On Neural Network Topology Design for Nonlinear Control
计算机网络词汇
计算机网络词汇[38001-39000](整理)network timing 网络定时network topology 网络布局Network Troubleshooting 网络故障诊断与维修network 网络network 网路网络network 网络network(NET) 网络network, analog 模拟网络network, communications 通信网路network, computei 计算器网络network, distributed-processing 分布型处理网络network, electrical 电力网络network, star 星型网络NetWork-Coffee 网络咖啡networked computer 网络计算机Networking Blueprint 联网方案networking capabilities 连网能力networking cd rom technology 光盘网络技术networking components 网络组件Networking Hardware 网络硬件networking 连网networking 网络通信Networks 网络Network-to Network Interface, NNI 网络到网络间的接口NEUCC Northern European University Computing Center 北欧大学计算中心(丹麦)Neumann principle 诺埃曼原理NEUNS NEUrom Network System 北欧大学只读存储器网络系统neural information processing systems 神经信息处理系统Neural Network 类神经网络neural network 神经网络neurocomputer 神经计算机neuronic network 神经网络neutral atom laser 中性原子激光器neutral atom 中性原子neutral conductor 中线neutral conductor 中性导体neutral ground 中线接地neutral point 中性点neutral relay 无极继电器neutral relay 中和继电器neutral resistance 中性电阻neutral state 中性状态neutral temperature 中性温度neutral terminal 中性线端neutral transmission 中性传输neutral trapping center 中性俘获中心neutral zone 无控制酌的参数范围neutral zone 中性区neutral 中性neutral 中性的neutralization 中和;平衡neutralizing capacitor 中和电容器neutrodyne 有中和的高频党放大器neutron activation analysis 中子激活分析neutron doped semiconductor 中子掺入半导体neutron doped silicon 中子掺入硅neutron doping 中子掺入neutron irradiation 中子照射neutron pumping 中子激励neutron yield 中子产额neutron 中子neutrosphere 中性圈never 永远不NEV oDa NEtworked V oice Data 上网语音数据new detached Toolbar 新增超然的工具列new disk 新的磁盘New Economy 新经济new element 新增项目new folder 新资料夹new horizontal tab group 新增水平索引卷标群组new input queue 新输入队列new key 新增索引键new keyword New 关键词new line character 移行符号new macro Command 新增宏命令new mail 新信件new pack 新包装new password 新的密码new project 新增专案new search 重新搜寻new start 重新起动new sync 新同步new toolbar 新增工具列new vertical Tab Group 新增垂直索引卷标群组new window 开新窗口New World Semiconductor Conference (New WSC) 新世界半导体会议new 新的new 新信newbie 新手newdata argument NewData 自变量newline character 新行字符new-line character(NL) 新列字符newline 新行NEWS NetWare Early Warning System “网器” 预警系统NEWS Network Error Warning System 网络错误警告系统NEWS Network Extensible Window System 网络可扩充窗口系统news 新闻newsfeed 新聞供應Newsgroup 新闻组,网路新闻群组(台湾用语)〖因特网〗newsgroup 新闻组newsgroup 新聞討論組Newslink 新闻联线newton's method 牛顿法newtor 牛顿NEXT Near – End Cross – Talk loss 近端串线干扰,近端串音损耗next frame 下一帧Next Generation I/O (NGIO) 新一代输入/输出系统Next Generation Internet /Internet2 (NGI/I2) 下一代因特网/Internet2 Next Hop Resolution Protocol, NHRP 下一个网络节点解析协议neXT neXT(公司名称)next record 下一笔next state function 变换函数next statement Next 陈述式next track 下一个曲目next 下一步nexus 关结NF Noise Factor 噪音系数NF Noise Figure 噪音指数NF Nominal Frequency 标称频率nf Norfolk Island 诺福克岛(域名)NF Normal Form 正常形式,规格化形式,范式NFAP Network File Access Protocol 网络文件访问协议NFAS Non – Facilities Associated Signaling 与设备无关的信令NFAS Not Frame Alignment Signal 非帧对齐信号NFB Negative FeedBack 负反馈NFB Network Function Block 网络功能块NFB Non – Fuse Breaker 无保险丝断路器nfb 负反馈NFDC National Flight Data Center 全国飞行数据中心(美国)NFE Network Front End 网络前端NFE No First Error 非首次错误nfet n 沟道场效应晶体管NFI Noise Figure Indicator 噪音指数指示器NFP Not File Protect 无文件保护NFQ Night FreQuency 夜用频率NFS Need For Speed 《极品飞车》〖游戏名〗NFS Network File Server 网络文件服务器NFS Network File Share 网络文件共享NFS Network File System 网络文件系统NFS Network File System 网络文件系统NFS 网络文件系统NFSAIS National Federation of Science Abstracting and indexing Services 全国科学文摘与索引服务机构联合会(美国)NFSHS NFS: High Stakes 《极品飞车:孤注一掷》〖游戏名〗NFSMC NFS: MotorCity 《极品飞车:驰聘的都市》〖游戏名〗NFSP NFS: Porsche 《极品飞车:保时捷狂飙》〖游戏名〗NFSS News Feeder Screen Saver 新闻输送器屏幕保护ng Nigeria 尼日利亚(域名)NG Noise Generator 噪音发生器NGBT Negotiating Group on Basic Telecommunications 远程通信基本条件谈判组nGC net. Genesis Corp. “网源”公司(美国,出品企业内部网设备)NGC Network General Corp. 网络总公司(美国,出品网络分析器)NGCC National Guard Computer Center 国家防卫计算机中心(美国)NGCP Network General Control Protocol 网络通用控制协议NGE Not Greater or Equal 不大于或等于NGI Next Generation Internet 下一代因特网ngio(next generation input/output,新一代输入/输出标准)NGMF Netview Graphic Monitor Facility 软件Netview的图形监视器设备NGMHS NetWare Global Messaging Handling Service “网器”全球报文处理服务NGP Network Graphics Protocol 网络图形协议NH Network Handler 网络处理程序NH nonhygroscopic 防潮的NH Null Hypothesis 虚无假设,零假设NHK (Nippon Hoso Kyokai) 日本广播协会NHRP Next Hop Resolution Protocol 下一步跳跃传输的解析协议,下一个驿站解析协议〖因特网〗NHRP Next Hop Router Protocol 下一步跳跃传输的路由器协议〖因特网〗NHRP Next Hop Routing Procedure 下一次跳跃式传输的路由选择规程,下一段选路过程NHRR Next Hop Resolution Protocol 下一次跳跃式传输的分辨率协议NHS Next Hop Server 下一次跳跃式传输的服务器NI National Indicator 国家指示器,国别指示器NI Network Identifier 网络标识符NI Network Identify 网络识别NI Network Interconnect 网络互连NI Network Interface 网络接口ni Nicaragua 尼加拉瓜(域名)NI Nonforbid Interrupt 非禁止中断NI Northwest Industries 西北工业公司(美国)NI Novell Inc. 网威公司(美国,以开发网络产品和软件著称)NI(noninhibit)interrupts 非抑制岔断ni:non-intel,非英特尔NIA Network Interface Adapter 网络接口适配器NIA Networking Interoperability Alliance 网络协同操作联盟(由贝、IBM和3Com公司组成)NIA Next Interchange Address 下一次交换地址nia: networking interoperatility alliance(网络互操作联盟)NIB Node Initialization Block 节点初始化数据块nibble / nybble 半字节、四位nibble 半字节nibble 尼;半拜NIC National Information Center 全国信息中心(美国)NIC National ISDN Council 全国综合业务数字网委员会NIC Negative Impedance Converter 负阻抗转换器NIC Network Identification Code 网络标识码NIC Network Independent Clock 网络独立时钟NIC Network Information Center 网络信息中心〖因特网〗NIC Network Interface Card 网络接口卡,网卡(同网络适配器)NIC Network Interface Control(ler) 网络接口控制(器)NIC Normal Input Cause 正常输入原因NIC Network Information Center 网络信息中心NIC Network Interface Card 网络(接口)卡NIC 网络卡/网络信息中心NICC National Information Control Center 国家信息控制中心NiCd battery 镍镉电池NICE Network Information Control Exchange 网络信息控制交换NICE Normal Input / Output Control Executive 标准输入/ 输出控制的执行程序NICEP Network Information and Control Exchange Protocol 网络信息控制与交换协议nichrome 镍铬合金nickel delay lint 镍延迟线nickel 镍nickel-cadmium battery 镍镉电池nickel-iron(Ni Fe)secondary cell 铁镍二次电池(蓄电池)nickname 别名nickname 昵称NICNAME (WhoIs Protocol) 化名协议〖因特网〗NICNAME, WhoIs Protocol, (RFC-954) WhoIs协议NICO National Information Coordinating Organization 国家信息协调机构nico 镍钴合金NICOL New International Commercial Language 新国际商业语言NICONFIG Network Interconnect CONFIGurator 网络互连配置器NICS Network Integrated Control System 网络综合控制系统NID Network IDentifier 网络标识符NID Network Interface Device 网络接口设备NID Network Interface Device 网络接口服务NIDA Numerically Integrated Differential Analyzer 数字积分微分分析器NIDN Naval Intelligence Data Network 海军情报数据网NIDOC National Information and Documentation Center 全国信息与文献中心(阿拉伯联合共和国)NIF Noise Improvement Factor 噪音改善系数NIF Neighborhood Information Frame 邻近信息块nife 镍铁合金night airglow 夜天光night effect 夜间效应NIGP National Institute of Governmental Purchasing 政府采购全国讲习会NII National Information Infrastructure 国家信息基本设施(美国克林顿政府1993年9月提出的未来宽带广域网,亦称信息高速公路)NII, National Information Infrastructure 全国信息体系NIIT National Information Infrastructure Testbed 国家信息基础设施实验室(美国)nil 空指标nil 无niladic functions niladic 函数nill pointer 零指标NIM Network Information Management 网络信息管理系统(IBM的)NIM Network Instrument Manipulation 网络工具操作NIM Network Interface Machine 网络接口机NIM Network Interface Module 网络接口模块NIM Networked Interactive Multimedia 网络化交互式多媒体NIMF National Institute on Media and the Family 媒体与家庭全国调研会(美国)NIMH Nickel Metal Hydride 镍金属氢化物NI-MH Battery 镍氢电池NIN National Information Network 全国情报网络nine edge 九边nines complement 九补码nine's complement 九的补码ninety column card 九十行卡Nintendo 任天堂NIOS NetWare Input / Output Subsystem “网器” 输入/ 输出子系统NIOS Network Input / Output System 网络输入/ 输出系统NIP Non – Impact Printer 非撞击式打印机NIP Nucleus Initialization Program 核心程序初始化程序nip 核心初始化程序NIPO Negative Input, Positive Output 负输入,正输出NIPRNET Non – secure Internet Protocol Router NETwork 不安全的因特网协议路由器网络NIPRNET Nonclassified Internet Protocol Router NETwork 非机密因特网协议路由器网络NIPS National Information Processing System 全国信息处理系统NIPS Neural Information Processing System 神经中枢信息处理系统NIR Network Information Retrieval 网络信息检索NIRI National Information Research Institute 国家信息研究所(美国)NIS National Information System 国家信息系统(美国)NIS Network Information Service 网络信息服务NIS Network Interface System 网络接口系统N-ISDN Narrowband – Integrated Services Digital Network 窄带综合服务数字网络,“一线通”N-ISDN Narrowband ISDN 窄带ISDNNISO National Information Standards Organization 国家信息标准组织NISSAT National Information System for Science and Technology 国家科技信息系统(印度)NIST National Institute of Science and Technology 全国科学技术学会NIST National Institute of Standard and Technology 国家标准与技术研究所(美国,即早期的国家标准局NBS)NIT National Information application Technology certificate 全国信息应用技术证书(中国)NIT Non – Intelligent Terminal 非智能终端NITA National Industrial Television Association 全国工业电视协会(美国)NITC National Information Technology Center 国家信息技术中心(美国)nitridation 氮化nitride gate 氮化硅栅nitride masking 氮化硅掩蔽nitride oxide reactor 氮化物氧化物反应器nitride oxide structure 氮化物氧化物结构nitride passivation 氮化硅钝化nitride process 氮化硅工艺Nitro “硝基”系列显卡(生产商:STB)nitrogen dioxide 二氧化氮nitrogen dusting 氮气吹尘nitrogen purging 氮气吹尘nitrogen purifier 氮气提纯器nitrogen 氮nitrogenous hood 氮箱nitrox reactor 氮化物氧化物反应器nitrox 氮化物氧化物结构NIU Network Interface Unit 网络接口设备NIU Forum (North American ISDN User Group Forum) 北美综合业务数字网用户组论坛NIUF North American ISDN User''s Forum 北美ISDN用户论坛nixie tube 数字管NJ Network Job 网络作业NJCC National Joint Computers Committee 全国计算机联合委员会(美国)NJCL Network Job Control Language 网络作业控制语言NJP Network Job Processing 网络作业处理NJS Noise Jammer Simulator 噪音干扰模拟器NK Narinder Kapany 纳林德尔·卡帕尼(在1955年发明光纤)nl Netherlands 荷兰(域名)NL Network Layer 网络层NL New Line 换行〖字符〗NL No Label 无标号NL Noise Level 噪声度〖扫描仪〗NL Nominal Transmission Loss 名义传输损耗nl 移行符号NLA National Library of Australia 澳大利亚国家图书馆NLA Network Logical Address 网络逻辑地址NLA Non – Linear Amplifier 非线性放大器NLA Normalized Local Address 规格化局部地址NLC National Library of Canada 加拿大国家图书馆NLC Natural Language Computer 自然语言计算机NLC Network Language Center 网络语言中心NLC Network Level Control 网络级别控制NLC Non Linear Computation 非线性计算NLD Non Linear Distortion 非线性失真NLDM Network Logical Data Management 网络逻辑数据管理NLE NonLinear Element 非线性元件NLE Not Less or Equal 不小于或等于n-level address n阶地址n-level logic n阶逻辑NLF Non Linear Filtering 非线性过滤NLI Natural Language Interface 自然语言接口NLI Noise Limit Indicator 噪声极限指示器NLine, National Library Line 国家图书馆网络NLL National Lending Library for Science and Technology 全国科技出借图书馆(英国)NLL Negative Logic Level 负逻辑级NLM National Library of Medicine 国家医学图书馆(美国)NLM NetWare Loadable Module “网器”的可装载模块NLM Network Link Module 网络连接模块NLM Noise Level Monitor 噪声电平监视器NLO Non Linear Operation 非线性运算NLO Non Linear Optimization 非线性优化NLOS Natural Language Operating System 自然语言操作系统NLOS No Line Of Sight 无视线NLP Natural Language Processing 自然语言处理NLP Non Linear Programming 非线性规划NLPID Network Level Protocol ID (Identifying) 网络级别协议识别NL-Port Node Loop Port 节点循环端口,环接点通信口NLPT NoLooP Trouble 无环路故障NLQ Near – Letter – quality 近似信函体质量NLQ, near letter quality 近打字效果NLR Natural Language Representation 自然语言表示法指定NLR Network Layer Relay 网络层转接NLR No Load Ratio 空载比NLR Noise Load Ratio 噪音负载比NLRM Non – Linear Regression Model 非线性回归模型NLS National Language Support 国家语言支持系统(IBM的)NLS Natural Language Support 自然语言支持系统(多指语音识别系统)NLS Negative Lens System 负透镜系统NLS NetWare Licensing Services “网器”许可的服务NLS No – Load Speed 空载速度NLS Non – Linear System 非线性系统NLSI National Library of Science and Invention 全国科学发明图书馆(英国)NLSP NetWare Link –State Protocol “网器”的连接状态协议NLSP Novell(NetWare) Link Services Protocol 网威公司(“网器”)的链路服务协议NLST Name LiST 名单NLT Not Less Than 不少于NLTS Network Load Test System 网络负荷测试系统NM Nathan Myhrvold 纳森·米尔沃德(微软的“技术教父” )NM Net. Medic “网络侦探”麦迪克〖软件名〗NM Network Management 网络管理NMA National Microfilm Association 全国缩微胶片协会(美国)NMA NetWare Management Agent “网器”管理代理NMARS Network Management Access RoutineS 网络管理访问例程NMC National Meteorological Center 国家气象中心NMC Navigation Map Computer 导航地图计算机NMC Network Management Center 网络管理中心NMC Network Management Computer 网络管理计算机NMC Network Measurement Center 网络度量中心NMC Network Message Controller 网络消息控制器NMC Network Monitor Card 网络监视卡NMC Network Multimedia Connection 网络多媒体连接计划(有思科、英特尔和微软在1997年联合推出)NMC Network Management Card 网络管理卡NMC Network Management Center 网络管理中心NMCC Network Management Command and Control system 网络管理命令控制系统NME Noise Measuring Equipment 噪音测量设备NME network Management Entity 网络管理实体NMF Network Management Forum 网络管理论坛NMF New Master File 新的主文件NMI National Microcomputers Inc. 国家微电脑公司(美国,出品个人电脑)NMI NetManag e Inc. “网管”公司(美国,出品信息管理器)NMI Network Management Integration 网络管理集成化NMI Network Management Interface 网络管理接口NMI NonMaskable Interrupt 非闭频中断,不可屏蔽中断nmi 非屏蔽中断NML Neighborhood Matching Logic 邻域匹配逻辑电路NML Network Management Layer 网络管理层次NML Network Management Listener 网络管理监听员NMLIS Native Mode LAN Interconnect Service 本地模式局域网互连业务NMLSI Network Management Listener Sharable Image 网络管理监听员可共享图像NMM Network – Management and Maintenance signal 网络管理和维护信号NMM Network Management Module 网络管理模块NMOS N – Channel Metal Oxide Semiconductor N沟信道金属氧化物半导体(电路)N-MOS N – Metal Oxide Semiconductor N型金属氧化物半导体(电路)nmos n 沟道金属氧化物半导体NMOS N型金氧半导体nmos technology nmos 工艺nmos transistor nmos 晶体管NMP Name Management Protocol 名称管理协议NMP Network Management Plan 网络管理计划NMP Network Management Protocol 网络管理协议(AT&T开发)NMPF Network Management Productivity Facility 网络管理的劳动生产率设备NMR NetWare Multiprotocol Router “网器”的多协议路由器NMR Nuclear Magnetic Resonance 核磁共振NMRS NonMonotonic Reasoning System 非单调推理系统NMS NetWare Management System “网器” 管理系统NMS Network Management Signal 网络管理信号NMS Network Management Station 网络管理站(监视网上节点执行命令情况的计算机)NMS Network Management System 网络管理系统NMS New Management System 新型管理系统NMS Network Management System 网络管理系统NMSI National Mobile Station Identity 全国移动站标示NMSL Novell Mirror Server Link 网威公司镜像服务器链接NMT Network Management Terminal 网络管理终端NMT Nordic Mobile Telephone system 北欧移动电话系统NMTI NuMega Technologies Inc. 纽麦格技术公司(美国,出品开发工具)NMU Network Management Unit 网络管理器NMVT Network Management Vector Transport 网络管理矢量传送NMWG Network Management Working Group 网络管理工作组NN Narrow Network 窄带网络NN National Network 国家网络NN National Number 国家编号NN Network Neighborhood 网上邻居NN Network Node 网络节点NN Neural Network 神经网络NN Neverwinter Nights 《远离冬夜》〖游戏名〗n-n Junction n-n型接面NNA Neural – Net Algorithms 神经网络算法NNC National Network Congestion 全国网络拥塞NNC National Network Congestion signal 全国网络拥塞信号NNC Normal Network Cause 正常网络原因NNI Network Node Interface 网络节点接口〖A TM〗NNI Network to Network Interface 网络到网络接口,网间接口〖A TM〗NNI Network to Node Interface 网络到节点接口NNI Next Node Index 下一节点索引NNI Network-Network Interface 网间接口NNM Network Node Manager 网络节点管理器NNP National Numbering Plan 全国编号计划NNS NetWare Name Service “网器” 名称服务NNS Network Node Server 网络节点服务器NNS Network of NetworkS 网络的网络NNS Neutral Network Simulator 中性网络模拟器NNSC National Network Service Center 全国网络服务中心NNSC NSF Network Service Center 国家科学基金会网络服务中心(美国)NNSS Navy Navigation Satellite System 海军导航卫星系统NNTP Network News Transfer Protocol 网络新闻传送协议〖因特网〗NNTP (Network news transfer protocol) NNTP(网络新闻传输协议)NNTP Network News Transport Protocol 网络新闻传输协议NNTP NNTP协定NNTP, Network News Transfer Protocol, (RFC-977) 网络新闻传输协议nntp: network news transfer protocol,网络新闻传输协议NNVT Number Nine Visual Technologies Inc. “老九”可视技术公司(美国,出品高性能可视加速器)NO Normally Open 通常是打开的no Norway 挪威(域名)NO Not Operational 不可操作,不可运行NO – OP No – Operation instruction 空操作,无操作no address instruction 无地址指令no carrier 没有载波讯号no failure operation 无故障工作no load characteristic 无载特性no load current 无载电流no load losses 无载损耗no load test 无载式验no load voltage 无载电压no load 无载的no operation 空操作no operation, memory protect 记忆保护无作业No Operation, NOP 不运算no operatton 无作业no opinstruction 空指令No Parity 无同位no return point 无转回点no select 没有选择no signal 无信号no voltage relay 无压继电器no wait memory 无等待存储器立即存储器no 否no-access Bytes No-Access 字节no-address instruction 无址指令noble gas ion laser 惰性气体离子激光器noble gas 惰性气体noble metal cermet 贵金属陶瓷noble metal paste 贵金属膏NOC Negative Operation Concepts 负运算概念NOC Network Operation Center 网络操作中心,网络运行中心NOC NOt – Carry 不进位NOC Network Operations Center 网络操作中心NOC网络操作中心NOCC National Operators Control Center 全国操作员控制中心(美国)no-consoles condition 无控制台条件nocturnal radiation 夜间辐射Nocturne 《夜曲》〖游戏名〗NOD News On Demand 点播新闻〖游戏名〗NODAL Network – Oriented Data Acquisition Language 面向网络的数据采集语言NODC National Oceanographic Data Center 国家海洋资料中心(美国)Node (N) 节点node computer 节点计算机node computer 节点计算器Node Encryption 节点加密node processor 节点处理器node splitting 节点划分node 节点node 节点Node 节点,结点,网点node 节点、结点node(N) 节;节点nodes 节点NODSE NODe Serve Routine 节点访问例程NOF National Optical Font 国家光学识别字体(美国)NOF Network Operations Forum 网络操作论坛NOFCW Number OF Chargeable Word 计费字数noise analyzer 噪声分析器noise background 背景噪声noise channel 噪声信道noise characteristics 噪声特性noise current 噪声电流noise cutting off 噪声截止noise equivalent power 噪声等效功率noise factor meter 噪声系数测量计noise factor 噪声度;噪声因子noise factor 噪声系数noise factor 噪声因数noise figure 噪声指数noise filter 静噪滤波器noise filter 噪声虑波器noise generation 噪声发生noise generator diode 噪声发生掐极管noise generator 噪声发生器noise immHunity 噪声免除noise immunity 抗扰度noise killer 除噪声器noise level 噪声电平noise level 噪声位准noise limiter 噪声抑制器noise margin 噪声容限noise margin, voltage 电度噪声容限noise meter 噪声测试器噪声计noise modulation 噪声灯noise power 噪声功率noise ratio 噪声比noise source 噪声源noise spectral power density 噪声功率频谱密度noise spectrum 噪声频谱noise stability 噪声稳定度noise standard 噪声标准noise suppression 噪声抑制noise suppressor 噪声抑制器noise temperature 噪声温度noise unity 噪声单位noise voltage 噪声电压noise word 干扰词noise 干扰noise 干扰noise 杂乱信号noise, ambient 周围噪声noise, background 背景噪声noise, broadband(white) 宽带(素)噪声noise, carrier 载波噪声noise, common-mode 通用模态噪声noise, delta 三角噪声noise, diode 二极管噪声noise, electricaltype 电气型式噪声noise, Gaussian 高斯噪声noise, impulse 脉冲噪声noise, line 线路噪声noise, modulation 调变噪声noise, natural 自然噪声noise, random 随机噪声noise, reference 参考噪声noise, systematic 系统噪声noise, thermal 热离讯noiseless channel 无噪声信道noiseless tuning 无噪声党noisy channel 有噪声信道noisy channel 噪声信道noisy digit 噪声数字noisy modt 噪声模态noisy signal 噪声信号No-Job Definition Error 无工作定义误差Nokia 诺基亚〖手机〗NOL Normal OverLoad 正常过载NOLAS New On – Line Administrative Computer System 新式在线行政管理计算机系统nom 从事个人活动的个体(最高域名)NOMAAD langnage 诺麦语言NOMC Network Operators Maintenance Channel 网络操作员维护通道nominal frequency 额定频率nominal power 额定功率nominal speed 额定速度nominal transformation ratio 标称变换系数nominal transformation ratio 额定变换率nominal value 标称值nominal(rated)speed 标称(额定)速率NOMS Network Operations Management System 网络操作管理系统non addressable memory 不可编址存储器non directional current protection 非方向电粒护装置non directional 不定向的non directive 不定向的non homing 不归位的non inductive load 无感负载non inductive resistance 无感电阻Non- Interlaced Video 非交错屏幕non linear amplifier 非线性放大器non linear distortion 非直线失真non linear element 非线性元件non linear network 非线性网络non linear potentiometer 非线性电位计non linear scale 非线性标度non linear system 非线性系统non linear time base 非线性时基non linear 非直线性的non polarized relay 无极继电器non resonating aerial 非谐振天线non resonating antenna 非谐振天线non return to zero 不归零制non symmetrical adjustment 不对称蝶Non Uniform Memory Access (NUMA) 非一致性内存non von neumann architecture 非冯诺依曼计算机总体结构non von neumann computer 非冯诺依曼型计算机non-add 非加non-administrative system 非行政系统nonaggregated object 非汇总物件nonalbyed contact 无合金化接触nonarithmetic shift 非算术移位nonarithmeticshift 非算术移位nonassociated CCIS 非结合CCISnonburst device 非脉冲串装置noncavity laser 无谐振腔激光器nonclient area 非工作区non-Client 非用户区nonclustered index 非聚集索引noncoherent bundle 非相关捆扎noncoherent modulation system 非相关调变系统noncompat 非相容nonconductor 非导体nonconjunction 非共结nonconjunction 与非nonconnected storage 非连接储存noncontact measurement 非接触测量技术noncontact plunger 非接触式活塞noncontact printing 无接触投影曝光noncontact recording 非触式记录noncontact scribing 无接触划片noncontact welding 非接触焊接noncontiguous constant 非邻接常数noncontiguous item 非连续项noncontinguous 非连续项目nondedicated part 非专用元件nondefective zone 无缺陷区nondegenerate gas 非简并气体nondegenerate semiconductor 非简并半导体nondegenerate state 非简并态nondependent nameNondestructive Addition 破坏性加法nondestructive backspace 非破坏回退nondestructive check 非破坏性试验nondestructive cursor 非破坏性光标nondestructive evaluation 非破坏可靠性评价nondestructive memory 非破坏性存储器nondestructive monitoring 非破坏性试验nondestructive read 非破坏读出nondestructive read(NDR) 非破坏性阅读nondestructive readout(NDRO) 非破坏性读出nondestructive storage 非破坏性存储器nondestructive test 非破坏性试验nondestructive testing 非破坏性试验nondial trunks 非拨号干线nondirect transition 间接跃迁nondisjunction 非分离nondisjunction 或非non-disk file 非磁盘档案non-display-based word-processing equipment 非显示基字处理设备nondissipative network 无耗电网络none 无nonequilibrium carrier 非平衡载劣nonequilibrium density 非平衡浓度nonequilibrium state 非平衡态nonequivalence element 非对等组件nonequivalence element 异门nonequivalence operation 非对等运算nonequivalence 非等价Nonequivalent Element 非对等组件nonerasable medium 不可抹媒介nonerasable memory 只读存储器固定存储器nonerasable storage 只读存储器固定存储器non-escapling key 非退出键nonexcited state 非激励状态nonexcutable statement 不可执行叙述nonexecutable statement 非执行语句nonfile-structured device 非文件结构装置nonflame spot bonder 无火焰点焊机nonflatness 非平面度nonflexible coaxial line 刚性同轴线nonformatted data 非格式化数据Non-Functional requirement 非功能性需求nonidentity operation 非识别运算nonimpact printer 非或式印刷机nonimpact printer 非撞击式打印机non-impact printer 非撞击式打印机nonimpact printer(NIP) 非冲击印字机nonimpact printing 非或式印刷nonintegral expression 非整数类表达式nonintelligible cross talk 不可理解串音noninteractive 非交谈式noninterruption discipline 非中断规定non-intrinsic OLE 非内建OLEnon-intrinsic 非内建noninvasive probe 非侵袭探针nonleaf member 非叶成员nonleaf 非叶nonlinear control system 非线性控制系统nonlinear control theory 非线性控制理沦nonlinear coupling 非线性联结nonlinear distortion 非线性失真nonlinear multivariable control 非线性多变量控制nonlinear optics 非线性光学nonlinear potentiometer 非线性电位计nonlinear programming 非线性规划nonlinear resistor 非线性电阻器nonlinear response 非线性响应nonlinear scale 非线性标度nonlinearity 非直线性nonloadable character set 非可载字符集nonloaded lines 无载线Nonlocking Escape 不锁逸出nonlocking escape 非锁定换码nonlocking 不锁nonlocking 非锁定nonmapping mode 非映像模态nonmaskable