibrium position 平衡位置damping 阻尼linearity 线性operational method 算法第二单元增益gain增量incremental value拉式变换laplace transform静态工作点quiescent point of operation传递函数transfer function静态工作点accuracy相乘multiply有源函数active network线性化linearization机械平动系统mechanical translational system 机械转动系统mechanical rotational system节点node 回路loop 质量mass加速度acceleration动量momentum 力force位移displacement动能kinetic energy势能potential energy重力gravity摩擦friction力矩torque 自由度degree of freedom牛顿定律Newton’s law零初始条件zero initial condition齿轮gear 输入阻抗input impedance功率放大器power amplifier 电位计potentiometer 偏移 departure 不连续的discontinuous分辨率resolution线性差动变压器linear variable differential transformer原边绕组primary winding副边绕组secondary winding铁芯core相位phase同步器synchro测速机tachometer直流(交流)控制电机d-c(a-c) control motor 堵转力矩stall torque空载转矩no-load speed额定电压rated voltage第三单元方块图化简 block diagram reduction信号流图 signal flow graph串联连接 series connection并联连接 parallel connection加法器 summer减法器 subtractor前向通道 forward path反馈通道 feedback path单位反馈、unity feedback梅逊增益公式 Manson’s gain formular支路 branch节点node垂直轴 orthogonal axis水平轴 horizontal axis第四单元多项式pdynomial特征方程characteristic equation部分分式partial fraction留数定理 residue theorem时间频率 timeL frequenay domain拉氏反变换 inverse laplace transform主导极点 dominant poles复共厄极点lonjugate complex poles重极点multiple Poles不同极点distinct poles零点zero瞬态响应transient response稳态响应steady state respaise强迫响应forced response冲激响应impulse respaise分子,分母mumerator ,denomjnator阶越输入jtep input斜坡输入ramp input抛物线输入parabolic input加速度输入acceleration input非周期输入aperiotic input单位阶跃unit step二阶系统second-order system自然频率natural system阻尼比damping ratio过阻尼overdamp system欠阻尼underdamping system超调量overshoot左半s平面left half s-plane稳定性判据stability criterion指数衰减to decay exponentially卷积积分convolution integral稳态误差steady state error位置误差系数position error constant速度误差系数velocity error constant加速度误差系数acceleration error constant 第五单元虚轴imaginary axis实轴real axis 倒数reciprocal性能指标performance specification带宽bandwidth 滞后时间delay time上升时间rise time 调节时间settling time峰值超调peak overshoot振荡次数number of oscillations一对复数主导极点 a dominant pair of complexpoles 灵敏度函数sensitivity function系统类型system type参数变化parameter variation性能指数performance index比例控制proportional control微分控制derivative control积分控制integral control稳定余量margin of stability第六单元相对稳定性 absolute stability正弦输入 sinusoidal input解析法 analytical method图解法graphical method频率响应法frequency response method波特图Bode plot幅值magnitude相角phase angle相移phase shift对数幅值log magnitude特征值eigenvalueS的有理函数rational function of s谐振频率resonant frequency分贝decibel十倍频程decade渐近线的斜率slope of asymptote转角频率corner frequency二次项quadratic term最小相位系统minimum phase system对称于实轴symmetrical about the real axis临界点the critical point奈奎斯特图Nyquist