第四章 主要公式
高中数学-第四章-三角函数、解三角形-第二节-同角三角函数的基本关系与诱导公式
第二节同角三角函数的基本关系与诱导公式[基本知识] 1.同角三角函数的基本关系(1)平方关系:sin2α+cos2α=1(α∈R).(2)商数关系:tan α=sin αcos α()α≠kπ+π2,k∈Z.2.同角三角函数基本关系式的应用技巧一、判断题(对的打“√”,错的打“×”)(1)若α,β为锐角,则sin2α+cos2β=1.()(2)若α∈R,则tan α=sin αcos α恒成立.()答案:(1)×(2)×二、填空题1.已知α∈()π2,π,sin α=35,则tan α=________.解析:∵α∈()π2,π,sin α=35,∴cos α=-45,于是tan α=-34.答案:-342.已知tan α=2,则sin α+cos αsin α-cos α的值为________.解析:原式=tan α+1tan α-1=2+12-1=3.答案:3[全析考法]考法一知弦求弦、切或知切求弦利用同角三角函数的基本关系求解问题的关键是熟练掌握同角三角函数的基本关系的正用、逆用、变形.同角三角函数的基本关系本身是恒等式,也可以看作是方程,对于一些题,可利用已知条件,结合同角三角函数的基本关系列方程组,通过解方程组达到解决问题的目的.[例1] (1)(2019·成都龙泉中学月考)设cos(-80°)=k ,那么tan 100°等于( ) A.1-k 2k B .-1-k 2k C.k 1-k 2D .-k1-k 2 (2)(2019·甘肃诊断)已知tan x =43,且角x 的终边落在第三象限,则cos x =( )A.45 B .-45C.35D .-35[解析] (1)∵cos(-80°)=cos 80°=k ,∴sin 80°=1-cos 280°=1-k 2, ∴tan 100°=-tan 80°=-1-k 2k.故选B. (2)因为角x 的终边落在第三象限,所以cos x <0,因为tan x =43,所以⎩⎪⎨⎪⎧sin 2x +cos 2x =1,sin x cos x =43,cos x <0,解得cos x =-35,故选D.[答案] (1)B (2)D [易错提醒]知弦求弦、切或知切求弦时要注意判断角所在的象限,不要弄错切、弦的符号. 考法二 知切求f (sin α、cos α)的值[例2] (2019·保定三校联考)已知tan(3π+α)=3,则3sin α-cos α2sin α+3cos α=( )A.13B.89C.23D .2[解析] ∵tan(3π+α)=3,∴tan α=3,∴3sin α-cos α2sin α+3cos α=3tan α-12tan α+3=3×3-12×3+3=89.故选B.[答案] B [方法技巧]利用“切弦互化”的技巧(1)弦化切:把正弦、余弦化成切的结构形式,统一为“切”的表达式,进行求值.常见的结构有: ①sin α,cos α的二次齐次式(如a sin 2α+b sin αcos α+c cos 2α)的问题常采用“切”代换法求解; ②sin α,cos α的齐次分式()如a sin α+b cos αc sin α+d cos α的问题常采用分式的基本性质进行变形.(2)切化弦:利用公式tan α=sin αcos α,把式子中的切化成弦.一般单独出现正切、余切的时候,采用此技巧. 考法三 sin α±cos α与sin αcos α关系的应用[例3] (1)已知sin αcos α=38,且π4<α<π2,则cos α-sin α的值为( )A.12B .±12C .-14D .-12(2)已知-π2<α<0,sin α+cos α=15,则1cos 2α-sin 2α=( )A.75 B.257 C.725D.2425[解析] (1)因为sin αcos α=38,所以(cos α-sin α)2=cos 2α-2sin αcos α+sin 2α =1-2sin αcos α=1-2×38=14,因为π4<α<π2,所以cos α<sin α,即cos α-sin α<0, 所以cos α-sin α=-12.(2)∵sin α+cos α=15,∴1+2sin αcos α=125, ∴2sin αcos α=-2425,(cos α-sin α)2=1+2425=4925. 又∵-π2<α<0,∴cos α>0>sin α,∴cos α-sin α=75,∴1cos 2α-sin 2α=1(cos α+sin α)(cos α-sin α)=115×75=257. [答案] (1)D (2)B [方法技巧]正弦、余弦“sin α±cos α,sin α·cos α”的应用sin α±cos α与sin α·cos α通过平方关系联系到一起,即(sin α±cos α)2=1±2sin αcos α,sin αcos α=(sin α+cos α)2-12,sin αcos α=1-(sin α-cos α)22.因此在解题中已知1个可求另外2个.[集训冲关]1.[考法一]已知α∈(0,π),cos α=-35,则tan α=( )A.34 B .-34C.43D .-43解析:选D ∵cos α=-35且α∈(0,π),∴sin α=1-cos 2α=45,∴tan α=sin αcos α=-43.故选D.2.[考法三]已知sin α+cos α=13,则sin αcos α的值为________.解析:∵sin α+cos α=13,∴(sin α+cos α)2=sin 2α+cos 2α+2sin αcos α=1+2sin αcos α=19,解得sin αcos α=-49.答案:-493.[考法二]已知tan α=-43,求:(1)sin α-4cos α5sin α+2cos α的值; (2)1cos 2α-sin 2α的值; (3)sin 2α+2sin αcos α的值.解:(1)sin α-4cos α5sin α+2cos α=tan α-45tan α+2=-43-45×()-43+2=87.(2)1cos 2α-sin 2α=sin 2α+cos 2αcos 2α-sin 2α=sin 2α+cos 2αcos 2αcos 2α-sin 2αcos 2α=tan 2α+11-tan 2α=()-432+11-()-432=-257. (3)sin 2α+2sin αcos α=sin 2α+2sin αcos αsin 2α+cos 2α=tan 2α+2tan αtan 2α+1=169-83169+1=-825. 突破点二 三角函数的诱导公式[基本知识]一、判断题(对的打“√”,错的打“×”)(1)sin(π+α)=-sin α成立的条件是α为锐角.( )(2)诱导公式的记忆口诀中“奇变偶不变,符号看象限”,其中的奇、偶是指π2的奇数倍、偶数倍,变与不变指函数名称是否变化.( )答案:(1)× (2)√ 二、填空题1.已知cos(π+α)=-35,则sin ()3π2+α等于________.解析:cos(π+α)=-cos α=-35,则cos α=35,sin ()3π2+α=-sin ()π2+α=-cos α= -35.答案:-352.已知sin ()α+π6=45,则sin ()α+7π6等于________.解析:sin ()α+7π6=sin []()α+π6+π=-sin ()α+π6=-45.答案:-453.已知tan ()π6-α=33,则tan ()5π6+α=________.解析:tan ()5π6+α=tan ()π-π6+α=tan [ π-( π6-α ) ] =-tan ()π6-α=-33.答案:-331.利用诱导公式把任意角的三角函数转化为锐角三角函数的步骤也就是:“负化正,大化小,化到锐角为终了.” 2.利用诱导公式化简三角函数的要求 (1)化简过程是恒等变形;(2)结果要求项数尽可能少,次数尽可能低,结构尽可能简单,能求值的要求出值.[典例感悟](2019·武威六中第一次阶段性检测)已知f (α)=[]sin ()π2-αtan (π+α)-cos (π-α)2-14sin ()3π2+α+cos (π-α)+cos (2π-α).(1)化简f (α);(2)若-π3<α<π3,且f (α)<14,求α的取值范围.解:(1)f (α)=(cos αtan α+cos α)2-1-4cos α-cos α+cos α=(sin α+cos α)2-1-4cos α=2sin αcos α-4cos α=-12sin α.(2)由已知得-12sin α<14,∴sin α>-12,∴2k π-π6<α<2k π+7π6,k ∈Z.∵-π3<α<π3,∴-π6<α<π3.故α的取值范围为()-π6,π3.[方法技巧]应用诱导公式化简求值的常见问题及注意事项(1)已知角求值问题.关键是利用诱导公式把任意角的三角函数值转化为锐角的三角函数值求解.转化过程中注意口诀“奇变偶不变,符号看象限”的应用.(2)对给定的式子进行化简或求值问题.要注意给定的角之间存在的特定关系,充分利用给定的关系结合诱导公式将角进行转化.特别要注意每一个角所在的象限,防止符号及三角函数名出错.[针对训练]1.(2018·玉林陆川中学期中)sin 570°的值是( ) A .-12B.12C.32D .-32解析:选A sin 570°=sin(720°-150°)=-sin 150°=-12.故选A.2.(2019·湖北八校联考)已知sin(π+α)=-13,则tan ()π2-α=( )A .2 2B .-22 C.24D .±22解析:选D ∵sin(π+α)=-13,∴sin α=13,∴tan ()π2-α=cos αsin α=±22,故选D.3.(2019·南充模拟)设f (x )=a sin(πx +α)+b cos(πx +β),其中a ,b ,α,β都是非零实数.若f (2 019)=-1,则f (2 020)=( )A .1B .2C .0D .-1解析:选A ∵f (2 019)=a sin(2 019π+α)+b cos(2 019π+β)=-a sin α-b cos β=-1,∴a sin α+b cos β=1,∴f (2 020)=a sin(2 020π+α)+b cos(2 020π+β)=a sin α+b cos β=1.故选A.4.化简:sin 2(α+π)·cos (π+α)·cos (-α-2π)tan (π+α)·sin 3()π2+α·sin (-α-2π)=________.解析:原式=sin 2α·(-cos α)·cos αtan α·cos 3α·(-sin α)=sin 2αcos 2αsin 2αcos 2α=1.答案:1[课时跟踪检测][A 级 基础题——基稳才能楼高]1.(2019·新疆普通高中学业水平考试)已知x ∈()-π2,0,cos x =45,则tan x 的值为( )A.34 B .-34C.43D .-43解析:选B 因为x ∈()-π2,0,所以sin x =-1-cos 2x =-35,所以tan x =sin x cos x =-34.故选B. 2.(2019·淮南十校联考)已知sin ()α-π3=13,则cos ()α+π6的值是( )A .-13B.13C.223D .-223解析:选A ∵sin ()α-π3=13,∴cos ()α+π6=cos []π2+()α-π3=-sin ()α-π3=-13,故选A.3.(2019·重庆一模)log 2()cos 7π4的值为( )A .-1B .-12C.12D.22解析:选B log 2()cos 7π4=log 2()cos π4=log 222=-12.故选B.4.(2019·遵义模拟)若sin ()π2+α=-35,且α∈( π2,π ),则sin(π-2α)=( )A .-2425B .-1225解析:选A ∵sin ()π2+α=cos α=-35,α∈()π2,π,∴sin α=45,∴sin(π-2α)=sin 2α=2sin αcos α=2×45×()-35=-2425.故选A.5.(2019·沈阳模拟)若1+cos αsin α=2,则cos α-3sin α=( ) A .-3 B .3 C .-95D.95解析:选C ∵1+cos αsin α=2,∴cos α=2sin α-1,又sin 2α+cos 2α=1,∴sin 2α+(2sin α-1)2=1,5sin 2α-4sin α=0,解得sin α=45或sin α=0(舍去),∴cos α-3sin α=-sin α-1=-95.故选C.6.(2019·庄河高中期中)已知sin ()α-π12=13,则cos ()α+17π12等于( )A.13B.223C .-13D .-223解析:选A cos ()α+17π12=cos []3π2+()α-π12=sin ()α-π12=13.故选A. [B 级 保分题——准做快做达标]1.(2019·宝鸡金台区质检)已知sin 2α=23,则tan α+1tan α=( )A. 3B.2 C .3D .2解析:选C tan α+1tan α=sin αcos α+cos αsin α=1sin αcos α=2sin 2α=223=3.故选C.2.(2019·常德一中月考)已知α∈R ,sin α+2cos α=102,则tan 2α=( ) A.43 B.34 C .-34D .-43解析:选C 因为sin α+2cos α=102,sin 2α+cos 2α=1,解得⎩⎪⎨⎪⎧sin α=31010,cos α=1010或⎩⎪⎨⎪⎧sin α=-1010,cos α=31010.所以tan α=3或-13.所以tan 2α=2tan α1-tan 2α=2×31-32=-34或tan 2α=2tan α1-tan 2α=2×()-131-()-132=-34.故选C.3.(2019·株洲醴陵二中、四中期中联考)已知2sin α-cos α=0,则sin 2α-2sin αcos α的值为( ) A .-35B .-125解析:选A 由已知2sin α-cos α=0得tan α=12,所以sin 2α-2sin αcos α=sin 2α-2sin αcos αsin 2α+cos 2α=tan 2α-2tan αtan 2α+1=-35.故选A. 4.(2019·大庆四地六校调研)若α是三角形的一个内角,且sin ()π2+α+cos ()3π2+α=15,则tan α的值是( )A .-43B .