19高考数学一轮复习课时规范练55分类加法计数原理与分步乘法计数原理理新人教B版180404267
高考复习方案高考数学一轮复习 第55讲 分类加法计数原理与分步乘法计数原理同步作业 理
课时作业(五十五) [第55讲分类加法计数原理与分步乘法计数原理](时间:30分钟分值:80分)基础热身1.从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a,b组成复数a+b i,其中虚数有( )A.30个B.42个C.36个D.35个2.[2014·岳阳二模] 四面体的一个顶点为A,从其他顶点与各棱的中点中任取3个点,使它们和点A在同一平面上,则不同的取法有( )A.30种B.33种C.36种D.39种3.定义集合A与B的运算A*B为A*B={(x,y)|x∈A,y∈B}.若A={a,b,c},B={a,c,d,e},则集合A*B的元素个数为( )A.4 B.8 C.12 D.164.[2015·云南玉溪一中模拟] 从6名男生和2名女生中选出3名志愿者,其中至少有1名女生的选法共有( )A.36种B.30种C.42种D.60种5.如图K551所示,在A,B间有四个焊接点,若焊接点脱落,则可能导致电路不通,今发现A,B之间线路不通,则焊接点脱落的不同情况有________种.图K551能力提升6.4位同学参加某种形式的竞赛,竞赛规则规定:每位同学必须从甲、乙两道题中任选一题作答,选甲题答对得100分,答错得-100分,选乙题答对得90分,答错得-90分.若4位同学的总分为0,则这4位同学不同得分情况的种数是( )A.48 B.36 C.24 D.18图K5527.用4种不同的颜色涂入如图K552所示的矩形A,B,C,D中,要求相邻的矩形涂色不同,则不同的涂色方法共有( )A.72种B.48种C.24种D.12种8.若自然数n使得做竖式加法n+(n+1)+(n+2)时均不产生进位现象,则称n为“良数”.例如:32是“良数”,因为32+33+34不产生进位现象;23不是“良数”,因为23+24+25产生进位现象.则小于1000的“良数”的个数为( )A.27 B.36 C.39 D.489.[2014·长沙一中月考] 在用1,2,3,4,5这5个数组成的全部无重复数字的三位数中,能被3整除的有( )A.20个B.24个C.30个D.32个10.[2014·扬州调研] 从8名女生和4名男生中选3名组成课外小组,若按性别比例分层抽样,则不同的抽取方法有________种.11.某体育彩票规定:从01至36共36个号中抽出7个号为一注,每注2元.某人想从01至10中选3个连续的号,从11至20中选2个连续的号,从21至30中选1个号,从31至36中选1个号组成一注,则这个人把这种特殊要求的号买全至少要________元.12.(13分)已知集合M={1,-2,3},N={-4,5,6,-7},从两个集合中各取一个元素构成点的坐标,求这样的坐标在直角坐标系中可表示第一、二象限内不同的点的个数.难点突破13.(1)(6分)我国第一艘航母“辽宁舰”在某次舰载机起降飞行训练中,有甲、乙、丙、丁、戊5架舰载机准备着舰.如果甲、乙2机必须相邻着舰,而丙、丁不能相邻着舰,那么不同的着舰方法种数为( )A.12 B.18 C.24 D.48(2)(6分)用a代表红球,b代表蓝球,c代表黑球.由加法原理及乘法原理,从1个红球和1个蓝球中取出若干个球的所有取法可由(1+a)(1+b)的展开式1+a+b+ab表示出来,如:“1”表示一个球都不取、“a”表示取出一个红球、而“ab”则表示把红球和蓝球都取出来.依此类推,下列各式中,其展开式可用来表示从5个无区别的红球、5个无区别的蓝球、5个有区别的黑球中取出若干个球,且所有的蓝球都取出或都不取出的所有取法的是( )A.(1+a+a2+a3+a4+a5)(1+b5)(1+c)5B.(1+a5)(1+b+b2+b3+b4+b5)(1+c)5C.(1+a)5(1+b+b2+b3+b4+b5)(1+c5)D.(1+a5)(1+b)5(1+c+c2+c3+c4+c5)课时作业(五十五)1.C 2.B 3.C 4.A 5.13 6.B 7.A8.D 9.B 10.112 11.864012.14 13.(1)C (2)A。
2019届高三数学理一轮复习课时跟踪检测五十五 分类加法计数原理与分步乘法计数原理重点高中 含解析 精品
课时跟踪检测(五十五)分类加法计数原理与分步乘法计数原理(二)重点高中适用作业A级——保分题目巧做快做1.如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A.24B.18C.12 D.9解析:选B由题意可知E→F有6种走法,F→G有3种走法,由乘法计数原理知,共6×3=18种走法,故选B.2.a,b,c,d,e共5个人,从中选1名组长1名副组长,但a不能当副组长,不同选法的种数是()A.20 B.16C.10 D.6解析:选B当a当组长时,则共有1×4=4种选法;当a不当组长时,因为a不能当副组长,则共有4×3=12种选法.因此共有4+12=16种选法.3.教学大楼共有五层,每层均有两个楼梯,由一层到五层的走法有()A.10种B.25种C.52种D.24种解析:选D由一层到二层、由二层到三层、由三层到四层、由四层到五层各有2种走法,故共有2×2×2×2=24种不同的走法.4.某市汽车牌照号码可以上网自编,但规定从左到右第二个号码只能从字母B,C,D 中选择,其他四个号码可以从0~9这十个数字中选择(数字可以重复),有车主第一个号码(从左到右)只想在数字3,5,6,8,9中选择,其他号码只想在1,3,6,9中选择,则他的车牌号码可选的所有可能情况有()A.180种B.360种C.720种D.960种解析:选D按照车主的要求,从左到右第一个号码有5种选法,第二个号码有3种选法,其余三个号码各有4种选法.因此车牌号码可选的所有可能情况有5×3×4×4×4=960(种).5.如图是一个由四个全等的直角三角形与一个小正方形拼成的大正方形,现在用四种颜色给这四个直角三角形区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不相同,则不同的涂色方法有()A.24种B.72种C.84种D.120种解析:选C如图,设四个直角三角形顺次为A,B,C,D,按A―→B―→C―→D顺序涂色,下面分两种情况:(1)A,C不同色(注意:B,D可同色、也可不同色,D只要不与A,C同色,所以D可以从剩余的2种颜色中任意取一色):有4×3×2×2=48种不同的涂法.(2)A,C同色(注意:B,D可同色、也可不同色,D只要不与A,C同色,所以D可以从剩余的3种颜色中任意取一色):有4×3×1×3=36种不同的涂法.故共有48+36=84种不同的涂色方法.故选C.6.如图,用6种不同的颜色把图中A,B,C,D 4块区域分开,若相邻区域不能涂同一种颜色,则涂色方法共有______种(用数字作答).解析:从A开始涂色,A有6种涂色方法,B有5种涂色方法,C有4种涂色方法,D有4种涂色方法.由分步乘法计数原理可知,共有6×5×4×4=480种涂色方法.答案:4807.在一个三位数中,若十位数字小于个位和百位数字,则称该数为“驼峰数”,比如“102”,“546”为“驼峰数”.由数字1,2,3,4可构成无重复数字的“驼峰数”有________个.解析:十位上的数为1时,有213,214,312,314,412,413,共6个,十位上的数为2时,有324,423,共2个,所以共有6+2=8(个).答案:88.在某一运动会百米决赛上,8名男运动员参加100米决赛.其中甲、乙、丙三人必须在1,2,3,4,5,6,7,8八条跑道的奇数号跑道上,则安排这8名运动员比赛的方式共有________种.解析:分两步安排这8名运动员.第一步:安排甲、乙、丙三人,共有1,3,5,7四条跑道可安排.故安排方式有4×3×2=24(种).第二步:安排另外5人,可在2,4,6,8及余下的一条奇数号跑道上安排,所以安排方式有5×4×3×2×1=120(种).故安排这8人的方式共有24×120=2 880(种).答案:2 880-3,-2,-1,0,1,2,若a,b,c∈M,则:9.已知集合M={}(1)y=ax2+bx+c可以表示多少个不同的二次函数;(2)y=ax2+bx+c可以表示多少个图象开口向上的二次函数.解:(1)a的取值有5种情况,b的取值有6种情况,c的取值有6种情况,因此y=ax2+bx+c可以表示5×6×6=180个不同的二次函数.(2)y=ax2+bx+c的图象开口向上时,a的取值有2种情况,b,c的取值均有6种情况,因此y=ax2+bx+c可以表示2×6×6=72个图象开口向上的二次函数.10.现有3名老师,8名男生和5名女生共16人,有一项活动需派人参加.(1)若只需1人参加,有多少种不同选法?(2)若需老师、男生、女生各1人参加,有多少种不同选法?(3)若需1名老师和1名学生参加,有多少种不同选法?解:(1)有3类选人的方法:3名老师中选1人,有3种方法;8名男生中选1人,有8种方法;5名女生中选1人,有5种方法.由分类加法计数原理可知,共有3+8+5=16种选法.(2)分3步选人:第一步选老师,有3种方法;第二步选男生,有8种方法;第三步选女生,有5种方法,由分步乘法计数原理可知,共有3×8×5=120种选法.(3)选1名老师和1名学生,由分步乘法计数原理可知,共有3×13=39种选法.B级——拔高题目稳做准做1.(2018·中山模拟)将1,2,3,…,9这9个数字填在如图所示的空格中,要求每一行从左到右、每一列从上到下分别依次增大,当3,4固定在图中的位置时,填写空格的方法为()A.6种B.12种C.18种D.24种解析:选A根据数字的大小关系可知,1,2,9的位置是固定的,如图所示,则剩余5,6,7,8这4个数字,而8只能放在A或B处,若8放在B处,则可以从5,6,7这3个数字中选一个放在C处,剩余两个位置固定,此时共有3种方法,同理,若8放在A处,也有3种方法,所以共有6种方法.2.(2018·湖南名校月考)如果一个三位正整数“a1a2a3”满足a1<a2且a3<a2,则称这样的三位数为凸数(如120,343,275),那么所有凸数的个数为()A.240 B.204C.729 D.920解析:选A当中间数为2时,有1×2=2个;当中间数为3时,有2×3=6个;当中间数为4时,有3×4=12个;当中间数为5时,有4×5=20个;当中间数为6时,有5×6=30个;当中间数为7时,有6×7=42个;当中间数为8时,有7×8=56个;当中间数为9时,有8×9=72个.故共有2+6+12+20+30+42+56+72=240个凸数.3.(2016·全国卷Ⅲ)定义“规范01数列”{a n}如下:{a n}共有2m项,其中m项为0,m 项为1,且对任意k≤2m,a1,a2,…a k中0的个数不少于1的个数,若m=4,则不同的“规范01数列”共有()A.18个B.16个C.14个D.12个解析:选C当m=4时,数列{a n}共有8项,其中4项为0,4项为1,要满足对任意k≤8,a1,a2,…a k中0的个数不少于1的个数,则必有a1=0,a8=1,a2可为0,也可为1.(1)当a2=0时,分以下3种情况:①若a3=0,则a4,a5,a6,a7中任意一个为0均可,则有C14=4种情况;②若a3=1,a4=0,则a5,a6,a7中任意一个为0均可,有C13=3种情况;③若a3=1,a4=1,则a5必为0,a6,a7中任意一个为0均可,有C12=2种情况;(2)当a2=1时,必有a3=0,分以下2种情况:①若a4=0,则a5,a6,a7中任一个为0均可,有C13=3种情况;②若a4=1,则a5必为0,a6,a7中任一个为0均可,有C12=2种情况.综上所述,不同的“规范01数列”共有4+3+2+3+2=14个,故选C.4.(2018·湖南十二校联考)若m,n均为非负整数,在做m+n的加法时各位均不进位(例如:134+3 802=3 936),则称(m,n)为“简单的”有序对,而m+n称为有序对(m,n)的值,那么值为1 942的“简单的”有序对的个数是________.解析:第1步,1=1+0,1=0+1,共2种组合方式;第2步,9=0+9,9=1+8,9=2+7,9=3+6,…,9=9+0,共10种组合方式;第3步,4=0+4,4=1+3,4=2+2,4=3+1,4=4+0,共5种组合方式;第4步,2=0+2,2=1+1,2=2+0,共3种组合方式.根据分步乘法计数原理,值为1 942的“简单的”有序对的个数为2×10×5×3=300.答案:3005.某外语组有10人,每人至少会英语、法语中的一门.其中7人会英语,5人会法语.从中选择会英语和法语的各一人派往两地参加会议,有多少种不同的方法?解:由集合知识可知,既会英语又会法语的有7+5-10=2(人),仅会英语的有7-2=5(人),仅会法语的有5-2=3(人).易知此题的任务是派遣适合条件的两人.法一:按仅会英语的5人的派遣情况分成两类.第1类:仅会英语的5人中有1人选中,则有5种方法,而会法语的则有5种方法.从而由分步乘法计数原理知,有5×5=25种方法;第2类:仅会英语的5人中没有人被选中,则会英语的必须从既会英语又会法语的2人中选,从而有2种选法.而会法语的只能从两种语言均会的剩余1人或仅会法语的3人中选,共有1+3=4种.由分步乘法计数原理得,此时共有2×4=8种方法.由分类加法计数原理得,共有25+8=33种方法.法二:按既会英语又会法语的2人的选派情况分成3类.第1类:2人均未被选派,则有3×5=15种方法;第2类:2人均被选派,则有2种方法;第3类:2人中恰有1人被选派,则又分为两类:若另一人只会英语,则有2×5=10种方法,若另一人只会法语,则有2×3=6种方法,由分类加法计数原理得,共有15+2+10+6=33种方法.6.如图所示,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可供使用,求共有多少不同的染色方法.解:可分为两大步进行,先将四棱锥一侧面三顶点染色,然后再分类考虑另外两顶点的染色数,用分步乘法计数原理即可得出结论.由题设,四棱锥S -ABCD 的顶点S,A,B所染的颜色互不相同,它们共有5×4×3=60种染色方法.当S,A,B染好时,不妨设其颜色分别为1,2,3,若C染2,则D可染3或4或5,有3种染法;若C染4,则D可染3或5,有2种染法;若C染5,则D可染3或4,有2种染法.可见,当S,A,B已染好时,C,D还有7种染法,故不同的染色方法有60×7=420(种).。
人教版高中数学高考一轮复习--分类加法计数原理与分步乘法计数原理
长学生,有3种情况;要1名英语成绩优秀的学生,有2种情况;再从剩下的3人
中选2人,有3种情况,故共有3×2×3=18(种)分配方案.由分类加法计数原理,
可得不同的分配方案共有18+18=36(种).故选A.