plot奈奎斯特判据Nyquist criterion尼克尔斯图Nichol’s chart根轨迹图root locus幅值条件magnitude condition相角条件angle condition突破点breakaway point增益穿越频率gain crossover frequency增益余量gain margin相角穿越频率angle crossover frequency相角余量angle margin第一单元open-loop 开环dynamic system 动态系统multivariable / single variable system 多/单变量reference input 参考输入mathematical model 数学模型description(representation)描述optimization 最优化characteristic 特性subsystem 子系统steady state 稳态nonlinear 非线性superposition theorem 叠加定理closed-loop 闭环feedback 反馈plant 被控对象disturbance input 开环输入synthesis 系统综合optimal control 最优控制adaptive 适应dynamic behavior 动态特性excitation 激励controller 控制器equilibrium position 平衡位置damping 阻尼linearity 线性operational method 算法第二单元增益gain增量incremental value拉式变换laplace transform静态工作点quiescent point of operation传递函数transfer function静态工作点accuracy相乘multiply有源函数active network线性化linearization机械平动系统mechanical translational system机械转动系统mechanical rotational system节点node 回路loop 质量mass加速度acceleration动量momentum 力force位移displacement动能kinetic energy势能potential energy重力gravity摩擦friction力矩torque 自由度degree of freedom牛顿定律Newton’s law零初始条件zero initial condition齿轮gear 输入阻抗input impedance功率放大器power amplifier 电位计potentiometer偏移 departure 不连续的discontinuous分辨率resolution线性差动变压器linear variable differentialtransformer原边绕组primary winding副边绕组secondary winding铁芯core相位phase同步器synchro测速机tachometer直流(交流)控制电机d-c(a-c) control motor堵转力矩stall torque空载转矩no-load speed额定电压rated voltage第三单元方块图化简 block diagram reduction信号流图 signal flow graph串联连接 series connection并联连接 parallel connection加法器 summer减法器 subtractor前向通道 forward path反馈通道 feedback path单位反馈、unity feedback梅逊增益公式 Manson’s gain formular支路 branch节点node垂直轴 orthogonal axis水平轴 horizontal axis第四单元多项式pdynomial特征方程characteristic equation部分分式partial fraction留数定理 residue theorem时间频率 timeL frequenay domain拉氏反变换 inverse laplace transform主导极点 dominant poles复共厄极点lonjugate complex poles重极点multiple Poles不同极点distinct poles零点zero瞬态响应transient response稳态响应steady state respaise强迫响应forced response冲激响应impulse respaise分子,分母mumerator ,denomjnator阶越输入jtep input斜坡输入ramp input抛物线输入parabolic input加速度输入acceleration input非周期输入aperiotic input单位阶跃unit step二阶系统second-order system自然频率natural system阻尼比damping ratio过阻尼overdamp system欠阻尼underdamping system超调量overshoot左半s平面left half s-plane稳定性判据stability criterion指数衰减to decay exponentially卷积积分convolution integral稳态误差steady state error位置误差系数position error constant速度误差系数velocity error constant加速度误差系数acceleration error constant第五单元虚轴imaginary axis实轴real axis 倒数reciprocal性能指标performance specification带宽bandwidth 滞后时间delay time上升时间rise time 调节时间settling time峰值超调peak overshoot振荡次数number of oscillations一对复数主导极点 a