-34C .-43或-34D .不存在解析:选A 由sin ()π2+α+cos ()3π2+α=15,得cos α+sin α=15,∴2sin αcos α=-2425<0.∵α∈(0,π),∴α∈()π2,π,∴sin α-cos α=1-2sin αcos α=75,∴sin α=45,cos α=-35,∴tan α=-43,故选A.5.(2019·平顶山、许昌联考)已知sin α+3cos α3cos α-sin α=5,则cos 2α+12sin 2α的值是( )A.35 B .-35C .-3D .3解析:选A 由sin α+3cos α3cos α-sin α=5,得tan α+33-tan α=5,解得tan α=2,∴cos 2α+12sin 2α=cos 2α+sin αcos αsin 2α+cos 2α=1+tan αtan 2α+1=1+222+1=35. 6.(2019·河南中原名校联考)已知θ为第二象限角,sin θ,cos θ是关于x 的方程2x 2+(3-1)x +m =0(m ∈R)的两根,则sin θ-cos θ=( )A.1-32B.1+32C. 3D .-3解析:选B ∵sin θ,cos θ是方程2x 2+(3-1)x +m =0(m ∈R)的两根,∴sin θ+ cos θ=1-32,sin θ·cos θ=m2,可得(sin θ+cos θ)2=1+2sin θ·cos θ=1+m =2-32,解得m =-32.∵θ为第二象限角,∴sin θ>0,cos θ<0,即sin θ-cos θ>0,∵(sin θ-cos θ)2=1-2sin θ·cos θ=1-m =1+32,∴sin θ-cos θ= 1+32=1+32,故选B. 7.(2018·全国卷Ⅰ)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点A (1,a ),B (2,b ),且cos 2α=23,则|a -b |=( )A.15B.55C.255D .1解析:选B 由cos 2α=23,得cos 2α-sin 2α=23,∴cos 2α-sin 2αcos 2α+sin 2α=23,即1-tan 2α1+tan 2α=23,∴tan α=±55, 即b -a 2-1=±55,∴|a -b |=55.故选B.8.(2019·武邑中学调研)已知sin α=13,0<α<π,则sin α2+cos α2=________.解析:()sin α2+cos α22=1+sin α=43,又0<α<π,∴sin α2+cos α2>0,∴sin α2+cos α2=233. 答案:2339.(2019·广西桂林等五市联考)已知sin θ+cos θ=15,θ∈()π2,π,则tan θ=________.解析:∵sin θ+cos θ=15,∴(sin θ+cos θ)2=sin 2θ+cos 2θ+2sin θcos θ=1+2sin θcos θ=125,∴sin θcos θ=-1225,又π2<θ<π,∴sin θ-cos θ>0,∴(sin θ-cos θ)2=sin 2θ+cos 2θ-2sin θcos θ=1-2sin θcos θ=4925,∴sin θ-cos θ=75, 由⎩⎪⎨⎪⎧sin θ+cos θ=15,sin θ-cos θ=75,解得⎩⎪⎨⎪⎧sin θ=45,cos θ=-35.∴tan θ=sin θcos θ=-43.答案:-4310.(2019·浙江名校协作体检测)已知sin ()-π2-α·cos ()-7π2+α=1225,且0<α<π4,则 sin α=________,cos α=________.解析:sin ()-π2-αcos ()-7π2+α=-cos α(-sin α)=sin αcos α=1225.又∵0<α<π4,∴0<sin α<cos α.解⎩⎨⎧sin αcos α=1225,sin 2α+cos 2α=1,得sin α=35,cos α=45.答案:35 4511.(2019·惠安惠南中学月考)已知cos α-sin α=5213,α∈()0,π4. (1)求sin αcos α的值;(2)求sin ()π2-2αcos ()π4+α的值. 解:(1)∵cos α-sin α=5213,α∈()0,π4, 平方可得1-2sin αcos α=50169,∴sin αcos α=119338.(2)sin α+cos α=(sin α+cos α)2=1+2sin αcos α=12213, ∴原式=cos 2αcos ()π4+α=(cos α-sin α)·(cos α+sin α)22(cos α-sin α)=2(cos α+sin α)=2413.12.在△ABC 中,(1)求证:cos 2A +B 2+cos 2C2=1;(2)若cos ()π2+A sin ()3π2+B tan(C -π)<0,求证:△ABC 为钝角三角形. 证明:(1)在△ABC 中,A +B =π-C ,所以A +B 2=π2-C2, 所以cos A +B 2=cos ()π2-C 2=sin C2,所以cos 2A +B 2+cos 2C2=1.(2)因为cos ()π2+A sin ()3π2+B tan(C -π)<0, 所以(-sin A )(-cos B )tan C <0, 即sin A cos B tan C <0.因为在△ABC 中,0<A <π,0<B <π,0<C <π且sin A >0,所以⎩⎨⎧ cos B <0,tan C >0或⎩⎨⎧cos B >0,tan C <0,所以B 为钝角或C 为钝角,所以△ABC 为钝角三角形.。
物理化学主要公式定理
物理化学主要公式第一章 气体的pVT 关系1. 理想气体状态方程式nRT RT M m pV ==)/(或 RT n V p pV ==)/(m式中p ,V ,T 及n 单位分别为Pa ,m 3,K 及mol 。
m /V V n =称为气体的摩尔体积,其单位为m 3 · mol -1。
R =8.314510 J · mol -1 · K -1,称为摩尔气体常数。
此式适用于理想气体,近似地适用于低压的真实气体。
2. 气体混合物 (1) 组成摩尔分数 y B (或x B ) = ∑AA B /n n体积分数 /y B m,B B *=V ϕ∑*AVy Am ,A式中∑AA n 为混合气体总的物质的量。
A m,*V 表示在一定T ,p 下纯气体A 的摩尔体积。
∑*AA m ,A V y 为在一定T ,p 下混合之前各纯组分体积的总和。
(2) 摩尔质量∑∑∑===BBBB B BB mix //n M n m M y M式中 ∑=BB m m 为混合气体的总质量,∑=BB n n 为混合气体总的物质的量。
上述各式适用于任意的气体混合物。
(3)V V p p n n y ///B B B B *=== 式中p B 为气体B ,在混合的T ,V 条件下,单独存在时所产生的压力,称为B 的分压力。
*B V 为B 气体在混合气体的T ,p 下,单独存在时所占的体积。
3. 道尔顿定律p B = y B p ,∑=BB p p上式适用于任意气体。
对于理想气体V RT n p /B B =4. 阿马加分体积定律V RT n V /B B =*此式只适用于理想气体。
5. 范德华方程RT b V V a p =-+))(/(m 2mnRT nb V V an p =-+))(/(22式中a 的单位为Pa · m 6 · mol -2,b 的单位为m 3 · mol -1,a 和b 皆为只与气体的种类有关的常数,称为范德华常数。
第四章输气管的水力计算
第四章输气管的水力计算输气管的水力计算是为了确定管道中气体流动时产生的压力损失和流速等水力参数,从而有效地设计输气系统。
本文将从输气管的水力原理、水力计算公式以及实际应用中的注意事项等方面进行详细探讨。
一、水力原理输气管的水力原理主要依据流体的连续性方程、能量方程和阻力方程。
其中连续性方程描述了输气管中气体流动的连续性,能量方程用于计算气体在管道中的能量变化,而阻力方程则是根据经验公式,计算气体流动产生的摩阻力。
二、水力计算公式1.压力损失计算公式:压力损失(ΔP)=λ×L/D×(ρv^2/2)其中,λ为摩阻系数,L为管道长度,D为管道直径,ρ为气体密度,v为气体流速。
2.流速计算公式:流速(v)=Q/(πD^2/4)其中,Q为气体流量,D为管道直径。
3.管径计算公式:D=0.613×(Q/P)^(1/2)其中,Q为气体流量,P为设计压力。
三、实际应用注意事项1.摩阻系数的选择:摩阻系数的选择会直接影响到压力损失的计算结果,需要根据具体情况进行合理的选择,可以参考相关经验数据或者进行实验研究。
2.流量和压力的测量:水力计算需要准确的流量和压力数据,因此在实际应用中需要使用合适的流量计和压力计进行测量。
同时,还需要考虑测量误差的影响,并进行相应的修正。
3.管道布置和管径设计:在输气管的水力计算中,需要合理布置管道和选择合适的管径,以便满足系统的流量和压力要求,并减小压力损失。
在实际应用中应进行综合考虑,根据具体情况进行设计优化。
4.防止压力过高:在输气管的水力计算中,需要考虑到气体在流动过程中的压力变化,防止压力过高对设备和管道造成损坏。
因此,在设计过程中需要合理选择设计参数,进行安全性评估。
总结:输气管的水力计算是设计输气系统中重要的一环,通过合理的水力计算可以确保输气管道的正常运行。
对于水力计算公式的使用和实际应用中的注意事项,设计人员需要充分理解,并综合考虑实际情况,确保设计的合理性和安全性。
材料表界面-第四章
4.6 润湿过程的三种类型
黏附润湿过程 浸湿过程 铺展浸湿过程
4.6 润湿过程的三种类型
4.6.1 粘附润湿过程
液
• 液体直接接触固体,变液-气表面和固-气表面为液-固界面 的过程。
θ
固
4.6 润湿过程的三种类型
4.6.1 粘附润湿过程
• 液体直接接触固体,变气-液表面和气-固表面为液-固界面 的过程。
4.6.2 浸湿过程
浸湿过程是原来的气-固表面为液-固界面所代替。
固
气
气
液
液
固
固-气 固-液
4.6 润湿过程的三种类型
4.6.2 浸湿过程
固-气 固-液
G a( ) i
固液
固气
Wi:浸湿功 令A=-Wi,A为黏附张力
黏附张力
A
Wi
Gi a
固气 固液
ΔGi<0即A>0,浸湿过程才能进行。
4.6 润湿过程的三种类型
4.6.3 铺展润湿过程
铺展浸润是液体与固体表面接触后,在固体表面上排除空 气而自行铺展的过程。
液
气
液
固
4.6 润湿过程的三种类型
4.6.3 铺展润湿过程
铺展浸润是液体与固体表面接触后,在固体表面上排除空 气而自行铺展的过程。
液
气
气
液 固
固-气 固-液 + 液-气
4.6 润湿过程的三种类型
无论是液体或是固体的表面,在污染后都会引起滞后现 象。 表面污染往往来自液体和固体表面的吸附作用,从而使 接触角发生显著变化。 影响接触角的因素十分复杂,所以在测定时,要尽可能 控制测定环境的温度、湿度、液体的蒸气压、固体表面的 清洁度和粗糙度等因素。
第四章 杆件的变形计算
3)分别作AC1和BC2的垂线交于C0
A F B 30oC2 C
Cx CC2 0.277mm C y CC1 / sin30 CC 2 cot30
C1
1.44mm
C点总位移:
Cy
C C y C x 1.47mm
(此问题若用圆弧精确求解)
2
2
Cx
C0
T3 C
1)根据题意,首先画出扭矩图
T1 d1 A Mx N· m B T2 d2 C T3
2)AB 段单位长度扭转角:
1400
800
AB
M xAB GI pAB
+
x
1400 4 π 0.06 80 10 9 32 0.01375rad / m
3)BC 段单位长度扭转角: M xBC BC
M xi li j i 1 GI pi
n
请注意单位长度扭转角和相对扭转角的区别
例4-3 一受扭圆轴如图所示,已知:T1=1400N· m, T2=600N· m, T3=800N· m, d1=60mm,d2=40mm,剪切弹性模量G=80GPa,计 算最大单位长度扭转角。
T1 d1 A
T2 d2 B
第四章
• • • • •
杆件的变形计算
本部分主要内容:
拉压杆的轴向变形 圆轴的扭转变形与相对扭转角 梁的弯曲变形、挠曲线近似微分方程 用积分法求梁的弯曲变形 用叠加法求梁的弯曲变形
第一节 拉压杆的轴向变形
直杆在其轴线的外力作用下,纵向发生伸长或缩短变形, 而其横向变形相应变细或变粗 杆件在轴线方向的伸长
泊松比ν 、弹性模量 E 、切变模量G 都是材料的弹性常数, 可以通过实验测得。对于各向同性材料,可以证明三者之间存 在着下面的关系
4第四章--固液界面解析
LG
r cos y
(5-22)
式中θy为Young接触角,上式叫做Wentzel方程。它表明粗糙表面的 cosθw的绝对值总比平滑表面的cosθy大。
(1)当θy<90°时,表面粗糙化将使接触角更小。 润湿性更好。 (2)当θy>90°时,表面粗糙化将使接触角变大。
润湿性更差。
(3)由式5-22可以估算实验的误差,例如:
图5-11 浸润曲线
充填率ξ =0.47~0.53
Wl l cos m 2 t H W f Ap l
3 2
以 m 2 ~t 作图,可得直线。该直线的斜率 即为(5-20)式中t的系数。由斜率即可 求出接触角θ。
接枝改性丙纶的接触角
1.7.5 接触角的滞后现象
1 前进角和后退角 前进角θa 最大前进角θa,max 后退角θr 最小后退角θr,min
2. Young方程
SG SL LG cos
(5-1)
dASL dASG dALG cos dASL
图5-2 Young方程的推导
从能量观点推导Young方程(如图5-2)
系统自由焓的变化
dG LG dALG SG dASG SL dASL
在理想光滑、组成均匀的表面上的平 衡接触角就是Young氏角。许多实际表 面都是粗糙的或是不均匀的,液滴可 以处在稳定平衡态(即最低能量态), 也可处于亚稳平衡态,即出现接触角 的滞后现象。
引起接触角滞后的原因 固体表面的粗糙度 固体表面的不均匀性和多相性 固体表面的污染
2由于表面粗糙引起的滞后
当θ=10o时,若r=1.02,则θy-θw=5o;
(3-23)
n=∞,上式成为二常数式;
大学微积分(上)第四章 中值定理
2
证 设 f ( x ) arcsin x arccos x , x [1,1]
f ( x ) ( 1 1 x
2
) 0.