interrupt 非屏蔽中断non-modal form 非强制响应窗体nonmonotonic reasoning 非单灯理nonmonotonic 非单调的nonnumeric character 非数字字符nonnumeric literal 非数值文字常数nonnumeric literal 非数字实字nonnumeric machine 非数值计算机nonnumeric 非数字nonnumerical data processing 非数值数据处理nonoperable instruction 不可操作指令nonpacked format 非包装格式nonpageable partition 非分页划分nonpageable region 不可分页区nonpaged Pool Bytes 未分页集区字节nonpersistent screen 无余辉屏幕nonplanarity 非平面度nonpolar crystal 无极性晶体nonpolarized light 非偏振光nonpolarized return to zero recording 非极性归零记录制nonpolarized return-to-zero recording(RZ(NP)) 非极化归零记录nonprimitive operation 非本元运算nonprint code 非打印码nonprint 免印nonprintable character 不可印字符nonpriority interrupt 非优先中断nonprivileged instruction 非特权指令nonprocedural language 非过程语言nonprocedural programming language 非程序化程序语言non-procedure-oriented language 非程序定向语言nonproductive operations 辅助操作nonproductive poll 非生产输询nonproductive task 非生产任务nonprogrammable action 不可编程序的动作nonprogrammed halt 非规划暂停nonprogrammer user 非程序员用户nonradiative jump 无辐射跃迁nonradiative recombination 无辐射复合nonradiative transition 无辐射跃迁nonradiatve transfer process 无辐射传输过程non-real-time processing 非实时处理nonrectifying junction 非整玲nonredundancy 非冗余性nonredundant integrated circuit 无冗余集成电路nonreflective coatings 非反射涂料non-reflective ink 非反射墨水nonrepeatable read 不可重复读取nonreproducing code 非复制代码non-repudiation 不可否认性nonreserved word 非预定字nonresident part 非常驻部分nonresident portion 非常驻部分nonresident portion(of a control program) (一个控制程序的)非驻存部分nonresident program 非常驻程序nonresident routine 非常驻程序nonresident simulator computer system 非驻存仿真器计算器系统nonreturn to zero change recording 异码变化不归零记录nonreturn to zero recording 不归零记录Non-Return to Zero, Inverted NRZInon-return-to-chang recording 不归变更记录non-return-to-reference recording 不归位记录non-return-to-zero change-on-ones recording(NRZI) 不归零变更为一记录non-return-to-zero(chang4e)recording(NRZ(C)) 不归零(变更)记录non-return-to-zero(NRZ) 不归零nonreusable 不可重用nonrusable routine 不可重用程序nonsaturated logic 非饱和逻辑nonsaturated mode 非饱和方式nonsaturation current voltage characteristic 非饱和电恋缪固匦憎nonscalar value 非数值类值Nonscheduled Down Time 非计划停机时间nonscheduled maintenance time 非预定维修时间nonselfmaintained discharge 非自持放电nonsensitivity 无灵敏度non-SGML character 非SGML字元non-SGML character 非SGML字符non-SGML data entity 非SGML资料实体non-SGML data entity 非SGML数据实体nonshared subchannel 非公用子通道nonsignificant digit 无效数字nonsignificant zero 无效零nonsimultaneous transmission 非同时传输nonsingular matrix 非奇异矩阵nonspecific volume request 非特定量申请nonstandard label 非标准标号nonstatic member function 非静态成员函式nonstatic variables 非静态变量nonstatic 非静态nonsteady state 不稳定状态NonStop Clusters 不停顿丛集nonstorage device 非储存装置nonstorage display 非存储显示nonstore through cache 经快取非储存non-String 非字符串nonswitched connection 非交换连接nonswitched line 非交换线路nonswitched lint 非交换录nonswitched point-to-point line 非交换点对点线nonsynchronous 异步nonsystem key 非系统键nontemporary dataset 永久数据集nonterminal symbol 非终结符号nonthreshold logic 无阈值逻辑nontransparent mode 非透通模态nonuniform field 不均匀场nonuniform network 不均匀网络nonuniformity 不均匀性non-variant content 无差异内容non-visual 隐藏式nonvolatile memory array 非易失性存储企列nonvolatile memory 不变性记忆器nonvolatile memory 非易失存储器nonvolatile memory 非易失性存储器nonvolatile RAM 不变性随机接达记忆器nonvolatile ram 非易失随机存取存储器Non-V olatile Random Access Memory (NVRAM) 非挥发性内存nonvolatile storage 不变性储存器nonvolatile storage 非易失存储器nonvolatile store 非易失存储器nonvolatility 非易失性nonzero digit 非零位nonzero 非零值NOOP NO OPeration 空操作no-op instruction 无作业指令No-Op 无作业no-operation instruction 无作业指令NOP Network and Operation Plan 网络和操作计划NOP Network Operation Procedure 网络操作程序NOP NO Operation 空操作(指令)nop 空操赘令NOR circuit 反或电路nor circuit 或非电路NOR Element NOR组件nor element 或非元件nor gate 或非门。
211062343_高校去中心化身份无密码认证系统设计
第8期表2拓扑数据表发送拓扑信号的开关①②③④⑤⑥⑦⑧⑨识别到拓扑信号的开关①⑤②⑤⑨③⑤①④⑤⑥⑤①⑤⑥③⑤⑦①⑤⑧⑤⑨层级232413332根据“发送信号的开关本身及其上级开关可检测到拓扑信号”原则,分析得到拓扑结构如图13所示。
图13拓扑结构图终端通过通信模块依次发出识别信号。
以④号开关为例,终端要求④号开关发生脉冲电流信号,⑥、①、⑤号开关能检测到脉冲电流信号并告知终端,终端已能判断⑥、①、⑤号开关是④号开关的上层节点。
在⑥号开关发出脉冲电流信号时,①、⑤号开关能检测到脉冲电流信号并告知终端,终端已能判断①、⑤号开关为⑥号开关的上层节点。
当①号开关发出脉冲电流信号时,只有⑤号开关能够检测到脉冲电流信号,终端已能判断⑤号开关是①号开关的上层节点;终端认为拓扑的层次结构是:④→⑥→①→⑤→智能终端。
实验过程中,总体拓扑识别时间为96s ,拓扑识别准确率达到99%以上。
实验结果表明,在试验环境下,本文技术所形成的拓扑结构图和拓扑数据表准确、可靠,拓扑识别时间短,可清晰展示各级开关之间的关系,为准确定位故障点和识别故障类型提供了技术途径。
5结论针对现有技术存在的系统拓扑与实际拓扑不一致、可用性不高等缺陷,本文提出一种基于智能量测开关的拓扑识别技术方案,对方案中特征电流模块、调制解调方式、电流采样及CT 取电电路等分别进行了设计,明确了拓扑识别电流特征及关键参数,提出了完善的拓扑识别流程,给出了信息编码方式及数据帧格式,设计了拓扑识别单元的通信网络协议栈结构及报文封装格式。
经实验验证与结果分析表明,本文提出的技术方案拓扑识别时间短、功耗低,识别准确率达99%以上,能有效熊德智,等:智能量测开关拓扑识别技术研究图12拓扑试验平台135现代电子技术2023年第46卷解决现有技术缺陷。
该技术可在低压数字化台区中进行大规模推广应用,为实现低压台区异常用电的可观、可测、可控奠定了基础。
注:本文通讯作者为熊德智。
图神经网络综述
第47卷第4期Vol.47No.4计算机工程Computer Engineering2021年4月April 2021图神经网络综述王健宗,孔令炜,黄章成,肖京(平安科技(深圳)有限公司联邦学习技术部,广东深圳518063)摘要:随着互联网和计算机信息技术的不断发展,图神经网络已成为人工智能和大数据处理领域的重要研究方向。
图神经网络可对相邻节点间的信息进行有效传播和聚合,并将深度学习理念应用于非欧几里德空间的数据处理中。
简述图计算、图数据库、知识图谱、图神经网络等图结构的相关研究进展,从频域和空间域角度分析与比较基于不同信息聚合方式的图神经网络结构,重点讨论图神经网络与深度学习技术相结合的研究领域,总结归纳图神经网络在动作检测、图系统、文本和图像处理任务中的具体应用,并对图神经网络未来的发展方向进行展望。
关键词:图神经网络;图结构;图计算;深度学习;频域;空间域开放科学(资源服务)标志码(OSID ):中文引用格式:王健宗,孔令炜,黄章成,等.图神经网络综述[J ].计算机工程,2021,47(4):1-12.英文引用格式:WANG Jianzong ,KONG Lingwei ,HUANG Zhangcheng ,et al.Survey of graph neural network [J ].Computer Engineering ,2021,47(4):1-12.Survey of Graph Neural NetworkWANG Jianzong ,KONG Lingwei ,HUANG Zhangcheng ,XIAO Jing(Federated Learning Technology Department ,Ping An Technology (Shenzhen )Co.,Ltd.,Shenzhen ,Guangdong 518063,China )【Abstract 】With the continuous development of the computer and Internet technologies ,graph neural network has become an important research area in artificial intelligence and big data.Graph neural network can effectively transmit and aggregate information between neighboring nodes ,and applies the concept of deep learning to the data processing of non-Euclidean space.This paper briefly introduces the research progress of graph computing ,graph database ,knowledge graph ,graph neural network and other graph-based techniques.It also analyses and compares graph neural network structures based on different information aggregation modes in the spectral and spatial domain.Then the paper discusses research fields that combine graph neural network with deep learning ,and summarizes the specific applications of graph neural networks in action detection ,graph systems ,text and image processing tasks.Finally ,it prospects the future development research directions of graph neural networks.【Key words 】graph neural network ;graph structure ;graph computing ;deep learning ;spectral domain ;spatial domain DOI :10.19678/j.issn.1000-3428.00583820概述近年来,深度学习技术逐渐成为人工智能领域的研究热点和主流发展方向,主要应用于高维特征规则分布的非欧几里德数据处理中,并且在图像处理、语音识别和语义理解[1]等领域取得了显著成果。
[整理版]供配电英文
Power Supply and Distribution SystemABSTRACT:The basic function of the electric power system is to transport the electric power towards customers. The l0kV electric distribution net is a key point that connects the power supply with the electricity using on the industry, business and daily-life. For the electric power, allcostumers expect to pay the lowest price for the highest reliability, but don't consider that it's self-contradictory in the co-existence of economy and reliable.To improve the reliability of the power supply network, we must increase the investment cost of the network construction But, if the cost that improve the reliability of the network construction, but the investment on this kind of construction would be worthless if the reducing loss is on the power-off is less than the increasing investment on improving the reliability .Thus we find out a balance point to make the most economic,between the investment and the loss by calculating the investment on power net and the loss brought from power-off.KEYWORDS:power supply and distribution, power distribution reliability,reactive compensation, load distributionThe revolution of electric power system has brought a new big round construction,which is pushing the greater revolution of electric power technique along with the application of new technique and advanced equipment. Especially, the combination of the information technique and electric power technique, to great ex- tent, has improved reliability on electric quality and electric supply. The technical development decreases the cost on electric construction and drives innovation of electric network. On the basis of national and internatio- nal advanced electric knowledge, the dissertation introduces the research hotspot for present electric power sy- etem as following.Firstly, This dissertation introduces the building condition of distribution automation(DA), and brings forward two typical construction modes on DA construction, integrative mode and fission mode .It emphasize the DA structure under the condition of the fission mode and presents the system configuration, the main station scheme, the feeder scheme, the optimized communication scheme etc., which is for DA research reference.Secondly, as for the (DA) trouble measurement, position, isolation and resume, Thisdissertation analyzes the changes of pressure and current for line problem, gets math equation by educing phase short circuit and problem position under the condition of single-phase and works out equation and several parameter s U& , s I& and e I& table on problem . It brings out optimized isolation and resume plan, realizes auto isolation and network reconstruction, reduces the power off range and time and improves the reliability of electric power supply through problem self- diagnoses and self-analysis. It also introduces software flow and use for problem judgement and sets a model on network reconstruction and computer flow.Thirdly, electricity system state is estimated to be one of the key techniques in DA realization. The dissertation recommends the resolvent of bad measurement data and structure mistake on the ground of describing state estimate way. It also advances a practical test and judging way on topology mistake in state estimate about bad data test and abnormity in state estimate as well as the problem and effect on bad data from state measure to state estimate .As for real time monitor and control problem, the dissertation introduces a new way to solve them by electricity break and exceptional analysis, and the way has been tested in Weifang DA.Fourthly, about the difficulty for building the model of load forecasting, big parameter scatter limit and something concerned, the dissertation introduces some parameters, eg. weather factor, date type and social environment effect based on analysis of routine load forecasting and means. It presents the way for electricity load forecasting founded on neural network(ANN),which has been tested it’s validity by example and made to be good practical effect.Fifthly, concerning the lack of concordant wave on preve nting concordant wave and non-power compensation and non-continuity on compensation, there is a topology structure of PWM main circuit and nonpower theory on active filter the waves technique and builds flat proof on the ground of Saber Designer and proves to be practical. Meanwhile, it analyzes and designs the way of non-power need of electric network tre- nds and decreasing line loss combined with DA, which have been tested its objective economic benefit throu- gh counting example.Sixthly, not only do the dissertation design a way founded on the magrginal electric price fitted to our present national electric power market with regards to future trends of electric power market in China and fair trade under the government surveillance, that is group competitio n in short-term trade under the way of grouped price and quantity harmony, but also puts forward combination arithmetic, math model of trading plan and safty economical restriction. It can solve the original contradiction between medium and long term contract price and short term competitive price with improvement on competitive percentage and cut down the unfair income difference of electric factory, at the same time, it can optimize the electric limitfor all electric factories and reduce the total purchase charge of electric power from burthen curve of whole electric market network.The distribution network is an important link among the power system. Its neutral grounding mode and operation connects security and stability of the power system directly. At the same time, the problem about neutral grounding is associated with national conditions, natural environment, device fabrication and operation. For example, the activity situation of the thunder and lightning, insulating structure and the peripheral interference will influence the choice of neutral grounding mode Conversely, neutral grounding mode affects design, operation, debugs and developing. Generally in the system higher in grade in the voltage, the insulating expenses account for more sizable proportion at the total price of the equipment. It is very remarkable to bring the economic benefits by reducing the insulating level. Usually such system adopt the neutral directly grounding and adopt the autoreclosing to guarantee power supply reliability. On the contrary, the system which is lower in the voltage adopts neutral none grounding to raise power supply reliability. So it is an important subject to make use of new- type earth device to apply to the distribution network under considering the situation in such factors of various fields as power supply reliability, safety factor, over-voltage factor, the choice of relay protection, investment cost, etc.The main work of this paper is to research and choice the neutral grounding mode of the l0kV distribution network. The neutral grounding mode of the l0kV network mainly adopts none grounding, grounding by arc suppressing coil, grounding by reactance grounding and directly grounding. The best grounding mode is confirmed through the technology comparison. It can help the network run in safety and limit the earth electric arc by using auto-tracking compensate device and using the line protection with the detection of the sensitive small ground current. The paper introduces and analyzes the characteristic of all kind of grounding modes about l0kV network at first. With the comparison with technological and economy, the conclusion is drawn that the improved arc suppressing coil grounding mode shows a very big development potential.Then, this paper researches and introduces some operation characteristics of the arc suppressing coil grounding mode of the l0kV distribution network. And then the paper put emphasis on how to extinguish the earth electric arc effectively by utilizing the resonance principle. This paper combines the development of domestic and international technology and innovative achievement, and introduces the computer earth protection and autotracking compensate device. It proves that the improved arc suppressing coil grounding mode have better operation characteristics in power supply reliability, personal security, security of equipment and interference of communication. The application of the arc suppressing coilgrounding mode is also researched in this paper.Finally, the paper summarizes this topic research. As a result of the domination of the arc suppressing coil grounding mode, it should be more popularized and applied in the distribution network in the future.The way of thinking, project and conclusions in this thesis have effect on the research to choose the neutral grounding mode not only in I0kV distribution network but also in other power system..The basic function of the electric power system is to transport the electric power towards customers. The l0kV electric distribution net is a key point that connects the power supply with the electricity using on the industry, business and daily-life. For the electric power, all costumers expect to pay the lowest price for the highest reliability, but don't consider that it's self-contradictory in the co-existence of economy and reliable. To improve the reliability of the power supply network, we must increase the investment cost of the network con- struction But, if the cost that improve the reliability of the network construction, but the investment on this kind of construction would be worthless if the reducing loss is on the power-off is less than the increasing investment on improving the reliability .Thus we find out a balance point to make the most economic, between the investment and the loss by calculating the investment on power net and the loss brought from power-off. The thesis analyses on the economic and the reliable of the various line modes, according to the characteristics various line modes existed in the electric distribution net in foshan..First, the thesis introduces as the different line modes in the l0kV electric distribution net and in some foreign countries. Making it clear tow to conduct analyzing on the line mode of the electric distribution net, and telling us how important and necessary that analyses are.Second, it turns to the necessity of calculating the number of optimization subsection, elaborating how it influences on the economy and reliability. Then by building up the calculation mode of the number of optimization subsection it introduces different power supply projects on the different line modes in brief. Third, it carries on the calculation and analyses towards the reliability and economy of the different line modes of electric distribution net, describing drafts according by the calculation. Then it makes analysis and discussion on the number of optimization subsection.At last, the article make conclusion on the economy and reliability of different line modes, as well as, its application situation. Accordion to the actual circumstance, the thesis puts forward the beneficial suggestion on the programming and construction of the l0kV electric distribution net in all areas in foshan. Providing the basic theories and beneficial guideline for the programming design of the lOkV electric distribution net and building up a solid net, reasonable layout, qualified safe and efficiently-worked electric distribution net.References[1] Wencheng Su. Factories power supply [M]. Machinery Industry Publishing House. 1999.9[2] Jiecai Liu. Factories power supply design guidance [M]. Machinery Industry Publishing House.1999.12[3] Power supply and distribution system designspecifications[S].China plans Press. 1996[4] Low-voltage distribution design specifications [S].China plans Press. 1996.6。
艾默生DELTAV系统常见英语单词
baud rate Bi-directional Edge Trigger Bias/Gain (BG) bind block Books Online Boolean Fan Input Boolean Fan Output broker Broadcast Mode browse Bulk Edit bulk power button
命名集 网络 网络时间服务器 网络拓扑 神经网络 节点 互斥或非
O OPC Data Server operation object Off Delay Timer On Delay Timer One-Click Lockdown Online Help operand Operator Graphic Operator Keyboard display Operator Station Out of Service overview
可扩展参数 外部阶段 外部引用
F Foundation Fieldbus(FF) faceplate Failure Monitor Fault-tolerant server Fiber Switch Fiber-Optic Cable field wiring Fieldbus H1 card Fieldbus Power Hub Fieldbus port filter fire and gas firewall Flow Meter Force a Transition Force an Input Format Specification Files formula Function Block
条件
Conditional Alarming
图对抗攻击研究综述
近年来,得益于计算机计算能力的提升,大量可用的数据集以及算法的创新,深度神经网络在图像识别[1]、语义分割[2]、自然语言处理[3]、推荐系统[4]等领域表现出卓越的性能。
图作为一种表示对象及对象之间关系的数据结构,在现实世界中广泛存在,如交通网络、社交网络、通信网络等。
图神经网络[5-7]将基于深度学习的方法应用于图数据上,通过聚合图中节点的邻域信息学习图数据的结构信息和特征信息,在节点分类、链路预测、图嵌入等方面得到迅速发展。
虽然深度神经网络具有出色的性能,但是近来研究表明,在精心设计的微小扰动下,深度神经网络性能会严重下降[8-9]。
例如在图像分类[10]和文本分类[11]场景下,只需修改少数像素或文字就可以改变大部分测试数据的预测结果。
作为深度神经网络在图数据上的应用,图图对抗攻击研究综述翟正利,李鹏辉,冯舒青岛理工大学信息与控制工程学院,山东青岛266525摘要:将深度学习用于图数据建模已经在包括节点分类、链路预测和图分类等在内的复杂任务中表现出优异的性能,但是图神经网络同样继承了深度神经网络模型容易在微小扰动下导致错误输出的脆弱性,引发了将图神经网络应用于金融、交通等安全关键领域的担忧。
研究图对抗攻击的原理和实现,可以提高对图神经网络脆弱性和鲁棒性的理解,从而促进图神经网络更广泛的应用,图对抗攻击已经成为亟待深入研究的领域。
介绍了图对抗攻击相关概念,将对抗攻击算法按照攻击策略分为拓扑攻击、特征攻击和混合攻击三类;进而,归纳每类算法的核心思想和策略,并比较典型攻击的具体实现方法及优缺点。
通过分析现有研究成果,总结图对抗攻击存在的问题及其发展方向,为图对抗攻击领域进一步的研究和发展提供帮助。
关键词:图数据;图神经网络;图对抗攻击;对抗样本文献标志码:A中图分类号:TP181doi:10.3778/j.issn.1002-8331.2012-0367Research Overview of Adversarial Attacks on GraphsZHAI Zhengli,LI Penghui,FENG ShuSchool of Information and Control Engineering,Qingdao University of Technology,Qingdao,Shandong266520,China Abstract:Deep learning for graph data modeling has shown excellent performance in complex tasks,including nodeclassification,link prediction,and graph classification.However,the subtle perturbation on the input is easy to cause deep neural networks false output.Graph neural networks also inherit this vulnerability,it has raised concerns for adapting graph neural networks in safety-critical areas such as finance and transportation.By investigating the mechanism and method of graph adversarial attacks,it can improve the understanding of vulnerability and robustness of graph neural networks,and promote the wider application of graph neural networks.Graph adversarial attack has become an urgent research topic for further development.Firstly,the related concepts of graph adversarial attack are introduced.Then, according to attack strategies,adversarial attack algorithms are classified into three categories,including topology attack, feature attack and hybrid attack.Moreover,each category is summarized,such as its core ideas and strategies.Furthermore, some typical attacks are compared,including specific implementation methods,advantages,and disadvantages.Through the analysis of the state of the art,the existing problems and development direction of graph adversarial attacks are summarized,which can provide help for further researching graph adversarial attacks.Key words:graph data;graph neural network;graph adversarial attack;adversarial example基金项目:国家自然科学基金(61502262)。