dominant pair of complexpoles 灵敏度函数sensitivity function系统类型system type参数变化parameter variation性能指数performance index比例控制proportional control微分控制derivative control积分控制integral control稳定余量margin of stability第六单元相对稳定性 absolute stability正弦输入 sinusoidal input解析法 analytical method图解法graphical method频率响应法frequency response method波特图Bode plot幅值magnitude相角phase angle相移phase shift对数幅值log magnitude特征值eigenvalueS的有理函数rational function of s谐振频率resonant frequency分贝decibel十倍频程decade渐近线的斜率slope of asymptote转角频率corner frequency二次项quadratic term最小相位系统minimum phase system对称于实轴symmetrical about the real axis临界点the critical point奈奎斯特图Nyquist plot奈奎斯特判据Nyquist criterion尼克尔斯图Nichol’s chart根轨迹图root locus幅值条件magnitude condition相角条件angle condition突破点breakaway point增益穿越频率gain crossover frequency增益余量gain margin相角穿越频率angle crossover frequency相角余量angle margin。
Smith预估控制在冷带轧机液压AGC前馈_反馈控制系统中的应用
摘 要: 分析了 900 t 提梁机液压行走系统的工作原理 , 阐明了闭式液压系统应用于车辆行走系统中存 在的问题, 提出相应问题的解决方法 , 并提出了闭式液压系统中功率匹配方案 。 关键词: 液压行走 ; 闭式液压系统; 差速 ; 防滑 ; 功率匹配 中图分类号: TH 137 0 引言 液压传动因其具有良好的无极调速和灵活布局的 特点 , 并且可以进行多种多样的调节和控制, 特别是与 控制器及传感器电子技术相结合, 促进了工程机械的 智能化, 节能化 , 液压传动正在越来越广泛应用于工程 机械中。 900 t 轮胎式提梁机采用行走液压控制系统 , 满足设计要求 , 并具有良好的操作性能。 1 工作原理 900 t 提梁机液压行走系统相对其他部分的开式系 统而言结构简单, 现以单泵双马达系统为例进行说明。 如图 1 所示, 该系统整体而言由 4 部分组成: 比例换向阀、 变量柱塞泵、 单向溢流阀、 补油溢流阀、 压力切断阀及补 油泵的电比例变量泵、 补油过滤器和并联的两台变量液 压马达( 包含冲洗阀、 比例换向阀和变量柱塞马达) 。 该系统由单台变量柱塞泵为并联的两台变量马达 供油, 变量马达通过减速机将扭矩传递给驱动轮, 完成 行走运动。发动机驱动变量柱塞泵输出高压油 , 油液通
( 燕山大学 机械工程学 院 , 河北 秦皇岛 066004)
摘
要: 作为消除成品厚差的重要手段 , 液压 AGC 前馈 - 反馈控制系统对于提高板带材的成品精度起着
至关重要的作用, 但是采用机架后测厚仪进行反馈滞后大 , 系统稳定性变差, 导致控制精度降低 。因此 , 引入 Smith 预估控制与前馈 - 反馈控制系统相结合的办法来进行控制 , 并以某四辊可逆冷带轧机为对象进行仿真 研究, 取得了良好的效果, 系统的控制精度和稳定性都有所提高。 关键词: 液压 AGC; Smith 预估控制; 滞后; 前馈 - 反馈控制系统 中图分类号: T H 137; T P278 0 引言 液压 AGC( Aut om at ic Gauge Cont rol, 板厚自动控 制) 前馈- 反馈控制系统是消除成品厚差的重要控制 手段 , 其采用前馈与反馈相结合的方法 , 可以弥补前馈 AGC 的不足。但是由于用机架后测厚仪进行反馈 , 滞 后十分大, 使系统不稳定 [ 1] 。本文运用液压 AGC 前 馈 - 反 馈 控 制 系 统 与 Smith 预 估 控 制 结 合 的 方 法 ( Sm it h - FF C - FBC 系统) , 进行计算机仿真研究, 得到了 良好的控制效果。 1 液压 AGC 前馈 - 反馈控制系统的数学模型 冷带轧机 液压 AGC 前馈 - 反 馈控制 系统主 要由 PID 控制器、 电液伺服阀、 液压缸、 轧机负载、 测厚仪等 [ 2] 元件构成 。该控制系统采用厚度外环 , 在机架前后 各设两台测厚仪 , 分别测得机架入口和出口压力, 用于 前馈和反馈控制。内环为压下闭环, 有位置内环和压 力内环两种方式。这样 , 系统可以采用厚度外环位置 内环方式, 也可采用厚度外环压力内环方式。外环采 用厚度闭环控制器 , 内环采用压下闭环控制器。系统 方块图如图 1 所示。 厚度外环 控制器 采用 P ID 调节器 , 其 传递 函数 为: G c ( s) = K p ( 1 + K i 1 + K d s) s ( 1) 式中: K
基于Smith预估的自抗扰控制系统
基于Smith预估的自抗扰控制系统
夏晴;夏扬;郑伟建
【期刊名称】《计算机仿真》
【年(卷),期】2009(0)7
【摘要】纯滞后对象一直是自动控制和计算机应用领域的一大难题.常用的PID与smith预估相结合的方法,在预估不准确的情况下,不能取得较好的控制效果;而单一的自抗扰控制器在滞后时间较大的情况下,调节时间较长.针对大滞后对象提出了自抗扰控制器与Smith预估补偿器相结合的设计方案.通过仿真对比PID配合Smith 预估补偿器及单一的自抗扰控制器的控制效果,表明自抗扰控制器与Smith预估补偿器的结合有效地改善了大滞后对象的控制效果,增强了系统的鲁棒性和抗干扰能力.