f ( x) C ,
x [1,1]
又 f (0) arcsin 0 arccos 0 0 , 2 2 即C . 2 arcsin x arccos x . 2
o
a
x1 x2
x4
x5 b
x
一、函数的极值
定义: 在其中当 (1) 时,
则称
称
为
的极大点 ,
为函数的极大值 ;
(2)
则称 称
为
的极小点 , 为函数的极小值 .
y 2 1
o
极大点与极小点统称为极值点 . 为极大点 , 为极小点 , 是极大值 是极小值
1 2
x
注意: 1) 函数的极值是函数的局部性质. 2) 对可导函数, 极值可能出现在导数为 零的点
第四章 中值定理及导数的应用
在本章中, 要利用导数来研究函数的性质与形态.
如: 函数增量与自变增量之间的关系;
凹凸、最大,最小、图形等.
函数的单调、
中值定理是利用导数研究函数的理论基础.
第一节 中值定理
洛尔定理 拉格朗日中值定理 柯西中值定理
y
x 1 , x4 为极大点 x 2 , x5 为极小点
解:∵ f (x)在[0, ]上连续,在(0, )上可导, 且 f(0) = f() ∴由洛尔定理知: 在(0, )内至少有一点,使 f ()=0,
即: cos =0, 故=/2。
例2
验证洛尔定理对函数 f ( x ) x 3 4 x 2 7 x 10 在 [1,2]上的正确性。 解:∵ f (x)在[-1, 2]上连续,在(-1, 2)上可导, 且 f(-1) = f(2) ∴由洛尔定理知:
第四章 对流换热..
(第三章已经推导出)
(2)由对流引起的
(3)内能的变化: 代入热力学第一定律,从而有:
第三节 边界层微分方程组
上一节导出的方程组虽然是封闭的,原则上可以求解, 但要针对实际问题求解上述方程组是非常困难的。直到 普朗特提出边界层这一概念后,方程组才有实质性的简 化。下面就运用数量级分析的方法简化对流换热微分方 程组。 数量级法分析:是指通过比较方程式中各项量级的相对 大小,把量级较大的项保留下来。而舍去量级较小的项, 实现方程式的合理简化。 对于上述微分方程组,假设为二维稳态,重力场可忽略 的强制对流换热问题。 设主流速度u、温度t、壁面长度l 以及速度边界层和热边 界层5个量的量级如下:
思路:取控制体,利用能量守恒和动量守恒建立微分方程 组结合单值性条件。 b. 建立边界层的积分方程组求解α (近似解法) c. 利用动量和能量的比拟方法(类比法) (2)实验研究方法: 用相似原理或量纲分析法,将众多的影响因素归纳成为数 不多的几个无量纲的准则,通过实验确定α 的具体关系式。 (3)两者的联系和区别(理论分析法和实验研究方法) 两种方法在解决对流换热问题上起相辅相成的作用。虽然 解析解不能求解各种各样对流换热问题,但能深刻地揭示 出各个物理量对换热系数的影响,而且也是评价其它方法 所得结果的标准和依据,而实验研究方法可以得到具体的 表达方式,而且是设计计算的主要计算式,是必须掌握的 内容。
6. 边界层(附面层)的概念 由于流体都存在着粘性,所以流体流过避免时,在壁面 附近的区域流体的温度和速度均发生了很大的变化。实 验研究表明,换热系数的大小主要取决于这一区域内流 体的流动情况,这一区域称边界层。 (1)速度边界层 如果流体为没有粘性流体,流体流过平板时,流速在截 面上一直保持不变。 如果流体为粘性流体,情况会如何呢?我们用一测速仪 来测量壁面附近的速度分布。测量发现在法面方向上, 即y方向上,壁面上速度为零,随着y方向的增加,流速 急剧增加,到达一薄层后,流速接近或等于来流速度, 普朗特研究了这一现象,并且在1904年第一次提出了边 界层的概念。
成本会计课程——第四章(完工产品与在产品)
适用条件:各月末在产品数量很少,不计算在产品的成 本对完工产品的成本影响不大。
2)在产品按所耗直接材料费用计价 适用条件:在产品各月数量变动大,月末在产品成本数 量较大,而且原材料费用在产品成本中所占比重较大的情况。 此时月末在产品只计算所耗用的原材料费用,不计算 所耗用的直接人工、制造费用等加工费用。
批准后转账(冲抵当月管理费用):
借:待处理财产损溢 贷:管理费用
2)盘亏或损毁时:
借:待处理财产损溢 贷:基本生产成本
残值回收:
借: 原材料 贷:待处理财产损溢
批准核销时(净损失列作管理费用):
借:管理费用 其他应收款 营业外支出
(赔偿费用)
(自然灾害造成的净损失,计入营业外支出)
贷:待处理财产损溢
1)本月生产费用合计 原材料:1400+8200 = 9600 直接人工:600+3000 = 3600 制造费用:400+2000 = 2400 2)计算分配标准 原材料定额费用:8000+2000 = 10000 定额工时:5000+1000 = 6000 3)计算费用分配率 原材料:9600/10000 = 0.96 直接人工:3600/6000 = 0.6 制造费用:2400/6000 = 0.4 4)计算月末在产品、完工产品费用 完工产品: 在产品: 原材料:0.96*2000 = 1920 原材料:0.96*8000 = 7680 直接人工:0.6*1000 = 600 直接人工:0.6*5000 = 3000 制造费用:0.4*1000 = 400 制造费用:0.4*5000 = 2000
产品名称 甲产品 数 量:100件 乙产品 数 量:200件 合计
第四章流动阻力和能量损失
8sin
1
A2 A1
2
2
(5)管道出口(流入大容器)
由管径突然扩大的计算公式知: 当A2>> A1时,1
(6)管道进口
的计算
管道进口的局部阻力系数与进口边缘的情况有关。
(7)各种管件
见附表13
如弯头、三 通、阀门等
三、减少流动阻力的措施
1.减小沿程阻力
(1)减小管长L。 (2)适当增加管径d。 (3)减小管壁的绝对粗糙度K。
① 采用渐变的、平顺的 管道进口。
减小局部阻力
② 采用扩散角较小的渐扩管。
(a)较之(b)局部 阻力小得多
③ 对于截面较大的弯道,加大曲率半径或内装导流叶片。 ④ 三通。
可减阻70%
本章小结
一、沿程损失和局部损失 二、层流与湍流 三、流体在圆管内的速度分布 四、流体在管内流动阻力损失的计算
练习题
当流体在圆形管内流动时,无论是层流还是湍流, 管壁上的流速为零,其它部位的流体质点速度沿径向发生 变化。离开管壁越远,其速度越大,直至管中心处速度最 大。
1.圆形管内层流速度分布
层流一般发生在低流速、小管径的管路中或黏性较大 的机械润滑系统和输油管路中。
实验测得层流速度分布呈抛物线状分布,管中心处的 流体质点速度最大。管内流体的平均流速v等于管中心处最 大流速vmax的二分之一,即:
1. 能量损失由几种形式,如何计算? 2. 流体两种流态,主要区别是什么?如何判断流体的流动状态? 3. 当输水管径一定时,流量增大,雷诺数如何变化?当流量一
定时,管径增大,雷诺数如何变化? 4. 试比较管内层流运动和湍流运动的特征和速度分布。 5. 是否在任何管路中,流量增大则阻力损失增大,流量减小则
第四章留数定理
单极点的留数永不为0,高阶极点和本性奇点的 留数可以为0。有限远非奇点(含可去奇点)处的 留数一定为0,无穷远点即使不是奇点其留数也 可不为0。(非孤立奇点和支点的情况不讨论)
16
3/31/2012
留数计算的例子
z→z0 [Q(z)]'
z→z0
Q'(z)
= P(z)
Q'(z)
14
m阶极点的情况
若z0是f(z)的m阶极点,则洛朗级数为
留数仍然是a-1, 求 法有些不同。
f
(z)
=
a−m (z − z0 )m
+
a−m+1 (z − z0 )m−1
+ ... +
a−1 z − z0
+ a0 + a1(z − z0 ) + a2 (z − z0 )2 + ....
p.53例1 求f(z)=1/(zn-1)在z0=1点的留数。(假 设n是一个正整数)
首先由lim f (z) = ∞可知,z = 1是函数的极点。 z →1
把分母因式分解可得:
f
(z)
=
1 zn −1
=
(z
−1)(z n−1
1 + zn−2
+ ... +1)
因为n为正整数,因此第2个括号中只有有限项,值趋向于n
也能由留数定理导出吗?
令F (z) = f (z) ,因f (z)在l内解析,F (z)在l内有 z − z0
唯一奇点z0。应用留数定理有:
∫ F (z)dz = 2πi Res F (z0 ) = 2πia−1
流体力学第四章-黏性流体的运动和阻力计算
6、层流起始段长度——见课本74页
*4.4 圆管中的湍流流动
30
一、脉动现象与时均值
1、这种在定点上的瞬时运动参数随时间而发生波动的现象称为
脉动。
2、时均法分析湍流运动
u u u'
如取时间间隔T,瞬时速度在T时间内的平均值称为时间平均 速度,简称时均速度,即
二局部阻力某段管道上流体产生的总的能量损失应该是这段管路上各种能量损失的迭加即等于所有沿程能量损失与所有局部能量损失的和用公式表示为三总能量损失能量损失的量纲为长度工程中也称其为水头损失221圆管层流时的运动微分方程牛顿力学分析法可参考课本71页的ns方程分析法取长为dx半径为r的圆柱体不计质量力和惯性力仅考虑压力和剪应力则有pdpdxdprdxdpdrdudxdpdrdu根据牛顿粘性定律再考虑到则有dr图41圆管层流的速度和剪应力分布25在过流断面的任一半径r处取一宽度为dr的圆环如图42所示
u1
Tudt1
T(uu')dt1
Tudt1
T
u'dt
T0
T0
T0
T0
u1
T
u'dt
T0
时均压强
p
1
T
pdt
T0
.
二、湍流的速度结构、水力光滑管和水力粗糙管
31
1.湍流的速度结构 管中湍流的速度结构可以划分为以下三个区域:
(1)粘性底层区(层流底层):在靠近管壁的薄层区域内,流 体的粘性力起主要作用,速度分布呈线性,速度梯度很大,这 一薄层叫粘性底层。如图所示。
湍流 层流的临界速度 ——下临界流速
v c ——上临界速度
v c ——下临界速度
第四章 微积分中值定理与证明
.
若 ,我们取 或 ,结论显然成立.若 ,则
根据零点定理, 有 ,所以有 .
(方法2:利用介值定理)由于 在 上连续,所以 在 上可以达到最
大值和最小值, 使得 ,当然 ,所以
,
故
,
从而有
,
根据介值定理, 有
,
所以有
.