基于改进随机游走的复杂网络节点重要性评估
Operations Research and Fuzziology 运筹与模糊学, 2023, 13(1), 329-340 Published Online February 2023 in Hans. https:///journal/orf https:///10.12677/orf.2023.131036基于改进随机游走的复杂网络节点重要性评估蔡晓楠,郑中团*上海工程技术大学数理与统计学院,上海收稿日期:2023年1月23日;录用日期:2023年2月17日;发布日期:2023年2月23日摘要复杂系统可以抽象为复杂网络,重要节点评估与识别是复杂网络的一个热点问题。
针对网络拓扑结构和节点自身属性对有向复杂网络重要节点的影响,提出基于改进随机游走的节点重要性评估方法。
首先对节点的出度和入度分别附参数求出节点联合度数为节点质量,并通过调节参数评估节点出度与入度对节点重要性的影响;其次使用SimRank 算法得任意两个节点相似值的倒数为引力模型的距离,考虑节点间的拓扑结构;最后通过相对路径数比值做引力模型的系数,考虑节点间信息传播的影响效果。
任意两节点的作用力构造引力矩阵,将引力矩阵行归一化构造转移矩阵,然后随机游走对节点进行排序。
使用极大强连通性、极大弱连通性和脆弱性等评估指标在四个真实网络上进行实验对比,结果表明,提出的算法相比LeaderRank 、PageRank 、HITs 等方法能更准确地评估节点的重要性。
将复杂网络的多种特征进行融合,新创建的重要节点评估方法可以运用在生物领域和经济贸易领域等。
关键词有向复杂网络,节点重要度,节点相似性,引力模型,相对路径Evaluation of Node Importance in Complex Networks Based on Improved Random WalkXiaonan Cai, Zhongtuan Zheng *School of Mathematics, Physics and Statistics, Shanghai University of Engineering Science, Shanghai Received: Jan. 23rd, 2023; accepted: Feb. 17th, 2023; published: Feb. 23rd, 2023AbstractComplex systems can be abstracted as complex networks. The evaluation and identification of important nodes is a hot issue in complex networks Aiming at the influence of network topology*通讯作者。
艾默生DELTAV系统常见英语单词编译
艾默生Deltav系统常见英文单词编译
中文
英文
中止
Analog I/O Card
确认
Analog Voter
获取
Analog monitor
动作
Application Station
自适应整定
arbitration
添加
architecture
管理员
archive
先进控制
area
高级单元管理
Asset Optimization
手动模式
Marine Certified
海上认证
Master Recipe
主配方
matrix
矩阵
Media Converter
媒介转换器
Mid Selector (MID)
中值选择器
Migrate Database
迁移数据库
Model Predictive Control Process 模型预估控制过程仿真
别名解析表
Batch ID
模拟控制
Batch Operator Interface
波特率
card
双向边沿触发
carrier
偏差/增益
Cause and Effect Matrix (CEM)
中文 模拟量I/O卡件
模拟表决器 模拟监控 应用站
仲裁 架构 存档 厂区 资产优化 分配 授权 自动感应 自动更新 自动切换
diode Discrete I/O Card
Discrete Input Discrete Output
download dry contact Dynamo set
Extensible Parameter External Phase
配电系统英文对照
附录一、英文原文Distribution network analysisThe basic function of the electric power system is to transport the electric power towards customers. The l0kV electric distribution net is a key point that connects the power supply with the electricity using on the industry, business and daily-life. For the electric power, allcostumers expect to pay the lowest price for the highest reliability, but don't consider that it's self-contradictory in the co-existence of economy and reliable.To improve the reliability of the power supply network, we must increase the investment cost of the network construction But, if the cost that improve the reliability of the network construction, but the investment on this kind of construction would be worthless if the reducing loss is on the power-off is less than the increasing investment on improving the reliability .Thus we find out a balance point to make the most economic,between the investment and the loss by calculating the investment on power net and the loss brought from power-off.The revolution of electric power system has brought a new big round construction,which is pushing the greater revolution of electric power technique along with the application of new technique and advanced equipment. Especially, the combination of the information technique and electric power technique, to great ex- tent, has improved reliability on electric quality and electric supply. The technical development decreases the cost on electric construction and drives innovation of electric network. On the basis of national and internatio- nal advanced electric knowledge, the dissertation introduces the research hotspot for present electric power sy- etem as following.Firstly, This dissertation introduces the building condition of distribution automation(DA), and brings forward two typical construction modes on DA construction, integrative mode and fission mode .It emphasize the DA structure under the condition of the fission mode and presents the system configuration, the main station scheme, the feeder scheme, the optimized communication scheme etc., which is for DA research reference.Secondly, as for the (DA) trouble measurement, position, isolation and resume, This dissertation analyzes the changes of pressure and current for line problem, gets math equation by educing phase short circuit and problem position under the condition of single-phase and works out equation and several parameter s U& , s I& and e I& table on problem . It brings out optimized isolation and resume plan, realizes auto isolation and network reconstruction, reduces the power off range and time and improves the reliability of electric power supply through problem self- diagnoses and self-analysis. It also introduces software flow and use for problem judgement and sets a model on network reconstruction and computer flow.Thirdly, electricity system state is estimated to be one of the key techniques in DA realization. The dissertation recommends the resolvent of bad measurement data and structure mistake on the ground of describing state estimate way. It also advances a practical test andjudging way on topology mistake in state estimate about bad data test and abnormity in state estimate as well as the problem and effect on bad data from state measure to state estimate .As for real time monitor and control problem, the dissertation introduces a new way to solve them by electricity break and exceptional analysis, and the way has been tested in Weifang DA.Fourthly, about the difficulty for building the model of load forecasting, big parameter scatter limit and something concerned, the dissertation introduces some parameters, eg. weather factor, date type and social environment effect based on analysis of routine load forecasting and means. It presents the way for electricity load forecasting founded on neural network(ANN),which has been tested it’s validity by example and made to be good practical effect.Fifthly, concerning the lack of concordant wave on preve nting concordant wave and non-power compensation and non-continuity on compensation, there is a topology structure of PWM main circuit and nonpower theory on active filter the waves technique and builds flat proof on the ground of Saber Designer and proves to be practical. Meanwhile, it analyzes and designs the way of non-power need of electric network tre- nds and decreasing line loss combined with DA, which have been tested its objective economic benefit throu- gh counting example.Sixthly, not only do the dissertation design a way founded on the magrginal electric price fitted to our present national electric power market with regards to future trends of electric power market in China and fair trade under the government surveillance, that is group competitio n in short-term trade under the way of grouped price and quantity harmony, but also puts forward combination arithmetic, math model of trading plan and safty economical restriction. It can solve the original contradiction between medium and long term contract price and short term competitive price with improvement on competitive percentage and cut down the unfair income difference of electric factory, at the same time, it can optimize the electric limit for all electric factories and reduce the total purchase charge of electric power from burthen curve of whole electric market network.The distribution network is an important link among the power system. Its neutral grounding mode and operation connects security and stability of the power system directly. At the same time, the problem about neutral grounding is associated with national conditions, natural environment, device fabrication and operation. For example, the activity situation of the thunder and lightning, insulating structure and the peripheral interference will influence the choice of neutral grounding mode Conversely, neutral grounding mode affects design, operation, debugs and developing. Generally in the system higher in grade in the voltage, the insulating expenses account for more sizable proportion at the total price of the equipment. It is very remarkable to bring the economic benefits by reducing the insulating level. Usually such system adopt the neutral directly grounding and adopt the autoreclosing to guarantee power supply reliability. On the contrary, the system which is lower in the voltage adopts neutral none grounding to raise power supply reliability. So it is an important subject to make use of new- type earth device to apply to the distribution network under considering the situation in such factors of various fields as power supply reliability, safety factor, over-voltage factor, the choice of relay protection, investment cost, etc.The main work of this paper is to research and choice the neutral grounding mode of the l0kV distribution network. The neutral grounding mode of the l0kV network mainly adopts none grounding, grounding by arc suppressing coil, grounding by reactance grounding and directly grounding. The best grounding mode is confirmed through the technology comparison. It canhelp the network run in safety and limit the earth electric arc by using auto-tracking compensate device and using the line protection with the detection of the sensitive small ground current. The paper introduces and analyzes the characteristic of all kind of grounding modes about l0kV network at first. With the comparison with technological and economy, the conclusion is drawn that the improved arc suppressing coil grounding mode shows a very big development potential.Then, this paper researches and introduces some operation characteristics of the arc suppressing coil grounding mode of the l0kV distribution network. And then the paper put emphasis on how to extinguish the earth electric arc effectively by utilizing the resonance principle. This paper combines the development of domestic and international technology and innovative achievement, and introduces the computer earth protection and autotracking compensate device. It proves that the improved arc suppressing coil grounding mode have better operation characteristics in power supply reliability, personal security, security of equipment and interference of communication. The application of the arc suppressing coil grounding mode is also researched in this paper.Finally, the paper summarizes this topic research. As a result of the domination of the arc suppressing coil grounding mode, it should be more popularized and applied in the distribution network in the future.The way of thinking, project and conclusions in this thesis have effect on the research to choose the neutral grounding mode not only in I0kV distribution network but also in other power system..The basic function of the electric power system is to transport the electric power towards customers. The l0kV electric distribution net is a key point that connects the power supply with the electricity using on the industry, business and daily-life. For the electric power, all costumers expect to pay the lowest price for the highest reliability, but don't consider that it's self-contradictory in the co-existence of economy and reliable. To improve the reliability of the power supply network, we must increase the investment cost of the network con- struction But, if the cost that improve the reliability of the network construction, but the investment on this kind of construction would be worthless if the reducing loss is on the power-off is less than the increasing investment on improving the reliability .Thus we find out a balance point to make the most economic, between the investment and the loss by calculating the investment on power net and the loss brought from power-off. The thesis analyses on the economic and the reliable of the various line modes, according to the characteristics various line modes existed in the electric distribution net in foshan..At present high-rise buildings, international and domestic universal power supply is based on the dual-power supply was equipped with a diesel generator as an emergency power supply, which is especially important to meet a load of power supply load requirements (Figure 1 does not include the dotted line part of the ). However, dual power plus the power supply of diesel generating sets in most parts of northern China are still subject to weather conditions. As a long time in the north in winter, the temperature low. As an emergency power supply diesel generator sets at low temperatures is difficult to immediately start power supply, and some even two or three minutes can not start.The dual power supply in most parts of 10KV substation quoted from the same strict sense, its essence is a power failure when the substation, the two power supplies also failed, causing power supply system completely paralyzed. In fire cases, this will expand the fire, causing serious losses is not allowed. Therefore, I envisage the dual power on diesel generator sets based on the season, plus a power supply, and enable it to their own independent power supply.In the case of low winter temperatures, reducing the reliability of diesel generators, we will connect the power this season, for increasing theElectric system reliability. When the temperatures rise, we stopped the season to the power supply department reported that power supply, you can save running costs. And this season there are three power options: First, quoted all the way from the substation 10KV high voltage power supply as the season (Figure 1), the advantage of high reliability power supply, the shortfall is that the higher investment in infrastructure; second is from a nearby high-rise buildings along 10KV transformer high-voltage end of the quoted or cited all the way low end of the season as a 380/220V power supply; third all the way from the city network cited as the season 380/200V power supply.First, the thesis introduces as the different line modes in the l0kV electric distribution net and in some foreign countries. Making it clear tow to conduct analyzing on the line mode of the electric distribution net, and telling us how important and necessary that analyses are.Second, it turns to the necessity of calculating the number of optimization subsection, elaborating how it influences on the economy and reliability. Then by building up the calculation mode of the number of optimization subsection it introduces different power supply projects on the different line modes in brief. Third, it carries on the calculation and analyses towards the reliability and economy of the different line modes of electric distribution net, describing drafts according by the calculation. Then it makes analysis and discussion on the number of optimization subsection.At last, the article make conclusion on the economy and reliability of different line modes, as well as, its application situation. Accordion to the actual circumstance, the thesis puts forward the beneficial suggestion on the programming and construction of the l0kV electric distribution net in all areas in foshan. Providing the basic theories and beneficial guideline for the programming design of the lOkV electric distribution net and building up a solid net, reasonable layout, qualified safe and efficiently-worked electric distribution net.二、英文翻译配电网分析电力系统的基本功能是向用户输送电能。
基于直接数字合成的便携式超声波治疗仪研制
研究报告生命科学仪器2020第18卷/10月刊基于直接数字合成的便携式超声波治疗仪研制王志成1,庞宇*,蒋伟,张博臻,赵鸿毅(重庆邮电大学光电信息感测与传输技术重庆市重点实验室,重庆400065)摘要:针对家用超声波治疗仪出现的电-声转化效率低.输出强度单一,精度低,体积大等问题.提岀一种基于直接数字合成的便携式超声波治疗仪。
治疗仪采用低功耗STM32L151控制直接数字合成器产生超声驱动信号,经过驱动电路和滤波电路调节后,利用功率放大模块驱动压电陶瓷片产生频率为1MHz,强度为300mW/cm2、500mW/cm2.IOOOmW/cm2,1300mW/cm2四个档位的超声波:反馈调节系统采用Fuzzy神经网络和锁相环结合的频率自动跟踪方法,软件部分采用BP(Back Propagation)神经网络控制器输出动态匹配电感实现动态匹配.实验测试证明,该超声波治疗仪方便携带,具有电-声转化效率高,输出功率稳定.输出声强动态可调,成本低等特点:关键词:直接数字合成;便携式;Fuzzy神经网络;锁相环;BP神经网络;中图分类号:TP272文献标识码:A DOI:10.11967/2020181006Development of Portable Ultrasonic Therapeutic Apparatus Based onDirect Digital SynthesisWang Zhicheng,Pang Yu Jiang Wei,Zhang Bozhen,Zhao Hong yi(Chongqing Key Laboratory of O ptoelectronic Information Sensing and Transmission Technology,ChongqingUniversity of P osts and Telecommunications,Chongqing400065,China)Abstract:Aiming at the problems of low electric-acoustic conversion efficiency,single output intensity,low precision and large volume in household ultrasonic therapeutic apparatus,a portable ultrasonic therapeutic apparatus based on direct digital synthesis is proposed.The treatment instrument USES the low-power STM32L151controlled direct digital synthesizer to generate ultrasonic drive signal.After the adjustment of the drive circuit and filter circuit,the power amplifier module is used to drive the piezoelectric ceramic chip to generate ultrasonic waves with frequency of lmhz and intensity of300mW/cm2,500mW/cm2,1000mW/cm2and1300mW/cm2.The feedback regulation system adopts Fuzzy neural network and PLL combined frequency automatic tracking method,and the software part USES BP(Back Propagation)neural network controller output dynamic matching inductance to realize dynamic matching.Experimental tests show that the ultrasonic therapeutic apparatus is convenient to carry, with high electric-sound conversion efficiency,stable output power,dynamically adjustable output sound intensity and low cost.Key Words:Direct digital synthesis;Portable;Fuzzy neural network;Phase-locked loop;BP neural network;|CLC Number]TP272|Document Code|A DOI::10.11967/2020181006引言医学研究表明超声波对治疗类风湿,肩周炎等慢性软组织损伤具有显著治疗作用卩传统的家用超声波治疗仪频率跟踪速度慢.电-声转化效率低E。
模拟ai英文面试题目及答案
模拟ai英文面试题目及答案模拟AI英文面试题目及答案1. 题目: What is the difference between a neural network anda deep learning model?答案: A neural network is a set of algorithms modeled loosely after the human brain that are designed to recognize patterns. A deep learning model is a neural network with multiple layers, allowing it to learn more complex patterns and features from data.2. 题目: Explain the concept of 'overfitting' in machine learning.答案: Overfitting occurs when a machine learning model learns the training data too well, including its noise and outliers, resulting in poor generalization to new, unseen data.3. 题目: What is the role of a 'bias' in an AI model?答案: Bias in an AI model refers to the systematic errors introduced by the model during the learning process. It can be due to the choice of model, the training data, or the algorithm's assumptions, and it can lead to unfair or inaccurate predictions.4. 题目: Describe the importance of data preprocessing in AI.答案: Data preprocessing is crucial in AI as it involves cleaning, transforming, and reducing the data to a suitableformat for the model to learn effectively. Proper preprocessing can significantly improve the performance of AI models by ensuring that the input data is relevant, accurate, and free from noise.5. 题目: How does reinforcement learning differ from supervised learning?答案: Reinforcement learning is a type of machine learning where an agent learns to make decisions by performing actions in an environment to maximize a reward signal. It differs from supervised learning, where the model learns from labeled data to predict outcomes based on input features.6. 题目: What is the purpose of a 'convolutional neural network' (CNN)?答案: A convolutional neural network (CNN) is a type of deep learning model that is particularly effective for processing data with a grid-like topology, such as images. CNNs use convolutional layers to automatically and adaptively learn spatial hierarchies of features from input images.7. 题目: Explain the concept of 'feature extraction' in AI.答案: Feature extraction in AI is the process of identifying and extracting relevant pieces of information from the raw data. It is a crucial step in many machine learning algorithms, as it helps to reduce the dimensionality of the data and to focus on the most informative aspects that can be used to make predictions or classifications.8. 题目: What is the significance of 'gradient descent' in training AI models?答案: Gradient descent is an optimization algorithm used to minimize a function by iteratively moving in the direction of steepest descent as defined by the negative of the gradient. In the context of AI, it is used to minimize the loss function of a model, thus refining the model's parameters to improve its accuracy.9. 题目: How does 'transfer learning' work in AI?答案: Transfer learning is a technique where a pre-trained model is used as the starting point for learning a new task. It leverages the knowledge gained from one problem to improve performance on a different but related problem, reducing the need for large amounts of labeled data and computational resources.10. 题目: What is the role of 'regularization' in preventing overfitting?答案: Regularization is a technique used to prevent overfitting by adding a penalty term to the loss function, which discourages overly complex models. It helps to control the model's capacity, forcing it to generalize better to new data by not fitting too closely to the training data.。
基于投影神经网络求解凸规划问题的二分法