【总页数】5页(P168-171,215)
【作者】夏晴;夏扬;郑伟建
【作者单位】扬州大学信息工程学院,江苏扬州,225009;扬州大学信息工程学院,江苏扬州,225009;扬州大学信息工程学院,江苏扬州,225009
【正文语种】中文
【中图分类】TP182
【相关文献】
1.基于自抗扰Smith预估补偿方法的超临界机组再热汽温控制研究 [J], 崔晓波;刘久斌;朱红霞;张轩振;顾慧;王亮
2.过热蒸汽温度系统的Smith预估补偿自抗扰控制 [J], 董子健;邢建;石乐;王朔
3.选择性催化还原脱硝系统Smith预估自抗扰控制 [J], 姜家国;郭为民;刘延泉;唐耀华
4.一阶惯性大时滞系统Smith预估自抗扰控制 [J], 王永帅;陈增强;孙明玮;孙青林
5.基于自抗扰Smith预估补偿方法的超临界机组再热汽温控制研究 [J], 崔晓波;刘久斌;朱红霞;张轩振;顾慧;王亮;;;;;;
因版权原因,仅展示原文概要,查看原文内容请购买。
基于BP神经网络Smith预估器的HAGC系统的仿真
收稿 日期 : 0 —0 —0 2 6 1 0 8
针对监控 AGC具有 滞后、非线性的特点 , 本文设计
维普资讯
《 动 技 应 》07 第2卷 期 自 化 术与 用 20年 6 第4
控 制 理 论 与 应 用
的动 态特性 , 然后 由预 估器进 行 补偿 , 图使被延迟 了 力 t的被 控量 超前反 映 到控 制器 , 使控制 器提前 动作 , 从
而 明显地 减小超调 量 算法时 , 控参数 严重超调 , I 被 而且稳定性极
差 。而加入 S t mih预估补偿器后 , 超调量 显著减小 , 大
1 引言
传统的监控 AGC都是采用 P D控制方式 , I 这种控制 方 式的主要缺 点是调节 速度慢 , 产生振 荡和极 限环振 易 荡…。为 防止极 限环 振荡 , 一般在系统 内设置死 区 , 靠牺 牲控 制精 度 来保 证系 统 的稳 定 。 由于 测厚 仪 安 装在 末 机架后 4 m 的位置 , ~5 因此传 统监控 AGC是一个 具有 纯滞后 环节 的控 制系统 , 对提 高厚度 精度 具有局 限性 。 大迟延系 统 中采 用的补偿 方法 , 是按照过 程特性 设 计 出一种模 型加入 到反馈控 制系统 中 , 以补偿 过程 的动 态特 性。史密斯( mih) S t 预估补偿 方法 是得到广泛应用 的方 案之 一 。它 的特 点是 预先 估计 过程 在基 本 扰动 下
李 锋, 贾 雷 , 湘涛 于
( 广东 省 电力 试验研 究所 广东 广 州 5 0 0 , 1 1 6 0 2北京首钢 自动化信息有限公司北京 1 0 4 , 0 0 1
3 北 京理工 大学北京 1 0 8 ) 0 0 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Feedback automatic gauge control system using modelreference adaptive Smith predictorLI-Xun, SONG Dong-qiu, YU Shou-yi, GUI Wei-hua(1. School of Information Science and Engineering, Central South University,Changsha Hunan 410083, China;2. Southwest Aluminum (Group) Co, Ltd,Chongqing Sichuan 401326, China)Abstract: Based on the compensating principle of Smith predictor for the time-delay process, we build a model-reference-adaptive(MRA) Smith-predictor feedback control model for the automatic-gauge-control(AGC) system. The structure of the control system is determined, the design algorithm and the adaptive modulation principle are bining the MRA Smith-predictor feedback with the AGC control model, we can control the thickness-deviation at the output. Simulation results show that the AGC system with the MRA Smith-predictor feedback exhibits an excellent performance in controlling the thickness deviation of rolled aluminum strips. The limitation on the time-delay which originally affects the control performance is now eliminated, the thickness-variation at the output is removed, and the response rate is raised. In summary,the product specifications of aluminum strips are satisfied.Key words: rolling; Smith predictor; feedback automatic gauge control; model reference adaptive1 introductionModern single stand reversible four heavy cold rolling mill automatic gauge control system(AGC)has the feedforward AGC, seconds flow type AGC and feedback type AGC etc.. All kinds of AGC coordination control strategy in the application of rolling can make the plate product thickness and plate shape have higher control precision.But because there is a certain gap between the point where thickness gauge checks in the export side and the rolling bite,the feedback type AGC makes thickness control produce pure time delay,have a not ideal controlperformance. For reducing the delay time of the control process, it is necessary to compensate the pure time delay of the feedback type of AGC. Smith estimate is an effective control method to overcome pure delay, through the dynamic properties of the estimate object ,compensating time delay with a prediction model, Compensator and controlled object together constitute a no time delay's generalized controlled object, So as to effectively overcome the influence of pure delay. According to Smith predictor has a strong dependence on the accuracy of the mathematical model of controlled object , document[3] puts forward the method of the adaptive poles self-revised, document[4] puts forward the method of the adaptive fuzzy controller. The closed-loop control system with pure time delay link has greater overshoots and longer regulating time, When the controlled object be disturbed and leading to the change of the regulated quantity, the controller can't immediately barrage jamming. This paper, based on the model reference adaptive control principle, use the model reference adaptive Smith predictor to keep the model parameters under the control of the adaptive law the samewith the controlled object.2 The model reference adaptive Smith predictor2.1 Control theory of MRA-Smith predictorMRA-Smith predictor is presented in Figure 1. G(s)e-τs is the control system transfer function, G m(s)e-τms is Smith prediction model of the controlled object,G C1(s) is the main controller,often use the PI algorithm. G C2(s) in the dotted line box is the secondary controller,often use the PD algorithm, Primarily