例2设 在 上连续, ,证明: ,使得 .
证明引入辅助函数 ,则
4.设 , 在 上连续,在 可导,证明:在 内至少存在一
点 ,使得 .
(提示:对两个函数 和 在 上应用柯西中值定理)
5.设 在 上连续,在 可导,且 ,证明:在 ,使得 .
(提示:引入辅助函数 ,在 上满足罗尔定理条件)
6.设 在 上可导,且 ,证明:
(1) ,使得 .
(2)在 上存在 ,使得 .
所以
整理得到
.
例12设 在 上连续,且 ,证明:存在 满足
.
分析解方程 ,即 ,所以辅助函数为
.
例13和例14对数三考生不做要求:
例13若 在 上有三阶导数,且 ,设 ,证明:
在 内至少存在一个 使得 .
证明由于 具有三阶导数,于是
由于
,
所以 ,故
,
因为 ,所以 ,即存在一个 使得 .
例14设 在区间 上具有三阶连续导数,且 , ,
柯西中值定理,有
, ;
, .
将上面两式相除,整理得到
.
4.1练习
1.试证方程 ,其中 至少有一个正根并且不超过 .
(提示:只需证明函数 在 至少有一个根)
2.试证方程 恰有两个实根.
(提示:函数 是偶函数,关于 轴对称)
物理化学答案——第四章_化学平衡习题解答[1]
第四章 化学平衡一、基本公式和内容提要 1. 化学反应的方向和限度(1)反应系统的吉布斯自由能和反应进度反应进行过程中,A 和B 均各以纯态存在而没有相互混合,则在反应进度为ξ时反应体系的总吉布斯自由能G *为:G * = n A μA * + n B μB * = (1-ξ)μA * +ξμB * = μA * +ξ(μB * -μA *)对于封闭体系在定温定压下在反应实际进行过程中,A 和B 是不可能以纯态存在的。
它们是混合在一起的,因此还存在混合吉布斯自由能△mix G 。
△mix G = RT (n A lnX A + n B lnX B ) = RT [(1-ξ)ln(1-ξ) + ξlnξ](2)化学反应标准平衡常数理想气体的化学反应()()()()aA g bB g gG g hH g −−→++←−− bB a A hH gG P P P P P P P P )/()/()/()/(θθθθ= e )--(1θθθθμμμμB A H G b a h g RT-+= 常数 = K θK θ称为标准平衡常数。
(3)化学反应的等温方程式(a )对任意反应达平衡时:△r G m θ = -RTlnK θ△r G m θ是指产物和反应物均处于标准态时,产物的吉布斯自由能和反 应物的吉布斯自由能总和之差,称为反应的“标准吉布斯自由能变化”。
(b )反应在定温定压条件下△r G m = △r G m θ+ RT ln Q p上式称为范特霍夫(Vait Hoff) 等温方程。
(c )依据吉布斯自由能函数可判断反应进行的方向,在温度、压力一定的条件下:RT ln Q a < RTlnK θ Q a <K θ △r G m <0 反应正向自发进行 若 RT ln Q a >RTlnK θ Q a >K θ △r G m >0 反应逆向自发进行若 RT ln Q a = RTlnK θ Q a = K θ △r G m =0 反应达平衡 2. 反应的标准吉布斯自由能变化 (1)化学反应的△r G m 与△r G m θ(a )在一定温度和压力为p θ下,任何物质的标准态化学势μi θ都有确定值,所以任何化学反应的△r G m θ都是常数;(b )△r G m 不是常数,在一定T ,p 下,它与各物质的活度(分压、浓度)等有关,即与Q a 有关;(c )在定温定压条件下0W '=时,△r G m 的正负可以指示化学反应自发进行的方向,在定温下△r G m θ的正负通常不能指示反应进行的方向,根据公式△r G m = △r G m θ+ RT ln Q p ,但当△r G m θ的数值很大时,也可用其值估计反应的方向。
钢筋混凝土受弯构件正截面承载力计算
f y As f y
1 fc bh0
1 fc
第四章 钢筋和混凝土受弯构件正截面承载力计算
2.相对界限受压区高度
第四章 钢筋和混凝土受弯构件正截面承载力计算
cu
xnb
y
xcb
cu cu b h0
1xcb
h0
1 cu cu y
C75 0.95 0.75
C80 0.94 0.74
第四章 钢筋和混凝土受弯构件正截面承载力计算
4.4.3 适筋破坏与超筋破坏的界限条件
1.相对受压区高度
等效矩形应力图的受压区高度x与截面有效高度h0的 比值,称为相对受压区高度,用表示,即:
x / h0
X 0, 1 fcbh0 fy As
第四章 钢筋和混凝土受弯构件正截面承载力计算
截面设计 公式计算法:
第四章 钢筋和混凝土受弯构件正截面承载力计算
己知:弯矩设计值M,材料强度fc、fy,截面尺寸b×h;求截面配筋As
计算步骤如下: ①确定截面有效高度h0:h0=h-as
②计算混凝土受压区高度x,并判断是否属超筋梁
x h0
b
1 cu cu y
1
1 fy
cu Es
相对界限受压区高度仅与材料 性能有关,而与截面尺寸无关
第四章 钢筋和混凝土受弯构件正截面承载力计算
常用混凝土和钢筋的b值
混凝土
钢筋
HPB300
≤C50
HRB335、HRBF335 HRB400、HRBF400、
RRB400 HRB500、HRBF500
As,min 0.2% 200 450 180mm2 As 620.8mm2
同济大学(高等数学)-第四章-不定积分
第四章 不定积分前面讨论了一元函数微分学,从本章开始我们将讨论高等数学中的第二个核心内容:一元函数积分学.本章主要介绍不定积分的概念与性质以及根本的积分方法.第1节 不定积分的概念与性质1.1 不定积分的概念在微分学中,我们讨论了求一个函数的导数〔或微分〕的问题,例如,变速直线运动中位移函数为()s s t =, 那么质点在时刻t 的瞬时速度表示为()v s t '=.实际上,在运动学中常常遇到相反的问题,即变速直线运动的质点在时刻t 的瞬时速度()v v t =,求出质点的位移函数()s s t =.即函数的导数,求原来的函数.这种问题在自然科学和工程技术问题中普遍存在.为了便于研究,我们引入以下概念.1.1.1原函数定义1 如果在区间I 上,可导函数()F x 的导函数为()f x ,即对任一x I ∈,都有()()F x f x '= 或 d ()()d F x f x x =, 那么函数()F x 就称为()f x 在区间I 上的原函数.例如,在变速直线运动中,()()s t v t '=,所以位移函数()s t 是速度函数()v t 的原函数; 再如,(sin )'cos x x =,所以sin x 是cos x 在(,)-∞+∞上的一个原函数.1(ln )'(0),x x x=>所以ln x 是1x在(0,)+∞的一个原函数. 一个函数具备什么样的条件,就一定存在原函数呢?这里我们给出一个充分条件.定理1 如果函数()f x 在区间I 上连续,那么在区间I 上一定存在可导函数()F x ,使对任一∈x I 都有()()'=F x f x .简言之,连续函数一定有原函数.由于初等函数在其定义区间上都是连续函数,所以初等函数在其定义区间上都有原函数.定理1的证明,将在后面章节给出. 关于原函数,不难得到下面的结论:假设()()'=F x f x ,那么对于任意常数C ,()+F x C 都是()f x 的原函数.也就是说,一个函数如果存在原函数,那么有无穷多个.假设()F x 和()φx 都是()f x 的原函数,那么[()()]0'-≡F x x φ,必有()()φ-F x x =C ,即一个函数的任意两个原函数之间相差一个常数.因此我们有如下的定理:定理2 假设()F x 和()φx 都是()f x 的原函数,那么()()-=F x x C φ〔C 为任意常数〕. 假设()()'=F x f x ,那么()+F x C 〔C 为任意常数〕表示()f x 的所有原函数.我们称集合{}()|F x C C +-∞<<+∞为()f x 的原函数族.由此,我们引入下面的定义.1.1.2不定积分定义2 在区间I 上,函数()f x 的所有原函数的全体,称为()f x 在I 上的不定积分, 记作()d ⎰f x x .其中⎰称为积分号,()f x 称为被积函数,()d f x x 称为被积表达式,x 称为积分变量. 由此定义,假设()F x 是()f x 的在区间I 上的一个原函数,那么()f x 的不定积分可表示为()d ()=+⎰f x x F x C .注 〔1〕不定积分和原函数是两个不同的概念,前者是个集合,后者是该集合中的一个元素.〔2〕求不定积分,只需求出它的某一个原函数作为其无限个原函数的代表,再加上一个任意常数C .例1 求23d x x ⎰.解 因为32()3,'=x x 所以233d x x x C =+⎰.例2 求sin cos d x x x ⎰.解 〔1〕因为2(sin )2sin cos ,'=x x x 所以21sin cos d sin 2x x x x C =+⎰.〔2〕因为2(cos )2cos sin ,'=-x x x 所以21sin cos d cos 2x x x x C =-+⎰. 〔3〕因为(cos 2)2sin 24sin cos ,'=-=-x x x x 所以1sin cos d cos 24=-+⎰x x x x C . 例3 求1d x x⎰. 解 由于0x >时,1(ln )'=x x ,所以ln x 是1x在(0,)+∞上的一个原函数,因此在(0,)+∞内,1d ln x x C x=+⎰.又当0x <时,[]1ln()x x '-=,所以ln()-x 是1x在(,0)-∞上的一个原函数,因此在(,0)-∞内,1d ln()=-+⎰x x C x .综上,1d ln x x C x=+⎰.例4 在自由落体运动中,物体下落的时间为t ,求t 时刻的下落速度和下落距离. 解 设t 时刻的下落速度为()=v v t ,那么加速度d ()d va t g t==〔其中g 为重力加速度〕. 因此()()d d v t a t t g t gt C ===+⎰⎰,又当0t =时,(0)0=v ,所以0C =.于是下落速度()=v t gt . 又设下落距离为()=s s t ,那么ds()dt=v t .所以 21()()d d 2===+⎰⎰s t v t t gt t gt C , 又当0t =时,(0)0=s ,所以0C =.于是下落距离21()2=s t gt . 1.1.3不定积分的几何意义设函数()f x 是连续的,假设()()F x f x '=,那么称曲线()y F x =是函数()f x 的一条积分曲线.因此不定积分()d ()f x x F x C =+⎰在几何上表示被积函数的一族积分曲线.积分曲线族具有如下特点〔如图4.1〕:〔1〕积分曲线族中任意一条曲线都可由其中某一条平移得到;〔2〕积分曲线上在横坐标相同的点处的切线的斜率是相同的,即在这些点处对应的切线都是平行的.图4-1例5 设曲线通过点(1,2),且其上任一点处的切线斜率等于这点横坐标的两倍,求此曲线方程.解 设曲线方程()=y f x ,曲线上任一点(,)x y 处切线的斜率d 2d yx x=,即()f x 是2x 的一个原函数.因为22d =+⎰x x x C ,又曲线过(1,2),所以21C =+,1C =.于是曲线方程为21y x =+.1.2 根本积分公式由定义可知,求原函数或不定积分与求导数或求微分互为逆运算, 我们把求不定积分的运算称为积分运算.既然积分运算与微分运算是互逆的,那么很自然地从导数公式可以得到相应的积分公式.例如,因11x μμ+'⎛⎫ ⎪+⎝⎭=x μ,所以11x x dx C μμμ+=++⎰〔1μ≠-〕. 类似可以得到其他积分公式,下面一些积分公式称为根本积分公式. ①d k x kx C =+⎰〔k 是常数〕; ②1d 1x x x C μμμ+=++⎰〔1μ≠-〕;③1d ln x x C x=+⎰; ④sin d cos x x x C =-+⎰; ⑤cos d sin x x x C =+⎰; ⑥221d sec d tan cos x x x x C x==+⎰⎰; ⑦221d csc d cot sin x x x x C x==-+⎰⎰; ⑧sec tan d sec x x x x C =+⎰; ⑨csc cot d csc x x x x C =-+⎰; ⑩21d arctan C 1x x x =++⎰,21d cot 1x arc x C x -=++⎰;⑪arcsin x x C =+,arccos x x C =+⎰;⑫e d e x x x C =+⎰;⑬d ln xxa a x C a=+⎰;以上13个根本积分公式,是求不定积分的根底,必须牢记.下面举例说明积分公式②的应用.例6求不定积分x x ⎰.解xx ⎰52d x x =⎰512512x C +=++7227x C =+. 以上例子中的被积函数化成了幂函数x μ的形式,然后直接应用幂函数的积分公式②求出不定积分.但对于某些形式复杂的被积函数,如果不能直接利用根本积分公式求解,那么可以结合不定积分的性质和根本积分公式求出一些较为复杂的不定积分.1.3 不定积分的性质根据不定积分的定义,可以推得它有如下两个性质.性质1 积分运算与微分运算互为逆运算〔1〕()d ()'⎡⎤=⎣⎦⎰f x x f x 或d ()d ()d ⎡⎤=⎣⎦⎰f x x f x x . 