(2)如图,用5种不同颜色的染料给A,B,C,D四个区域进行涂色,要求相邻的
两个区域不能使用同一种颜色,则不同的涂色方法的种数是( D )
①当a=0时,有 x=-2 为方程的实根,则b=-1,0,1,2,有4种;
②当a≠0时,∵方程有实根,∴Δ=4-4ab≥0.
∴ab≤1.(*)
当a=-1时,满足(*)式的b=-1,0,1,2,有4种;
当a=1时,满足(*)式的b=-1,0,1,有3种;
当a=2时,满足(*)式的b=-1,0,有2种.
名师点拨分类加法计数原理和分步乘法计数原理的异同
计数原理
分类加法计数原理
相同点
用来计算完成一件事的方法种数
分类、相加
分步、相乘
不同点
注意点
每类方案中的每一种方法
都能独立地完成这件事
类类独立,不重不漏
分步乘法计数原理
每步依次完成才算完成这件事
(每步中的每一种方法都不能
独立地完成这件事)
步步相依,缺一不可
摆入,有3×2=6(种)摆放方法.根据分步乘法计数原理,这5盆花不同的摆放
种数为4×6=24.
(2)在运动会比赛中,8名男运动员参加100 m决赛.其中甲、乙、丙三人必
须在1,2,3,4,5,6,7,8八条跑道的奇数号跑道上,则安排这8名运动员比赛的方
式共有
2 880
种.
第一步,安排甲、乙、丙三人,因为甲、乙、丙三人必须在奇数号跑道上,
(全国通用版)2019版高考数学大一轮复习_第十一章 计数原理、概率、随机变量及其分布 第1节 分类加法计数
第1节分类加法计数原理与分步乘法计数原理最新考纲 1.理解分类加法计数原理和分步乘法计数原理; 2. 会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题.知识梳理 1.分类加法计数原理 做一件事,完成它有 n 类办法,在第一类办法中有 m 1种不同的方法,在第二类办法中有 m 2种不同的方法,……,在第 n 类办 法中有 m n 种不同的方法 .则完成这件事共有 N = ________________种不同的方法. m +m +…+m 1 2 n 2.分步乘法计数原理做一件事,完成它需要分成 n 个步骤,做第一个步骤有 m 1种不 同的方法,做第二个步骤有 m 2种不同的方法,……,做第 n 个步骤有 m n 种不同的方法 .那么完成这件事共有= m ×m ×…×m _________________n 种不同的方法. 1 23.分类加法和分步乘法计数原理,区别在于:分类加法计数原理针对“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对“分步”问题,各个步骤相互依存,只有各个步骤都完成了才算完成这件事.[常用结论与微点提醒]1.切实理解“完成一件事”的含义,以确定需要分类还是需要分步进行.2.分类的关键在于要做到“不重不漏”,分步的关键在于要正确设计分步的程序,即合理分类,准确分步.诊断自测1.思考辨析(在括号内打“√”或“×”)(1)在分类加法计数原理中,两类不同方案中的方法可以相同.( )(2)在分类加法计数原理中,每类方案中的方法都能直接完成这件事.( )(3)在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的.( )(4)在分步乘法计数原理中,事情是分两步完成的,其中任解析分类加法计数原理,每类方案中的方法都是不同的,每一种方法都能完成这件事;分步乘法计数原理,每步的方法都是不同的,每步的方法只能完成这一步,不能完成这件事,所以(1),(4)均不正确.答案(1)× (2)√ (3)√(4)×2.从3名女同学和2名男同学中选1人主持主题班会,则不同的选法种数为( )A.6 C.3B.5 D.2解析5个人中每一个都可主持,所以共有5种选法. 答案 B3.(教材练习改编)现有4种不同颜色要对如图所示的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法共有( )A.24种B.30种D.48种解析C.36种需要先给C块着色,有4种结果;再给A块着色,有3 种结果;再给B块着色,有2种结果;最后给D块着色,有2种结果,由分步乘法计数原理知共有4×3×2×2=48(种).答案 D4.5位同学报名参加两个课外活动小组,每位同学限报其中一个小组,则不同的报名方法有________种(用数字作答).解析每位同学都有2种报名方法,因此,可分五步安排5名同学报名,由分步乘法计数原理,总的报名方法共2×2×2×2×2=32(种).答案325.(2018·阜新月考)已知某公园有5个门,从任一门进,另一门出,则不同的走法的种数为________(用数字作答).解析分两步,第一步选一个门进有5种方法,第二步再选一个门出有4种方法,所以共有5×4=20种走法.答案20考点一分类加法计数原理的应用【例1】(1)满足a,b∈{-1,0,1,2},且关于x的方程ax+2x2 +b=0有实数解的有序数对(a,b)的个数为________.(2)在所有的两位数中,个位数字大于十位数字的两位数的个数为________.解析(1)当a=0时,b的值可以是-1,0,1,2,故(a,b)的个数为4;当a≠0时,要使方程ax2+2x+b=0有实数解,需使Δ=4-4ab≥0,即ab≤1.若a=-1,则b的值可以是-1,0,1,2,(a,b)的个数为4;若a=1,则b的值可以是-1,0,1,(a,b)的个数为3;若a=2,则b的值可以是-1,0,(a,b)的个数为2.由分类加法计数原理可知,(a,b)的个数为4+4+3+2=13.(2)当个位数字为2时,十位数字为1,共1个;当个位数字为3时,十位数字为1,2,共2个;当个位数字为4时,十位数字为1,2,3,共3个;……当个位数字为9时,十位数字为1,2,3,4,…,7,8,共8 个;由分类加法计数原理可知满足条件的两位数的个数为1+2+3+…+8=36.答案(1)13 (2)36规律方法分类标准是运用分类加法计数原理的难点所在,应抓住题目中的关键词、关键元素和关键位置.(1)根据题目特点恰当选择一个分类标准.(2)分类时应注意完成这件事情的任何一种方法必须属于某一类,并且分别属于不同种类的两种方法是不同的方法,不能重复. (3)分类时除了不能交叉重复外,还不能有遗漏,如本例(1)中易漏a=0这一类.【训练1】(1)从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为( )A.3B.4C.6D.8(2)如图,从A到O有________种不同的走法(不重复过一点).解析(1)以1为首项的等比数列为1,2,4;1,3,9;以2为首项的等比数列为2,4,8;以4为首项的等比数列为4,6,9;把这4个数列的顺序颠倒,又得到另外的4个数列,∴所求的数列共有2(2+1+1)=8个.(2)分3类:第一类,直接由A到O,有1种走法;第二类,中间过一个点,有A→B→O和A→C→O共2种不同的走法;第三类,中间过两个点,有A→B→C→O和A→C→B→O共2种不同的走法,由分类加法计数原理可得共有1+2+2=5种不同的走法. 答案(1)D (2)5考点二分步乘法计数原理的应用【例2】(1)(2018·石家庄模拟)教学大楼共有五层,每层均有两个楼梯,由一层到五层的走法有( )A.10种B.2种C.5种D.2种(2)(2016·全国Ⅱ卷)如图,小明从街道的E处出发,先到F处5 2 4与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )A.24B.18C.12D.9解析(1)每相邻的两层之间各有2种走法,共分4步.由分步乘法计数原理,共有24种不同的走法.(2)分两步,第一步,从E→F,有6条可以选择的最短路径;第二步,从F→G,有3条可以选择的最短路径.由分步乘法计数原理可知有6×3=18条可以选择的最短路径.故选B.答案(1)D (2)B规律方法(1)在第(1)题中,易误认为分5步完成,错选B.(2)利用分步乘法计数原理应注意:①要按事件发生的过程合理分步,即分步是有先后顺序的;②各步中的方法互相依存,缺一不可,只有各步骤都完成才算完成这件事.【训练2】(1)用0,1,2,3,4,5可组成无重复数字的三位数的个数为________.(2)(2018·合肥质检)五名学生报名参加四项体育比赛,每人限报一项,则不同的报名方法的种数为________.五名学生争夺四项比赛的冠军(冠军不并列),则获得冠军的可能性有________种.解析(1)可分三步给百、十、个位放数字,第一步:百位数字有5种放法;第二步:十位数字有5种放法;第三步:个位数字有4种放法,根据分步乘法计数原理,三位数的个数为5×5×4 =100.(2)五名学生参加四项体育比赛,每人限报一项,可逐个学生落实,每个学生有4种报名方法,共有45种不同的报名方法.五名学生争夺四项比赛的冠军,可对4个冠军逐一落实,每个冠军有5种获得的可能性,共有54种获得冠军的可能性.答案(1)100 (2)45 5 4考点三两个计数原理的综合应用(多维探究)命题角度1组数、组点、组线、组对及抽取问题【例3-1】如果一条直线与一个平面垂直,那么称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是( )A.48B.18C.24D.36解析在正方体中,每一个表面有四条棱与之垂直,六个表面,共构成24个“正交线面对”;而正方体的六个对角面中,每个对角面有两条面对角线与之垂直,共构成12个“正交线面对”,所以共有36个“正交线面对”.命题角度2涂色、种植问题【例3-2】(一题多解)如图所示,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可供使用,求不同的染色方法种数.解法一按所用颜色种数分类.5第一类:5种颜色全用,共有A种不同的方法;5第二类:只用4种颜色,则必有某两个顶点同色(A与C,或B与D),共有2×A45种不同的方法;第三类:只用3种颜色,则A与C,B与D必定同色,共有A35种不同的方法.55 4535由分类加法计数原理,得不同的染色方法种数为A+2×A+A=420(种).法二以S,A,B,C,D顺序分步染色.第一步:S点染色,有5种方法;第二步:A点染色,与S在同一条棱上,有4种方法;第三步:B点染色,与S,A分别在同一条棱上,有3种方法;第四步:C点染色,也有3种方法,但考虑到D点与S,A,C相邻,需要针对A与C是否同色进行分类,当A与C同色时,D点有3种染色方法;当A与C不同色时,因为C与S,B也不同色,所以C点有2种染色方法,D点也有2种染色方法.由分步乘法、分类加法计数原理得不同的染色方法共有5×4×3×(1×3+2×2)=420(种).规律方法(1)①注意在综合应用两个原理解决问题时,一般是先分类再分步.在分步时可能又用到分类加法计数原理.②注意对于较复杂的两个原理综合应用的问题,可恰当地列出示意图或列出表格,使问题形象化、直观化.(2)解决涂色问题,可按颜色的种数分类,也可按不同的区域分步完成.例题中,相邻顶点不同色,要按A,C和B,D是否同色分类处理.【训练3】(1)(一题多解)(2018·青岛质检)如图所示,用4种不同的颜色涂入图中的矩形A,B,C,D中,要求相邻的矩形涂色不同,则不同的涂法有( )A.72种C.24种B.48种D.12种(2)如图所示,在连结正八边形的三个顶点而成的三角形中,与正八边形有公共边的三角形有________个(用数字作答).解析(1)法一首先涂A有4种涂法,则涂B有3种涂法,C与A,B相邻,则C有2种涂法,D只与C相邻,则D有3种涂法,所以共有4×3×2×3=72种涂法.法二按要求涂色至少需要3种颜色,故分两类:一是4种颜色都用,这时A有4种涂法,B有3种涂法,C有2种涂法,D有1种涂法,共有4×3×2×1=24(种)涂法;二是用3种颜色,这时A,B,C的涂法有4×3×2=24(种),D只要不与C同色即可,故D有2种涂法,所以不同的涂法共有24+24×2=72(种).(2)把与正八边形有公共边的三角形分为两类:第一类,有一条公共边的三角形共有8×4=32(个). 第二类,有两条公共边的三角形共有8个.由分类加法计数原理知,共有32+8=40(个).答案(1)A (2)40。
高考数学一轮复习第九章第1课时分类加法计数原理与分步乘法计数原理课时作业理新人教版