for regulating the integral process or configurating the poles of the static process.Gd is the disturbance compensation controller.GC2(s)used for stabilizing nonstatic integral process and configurating poles of dynamic process, makes the poles of the control system distribute in the right place,so there is a better control performance.Gd used to adjust the response characteristic of the disturbance d (t),inhibits the static error of standard Smith predictor with external disturbance,enhances adjust ability in order to improve the anti-jamming performance of the Smith predictor. For larger pure time delay object, Smith predictor with the PD secondary controller and disturbance compensation controller has a bettter control performance than the standard Smith predictor. In the cold rolling process rolling speed is change, Smith predictor model parameters and rolling mill parameters will not completely match, so join model reference adaptive agencies regulate the prediction model parameters,in order to reach the parameters which match the control object. G(e; t) is the gain of the adjustable feedforward regulator,F(e; t) is the compensation gain of the feedback regulator.When not joining MRA-Smith predictor, the closed-loop transfer function and characteristic equations of the control system isBecause of containing pure time delay link e-τs, along with the increase of τ and the phase lag, the stability of the system is lowering, the control effect become poor, the bigger τis the more difficult to stablize the system. When MRA-Smith predictor model and the controlled object is exactly match,C m(t) = C(t),G m(s) = G(s) and e-τms=e-τs.The output of system isBy formula (4), set characteristic equations of the input closed-loop transfer function asAlready not containing time delay part, the system stability does not influence byτ, e-τs in formula (4) only let the system response delay timeτ.2.2Design of MRA-Smith predictorMost of the controlled object of production process can be simplified by first-order lag plus delay(FOLPD),The transfer function isIn the formula,k is quotient,τ is the delay time,assumeLet the formula (8)(9)plug in formula (4),and ignore the time delay part e-τs,then get the input closed-loop transfer functionAssumeSimplify formula (10)asaccording to the value of the given parameters kc,Ti,k and a,we can determine the value of the parameters η and c1, Ibrahim Kaya in the literature [10] put forward the relationship of d1 and c1 as following2.3Design of MRA principleBecause the time delay part can be calculated,ignore the compensation pure time factor part of the rolling mill and Smith prediction model. According to formula (7),take the first order link of rolling mill as reference model,and the state equation isThen the Smith predictor model adjustable system and its state equation isThe equation of Feedforward regulator G(e,t) and feedback regulator F(e,t) isAccording to formula(15)(16),there is a adjustable system equationAssume system general error asAccording to formula (13)and(17),there is a generalized state error equation.ThereinDesign adaptive law of G (e,t) and F(e,t), make formula (19) asymptotically stable,when t→∞,e(t) →0, ψ(t) →0,φ(t)→0. Select the lyapunov functionIn the function:λ1 > 0, λ2 > 0,km > 0,then v(t)>0 establishes when t≠0,soAssumeThenEnsure system is asymptotically stable,differentiate formula (20),and plug in formula (23) to get the system integral adaptive regulation law3Feedback AGC system based on model reference adaptive Smith predictor3.1 Feedback AGC systemAccording to the feedback type AGC system control principle, when there is incoming thickness deviation △H, rolled piece export thickness deviation isIn the formula: Q is the plastic stiffness of rolling piece, Cp is the longitudinal stiffness of rolling mill. To eliminate export thickness deviation, we need to adjust the amount of roll gap toSet the distance thickness gauge to rolling mill roll gap as L,mill speed as v,the delay time to getting the detection value asτ1=L/v. Thickness gauge and down device has certain response time is respectively τm and τh,the total pure delay time of the feedback AGC control system is3.2Exit-thickness deviation of MRA-Smith predictor feedback AGCsystemIn feedback AGC control model reference adaptive Smith predictor can compensate the pure time delay factor e-τs. Figure 1 getsAccording to formula(29),get the transfer function from Thickness deviation to roll gapIf Smith predictor model and rolling mill completematch:G(s)e-τs=Gm(s)e-τms,plug (30) in (31) to getPlug formula(33) and (34) in formula(32),then get the deviation value of the export thickness of rolled piecesFrom