〔2〕()d ()'=+⎰F x x F x C 或d ()()=+⎰F x F x C 性质2 设函数()f x 和()g x 的原函数存在,那么[]()()d ()d ()d +=+⎰⎰⎰f x g x x f x x g x x .易得性质2对于有限个函数的都是成立的.性质3 设函数()f x 的原函数存在,k 为非零的常数,那么()d =⎰kf x x ()d ⎰k f x x .由以上两条性质,得出不定积分的线性运算性质如下:[]()()d ()d ()d +=+⎰⎰⎰kf x lg x x k f x x l g x x .例7 求23d 1⎛⎫+⎝⎰x x. 解23d 1⎛⎫+⎝x x213d 21x x x =-+⎰3arctan x =2arcsin x -C +.例8 求221d (1)+++⎰x x x x x .解 原式=22(1)d (1)+++⎰x x x x x 211d 1x x x ⎛⎫=+ ⎪+⎝⎭⎰3arctan 3x x x C =-++. 例9 求2e d x x x ⎰.解 原式(2e)d xx =⎰1(2e)ln 2exC =+2e 1ln 2x x C =++. 例10 求1d 1sin x x+⎰.解 1d 1sin x x+⎰()()1sin d 1sin 1sin xx x x -=+-⎰21-sin d cos x x x=⎰ 2(sec sec tan )d =-⎰x x x x tan sec x x C =-+.例11 求2tan d x x ⎰.解 2tan d x x ⎰=2(sec 1)d tan -=-+⎰x x x x C .注 本节例题中的被积函数在积分过程中,要么直接利用积分性质和根本积分公式,要么将函数恒等变形再利用积分性质和根本积分公式,这种方法称为根本积分法.此外,积分运算的结果是否正确,可以通过它的逆运算〔求导〕来检验,如果它的导函数等于被积函数,那么积分结果是正确的,否那么是错误的.下面再看一个抽象函数的例子:例12 设22(sin )cos '=f x x ,求()f x ?解 由222(sin )cos 1sin '==-f x x x ,可得()1'=-f x x , 从而21()2=-+f x x x C .习题4-11.求以下不定积分.〔1〕41d x x⎰; 〔2〕x ⎰; 〔3〕; 〔4〕()2d ax b x -⎰;〔5〕22d 1x x x +⎰; 〔6〕4223d 1x x x x +++⎰;〔7〕x ; 〔8〕22d 1x x⎛⎫+⎝⎰; 〔9〕32e d x x x⎛⎫- ⎪⎝⎭⎰; 〔10〕()22d 1x xx+⎰;〔11〕x ;〔12〕2tan d x x ⎰; 〔13〕2sin d 2xx ⎰;〔14〕cos 2d cos sin x xx x-⎰;〔15〕21cos d 1cos 2xx x++⎰; 〔16〕()sec sec tan d x x x x +⎰;〔17〕2352d 3x xxx ⋅-⋅⎰;〔18〕x .2.某产品产量的变化率是时间t 的函数,()=+f t at b 〔a ,b 为常数〕.设此产品的产量函数为()p t ,且(0)0=p ,求()p t .3.验证12arcsin(21)arccos(12)=-+=-+x C x C 3C =. 4.设33()d f x x x C '=+⎰,求()f x ?第2节 换元积分法和不定积分法2.1 换元积分法上一节介绍了利用根本积分公式与积分性质的直接积分法,这种方法所能计算的不定积分是非常有限的.因此,有必要进一步研究不定积分的求法.这一节,我们将介绍不定积分的最根本也是最重要的方法——换元积分法,简称换元法.其根本思想是:利用变量替换,使得被积表达式变形为根本积分公式中的形式,从而计算不定积分. 换元法通常分为两类,下面首先讨论第一类换元积分法.2.1.1第一类换元积分法定理1 设()f u 具有原函数,()=u x ϕ可导,那么有换元公式()[()]()d ()d =⎡⎤'=⎣⎦⎰⎰u x f x x x f u u ϕϕϕ. 〔4.2.1〕证明 不妨令()F u 为()f u 的一个原函数,那么[]()()d ()=⎡⎤=+⎣⎦⎰u x f u u F x C ϕϕ.由不定积分的定义只需证明([()])[()]()''=F x f x x ϕϕϕ,利用复合函数的求导法那么显然成立.注 由此定理可见,虽然不定积分[()]()d '⎰f x x x ϕϕ是一个整体的记号,但从形式上看,被积表达式中的d x 也可以当做自变量x 的微分来对待.从而微分等式()d d '=x x u ϕ可以方便地应用到被积表达式中.例1 求33e d x x ⎰.解 3333e d e (3)d e d(3)x x x x x x x '=⋅=⎰⎰⎰e d =⎰u u e =+u C , 最后,将变量3u x =代入,即得333ed e xx x C =+⎰.根据例1第一类换元公式求不定积分可分以下步骤:〔1〕将被积函数中的简单因子凑成复合函数中间变量的微分; 〔2〕引入中间变量作换元;〔3〕利用根本积分公式计算不定积分; 〔4〕变量复原.显然最重要的是第一步——凑微分,所以第一类换元积分法通常也称为凑微分法.例2 求()9945d x x +⎰.解 被积函数9945()+x 是复合函数,中间变量45=+u x ,45()=4'+x ,这里缺少了中间变量u 的导数4,可以通过改变系数凑出这个因子:99999911(45)d (45)(45)d (45)d(45)44'+=⋅+⋅+=++⎰⎰⎰x x x x x x x 991d 4=⎰u u 1001001(45)4100400+=⋅+=+u x C C .例3 求22d xx x a +⎰. 解221x a+为复合函数,22u x a =+是中间变量,且222x a x '+=(), 22222222221111d ()d d()22'=⋅+=++++⎰⎰⎰x x x a x x a xax a x a 221111d ln ln()222==+=++⎰u u C x a C u . 对第一类换元法熟悉后,可以整个过程简化为两步完成.例4 求x ⎰.解 322211)(1)23=--=--+⎰x x x C .注 如果被积表达式中出现()d +f ax b x ,-1()d ⋅m m f x x x ,通常作如下相应的凑微分:1()d ()d()+=++f ax b x f ax b ax b a , 111()d ()d()-+=⋅++n n n n f ax b x x f ax b ax b a n.例5 求1d (12ln )x x x +⎰.解 因为1d d ln x x x=,亦即11d d(1+2ln )2x x x=,所以1111d d ln d(1+2ln )(12ln )12ln 212ln x x x x x x x==+++⎰⎰⎰ 1ln 1+2ln 2x C =+. 例6 求arctan 22d 1xx x +⎰.解 因为21d d arctan 1x x x =+,所以 arctan arctan arctan 222d 2d arctan ln 21x x xx x C x ==++⎰⎰.例7 求x .解x =x C ==-⎰.在例4至例7中,没有引入中间变量,而是直接凑微分.下面是根据根本微分公式推导出的常用的凑微分公式.①x=②211d d x x x=-.③1d dln x x x=. ④e d de x x x =.⑤ cos d d sin x x x =. ⑥ sin d d cos x x x =-. ⑦221d sec d d tan cos ==x x x x x. ⑧ 221d csc d d cot sin =-=-x x x x x.d(arcsin )d(arccos )x x x ==-.⑩21d d(arctan )d(arccot )1x x x x ==-+. 在积分的运算中,被积函数有时还需要作适当的代数式或三角函数式的恒等变形后,再用凑微分法求不定积分.例8 求221d x a x +⎰. 解 将函数变形2222111.1a x a x a =+⎛⎫+ ⎪⎝⎭,由d d x x a a=,所以得到221d x a x +⎰2111darctan 1x xC aa a ax a ==+⎛⎫+ ⎪⎝⎭⎰. 例9求x . 解1x x x aa ⎛⎫==⎪⎝⎭ arcsinxC a=+. 例10 求tan d x x ⎰. 解 tan d x x ⎰=sin d d cos ln cos cos cos x x xx C x x-==-+⎰⎰. 同理,我们可以推得cot d ln sin x x x C =+⎰.例11 求3sin d x x ⎰.解 3222sin d sin sin d sin dcos (1-cos )dcos x x x x x x x x x ==-=-⎰⎰⎰⎰31cos cos 3x x C =-++.例12 求23sin cos d x x x ⎰.解 232222sin cos d sin cos cos d sin cos dsin x x x x x x x x x x ==⎰⎰⎰2224sin (1sin )dsin (sin sin )dsin x x x x x x =-=-⎰⎰3511sin sin 35x x C =-+. 例13 求2sin d x x ⎰. 解 21cos 211sin d d sin 2224x x x x x x C -==-+⎰⎰. 例14 求sec d x x ⎰. 解 12211sec d d cos d cos d sin d sin cos 1sin x x x x x x x x x x--====-⎰⎰⎰⎰⎰ 1sin 1ln ln sec tan 2sin 1x C x x C x +=+=++-. 同理,我们可以推得csc d ln csc cot x x x x C =--+⎰.注 对形如sin cos d m n x x x ⎰的积分,如果m ,n 中有奇数,取奇次幂的底数〔如n 是奇数,那么取cos x 〕与d x 凑微分,那么被积函数一定能够变形为关于另一个底数的多项式函数,从而可以顺利的计算出不定积分;如果m ,n 均为偶数,那么利用倍角〔半角〕公式降幂,直至将三角函数降为一次幂,再逐项积分.例15 求sin 2cos3d x x x ⎰. 解 sin 2cos3d x x x ⎰=11sin 5d sin d 22x x x x -⎰⎰=11cos5cos 102x x C -++ =11cos cos5210x x C -+. 一般的,对于形如以下形式sin cos d mx nx x ⎰, sin sin d mx nx x ⎰, cos cos d mx nx x ⎰,的积分〔m n ≠〕,先将被积函数用三角函数积化和差公式进行恒等变形后,再逐项积分.例16 求221d x x a -⎰. 解 因为 2211111()()2⎛⎫==- ⎪-+-+-⎝⎭x a x a a x a x a x a, 所以 221111111d d d d 22⎛⎫⎛⎫=-=- ⎪ ⎪-+-+-⎝⎭⎝⎭⎰⎰⎰⎰x x x x a x a x a a x a x a x a111d()d()2x a x a a x a x a ⎛⎫=--+ ⎪-+⎝⎭⎰⎰ ()11ln ln ln 22x a x a x a C C a a x a-=--++=++. 这是一个有理函数〔形如()()P x Q x 的函数称为有理函数,()P x ,()Q x 均为多项式〕的积分,将有理函数分解成更简单的局部分式的形式,然后逐项积分,是这种函数常用的变形方法.下面再举几个被积函数为有理函数的例子.例17 求23d 56x x x x +-+⎰.解 先将有理真分式的分母256x x -+因式分解,得256-+=x x (2)-x (3)-x .然后利用待定系数法将被积函数进行分拆.设232356x A B x x x x +=+---+=(3)(2)(2)(3)-+---A x B x x x , 从而 3(3)(2)+=-+-x A x B x , 分别将3,2x x ==代入3(3)(2)+=-+-x A x B x 中,易得56A B =-⎧⎨=⎩.故原式=56d 23x x x -⎛⎫+⎪--⎝⎭⎰=5ln 26ln 3x x C --+-+. 例18 求33d 1x x +⎰. 解 由321(1)(1)+=+-+x x x x , 令323111A Bx Cx x x x +=+++-+, 两边同乘以31x +,得23(1)()(1)=-++++A x x Bx C x .令1,x =-得1A =;令0,x =得2C =;令1x =,得1B =-. 所以32312111x x x x x -+=+++-+. 故3223121213d d ln 1d 12111-+--⎛⎫=+=+- ⎪++-+-+⎝⎭⎰⎰⎰x x x x x x x x x x x x =2221d 1d(1)32ln 12211324x x x x x x x ⎛⎫- ⎪-+⎝⎭+-+-+⎛⎫-+⎪⎝⎭⎰⎰.21=ln 1ln(1).2x x x C +--+++2.1.2 第二类换元积分方法定理2 设()=x t ψ是单调,可导的函数,并且()0'≠t ψ,又设[]()()'f t t ψψ具有原函数,那么有换元公式,[]1()()d ()()d -=⎡⎤'=⎣⎦⎰⎰t x f x x f t t t ψψψ,其中,1()-x ψ是()=x t ψ的反函数.