基于投影神经网络求解凸规划问题的二分法刘勇为;胡剑峰;王平【摘要】将投影梯度神经网络方法和二分法相结合,提出了一种求解凸规划的新算法,并证明了该算法的收敛性.【期刊名称】《海南师范大学学报(自然科学版)》【年(卷),期】2014(027)001【总页数】4页(P15-17,62)【关键词】凸规划;二分法;神经网络【作者】刘勇为;胡剑峰;王平【作者单位】海南师范大学数学与统计学院,海南海口571158;海南师范大学数学与统计学院,海南海口571158;海南师范大学数学与统计学院,海南海口571158【正文语种】中文【中图分类】O221.1近年来,用神经网络来解决优化问题已经取得了很多重要的成果,其中很多已经被应用到优化领域和工程控制中.1985年,Tank和Hopfield[1]首次提出了一类神经网络模型来解决线性规划问题,但其平衡点不能保证收敛到线性规划问题的最优点.后来,Kennedy和Chua[2]提出了一类求解非线性规划的神经网络.该模型利用了罚函数,仅当惩罚参数为无限大时,才有可能得到问题的最优解.为了避免使用罚参数,Zhang和Constantinides[3]基于Lagrange乘子法建立了求解约束优化问题的网络模型,该模型在目标函数是严格凸时能保证收敛到问题的最优解.基于投影理论的投影神经网络最近被提出来用来解决一般凸规划问题,如:Liang[4]和Gao[5]建立了求解约束优化问题的投影神经网络模型;Yang[6]提出了凸规划的投影神经网络.本文在文献[6]的基础上,首先通过构造Lyapunov函数和利用LaSalle不变原理,给出了投影神经网络模型稳定性和收敛性的一种新的证明过程;其次结合二分法的思想,提出一种求解凸规划问题的二分投影神经网络模型,并给出了算法的收敛性证明.考虑如下凸规划问题其中,f(x)和gi(x)(i=1,2,…,p)在Rn→R上是2阶连续可微的凸函数,A∈Rm×n,b∈Rn和对于问题(1),考虑下面的子问题[6]和相应的投影梯度神经网络其中本节通过构造Lyapunov函数和利用LaSalle不变原理,给出了投影神经网络模型(3)的全局稳定性和收敛性的一种新的证明过程.定理1任给一个初始点,则神经网络(3)在Lyapunov意义下是稳定的.证明令x*是问题(2)的最优解,考虑如下的Lyapunov函数显然V(x)是Ω上的连续可微的凸函数,并且对根据投影理论和E(x,M1)是可微的凸函数,很容易得到由此,可以得到神经网络(3)对于任意的初始点是Lyapunov意义下稳定的.定理2任给一个初始点,则神经网络模型(3)在[t0,∞)上存在唯一连续解x()t∈Ω.证明(i)先证存在唯一连续解.由于f(x)是2阶连续可微的凸函数,且Ω是有界的,故是Lipschitz连续的,设Lipschitz常数为L(L>0),从而对∀x,y∈Ω,有因此,函数是Lipschitz连续的,根据微分方程解的存在唯一性定理,神经网络模型(3)在[t0,T)上存在唯一连续解x(t).(ii)再证Ω是神经网络模型(3)的不变集,即因为,故有从而根据微分中值定理知存在满足显然,又因从而有.(iii)最后证明x(t)在[t0,T)上是有界的.令x*是问题(2)的最优解.由V(t)的定义及V(t)沿着轨线x(t)是不增的,有从而有因此,x(t)是有界的,故T=+∞.综合(i)、(ii)和(iii)即得到定理2的证明.定理3令Ωe为神经网络(3)的平衡点集,Ω*为凸规划问题(2)的最优解集,则Ωe=Ω*.证明x*是凸规划问题(2)的最优解,即x*∈Ω*,等价于上式又等价于故Ωe=Ω*.定理4对于任意的初始点,神经网络模型(3)的解x(t)全局收敛于凸规划问题(2)的最优解.证明因为对是有界的,故存在一个子列{tk}满足所以轨线的ω-极限集是非空的,且根据LaSalle不变原理,于是有下式成立即是凸规划问题(2)的解.令类似定理1,可以证明沿着轨线递减,故存在.又因为V1(x)是连续的,故有而根据夹逼准则,知,即定理4的结论成立.基于上一节的投影神经网络模型,结合二分法的思想,给出了一个求解问题(1)的二分投影神经网络模型,并给出了算法的收敛性证明.定理5设Lk和Uk分别是问题(1)的最优值的下界和上界,即,将带入子问题(2),得到相应的神经网络模型(3)的平衡点.如果,则有如果,则有证明当时有故;当时有0<,故根据上面的定理5,给出了求解问题(1)的二分投影神经网络算法.算法1定理6令x*是凸规划问题(1)的最优解,L0和U0分别是问题(1)的最优值的下界和上界,则基于投影神经网络求解问题(1)的二分法得到的序列满足证明对任意k≥0,有故.所以有而所以有.故和.所以有而故有即【相关文献】[1]Tank D W,Hopfield J J.Simple‘neural’optimization network:an A/D converter,signal decision circuit and a linear programming circuit[J].IEEE Trans Circuits Syst, 1986,33:533-541.[2]Kennedy M P,Chua L O.Neural networks for nonlinear programming[J].IEEE Trans Circuits Syst,1988,35:554-562.[3]Zhang S,Constantinides grange programming neural networks[J].IEEE Transaction on Circuits and Systems-II:Analog and Digital Signal Processing,1992,39(7):441-452. [4]Liang X,Wang J.A recurrent neural network for nonlin-ear optimization with a continuously differentiable objective functions and bound constraints[J].IEEE Transactions on Neural Networks,2000,11(6):1251-1262.[5]Gao X.A novel neural network for nonlinear convex programming[J].IEEE Transactions on Neural Networks, 2004,15:613-621.[6]Yang Y,Cao J.A feedback neural network for solving convex constraint optimization problems[J].Appl Math Comput,2008,201:340-350.。
CONTENTS
No.2(Serial No.191)ELECTRICAL ENGINEERING MATERIALS(Founded in 1973) Bimonthly Apr.,20,2024Sponsor:Guilin Electrical Equipment Scientific Research Institute Co., Ltd.Editor in Chief:XIE YongzhongAdd:No.8 Dongcheng Road,Guilin 541004, PRCTel:+86-773-5888296Fax:+86-773-5888296New Energy MaterialStudy on the Preparation and Characteristics of Copper-Chromium Alloy Cladding Layer…………………………………………………………YE Hailong, LI Baokun, XUE Shouhong, CHEN Yan, ZHANG Shuhui (1)Study of the Defect Detection with Eddy Current Applied in Checking the Appearance of AgMeO Wire……………………………………………………BAI Yaling, WU Xiaolong, CUI Jianhua, LUO Zhanxiu, TANG Gengsheng (6)Effect of Composite Additives on Properties of AgCuO Materials Made by Alloy Internal Oxidation Method……………………………………………………………ZHOU Guanghua, LI Bo, FENG Pengfei, WU Xiaolong, LI Lianjie (9)Research on Welding Performance of Silver Impregnated Graphite Contact Materials…………………………………YU Dong, LI Qingshi, ZHANG Zhiyu, WANG Shuo, QIAN Xiyi, ZHU Zhenguo, BAI Shuo (12)Mechanism and Current Status of New Thermoelectric Materials ……………………………………………QU Liu, LIU Kaixin (16)Preparation of Modified NiCo 2S 4@C Materials Suitable for Supercapacitor Electrodes by One-Pot Solvothermal Method……………………………………………………………………………WANG Bo, LU Yunfan, LI Xiaolan, ZHANG Lilei (20)Formation Reason and Improvement Method of Stomata in Extrusion Silver Graphite Solder Layer……………………………KONG Xin, FEI Jiaxiang, WAN Dai, GUO Renjie, HE Zhenghai, LIU Hongkai, SONG Linyun (23)Study on Isothermal Internal Oxidation Process of Ag-Cd and Ag-Sn-In Alloys……………………………………………………YANG Wentao, MIAO Renliang, WAN Dai, CHEN Chan, LUO Baofeng (26)Discussion on Metal Material Processing in Material Forming and Control Engineering………………………………………………………………………………………LI Jinhua, CHEN Tianlai, LU Xiaodong (30)Novel Power SystemResearch on Closed-Loop Control Method of Bidirectional Isolated AC-DC Matrix Converter………………………………………………………………………………………LI Zhixuan, LIU Guiying, MING Wang (33)Optimal Design of Dry-type Transformer Based on MSPBO ………………………………CHENG Jiahao, DENG Changzheng (38)Research on Safety Limits of Photovoltaic Permeability Considering Overvoltage Limitation………………………………………………………WANG Guanghui, ZHAO Ping, YANG Lei, YAN Xiaomao, LI Zhenxing (44)Research on A Type of Active Clamped Seven-level PFC Topologies …………ZENG Bin, SHANG Yuzhe, PAN Yu, FAN Jianing (48)Integrated Energy Management Strategy for Complex Railway Electrification System Traction Photovoltaic Systems Considering Braking Energy Transfer ………………………………………GUO Yuejin, DING can, YOU Haichuan, ZHANG Hongrong (54)Research on Control Strategy of Off-grid Doubly-fed Wind Turbine ……………………………………………GUO Xiangyang (59)Exploration of Teaching Reform Based on Post Class Competition Certificate under the Background of Dual Carbon ——Take the Course Operation and Maintenance of Photovoltaic Power Plants as an Example ……………………………………LI Si (62)Finite Element Simulation Analysis of Prefabricated Anchor Foundation Considering Residual Strength…………………………………………………………………………………DENG Changzheng, HU Xin, YAN Xiaoming (66)Wind Farm Layout Optimization Model Considering the Influence of Restricted Area …………KONG Xianglei, MIAO Shuwei (74)Low-carbon Research on Integrated Energy System Considering Oxygen-enriched Combustion-P2G Coupling……………………………………………………………………………………………………GUO Ciwei, ZHANG Yuwen (81)Coordinated Economic Dispatch of the Comprehensive Energy System in the Park …………………………TENG Shuangquan (87)Topology Research of Hybrid High-Voltage Circuit Breaker based on Capacitance Current Limiting……………………………………………………ZHAO Yajie, XUE Tianliang, XU Guangchen, FU Zhaolong, HAN Runze (91)Non-intrusive Load Identification Based on Binary V -I Trajectory Color Coding and Residual Neural Network…………………………………………………………………………YANG Miao, YOU Wenxia, LIU Yue, WANG Xinqian (94)Short-Term Power Load Prediction Based on Improved Quadratic Mode Decomposition and BiLSTM-Attention …………………………………………………………………MEI Jinchao, ZHANG Pengyu, CHENG Bin, WU Yonghua (100)CONTENTS。
戴尔易安信 PowerEdge 服务器深度学习性能扩展白皮书说明书
WhitepaperDeep Learning Performance Scale-outRevision: 1.2Issue Date: 3/16/2020AbstractIn this whitepaper we evaluated the training performance of Scale-out implementation with the latest software stack and compared it with the results obtained in our previous paper [0]. Using TensorFlow as the primary framework and tensorflow benchmark models, the performance was compared in terms of throughput images/sec on ImageNet dataset, at a single node and multi-node level. We tested some of the more popular neural networks architectures for this comparison and demonstrated the scalability capacity of Dell EMC PowerEdge Servers powered by NVIDIA V100 Tensor Core GPUs.RevisionsDate Description3/16/2020Initial release AcknowledgementsThis paper was produced by the following:NameVilmara Sanchez Dell EMC - Software EngineerBhavesh Patel Dell EMC - Distinguished EngineerJosh Anderson Dell EMC - System Engineer (contributor)We would like to acknowledge:❖Technical Support Team - Mellanox Technologies❖Uber Horovod GitHub Team❖Nvidia Support teamTable of ContentsMotivation (4)Test Methodology (4)PowerEdge C4140-M Details (6)Performance Results - Short Tests for Parameter Tuning (8)Performance Results - Long Tests Accuracy Convergence (16)Conclusion (17)Server Features (18)Citation (19)References (19)Appendix: Reproducibility (20)MotivationWith the recent advances in the field of Machine Learning and especially Deep Learning, it’s becoming more and more important to figure out the right set of tools that will meet some of the performance characteristics for these workloads. Since Deep Learning is compute intensive, the use of accelerators like GPU become the norm, but GPUs are premium components and often it comes down to what is the performance difference between a system with and without GPU. In that sense Dell EMC is constantly looking to support the business goals of customers by building highly scalable and reliable infrastructure for Machine Learning/Deep Learning workloads and exploring new solutions for large scale distributed training to optimize the return on investment (ROI) and Total Cost of Ownership (TCO).Test MethodologyWe have classified TF benchmark tests in two categories: short and long tests. During the development of the short tests, we experimented with several configurations to determine the one that yielded the highest throughput in terms of images/second, then we selected that configuration to run the long tests to reach certain accuracy targets.Short TestsThe tests consisted of 10 warmup steps and then another 100 steps which were averaged to get the actual throughput. The benchmarks were run with 1 NVIDIA GPU to establish a baseline number of images/sec and then increasing the number of GPUs to 4 and 8. These tests allow us to experiment with the parameter tuning of the models in distributed mode.Long TestsThe tests were run using 90 epochs as the standard for ResNet50. This criterion was used to determine the total training time on C4140-M servers in distributed mode with the best parameter tuning found in the short tests and using the maximum number of GPUs supported by the system. In the section below, we describe the setup used, and Table 1gives an overall view on the test configuration.Testing SetupCommercial Application Computer Vision - Image classificationBenchmarks code▪TensorFlow Benchmarks scriptsTopology ▪ Single Node and Multi Node over InfiniBandServer ▪ PowerEdge C4140-M (4xV100-16GB-SXM2)Frameworks▪ TensorFlow with Horovod library for Distributed Mode[1] Models ▪ Convolutional neural networks: Inception-v4, vgg19,vgg16, Inception-v3, ResNet-50 and GoogLeNetBatch size ▪ 128-256GPU’s▪ 1-8Performance Metrics▪ Throughput images/second▪ Training to convergence at 76.2% TOP-1 ACCURACY Dataset ▪ ILSVRC2012 - ImageNetEnvironment ▪ DockerSoftware StackThe Table shows the software stack configuration used to build the environment to run the tests shown in paper [0] and the current testsSoftware Stack Previous Tests Current TestsTest Date February 2019 January 2020OS Ubuntu 16.04.4 LTS Ubuntu 18.04.3 LTSKernel GNU/Linux 4.4.0-128-genericx86_64GNU/Linux 4.15.0-69-genericx86_64nvidia driver 396.26 440.33.01CUDA 9.1.85 10.0 cuDNN 7.1.3 7.6.5 NCCL 2.2.15 2.5.6 TensorFlow 1.10 1.14 Horovod 0.15.2 0.19.0 Python 2.7 2.7 Open MPI 3.0.1 4.0.0 Mellanox OFED 4.3-1 4.7-3 GPUDirect RDMA 1.0-7 1.0-8Single Node - Docker Container TensorFlow/tensorflow:nightly-gpu-py3nvidia/cuda:10.0-devel-ubuntu18.04Multi Node -Docker Container built from nvidia/cuda:9.1-devel-ubuntu16.04nvidia/cuda:10.0-devel-ubuntu18.04Benchmark scripts tf_cnn_benchmarks tf_cnn_benchmarksDistributed SetupThe tests were run in a docker environment. Error! Reference source not found. 1 below shows the different logical layers involved in the software stack configuration. Each server is connected to the InfiniBand switch; has installed on the Host the Mellanox OFED for Ubuntu, the Docker CE, and the GPUDirect RDMA API; and the container image that was built with Horovod and Mellanox OFED among other supporting libraries. To build the extended container image, we used the Horovod docker file and modified it by adding the installation for Mellanox OFED drivers [2]. It was built from nvidia/cuda:10.0-devel-ubuntu18.04Figure 1: Servers Logical Design. Source: Image adapted fromhttps:///docs/DOC-2971Error! Reference source not found.2 below shows how PowerEdge C4140-M is connected via InifniBand fabric for multi-node testing.Figure 2: Using Mellanox CX5 InfiniBand adapter to connect PowerEdge C4140 in multi-nodeconfigurationPowerEdge C4140-M DetailsThe Dell EMC PowerEdge C4140, an accelerator-optimized, high density 1U rack server, is used as the compute node unit in this solution. The PowerEdge C4140 can support four NVIDIA V100 Tensor Core GPUs, both the V100-SXM2 (with high speed NVIDIA NVLink interconnect) as well as the V100-PCIe models.Figure 3: PowerEdge C4140 ServerThe Dell EMC PowerEdge C4140 supports NVIDIA V100 with NVLink in topology ‘M’ with a high bandwidth host to GPU communication is one of the most advantageous topologies for deep learning. Most of the competitive systems, supporting either a 4-way, 8-way or 16-way NVIDIAVolta SXM, use PCIe bridges and this limits the total available bandwidth between CPU to GPU. See Table 2 with the Host-GPU Complex PCIe Bandwidth Summary.ConfigurationLink Interface b/n CPU-GPU complex Total BandwidthNotesM4x16 Gen3128GB/sEach GPU has individual x16 Gen3 to Host CPUTable 2: Host-GPU Complex PCIe Bandwidth SummarySXM1SXM2SXM4SXM3CPU2CPU1x16x16x16x16UPI Configuration MX16 IO SlotX16 IO SlotFigure 4: C4140 Configuration-MNVLinkPCIePerformance Results - Short Tests for Parameter Tuning Below are the results for the short tests using TF 1.14. In this section we tested all the models in multi node mode and compared the results obtained with TF 1.10 in 2019. Throughput CNN Models TF 1.10 vs TF 1.14The Figure 5 several CNN models comparing results with TF 1.10 vs TF 1.14. In Figure 6 we notice that the performance gain is about 1.08X (or 8%) between the two releases.Figure 5: Multi Node PowerEdge C4140-M – Several CNN Models TF 1.10 vs TF 1.14Figure 6 Multi Node PowerEdge C4140-M – Several CNN Models TF 1.10 vs TF 1.14 (Speedup factor)Performance Gain with XLASince there was not much performance gain with the basic configuration, we decided to explore the limits of GPU performance using other parameters. We looked at XLA (Accelerated Linear Algebra) [3], by adding the flag –xla=true at the script level. By default, the TensorFlow graph executor “executes” the operations with individual kernels, one kernel for the multiplication, one kernel for the addition and one for the reduction. With XLA, these operations are “fused” in just one kernel; keeping the intermediate and final results in the GPU, reducing memory operations, and therefore improving performance.See below Figure 7 for results and Figure 8 for speedup factors across the models. The models inception-v4, inception-v3 and ResNet-50 showed much better performance using XLA, with speedup factors from 1.35X up to 1.43X. Since the ResNet-50 model is most widely used, we used it to continue the rest of the tests.Figure 7: Multi Node PowerEdge C4140-M. Several CNN Models TF 1.10 vs TF 1.14 + XLAFigure 8: Multi Node PowerEdge C4140-M. Several CNN Models TF 1.10 vs TF 1.14 + XLA (Speedupfactor)ResNet-50’s Performance with TF 1.14 + XLAIn this section, we evaluated the performance of ResNet-50 model trained with TF 1.14 and TF 1.14 with XLA enabled. The tests were run with 1 GPU, 4 GPUs, and 8 GPUs and the results were compared with those obtained for version TF 1.10 from our previous paper [0]. Also, we explored the performance using batch size of 128 and 256. See Figure 9 and Figure 10.Figure 9: Multi Node PowerEdge C4140-M. ResNet-50 BS 128 TF 1.10 vs TF 1.14 vs TF 1.14 + XLAAs we saw in the previous section ResNet-50 with batch size 128 with 8 GPUs had a performance gain of ~3% with TF 1.10 vs TF 1.14, and ~35% of performance gain with TF 1.10 vs TF 1.14 with XLA enabled, see Figure 9. On the other hand, ResNet-50 with batch size 256 with 8 GPUs had a performance gain of ~2% with TF 1.10 vs TF 1.14, and ~46% of performance gain with TF 1.10 vs TF 1.14 with XLA enabled, see Figure 10. Due to the higher performance of ResNet-50 with batch size 256, we have selected it to further optimize performance.Figure 10: Multi Node PowerEdge C4140-M. ResNet-50 BS 256 TF 1.10 vs TF 1.14 vs TF 1.14 + XLAResNet-50 with TF 1.14 + XLA + GPUDirect RDMAAnother feature explored in our previous paper was GPUDirect RDMA which provides a direct P2P (Peer-to-Peer) data path between GPU memory using a Mellanox HCA device between the nodes. In this test, we enabled it by adding the NCCL flag – x NCCL_NET_GDR_LEVEL=3 at the script level (this variable replaced the variable NCCL_IB_CUDA_SUPPORT in NCCL v 2.4.0). NCCL_NET_GDR_LEVEL variable allows you to control when to use GPUDirect RDMA between a NIC and a GPU. Example level 3 indicates to use GPUDirect RDMA when GPU and NIC are on the same PCI root complex [4].Figure 11: Multi Node PowerEdge C4140-M. ResNet-50 with TF 1.14 + XLA + GPUDirect RDMA Figure 11shows the results of ResNet-50 with TF 1.14 w/XLA enabled, with and without GPUDirect RDMA. We did not observe much performance gains using GPUDirect RDMA across nodes i.e. the performance remained the same and hence we did not explore it further in our testing. This is not to say that GPUDirect RDMA does not help when using scale-out, all we are saying is we did not see the performance gains; hence we are not exploring it further in this paper.ResNet-50’s configuration for better performanceFigure 12 summarizes the results of different configurations explored for the short tests and based on the tests we found that the best performance was achieved using the combination below:ResNet-50 + BS 256 + TF 1.14 + XLA enabledFigure 12: Multi Node PowerEdge C4140-M - ResNet-50’s Configuration for Best PerformanceResNet-50’s Scale-outPowerEdge C4140 using Nvidia 4x NVLink architecture scales relatively well when using Uber Horovod distributed training library and Mellanox InfiniBand as the high-speed link between nodes. It scales ~3.9x times within the node and ~6.9x using scale-out for ResNet-50 with batch size 256. See Figure 13.Figure 13: Multi Node PowerEdge C4140-M - ResNet-50’s Scale-out vs Scale-upFigure 14: Multi Node PowerEdge C4140-M vs CompetitorThe above benchmarks shown in Figure 14 are done on 2 servers C4140 x4 V100 GPUs, each connected by Mellanox ConnectX-5 network adapter with 100Gbit/s over IPoIB. The Dell EMC distributed mode with Horovod achieved 85% of scaling efficiency for ResNet-50 batch size 256 compared with the ideal performance; on the other hand, it achieved 95% of scaling efficiency versus a test run by TF team on 2018 with a VM (virtual machine) instance on GCP(Google cloud) with 8x V100 GPUs and batch size=364 [5].Performance Results - Long Tests Accuracy Convergence Our final tests were to determine the total training time for accuracy convergence with the latest tensorflow version.In this section we decided to include all the batch sizes we tested in our previous paper and compared it with ResNet-50 using batch size 256.Figure 15shows the total training time achieved when running ResNet-50 with different batch sizes and both versions of tensorflow (TF 1.10 vs TF 1.14 with XLA enabled).On average using TF 1.14 +XLA was ~1.3X faster than our previous tests.Figure 15: Multi Node PowerEdge C4140-M - ResNet-50’s Long Training for Accuracy Conv.Conclusion•The performance with TF 1.14 among the models was just slightly superior (~1%-8%) versus TF 1.10. On the other hand, TF 1.14 with XLA boosted the performance up to~46% among the models ResNet-50, Inception-v3 and Inception-v4.•In the case of ResNet-50 model, its performance improved up to ~ 3% with TF 1.14, and up to ~46% with TF 1.14 and XLA enabled. ResNet-50 batch size 256 scaled better(1.46X) versus ResNet-50 BS 128 (1.35X).•The configuration with the highest throughput (img/sec) was ResNet-50 batch size 256 trained with distributed Horovod + TF 1.14 + XLA enabled.•Dell EMC PowerEdge C4140 using Nvidia 4x NVLink architecture scales relatively well when using Uber Horovod distributed training library and Mellanox InfiniBand as the high-speed link between nodes. It scale-out ~3.9X times within the node and ~6.9X across nodes for ResNet-50 BS 256.•On average, the training time for the long tests to reach accuracy convergence were ~ 1.3 X faster using distributed Horovod + TF 1.14 + XLA enabled.•There is a lot of performance improvement being added continuously either at the GPU level, library level or framework level. We are continuously looking at how we can improve our performance results by experimenting with different hyper parameters.•TensorFlow in multi-GPU/multi-node with Horovod Distributed and XLA support improve model performance and reduce the training time, allowing customers to do more with no additional hardware investment.Server FeaturesCitation@article {sergeev2018horovod,Author = {Alexander Sergeev and Mike Del Balso},Journal = {arXiv preprint arXiv: 1802.05799},Title = {Horovod: fast and easy distributed deep learning in {TensorFlow}}, Year = {2018}}References•[0] https:///manuals/all-products/esuprt_solutions_int/esuprt_solutions_int_solutions_resources/servers-solution-resources_white-papers52_en-us.pdf•[1] Horovod GitHub, “Horovod Distributed Deep Learning Training Framework” [Online].Available: https:///horovod/horovod•[2] Mellanox Community, “How to Create a Docker Container with RDMA Accelerated Applications Over 100Gb InfiniBand Network” [Online]. Available:https:///docs/DOC-2971•[3] TensorFlow, “XLA: Optimizing Compiler for Machine Learning” [Online] Available: https:///xla•[4] NCCL 2.5, “NCCL Environment Variables” [Online]. Available:https:///deeplearning/sdk/nccl-developer-guide/docs/env.html#nccl-ib-cuda-support•[5] TensorFlow, “Pushing the limits of GPU performance with XLA” [Online]. Available: https:///tensorflow/pushing-the-limits-of-gpu-performance-with-xla-53559db8e473Appendix: ReproducibilityThe section below walks through the setting requirements for the distributed Dell EMC system and execution of the benchmarks. Do this for both servers:•Update Kernel on Linux•Install Kernel Headers on Linux•Install Mellanox OFED at local host•Setup Password less SSH•Configure the IP over InfiniBand (IPoIB)•Install CUDA with NVIDIA driver•install CUDA Toolkit•Download and install GPUDirect RDMA at the localhost•Check GPUDirect kernel module is properly loaded•Install Docker CE and nvidia runtime•Build - Horovod in Docker with MLNX OFED support•Check the configuration status on each server (nvidia-smi topo -m && ifconfig && ibstat && ibv_devinfo -v && ofed_info -s)•Pull the benchmark directory into the localhost•Mount the NFS drive with the ImageNet dataRun the system as:On Secondary node (run this first):$ sudo docker run --gpus all -it --network=host -v /root/.ssh:/root/.ssh --cap-add=IPC_LOCK -v /home/dell/imagenet_tfrecords/:/data/ -v/home/dell/benchmarks/:/benchmarks -v /etc/localtime:/etc/localtime:ro --privileged horovod:latest-mlnxofed_gpudirect-tf1.14_cuda10.0 bash -c "/usr/sbin/sshd -p 50000; sleep infinity"On Primary node:$ sudo docker run --gpus all -it --network=host -v /root/.ssh:/root/.ssh --cap-add=IPC_LOCK -v /home/dell/imagenet_tfrecords/:/data/ -v/home/dell/benchmarks/:/benchmarks -v /etc/localtime:/etc/localtime:ro --privileged horovod:latest-mlnxofed_gpudirect-tf1.14_cuda10.0•Running the benchmark in single node mode with 4 GPUs:$ python /benchmarks/scripts/tf_cnn_benchmarks/tf_cnn_benchmarks.py --device=gpu --data_format=NCHW --optimizer=sgd --distortions=false --use_fp16=True --local_parameter_device=gpu --variable_update=replicated --all_reduce_spec=nccl --data_dir=/data/train --data_name=imagenet --model=ResNet-50 --batch_size=256 --num_gpus=4 --xla=true•Running the benchmark in multi node mode with 8 GPUs:$ mpirun -np 8 -H 192.168.11.1:4,192.168.11.2:4 --allow-run-as-root -xNCCL_NET_GDR_LEVEL=3 -x NCCL_DEBUG_SUBSYS=NET -x NCCL_IB_DISABLE=0 -mcabtl_tcp_if_include ib0 -x NCCL_SOCKET_IFNAME=ib0 -x NCCL_DEBUG=INFO -xHOROVOD_MPI_THREADS_DISABLE=1 --bind-to none --map-by slot --mca plm_rsh_args "-p 50000" python /benchmarks/scripts/tf_cnn_benchmarks/tf_cnn_benchmarks.py --device=gpu --data_format=NCHW --optimizer=sgd --distortions=false --use_fp16=True --local_parameter_device=gpu --variable_update=horovod --horovod_device=gpu --datasets_num_private_threads=4 --data_dir=/data/train --data_name=imagenet --display_every=10 --model=ResNet-50 --batch_size=256 --xla=True。