第九章计数原理第1课时 分类加法计数原理与分步乘法计数原理1. 分类加法计数原理完成一件事情可以有 n 类方案,在第1类方案中有m i 种不同的方法,在第2类方案中有m 种 不同的方法……在第 n 类方案中有m n 种不同的方法,那么完成这件事情共有 _____________ 种不同 的方法•2. 分步乘法计数原理 完成一件事情需要分成n 个步骤,做第1步有m i 种不同的方法,做第2步有m 2种不同的方法……做第n 步有m i 种不同的方法,那么完成这件事情共有 ____________ 种不同的方法. 1.4封不同的信投人三个不同的信箱屮+所有投法的种数是( A,3*B. 43C. A ;DN 4个人去借3本不同的书(全部借完)•所宥借法的种数是( A.3*B. 43 C A :D.3. 若从1,2,3,…,9这9个整数中同时取 4个不同的数,其和为偶数,则不同的取法共有 ( ). A. 60 种 C. 65 种4. 从班委会5名成员中选出3名,分别担任班级学习委员、 文娱委员与体育委员,其中甲、乙 二人不能担任文娱委员,则不同的选法共有 _________ 种.(用数字作答)5. ________________________ 有三只口袋装有小球,一只装有5个白球,一只装有6个黑球,B. 63 种 D. 66 种一只装有7个红球,若三种颜色的球各取一个,则有种不同的取法.♦分类加法计数原理和分步乘法计数原理的区别分类加法计数原理与分步乘法计数原理 别在于:分类加法计数原理与分类有关 这件事;分步乘法计数原理与分步有关 才算完成•♦混合问题混合问题一般是先分类再分布 •♦画图要恰当画出示意图或树状图,使问题的分析更直观、清楚,便于探索规律考向一分类加法计数原理的应用 例1高三⑴班有学生50人,男30人,女20人;高三⑵ 班有学生60人,男30人,女30人; 高三⑶ 班有学生55人,男35人,女20人. (1) 从高三(1)班或(2)班或(3)班选一名学生任学生会主席,有多少种不同的选法?(2) 从高三(1)班、(2)班男生中,或从高三(3)班女生中选一名学生任学生会主席 ,有多少种不同的选法?【审题视点】 运用分类加法计数原理,先求出每类方案的取法,再进行相加即可•【方法总结】分类时,首先要根据问题的特点确定一个适合它的分类标准 ,然后在这个标准下进行分类;其次分类时要注意满足一个基本要求,就是完成这件事情的任何一种方法必须属于某一类,并且分别属于不同种类的两种方法是不同的方法 ,只有满足这些条件,才可以用分类加法计数原理•1 •在所有的两位数中,个位数字小于十位数的两位数字共有多少个 ?,都涉及完成一件事情的不同方法的种数•它们的区,各种方法相互独立,用其中的任一种方法都可以完成 ,各个步骤相互依存,只有各个步骤都完成了 ,这件事考向二分步乘法计数原理的应用例2现要排一份5天的值班表,每天有一个人值班,共有5个人.每个人都可以值多天班或不值班,但相邻两天不准由同一个人值班,问此值班表共有多少种不同的排法?【审题视点】运用分步乘法计数原理,先分别求出每一天可排的人数,再进行相乘即可•【方法总结】利用分步乘法计数原理解决问题:①要按事件发生的过程合理分步,即分步是有先后顺序的;②各步中的方法互相依存,缺一不可,只有各个步骤都完成了才算完成这件事.变式训练2. 已知集合M=-3,-2,-1,0,1,2}, P(a,b)表示平面上的点(a,b€ M),问:(1)P可表示平面上多少个不同的点?(2)P可表示平面上多少个第二象限的点?⑶P可表示多少个不在直线y=x上的点?考向三两个计数原理的综合应用5个区域涂色(4种颜色全部使用),要求每个区域涂1A. 72 种例3如图,用4种不同的颜色对图中种颜色,相邻的区域不能涂相同的颜色,则不同的涂色种数有().B. 96 种C.108 种 【审题视点】 分成1,3同色与1,3不同色两类,分别求出涂色法,再进行相加【方法总结】对于某些复杂的问题,有时既要用分类加法计数原理,又要用分步乘法计数原理 运用两个计数原理解题时是先分类、后分步,还是先分步、后分类,应视具体问题而定,并搞清分类或分步的具体标准是什么,完成事情的含义和标准是什么 •3. 用六种颜色给正四面体 A-BCD 的每条棱涂色,要求每条棱只涂一种颜色且共顶点的棱涂不 同的颜色,问:有多少种不同的涂色方法典例(2014 •福建)用a 代表红球,b 代表蓝球,c 代表黑球,由加法原理及乘法原理,从1个 红球和1个蓝球中取出若干个球的所有取法可由(1+a )(1 +b )的展开式1+a+b+ab 表示出来,如:“1 ”表示一个球都不取,“ a ”表示取出一个红球,而“ ab ”则表示把红球和蓝球都取出 来.依此类推,下列各式中,其展开式可用来表示从 5个无区别红球,5个无区别的蓝球、5个2 3 4+a+a+a+a+a )(1 +b )(1B. (1 +a 5)(1 +b+b 2+b 3+b 4+b 5)(1 +c )C. (1 +a ) 5(1 +b+b 2+b 3+b 4+b 5)(1 +C 5)D. (1 +a 5)(1 +b ) 5(1 +c+c 2+c+c 4+c 5)【解题指南】 运用加法原理与乘法原理的基本方法(穷举法)解决.【解析】 由题意可知:5个无区别的红球取出若干球可表示为1+a+a 2+a 3+a 4+a 5;5个无区别5的蓝球都取出或都不取出可表示为1+b ;5个有区别的黑球取出若干球可表示为 (1 +c )(1 +c )(1 +c )(1 +c )(1 +c ) =(1 +c ).由乘法 原理可得所有 取法可 表示为D.120 种有区别的黑球中取出若干个球,且所有的蓝球都取出或都不取出的所有取法是( ).A. (1 +c )2 3 4 5 5 5(1+a+a+a+a+a)(1 +b) • (1 +c).故选A【答案】A1. (2014 •四川)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有().A. 192 种B. 216 种C.240 种D.288 种2. (2014 •安徽)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有().A.24 对B.30 对C.48 对D.60 对3. (2014 •重庆)某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是().A.72B. 120C.144D. 1681. N=m+m+…+m n2n1. A2. B3.D4.365.210【例1】(1)从高三⑴班50人中选一人有50种选法;从高三⑵班60人中选一人有60种选法;从高三⑶班中选一人有55种选法,••• 共有50+60+55=165(种).⑵从高三(1)班、(2)班男生中选一人有30+30=60(种)选法,从高三⑶班女生中选有20种选法,•共有30+30+20=80(种).【例2】先排第一天,可排5人中的任一人,有5种排法;再排第二天,此时不能排第一天已排的人,有4种排法;再排第3天,此时不能排第二天已排的人,仍有4种排法;同理,第四、五两天均各有4种排法.由分步乘法计数原理可得值班表共有不同排法数5X 4 X 4X 4X 4=1280(种).【例:门B解析:若1,3不同色.则1沱,緘4必不同色•有3A}=72种涂色法;若1祷同色,有= 种涂色法-根据分类加法计数原理可知,共冇72 + 24 = 96(种)涂色法.1. 一个两位数由十位数字和个位数字构成,考虑一个满足条件的两位数时,可先确定个位数字后再考虑十位数字.一个两位数的个位数字可以是0,1,2,3,4,5,6,7,8,9, 把这样的两位数分成10类.(1)当个位数字为0时,十位数字可以是1,2,3,4,5,6,7,8,9, 有9个满足条件的两位数;(2)当个位数字为1时,十位数字可以是2,3,4,5,6,7,8,9, 有8个满足条件的两位数;(3)当个位数字为2时,十位数字可以是3,4,5,6,7,8,9, 有7个满足条件的两位数;以此类推,当个位数字分别是3,4,5,6,7,8,9 时,满足条件的两位数分别有6,5,4,3,2,1,0 个.由分类计数原理得,满足条件的两位数的个数为9+8+7+6+5+4+3+2+1 +0=45(个).2. (1)确定平面上的点P(a, b)可分两步完成:第一步确定a的值,共有6种取法;第二步确定b的值,共有6种取法.故P可表示平面上36个不同的点.⑵确定第二象限点,可分两步完成:第一步确定a,由于a<0,所以有3种取法;第二步确定b,由于b>0,所以有2种取法.由分步乘法计数原理,得到P可表示第二象限的点的个数是3X 2=6.⑶点P(a, b)在直线y=x上的充要条件是a=b,因此a和b必须在集合M中取同一元素,共有6种取法,即在直线y=x上的点有6个.由⑴得P可表示不在直线y=x上的点共有36- 6=30(个).3.(1)若恰用二种颜色涂芭*则每织对棱必娥涂同一颜色•而这二组同的颜色不同.敏有A|种方法.(2)若恰川四种埶色涂色•则三组对K'Pff两组对棱涂阿色・但组与组之间不同色•抜有种方法.(3)若恰用五种顔色涂色,则三组对棱屮冇一组对棱涂同一种颜色. 故有&A;种方法.若恰用六种颜色涂色•则有A:种不同的方法*综上•满足题意的总的涂色方抵数为A*十QA善十GA舟十兀=4 080(种人1.B解析:根据甲、乙的位置要求分类解决,分两类.第一类:甲在左端-有Ai = 5X4X3X2Xl=12O(种)方法帛第二类’乙在最左端,有4A;=4X4X紡X2X 1 = 96(种)方袪* 所以殳有120 + 96 = 21仇种}方{£■2.C3.B解析:因为同类节目不相邻•故可用插空袪求解.先安排小品节目和相声节目•然后让歌舞节目去插空.安排小品节目和相声节目的顺序有三种广小品1,小品2,相声杆小品1•相声,小品旷和•相声,小品X小品2”■对干第一种悄况,形式为小品1,歌舞1 •小品2*□ +相声有AiC^A| = 36(种)安排方法*同理*第一种情况也有恥种安排方法•对于第二种悄况•三个节冃形成4个空. 梵形式为轨匚L小品■口,相声.□•小品2・口”・有AjAj = 48(种)安排方法•故共有范十36+48=120(种)安排方氐。
2019年高中数学 第一章 计数原理 1.1 分类加法计数原理与分步乘法计数原理课时训练 理 新人教
2019年高中数学第一章计数原理 1.1 分类加法计数原理与分步乘法计数原理课时训练理新人教A版选修2-31.分类加法计数原理分类加法计数原理:完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有____________种不同的方法.推广:完成一件事有n类不同方案,在第1类方案中有种不同的方法,在第2类方案中有种不同的方法,…,在第n类方案中有种不同的方法,那么完成这件事共有____________种不同的方法.注意:任何一类中的任何一种方法都可以完成任务,而不需要再用到其他方法.2.分步乘法计数原理分步乘法计数原理:完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n 种不同的方法,那么完成这件事共有____________种不同的方法.推广:完成一件事需要n个步骤,做第1步有种不同的方法,做第2步有种不同的方法,…,做第n步有种不同的方法,那么完成这件事共有____________种不同的方法.3.分类加法计数原理与分步乘法计数原理的联系和区别分类加法计数原理和分步乘法计数原理,回答的都是有关做一件事的不同方法的种数问题.区别在于:分类加法计数原理针对的是“分类”问题,其中各类方法__________,用其中任何一种方法都可以完成这件事;分步乘法计数原理针对的是“分步”问题,各个步骤中的方法相互依存,只有各个步骤__________才算完成这件事.参考答案:1.2.3.相互独立都完成一、分类加法计数原理的应用若所给问题满足下列三个特点:(1)完成一件事有若干种方法,这些方法可以分成n类;(2)用每一类中的每一种方法都可以完成这件事;(3)把各类的方法数相加,就可以得到完成这件事的所有方法数.则这个问题可以用分类加法计数原理解决.【例1】某校高二共有三个班,各班人数如下表:(1)从三个班中选1名学生任学生会主席,有多少种不同的选法?(2)从高二(1)班、(2)班男生中或从高二(3)班女生中选1名学生任学生会生活部部长,有多少种不同的选法?【解析】(1)从每个班选1名学生任学生会主席,共有3类不同的方案:第1类,从高二(1)班中选出1名学生,有50种不同的选法;第2类,从高二(2)班中选出1名学生,有60种不同的选法;第3类,从高二(3)班中选出1名学生,有55种不同的选法.(2)从高二(1)班、(2)班男生或高二(3)班女生中选1名学生任学生会生活部部长,共有3类不同的方案:第1类,从高二(1)班男生中选出1名学生,有30种不同的选法;第2类,从高二(2)班男生中选出1名学生,有30种不同的选法;第3类,从高二(3)班女生中选出1名学生,有20种不同的选法.根据分类加法计数原理知,从高二(1)班、(2)班男生或高二(3)班女生中选1名学生任学生会生活部部长,共有30+30+20=80种不同的选法.二、分步乘法计数原理的应用若所给问题满足下列三个特点:(1)完成一件事需要经过n个步骤,缺一不可;(2)完成每一步有若干方法;(3)把各个步骤的方法数相乘,就可以得到完成这件事的所有方法数.则这个问题可以用分步乘法计数原理解决.【例2】如图,将图中的四个区域涂色,有5种不同的颜色可供选择,规定一个区域只涂一种颜色,相邻区域必须涂不同的颜色,不同的涂色方案有______种.【解析】由分步乘法计数原理,可得不同的涂色方案有种.【名师点睛】解答涂色问题有两种方法:(1)选择正确的涂色顺序,按步骤逐一涂色,这时用分步乘法计数原理进行计数;(2)根据涂色时所用颜色数的多少,进行分类处理,这时用分类加法计数原理进行计数.注意:“相邻区域不得使用同一种颜色”,找好不相邻的区域是解题的关键.一般地,在分步涂色时,要注意尽量让相邻区域多的区域先涂色.三、两个计数原理的综合应用“分类”应满足:完成一件事的任何一种方法,必属于且仅属于其中某一类.“分步”应满足:完成一件事必须且只需连续完成若干步.在实际中,很多问题都需要既分类又分步才能完成,解决这类问题时,一般先分类再分步.在分类和分步的过程中,要先明确分类和分步的标准,以做到不重不漏.【例3】用0,1,2,3,4五个数字,①可以排出多少个三位数字的电话号码?②可以排成多少个三位数?③可以排成多少个能被2整除的无重复数字的三位数?【解析】①三位数字的电话号码,首位可以是0,数字也可以重复,每个位置都有5种排法,共有5×5×5=53=125(种).②三位数的首位不能为0,但可以有重复数字,首先考虑首位的排法,除0外共有4种方法,第二、三位可以排0,因此,共有4×5×5=100(种).③被2整除的数即偶数,末位数字可取0,2,4,因此,可以分两类,一类是末位数字是0,则有4×3=12种排法;一类是末位数字不是0,则末位有2种排法,即2或4,再排首位,因为0不能在首位,所以有3种排法,十位有3种排法,因此有2×3×3=18种排法.因而有12+18=30种排法,即可以排成30个能被2整除的无重复数字的三位数.【名师点睛】对于已知几个数字组成三位数、四位数等问题,一般需利用分步乘法计数原理求解,注意:(1)数字中是否含有0,因为三位数、四位数等的最高位数字不能为0;(2)组成的数是否允许数字重复出现,这会影响数字的选择.四、未选准分步依据致错【例4】将4封信投入到3个信箱中,共有多少种不同的投法?【错解】第1个信箱可能投1封信,2封信,3封信或4封信,共有4种投法;同理,第2个信箱也有4种投法,第3个信箱也有4种投法.