formula (35) we can see the disturbance input is small, can even be neglected,the disturbance controller Gd takes zero,the deviation value of rolled piece export thickness is simplified toGet △h to tend to 0,as long as configurating Gc2(s)=-1/Gm(s).4Simulation of control system4.1 Model structure of control systemIn the feedback AGC control system, the thickness controller center on integrator, including thickness dead zone and the limiter. Because integrator generates oscillation and limit cycle oscillations easily, the goal of setting the dead zone is to prevent deathlimit cycle oscillations, under the premise of ensuring the control accuracy to prevent hydraulic pressing device to produce false action. The limiter avoid the influence of the strip straightness of aluminum plate beacuse of the large amount of the roll gap regulating variable , ensure the precision of shape. MRA-Smith predictor is applied to the feedback AGC automatic thickness control, get the control system as shown in figure 2.4.2Simulation parameters of control systemAfter simplified, single stand reversible four heavy cold rolling mill AGC system can be approach to 1-st order delay system, the mathematical model express asSoτ/T=5.6,within the limits of 0.05≤τ/T≤6,according to the ITAE optimal PID controller design experience formulaGet the feedback AGC traditional PID controllerRolling mill thickness gauge response time, feedback delay time and hydraulic pressure under device response time together is 0.3 s, set the sum of the input signal is the unit step signal. According to the above design principles, get MRA-Smith feedback AGC thickness control system parameters as shown in table 1.4.3Simulation result of control systemAccording to the figure 2 build the SIMULINK simulation diagram ofMRA-Smith predictor of the feedback AGC control system,then get aluminum sheet exports thickness deviation curve as shown in fig.3.Figure 3 (a) show that the traditional PID feedback AGC control system in aluminum sheet rolling process, because pure time delay characteristics is not compensated, aluminum sheet export thickness in about 3 s of the delay time do not reduce,thickness deviation curve is obviously oscillation. Conventional Smith feedback AGC control system can compensate for pure time delay characteristics of the rolling process, reduce oscillation of the exports thickness deviation curve, but there are a wave phenomenon, to a larger extent, slow reaction speed,after 2.5 s export thickness deviation reaches zero.The predictor model and rolling mill model does not fit, assume the time constant of the Smith predictor model is 0.7 s (the actual time constant of rolling mill is 1 s) get export thickness deviation curve of rolled pieces as shown in figure 3 (b). MRA-Smith predictor feedback AGC thickness control system can start feed-forward regulator and feedback regulator according to the self-adaptive law,onlineself-adaptive Smith predictor model parameters and rolling mill parameters tend tomatch, make thickness deviation of rolled pieces gradually reach a set error range, not only compensate pure time delay characteristics existing in the feedback control, thickness deviation curve does not exist oscillation phenomena, the stability of system increases quickly, convergence time is in 0.5 s, self-adaptive response is fast , can satisfy the production accuracy of aluminum sheet.5ConclusionFeedback AGC thickness control system with pure time delay characteristics restrict the improvement of the quality of the board strips products, using the Smith predictor to compensate pure time delay is a kind of effective method in engineering. But the traditional Smith predictor is more sensitive in model parameter uncertainty,when the model not completely matching the performance of the control system is not good.The MRA-Smith is able to solve this problem, the key is to build compensator model and realize pure delay link and design self-adaptive law. In this paper, we study the MRA-Smith prediction PI controller feedback AGC controlsystem’s application in aluminum sheet rolling process AGC control, AGC the results show that the Smith predictor with improved structure combined with the adaptive regulation law can solve the problem that the phenomena model parameters are not completely matching influences control performance,let rolled piece export thickness deviation be quickly in the allowable range in the fast time,the control response be fast, and effectively compensate for pure time delay characteristics of the traditional PI thickness control , rolled pieces thickness control have high accuracy, and there is engineering application value.。