wifi障报告常见英语句子
wifi障报告常见英语句子1.Fault Restoration For Distribution Network Base On Dissipated Network;基于耗散网络的配电网网络故障恢复。
2.Research Of Network Fault Location System Based On Framework Of Network Topology;基于网络拓扑结构的网络故障定位系统的研究。
3.The Research Of Analog Circuit Diagnosis Approaches Based On Network Decomposition And Neural Networks;基于网络撕裂和神经网络故障诊断方法研究。
puter Networks, Data Link Layer Of Network Troubleshooting计算机网络数据链路层网络故障排除初探。
5.Research And Implement Of Network Fault Diagnosis In Local Area Network;局域网络故障诊断技术的研究与实现。
6.The Research And Implementation Of IPNetwork Fault Inspecting System;IP网络故障监测系统的研究与实现。
7.Research And Implementation Of Computer Network Fault Management System;计算机网络故障管理系统研究及实现。
8.Fault Diagnosis Model Based On Fault Tree And Bayesian Networks基于故障树和贝叶斯网络的故障诊断模型。
9.Fault Diagnosis With Fault Gradation Using Neural Network Group基于神经网络组与故障分级的故障诊断。
电气控制英文参考文献(精选120个最新)
改革开放以来,随着我国工业的迅速发展和科学技术的进步,电气控制技术在工业上的运用也越来越广泛,对于一个国家的科技水平高低来说,电气控制技术水平是一项重要的衡量因素.电气控制技术主要以电动机作为注重的对象,通过一系列的电气控制技术,买现生产或者监控的自动化.下面是搜索整理的电气控制英文参考文献,欢迎借鉴参考。
电气控制英文参考文献一: [1]Laiqing Xie,Yugong Luo,Donghao Zhang,Rui Chen,Keqiang Li. Intelligent energy-saving control strategy for electric vehicle based on preceding vehicle movement[J]. Mechanical Systems andSignal Processing,2019,130. [2]F.N. Tan,Q.Y. Wong,W.L. Gan,S.H. Li,H.X. Liu,F. Poh,W.S. Lew. Electric field control for energy efficient domain wallinjection[J]. Journal of Magnetism and Magnetic Materials,2019,485. [3]N. Nursultanov,W.J.B. Heffernan,M.J.W.M.R. van Herel,J.J. Nijdam. Computational calculation of temperature and electrical resistance to control Joule heating of green Pinus radiata logs[J]. Applied Thermal Engineering,2019,159. [4]Min Cheng,Junhui Zhang,Bing Xu,Ruqi Ding,Geng Yang. Anti-windup scheme of the electronic load sensing pump via switchedflow/power control[J]. Mechatronics,2019,61. [5]Miles L. Morgan,Dan J. Curtis,Davide Deganello. Control of morphological and electrical properties of flexographic printed electronics through tailored ink rheology[J]. OrganicElectronics,2019,73. [6]Maciej ?awryńczuk,Pawe?Oc?oń. Model Predictive Control and energy optimisation in residential building with electric underfloor heating system[J]. Energy,2019,182. [7]Lorenzo Niccolai,Alessandro Anderlini,GiovanniMengali,Alessandro A. Quarta. Electric sail displaced orbit control with solar wind uncertainties[J]. Acta Astronautica,2019,162. [8]Patrik Beňo,Matej Kubi?. Control and stabilization of single-wheeled electric vehicle with BLDC engine[J]. Transportation Research Procedia,2019,40. [9]André Murilo,Rafael Rodrigues,Evandro Leonardo SilvaTeixeira,Max Mauro Dias Santos. Design of a Parameterized Model Predictive Control for Electric Power Assisted Steering[J]. Control Engineering Practice,2019,90. [10]Kazusa Yamamoto,Olivier Sename,Damien Koenig,Pascal Moulaire. Design and experimentation of an LPV extended state feedback control on Electric Power Steering systems[J]. Control EngineeringPractice,2019,90. [11]Pedro de A. Delou,Julia P.A. de Azevedo,Dinesh Krishnamoorthy,Maurício B. de Souza,Argimiro R. Secchi. Model Predictive Control with Adaptive Strategy Applied to an Electric Submersible Pump in a Subsea Environment[J]. IFACPapersOnLine,2019,52(1). [12]Unal Yilmaz,Omer Turksoy,Ahmet Teke. Intelligent control of high energy efficient two-stage battery charger topology forelectric vehicles[J]. Energy,2019,186. [13]Qiuyi Guo,Zhiguo Zhao,Peihong Shen,Xiaowen Zhan,Jingwei Li. Adaptive optimal control based on driving style recognition forplug-in hybrid electric vehicle[J]. Energy,2019,186. [14]Leonid Lobanov,Nikolai Pashсhin. Electrodynamic treatment by electric current pulses as effective method of control of stress-strain states and improvement of life of welded structures[J]. Procedia Structural Integrity,2019,16. [15]Evangelos Pournaras,Seoho Jung,Srivatsan Yadhunathan,Huiting Zhang,Xingliang Fang. Socio-technical smart grid optimization via decentralized charge control of electric vehicles[J]. Applied Soft Computing Journal,2019,82. [16]Guoming Huang,Xiaofang Yuan,Ke Shi,Xiru Wu. A BP-PID controller-based multi-model control system for lateral stability of distributed drive electric vehicle[J]. Journal of the Franklin Institute,2019,356(13). [17]Ioannis Kalogeropoulos,Haralambos Sarimveis. Predictive control algorithms for congestion management in electric power distribution grids[J]. Applied Mathematical Modelling,2020,77. [18]Junjun Zhu,Zhenpo Wang,Lei Zhang,David G. Dorrell.Braking/steering coordination control for in-wheel motor drive electric vehicles based on nonlinear model predictive control[J]. Mechanism and Machine Theory,2019,142. [19]Jiechen Wu,Junjie Hu,Xin Ai,Zhan Zhang,Huanyu Hu. Multi-time scale energy management of electric vehicle model-based prosumers by using virtual battery model[J]. Applied Energy,2019,251. [20]G. Coorey,D. Peiris,T. Usherwood,L. Neubeck,J. Mulley,J. Redfern. An Internet-Based Intervention Integrated with the Primary Care Electronic Health Record to Improve Cardiovascular Disease Risk Factor Control: a Mixed-Methods Evaluation of Acceptability, Usage Trends and Persuasive Design Characteristics[J]. Heart, Lung and Circulation,2019,28. [21]Félice Lê-Scherban,Lance Ballester,Juan C. Castro,Suzanne Cohen,Steven Melly,Kari Moore,James W. Buehler. Identifying neighborhood characteristics associated with diabetes and hypertension control in an urban African-American population usinggeo-linked electronic health records[J]. Preventive Medicine Reports,2019,15. [22]Yuekuan Zhou,Sunliang Cao. Energy flexibility investigation of advanced grid-responsive energy control strategies with thestatic battery and electric vehicles: A case study of a high-rise office building in Hong Kong[J]. Energy Conversion and Management,2019,199. [23]D. Aravindh,R. Sakthivel,B. Kaviarasan,S. MarshalAnthoni,Faris Alzahrani. Design of observer-based non-fragile load frequency control for power systems with electric vehicles[J]. ISA Transactions,2019,91. [24]Augusto Matheus dos Santos Alonso,Danilo IglesiasBrandao,Tommaso Caldognetto,Fernando Pinhabel Maraf?o,Paolo Mattavelli. A selective harmonic compensation and power control approach exploiting distributed electronic converters inmicrogrids[J]. International Journal of Electrical Power and Energy Systems,2020,115. [25]Hay Wong,Derek Neary,Eric Jones,Peter Fox,Chris Sutcliffe. Benchmarking spatial resolution in electronic imaging for potential in-situ Electron Beam Melting monitoring[J]. Additive Manufacturing,2019,29. [26]Yunfei Bai,Hongwen He,Jianwei Li,Shuangqi Li,Ya-xiong Wang,Qingqing Yang. Battery anti-aging control for a plug-in hybrid electric vehicle with a hierarchical optimization energy management strategy[J]. Journal of Cleaner Production,2019,237. [27]N. Samartin-Veiga,A.J. González-Villar,M.T. Carrillo-de-la-Pe?a. Neural correlates of cognitive dysfunction in fibromyalgia patients: Reduced brain electrical activity during the execution ofa cognitive control task[J]. NeuroImage: Clinical,2019,23. [28]Masato Nakaya,Shinta Watanabe,Jun Onoe. Control of electric, optical, thermal properties of C 60 films by electron-beam irradiation[J]. Carbon,2019,152. [29]R. Saadi,M.Y. Hammoudi,O. Kraa,M.Y. Ayad,M. Bahri. A robust control of a 4-leg floating interleaved boost converter for fuel cell electric vehicle application[J]. Mathematics and Computers in Simulation,2019. [30]Frederik Banis,Daniela Guericke,Henrik Madsen,Niels Kj?lstad Poulsen. Supporting power balance in Microgrids with Uncertain Production using Electric Vehicles and Indirect Control ? ? This work has been supported by ENERGINET.DK under the project microgrid positioning - uGrip and the CITIES project.[J]. IFAC PapersOnLine,2019,52(4). 电气控制英文参考文献二: [31]Huijuan Luo,Jinpeng Yu,Chong Lin,Zhanjie Liu,Lin Zhao,Yumei Ma. Finite-time dynamic surface control for induction motors with input saturation in electric vehicle drive systems[J]. Neurocomputing,2019. [32]Peter K. Joseph,D. Elangovan,G. Arunkumar. Linear control of wireless charging for electric bicycles[J]. Applied Energy,2019,255. [33]Yu Congyang,Zhu Dequan,Wang Chaoxian,Zhu Lin,Chu Tingting,Jen Tien-Chien,Liao Juan. Optimizing Electric Adjustment Mechanism Using the Combination of Multi-body Dynamics and Control[J]. Procedia Manufacturing,2019,35. [34]Hussein Termous,Xavier Moreau,Clovis Francis,Hassan Shraim. Effect of fractional order damping control on braking performancefor electric vehicles ? ? This work was supported by the Lebanese research program and the AUF-CNRSL-UL program.[J]. IFAC PapersOnLine,2019,52(5). [35]Manuel Schwartz,Florian Siebenrock,S?ren Hohmann. Model Predictive Control Allocation of an Over-actuated Electric Vehicle with Single Wheel Actuators[J]. IFAC PapersOnLine,2019,52(8). [36]Di Wu,Nikitha Radhakrishnan,Sen Huang. A hierarchical charging control of plug-in electric vehicles with simpleflexibility model[J]. Applied Energy,2019,253. [37]Abhishek Nayak,Rubi Rana,Sukumar Mishra. Frequency Regulation by Electric Vehicle during Grid Restoration using Adaptive Optimal Control[J]. IFAC PapersOnLine,2019,52(4). [38]Nicolò Robuschi,Mauro Salazar,Pol Duhr,FrancescoBraghin,Christopher H. Onder. Minimum-fuel Engine On/Off Control for the Energy Management of a Hybrid Electric Vehicle via Iterative Linear Programming ? ? We thank Ferrari S.p.A. for supporting this project.[J]. IFAC PapersOnLine,2019,52(5). [39]Anas A. Ahmed,M.R. Hashim,Marzaini Rashid. Control of the structural, electrical and optical properties of spin coated NiO films by varying precursor molarity[J]. Thin Solid Films,2019,690. [40]Wilco van Harselaar,Niels Schreuders,Theo Hofman,Stephan Rinderknecht. Improved Implementation of Dynamic Programming on the Example of Hybrid Electric Vehicle Control[J]. IFACPapersOnLine,2019,52(5). [41]Jose A. Matute,Mauricio Marcano,Sergio Diaz,Joshue Perez. Experimental Validation of a Kinematic Bicycle Model Predictive Control with Lateral Acceleration Consideration ? ? This project has received funding from the Electronic Component Systems for European Leadership Joint Undertaking under grant agreement No 737469 (AutoDrive Project). This Joint Undertaking receives support fromthe European Union Horizon 2020 research and innovation programmeand Germany, Austria, Spain, Italy, Latvia, Belgium, Netherlands, Sweden, Finland, Lithuania, Czech Republic, Romania,[J]. IFAC PapersOnLine,2019,52(8). [42]Vladislav S. Gromov,Oleg I. Borisov,Sergey S. Shavetov,AntonA. Pyrkin,FatimatB. Karashaeva. Modeling and Control of Robotic Systems Course: from Fundamentals to Applications ? ? The work was written with the support of the Ministry of Science and Higher Education of the Russian Federation, project unique identifier RFMEFI57818X0271 “Adaptive Sensorless Control for Synchronous Electric Drives in Intelligent Robotics and Transport Systems”.[J]. IFAC PapersOnLine,2019,52(9). [43]H. Mbarak,A.K. Kodeary,S.M. Hamidi,E. Mohajarani,Y. Zaatar. Control of nonlinear refractive index of AuNPs doped with nematic liquid crystal under external electric field[J]. Optik,2019,198. [44]Yanzhao Jia,Rabee Jibrin,Yutaro Itoh,Daniel G?rges. Energy-Optimal Adaptive Cruise Control for Electric Vehicles in Both Time and Space Domain based on Model Predictive Control[J]. IFAC PapersOnLine,2019,52(5). [45]Lukas Engbroks,Daniel G?rke,Stefan Schmiedler,TobiasG?decke,Bastian Beyfuss,Bernhard Geringer. Combined energy and thermal management for plug-in hybrid electric vehicles -analyses based on optimal control theory ? ? This work has been performed within the Daimler AG in Stuttgart, Germany in cooperation with the Institute for Powertrains and Automotive Technology at Vienna University of Technology, Austria.[J]. IFAC PapersOnLine,2019,52(5). [46]Jean Kuchly,Dominique Nelson-Gruel,Alain Charlet,Yann Chamaillard,Cédric Nouillant. Projected Gradient and ModelPredictive Control : Optimal Energy and Pollutants Management for Hybrid Electric Vehicle[J]. IFAC PapersOnLine,2019,52(5). [47]Pier Giuseppe Anselma,Yi Huo,Joel Roeleveld,Giovanni Belingardi,Ali Emadi. From Off-line to On-line Control of a Multimode Power Split Hybrid Electric Vehicle Powertrain[J]. IFAC PapersOnLine,2019,52(5). [48]Xiaoyong Zhu,Deyang Fan,Zixuan Xiang,Li Quan,Wei Hua,Ming Cheng. Systematic multi-level optimization design and dynamiccontrol of less-rare-earth hybrid permanent magnet motor for all-climatic electric vehicles[J]. Applied Energy,2019,253. [49]. Engineering - Industrial Engineering; Findings from Southwest Jiaotong University Provides New Data about Industrial Engineering (Optimal Energy Management and Control In Multimode Equivalent Energy Consumption of Fuel Cell/supercapacitor of Hybrid Electric Tram)[J]. Energy Weekly News,2019. [50]. SK Planet Co. Ltd.; Patent Issued for Electronic Stamp System For Security Intensification, Control Method Thereof, And Non-Transitory Computer Readable Storage Medium Having ComputerProgram Recorded Thereon (USPTO 10,361,857)[J]. Computers, Networks & Communications,2019. [51]. Energy - Electric Power; Study Data from National Institute of Technology Calicut Update Understanding of Electric Power (Modified switching scheme-based explicit torque control of brush-less direct current motor drive)[J]. Energy Weekly News,2019. [52]. Energy; Findings from School of Mechanical Engineering Reveals New Findings on Energy (Deep Reinforcement Learning of Energy Management With Continuous Control Strategy and Traffic Information for a Series-parallel Plug-in Hybrid Electric Bus)[J]. Energy Weekly News,2019. [53]. Energy - Electric Power; Reports Outline Electric Power Study Results from Dalian Maritime University (Direct VoltageControl of Stand-alone Dfig Under Asymmetric Loads Based On Non-singular Terminal Sliding Mode Control and Improved Extended State Observer)[J]. Energy Weekly News,2019. [54]. Energy - Electric Power; Studies from Xi'an Jiao Tong University Add New Findings in the Area of Electric Power (A model predictive control approach for matching uncertain wind generation with PEV charging demand in a microgrid)[J]. Energy WeeklyNews,2019. [55]. Energy - Electric Power; Researchers from Northwestern Polytechnical University Discuss Findings in Electric Power (Decoupling Start Control Method for Aircraft Wound-rotor Synchronous Starter-generator Based On Main Field Current Estimation)[J]. Energy Weekly News,2019. [56]. Energy - Electric Power; Wuhan University Reports Findings in Electric Power (Adjustable virtual inertia control of supercapacitors in PV-based AC microgrid cluster)[J]. Energy Weekly News,2019. [57]. Lg Electronic Inc.; Researchers Submit Patent Application, "Method And Apparatus For Monitoring Control Channel In Unlicensed Band", for Approval (USPTO 20190229825)[J]. Computers, Networks & Communications,2019. [58]. Special Conditions: Pilatus Aircraft Ltd., Model PC-12/47E Airplanes; Electronic Engine Control System Installation[J]. The Federal Register / FIND,2019,84(158). [59]. Apple Inc.; Patent Issued for Offset Control For Assembling An Electronic Device Housing (USPTO 10,368,457)[J]. Computers, Networks & Communications,2019. [60]. Mitsubishi Electric Corporation; Researchers Submit Patent Application, "Synchronization Control System And Control Device",for Approval (USPTO 20190238071)[J]. Computers, Networks & Communications,2019. 电气控制英文参考文献三: [61]. Technology - Cybernetics; Findings from North ChinaElectric Power University Provides New Data about Cybernetics (Hierarchical Distributed Model Predictive Control of Standalone Wind/solar/battery Power System)[J]. Energy Weekly News,2019. [62]. Nidec Corporation; "Motor Control System And Electric Power Steering System" in Patent Application Approval Process (USPTO 20190233002)[J]. Energy Weekly News,2019. [63]. Mobvoi Information Technology Co. LTD.; Researchers Submit Patent Application, "Display Device, Electronic Device And Display Control Method For Screen", for Approval (USPTO 20190235540)[J]. Computers, Networks & Communications,2019. [64]. Engineering - Power Delivery; Studies from North China Electric Power University Have Provided New Data on Power Delivery (Fault Tripping Criteria In Stability Control Device Adapting ToHalf-wavelength Ac Transmission Line)[J]. Energy Weekly News,2019. [65]. Samsung Electronics Co. Ltd.; "Electronic Device For Sensing Biometric Information And Control Method Thereof" in Patent Application Approval Process (USPTO 20190231235)[J]. Medical Patent Business Week,2019. [66]Asiabar Aria Noori,Kazemi Reza. A direct yaw momentcontroller for a four in-wheel motor drive electric vehicle using adaptive sliding mode control[J]. Proceedings of the Institution of Mechanical Engineers,2019,233(3). [67]. Energy - Electrical Energy Systems; New Electrical Energy Systems Findings Has Been Reported by Investigators at University of Sfax (Constrained design and control of trapezoidal waves-forms hybrid excitation synchronous motor increasing energy accumulator lifetime)[J]. Energy Weekly News,2019. [68]. Energy; Findings from School of Mechanical Engineering Has Provided New Data on Energy (Considering Well-to-Wheels Analysis in Control Design: Regenerative Suspension Helps to Reduce Greenhouse Gas Emissions from Battery Electric Vehicles)[J]. Energy Weekly News,2019. [69]. Mitsubishi Electric Corporation; Patent Application Titled "Electric-Power Control Device, Electric Motor, Air-Conditioning Apparatus, And Method For Manufacturing Electric Motor" Published Online (USPTO 20190242594)[J]. Energy Weekly News,2019. [70]. Energy; Reports Summarize Energy Study Results from Warsaw University of Technology (Model Predictive Control and energy optimisation in residential building with electric underfloorheating system)[J]. Energy Weekly News,2019. [71]. Energy - Nuclear Power; Researchers from Korea Electric Power Corporation Report New Studies and Findings in the Area of Nuclear Power (Development of Anti-windup Pi Control and Bumpless Control Transfer Methodology for Feedwater Control System)[J]. Energy Weekly News,2019. [72]. Energy - Electric Power; Data on Electric Power Discussed by Researchers at School of Electrical and Electronics Engineering (Analysis of the Performance Characteristics and Arm Current Control for Modular Multilevel Converter With Asymmetric Arm Parameters)[J]. Energy Weekly News,2019. [73]. Energy - Electric Power; Study Findings on Electric Power Are Outlined in Reports from University of Technology (Direct power control for VSC-HVDC systems: An application of the global tracking passivity-based PI approach)[J]. Energy Weekly News,2019. [74]Allous Manel,Mrabet Kais,Zanzouri Nadia. Fast fault-tolerant control of electric power steering systems in the presence of actuator