根据分步乘法计数原理,共有种不同的投法.【错因分析】要完成的一件事是“将4封信投入到3个信箱中”,且1封信只能投入1个信箱,错解中会出现1封信同时投入2个信箱或3个信箱的情况,这是不可能发生的.因此,分步的依据应该是“信”,而不应该是“信箱”.【正解】第1封信可以投入3个信箱中的任意一个,有3种投法;同理,第2,3,4封信各有3种投法.根据分步乘法计数原理,共有种投法.【名师点睛】对于一类元素允许重复选取的计数问题,可以用分步乘法计数原理来解决,求解的关键是明确要完成的一件事是什么.即用分步乘法计数原理求解元素可重复选取的问题时,哪类元素必须“用完”就以哪类元素作为分步的依据.对于本题,若是将3封信投入到4个信箱中,则共有种不同的投法.1.有不同的红球5个,不同的白球4个.从中任意取出两个不同颜色的球,则不同的取法有A.9种B.16种C.20种D.32种2.某同学从4本不同的科普杂志,3本不同的文摘杂志,2本不同的娱乐新闻杂志中任选一本阅读,则不同的选法共有A.24种B.9种C.3种D.26种3.现给如图所示的4个区域涂色,要求相邻区域不得使用同一颜色,共有3种颜色可供选择,则不同的涂色方法共有A.4种B.6种C.8种D.12种4.由组成的无重复数字的五位偶数共有A. 个B. 个C. 个D. 个5.甲与其四位同事各有一辆私家车,车牌尾数分别是,为遵守当地某月日至日天的限行规定(奇数日车牌尾数为奇数的车通行,偶数日车牌尾数为偶数的车通行),五人商议拼车出行,每天任选一辆符合规定的车,但甲的车最多只能用一天,则不同的用车方案种数为A.5B.24C.32D.646.一个三位数的密码,每一位都由0~4的5个数字随机组成,则不同的密码种数是_________(用数字作答). 7.如果把个位数是1,且恰有3个数字相同的四位数叫做“好数”,那么在由1,2,3,4四个数字组成的有重复数字的四位数中,“好数”共有_________个(用数字作答).8.7人站成两排队列,前排3人,后排4人.现将甲、乙、丙三人加入队列,前排加一人,后排加两人,其他人保持相对位置不变,则不同的加入方法种数为_________(用数字作答).9.某单位职工义务献血,在体检合格的人中,型血的共有28人,型血的共有7人,B型血的共有9人,AB 型血的共有3人.(1)从中任选1人去献血,有多少种不同的选法?(2)从四种血型的人中各选1人去献血,有多少种不同的选法?10.现有高一四个班的学生34人,其中一、二、三、四班分别有7人、8人、9人、10人,他们自愿组成数学课外小组.(1)选其中一人为负责人,有多少种不同的选法?(2)每班选一名组长,有多少种不同的选法?(3)推选两人做发言,这两人需来自不同的班级,有多少种不同的选法?11.用红、黄、蓝、绿4种颜色为一个五棱锥的六个顶点着色,要求每一条棱的两个端点着不同的颜色,则不同的着色方案共有A.120种B.140种C.180种D.240种12.现有某类病毒记作X m Y n,其中正整数m,n(m≤7,n≤9)可以任意选取,则m,n都取到奇数的概率为__________.13.回文数是指从左到右读与从右到左读都一样的正整数,如22,121,3443,94249等.显然2位回文数有9个:11,22,33,⋯,99.3位回文数有90个:101,111,121, ⋯,191,202, ⋯,999.则4位回文数有________个;2n+1(n∈)位回文数有________个.14.不定方程的非负整数解的个数为.15.某印刷厂的7名工人中,有3人只会排版,2人只会印刷,还有2人既会排版又会印刷,现从7人中安排2人排版,2人印刷,有几种不同的安排方法?16.(xx新课标全国Ⅱ)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为A.24B.18C.12D.917.(xx安徽)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有A.24对B.30对C.48对D.60对1.C 【解析】由题意知本题是一个分步计数问题,要取两个不同颜色的球,首先取一个红球,有5种结果,再取一个白球,有4种结果,根据分步计数原理,得到共有5×4=20种结果.2.B 【解析】根据分类加法计数原理可得,不同的选法有4+3+2=9种,故选B.3.B 【解析】首先给下面一个涂色,有三种涂色方法,再给上面的最左边涂色,有两种涂色方法,中间一块只有一种涂色方法,右边的一块只有一种涂色方法,根据分步计数原理,得共有种不同的涂色方法. 4.B 【解析】分两类:第一类,若五位数的个位数是,则有个偶数;第二类,若五位数的个位数是,由于不排首位,因此首位只能排中的一个,依据分步计数原理可得个偶数.由分类加法计数原理,可得所有无重复数字的五位偶数的个数为,故选B .5.D 【解析】日至日,分别为,有天奇数日,天偶数日,第一步,安排奇数日出行,每天都有种选择,共有种不同的用车方案;第二步,安排偶数日出行,分两类,第一类,先选天安排甲的车,另外一天安排其他的车,有种不同的用车方案;第二类,不安排甲的车,每天都有种选择,共有种不同的用车方案,共有种不同的用车方案,根据分步计数原理,可得不同的用车方案共有种.故选D.6.125 【解析】由分步乘法计数原理,可得不同的密码数有种.7.12【解析】由题意知本题是一个分类计数问题,组成的数字含有三个1,三个2,三个3,三个4共4种情况,当含有三个1时,“好数”为2111,3111,4111,1211,1311,1411,1121,1131,1141;当含有三个2时,“好数”为2221;当含有三个3时,“好数”为3331;当含有三个4时,“好数”为4441.根据分类加法计数原理,得到“好数”共有12个.8.360 【解析】分三个步骤:第一步,先从甲、乙、丙三个人中选出一个人加入前排,有3种方法;第二步,将这个人加入前排的4个空位中,有4种方法;第三步,再依次将剩余两人加入后排.先加入的一个人有5种方法,后加入的那个人有6种方法.由分步计数原理,可得不同的加入方法种数为.9.【解析】从O型血的人中选1人有28种不同的选法,从A型血的人中选1人有7种不同的选法,从B型血的人中选1人有9种不同的选法,从AB型血的人中选1人有3种不同的选法.(1)任选1人去献血,即无论选哪种血型的哪一个人,这件“任选1人去献血”的事情都能完成,所以由分类加法计数原理,得共有28+7+9+3=47种不同的选法.(2)要从四种血型的人中各选1人,即要在每种血型的人中依次选出1人后,这件“各选1人去献血”的事情才完成,所以由分步乘法计数原理,得共有28×7×9×3=5292种不同的选法.10.【解析】(1)分四类:第一类,从一班学生中选1人,有7种选法;第二类,从二班学生中选1人,有8种选法;第三类,从三班学生中选1人,有9种选法;第四类,从四班学生中选1人,有10种选法.根据分类加法计数原理,得共有N=7+8+9+10=34(种)不同的选法.(2)分四步:第一、二、三、四步分别从一、二、三、四班学生中选一人任组长.根据分步乘法计数原理,得共有N=7×8×9×10=5040(种)不同的选法.(3)分六类,每类又分两步:第一类,从一、二班学生中各选1人,有7×8种不同的选法;第二类,从一、三班学生中各选1人,有7×9种不同的选法;第三类,从一、四班学生中各选1人,有7×10种不同的选法;第四类,从二、三班学生中各选1人,有8×9种不同的选法;第五类,从二、四班学生中各选1人,有8×10种不同的选法;第六类,从三、四班学生中各选1人,有9×10种不同的选法.所以,共有N=7×8+7×9+7×10+8×9+8×10+9×10=431(种)不同的选法.11.A 【解析】设五棱锥S-ABCDE,先涂顶点S有4种不同的方法;接着涂顶点A只有3种不同的方法;再接着涂顶点B有2种不同的方法;再涂C点时,若C与A的颜色相同,则D有2种不同的涂法,E只有1种涂法,若C与A的颜色不相同,C只有1种涂法,若D与A的颜色相同,E有2种不同的涂法;若D与A的颜色不相同,则E只有1种涂法,根据分类加法计数原理与分步乘法计数原理可知,不同的着色方案共有4×3×2×[1×2×1+1×(1×2+1×1)]=120种.12.【解析】由题意知m的可能取值为1,2,3,…,7;n的可能取值为1,2,3,…,9.由于是任取m,n,则若m=1,n可取1,2,3,…,9,共9种情况;同理,m取2,3,…,7时,n也有9种情况,故m,n 的取值情况共有7×9=63种.若m,n都取奇数,则m的取值为1,3,5,7,n的取值为1,3,5,7,9,因此满足条件的情形有4×5=20种.故所求概率为.13.90; 9×10n 【解析】4位回文数的特点为中间两位相同,千位和个位相同但不能为0.第一步,选千位数字,共有9种选法;第二步,选中间两位数字,有10种选法,故4位回文数有9.对于2n +1(n ∈ )位回文数,第一步,选左边第一个数字,共有9种选法;第二步,分别选左边第2,3,4,…,n ,n +1个数字,共有10种选法,故2n +1(n ∈ )位回文数有914.【解析】令,则,这时1,2,3,,10,10,9,,1y z =⋅⋅⋅=⋅⋅⋅共种可能;若,则,这时1,2,3,,9,9,8,,1y z =⋅⋅⋅=⋅⋅⋅共种可能;若,则,这时1,2,3,,8,8,7,,1y z =⋅⋅⋅=⋅⋅⋅共种可能;…;若,共种可能.所以共有种可能;若则1,2,,11,11,10,,1y z =⋅⋅⋅=⋅⋅⋅,共有种可能;同理,若则1,2,,11,11,10,,1x z =⋅⋅⋅=⋅⋅⋅,共有11种可能;若则1,2,,11,11,10,,1x y =⋅⋅⋅=⋅⋅⋅,共有种可能,这样共有种可能.另外,还有0,0,12;0,12,0;12,0,0=========z y x z y x z y x 三种可能,所以总共有种可能,故不定方程的非负整数解的个数为,应填.15.【解析】首先分类的标准要正确,可以选择“只会排版”、“只会印刷”、“既会排版又会印刷”中的一个作为分类的标准.下面选择“既会排版又会印刷”作为分类的标准,按照被选出的人数,可将问题分为三类:第一类:2人全不被选出,即从只会排版的3人中选2人,有3种选法;只会印刷的2人全被选出,有1种选法,由分步乘法计数原理知共有3×1=3种选法.第二类:2人中被选出一人,有2种选法.若此人去排版,则再从会排版的3人中选1人,有3种选法,只会印刷的2人全被选出,有1种选法,由分步乘法计数原理知共有2×3×1=6种选法;若此人去印刷,则再从会印刷的2人中选1人,有2种选法,从会排版的3人中选2人,有3种选法,由分步乘法计数原理知共有2×3×2=12种选法.再由分类加法计数原理知共有6+12=18种选法.第三类:2人全被选出,同理共有16种选法.所以共有3+18+16=37种选法.16.B 【解析】由题意,小明从街道的E 处出发到F 处最短路径的条数为6,再从F 处到G 处最短路径的条数为3,则小明到老年公寓可以选择的最短路径条数为,故选B.17.C 【解析】如图,在上底面中选,四个侧面中的面对角线都与它成60°,共8对,同样对应的也有8对,下底面也有16对,这共有32对;左右侧面与前后侧面中共有16对.所以全部共有48对.27021 698D 榍m30231 7617 瘗` 35589 8B05 謅27999 6D5F 浟30678 77D6 矖20046 4E4E 乎39970 9C22 鰢35420 8A5C 詜34974 889E 袞@精品文档实用文档。
高考数学一轮复习 9.1分类加法计算原理和分步乘法计数原理讲解与练习 理 新人教A版
第一节分类加法计数原理和分步乘法计数原理[备考方向要明了]考什么怎么考1.理解分类加法计数原理和分步乘法计数原理.2.会用分类加法计数原理和分步乘法计数原理分析和解决一些简单的实际问题. 高考中,对于两个计数原理一般不单独考查,多与排列、组合相结合考查,且多为选择、填空题,如2012年北京T6,浙江T6等.[归纳·知识整合]1.分类加法计数原理完成一件事有n类不同的方案,在第一类方案中有m1种不同的方法,在第二类方案中有m2种不同的方法,…,在第n类方案中有m n种不同的方法,则完成这件事,共有N=m1+m2+…+m n种不同的方法.[探究] 1.选用分类加法计数原理的条件是什么?提示:当完成一件事情有几类办法,且每一类办法中的每一种办法都能独立完成这件事情,这时就用分类加法计数原理.2.分步乘法计数原理完成一件事需要n个不同的步骤,完成第一步有m1种不同的方法,完成第二步有m2种不同的方法,…,完成第n步有m n种不同的方法,那么完成这件事共有N=m1m2…m n种不同的方法.[探究] 2.选用分类乘法计数原理的条件是什么?提示:当解决一个问题要分成若干步,每一步只能完成这件事的一部分,且只有当所有步都完成后,这件事才完成,这时就采用分步乘法计数原理.[自测·牛刀小试]1.一个袋子里放有6个球,另一个袋子里放有8个球,每个球各不相同,从两袋子里各取一个球,不同取法的种数为( )A.182 B.14C.48 D.91解析:选C 由分步乘法计数原理得不同取法的种数为6×8=48.2.某学生去书店,发现3本好书,决定至少买其中一本,则购买方式共有( ) A.3种B.6种C.7种D.9种解析:选C 分3类:买1本书,买2本书和买3本书.各类的购买方式依次有3种、3种和1种,故购买方式共有3+3+1=7种.3.从0,1,2,3,4,5这六个数字中,任取两个不同数字相加,其和为偶数的不同取法的种数有( )A.30 B.20C.10 D.6解析:选D 从0,1,2,3,4,5六个数字中,任取两数和为偶数可分为两类,①取出的两数都是偶数,共有3种方法;②取出的两数都是奇数,共有3种方法,故由加法原理得共有N=3+3=6种.4.如图,从A→C有________种不同的走法.解析:分为两类:不过B点有2种方法,过B点有2×2=4种方法,共有4+2=6种方法.答案:65.设集合A中有3个元素,集合B中有2个元素,可建立A→B的映射的个数为________.