证明 设[]()()'f t t ψψ的原函数为()t φ.记1()()-⎡⎤=⎣⎦x F x φψ,利用复合函数及反函数求导法那么得[][]d d 1()()()()()d d ()''=⋅=⋅=='t F x f t t f t f x t x t φψψψψ, 那么()F x 是()f x 的原函数.所以11()()d ()[()][()]()d --=⎡⎤'=+=+=⎣⎦⎰⎰t x f x x F x C x C f t x t ψφψψψ.利用第二类换元法进行积分,重要的是找到恰当的函数()=x t ψ代入到被积函数中,将被积函数化简成较容易的积分,并且在求出原函数后将1()t x ψ-=复原.常用的换元法主要有三角函数代换法、简单无理函数代换法和倒代换法.一、三角函数代换法例19 求22d a x x -⎰(0)>a .解 设ππsin ,,22x a t t ⎛⎫=∈- ⎪⎭⎝,22cos a x a t -=,d cos d x a t t =,于是22d a x x -⎰=2222cos cos d cos d sin cos 22a a a t a t t a t t t t t C ⋅==++⎰⎰.因为 ππsin ,,22x a t t ⎛⎫=∈- ⎪⎭⎝,所以arcsin ,xt a = 为求出cos t ,利用sin xt a=作辅助三角形〔图4-2〕,求得22cos a x t a-=, 所以 22222221d d arcsin 22a x a x x a x x x a x C a -=-=+-+⎰⎰.图4-2例20 求22d x x a+⎰(0)>a .解 令2ππtan ,,,d sec d 22x a t t x a t t ⎛⎫=∈-= ⎪⎭⎝,22d xx a +⎰=21cos sec d sec d ln sec tan t a t t t t t t C a ⋅==++⎰⎰. 利用tan xt a=作辅助三角形〔图4-3〕,求得 22ππsec ,,22x a t t a +⎛⎫=∈- ⎪⎭⎝ 所以 ()2222122d ln ln xx x a c x x a C a ax a ⎛⎫+ ⎪=++=+++ ⎪+⎝⎭⎰.图4-3例21 求22x a-(0)>a .解 当x a >时,令πsec ,0,,d sec tan d 2x a t t x a t t t ⎛⎫=∈=⋅ ⎪⎭⎝,22x a -=11cot sec tan d sec d ln sec tan t a t t t t t t t C a⋅⋅⋅==++⎰⎰.利用cos at x=作辅助三角形〔图4-4〕,求得22tan x a t -=所以 (2222122lnln x x a C x x a C aax a -=+=+-+-,1(ln )C C a =-. 当x a <-时,令x u =-那么u a >,由上面的结果,得((2222112222ln ln u u a C x x a C x a u a =-=-+=---+--=(221,(2ln )x x a C C C a --+=-. 综上,2222ln x x a C x a =-+-.图4-4注 22a x -22a x +22x a -换元:sin x a t =,tan x a t =,sec x a t =±将根号化去.但是具体解题时,要根据被积函数的具体情况,选取尽可能简捷的代换,不能只局限于以上三种代换.二、简单无理函数代换法 例22 求12x+.解 令22,,d d 2u u x x x u u ===,12x +=d 11d 11u u u u u ⎛⎫=- ⎪++⎝⎭⎰⎰(ln 12ln 12u u C x x C =-+++. 例23 求3(1+)x x.解 被积函数中出现了两个不同的根式,为了同时消去这两个根式,可以作如下代换: 令6t x =6x t =,5d 6d x t t =,从而522322361d 6d 61d (1)11(1+)t t t t t t t t t x x ⎛⎫===- ⎪+++⎝⎭⎰⎰⎰ 666(arctan )6()t t C x x C =-+=+.例24 求211d xx x x +. 解 为了去掉根式,作如下代换:1x t x +=,那么211x t =-,222d d (1)t x t t =--,从而222222112d (1)d 2d (1)x t x t t t t t x x t +-=-⋅=--⎰⎰ 32322133x t C C x +⎛⎫=-+=-+ ⎪⎝⎭. 一般的,如果积分具有如下形式〔1〕()d n R x ax b x +⎰,那么作变换n t ax b +〔2〕(,)d n m R x ax b ax b x ++⎰,那么作变换pt ax b +p 是m ,n 的最小公倍数;〔3〕(R x x ⎰,那么作变换t = 运用这些变换就可以将被积函数中的根数去掉,被积函数就化为有理函数. 三、倒代换法在被积函数中如果出现分式函数,而且分母的次数大于分子的次数,可以尝试利用倒代换,即令1x t=,利用此代换,常常可以消去被积函数中分母中的变量因子x .例25 求6d (1)+⎰xx x .解 令211,d d x x t tt ==-, 6d (1)+⎰x x x =52661d d 1111t t t t t t t -=-+⎛⎫⋅+ ⎪⎝⎭⎰⎰661d(1)61+=-+⎰t t 61ln 16t C =-++ 611ln 16C x ⎛⎫=-++ ⎪⎝⎭. 例26求x . 解 设211,d d ,x x t tt ==-则 于是1222241d (1)d ⎫=-=--⎪⎝⎭⎰x t a t t t t t , 当0x >时,有31222222222231()(1)d(1)23-=---=-+⎰a x x a t a t C a a x . 0x <时,结果相同.本例也可用三角代换法,请读者自行求解.四、指数代换 例27 求2d e (e 1)+⎰x x x.解 设1e ,d d ,x t x t t==则 于是222d 1d e (e 1)(1)=++⎰⎰x x x t t t22111d arctan 1t t C t t t ⎛⎫=-=--+ ⎪+⎝⎭⎰--e arctane x x C =--+. 注 本节例题中,有些积分会经常遇到,通常也被当作公式使用.承接上一节的根本积分公式,将常用的积分公式再添加几个〔0a >〕:①tan d ln cos x x x C =-+⎰; ②cot d ln sin x x x C =+⎰; ③cscd x ⎰=ln csc cot x x C -+; ④sec d ln sec tan x x x x C =++⎰; ⑤2211d arctan xx C a a a x=++⎰; ⑥221d xx a -⎰=1ln 2x a C a x a -++; ⑦arcsin xx C a =+>(a 0);⑧(ln x C =+;⑨ln x C =. 例28 求.解=2arcsin3-=+x C . 例29 求.解=11ln(222=+x C . 例30 求解ln 1=-x C .例31 求322d (22)x x x x -+⎰.解 被积函数为有理函数,且分母为二次质因式的平方,把二次质因式进行配方:2(1)1x -+,令ππ1tan ,,22⎛⎫-=∈- ⎪⎝⎭x t t ,那么2222sec x x t -+=,2d sec d x t t =.所以332224(1tan )d sec d (22)sec x t x t t x x t +=⋅-+⎰⎰23cos (1tan )d t t t =+⎰3(sin cos )d cos t t t t+=⎰ 3122(sin cos 3sin 3sin cos cos )d t t t t t t t -=+++⎰ 2ln cos cos 2sin cos t t t t t C =--+-+.图4-5按照变换ππ1tan ,22x t t ⎛⎫-=∈- ⎪⎝⎭作〔辅助三角形图4-5〕,那么有2cos 22t x x =-+,2sin 22t x x =-+,于是322221d ln(22)2arctan(1)2(22)22x x x x x x C x x x x =-++--+-+-+⎰.2.2 分部积分法前面我们得到了换元积分法.现在我们利用“两个函数乘积的求导法那么〞来推导求积分的另一种根本方法—分部积分法.定理1 设函数()=u u x ,()=v v x 具有连续的导数,那么d d =-⎰⎰u v uv v u .〔4.2.2〕证明 微分公式d()d d =-uv u v v u 两边积分得d d =-⎰⎰uv u v v u ,移项后得d d =-⎰⎰u v uv v u .我们把公式〔4.2.2〕称为分部积分公式.它可以将不易求解的不定积分d u v ⎰转化成另一个易于求解的不定积分d v u ⎰.例32 求cos d x x x ⎰.解 根据分部积分公式,首先要选择u 和d v ,显然有两种方式,我们不妨先设,cos d d ,u x x x v == 即sin v x =,那么cosd dsin sin sin d sin cos x x x x x x x x x x x C ==-=++⎰⎰⎰.采用这种选择方式,积分很顺利的被积出,但是如果作如下的选择: 设cos ,d d ,u x x x v == 即212v x =,那么222111cos d cos d cos sin d 222x x x x x x x x x x ==-⎰⎰⎰, 比拟原积分cos d x x x ⎰与新得到的积分21sin d 2x x x ⎰,显然后面的积分变得更加复杂难以解出.由此可见利用分部积分公式的关键是恰当的选择u 和d v .如果选择不当,就会使原来的积分变的更加复杂.在选取u 和d v 时一般考虑下面两点: 〔1〕v 要容易求得;〔2〕d v u ⎰要比d u v ⎰容易求出. 例33 求e d x x x ⎰.解 令,e d d ,e x x u x x v v ===,那么e d de e e d e e x x x x x x x x x x x x C ==-=-+⎰⎰⎰.例34 求2e d x x x ⎰.解 令2,e d d ,e x x u x x v v ===,那么利用分部积分公式得22222e d dee e d e 2e d xxx x x x x x x x x x x x ==-=-⎰⎰⎰⎰,这里运用了一次分部积分公式后,虽然没有直接将积分积出,但是x 的幂次比原来降了一次,e d xx x ⎰显然比2e d xx x ⎰容易积出,根据例4.3.2,我们可以继续运用分部积分公式,从而得到222e d e2e d e 2de xxx x x x x x x x x x =-=-⎰⎰⎰2e 2(e e )x x x x x C =--+ 2e (22)x x x C =-++.注 当被积函数是幂函数与正〔余〕弦或指数函数的乘积时,幂函数在d 的前面,正〔余〕弦或指数函数至于d 的后面.例35 求ln d x x x ⎰. 解 令ln ,u x =21d d 2x x x =,212v x =,那么 222111ln d ln d ln d 22x x x x x x x x x x ⎛⎫==-⋅ ⎪⎝⎭⎰⎰⎰2211ln 22x x x C ⎛⎫=-+ ⎪⎝⎭ 22ln 124x x x C =-+.在分部积分公式运用比拟熟练后,就不必具体写出u 和d v ,只要把被积表达式写成d ⎰u v的形式,直接套用分部积分公式即可. 例36 求arctan d x x x ⎰.解 222211arctan d arctan d arctan d 221x x x x x x x x x x ⎛⎫==- ⎪+⎝⎭⎰⎰⎰21(arctan arctan )2=-++x x x x C . 注 当被积函数是幂函数与对数函数或反三角函数的乘积时,对数函数或反三角函数在d 的前面,幂函数至于d 的后面.下面再来举几个比拟典型的分部积分的例子.例37 求e sin d x x x ⎰.解 〔法一〕e sin d sin de e sin e cos d x x x x x x x x x x ==-⎰⎰⎰e sin cos de x x x x =-⎰=e sin e cos e sin d x x x x x x x --⎰,∴ 1e sin d e (sin cos )2=-+⎰x xx x x x C . 〔法二〕x e sin d e d(cos )e (cos )cos d(e )=-=-+⎰⎰⎰x x x x x x x x =e cos cos e d e cos e dsin x x x x x x x x x -+=-+⎰⎰ =e cos e sin sin de x x x x x x -+-⎰ =e cos e sin e sin d x x x x x x x -+-⎰,∴ 1e sin d e (sin cos )2=-+⎰x x x x x x C .