fault[J]. Proceedings of the Institution of Mechanical Engineers,2019,233(12). [75]. Energy - Electric Power; Researchers from College of Engineering Detail New Studies and Findings in the Area of Electric Power (Power Control Strategy of Photovoltaic Plants for Frequency Regulation In a Hybrid Power System)[J]. Energy Weekly News,2019. [76]. Energy - Electric Power; Researchers at Shiv Nadar University Report New Data on Electric Power (Methods for overcoming misalignment effects and charging control of a dynamic wireless electric vehicle charging system)[J]. Energy Weekly News,2019. [77]Zhang Bing,Zong Changfu,Chen Guoying,Li Guiyuan. An adaptive-prediction-horizon model prediction control for path tracking in a four-wheel independent control electric vehicle[J]. Proceedings of the Institution of Mechanical Engineers,2019,233(12). [78]Ren Yue,Zheng Ling,Yang Wei,Li Yinong. Potential field–based hierarchical adaptive cruise control for semi-autonomous electric vehicle[J]. Proceedings of the Institution of MechanicalEngineers,2019,233(10). [79]. Energy - Electric Power; Data from University of the Basque Country Advance Knowledge in Electric Power (Sliding Mode Control of an Active Power Filter With Photovoltaic Maximum Power Tracking)[J]. Energy Weekly News,2019. [80]Izadbakhsh Alireza,Kheirkhahan Payam. Adaptive fractional-order control of electrical flexible-joint robots: Theory and experiment[J]. Proceedings of the Institution of Mechanical Engineers,2019,233(9). [81]Yang Weiwei,Liang Jiejunyi,Yang Jue,Zhang Nong. Optimal control of a novel uninterrupted multi-speed transmission for hybrid electric mining trucks[J]. Proceedings of the Institution of Mechanical Engineers,2019,233(12). [82]Guercioni Guido Ricardo,Vigliani Alessandro. Gearshiftcontrol strategies for hybrid electric vehicles: A comparison of powertrains equipped with automated manual transmissions and dual-clutch transmissions[J]. Proceedings of the Institution of Mechanical Engineers,2019,233(11). [83]. Energy - Electric Power; Findings from PontificalUniversity Provides New Data on Electric Power (A Communication-free Reactive-power Control Strategy In Vsc-hvdc Multi-terminal Systems To Improve Transient Stability)[J]. Energy Weekly News,2019. [84]. Energy - Electric Power; Findings from Yazd University in the Area of Electric Power Reported (An adaptive time-graded control method for VSC-MTDC networks)[J]. Energy Weekly News,2019. [85]Liu Hui,Li Xunming,Wang Weida,Han Lijin,Xin Huibin,Xiang Changle. Adaptive equivalent consumption minimisation strategy and dynamic control allocation-based optimal power management strategy for four-wheel drive hybrid electric vehicles[J]. Proceedings of the Institution of Mechanical Engineers,2019,233(12). [86]. Networks - Neural Networks; Findings on Neural Networks Reported by Investigators at School of Electrical Engineering and Automation (Stability Analysis of Fractional Order Hopfield Neural Networks With Optimal Discontinuous Control)[J]. Computers, Networks & Communications,2019. [87]. Energy - Electric Power; Researchers from NanjingUniversity of Aeronautics and Astronautics Describe Findings in Electric Power (Synchronous Vibration Control for a Class of Cross-coupled Antisymmetric Msr Systems)[J]. Energy Weekly News,2019. [88]. Energy - Electric Power; Investigators at Chung Ang University Detail Findings in Electric Power (Flexible Risk Control Strategy Based On Multi-stage Corrective Action With Energy Storage System)[J]. Energy Weekly News,2019. [89]. Energy - Electric Power; Findings in Electric Power Reported from National Institute of Technology (An adaptive PI control scheme to balance the neutral-point voltage in a solar PV fed grid connected neutral point clamped inverter)[J]. Energy Weekly News,2019. [90]Najjari Behrouz,Mirzaei Mehdi,Tahouni Amin. Constrained stability control with optimal power management strategy for in-wheel electric vehicles[J]. Proceedings of the Institution of Mechanical Engineers,2019,233(4). 电气控制英文参考文献四: [91]. Energy - Wind Farms; Investigators at School of Electrical Power Detail Findings in Wind Farms (Theoretical Study On Control Strategy of Grid-connected High Voltage Ride Through In Doubly-fed Wind Farm)[J]. Energy Weekly News,2019. [92]. Kia Motors Corporation; Patent Issued for Wireless Charging Control Apparatus And Method For Optimal Charging By Adjusting The Inclination Of The Electric Vehicle Being Charged (USPTO10,399,449)[J]. Computers, Networks & Communications,2019. [93]. Energy; New Data from Institute of Electrical Engineering Illuminate Findings in Energy (Charging-Discharging Control Strategy for a Flywheel Array Energy Storage System Based on the Equal Incremental Principle)[J]. Energy Weekly News,2019. [94]. Science - Applied Sciences; Findings from North China Electric Power University Broaden Understanding of Applied Sciences (Coordinated Frequency Control Strategy with the Virtual Battery Model of Inverter Air Conditionings)[J]. Science Letter,2019. [95]. Science - Materials Science; Studies from Tsinghua University in the Area of Materials Science Described (ElectricField Control of Neel Spin-orbit Torque In an Antiferromagnet)[J]. Science Letter,2019. [96]. Electronics - Power Electronics; Studies from Nanjing University of Aeronautics and Astronautics Have Provided New Data on Power Electronics (Wireless battery charging control for electric vehicles: a user-involved approach)[J]. Computers, Networks & Communications,2019. [97]Kivanc,Ustun. Dynamic control of electronic differential in the field weakening region[J]. International Journal ofElectronics,2019,106(10). [98]Mohit Batra,John McPhee,Nasser L. Azad. Real-time model predictive control of connected electric vehicles[J]. Vehicle System Dynamics,2019,57(11). [99]Kim Daihyun,Echelmeier Austin,Cruz Villarreal Jorvani,Gandhi Sahir,Quintana Sebastian,Egatz-Gomez Ana,Ros Alexandra. Electric Triggering for Enhanced Control of Droplet Generation.[J].Analytical chemistry,2019,91(15). [100]Kurien Caneon,Srivastava Ajay Kumar. Impact of Electric Vehicles on Indirect Carbon Emissions and Role of Engine Post-Treatment Emission Control Strategies.[J]. Integrated environmental assessment and management,2019. [101]Aravindh D,Sakthivel R,Kaviarasan B,Anthoni SMarshal,Alzahrani Faris. Design of observer-based non-fragile loadfrequency control for power systems with electric vehicles.[J]. ISA transactions,2019,91. [102]Chen Xianzhe,Zhou Xiaofeng,Cheng Ran,Song Cheng,Zhang Jia,Wu Yichuan,Ba You,Li Haobo,Sun Yiming,You Yunfeng,Zhao Yonggang,Pan Feng. Electric field control of Néel spin-orbit torque in an antiferromagnet.[J]. Nature materials,2019,18(9). [103]Lê-Scherban Félice,Ballester Lance,Castro Juan C,Cohen Suzanne,Melly Steven,Moore Kari,Buehler James W. Identifying neighborhood characteristics associated with diabetes and hypertension control in an urban African-American population using geo-linked electronic health records.[J]. Preventive medicine reports,2019,15. [104]Samartin-Veiga N,González-Villar A J,Carrillo-de-la-Pe?a M T. Neural correlates of cognitive dysfunction in fibromyalgia patients: Reduced brain electrical activity during the execution of a cognitive control task.[J]. NeuroImage. Clinical,2019,23. [105]Leibel Sydney,Weber Rachel. Utilizing a PhysicianNotification System in the EPIC Electronic Medical Record to Improve Pediatric Asthma Control: A Quality Improvement Project.[J].Clinical pediatrics,2019,58(11-12). [106]Bernacka-Wojcik Iwona,Huerta Miriam,Tybrandt Klas,Karady Michal,Mulla Mohammad Yusuf,Poxson David J,Gabrielsson Erik O,Ljung Karin,Simon Daniel T,Berggren Magnus,Stavrinidou Eleni. Implantable Organic Electronic Ion Pump Enables ABA Hormone Delivery for Control of Stomata in an Intact Tobacco Plant.[J]. Small (Weinheim an der Bergstrasse, Germany),2019. [107]Stoynova Nevena,Laske Christoph,Plewnia Christian. Combining electrical stimulation and cognitive control training to reduce concerns about subjective cognitive decline.[J]. Brainstimulation,2019,12(4). [108]Bettano Amy,Land Thomas,Byrd Alice,Svencer Susan,Nasuti Laura. Using Electronic Referrals to Address Health Disparities and Improve Blood Pressure Control.[J]. Preventing chronicdisease,2019,16. [109]Xu Meng,Yan Jian-Min,Guo Lei,Wang Hui,Xu Zhi-Xue,Yan Ming-Yuan,Lu Yun-Long,Gao Guan-Yin,Li Xiao-Guang,Luo Hao-Su,ChaiYang,Zheng Ren-Kui. Nonvolatile Control of the Electronic Properties of In<sub>2- x </sub>Cr<sub> x </sub>O<sub>3</sub> Semiconductor Films by Ferroelectric Polarization Charge.[J]. ACS appliedmaterials & interfaces,2019,11(35). [110]Gao Tao,Mirzadeh Mohammad,Bai Peng,Conforti Kameron M,Bazant Martin Z. Active control of viscous fingering using electricfields.[J]. Nature communications,2019,10(1). [111]Chaux Robin,Treussier Isabelle,Audeh Bissan,Pereira Suzanne,Hengoat Thierry,Paviot Béatrice Trombert,Bousquet Cedric. Automated Control of Codes Accuracy in Case-Mix Databases by Evaluating Coherence with Available Information in the Electronic Health Record.[J]. Studies in health technology andinformatics,2019,264. [112]Bolat Mustafa Suat,Cinar Onder,Asci Ramazan,Buyukalpelli Recep. A novel method for pain control: infiltration free local anesthesia technique (INFLATE) for transrectal prostatic biopsy using transcutaneous electrical nerve stimulation (TENS).[J]. International urology and nephrology,2019. [113]Cruz Chad D,Yuan Jennifer,Climent Clàudia,Tierce NathanT,Christensen Peter R,Chronister Eric L,Casanova David,Wolf Michael O,Bardeen Christopher J. Using sulfur bridge oxidation to control electronic coupling and photochemistry in covalent anthracene dimers.[J]. Chemical science,2019,10(32). [114]Zhou Canliang,Sun Linfeng,Zhang Fengquan,Gu Chenjie,Zeng Shuwen,Jiang Tao,Shen Xiang,Ang Diing Shenp,Zhou Jun. Electrical Tuning of the SERS Enhancement by Precise Defect DensityControl.[J]. ACS applied materials & interfaces,2019,11(37). [115]Taeho Park,Hyeongcheol Lee. Optimal Supervisory Control Strategy for a Transmission-Mounted Electric Drive Hybrid Electric Vehicle[J]. International Journal of AutomotiveTechnology,2019,20(4). [116]Zoé Magalh?es,André Murilo,Renato V. Lopes. Development and evaluation with MIL and HIL simulations of a LQR-based upper-level electronic stability control[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering,2019,41(8). [117]Justin Roger Mboupda Pone,Victor Kamdoum Tamba,Guillaume Honore Kom,Mathieu Jean Pierre Pesdjock,Alain Tiedeu,Martin Kom. Numerical, electronic simulations and experimental analysis of a no-equilibrium point chaotic circuit with offset boosting and partial amplitude control[J]. SN Applied Sciences,2019,1(8). [118]Alberto Cavallo,Antonio Russo,Giacomo Canciello.Hierarchical control for generator and battery in the more electric aircraft[J]. Science China Information Sciences,2019,62(9). [119]Ying Liu,Kai Cao,Jingjun Liu,Zhengping Zhang,Jing Ji,Feng Wang,Zhilin Li. Electrodeposition of copper-doped SnS thin films and their electric transmission properties control for thermoelectric enhancement[J]. Journal of Materials Science: Materials in Electronics,2019,30(17). [120]Feng Tian,Liqi Sui,Yuanfan Zeng,Bo Li,Xingyue Zhou,Lijun Wang,Hongxu Chen. Hardware Design and Test of a Gear-ShiftingControl System of a Multi-gear Transmission for ElectricVehicles[J]. Automotive Innovation,2019,2(3).。
(完整word版)Matlab的神经网络工具箱入门
Matlab的神经网络工具箱入门在command window中键入help nnet>> help nnetNeural Network ToolboxVersion 7.0 (R2010b) 03-Aug-2010神经网络工具箱版本7.0(R2010b)03八月,2010图形用户界面功能。
nnstart - 神经网络启动GUInctool - 神经网络分类工具nftool - 神经网络的拟合工具nntraintool - 神经网络的训练工具nprtool - 神经网络模式识别工具ntstool - NFTool神经网络时间序列的工具nntool - 神经网络工具箱的图形用户界面。
查看- 查看一个神经网络。
网络的建立功能。
cascadeforwardnet - 串级,前馈神经网络。
competlayer - 竞争神经层。
distdelaynet - 分布时滞的神经网络。
elmannet - Elman神经网络。
feedforwardnet - 前馈神经网络。
fitnet - 函数拟合神经网络。
layrecnet - 分层递归神经网络。
linearlayer - 线性神经层。
lvqnet - 学习矢量量化(LVQ)神经网络。
narnet - 非线性自结合的时间序列网络。
narxnet - 非线性自结合的时间序列与外部输入网络。
newgrnn - 设计一个广义回归神经网络。
newhop - 建立经常性的Hopfield网络。
newlind - 设计一个线性层。
newpnn - 设计概率神经网络。
newrb - 径向基网络设计。
newrbe - 设计一个确切的径向基网络。
patternnet - 神经网络模式识别。
感知- 感知。
selforgmap - 自组织特征映射。
timedelaynet - 时滞神经网络。
利用网络。
网络- 创建一个自定义神经网络。
SIM卡- 模拟一个神经网络。
初始化- 初始化一个神经网络。
思维进化算法在BP神经网络拟合非线性函数中的应用研究
思维进化算法在BP神经网络拟合非线性函数中的应用研究刘俊【摘要】直接使用BP神经网络拟合非线性函数,具有预测精度差、收敛速度慢等缺点。
该文提出利用极强全局搜索能力的思维进化算法来优化BP神经网络。
首先根据BP神经网络拓扑结构构建思维进化算法模型,然后用思维进化算法得到的最优解作为BP神经网络的初始权值和阈值,最后利用MATLAB软件对多个非线性函数进行拟合仿真实验,比较思维进化算法优化BP神经网络和单纯使用BP神经网络的预测结果。
数据表明,优化后的BP神经网络具有更高的拟合精度和更短的网络训练时间。
%Owing to the poor accuracy,slow convergence speed and other shortcomings after the direct appli-cation of BP neural network in the fitting of nonlinear functions,this paper proposed that BP neural network can be optimized by mind evolutionary algorithm,which enjoys strong global search ability. Firstly,the mind evolu-tionary algorithm model is constructed based on neural network topology;then,it is used to get the optimal solu-tions,which is served as initial weights and the threshold value of BP neural network;lastly,the MATLAB soft-ware is used to simulate multiple nonlinear function fitting,comparing the different results between optimized BP neural network and simply application of the BP neural network. Statistics indicate that the optimized BP neural network enjoys higher accuracy and shorter training time.【期刊名称】《绵阳师范学院学报》【年(卷),期】2015(000)002【总页数】5页(P79-83)【关键词】思维进化算法;BP神经网络;函数拟合【作者】刘俊【作者单位】商洛学院电子信息与电气工程学院,陕西商洛 726000【正文语种】中文【中图分类】TP183在工程应用领域中,经常需要对大量采集的历史数据进行函数拟合.然而这些数据常常是复杂、多元的非线性关系,传统的最小二乘、多项式回归等拟合方法无法满足拟合精度要求.人工神经网络具有良好的非线性并行处理能力,强大的学习和泛化能力,为非线性函数拟合提供了有效途径.张宝堃等[1]利用非线性映射能力较强的BP 神经网络拟合了一组单输入单输出非线性函数,但该方法存在局部最优问题等缺点[2,3].徐富强等[4]采用遗传算法优化BP 神经网络的初始权值和阈值,并用于非线性函数拟合,该方法全局搜索能力较强,但误差依然较大.沈学利等[5]将粒子群优化算法应用于BP神经网络的参数训练,对非线性函数拟合有一定的效果,但存在精度较差,容易陷入局部最优等[6]缺点.本文提出了思维进化算法与BP 神经网络结合的算法,利用思维进化算法优化BP 神经网络的初始权值和阈值,通过多个非线性函数拟合实验验证了该算法的强拟合能力和有效性.1 思维进化算法1.1 思维进化算法概述思维进化算法(Mind Evolutionary Algorithm,简称MEA)由孙承意等[7]研究者于1998年提出,该算法是针对遗传算法的缺陷[8]而提出的一种新型进化算法,其思想来源于模仿人类思维进化过程.思维进化算法继承了遗传算法的“群体”和“进化”的思想,提出了新的操作算子——“趋同”和“异化”,这两种操作相互协调,其中任一操作改进都可以提高算法的整体搜索效率.由于思维进化算法具有良好的扩充性、移植性和极强的全局优化能力,已经成功应用于图像处理、自动控制、经济预测等领域[9-13]1.2 思维进化算法基本思想思维进化算法是一种通过趋同、异化等操作,不断迭代进行优化学习的方法,基本的进化过程如下:(1)群体生成.在解空间中随机生成P 个个体,所有个体组成一个群体.根据适应度函数计算出每个个体的得分.(2)子群体生成.得分最高的前M 个个体作为优胜个体,前第M+1 到第M+N 共N 个个体作为临时个体.以所选优胜个体和临时个体为中心,生成M 个优胜子群体和N 个临时子群体,每个子群体的个体数目为P/(N+M).(3)趋同操作.各子群体内部个体为成为胜者而进行局部竞争,此过程为趋同过程.若一个子群体不在产生新的胜者(即子群体成熟),则竞争结束,该子群体的得分就是子群体中最优个体的得分,并把得分张贴在全局公告板上.直到所有子群体全部成熟,趋同过程结束.(4)异化操作.成熟后的子群体之间为成为胜者而进行全局竞争,不断探索新的解空间,此过程为异化操作.从全局公告板上,比较优胜子群体和临时子群体的得分高低,完成子群体间的替换、废弃、个体释放的过程,最后得到全局最优个体及其得分.(5)迭代操作.异化结束后,被释放的个体重新被新的临时子群体补充,重复(3)-(4)过程,直到最优个体的得分不再提高或迭代结束,则认为运算收敛,输出最优个体.思维进化算法框图如图1 所示:图1 思维进化算法框图Fig.1 Block diagram of mind evolutionary algorithm 2 BP 神经网络BP(Back Propagation)神经网络一种误差反向传播的多层前馈神经网络,由Rumelhart 和McCelland 等学者在1986年提出.BP 神经网络由三层网络--输入层、隐含层和输出层组成,隐含层可以有一层或多层.输入信号经输入层逐层传输到各隐含层,最后传向输出层.隐含层和输出层根据相应神经元的权值和阈值完成数据计算工作.若输出结果不满足期望值,误差信号反向逐层传到各隐含层和输入层,利用梯度最速下降法,调整各神经元的权值和阈值.输入正向传播和误差反向传播反复迭代,直到输出误差最小或输出达到期望值,计算结束.利用BP 神经网络拟合非线性函数的一般过程如下:(1)构建BP 神经网络.根据需要拟合的非线性函数特征,确定隐含层层数,选择各层网络节点数目和隐含层、输出层传输函数等.(2)训练BP 神经网络.初始化连接权值和阈值,设定学习速率和训练目标;依次计算隐含层输出、输出层输出和输出误差;根据误差信号,依次更新各层神经元间的权值和阈值;反复迭代,直到输出误差最小或满足期望值,训练结束.(3)BP 神经网络预测.用训练好的BP 网络预测非线性函数输出,然后分析预测结果. BP 神经网络具有较强的非线性映射能力,拟合函数具有一定的效果,但拟合精度较低,且容易陷入局部极值点.为了提高精度,实现全局优化,本文采用思维进化算法来优化BP 神经网络,实现非线性函数的高精度拟合.3 MEA-BP 神经网络拟合非线性函数的算法实现思维进化算法在BP 神经网络拟合非线性函数的算法实现,首先根据拟合函数的输入输出参数确定BP 神经网络拓扑结构,进而得到思维进化算法个体的编码长度,并构建优化算法模型.然后,用思维进化算法对BP 神经网络的初始权值和阈值进行优化,选取训练数据的均方误差的倒数作为各个种群和个体的得分函数,经过不断趋同、异化、迭代,输出最优个体.最后解析最优个体,得到BP 神经网络的初始权值和阈值,再利用训练数据样本训练BP 神经网络,利用测试数据样本预测网络性能.优化算法实现流程图如图2 所示.图2 算法流程图Fig.2 Flow chart of mind evolutionary algorithm4 仿真实验为了验证思维进化算法优化BP 神经网络后的预测精度,选择非线性函数式(1)进行拟合.采用MATLAB 软件编程实现BP 神经网络拟合算法和思维进化算法优化BP 神经网络拟合算法,并对这两种算法的预测精度进行比较.拟合的非线性函数如下:4.1 参数设置拟合函数为两个输入,一个输出,设定BP 网络拓扑结构为2-10-1,即输入层、隐含层和输出层的节点数分别为2个、10 个和1 个.网络学习速率为0.1,训练次数1000 次,训练目标10-6.隐含层和输出层的传输函数都选择S 型正切函数‘tansig’;网络训练函数选择L-M 算法函数‘trainlm’;权值学习函数选择梯度下降动量学习函数‘learngdm’.思维进化算法种群大小设定为400,优胜子种群和临时子种群个数全部为5,子种群大小为40,个体编码长度为21,迭代次数20,适应度函数为均方误差的倒数.根据式(1)随机产生2000 组数据,任取1950 组用于训练网络,其余50 组用于预测网络.4.2 结果分析为了清晰观察网络优化后的预测结果,首先利用1950 组数据分别训练BP 神经网络和思维进化算法优化后的BP 神经网络,然后利用训练后的两个网络预测其余50 组数据,最后分析比较这两种算法的预测误差和误差百分比参数.预测误差及误差百分比如图3 和图4 所示.图3 BP 神经网络与MEA-BP 神经网络预测误差比较Fig.3 Prediction errors between BP neural network and MEA-BP neural network图4 BP 神经网络与MEA-BP 神经网络预测误差百分比Fig.4 Percentage of prediction errors between BP neural network and MEA-BP neural network 从图3 和图4 可以清楚看到,对于非线性函数,BP 神经网络具有一定的拟合能力,但预测精度仍然较差,但是,经过思维进化算法优化后的BP 神经网络预测误差明显减小,且误差相对稳定.其他预测参数比较如表1 所示.表1 BP 神经网络与MEA-BP 神经网络预测结果比较Tab.1 Prediction results of BP neural network and MEA-BP neural network从表1 可以看到,MEA-BP 神经网络预测误差远小于BP 神经网络的预测误差,且网络训练时间也较短,可见MEA-BP 神经网络具有更高的拟合性能.4.3 其他函数的拟合按照同样的参数设定和拟合方法,对其他非线性函数进行拟合实验,实验函数如式(2)、(3)和(4).通过网络训练和预测,得到两种算法的实验结果,如表2 所示.表2 实验结果比较Tab.2 Comparison of experimental consequences从表2 中可以看出,对非线性函数拟合,经过思维进化算法优化后的BP 神经网络的预测精度高于直接使用BP 神经网络,且网络训练时间相对较短,也可以看出优化后的BP 神经网络泛化性能得到进一步提高.5 结语本文采用全局搜索能力极强的思维进化算法对BP 神经网络进行优化.该算法的基本思想是在训练BP 神经网络前,利用思维进化算法对BP 神经网络的初始权值和阈值进行优化,以提高网络的准确性.从多个非线性函数拟合实验结果分析比较得到,思维进化算法优化BP 神经网络的性能明显优于BP神经网络,非线性函数拟合精度更高.本文研究方法在工程和实验的数据拟合方面具有重要意义,也为研究和改进神经网络提供了一种新的思路,为解决其他实际问题提供了新的手段.参考文献:[1]张宝堃,张宝一.基于BP 神经网络的非线性函数拟合[J].电脑知识与技术,2012,8(27):6579-6583.[2]Li Song,Liu Lijun,Huo Man.Prediction for short-term traffic flow based on modified PSO optimized BP neural network[J].Systems Engineering-Theory & Practice,2012,32(9):2045-2049.[3]Xu Yishan,Zeng Bi,Yin Xiuwen,et al.BP neural network and its applications based on improved PSO[J].Computer Engineering and Applications,2009,45(35):233-235.[4]徐富强,钱云,刘相国.GA-BP 神经网络的非线性函数拟合[J].微计算机信息,2012,28(7):148-150.[5]沈学利,张红岩,张纪锁.改进粒子群算法对BP 神经网络的优化[J].计算机系统应用,2012,19(2):57-61.[6]乔冰琴,常晓明.改进粒子群算法在BP 神经网络拟合非线性函数方面的应用[J].太原理工大学学报,2012,43(5):558-559.[7]Chengyi Sun.Mind-Evolution-Based Machine Learning:Frameworkand the Implementation of Optimization[A].In:Proceedings of IEEE International Conference on Intelligent Engineering Systems[C].1998,355-359.[8]谢刚.免疫思维进化算法及其工程应用[D].太原:太原理工大学,2006,27-28.[9]Sun Yan,Sun Yu,Sun Chengyi.Clustering and Reconstruction of Color images Using MEBML[A].In:Proceedings of International Conference on Neural Networks & Brain[C].Beijing,China,1998,361-365.[10]Cheng Mingqi.Gray image segmentation on MEBML frame [J].Intelligent Control and Automation,2000,1:135-137.[11]Chengyi Sun,Yan Sun,Yu Sun.Economic prediction system using double models[J].Systems,Man,and Cyberntics,2000,3:1978-1983. [12]韩晓霞,谢克明.基于思维进化算法的模糊自寻优控制[J].太原理工大学学报,2004,35(5):523-525.[13]Keming Xie,Changhua Mou,Gang Xie.The multi-parameter combination mind-evolutionary-based machine learning and its application[J].Systems,Man,and Cybernetics,2000,1:183-187.。
特征更新的动态图卷积表面损伤点云分割方法