解析:建立映射,即对于A中的每一个元素,在B中都有一个元素与之对应,有2种方法,故由分步乘法计数原理得映射有23=8个.答案:8分类加法计数原理[例1] (1)(2012·北京高考)从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为( )A.24 B.18C.12 D.6(2)将5名同学分到甲、乙、丙3个小组,若甲组至少两人,乙、丙组至少各一人,则不同的分配方案的种数为( )A.80 B.120C.140 D.50[自主解答] (1)法一:(直接法)本题可以理解为选出三个数,放在三个位置,要求末尾必须放奇数,如果选到了0这个数,这个数不能放在首位,所以n=C23C12A22+C23C12=12+6=18;法二:(间接法)奇数的个数为n=C13C12C12A22-C13C12=18.(2)分两类:若甲组2人,则乙、丙两组的方法数是C13A22,此时的方法数是C25C13A22=60;若甲组3人,则方法数是C35A22=20.根据分类加法计数原理得总的方法数是60+20=80.[答案] (1)B (2)A本例(1)条件不变,求有多少个能被5整除的数?解:能被5整除的数分两类:当个位数是0时,有A23=6个;当个位数是5时,若含有数字0时,则有2个,若不含有0时,则有C12·A22=4个.故共有12个能被5整除的数.———————————————————使用分类加法计数原理计数的两个条件一是根据问题的特点能确定一个适合于它的分类标准,然后在这个标准下进行分类;二是完成这件事的任何一种方法必须属于某一类,并且分别属于不同类的两种方法是不同的方法,只有满足这些条件,才可以用分类加法计数原理.1.若自然数n使得作竖式加法n+(n+1)+(n+2)均不产生进位现象,则称n为“良数”.例如:32是“良数”,因为32+33+34不产生进位现象;23不是“良数”,因为23+24+25产生进位现象.那么小于1 000的“良数”的个数为( ) A.27 B.36C.39 D.48解析:选D 一位“良数”有0,1,2,共3个;两位数的“良数”十位数可以是1,2,3,两位数的“良数”有10,11,12,20,21,22,30,31,32,共9个;三位数的“良数”有百位为1,2,3,十位数为0的,个位可以是0,1,2,共3×3=9个,百位为1,2,3,十位不是零时,十位个位可以是两位“良数”,共有3×9=27个.根据分类加法计数原理,共有48个小于1 000的“良数”.分步乘法计数原理[例2] 学校安排4名教师在六天里值班,每天只安排一名教师,每人至少安排一天,至多安排两天,且这两天要相连,那么不同的安排方法有________种(用数字作答).[自主解答] 有两名教师要值班两天,把六天分为四份,两个两天连排的是(1,2),(3,4);(1,2),(4,5);(1,2),(5,6);(2,3),(4,5);(2,3),(5,6);(3,4),(5,6),共六种情况,把四名教师进行全排列,有A44=24种情况,根据分步乘法计数原理,共有不同的排法6×24=144种.[答案] 144———————————————————使用分步乘法计数原理计数的两个注意点(1)要按照事件发生的过程合理分步,即分步是有先后顺序的;2各步中的方法互相依存,缺一不可,只有各个步骤都完成才算完成这件事.2.将数字1,2,3,4,5,6按第一行1个数,第二行2个数,第三行3个数的形式随机排列,设N i (i =1,2,3)表示第i 行中最大的数,则满足N 1<N 2<N 3的所有排列的个数是________(用数字作答).解析:由已知数字6一定在第三行,第三行的排法种数为A 13A 25=60;剩余的三个数字中最大的一定排在第二行,第二行的排法种数为A 12A 12=4,由分类乘法计数原理知满足条件的排列个数是240.答案:240两个计数原理的综合应用[例3] 用红、黄、蓝三种颜色之一去涂图中标号为1,2,…,9的9个小正方形,使得任意相邻(有公共边的)小正方形所涂颜色都不相同,且标号为1,5,9的小正方形涂相同的颜色,则符合条件的所有涂法共有________种.[自主解答] 分步求解.只要在涂好1,5,9后,涂2,3,6即可,若3与1,5,9同色,则2,6的涂法为2×2,若3与1,5,9不同色,则3有两种涂法,2,6只有一种涂法,同理涂4,7,8,1 2 3 4 5 6 789即涂法总数是C13(2×2+C12×1)×(2×2+C12×1)=3×6×6=108.[答案] 108———————————————————应用两个原理解决实际问题的注意点在解决实际问题中,并不一定是单一的分类或分步,而是可能同时应用两个计数原理,即分类的方法可能要运用分步完成,分步的方法可能会采取分类的思想求.分清完成该事情是分类还是分步,“类”间互相独立,“步”间互相联系.3.如图所示,用四种不同颜色给图中的A,B,C,D,E,F六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法共有( )A.288种B.264种C.240种D.168种解析:选B 分三类:①B,D,E,F用四种颜色,则有A44×1×1=24种方法;②B,D,E,F用三种颜色,则有A34×2×2+2A34×2×1=192种方法;③B,D,E,F用两种颜色,则有A24×2×2=48,所以共有不同的涂色方法24+192+48=264种.2个区别——两个计数原理的区别分类加法计数原理分步乘法计数原理区别一每类办法都能独立完成这件事.它是独立的、一次的且每次得到的是最后结果,只需一种方法就完成每一步得到的只是其中间结果,任何一步都不能独立完成这件事,缺少任何一步都不可,只有各步骤都完成了才能完成这件事区别二各类办法之间是互斥的,并列的,独立的各步之间是相互依存的,并且既不能重复,也不能遗漏3个注意点——利用两个计数原理解题时的三个注意点(1)当题目无从下手时,可考虑要完成的这件事是什么,即怎样做才算完成这件事,然后给出完成这件事的一种或几种方法,从这几种方法中归纳出解题方法;(2)分类时标准要明确,做到不重不漏,有时要恰当画出示意图或树状图,使问题的分析更直观、清楚,便于探索规律;(3)混合问题一般是先分类再分步..数学思想——计数原理中的分类讨论从近几年的高考试题来看,两个计数原理的问题重点考查学生分析问题解决问题的能力及分类讨论思想的应用.解决此类问题时,需要分清两个原理的区别,一般情形是考虑问题有几种情况,即分类;考虑每种情况有几个步骤,即分步.要求既要会合理分类,又要能合理分步.[典例] (2012·浙江高考)若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( )A.60种B.63种C.65种D.66种[解析] 对于4个数之和为偶数,可分三类,即4个数均为偶数,2个数为偶数2个数为奇数,4个数均为奇数,因此共有C44+C24C25+C45=66种.[答案] D[题后悟道](1)本题主要考查排列组合计数问题,可通过分类讨论思想进行求解,即把所取的4个数分为三类求解.(2)对于计数问题,有时正确的分类是解决问题的切入点.同时注意分类的全面与到位,不要出现重复或遗漏的现象.[变式训练]1.已知a,b∈{0,1,2,…,9},若满足|a-b|≤1,则称a,b“心有灵犀”.则a,b“心有灵犀”的情形共有( )A.9种B.16种C.20种D.28种解析:选D 当a为0时,b只能取0,1两个数;当a为9时,b只能取8,9两个数,当a为其他数时,b都可以取3个数.故共有28种情形.一、选择题(本大题共6小题,每小题5分,共30分)1.从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a,b组成复数a+b i,其中虚数有( )A.30个B.42个C.36个D.35个解析:选C ∵a+bi为虚数,∴b≠0,即b有6种取法,a有6种取法,由分步乘法计数原理知可以组成6×6=36个虚数.2.高三年级的三个班去甲、乙、丙、丁四个工厂参加社会实践,但去何工厂可自由选择,甲工厂必须有班级要去,则不同的分配方案有( )A.16种B.18种C.37种D.48种解析:选C 三个班去四个工厂不同的分配方案共43种,甲工厂没有班级去的分配方案共33种,因此满足条件的不同的分配方案共有43-33=37种.3.(2013·哈尔滨模拟)如图所示,在A,B间有四个焊接点1,2,3,4,若焊接点脱落导致断路,则电路不通.今发现A,B之间线路不通,则焊接点脱落的不同情况有( )A.9种B.11种C.13种D.15种解析:选C 每个焊接点都有脱落与不脱落两种状态,电路不通可能是1个或多个焊接点脱落,问题比较复杂,但电路通的情况却只有3种,即焊接点2脱落或焊接点3脱落或全不脱落,故满足题意的焊接点脱落的不同情况共有24-3=13种.4.4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有( )A.12种B.24种C.30种D.36种解析:选B 从4位同学中选出2人有C24种方法,另外2位同学每人有2种选法,故不同的选法共有C24×2×2=24种.5.(2013·汕头模拟)如图,用6种不同的颜色把图中A,B,C,D四块区域分开,若相邻区域不能涂同一种颜色,则不同的涂法共有( )A.400种B.460种C.480种D.496种解析:选C 从A开始,有6种方法,B有5种,C有4种,D,A同色1种,D,A不同色3种,∴不同涂法有6×5×4×(1+3)=480种.6.(2013·杭州模拟)如果一条直线与一个平面平行,那么称此直线与平面构成一个“平行线面组”.在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平行线面组”的个数是( )A .60B .48C .36D .24解析:选B 长方体的6个表面构成的“平行线面组”有6×6=36个,另含4个顶点的6个面(非表面)构成的“平行线面组”有6×2=12个,共36+12=48个.二、填空题(本大题共3小题,每小题5分,共15分)7.从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为________.解析:当公比为2时,等比数列可为1、2、4,2、4、8;当公比为3时,等比数列可为1、3、9;当公比为32时,等比数列可为4、6、9.同时,4、2、1和8、4、2,9、3、1,9、6、4也是等比数列,共8个.答案:88.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有________种(用数字作答).解析:若取出1本画册,3本集邮册,有C 14种赠送方法;若取出2本画册,2本集邮册,有C 24种赠送方法,则不同的赠送方法有C 14+C 24=10种.答案:109.将数字1,2,3,4,5,6排成一列,记第i 个数为a i (i =1,2,…,6),若a 1≠1,a 3≠3,a 5≠5,a 1<a 3<a 5,则不同的排列方法有________种(用数字作答).解析:分两步:第一步,先排a 1,a 3,a 5,若a 1=2,有2种排法;若a 1=3,有2种排法;若a 1=4,有1种排法,所以共有5种排法;第二步再排a 2,a 4,a 6,共有A 33=6种排法,故不同的排列方法有5×6=30种.答案:30三、解答题(本大题共3小题,每小题12分,共36分)10.(1)4名同学选报跑步、跳高、跳远三个项目,每人报一项,共有多少种报名方法? (2)4名同学争夺跑步、跳高、跳远三项冠军,共有多少种可能的结果?解:(1)该问题中要完成的事情是4名同学报名,因而可按学生分步完成,每一名同学有3种选择方法,故共有34=81种报名方法.(2)该问题中,要完成的事是三项冠军花落谁家,故可按冠军分步完成,每一项冠军都有4种可能,故可能的结果有43=64种.11.如右图所示三组平行线分别有m,n,k条,在此图形中(1)共有多少个三角形?(2)共有多少个平行四边形?解:(1)每个三角形与从三组平行线中各取一条的取法是一一对应的,由分步计数原理知共可构成m·n·k个三角形.(2)每个平行四边形与从两组平行线中各取两条的取法是一一对应的,由分类和分步计数原理知共可构成C2m C2n+C2n C2k+C2k C2m个平行四边形.12.把一个圆分成3块扇形,现在用5种不同的颜色给3块扇形涂色,要求相邻扇形的颜色互不相同,问(1)有多少种不同的涂法?(2)若分割成4块扇形呢?解:(1)不同涂色方法数是:5×4×3=60种;(2)如右图所示,分别用a,b,c,d记这四块,a与c可同色,也可不同色,先考虑给a,c两块涂色,分两类:①给a,c涂同种颜色共5种涂法,再给b涂色有4种涂法,最后给d涂色也有4种涂法,由乘法原理知,此时共有5×4×4种涂法;②给a,c涂不同颜色共有5×4种涂法,再给b涂色有3种方法,最后给d涂色也有3种方法,此时共有5×4×3×3种涂法.故由分类加法计数原理知,共有5×4×4+5×4×3×3=260种涂法.1.三人踢毽子,互相传递,每人每次只能踢一下,由甲开始踢,经过4次传递后,毽子又被踢回甲,则不同的传递方式共有( )A.4种B.5种C.6种D.12种解析:选C 若甲先传给乙,则有:甲→乙→甲→乙→甲,甲→乙→甲→丙→甲,甲→乙→丙→乙→甲,3种不同的传法;同理甲先传给丙,也有3种不同的传法,共有6种不同的传法.2.在一块并排10垄的田地中,选择2垄分别种值A、B两种作物,每种作物种植一垄,为有利于作物生长,要求A、B两种作物的间隔不小于6垄,则不同的选垄方法有________种(用数字作答).解析:××××××××××××分两步:第一步,先选垄,如图.共有6种选法;第二步:种植A、B两种作物,有2种选法.因此,由分步乘法计数原理,不同的选垄种植方法有6×2=12种.答案:123.8名世界网球顶级选手在上海大师赛上分成两组,每组各4人,分别进行单循环赛,每组决出前两名,再由每组的第一名与另一组的第二名进行淘汰赛,获胜者角逐冠、亚军,败者角逐第3、4名,大师赛共有________场比赛.解析:小组赛共有2C24场比赛;半决赛和决赛共有2+2=4场比赛;根据分类计数原理共有2C24+4=16场比赛.答案:164.某出版社的7名工人中,有3人只会排版,2人只会印刷,还有2人既会排版又会印刷,现从7人中安排2人排版,2人印刷,有几种不同的安排方法?解:首先分类的标准要正确,可以选择“只会排版”、“只会印刷”、“既会排版又会印刷”中的一个作为分类的标准.下面选择“既会排版又会印刷”作为分类的标准,按照被选出的人数,可将问题分为三类:第一类:既会排版又会印刷的2人全不被选出,即从只会排版的3人中选2人,有3种选法;只会印刷的2人全被选出,有1种选法,由分步计数原理知共有3×1=3种选法.第二类:既会排版又会印刷的2人中被选出一人,有2种选法.若此人去排版,则再从会排版的3人中选1人,有3种选法,只会印刷的2人全被选出,有1种选法,由分步计数原理知共有2×3×1=6种选法;若此人去印刷,则再从会印刷的2人中选1人,有2种选法,从会排版的3人中选2人,有3种选法,由分步计数原理知共有2×3×2=12种选法.再由分类计数原理知共有6+12=18种选法.第三类:既会排版又会印刷的2人全被选出,同理共有16种选法.所以共有3+18+16=37种选法.。