当被积函数是指数函数与正〔余〕弦函数的乘积时,任选一种函数凑微分,经过两次分部积分后,会复原到原来的积分形式,只是系数发生了变化,我们往往称它为“循环法〞,但要注意两次凑微分函数的选择要一致.例38 求3sec d x x ⎰.解 32sec d sec d tan sec tan sec tan d x x x x x x x x x ==⋅-⋅⎰⎰⎰3sec tan sec d sec d x x x x x x =⋅+-⎰⎰,利用 1sec d ln sec tan x x x x C =++⎰ 并解方程得3sec d x x ⎰=1(sec tan ln sec tan )2⋅++x x x x +C .在求不定积分的过程中,有时需要同时使用换元法和分部积分法.例39求x ⎰.解令2,d 2d t t x t t ===,e 2d 2de 2e 2e d 2e 2e t t t t t t x t t t t t t C C ===-=-+=-+⎰⎰⎰⎰.例40 求cos(ln )d x x ⎰. 解 令ln ,e ,d e d t t t x x x t ===,cos(ln )d x x ⎰=()()1cos e d e sin cos sin ln cos ln 22t t xt t t t C x x C ⋅=++=++⎰. 下面再看一个抽象函数的例子.例41 ()f x 的一个原函数是sin xx,求()d '⎰xf x x ? 解 因为()f x 的一个原函数是sin x x ,所以sin ()d =+⎰xf x x C x, 且 2sin cos sin ()'-⎛⎫==⎪⎝⎭x x x xf x x x .从而 原式()()d d[()]()d '===-⎰⎰⎰xf x x x f x xf x f x x cos 2sin x x xC x-=+.习题4-2一、求以下不定积分. 1.2014(23)d -⎰x x ; 2.23d (12)-⎰xx ;3.()d +⎰k a bx x 〔0b ≠〕; 4.sin3d x x ⎰; 5.()cos d x x αβ-⎰; 6.tan5d x x ⎰; 7.3e d x x -⎰; 8.210d x x ⎰; 9.121e d x x x⎰;10.2d 19xx +⎰; 11.2d πsin 24x x ⎛⎫+ ⎪⎝⎭⎰;12.x ⎰;13.2(23)d 38--+⎰x xx x ;14.;15.e sin e d x x x ⎰; 16.2e d x x x ⎰; 17.x ; 18.θ;19.;20.22(arctan )d 1+⎰x x x ;21.2d 3x x x+⎰;22.21d 413x x x x -++⎰;23.2cos d x x ⎰; 24.4sin d x x ⎰; 25.1tan d sin 2xx x+⎰; 26.22cos sin d x x x ⎰; 27.3cos d x x ⎰; 28.35sin cos d x x x ⎰; 29.4sec d x x ⎰;30.4tan d x x ⎰; 31.22d sin cos xx x⎰;32.4;33.;34.322d (1)-⎰x x ;35.3322d (1)+⎰x xx ;36.2x ;37.3222d ()+⎰xx a ;38.x ; 39. 40. 41.;42.;43.x ; 44.x ;45.42d xx x -⎰; 46.2d (1)+⎰xx x .二、求以下不定积分.1.sin 2d x x x ⎰; 2.-(e e )d 2-⎰x x x x ; 3.2cos d x x x ω⎰; 4.2d x x a x ⎰;5.ln d x x ⎰; 6.ln d n x x x ⎰〔1n ≠〕; 7.arctan d x x ⎰; 8.arccos d x x ⎰; 9.e cos d ax nx x ⎰;10.2ln(1)d +⎰x x x ;11.32ln d xx x⎰;12.2(arcsin )d ⎰x x ;13.2cos d x x x ⎰; 14.2tan d x x x ⎰;15.22cos d x x x ⎰; 16.2ln cos d cos xx x⎰;17.3ln d xx x ⎰; 18.x ⎰.三、()f x 的一个原函数是2-e x ,求()d '⎰xf x x .第3节 有理函数的积分3.1 有理函数的积分有理函数的形式:有理函数是指由两个多项式的商所表示的函数,即具有如下形式的函数: mm m m nn n n b x b x b x b a x a x a x a x Q x P ++⋅⋅⋅++++⋅⋅⋅++=----11101110)()(,其中m 和n 都是非负整数; a 0,a 1,a 2,⋅⋅⋅,a n 及b 0,b 1,b 2,⋅⋅⋅,b m 都是实数,并且a 0≠0,b 0≠0.当n <m 时,称这有理函数是真分式;而当n ≥m 时,称这有理函数是假分式. 假分式总可以化成一个多项式与一个真分式之和的形式.例如1111)1(1122223++=+++=+++x x x x x x x x . 真分式的不定积分:求真分式的不定积分时,如果分母可因式分解,那么先因式分解,然后化成局部分式再积分.例1 求⎰+-+dxx x x 6532.解⎰+-+dx x x x 6532⎰--+=dx x x x )3)(2(3⎰---=dx x x )2536(⎰⎰---=dx x dx x 2536=6ln|x -3|-5ln|x -2|+C . 提示:)3)(2()32()(23)3)(2(3----++=-+-=--+x x B A x B A x B x A x x x ,A +B =1,-3A -2B =3,A =6,B =-5. 分母是二次质因式的真分式的不定积分: 例2 求⎰++-dxx x x 3222.解⎰++-dx x x x 3222dx x x x x x )3213322221(22++-+++=⎰dx x x dx x x x ⎰⎰++-+++=321332222122 ⎰⎰+++-++++=2222)2()1()1(332)32(21x x d x x x x d C x x x ++-++=21arctan 23)32ln(212. 提示:321332221323)22(213222222++⋅-++-⋅=++-+=++-x x x x x x x x x x x .例3 求⎰-dx x x 2)1(1.解⎰⎰-+--=-dx x x x dx x x ])1(1111[)1(122⎰⎰⎰-+--=dx x dx x dx x 2)1(1111C x x x +----=11|1|ln ||ln .提示:222)1(1)1(1)1(1)1(1-+--=-+-=-x x x x x x x x x 22)1(1111)1(1)1(1-+--=-+-+--=x x x x x x x x .3.2 三角函数有理式的积分三角函数有理式是指由三角函数和常数经过有限次四那么运算所构成的函数,其特点是分子分母都包含三角函数的和差和乘积运算.由于各种三角函数都可以用sin x 及cos x 的有理式表示,故三角函数有理式也就是sin x 、cos x 的有理式. 用于三角函数有理式积分的变换:把sin x 、cos x 表成2tan x 的函数,然后作变换2tan xu =:222122tan 12tan 22sec 2tan 22cos 2sin 2sin u u x xx x x x x +=+===, 222222112sec 2tan 12sin 2cos cos u u x x x x x +-=-=-=.变换后原积分变成了有理函数的积分. 例4 求⎰++dx x x x )cos 1(sin sin 1. 解 令2tanx u =,那么212sin u u x +=,2211cos u u x +-=,x =2arctan u ,du u dx 212+=. 于是⎰++dx x x x )cos 1(sin sin 1⎰+-++++=)111(12)121(2222u u u u u u du u 212+⎰++=du u u )12(21 C u u u +++=|)|ln 22(212C x x x +++=|2tan |ln 212tan 2tan 412. 说明: 并非所有的三角函数有理式的积分都要通过变换化为有理函数的积分. 例如,⎰⎰++=++=+Cx x d xdx x x )sin 1ln()sin 1(sin 11sin 1cos .习题4-3求以下不定积分.1.x dx x +⎰33;2.x dx x x ++-⎰223310; 3.x dx x x +-+⎰2125; 4.()dx x x +⎰21 ;5.()()x dx x x ++-⎰22111;6.()()x dx x ++⎰22211;7.sin dx x +⎰23; 8.cos dxx +⎰3;9.sin dx x +⎰2 ; 10.sin cos dx x x++⎰1;11.sin cos dxx x -+⎰25; 12.⎰.第4节 MATLAB 软件的应用在高等数学中,经常利用函数图形研究函数的性质,在此,我们应用MA TLAB 命令来实现这一操作.MATLAB 符号运算工具箱提供了int 函数来求函数的不定积分,该函数的调用格式为:Int(fx,x) %求函数f(x)关于x 的不定积分参数说明:fx 是函数的符号表达式,x 是符号自变量,当fx 只含一个变量时,x 可省略. 例计算下面的不定积分.sin .cos x xI dx x+=+⎰1syms xI=int((x+sin(x)/(1+cosx))) I=X*tan(x/2)说明:由上述运行结果可知,int 函数求取的不定积分是不带常数项的,要得到一般形式的不定积分,可以编写以下语句:syms x c fx=f(x); int(fx,x)+c以sin cos x xI dx x +=+⎰1为例,编写如下语句可以得到其不定积分:syms x cfx=(x+sin(x))/(1+cos(x)); I=int(fx,x)+c I=C+x*tan(x/2)在上述语句的根底上再编写如下语句即可观察函数的积分曲线族: ezplot(fx,[-2,2]) hf=ezplot(fx,[-2,2]); xx=linspace(-2,2);plot(xx,subs(fx,xx),’k’,’LineWidth’,2) hold on for c=0:6Y=inline(subs(I,C,c));Plot(xx,y(xx),’LineStyle’,’- -’); Endlegend(‘函数曲线’,’积分曲线族’,4).总习题4 (A)一、填空题1.假设()f x 的一个原函数为cos x ,那么()d f x x ⎰=. 2.设()d sin f x x x C =+⎰,那么2(1)d xf x x -⎰=. 3.2e d x x x =⎰. 4.1d 1cos 2x x=+⎰.5.22(arctan )d 1x x x +⎰=.二、选择题1.曲线()y f x =在点(,())x f x 处的切线斜率为1x,且过点2(e ,3),那么该曲线方程为. (A) ln y x =(B) ln 1y x =+(C) 211y x =-+ (D) ln 3y x =+2.设()f x 的一个原函数是2e x -,那么()d xf x x '=⎰.(A) 222e x x C --+ (B) 222e x x -- (C) 22e (21)x x C ---+(D) ()()d xf x f x x +⎰3.设()F x 是()f x 的一个原函数,那么.(A) ()()d ()f x x F x '=⎰(B) ()()d ()f x x f x '=⎰(C)d ()()F x F x =⎰(D) ()()d ()F x x f x '=⎰4.设()f x 的原函数为1x,那么()f x '等于. (A) ln x(B)1x(C) 21x -(D)32x 5.2d x x x =⎰.(A) 22xxx C -+(B) 222ln 2(ln 2)x xx C -+(C) 22ln (ln 2)2x x x x C -+(D) 222x x C + 三、计算以下各题1.x ;2.1d e e x xx --⎰; 3.2ln(1+)d x x ⎰; 4.2d 23++⎰xx x ;5.sin ecosxd xx ⎰;6.742d (1)x xx +⎰;7.12e d x x -⎰; 8.;9.1d e 1xx -⎰; 10.3d (1)xx x -⎰;11.x x ;12.x ; 13.4d 1xx -⎰; 14.; 15.32ln d x x x ⎰; 16.17.x ⎰; 18.19.20.4sin d 2xx ⎰;21.24(tan tan )d x x x +⎰;22.2sec d 1tan ⎛⎫ ⎪+⎝⎭⎰x x x ;23.sin(lnx)d x ⎰; 24.5;25.x ;26.54tan sec d t t t ⎰;27.3sin x π⎰; 28.64tan cos d sin x x x x⎰;29.44d sin cos xx x⎰;30.1sin d 1sin +-⎰xx x;31.x x ;32.x ⎰;33.e (1)d +⎰x x x x ; 34.x ;35.2ln(1)d x x x +⎰;36.x . (B)1.〔1999、数学一〕设()f x 是连续函数()F x 是()f x 的原函数,那么( ). (A) 当()f x 是奇函数时,必是偶函数.(B) 当()f x 是偶函数时,()F x 必是奇函数.(C) 当()f x 是周期函数时,()F x 必是周期函数.(D) 当()f x 是单调增函数时,()F x 必是单调增函数.2.〔2006、数学二〕 求arctan xxe dx e ⎰. 3.〔2003、数学二〕 计算不定积分.)1(232arctan dx x xe x ⎰+.4.(2021、数学三)计算不定积分ln(1dx +⎰(0)x >.。