第41卷 第4期吉林大学学报(信息科学版)Vol.41 No.42023年7月Journal of Jilin University (Information Science Edition)July 2023文章编号:1671⁃5896(2023)04⁃0621⁃10特征更新的动态图卷积表面损伤点云分割方法收稿日期:2022⁃09⁃21基金项目:国家自然科学基金资助项目(61573185)作者简介:张闻锐(1998 ),男,江苏扬州人,南京航空航天大学硕士研究生,主要从事点云分割研究,(Tel)86⁃188****8397(E⁃mail)839357306@;王从庆(1960 ),男,南京人,南京航空航天大学教授,博士生导师,主要从事模式识别与智能系统研究,(Tel)86⁃130****6390(E⁃mail)cqwang@㊂张闻锐,王从庆(南京航空航天大学自动化学院,南京210016)摘要:针对金属部件表面损伤点云数据对分割网络局部特征分析能力要求高,局部特征分析能力较弱的传统算法对某些数据集无法达到理想的分割效果问题,选择采用相对损伤体积等特征进行损伤分类,将金属表面损伤分为6类,提出一种包含空间尺度区域信息的三维图注意力特征提取方法㊂将得到的空间尺度区域特征用于特征更新网络模块的设计,基于特征更新模块构建出了一种特征更新的动态图卷积网络(Feature Adaptive Shifting⁃Dynamic Graph Convolutional Neural Networks)用于点云语义分割㊂实验结果表明,该方法有助于更有效地进行点云分割,并提取点云局部特征㊂在金属表面损伤分割上,该方法的精度优于PointNet ++㊁DGCNN(Dynamic Graph Convolutional Neural Networks)等方法,提高了分割结果的精度与有效性㊂关键词:点云分割;动态图卷积;特征更新;损伤分类中图分类号:TP391.41文献标志码:A Cloud Segmentation Method of Surface Damage Point Based on Feature Adaptive Shifting⁃DGCNNZHANG Wenrui,WANG Congqing(School of Automation,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China)Abstract :The cloud data of metal part surface damage point requires high local feature analysis ability of the segmentation network,and the traditional algorithm with weak local feature analysis ability can not achieve the ideal segmentation effect for the data set.The relative damage volume and other features are selected to classify the metal surface damage,and the damage is divided into six categories.This paper proposes a method to extract the attention feature of 3D map containing spatial scale area information.The obtained spatial scale area feature is used in the design of feature update network module.Based on the feature update module,a feature updated dynamic graph convolution network is constructed for point cloud semantic segmentation.The experimental results show that the proposed method is helpful for more effective point cloud segmentation to extract the local features of point cloud.In metal surface damage segmentation,the accuracy of this method is better than pointnet++,DGCNN(Dynamic Graph Convolutional Neural Networks)and other methods,which improves the accuracy and effectiveness of segmentation results.Key words :point cloud segmentation;dynamic graph convolution;feature adaptive shifting;damage classification 0 引 言基于深度学习的图像分割技术在人脸㊁车牌识别和卫星图像分析领域已经趋近成熟,为获取物体更226吉林大学学报(信息科学版)第41卷完整的三维信息,就需要利用三维点云数据进一步完善语义分割㊂三维点云数据具有稀疏性和无序性,其独特的几何特征分布和三维属性使点云语义分割在许多领域的应用都遇到困难㊂如在机器人与计算机视觉领域使用三维点云进行目标检测与跟踪以及重建;在建筑学上使用点云提取与识别建筑物和土地三维几何信息;在自动驾驶方面提供路面交通对象㊁道路㊁地图的采集㊁检测和分割功能㊂2017年,Lawin等[1]将点云投影到多个视图上分割再返回点云,在原始点云上对投影分割结果进行分析,实现对点云的分割㊂最早的体素深度学习网络产生于2015年,由Maturana等[2]创建的VOXNET (Voxel Partition Network)网络结构,建立在三维点云的体素表示(Volumetric Representation)上,从三维体素形状中学习点的分布㊂结合Le等[3]提出的点云网格化表示,出现了类似PointGrid的新型深度网络,集成了点与网格的混合高效化网络,但体素化的点云面对大量点数的点云文件时表现不佳㊂在不规则的点云向规则的投影和体素等过渡态转换过程中,会出现很多空间信息损失㊂为将点云自身的数据特征发挥完善,直接输入点云的基础网络模型被逐渐提出㊂2017年,Qi等[4]利用点云文件的特性,开发了直接针对原始点云进行特征学习的PointNet网络㊂随后Qi等[5]又提出了PointNet++,针对PointNet在表示点与点直接的关联性上做出改进㊂Hu等[6]提出SENET(Squeeze⁃and⁃Excitation Networks)通过校准通道响应,为三维点云深度学习引入通道注意力网络㊂2018年,Li等[7]提出了PointCNN,设计了一种X⁃Conv模块,在不显著增加参数数量的情况下耦合较远距离信息㊂图卷积网络[8](Graph Convolutional Network)是依靠图之间的节点进行信息传递,获得图之间的信息关联的深度神经网络㊂图可以视为顶点和边的集合,使每个点都成为顶点,消耗的运算量是无法估量的,需要采用K临近点计算方式[9]产生的边缘卷积层(EdgeConv)㊂利用中心点与其邻域点作为边特征,提取边特征㊂图卷积网络作为一种点云深度学习的新框架弥补了Pointnet等网络的部分缺陷[10]㊂针对非规律的表面损伤这种特征缺失类点云分割,人们已经利用各种二维图像采集数据与卷积神经网络对风扇叶片㊁建筑和交通工具等进行损伤检测[11],损伤主要类别是裂痕㊁表面漆脱落等㊂但二维图像分割涉及的损伤种类不够充分,可能受物体表面污染㊁光线等因素影响,将凹陷㊁凸起等损伤忽视,或因光照不均匀判断为脱漆㊂笔者提出一种基于特征更新的动态图卷积网络,主要针对三维点云分割,设计了一种新型的特征更新模块㊂利用三维点云独特的空间结构特征,对传统K邻域内权重相近的邻域点采用空间尺度进行区分,并应用于对金属部件表面损伤分割的有用与无用信息混杂的问题研究㊂对邻域点进行空间尺度划分,将注意力权重分组,组内进行特征更新㊂在有效鉴别外邻域干扰特征造成的误差前提下,增大特征提取面以提高局部区域特征有用性㊂1 深度卷积网络计算方法1.1 包含空间尺度区域信息的三维图注意力特征提取方法由迭代最远点采集算法将整片点云分割为n个点集:{M1,M2,M3, ,M n},每个点集包含k个点:{P1, P2,P3, ,P k},根据点集内的空间尺度关系,将局部区域划分为不同的空间区域㊂在每个区域内,结合局部特征与空间尺度特征,进一步获得更有区分度的特征信息㊂根据注意力机制,为K邻域内的点分配不同的权重信息,特征信息包括空间区域内点的分布和区域特性㊂将这些特征信息加权计算,得到点集的卷积结果㊂使用空间尺度区域信息的三维图注意力特征提取方式,需要设定合适的K邻域参数K和空间划分层数R㊂如果K太小,则会导致弱分割,因不能完全利用局部特征而影响结果准确性;如果K太大,会增加计算时间与数据量㊂图1为缺损损伤在不同参数K下的分割结果图㊂由图1可知,在K=30或50时,分割结果效果较好,K=30时计算量较小㊂笔者选择K=30作为实验参数㊂在分析确定空间划分层数R之前,简要分析空间层数划分所应对的问题㊂三维点云所具有的稀疏性㊁无序性以及损伤点云自身噪声和边角点多的特性,导致了点云处理中可能出现的共同缺点,即将离群值点云选为邻域内采样点㊂由于损伤表面多为一个面,被分割出的损伤点云应在该面上分布,而噪声点则被分布在整个面的两侧,甚至有部分位于损伤内部㊂由于点云噪声这种立体分布的特征,导致了离群值被选入邻域内作为采样点存在㊂根据采用DGCNN(Dynamic Graph Convolutional Neural Networks)分割网络抽样实验结果,位于切面附近以及损伤内部的离群值点对点云分割结果造成的影响最大,被错误分割为特征点的几率最大,在后续预处理过程中需要对这种噪声点进行优先处理㊂图1 缺损损伤在不同参数K 下的分割结果图Fig.1 Segmentation results of defect damage under different parameters K 基于上述实验结果,在参数K =30情况下,选择空间划分层数R ㊂缺损损伤在不同参数R 下的分割结果如图2所示㊂图2b 的结果与测试集标签分割结果更为相似,更能体现损伤的特征,同时屏蔽了大部分噪声㊂因此,选择R =4作为实验参数㊂图2 缺损损伤在不同参数R 下的分割结果图Fig.2 Segmentation results of defect damage under different parameters R 在一个K 邻域内,邻域点与中心点的空间关系和特征差异最能表现邻域点的权重㊂空间特征系数表示邻域点对中心点所在点集的重要性㊂同时,为更好区分图内邻域点的权重,需要将整个邻域细分㊂以空间尺度进行细分是较为合适的分类方式㊂中心点的K 邻域可视为一个局部空间,将其划分为r 个不同的尺度区域㊂再运算空间注意力机制,为这r 个不同区域的权重系数赋值㊂按照空间尺度多层次划分,不仅没有损失核心的邻域点特征,还能有效抑制无意义的㊁有干扰性的特征㊂从而提高了深度学习网络对点云的局部空间特征的学习能力,降低相邻邻域之间的互相影响㊂空间注意力机制如图3所示,计算步骤如下㊂第1步,计算特征系数e mk ㊂该值表示每个中心点m 的第k 个邻域点对其中心点的权重㊂分别用Δp mk 和Δf mk 表示三维空间关系和局部特征差异,M 表示MLP(Multi⁃Layer Perceptrons)操作,C 表示concat 函数,其中Δp mk =p mk -p m ,Δf mk =M (f mk )-M (f m )㊂将两者合并后输入多层感知机进行计算,得到计算特征系数326第4期张闻锐,等:特征更新的动态图卷积表面损伤点云分割方法图3 空间尺度区域信息注意力特征提取方法示意图Fig.3 Schematic diagram of attention feature extraction method for spatial scale regional information e mk =M [C (Δp mk ‖Δf mk )]㊂(1) 第2步,计算图权重系数a mk ㊂该值表示每个中心点m 的第k 个邻域点对其中心点的权重包含比㊂其中k ∈{1,2,3, ,K },K 表示每个邻域所包含点数㊂需要对特征系数e mk 进行归一化,使用归一化指数函数S (Softmax)得到权重多分类的结果,即计算图权重系数a mk =S (e mk )=exp(e mk )/∑K g =1exp(e mg )㊂(2) 第3步,用空间尺度区域特征s mr 表示中心点m 的第r 个空间尺度区域的特征㊂其中k r ∈{1,2,3, ,K r },K r 表示第r 个空间尺度区域所包含的邻域点数,并在其中加入特征偏置项b r ,避免权重化计算的特征在动态图中累计单面误差指向,空间尺度区域特征s mr =∑K r k r =1[a mk r M (f mk r )]+b r ㊂(3) 在r 个空间尺度区域上进行计算,就可得到点m 在整个局部区域的全部空间尺度区域特征s m ={s m 1,s m 2,s m 3, ,s mr },其中r ∈{1,2,3, ,R }㊂1.2 基于特征更新的动态图卷积网络动态图卷积网络是一种能直接处理原始三维点云数据输入的深度学习网络㊂其特点是将PointNet 网络中的复合特征转换模块(Feature Transform),改进为由K 邻近点计算(K ⁃Near Neighbor)和多层感知机构成的边缘卷积层[12]㊂边缘卷积层功能强大,其提取的特征不仅包含全局特征,还拥有由中心点与邻域点的空间位置关系构成的局部特征㊂在动态图卷积网络中,每个邻域都视为一个点集㊂增强对其中心点的特征学习能力,就会增强网络整体的效果[13]㊂对一个邻域点集,对中心点贡献最小的有效局部特征的边缘点,可以视为异常噪声点或低权重点,可能会给整体分割带来边缘溢出㊂点云相比二维图像是一种信息稀疏并且噪声含量更大的载体㊂处理一个局域内的噪声点,将其直接剔除或简单采纳会降低特征提取效果,笔者对其进行低权重划分,并进行区域内特征更新,增强抗噪性能,也避免点云信息丢失㊂在空间尺度区域中,在区域T 内有s 个点x 被归为低权重系数组,该点集的空间信息集为P ∈R N s ×3㊂点集的局部特征集为F ∈R N s ×D f [14],其中D f 表示特征的维度空间,N s 表示s 个域内点的集合㊂设p i 以及f i 为点x i 的空间信息和特征信息㊂在点集内,对点x i 进行小范围内的N 邻域搜索,搜索其邻域点㊂则点x i 的邻域点{x i ,1,x i ,2, ,x i ,N }∈N (x i ),其特征集合为{f i ,1,f i ,2, ,f i ,N }∈F ㊂在利用空间尺度进行区域划分后,对空间尺度区域特征s mt 较低的区域进行区域内特征更新,通过聚合函数对权重最低的邻域点在图中的局部特征进行改写㊂已知中心点m ,点x i 的特征f mx i 和空间尺度区域特征s mt ,目的是求出f ′mx i ,即中心点m 的低权重邻域点x i 在进行邻域特征更新后得到的新特征㊂对区域T 内的点x i ,∀x i ,j ∈H (x i ),x i 与其邻域H 内的邻域点的特征相似性域为R (x i ,x i ,j )=S [C (f i ,j )T C (f i ,j )/D o ],(4)其中C 表示由输入至输出维度的一维卷积,D o 表示输出维度值,T 表示转置㊂从而获得更新后的x i 的426吉林大学学报(信息科学版)第41卷特征㊂对R (x i ,x i ,j )进行聚合,并将特征f mx i 维度变换为输出维度f ′mx i =∑[R (x i ,x i ,j )S (s mt f mx i )]㊂(5) 图4为特征更新网络模块示意图,展示了上述特征更新的计算过程㊂图5为特征更新的动态图卷积网络示意图㊂图4 特征更新网络模块示意图Fig.4 Schematic diagram of feature update network module 图5 特征更新的动态图卷积网络示意图Fig.5 Flow chart of dynamic graph convolution network with feature update 动态图卷积网络(DGCNN)利用自创的边缘卷积层模块,逐层进行边卷积[15]㊂其前一层的输出都会动态地产生新的特征空间和局部区域,新一层从前一层学习特征(见图5)㊂在每层的边卷积模块中,笔者在边卷积和池化后加入了空间尺度区域注意力特征,捕捉特定空间区域T 内的邻域点,用于特征更新㊂特征更新会降低局域异常值点对局部特征的污染㊂网络相比传统图卷积神经网络能获得更多的特征信息,并且在面对拥有较多噪声值的点云数据时,具有更好的抗干扰性[16],在对性质不稳定㊁不平滑并含有需采集分割的突出中心的点云数据时,会有更好的抗干扰效果㊂相比于传统预处理方式,其稳定性更强,不会发生将突出部分误分割或漏分割的现象[17]㊂2 实验结果与分析点云分割的精度评估指标主要由两组数据构成[18],即平均交并比和总体准确率㊂平均交并比U (MIoU:Mean Intersection over Union)代表真实值和预测值合集的交并化率的平均值,其计算式为526第4期张闻锐,等:特征更新的动态图卷积表面损伤点云分割方法U =1T +1∑Ta =0p aa ∑Tb =0p ab +∑T b =0p ba -p aa ,(6)其中T 表示类别,a 表示真实值,b 表示预测值,p ab 表示将a 预测为b ㊂总体准确率A (OA:Overall Accuracy)表示所有正确预测点p c 占点云模型总体数量p all 的比,其计算式为A =P c /P all ,(7)其中U 与A 数值越大,表明点云分割网络越精准,且有U ≤A ㊂2.1 实验准备与数据预处理实验使用Kinect V2,采用Depth Basics⁃WPF 模块拍摄金属部件损伤表面获得深度图,将获得的深度图进行SDK(Software Development Kit)转化,得到pcd 格式的点云数据㊂Kinect V2采集的深度图像分辨率固定为512×424像素,为获得更清晰的数据图像,需尽可能近地采集数据㊂选择0.6~1.2m 作为采集距离范围,从0.6m 开始每次增加0.2m,获得多组采量数据㊂点云中分布着噪声,如果不对点云数据进行过滤会对后续处理产生不利影响㊂根据统计原理对点云中每个点的邻域进行分析,再建立一个特别设立的标准差㊂然后将实际点云的分布与假设的高斯分布进行对比,实际点云中误差超出了标准差的点即被认为是噪声点[19]㊂由于点云数据量庞大,为提高效率,选择采用如下改进方法㊂计算点云中每个点与其首个邻域点的空间距离L 1和与其第k 个邻域点的空间距离L k ㊂比较每个点之间L 1与L k 的差,将其中差值最大的1/K 视为可能噪声点[20]㊂计算可能噪声点到其K 个邻域点的平均值,平均值高出标准差的被视为噪声点,将离群噪声点剔除后完成对点云的滤波㊂2.2 金属表面损伤点云关键信息提取分割方法对点云损伤分割,在制作点云数据训练集时,如果只是单一地将所有损伤进行统一标记,不仅不方便进行结果分析和应用,而且也会降低特征分割的效果㊂为方便分析和控制分割效果,需要使用ArcGIS 将点云模型转化为不规则三角网TIN(Triangulated Irregular Network)㊂为精确地分类损伤,利用图6 不规则三角网模型示意图Fig.6 Schematic diagram of triangulated irregular networkTIN 的表面轮廓性质,获得训练数据损伤点云的损伤内(外)体积,损伤表面轮廓面积等㊂如图6所示㊂选择损伤体积指标分为相对损伤体积V (RDV:Relative Damege Volume)和邻域内相对损伤体积比N (NRDVR:Neighborhood Relative Damege Volume Ratio)㊂计算相对平均深度平面与点云深度网格化平面之间的部分,得出相对损伤体积㊂利用TIN 邻域网格可获取某损伤在邻域内的相对深度占比,有效解决制作测试集时,将因弧度或是形状造成的相对深度判断为损伤的问题㊂两种指标如下:V =∑P d k =1h k /P d -∑P k =1h k /()P S d ,(8)N =P n ∑P d k =1h k S d /P d ∑P n k =1h k S ()n -()1×100%,(9)其中P 表示所有点云数,P d 表示所有被标记为损伤的点云数,P n 表示所有被认定为损伤邻域内的点云数;h k 表示点k 的深度值;S d 表示损伤平面面积,S n 表示损伤邻域平面面积㊂在获取TIN 标准包络网视图后,可以更加清晰地描绘损伤情况,同时有助于量化损伤严重程度㊂笔者将损伤分为6种类型,并利用计算得出的TIN 指标进行损伤分类㊂同时,根据损伤部分体积与非损伤部分体积的关系,制定指标损伤体积(SDV:Standard Damege Volume)区分损伤类别㊂随机抽选5个测试组共50张图作为样本㊂统计非穿透损伤的RDV 绝对值,其中最大的30%标记为凹陷或凸起,其余626吉林大学学报(信息科学版)第41卷标记为表面损伤,并将样本分类的标准分界值设为SDV㊂在设立以上标准后,对凹陷㊁凸起㊁穿孔㊁表面损伤㊁破损和缺损6种金属表面损伤进行分类,金属表面损伤示意图如图7所示㊂首先,根据损伤是否产生洞穿,将损伤分为两大类㊂非贯通伤包括凹陷㊁凸起和表面损伤,贯通伤包括穿孔㊁破损和缺损㊂在非贯通伤中,凹陷和凸起分别采用相反数的SDV 作为标准,在这之间的被分类为表面损伤㊂贯通伤中,以损伤部分平面面积作为参照,较小的分类为穿孔,较大的分类为破损,而在边缘处因腐蚀㊁碰撞等原因缺角㊁内损的分类为缺损㊂分类参照如表1所示㊂图7 金属表面损伤示意图Fig.7 Schematic diagram of metal surface damage表1 损伤类别分类Tab.1 Damage classification 损伤类别凹陷凸起穿孔表面损伤破损缺损是否形成洞穿××√×√√RDV 绝对值是否达到SDV √√\×\\S d 是否达到标准\\×\√\2.3 实验结果分析为验证改进的图卷积深度神经网络在点云语义分割上的有效性,笔者采用TensorFlow 神经网络框架进行模型测试㊂为验证深度网络对损伤分割的识别准确率,采集了带有损伤特征的金属部件损伤表面点云,对点云进行预处理㊂对若干金属部件上的多个样本金属面的点云数据进行筛选,删除损伤占比低于5%或高于60%的数据后,划分并装包制作为点云数据集㊂采用CloudCompare 软件对样本金属上的损伤部分进行分类标记,共分为6种如上所述损伤㊂部件损伤的数据集制作参考点云深度学习领域广泛应用的公开数据集ModelNet40part㊂分割数据集包含了多种类型的金属部件损伤数据,这些损伤数据显示在510张总点云图像数据中㊂点云图像种类丰富,由各种包含损伤的金属表面构成,例如金属门,金属蒙皮,机械构件外表面等㊂用ArcGIS 内相关工具将总图进行随机点拆分,根据数据集ModelNet40part 的规格,每个独立的点云数据组含有1024个点,将所有总图拆分为510×128个单元点云㊂将样本分为400个训练集与110个测试集,采用交叉验证方法以保证测试的充分性[20],对多种方法进行评估测试,实验结果由单元点云按原点位置重新组合而成,并带有拆分后对单元点云进行的分割标记㊂分割结果比较如图8所示㊂726第4期张闻锐,等:特征更新的动态图卷积表面损伤点云分割方法图8 分割结果比较图Fig.8 Comparison of segmentation results在部件损伤分割的实验中,将不同网络与笔者网络(FAS⁃DGCNN:Feature Adaptive Shifting⁃Dynamic Graph Convolutional Neural Networks)进行对比㊂除了采用不同的分割网络外,其余实验均采用与改进的图卷积深度神经网络方法相同的实验设置㊂实验结果由单一损伤交并比(IoU:Intersection over Union),平均损伤交并比(MIoU),单一损伤准确率(Accuracy)和总体损伤准确率(OA)进行评价,结果如表2~表4所示㊂将6种不同损伤类别的Accuracy 与IoU 进行对比分析,可得出结论:相比于基准实验网络Pointet++,笔者在OA 和MioU 方面分别在贯通伤和非贯通伤上有10%和20%左右的提升,在整体分割指标上,OA 能达到90.8%㊂对拥有更多点数支撑,含有较多点云特征的非贯通伤,几种点云分割网络整体性能均能达到90%左右的效果㊂而不具有局部特征识别能力的PointNet 在贯通伤上的表现较差,不具备有效的分辨能力,导致分割效果相对于其他损伤较差㊂表2 损伤部件分割准确率性能对比 Tab.2 Performance comparison of segmentation accuracy of damaged parts %实验方法准确率凹陷⁃1凸起⁃2穿孔⁃3表面损伤⁃4破损⁃5缺损⁃6Ponitnet 82.785.073.880.971.670.1Pointnet++88.786.982.783.486.382.9DGCNN 90.488.891.788.788.687.1FAS⁃DGCNN 92.588.892.191.490.188.6826吉林大学学报(信息科学版)第41卷表3 损伤部件分割交并比性能对比 Tab.3 Performance comparison of segmentation intersection ratio of damaged parts %IoU 准确率凹陷⁃1凸起⁃2穿孔⁃3表面损伤⁃4破损⁃5缺损⁃6PonitNet80.582.770.876.667.366.9PointNet++86.384.580.481.184.280.9DGCNN 88.786.589.986.486.284.7FAS⁃DGCNN89.986.590.388.187.385.7表4 损伤分割的整体性能对比分析 出,动态卷积图特征以及有效的邻域特征更新与多尺度注意力给分割网络带来了更优秀的局部邻域分割能力,更加适应表面损伤分割的任务要求㊂3 结 语笔者利用三维点云独特的空间结构特征,将传统K 邻域内权重相近的邻域点采用空间尺度进行区分,并将空间尺度划分运用于邻域内权重分配上,提出了一种能将邻域内噪声点降权筛除的特征更新模块㊂采用此模块的动态图卷积网络在分割上表现出色㊂利用特征更新的动态图卷积网络(FAS⁃DGCNN)能有效实现金属表面损伤的分割㊂与其他网络相比,笔者方法在点云语义分割方面表现出更高的可靠性,可见在包含空间尺度区域信息的注意力和局域点云特征更新下,笔者提出的基于特征更新的动态图卷积网络能发挥更优秀的作用,而且相比缺乏局部特征提取能力的分割网络,其对于点云稀疏㊁特征不明显的非贯通伤有更优的效果㊂参考文献:[1]LAWIN F J,DANELLJAN M,TOSTEBERG P,et al.Deep Projective 3D Semantic Segmentation [C]∥InternationalConference on Computer Analysis of Images and Patterns.Ystad,Sweden:Springer,2017:95⁃107.[2]MATURANA D,SCHERER S.VoxNet:A 3D Convolutional Neural Network for Real⁃Time Object Recognition [C]∥Proceedings of IEEE /RSJ International Conference on Intelligent Robots and Systems.Hamburg,Germany:IEEE,2015:922⁃928.[3]LE T,DUAN Y.PointGrid:A Deep Network for 3D Shape Understanding [C]∥2018IEEE /CVF Conference on ComputerVision and Pattern Recognition (CVPR).Salt Lake City,USA:IEEE,2018:9204⁃9214.[4]QI C R,SU H,MO K,et al.PointNet:Deep Learning on Point Sets for 3D Classification and Segmentation [C]∥IEEEConference on Computer Vision and Pattern Recognition (CVPR).Hawaii,USA:IEEE,2017:652⁃660.[5]QI C R,SU H,MO K,et al,PointNet ++:Deep Hierarchical Feature Learning on Point Sets in a Metric Space [C]∥Advances in Neural Information Processing Systems.California,USA:SpringerLink,2017:5099⁃5108.[6]HU J,SHEN L,SUN G,Squeeze⁃and⁃Excitation Networks [C ]∥IEEE Conference on Computer Vision and PatternRecognition.Vancouver,Canada:IEEE,2018:7132⁃7141.[7]LI Y,BU R,SUN M,et al.PointCNN:Convolution on X⁃Transformed Points [C]∥Advances in Neural InformationProcessing Systems.Montreal,Canada:NeurIPS,2018:820⁃830.[8]ANH VIET PHAN,MINH LE NGUYEN,YEN LAM HOANG NGUYEN,et al.DGCNN:A Convolutional Neural Networkover Large⁃Scale Labeled Graphs [J].Neural Networks,2018,108(10):533⁃543.[9]任伟建,高梦宇,高铭泽,等.基于混合算法的点云配准方法研究[J].吉林大学学报(信息科学版),2019,37(4):408⁃416.926第4期张闻锐,等:特征更新的动态图卷积表面损伤点云分割方法036吉林大学学报(信息科学版)第41卷REN W J,GAO M Y,GAO M Z,et al.Research on Point Cloud Registration Method Based on Hybrid Algorithm[J]. Journal of Jilin University(Information Science Edition),2019,37(4):408⁃416.[10]ZHANG K,HAO M,WANG J,et al.Linked Dynamic Graph CNN:Learning on Point Cloud via Linking Hierarchical Features[EB/OL].[2022⁃03⁃15].https:∥/stamp/stamp.jsp?tp=&arnumber=9665104. [11]林少丹,冯晨,陈志德,等.一种高效的车体表面损伤检测分割算法[J].数据采集与处理,2021,36(2):260⁃269. LIN S D,FENG C,CHEN Z D,et al.An Efficient Segmentation Algorithm for Vehicle Body Surface Damage Detection[J]. Journal of Data Acquisition and Processing,2021,36(2):260⁃269.[12]ZHANG L P,ZHANG Y,CHEN Z Z,et al.Splitting and Merging Based Multi⁃Model Fitting for Point Cloud Segmentation [J].Journal of Geodesy and Geoinformation Science,2019,2(2):78⁃79.[13]XING Z Z,ZHAO S F,GUO W,et al.Processing Laser Point Cloud in Fully Mechanized Mining Face Based on DGCNN[J]. ISPRS International Journal of Geo⁃Information,2021,10(7):482⁃482.[14]杨军,党吉圣.基于上下文注意力CNN的三维点云语义分割[J].通信学报,2020,41(7):195⁃203. YANG J,DANG J S.Semantic Segmentation of3D Point Cloud Based on Contextual Attention CNN[J].Journal on Communications,2020,41(7):195⁃203.[15]陈玲,王浩云,肖海鸿,等.利用FL⁃DGCNN模型估测绿萝叶片外部表型参数[J].农业工程学报,2021,37(13): 172⁃179.CHEN L,WANG H Y,XIAO H H,et al.Estimation of External Phenotypic Parameters of Bunting Leaves Using FL⁃DGCNN Model[J].Transactions of the Chinese Society of Agricultural Engineering,2021,37(13):172⁃179.[16]柴玉晶,马杰,刘红.用于点云语义分割的深度图注意力卷积网络[J].激光与光电子学进展,2021,58(12):35⁃60. CHAI Y J,MA J,LIU H.Deep Graph Attention Convolution Network for Point Cloud Semantic Segmentation[J].Laser and Optoelectronics Progress,2021,58(12):35⁃60.[17]张学典,方慧.BTDGCNN:面向三维点云拓扑结构的BallTree动态图卷积神经网络[J].小型微型计算机系统,2021, 42(11):32⁃40.ZHANG X D,FANG H.BTDGCNN:BallTree Dynamic Graph Convolution Neural Network for3D Point Cloud Topology[J]. Journal of Chinese Computer Systems,2021,42(11):32⁃40.[18]张佳颖,赵晓丽,陈正.基于深度学习的点云语义分割综述[J].激光与光电子学,2020,57(4):28⁃46. ZHANG J Y,ZHAO X L,CHEN Z.A Survey of Point Cloud Semantic Segmentation Based on Deep Learning[J].Lasers and Photonics,2020,57(4):28⁃46.[19]SUN Y,ZHANG S H,WANG T Q,et al.An Improved Spatial Point Cloud Simplification Algorithm[J].Neural Computing and Applications,2021,34(15):12345⁃12359.[20]高福顺,张鼎林,梁学章.由点云数据生成三角网络曲面的区域增长算法[J].吉林大学学报(理学版),2008,46 (3):413⁃417.GAO F S,ZHANG D L,LIANG X Z.A Region Growing Algorithm for Triangular Network Surface Generation from Point Cloud Data[J].Journal of Jilin University(Science Edition),2008,46(3):413⁃417.(责任编辑:刘俏亮)。
有机物定量结构—水溶解性相关的研究
桂林工学院硕士学位论文
NH2
图4.1MinoxidiI图4.2Cyhexatin
洲
图4,4Cephaloridine
本研究中有机化合物的水溶解性数据由溶解度的对数logS表示,其中S为20。
250C时有机物在纯水中的摩尔溶解度,单位为mol/L。
1290个化台物的logS值最小为一11.62,最大值为+1.58,该1290个化合物的logS值的分布情况如图4.5所示。
可以看出,其中微溶物质占总样本的一半以上,剩余难溶有机物与易溶有机物分布频率相差不大。
可以说,本数据集内样本的水溶解性数据涵盖了大多数典型有机物的水溶解性数据范围,因此,本研究所采用的数据集具有一定的典型性和代表性。
logS值
图4.51290个化合物的logS值分布
一35一
莎。
坷~
』∽。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
On neural network topology designfor nonlinear controlJens Haecker and Stephan Rudolph*Institute for Statics and Dynamics of Aerospace StructuresUniversität Stuttgart,Pfaffenwaldring27,D-70569Stuttgart,GermanyProceedings SPIE Aerosense2001Conference On Applications and Science ofComputational Intelligence IV,Orlando,Florida,April16-20th,2001ABSTRACTNeural networks,especially in nonlinear system identi£cation and control applications,are typically considered to be black-boxes which are dif£cult to analyze and understand mathematically.Due to this reason,an indepth mathematical analysis offering insight into the different neural network transformation layers based on a theoretical transformation scheme is desired, but up to now neither available nor known.In previous works it has been shown how proven engineering methods such as dimensional analysis and the Laplace transform may be used to construct a neural network controller topology for time-invariant ing the knowledge of neural correspondencies of these two classical methods,the internal nodes of the network could also be successfully interpreted after training.As a further extension to these works,the paper describes the latest results of a theoretical interpretation framework de-scribing the neural network transformation sequences in nonlinear system identi£cation and control.This can be achieved by incorporation of the method of exact input-output linearization in the above mentioned two transformation sequences of dimen-sional analysis and the Laplace transformation.Based on these three theoretical considerations neural network topologies may be designed in special situations by a pure translation in the sense of a structural compilation of the known classical solutions into their correspondent neural topology.Based on known exemplary results,the paper synthesizes the proposed approach into the visionary goals of a structural compiler for neural networks.This structural compiler for neural networks is intended to automatically convert classical control formulations into their equivalent neural network structure based on the principles of equivalence between formula and operator, and operator and structure which are discussed in detail in this work.Keywords:modular neural networks,engineering principles,dimensional analysis,Laplace transform,exact input-output linearization1.INTRODUCTIONArti£cial neural networks(ANNs)are an alternative computational paradigm that calculates function approximations in a system of interconnected simple computational cells.1Neural networks of the feed-forward multilayer perceptron type that are in the scope of this work can be trained to represent virtually any function using data samples since they are universal function approximators.2Because of the simplicity of a single neuron,the complexity of the function represented by the whole system evolves from the interconnections between the cells.Typical applications of ANN in engineering are pattern recognition,data-based modelling where processes are not well known or understood,and/or optimization problems,when a near sub-optimal solution is acceptable.Neural networks are less suitable for numerical calculations,when high precision is required,or modeling,when there already is a good physical model available,nor optimization,when the global optimum is required.Although performance strongly depends on the topology of ANNs and the choice of network activation functions,no reliable methods for determining those aspects are known up to date.So engineers currently rely more or less on trial-and-error methods to£nd a suitable topology and a training method.Moreover,learned information after training in the neural network is typically distributed over the parameters of the whole network which limits the possibility of interpreting and explaining the results.On the other hand,in engineering a number of principles and design rules to simplify and solve certain(standard)problems are known.These are,among others the Fourier transform for frequency dependent phenomena,the Laplace transform to trans-form linear differential equations into algebraic equations,or even an input-output linearization3scheme for certain nonlinear *Correspondence:Email:rudolph@isd.uni-stuttgart.de;WWW:http://www.isd.uni-stuttgart.de/,Phone:+497116853799,Fax:+497116853706control problems.For some problems system speci£c knowledge and principles are known such as the necessary condition of dimensional homogeneity which holds for any physically correct functional relation.It is claimed that this a priori knowledge has to be included in the network topology design process to make neural networks more applicable and transparent.The main interest in neural networks is currently concentrated on the use in nonlinear control problems.Many engineering solutions are tailored to suit linear problems.Generally linear systems pose therefore no unsurmountable problems.In the last years neural networks have mainly been used to model nonlinear systems in control.ANNs can£nd simple suboptimal solutions to control problems and can be applied to systems where classical approaches based on system linearization do not work.Yet,ANNs lack methods for determining control stability or the possibility to interpret the results analytically.Various approaches and applications of neural control exist in the literature.4,5However from a scienti£c viewpoint it is still necessary to break the black-box structure of most network models.To include knowledge and interpretability into the neural network it is tried to identify neural correspondencies for engi-neering principles and to translate them into neural network modules or prede£ned sub-structures of the network.The goal is to de£ne a descriptor system that analyzes a problem and puts together the known parts of the network from prede£ned com-ponents.Some principles can be translated into primary data processing layers that can be attached to a core neural network with carefully devised degrees of freedom left in the network weights that are still to be learned.Thus,a simple translation of classical control theory solutions into a neural controller could be envisioned and constructed that results in a controller that performs at least as good as the classical or conventional approach.Further on,this controller could be made adaptive to adjust to a more complex real system using on-line training algorithms while being in service.The expected advantages are a transparent design scheme,an improved interpretation,and last not least more con£dence in the system in operation.WORK TOPOLOGYArti£cial neural networks of various kinds are known.Even though this examination is restricted to feed-forward multilayer perceptrons that have a comparatively simple structure,the freedom in the topology design allows various different architec-tures.Neural networks can be build up having any number of layers and neurons and virtually any mathematical operator as activation function in the neurons.The classical approach to use simple functions such as sigmoidal or hyperbolic functions in large networks has several disadvantages.For large networks training is slow and not reliable.Additionally,local minima of the optimization procedures interfere with the desire to£nd the global optimum,which is a major drawback of any multi parameter optimization.Another problem is the neural network’s currently limited ability to interpret and explain the training results,since the information learned is distributed over the whole network.2.1.Thoughts on neural operatorsFor neural operators there are all kinds of mathematical functions possible.Classically sigmoidal functions are used.They model the response functions found in biological neurons that jump from being inactive to an activated state when a certain threshold of excitation from the precedent neurons is exceeded.The sigmoidal function is similar to a step function,but is differentiable which is a property that is necessary for learning