高三数学(理)人教版一轮训练:第十篇第1节分类加法计数原理与分步乘法计数原理.doc
第十篇计数原理、概率、随机变量及其分布(必修3、选修23) 第1节分类加法计数原理与分步乘法计数原理【选题明细表】基础巩固(时间:30分钟)1.已知两条异面直线a,b上分别有5个点和8个点,则这13个点可以确定不同的平面个数为( C )(A)40 (B)16 (C)13 (D)10解析:分两类情况讨论:第1类,直线a分别与直线b上的8个点可以确定8个不同的平面;第2类,直线b分别与直线a上的5个点可以确定5个不同的平面.根据分类加法计数原理知,共可以确定8+5=13个不同的平面.故选C.2.如图所示,从甲地到乙地有3条公路可走,从乙地到丙地有2条公路可走,从甲地不经过乙地到丙地有2条水路可走.则从甲地经乙地到丙地和从甲地到丙地的走法种数分别为( A )(A)6,8 (B)6,6 (C)5,2 (D)6,2解析:从甲地经乙地到丙地,分两步:第1步,从甲地到乙地,有3条公路;第2步,从乙地到丙地,有2条公路.根据分步乘法计数原理,有3×2=6种走法.从甲地到丙地,分两类:第1类,从甲地经乙地到丙地,有6种走法;第2类,从甲地不经过乙地到丙地,有2条水路,即有2种走法.根据分类加法计数原理,有6+2=8种走法.故选A.3.高三年级的三个班去甲、乙、丙、丁四个工厂参加社会实践,但去何工厂可自由选择,甲工厂必须有班级要去,则不同的分配方案有( C )(A)16种(B)18种(C)37种(D)48种解析:三个班去四个工厂不同的分配方案共43种,甲工厂没有班级去的分配方案共33种,因此满足条件的不同的分配方案共有43-33=37种.故选C.4.如果一条直线与一个平面平行,那么称此直线与平面构成一个“平行线面组”,在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平行线面组”的个数是( B )(A)60 (B)48 (C)36 (D)24解析:长方体的6个表面构成的“平行线面组”有6×6=36个,6个对角面构成的“平行线面组”有6×2=12(个).故共有36+12=48(个).故选B.5.如图所示,在A,B间有四个焊接点1,2,3,4,若焊接点脱落导致断路,则电路不通.今发现A,B之间电路不通,则焊接点脱落的不同情况有( C )(A)9种(B)11种(C)13种(D)15种解析:按照焊接点脱落的个数进行分类:第1类,脱落1个,有1,4,共2种;第2类,脱落2个,有(1,4),(2,3),(1,2),(1,3),(4,2),(4,3),共6种;第3类,脱落3个,有(1,2,3),(1,2,4),(2,3,4),(1,3,4),共4种;第4类,脱落4个,有(1,2,3,4),共1种.根据分类加法计数原理,共有2+6+4+1=13种焊接点脱落的情况.故选C.6.(2016·青岛模拟)如图所示的五个区域中,中心区域是一幅图画,现在要求在其余四个区域中涂色,现有四种颜色可供选择,要求每一个区域只涂一种颜色,相邻区域所涂颜色不同,则不同的涂色方法种数为( C )(A)64 (B)72 (C)84 (D)96解析:分成两类:A和C同色时有4×3×3=36种;A和C不同色时有4×3×2×2=48种,则一共有36+48=84种.故选C.7.三边长均为正整数,且最大边长为11的三角形的个数是. 解析:另两边长用x,y表示,且不妨设1≤x≤y≤11,要构成三角形,必须x+y≥12.当y取11时,x可取1,2,3,…,11,有11个三角形;当y 取10时,x可取2,3,…,10,有9个三角形;…;当y取6时,x只能取6,只有1个三角形.所以所求三角形的个数为11+9+7+5+3+1=36.答案:368.已知集合M={1,2,3,4},集合A,B为集合M的非空子集,若对∀x∈A,y∈B,x<y恒成立,则称(A,B)为集合M的一个“子集对”,则集合M 的“子集对”共有个.解析:A={1}时,B有23-1种情况;A={2}时,B有22-1种情况;A={3}时,B有1种情况;A={1,2}时,B有22-1种情况;A={1,3},{2,3},{1,2,3}时,B均有1种情况,故满足题意的“子集对”共有7+3+1+3+3=17个.答案:17能力提升(时间:15分钟)9.我们把各位数字之和为6的四位数称为“六合数”(如2 013是“六合数”),则“六合数”中首位为2的“六合数”共有( B ) (A)18个(B)15个(C)12个(D)9个解析:依题意,这个四位数的百位数、十位数、个位数之和为 4.由4,0,0组成3个数分别为400,040,004;由3,1,0组成6个数分别为310,301,130,103,013,031;由2,2,0组成3个数分别为220,202,022;由2,1,1组成3个数分别为211,121,112.共计:3+6+3+3=15个.故选B.10.(2017·玉林市模拟)将1,2,3,…,9这9个数字填在如图的9个空格中,要求每一行从左到右、每一列从上到下分别依次增大.当3,4固定在图中的位置时,填写空格的方法为( A )(A)6种(B)12种(C)18种 (D)24种解析:因为每一行从左到右,每一列从上到下分别依次增大,1,2,9只有一种填法,5只能填在右上角或左下角,5填后与之相邻的空格可填6, 7,8任一个,余下两个数字按从小到大只有一种方法.共有2×3=6种结果.故选A.11.一个旅游景区的游览线路如图所示,某人从P点处进,Q点处出,沿图中线路游览A,B,C三个景点及沿途风景,则不重复(除交汇点O外)的不同游览线路有( D )(A)6种(B)8种(C)12种(D)48种解析:从P点处进入结点O以后,游览每一个景点所走环形路线都有2个入口(或2个出口),游览三个景区的顺序有3×2×1=6(种),每个景区游览方向有2种.因而所求的不同游览线路有3×16=48种.故选D.12.(2017·铜川模拟)从0,1,2,3,4这5个数字中任取3个组成三位数,其中奇数的个数是.解析:从1,3中取一个排个位,故排个位有2种方法;排百位不能是0,可以从另外3个数中取一个,有3种方法;排十位有3种方法.故所求奇数的个数为3×3×2=18.答案:1813.在某运动会的百米决赛上,8名男运动员参加100米决赛.其中甲、乙、丙三人必须在1,2,3,4,5,6,7,8八条跑道的奇数号跑道上,则安排这8名运动员比赛的方式共有种.解析:分两步安排这8名运动员.第一步:安排甲、乙、丙三人,共有1,3,5,7四条跑道可安排.所以安排方式有4×3×2=24种.第二步:安排另外5人,可在2,4,6,8及余下的一条奇数号跑道安排,所以安排方式有5×4×3×2×1=120种.所以安排这8人的方式有24×120=2 880种.答案:2 88014.用红、黄、蓝三种颜色去涂图中标号为1,2,…,9的9个小正方形(如图),使得任意相邻(有公共边)的小正方形所涂颜色都不相同,且标号为1,5,9的小正方形涂相同的颜色,则符合条件的所有涂法共有种.解析:把区域分为三部分,第一部分1,5,9,有3种涂法.第二部分4, 7,8,当5,7同色时,4,8各有2种涂法,共4种涂法;当5,7异色时,7有2种涂法,4,8均只有1种涂法,故第二部分共4+2=6种涂法.第三部分与第二部分一样,共6种涂法.由分步乘法计数原理,可得共有3×6×6=108种涂法.答案:108。
【配套K12】2019高考数学一轮复习课时规范练55分类加法计数原理与分步乘法计数原理理新人教B版
课时规范练55 分类加法计数原理与分步乘法计数原理基础巩固组1.已知两条异面直线a,b上分别有5个点和8个点,则这13个点可以确定不同的平面个数为()A.40B.16C.13D.102.现有6名同学去听同时进行的5个课外知识讲座,每名同学可自由选择其中的一个讲座,不同选法的种数是()A.56B.65C. D.6×5×4×3×23.现有4种不同颜色要对如图所示的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法共有()A.24种B.30种C.36种D.48种4.有a,b,c,d,e共5个人,从中选1名组长和1名副组长,但a不能当副组长,则不同选法的种数是()A.20B.16C.10D.65.我们把各个数位上的数字之和为6的四位数称为“六合数”(如2 013是“六合数”),则“六合数”中首位为2的共有()A.18个B.15个C.12个D.9个6.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有()A.4种B.10种C.18种D.20种7.高三年级的三个班去甲、乙、丙、丁四个工厂参加社会实践,但去哪个工厂可自由选择,甲工厂必须有班级去,则不同的分配方案有()A.16种B.18种C.37种D.48种8.(2017福建漳州质检)将1,2,3,…,9这9个数字填在如图的9个空格中,要求每一行从左到右,每一列从上到下分别依次增大.当3,4固定在图中的位置时,填写空格的方法有()A.6种B.12种C.18种D.24种〚导学号21500585〛9.(2017山东济宁模拟)若甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法共有种.10.三边长均为正整数,且最大边长为11的三角形的个数是.综合提升组11.从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为()A.24B.18C.12D.612.某体育彩票规定:从01至36共36个号中抽出7个号为一注,每注2元.某人想从01至10中选3个连续的号,从11至20中选2个连续的号,从21至30中选1个号,从31至36中选1个号组成一注,则这人把这种特殊要求的号买全,至少要花()A.3 360元B.6 720元C.4 320元D.8 640元13.(2017河南商丘二模,理9)高考结束后高三年级的8名同学准备拼车去旅游,其中一班、二班、三班、四班每班各2名,分别乘甲、乙两辆汽车,每车限坐4名同学(乘同一辆车的4名同学不考虑位置),其中一班的2名同学是孪生姐妹,需乘同一辆车,则乘坐甲车的4名同学中恰有2名同学是来自同一班级的乘坐方式共有()A.18种B.24种C.48种D.36种14.如图所示,一个地区分为5个行政区域,现给该地区的地图涂色,要求相邻区域不得使用同一种颜色,现有4种颜色可供选择,则涂色方法共有的种数为.〚导学号21500586〛15.我们把中间位上的数字最大,而两边依次减小的多位数称为“凸数”.如132,341等,则由1,2,3,4,5可以组成无重复数字的三位凸数的个数是.16.已知集合M={1,2,3,4},集合A,B为集合M的非空子集,若对∀x∈A,y∈B,x<y恒成立,则称(A,B)为集合M的一个“子集对”,则集合M的“子集对”共有个.创新应用组17.(2017重庆一中诊断)对甲、乙、丙、丁四人进行编号,甲不编“1”号、乙不编“2”号、丙不编“3”号、丁不编“4”号的不同编号方法有()A.8种B.9种C.10种D.11种18.如图,在由若干个同样小的平行四边形组成的大平行四边形内有一个★,则含有★的平行四边形共有个.(用数字作答)〚导学号21500587〛参考答案课时规范练55分类加法计数原理与分步乘法计数原理1.C分两类情况讨论:第1类,直线a分别与直线b上的8个点可以确定8个不同的平面;第2类,直线b分别与直线a上的5个点可以确定5个不同的平面.根据分类加法计数原理知,共可以确定8+5=13个不同的平面.2.A6名同学中的每一名同学都可以从5个课外知识讲座中任选一个,由分步乘法计数原理可知不同的选法种数是56.故选A.3.D按A→B→C→D的顺序分四步着色,共有4×3×2×2=48种不同的着色方法.4.B当a当组长时,则共有1×4=4种选法;当a不当组长时,因为a也不能当副组长,则共有4×3=12种选法.因此共有4+12=16种选法.5.B依题意知,这个四位数的百位上的数字、十位、个位上的数字之和为4.由4,0,0组成3个数,分别为400,040,004;由3,1,0组成310,301,130,103,013,031共6个数;由2,2,0组成3个数,分别为220,202,022;由2,1,1组成3个数,分别为211,121,112,共计3+6+3+3=15(个).6.B赠送1本画册,3本集邮册,需从4人中选出1人赠送画册,其余赠送集邮册,有种方法;赠送2本画册,2本集邮册,只需从4人中选出2人赠送画册,其余2人赠送集邮册,有种方法.由分类加法计数原理,知不同的赠送方法有=10(种).7.C三个班去四个工厂,不同的分配方案共43种,甲工厂没有班级去的分配方案共33种,因此满足条件的不同的分配方案共有43-33=37(种).8.A因为每一行从左到右,每一列从上到下分别依次增大,1,2,9只有一种填法,5只能填在右上角或左下角,5填好后与之相邻的空格可填6,7,8中的任一个,余下的两个数字按从小到大只有一种填法.