第四章不定积分
第四章:不定积分一、本章的教学目标及基本要求1、理解原函数与不定积分概念及其相互关系;知道不定积分的主要性质;弄清不定积分与求导数的关系,即求导与不定积分互为逆运算;已知曲线在一点的切线斜率,会求该曲线的方程。
2、熟记基本积分公式;能熟练地利用基本积分公式及积分的性质,第一换元积分法和分部积分法计算不定积分;掌握第二换元积分法。
对于复合函数求不定积分一般用第一换元积分法(凑微分法),记住常见的凑微分形式。
3、掌握化有理函数为部分分式的方法,并会计算较简单的有理分式函数的积分、三角有理式的积分、无理式的积分。
二、本章各界教学内容及学时分配第一节不定积分的概念与性质 2学时第二节换元积分法 4学时第三节分部积分法 2学时第四节有理函数的积分 2学时三、本章教学内容的重点和难点1、重点:不定积分和定积分的概念及性质,不定积分的基本公式,不定积分、定积分的换元法与分部积分法;2、难点:不定积分和定积分的概念及性质,凑微分法,有理分式函数的积分、三角有理式的积分、无理式的积分。
四、本章内容的深化和拓广1、了解不定积分在现代数学发展史上的重要意义;2、初步了解不定积分的实际意义,为后面定积分的学习及定积分的应用做好一定的铺垫;3、简介不定积分在建立数学模型中的重要意义。
五、本章教学方式及教学过程中应注意的问题1、以讲课方式为主,留一个课时的时间讲解习题中的难点和容易犯错误的地方;2、教学中应注意教材前后内容之间的联系,突出重点和难点;3、本章主要以计算题为主,要强调本章内容本今后学习的重要性,鼓励学生细致、耐心地完成作业,防止学生只抄教材后的答案。
4.1 不定积分的概念与性质一、内容要点1、原函数与不定积分的概念2、不定积分的性质二、教学要求和注意点教学要求:理解原函数与不定积分概念及其相互关系;知道不定积分的主要性质;弄清不定积分与求导数的关系,即求导与不定积分互为逆运算。
注意点:1、原函数与不定积分的概念:由导数及导数的意义引入原函数的概念;解释不定积分的几何意义;强调原函数和不定积分的特性,并举例说明;由基本积分表说明基本积分方法;2、不定积分的性质:说明不定积分的性质对不定积分计算的重要性;列出不定积分的性质并给与证明,证明过程中有意识地加深学生对不定积分概念更深入的理解;三、作业 同步训练习题23一 原函数与不定积分的概念定义1 如果在区间上,可导函数的导函数为,即对任一,都有或, 那末函数就称为(或)在区间上的原函数。
数学物理方程第四章(调和)
1
4
(u ( 1 ) 1 u )dS S n rM0M rM0M n
调和函数在区域内任一点的值可以通过积分表达式用这个函数 在区域边界上的值和边界上的法向导数来表示。
数学物理方程
第4章 调和方程
三、调和函数的基本性质
1、调和方程的基本解
k
1
rM
0
M
ln
1
(x x0 )2 ln
P x
Q y
R z
d
Pdydz
Qdxdz
Rdxdy
Pcosn, x Qcosn, y Rcosn, zds 其中n cosn, x,cosn, y,cosn, z 是 在
点 x, y, z 处的外法向量
u
2u x2
2u y 2
2u z 2
0
调和函数:具有二阶偏导数并且满足拉普拉斯方程的连续函数。
二、 拉普拉斯方程边值问题的提法
1 第一边值问题(狄氏问题) 2 第二边值问题(牛曼问题)
u f
u f n
3、狄氏外问题
4、牛曼外问题
数学物理方程
三、泊松方程边值问题
2
z 2
x2
1 y2
z2
3z2 (x2 y2 z2 ) x2 y2 z2 5 2
三式相加,可得
2 1 0, r 0 r
数学物理方程
第4章 调和方程
② 当 r 0时,1 不可导,将 V 取为整个三维空间 r
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
lg K = (1 − s ) lg(Δp ) + lg(2k )
(4-40)
由斜率 (1- s), 截距 lg(2k) ,可求出压缩指数 s。 4.1.8 过滤计算 1) 过滤面积和框内总容积 总过滤面积 A A=2LBZ (4-41) 式中,L—框长,m;B—框宽,m;Z—框数。 过滤时,框内逐渐为滤渣所充塞,板框压滤机的框内总容积VZ VZ=LBδZ (4-42) 式中,δ—框厚,m。 2) 操作周期 间歇式过滤机由于过滤、洗涤、卸渣、重装等操作是分阶段在整个过滤表面进行,故这 些操作所用的时间, 都要计入生产时间之内, 则一个操作周期的时间应为上述各操作时间之 和,即: ∑τ=τ+τW+τD (4-43) 式中:∑τ——个操作周期的时间; τ—过滤时间。根据操作方式由相应的过滤方程求得; τD—卸饼、清洗滤布及组装等辅助时间; τW—洗涤时间。若单位面积的洗涤液用量qW,洗涤速率为(dq/dτ)W,则洗涤时 间可用下式求出:
(4-8)
ϕ s 表达了颗粒形状偏离球形的程度,称作球形度。
2 2 d ev πd ev 与非球形颗粒体积相等的球的表面积 ϕs = 2 = 2 = 非球形颗粒的实际表面积 d es πd es
3) 频率函数
fi =
i
xi d i −1 − d i
(4-9)
式中, x -某号筛面上的颗粒占全部样的质量百分率;
第 4 章 颗粒与流体之间的相对流动 4.1 主要公式 4.1.1 颗粒特性 1) 球形颗粒 体积 V
V=
表面积 S
πd 3 p
6
(4-1)
2 S = πd p
(4-2)
比表面积 a
S 6 a球= = V dp
2) 非球形颗粒 体积当量直径
(4-3)
d ev = 3 6V / π
表面积当量直径
(4-4)
(4-36c)
(4-36d)
若过滤时间从 0 到τ1,采用恒速过滤操作,从τ1到τ,采用恒压过滤,则总滤液 量为,
(V 2 − V12 ) + 2Ve (V − V1 ) = KA 2 (τ − τ 1 ) (q 2 − q12 ) + 2q e (q − q1 ) = K (τ − τ 1 )
(4-37a)
u = ut
' t
(1 −ψ )2
1 + 2.5ψ + 7.35ψ
2
(4-29)
式中,ψ-悬浮液的体积分数。 液滴或气泡沉降 当分散相也是流体时,其粒子不再视为刚体。滞流时液滴的实际沉降速度为,
μi μ0 ut' = ut 2 μi + 3 μ0
1+
式中,μi-分散相的粘度; μ0-连续相的粘度。 4.1.6 固体流态化与气力输送 1)最大空塔速度 umax=utε 式中,ut-颗粒沉降速度; ε-固定床的空隙率。 2) 流化床的压力降
(4-45)
(4-46)
τ + τW + τ D
4) 连续过滤机生产能力
Q = nqA = n( qe2 + Kτ − qe ) A = n( Ve2 + KA2
(4-47)
φ
n
− Ve )
式中,n-转鼓真空过滤机的每秒转速;
φ -回转转鼓的浸没度;
A-转鼓面积。 若忽略过滤介质阻力,则上式可简化为,
d es = s / π
比表面积当量直径
(4-5)
d ea =
6 6V = a s
(4-6)
显然以上三个当量直径之间有如下关系:
3 d ev d d ea = 2 = ( ev ) 2 d ev d es d es
(4-7)
令
ϕs = (
d ev 2 ,则 ) d es
d ea = ϕ s d ev
Δp = 4.17
a 2 (1 − ε )
2
围((Re)e<2)。
ε
3
⋅ Lρu + 0.29
a(1 − ε )
ε
3
Lρu 2
(4-22)
上式称为欧根方程,适用范围为(Re)e=0.17-420。 4.1.5 固体颗粒的沉降速度 1) 颗粒的自由沉降速度 ut =
4d p ( ρ p − ρ ) g 3ξρ
aE = a(1 − ε )
3) 球形颗粒床层的流体流动孔道的当量直径
(4-12)
de =
4ε (1 − ε )a
(4-13)
4.1.3 流体绕颗粒流动的总曳力
FD = 3πμd p u
(4-14)
式中,FD—总曳力; dp—颗粒直径; ρ-流体密度; u-流体流速; µ-流体粘度。 式(4-14)称斯托克斯(Stokes)定律。当流速较高时,此定律并不成立。对其他形状 的颗粒,在广泛的流动条件下,总曳力的值尚须通过实验确定。 对于速度范围很大的实验数据, 仿照管内流动的方法处理, 可得出流体作用于颗粒的力 为:
容器壁的影响 容器壁增加了沉降时的阻力,使沉降速度下降。当容器直径远大于颗粒直径(例如在 100 倍以上)时,器壁效应可忽略。否则应作修正。在滞流区,可用下式修正。
u =
' t
1+
ut 2.4d p D
(4-28)
式中, D 为容器直径。
干扰沉降 若粒子浓度较高,则颗粒间会发生相互摩擦、碰撞,使沉降速度降低。另一方面,大 颗粒也会拖曳着小颗粒下降。 用下述安特里斯公式对沉降速度作修正,可得到实际沉降速度。
此式称为斯托克斯(Stokes)公式,说明了粘性阻力占主要地位。 过渡区(1≤Rep(或Ret)≤500)
⎡ d 1.6 (ρ p − ρ )g ⎤ 7 ut = 0.154 ⎢ p 0.4 ⎥ 0.6 ⎣ ρ μ ⎦
此式称为阿仑(Allen)公式,说明了粘性阻力与形体阻力都起作用。 5 湍流区(500< Rep(或Ret)<2×10 =
Q = A K φn
(4-48)
4.1.9 非沉降式的转鼓离心机的工作原理和计算 1) 转鼓内液体表面方程 ω 2r 2 h= + h0 2g
τ − τ1
q − q1
1
=
1 2 (q − q1 ) + (qe + q1 ) K K
(4-39)
因 τ − τ 与 q − q 之间具有线性关系,同样可求出常数qe和恒压操作的K值。
1
q − q1
若在几个不同的压差下重复上述试验,根据式(4-40)作图。以 lgK 为纵坐标,lgΔp 为横坐标,即可求出比阻 r 与Δp 的关系,这样的实验数据有广泛的使用价值。
(4-30)
(Байду номын сангаас-31)
Δp =
m (ρ p − ρ )g Aρ p
2
(4-32)
式中,A—空床截面积,m ; m—床层颗粒的总质量,kg; 3 ρp 、ρ—分别为颗粒与流体的密度, kg/m 。 3)临界流化速度
u mf =
d e2 (ρ p − ρ )g 1650 μ
φ s ε mf
2 mf 3
(4-23)
式中,ut-终端速度;
ρ p -颗粒密度;
d p -颗粒直径;
ρ—流体密度,kg/m ; ξ—曳力系数, 在不同的 Ret范围内,ξ也可用式(4-16)~(4-18)表示,得到不同的沉降速度公 式。 滞流区(Rep或Ret <1=
3
ut =
2 (ρ p − ρ )g dp
18μ
(4-24)
d i −1, d i -相邻两号筛孔直径;
f i -频率函数。
4) 分布函数
dpi Fi = ∫0 fd ( d p )
(4-10)
5) 颗粒群的平均直径
1 dm = x ∑ i d pi
(4-11)
4.1.2 床层特性 1) 床层的空隙率ε 空隙率是指填料间自由空隙占总床层体积的分数。 床层空隙体积 床层体积-颗粒所占体积 ε= = 床层总体积 床层总体积 2) 床层的比表面(Specific surface of bed) 单位床层体积(不是颗粒体积)具有 的颗粒表面积称为床层的比表面aB。如果忽略因颗粒相互接触而使裸露的颗粒表面减少,则 aB与颗粒的比表面a之间有如下关系:
ut = 1.74
5
(4-25)
d p (ρ p − ρ )g
ρ (4-26)
此式称为牛顿(Newton)公式,说明了形体阻力起主要作用。 应用以上公式时,先假设流动区,然后再进行校核,即由假定的公式求出沉降速度ut, 再由ut算出Ret,并校核其值是否在假定区。 沉降操作涉及的颗粒直径都较小,Ret常在 0.3 以内,故式(4-24)最常用。 2) 实际沉降速度ut’ 上述沉降速度的计算中,颗粒为球形,且未考虑器壁和其他颗粒对沉降速度的影响。 在实际沉降过程中,应考虑这些因素对沉降速度作修正。 颗粒形状的影响 将当量直径作为非球形粒子直径,按球形粒子的计算方法求得沉降速度后再乘以一校 正系数λp ,即 ut’ =λp ut (4-27) λp 参考值 颗粒形状 λp 圆形 0.77 筒形 0.66 细长形 0.58 薄片状 0.43
ξ=
24 Re p
(4-16)
(2) 过渡区(1< Rep <500) :
ξ=
18.5 0 .6 Re p
5
(4-17)
(3) 湍流区(500< Rep <2×10 ) : ξ=0.44 5 (4) 边界层内为湍流区(Rep> 2×10 ) : ξ=0.1 4.1.4 流体通过颗粒床层的压降
(4-18) (4-19)
FD = ξAp
ρu 2
2
2
(4-15)