procedures like the backpropagation algorithm.Even though it is possible to model complex functions with nets of sigmoidal neurons,the trade-off is that the network structure will be large and complex.As stated,many problems with neural networks emerge from their size.However,this principle can be used in the opposite sense as a scheme to structure the neural network design process as explained in the following.The equivalence of a mathematical operator in its symbolic representation as a mathematical formula,and a network struc-ture computing the corresponding mathematical expression are straightforward.Looking at the exponential function e x in Figure1for instance,it can be observed that three different forms of representations are possible.The operator as one com-pact element(bottom left),its power series expansion as a formula(top)and a network consisting of operators and parameters (bottom right)are mathematically equivalent expressions.The operators in the shown network structure could be expanded the same way in sub-nets which encode the operators x i in an even simpler way.It is easy to see the correspondency looking at the mathematical operator on the left side and the symbolic representation as mathematical formula,or looking at the network structure on the right and the symbolic representation.From these equiv-alencies it is clear that a mathematical operator can be coded in a network using very simple operators in many different but equivalent forms.Usually these equivalences are used to expand complex operators into networks of simpler operators.However,large networks have also disadvantages.The number of local minima of the optimization procedures,e.g.during the training, depends on the number of degrees of freedom,that is the number of used neurons and internal connections(weights).For this reason the demand for something one could call operator compactness is desirable.Instead of complex networks with simple functions one could prefer to build up simpler networks with more complex operators instead.This would reduce the number of parameters in the net and would further improve the training and the physical interpretation of the nets later on.Figure1.Equivalence of a mathematical operator(bottom left),a symbolic representation as a mathematical formula(top), and a network structure(bottom right)at the example of the exponential function e x.Another property that could be exploited later is that all physically correct formulas belong to the so-called class of di-mensionally homogeneous functions.If it is attempted to encode physical equations into a neural network,the condition of dimensional homogeneity should therefore always be observed.2.2.Thoughts on network topology design using knowledgeIn the following the principles stated are visualized with a very simple physical system.In order to achieve this,a beam with a single vertical load P at the unsupported tip is considered.The de¤ection u of the tip due to bending of the beam can be analytically derived and expressed with the simple formula6u=13P l3EI,(1)where l is the length of the beam,E is Young’s modulus,and I is the moment of inertia of the beam about the axis of bending. It is a nonlinear time invariant static problem.Supposed the goal is to train a neural network to predict the de¤ection of the beam given the measurements of the sys-tem’s parameter vector,that is the static mapping u i=f NN(P i,l i,E i,I i).Therefore a certain number m of training vectors (P i,l i,E i,I i)and the system’s response(u i)are used to train a network for representing the formula given in equation(1). This can be achieved very easily.However,the interpretation of the learned data from the network is not trivial.One ends up with parameters of the network connections collected in weight matrices W ij.Supposed a neural net was analyzed to extract the formula represented by the net,dif£culties may occur as can be seen in the example network in Figure1(bottom right). The more speci£c and compact the used operators are,the better is the possible physical understanding and interpretation of the network structure after training.In the following several steps to gradually incorporate knowledge into the topology of the network will be shown by making use of the principles described above.As can be seen easily,this will improve the interpretation and even the approximation result.This is achieved through the reduction of the degrees of freedom leaving only those parameters for the network free to learn that are really unknown.This will be shown in the following example.The neural network to start with is of a classical conservative structure.The used neurons calculate the sum of their weighted inputs and have sigmoidal activation functions s(x).The example uses four input neurons for the input vector(P i,l i,E i,I i) and one for the output of(u i)as shown in Figure2a.The number of neurons in the intermediate layer is arbitrary.However, with a higher number of neurons dif£culties with the training of the network tend to increase.A closer examination of physical formulas reveals that most of them are of a certain structure.They tend to be of a product structure with exponents,e.g.p0=ν0pν11×pν22×...×pνm m(or sums thereof).This can be implemented directly in the neural network topology by simply using logarithmic functions in the£rst layer and exponential functions in the second layer.A net of that structure is shown in Figure2b.However,by mathematical analysis it is found that in that structure all neurons in the second layer are calculating redundant functions and could be replaced by only one neuron as shown in Figure3.The weight matrices W ij are replaced by parametersu=f NN(P,l,I,E)u= iν0i Pν1i lν2i Eν3i Iν4iFigure2.Neural network to predict the de¤ection of a beam.Typical black-box net(a)and structured network(b)with speci£c neuron functions that determine a de£ned goal function.that are directly interpretable as exponents of the function variables.The two steps considered in the Figures2and3can be automated by means of genetic algorithms that vary the neuron functions and the network topology as well as pruning techniques that remove neurons with small weighted connections as shown in previous works.7P1l3E−1I−1u=w0P w1l w2E w3I w4u=13work topology compaction by removing redundant neurons.From the trained network the exact function is obtained.After training the neural network shown in Figure3b is obtained.It calculates the exact function for the bending of the beam. Possible small deviations from the exact parameters,which are the exponents,could be corrected by introducing a constraint that allows only integer numbers(or fractions thereof).Most exponents in physical formulas are in this respect elements out of the interval[−4,4].An even harder constraint can be formulated using the relations between physical units that are subject of the Buckingham or Pi-theorem.8Only dimensionally homogeneous functions can be physically correct.That allows only certain combinations of physical quantities x that,according to equation(2),consist of a number{x}and a unit representation[x].Generally,for any physical quantity x holds:x={x}[x](2) For this reason,any relationship applies to the numerical values of x as well as to its dimensional representation which is expressed in Buckingham’s theorem.By applying the Buckingham theorem to the relevant variables x1...x n of the function, a set of dimensionless variablesπ1...πm is found that form a dimensionless function equivalent to the original one.The dependencies between the variables are given by this theorem and can be used as known weight connections between neurons. So only the remaining unknown parameters have to be adapted by a training process.Figure4b shows the new network. Obviously a core neural network is enclosed by a£rst and a last layer of neurons that are just a forward transformation layer from the physical quantities to dimensionless variables and a backward transformation,which are calledπ-transform and the π−1-transform respectively.6u=w0P w1l w2E w3I w4u=lν0πν11πν22=lν0 El2P ν1 I l4 ν2lπ−11π−12u=13Figure4.Transforming the network into a dimension homogeneous network by exploiting the relations between physical units.2.3.Thoughts related to network interpretation and generalizationIt is clear from the example that a systematic incorporation of knowledge into the network topology results in a more structured and less complex network topology.The degrees of freedom,i.e.the free parameters or connection weights in the neural net are reduced to a smaller number.Thus,the training algorithms,i.e.the optimization procedures that usually suffer from the curse of dimensionality,are more ef£cient due to the reduction of free parameters.Moreover,in this easy example the represented equation can be extracted directly from the trained neural network.Yet,the technique of dimensional analysis offers another advantage which lies in the generalization of the function repre-sented by the network in Figure4b.Generalization is the ability of a neural network to process correctly unknown data which are not contained in the training samples.This means that the network can reasonably interpolate between given samples as well as extrapolate out of the sample range.The state-of-the-art in testing the network performance and its generalizing capability typically is to calculate a sum-squared error for a set of training data samples and generalization test data sets presented to the neural network using a crossvalidation technique.Dimensionally homogeneous neural networks generalize correctly all data that are physically similar to known data points. The usage of the Pi-theorem to construct data not given in the training data explicitely as alternative validation data has been proposed.7A neural network trained with this data will represent not only known data samples but the underlying dimensionless functional relationship.This is an equivalent but more general representation of the functional relationship of the physical quantities based on the theoretical concept of similarity functions.63.MODULAR DESIGN OF NEURAL NETWORKSIn the last section it was shown how knowledge can be incorporated in a neural network for the beam de¤ection example.It was a very easy static mapping problem so a small neural network was suf£cient to model the functional dependencies describing the system.More complex problems require bigger neural networks which will be more dif£cult to understand.Moreover,the training ef£ciency in neural network learning strongly depends on the network size as well.Hence,it is proposed to divide neural networks up into smaller subnetworks or modules that perform local computation.It is known that in the human brain,which serves as the neural network role model for its arti£cial counterparts,local regions of physically close neurons perform speci£c computational tasks.Examples are Brocca’s or Wernike’s region that are specialized on the recognition of spoken language.9Naturally,researchers are still far from being able to model complex structures comparable to the human brain,but it is argued that complex behavior requires bringing together several different kinds of knowledge and processing paradigms,which seems not possible without structure,putational modularity.The modular approach permits to apply neural concepts to large scale networks.Even complex architectures could be greatly simpli£ed by identifying separate distinct subtasks in the problem and embedding them into a neural network structure. This way each task could be trained off-line and integrated later in a global architecture.Even hybrid models could be realized. Why should one wish to train a neural network for a task that is already completely described or modelled?This is an important question often ignored in the neural network community.It is seldom the case that from a process to be modelled nothing is known at all.Modular neural networks would allow the assembly of different simple plant models or to introduce a priori knowledge into the architecture by combining differently structured modules.The solution strategy when working with modular neural networks implies three steps according to Ronco.10First,the decomposition of a task into meaningful subtasks has to be mentioned.It is desirable that each module performs an explicit, interpretable and relevant function according to the mechanical and physical properties of the system.Second,the organization of the global modular architecture is important.Proposed architectures consist of several local system models and a gating system that switches between the models.Third and£nally,the integration of the inter-module communication is necessary.Signi£cant learning improvement is expected compared to a single big network.In small networks learning is faster and the learning results are easier to interpret.Moreover,modularity clari£es the overall presentation of the system because the activity of modules can be associated to certain operating regions in the plant.If those modules are linear in order to consequently connect the idea to control applications,the construction of good linear controllers with conventional techniques is possible,as well as a local analysis of their properties,such as stability.Another network can be used to trigger between adequate models and controllers,and the whole scheme can easily be coded into one global neural network as well.11A schematic example of such a gated modular neural network(GMNN)used as an identi£ed model of a dynamic system is shown in Figure5.Figure5.Neural network with a modular structure for the identi£cation of a plant.The neural network models NN2and NN3 are£tted for different plant operating regions shown in the plot on the right.NN1is a gating network responsible for detecting the appropriate system representation according to the input vector x and switching between the models.NN4can be used to either process the switching signal or even calculate combinations of the two model network outputs.104.NEURAL CONTROL DESIGN ASPECTSControl theory offers powerful tools from linear algebra to be used for system analysis and control as long as the system behaves linearly.Assumptions of system linearity have been made for this reason to develop a control theory on a solid mathematical basis.Control design from system linearization is a widely applied technique in industry.However,in reality most systems are nonlinear.It is the ability of neural networks to model nonlinear systems which is the feature most readily exploited in the synthesis of nonlinear controllers.Neural control techniques have successfully been applied to problems in robotics and other highly nonlinear systems.5A growing number of different neural control schemes exist that are£tted only for certain problems.However,the usage of neural networks in nonlinear control does not make sense per se.There are still many open research topics,such as the characterization of theoretical properties such as stability,controllability and observability or even the system identi£ability.It is not intended to give a survey on neural control methods here,since many of the basic principles are shown in the reports by Hunt12or Narendra.13The idea of a neural network structural compiler originates from the(re-)use of existing control theory applications,which intends the construction of mathematical controllers designed after classical theories and their representation in the form of neural networks.As indicated in Figure1,the calculations done in the neural network will be identical.Therefore it is claimed that it will be possible to design neural controllers at least as good as the classical ones.14However,by providing the network with additional degrees of freedom and applying training algorithms common in neural network computation,even an improved adaption could be achieved.Adaptivity is an important feature because the real world environment of the controller can be expected to be different from the simpli£ed linearized model used for the controller design.Analogous approaches to the idea promoted here already exist in techniques summarized under the term of intelligent control15which represents an attempt to bring together arti£cial intelligence techniques and control theory.Controllers are put together from prede£nes components in a structured design approach with a knowledge-based expert system as integration tool. This is realized for instance in the neuro-fuzzy control scheme.15,16A structure is provided by the fuzzy logic approach which builds up control laws from linguistic rules.Then the scheme is implemented in a neural network.The structure is determined after a simple algorithm from modules.Finally,the learning ability of the neural network is used to adapt the controller to the speci£c control situation by learning the controller’s parameter values.4.1.Neural correspondencies to classical control theoryClassical control theory utilizes a number of engineering principles that could be or are partly already applied to neural control. Preliminary studies done have concentrated on neural correspondences of engineering principles used in control and how these principles could be coded into a neural network scheme.14,17,18It is found that some realizations are clearly straightforward whereas others require more sophisticated procedures which can still be improved.In the following some of these principles will be explained in brief.Naturally,this list is far from being complete and should only indicate that neural correspondencies to classical engineering principles exist due to the equivalence between a neural topology and a mathematical formulation.These engineering principles are:•Dimensional analysis.14The power of the dimensional analysis has already been demonstrated for the beam de¤ection example and is visualized in Figure4.•The Laplace transform can be used to transform linear differential equations into algebraic equations and though is helpful for the analysis of dynamic systems.It is found that this transformation scheme can be transferred to a neural topology.17,14However,the Laplace transform is only applicable to linear systems.•The input-output linearization3scheme has already been applied to neural control.19,18The basic idea is to identify a feedback which linearizes the otherwise nonlinear behavior of the system.This way a system can be constructed which can be controlled like a linear system by using the standard classical approaches.The consequent combination of the above three principles results in a network with prede£ned layers that do some sort of data pre-and post-processing for a core network that can still be regarded as a black-box and which is the only part to be learned. Figure6shows exemplary a schematic diagram of this neural structure.It can be described as a network with a butter¤y topology which indicates that the information processed by the neural network is smaller than the original given data due to an intelligent selection of a data transformation sequence.The modular neural network shown in Figure6consists of the Pi-transform layers(Πand its inverseΠ−1),the Laplace layers(L and its inverse L−1),and the input-output linearization layers(I/O)that encapsulate a core neural network.It should be noted that this structure is not a standard feed-forward network,because the Pi-transform uses shortcuts from the£rst to the last layer and the linearization requires feedback connections.This structure is found to be suitable for the identi£cation of a dynamic system,which is a basis for many neural control applications.14Figure6.Modular neural representation of a nonlinear dynamic system.The butter¤y diagram:a core network encapsulated by transformation layers.From the inside:core neural network as black-box,input-output linearization layer(I/O),Laplace transform layer,and Pi-transform layer.Some thoughts should be given to common concepts in control such as the PID controller and the method of gain schedul-ing.20This method provides a linear controller for several linearized states or operational points of a system.It is straightfor-ward to implement gain scheduling in neural networks because the feedback gain coef£cient matrices usually are represented as look-up-tables and could as well be stored in neural networks.12,21Even complex designs such as LQR or LQG controllers22,20 can be implemented most readily into a neural control scheme.4.2.Neural Structure compiler conceptThis work aims at promoting the vision of a structural compiler for neural network topologies.Its function will be to assemble neural controllers from prede£ned modules based on a mathematical description as well as to disassemble the modules for system analysis.The modules are constructed from various engineering principles and classical control strategies by means of the identi£cation of neural correspondencies.Some examples of neural correspondencies to engineering principles have been shown in the previous section.For the example of system identi£cation using neural networks,studies have already been performed which investigate modular neural network topologies consisting of layers that perform forward-and backward-transformation around a core network with free parameters as shown in Figure6.The underlying principles and their justi£cation have been discussed in detail.。