共有2×3=6种填法,故选A.9.24分步完成,首先甲、乙两人从4门课程中同选1门,有4种方法;其次甲从剩下的3门课程中任选1门,有3种方法;最后乙从剩下的2门课程中任选1门,有2种方法.于是,甲、乙所选的课程中恰有1门相同的选法共有4×3×2=24(种).10.36另两边长用x,y(x,y∈N+)表示,不妨设1≤x≤y≤11,要构成三角形,必须x+y≥12.当y取11时,x可取1,2,3,…,11,有11个三角形;当y取10时,x可取2,3,…,10,有9个三角形;……当y取6时,x只能取6,只有1个三角形.所以所求三角形的个数为11+9+7+5+3+1=36.11.B三位数可分成两类,第一类是奇偶奇,其中个位有3种选择,十位有2种选择,百位有2种选择,共有3×2×2=12(个);第二类是偶奇奇,个位有3种选择,十位有2种选择,百位有1种选择,共有3×2×1=6(个).故由分类加法计数原理,可知共有奇数12+6=18(个).故选B.12.D从01至10中选3个连续的号共有8种选法;从11至20中选2个连续的号共有9种选法;从21至30中选1个号有10种选法;从31至36中选1个号有6种选法,由分步乘法计数原理知共有8×9×10×6=4 320种选法,故至少要花4 320×2=8 640(元).13.B第一类,一班的2名同学在甲车上,甲车上剩下的2名要来自不同的班级,从三个班级中选两个有=3种不同的选法,然后分别从选择的班级中再选择1名学生,有=4种不同的选法,故有3×4=12种不同的选法.第二类,一班的2名同学不在甲车上,则从剩下的3个班级中选择一个班级的2名同学在甲车上,有=3种不同的选法,然后再从剩下的两个班级中分别选择1名有=4种不同的选法,这时共有3×4=12种不同的选法.根据分类加法计数原理知,共有12+12=24种不同的乘车方式,故选B.14.72因为区域1与其他4个区域都相邻,首先考虑区域1,有4种涂法,然后再按区域2,4同色和不同色,分为两类:第一类,区域2,4同色,有3种涂法,此时区域3,5均有2种涂法,共有4×3×2×2=48种涂法;第二类,区域2,4不同色,先涂区域2,有3种涂法,再涂区域4,有2种涂法,此时区域3,5都只有1种涂法,共有4×3×2×1×1=24种涂法.根据分类加法计数原理知,共有48+24=72种满足条件的涂色方法.15.20根据“凸数”的特点,中间的数字只能是3,4,5,故分三类,第一类,当中间数字为3时,此时有2种(132,231);第二类,当中间数字为4时,从1,2,3中任取两个放在4的两边,故有=6种;第三类,当中间数字为5时,从1,2,3,4中任取两个放在5的两边,故有=12种;根据分类加法计数原理知,由1,2,3,4,5可以组成无重复数字的三位凸数的个数是2+6+12=20.16.17当A={1}时,B有23-1=7种情况;当A={2}时,B有22-1=3种情况;当A={3}时,B有1种情况;当A={1,2}时,B有22-1=3种情况;当A={1,3},{2,3},{1,2,3}时,B均有1种情况.故满足题意的“子集对”共有7+3+1+3+3=17(个).17.B依题意,符合要求的编号方法为“1”号是乙、丙、丁三人中的某一个.①当乙的编号为“1”时,其他人的编号如下:显然,此时有3种不同的编号方法;②当丙的编号为“1”时,其他人的编号如下:显然,此时有3种不同的编号方法;③当丁的编号为“1”时,其他人的编号如下:显然,此时有3种不同的编号方法.由分类加法计数原理,知不同的编号方法有3+3+3=9(种).18.48含有★的平行四边形的左上角的顶点有4种可能,右下角的顶点有12种可能.由一个左上角顶点和一个右下角顶点就能构成一个平行四边形,所以共有48个含有★的平行四边形.。
高考数学一轮复习 分类加法计数原理与分步乘法计数原理跟踪检测 理(含解析)新人教A版
高考数学一轮复习分类加法计数原理与分步乘法计数原理跟踪检测理(含解析)新人教A版第Ⅰ组:全员必做题1.(2014·福州模拟)高三年级的三个班去甲、乙、丙、丁四个工厂参加社会实践,但去何工厂可自由选择,甲工厂必须有班级要去,则不同的分配方案有()A.16种B.18种C.37种D.48种2.如果一条直线与一个平面平行,那么称此直线与平面构成一个“平行线面组”,在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平行线面组”的个数是()A.60 B.48C.36 D.243.有甲、乙、丙三项任务,甲需2人承担,乙、丙各需1人承担,从10人中选派4人承担这项任务,不同的选法有()A.1 260种B.2 025种C.2 520种D.5 040种4.将甲、乙、丙、丁四名实习老师分到三个不同的班,要求每个班至少分到一名老师,且甲、乙两名老师不能分到同一个班,则不同分法的种数为()A.28 B.24C.30 D.365.(2013·山东高考)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为() A.243 B.252C.261 D.2796.如图所示,在A,B间有四个焊接点1,2,3,4,若焊接点脱落导致断路,则电路不通.今发现A,B之间电路不通,则焊接点脱落的不同情况有()A.9种B.11种C.13种D.15种7.(2014·南充模拟)一个旅游景区的游览线路如图所示,某人从P点处进,Q点处出,沿图中线路游览A,B,C三个景点及沿途风景,则不重复(除交汇点O外)的不同游览线路有()A.6种B.8种C.12种D.48种8.(2013·深圳调研)我们把各位数字之和为6的四位数称为“六合数”(如2 013是“六合数”),则“六合数”中首位为2的“六合数”共有( )A .18个B .15个C .12个D .9个9.一个乒乓球队里有男队员5人,女队员4人,从中选出男、女队员各一名组成混合双打,共有________种不同的选法.10.如果把个位数是1,且恰有3个数字相同的四位数叫作“好数”,那么在由1,2,3,4四个数字组成的有重复数字的四位数中,“好数”共有________个.11.(2013·沈阳模拟)三边长均为正整数,且最大边长为11的三角形的个数是________. 12.(2014·泉州质检)如图所示,一环形花坛分成A ,B ,C ,D 四块,现有四种不同的花供选种,要求在每块花坛里种一种花,且相邻的两块花坛里种不同的花,则不同的种法共有________种.第Ⅱ组:重点选做题1.标号为A ,B ,C 的三个口袋,A 袋中有1个红色小球,B 袋中有2个不同的白色小球,C 袋中有3个不同的黄色小球,现从中取出2个小球.(1)若取出的两个球颜色不同,有多少种取法? (2)若取出的两个球颜色相同,有多少种取法?2.编号为A ,B ,C ,D ,E 的五个小球放在如图所示的五个盒子里,要求每个盒子只能放一个小球,且A 球不能放在1,2号,B 球必须放在与A 球相邻的盒子中,求不同的放法有多少种?答 案第Ⅰ组:全员必做题1.选C 三个班去四个工厂不同的分配方案共43种,甲工厂没有班级去的分配方案共33种,因此满足条件的不同的分配方案共有43-33=37种.2.选B 长方体的6个表面构成的“平行线面组”有6×6=36个,6个对角面构成的3 1 2 45“平行线面组”有6×2=12(个).故共有36+12=48(个).3.选C第一步,从10人中选派2人承担任务甲,有C210种选派方法;第二步,从余下的8人中选派1人承担任务乙,有C18种选派方法;第三步,再从余下的7人中选派1人承担任务丙,有C17种选派方法.根据分步乘法计数原理,知选法为C210·C18·C17=2 520种.4.选C法一:分成两种情况,①甲和丙丁中的一人被分到同一个班或乙和丙丁中的一人被分到同一个班共有2C12A33=24种分法;②丙和丁两人被分到同一个班共有A33=6种分法.于是所求的分法总数为24+6=30.法二:将4名老师分到3个不同的班,有C24C13A22,甲、乙两名老师分到同一个班有C13 A22.∴满足要求的分法有C24C13A22-C13A22=30.5.选B能够组成三位数的个数是9×10×10=900,能够组成无重复数字的三位数的个数是9×9×8=648,故能够组成有重复数字的三位数的个数是900-648=252.6.选C按照焊接点脱落的个数进行分类:第1类,脱落1个,有1,4,共2种;第2类,脱落2个,有(1,4),(2,3),(1,2),(1,3),(4,2),(4,3),共6种;第3类,脱落3个,有(1,2,3),(1,2,4),(2,3,4),(1,3,4),共4种;第4类,脱落4个,有(1,2,3,4),共1种.根据分类加法计数原理,共有2+6+4+1=13种焊接点脱落的情况.7.选D从P点处进入结点O以后,游览每一个景点所走环形路线都有2个入口(或2个出口),若先游览完A景点,再进入另外两个景点,最后从Q点处出有(4+4)×2=16种不同的方法,同理,若先游览B景点,有16种不同的方法,若先游览C景点,有16种不同的方法,因而所求的不同游览线路有3×16=48种.8.选B依题意,这个四位数的百位数、十位数、个位数之和为4.由4、0、0组成3个数分别为400、040、004;由3、1、0组成6个数分别为310、301、130、103、013、031;由2、2、0组成3个数分别为220、202、022;由2、1、1组成3个数分别为211、121、112.共计:3+6+3+3=15个.9.解析:“完成这件事”需选出男、女队员各一人,可分两步进行:第一步选一名男队员,有5种选法;第二步选一名女队员,有4种选法,共有5×4=20(种)选法.答案:2010.解析:当相同的数字不是1时,有C13个;当相同的数字是1时,共有C13C13个,由分类加法计数原理知共有“好数”C13+C13C13=12个.答案:1211.解析:另两边长用x,y表示,且不妨设1≤x≤y≤11,要构成三角形,必须x+y≥12.当y取11时,x可取1,2,3,...,11,有11个三角形;当y取10时,x可取2,3, (10)有9个三角形;…;当y取6时,x只能取6,只有1个三角形.∴所求三角形的个数为11+9+7+5+3+1=36.答案:3612.解析:法一:按所种花的品种多少分成三类:种两种花有A24种种法;种三种花有2A34种种法;种四种花有A44种种法.所以不同的种法共有A24+2A34+A44=84种.法二:按A-B-C-D的顺序种花,可分A,C种同一种花与不种同一种花两种情况,共有4×3×(1×3+2×2)=84种不同的种法.答案:84第Ⅱ组:重点选做题1.解:(1)若两个球颜色不同,则应在A,B袋中各取一个或A,C袋中各取一个或B,C袋中各取一个.∴应有1×2+1×3+2×3=11(种).(2)若两个球颜色相同,则应在B或C袋中取出2个.∴应有1+3=4(种).2.解:根据A球所在位置分三类:(1)若A球放在3号盒子内,则B球只能放在4号盒子内,余下的三个盒子放球C,D,E,则根据分步乘法计数原理得,3×2×1=6种不同的放法;(2)若A球放在5号盒子内,则B球只能放在4号盒子内,余下的三个盒子放球C,D,E,则根据分步乘法计数原理得,3×2×1=6种不同的放法;(3)若A球放在4号盒子内,则B球可以放在2号,3号,5号盒子中的任何一个,余下的三个盒子放球C,D,E有A33=6种不同的放法,根据分步乘法计数原理得,3×3×2×1=18种不同方法.综上所述,由分类加法计数原理得不同的放法共有6+6+18=30种.。
高考总动员高考数学总复习 课时提升练55 分类加法计数原理与分步乘法计数原理 理 新人教版
课时提升练(五十五) 分类加法计数原理与分步乘法计数原理一、选择题1.现有6名同学去听同时进行的5个课外知识讲座,每名同学可自由选择其中的一个讲座,不同选法的种数是( )A.56B.65C.5×6×5×4×3×22D.6×5×4×3×2【解析】由分步乘法计数原理得5×5×5×5×5×5=56.【答案】 A2.三个人踢毽,互相传递,每人每次只能踢一下,由甲开始踢,经过5次传递后,毽又被踢回给甲,则不同的传递方式共有( )A.6种B.8种C.10种D.16种【解析】如下图,甲第一次传给乙时有5种方法,同理,甲传给丙也可以推出5种情况,综上有10种传法.【答案】 C3.某市汽车牌照号码可以上网自编,但规定从左到右第二个号码只能从字母B、C、D 中选择,其他四个号码可以从0~9这十个数字中选择(数字可以重复),有车主第一个号码(从左到右)只想在数字3、5、6、8、9中选择,其他号码只想在1、3、6、9中选择,则他的车牌号码可选的所有可能情况有( )A.180种 B.360种C.720种 D.960种【解析】按照车主的要求,从左到右第一个号码有5种选法,第二位号码有3种选法,其余三位号码各有4种选法.因此车牌号码可选的所有可能情况有5×3×4×4×4=960(种).【答案】 D4.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( )A.60种 B.63种 C.65种 D.66种【解析】先找出和为偶数的各种情况,再利用分类加法计数原理求解.满足题设的取法可分为三类:一是四个奇数相加,其和为偶数,在5个奇数1,3,5,7,9中,任意取4个,有C45=5(种);二是两个奇数加两个偶数其和为偶数,在5个奇数中任取2个,再在4个偶数2,4,6,8中任取2个,有C25·C24=60(种);三是四个偶数相加,其和为偶数,4个偶数的取法有1种,所以满足条件的取法共有5+60+1=66(种).【答案】 D5.(2013·四川高考)从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a,b,共可得到lg a-lg b的不同值的个数是( )A.9 B.10 C.18 D.20【解析】从1,3,5,7,9这五个数中每次取出两个不同数的排列个数为A25=20,但lg 1-lg 3=lg 3-lg 9,lg 3-lg 1=lg 9-lg 3,所以不同值的个数为20-2=18,故选C.【答案】 C6.集合P={x,1},Q={y,1,2},其中x,y∈{1,2,3,…,9},且P⊆Q.把满足上述条件的一对有序整数对(x,y)作为一个点的坐标,则这样的点的个数是( ) A.9 B.14 C.15 D.21【解析】∵P={x,1},Q={y,1,2},且P⊆Q,∴x∈{y,1,2}.∴当x=2时,y=3,4,5,6,7,8,9,共有7种情况;当x=y时,x=3,4,5,6,7,8,9,共有7种情况.共有7+7=14种情况.即这样的点的个数为14.【答案】 B7.(2014·济南模拟)已知两条异面直线a,b上分别有5个点和8个点,则这13个点可以确定不同的平面个数为( )A.40 B.16 C.13 D.10【解析】分两类情况讨论:第1类,直线a分别与直线b上的8个点可以确定8个不同的平面;第2类,直线b分别与直线a上的5个点可以确定5个不同的平面.根据分类加法计数原理知,共可以确定8+5=13个不同的平面.【答案】 C8.(2014·杭州模拟)如果一条直线与一个平面平行,那么称此直线与平面构成一个“平行线面组”.在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平行线面组”的个数是( )A.60 B.48 C.36 D.24【解析】长方体的6个表面构成的“平行线面组”个数为6×6=36,另含4个顶点的6个面(非表面)构成的“平行线面组”个数为6×2=12,故符合条件的“平行线面组”的个数是36+12=48.【答案】 B9.甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面.不同的安排方法共有( ) A.20种 B.30种 C.40种 D.60种【解析】分三类:甲在周一,共有A24种排法;甲在周二,共有A23种排法;甲在周三,共有A22种排法;∴A24+A23+A22=20.【答案】 A10.如果一个三位正整数如“a1a2a3”满足a1<a2,且a2>a3,则称这样的三位数为凸数(如120,343,275等),那么所有凸数的个数为( )A.240 B.204 C.729 D.920【解析】若a2=2,则“凸数”为120与121,共1×2=2个,若a2=3,则“凸数”共2×3=6个,若a2=4,满足条件的“凸数”有3×4=12个,…,若a2=9,满足条件的“凸数”有8×9=72个.∴所有凸数有2+6+12+20+30+42+56+72=240(个).【答案】 A11.已知a,b∈{0,1,2,…,9},若满足|a-b|≤1,则称a,b“心有灵犀”,则a,b“心有灵犀”的情形的种数为( )A.9 B.16 C.20 D.28【解析】当a为0时,b只能取0,1两个数;当a为9时,b只能取8,9两个数;当a为其他数时,b都可以取3个数.故共有28种情形.【答案】 D12.用0,1,2,3,4,5六个数字组成无重复数字的四位数,若把每位数字比其左邻的数字小的数叫做“渐降数”,则上述四位数中“渐降数”的个数为( )A.14 B.15 C.16 D.17【解析】由题意知,只需找出组成“渐降数”的四个数字即可,等价于从六个数字中去掉两个数字.从前向后先取0,有0与1,0与2,0与3,0与4,0与5,共5种情况;再取1,有1与2,1与3,1与4,1与5,共4种情况;依次向后分别有3,2,1种情况.根据分类加法计数原理,满足条件的“渐降数”共有1+2+3+4+5=15个.【答案】 B二、填空题13.在平面直角坐标系内,点P(a,b)的坐标满足a≠b,且a,b都是集合{1,2,3,4,5,6}中的元素,又点P到原点的距离|OP|≥5.则这样的点P的个数为________.【解析】依题意可知:当a=1时,b=5,6两种情况;当a=2时,b=5,6两种情况;当a=3时,b=4,5,6三种情况;当a=4时,b=3,5,6三种情况;当a=5或6,b各有5种情况.所以共有2+2+3+3+5+5=20种情况.【答案】2014.(2014·沈阳模拟)一生产过程有四道工序,每道工序需要安排一人照看,现从甲、乙、丙等6名工人中安排4人分别照看一道工序,第一道工序只能从甲、乙两工人中安排1人,第四道工序只能从甲、丙两工人中安排1人,则不同的安排方案共有________种.【解析】按甲先分类,再分步.①若甲在第一道工序,则第四道工序只能是丙,其余两道工序的按排方法有4×3=12种;②若乙在第一道工序,则第四道工序从甲、丙两人中选一人,有2种方法,其余两道工序有4×3=12种方法,所以共有12×2=24种方法.综上可知,共有的安排方法有12+24=36种.【答案】3615.某班新年联欢会原定的6个节目已排成节目单,开演前又增加了3个新节目,如果将这3个新节目插入节目单中,那么不同的插法种数有________种.【解析】分三步,先插一个新节目,有7种方法,再插第二个新节目,有8种方法,最后插第三个节目,有9种方法.故共有7×8×9=504种不同的插法.【答案】504图101616.如图1016所示,一环形花坛分成A,B,C,D四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数有________种.【解析】可依次种A、B、C、D四块,当C与A种同一种花时,有4×3×1×3=36(种)种法;当C与A所种花不同时,有4×3×2×2=48(种)种法,由分类加法计数原理,不同的种法总数为36+48=84.【答案】84。
人教版高三理科数学课后习题(含答案)课时规范练55分类加法计数原理与分步乘法计数原理
课时规范练55分类加法计数原理与分步乘法计数原理基础巩固组1.(2019河北阜平一中模仿,5)将6名留学归国人员分配到济南、青岛两地工作,若济南至少安排2人,青岛至少安排3人,则不同的安排方法数是( )A.120B.150C.35D.652.(2019安徽蚌埠质检,7)某电商为某次活动设计了“和谐”“爱国”“敬业”三种红包,活动规定每人可以依次点击4次,每次都会得到三种红包的一种,若集全三种即可获奖,但三种红包出现的顺序不同对应的奖次也差别.员工甲按规定依次点击了4次,直到第4次才获奖.则他获得奖次的不同情形种数为( )A.9B.12C.18D.243.(2019湖南师范大学附中、岳阳一中等六校联考,7)若m,n均为非负整数,在做m+n的加法时各位均不进位(例如:2 019+100=2 119),则称(m,n)为“简单的”有序对,而m+n称为有序对(m,n)的值,那么值为2 019的“简单的”有序对的个数是( )4.(2019贵州铜仁一中模仿,7)现有4种不同的颜色要对图形中(如图)的四个部门涂色,要求有公共边的两部门不克不及用统一颜色,则不同的涂色方法有( )种A.24B.30C.48D.505.某学校开设“蓝天工程博览课程”,组织6个年级的学生外出参观包括甲博物馆在内的6个博物馆,每个年级任选一个博物馆观光,则有且只有两个年级选择甲博物馆的方案有( )A.A62×A54种B.A62×54种C.C62×54种D.C62×A54种6.(2019黑龙江大庆模仿,8)数学与自然、生存相伴相随,无论是蜂的繁殖纪律,树的分枝,照旧钢琴音阶的分列,当中都蕴含了一个美丽的数学模型Fibonacci(斐波那契数列):1,1,2,3,5,8,13,21…,这个数列前两项都是1,从第三项起,每一项都即是前面两项之和,请你联合斐波那契数列,尝试解答下面的问题:小明走楼梯,该楼梯一共8级台阶,小明每步能够上一级或二级,请问小明的不同走法种数是( )7.将数字1,2,3,4填入表格内,要求每行、每列的数字互不雷同,如图所示,则不同的填表方式共有( )种A.432B.576C.720D.8648.(2019河北衡水模仿,14)从集合{1,2,3,4,…,10}中,选出5个数构成子集,使得这5个数中任意两个数的和都不等于11,则这样的子集有个.9.(2019内蒙古赤峰一模,14)某校从6名教师中选派3名教师去完成4项差别的工作,每人至少完成一项,每项工作由1人完成,此中甲和乙差别去,甲和丙只能同去或同不去,则不同的选派方案种数是.10.(2019福建宁德质检,14)中国古代十进制的算筹计数法,在数学史上是一个巨大的创造,算筹实际上是一根根同样是非的小木棍.如图,是利用算筹表示数1~9的一种要领.例如:137可表示为“”,26可表示为“”.现有6根算筹,据此表现要领,若算筹不克不及剩余,则可以用1~9这9个数字表示三位数的个数为.综合提升组11.(2019江西南康中学模仿,7)任取集合{1,2,3,4,…,10}中三个不同数a1,a2,a3,且满足a2-a1≥2,a3-a2≥3,则选取这样的三个数的方法种数共有( )A.27B.30C.35D.4812.把2支雷同的晨曦签字笔,3支雷同的好汉钢笔,全部分给4名优秀学生,每名学生至少1支,则不同的分法有( )A.24种B.28种C.32种D.36种13.现有红、黄、蓝、绿四个骰子,每个骰子的六个面上的数字分别为1,2,3,4,5,6.若同时掷这四个骰子,则四个骰子朝上的数字之积等于24的情形共有种(请用数字作答).14.(2019河南南阳一中模仿,14)如图,矩形的对角线把矩形分成A,B,C,D四部分,现用5种不同颜色给四部门涂色,每部分涂1种颜色,要求共边的两部门颜色各别,则共有种不同的涂色方法(用数字作答).15.(2019江苏泰州模仿,11)在冬奥会志愿者运动中,甲、乙等5人报名参加了A,B,C三个项目的志愿者工作,因工作必要,每个项目仅需1名志愿者,且甲不能参加A,B项目,乙不能参加B,C项目,那么共有种不同的志愿者分派方案.(用数字作答)创新应用组16.将数字“124470”重新排列后得到不同的偶数个数为()A.180B.192C.204D.26417.(2019江苏连云港模仿,14)已知x,y∈N*,满足,则所有数对(x,y)的个数是.18.如图,在由若干个同样小的平行四边形组成的大平行四边形内有一个★,则含有★的平行四边形共有个.(用数字作答)参考答案课时规范练55分类加法计数原理与分步乘法计数原理1.C 6名留学归国人员分配到济南、青岛两地工作.若济南至少安排2人,青岛至少安排3人,分两类,第一类,青岛安排3人,济南安排3人,有=20种;第二类,青岛安排4人,济南安排2人,有=15种.根据分类计数原理可得20+15=35种.故选C.2.C根据题意,若员工甲直到第4次才获奖,则其第4次才集全“和谐”“爱国”“敬业”三种红包,则甲第4次获得的红包有3种情况,前三次获得的红包为其余的2种,有23-2=6种情况,则他获得奖次的不同情形种数为3×6=18种.故选C.3.C 由题意可知,只要确定了m,n即可确定,则可确定一个有序数对(m,n),则对于数m,使用分步计数原理,第一位取法有3种:0,1,2;第二位取法有1种:0;第三位取法有2种:0,1;第四位取法有10种:0,1,2,3,4,5,6,7,8,9;所以值为2 019的“简单的”有序对的个数是3×1×2×10=60.故选C.4.C 根据题意,对于区域A,有4种颜色可选,有4种涂色方法;对于区域B,与区域A相邻,有3种颜色可选,有3种涂色方法;对于区域C,与区域A,B相邻,有2种颜色可选,有2种涂色方法;对于区域D,与区域A,C相邻,有2种颜色可选,有2种涂色要领.则不同的涂色方法有4×3×2×2=48种.故选C.5.C 因为有且只有两个年级选择甲博物馆,所以参观甲博物馆的年级有种环境,其余年级均有5种选择,所以共有54种情况,根据分步乘法计数原理可得共有54种情况,故选C.6.B递推:登上第1级:1种;登上第2级:2种;登上第3级:1+2=3种(前一步要么从第1级迈上来,要么从第2级迈上来);登上第4级:2+3=5种(前一步要么从第2级迈上来,要么从第3级迈上来);登上第5级:3+5=8种;登上第6级:5+8=13种;登上第7级:8+13=21种;登上第8级:13+21=34种,故选B.7.B 对符合题意的一种填法如图,行交换共有=24种,列交换共有=24种,所以根据分步乘法计数原理得到不同的填表方式共有24×24=576种,故选B.8.32 由题意,将和等于11的放在一组:1和10,2和9,3和8,4和7,5和6.从每一小组中取一个,有=2种,共有2×2×2×2×2=32个.9.252 因为3名教师去完成4项差别的工作,每人至少完成一项,每项工作由1人完成,所以当3名西席确定时,则其中1人必须完成两项工作,故安排3名教师完成4项工作,可以先确定完成两项工作的1名人员,其方法有,然后再确定完成的工作,其方法有,然后再将剩下的两项工作分派给剩下的两人,其方法有,故当3名西席确定时,完成工作的要领有种.由于甲和乙差别去,甲和丙只能同去或同不去,故有三种要领选择西席,第一种方法:甲参加,乙不参加,丙参加,再从剩下的3人中选择1人,其要领有种,第二种方法:甲不参加,乙参加,丙不参加,再从剩下的3人中选择2人,其要领有种,第三种方法:甲不参加,乙不参加,丙不参加,再从剩下的3人中选择3人,其方法有种;故最终选派的方法为()=252种.10.38 分环境讨论,当百位数为1时,十位数为1有2种,十位数为2有2种,十位数为3有2种,十位数为4有1种,为6有2种,为7有2种,为8有1种;当百位数为2时,十位数为1有2种,为2有2种,为3有1种,为6有2种,为7有1种;当百位数为3时,十位数为1有2种,十位数为2有1种,为6有1种;当百位数为4时,只有1种;当百位数为6时,十位数为1有2种,为2有2种,为3有1种,为6有2种,为7有1种;当百位数为7时,十位数为1有2种,为2有1种,为6有1种;当百位数为8,只有一种,一共有38种.11.C第一类,a3-a1=5,a1,a3的值有5种情况,则a2只有1种情况,共有5×1=5种情况;第二类,a3-a1=6,a1,a3的值有4种情况,则a2有2种情况,共有4×2=8种情况;第三类,a3-a1=7,a1,a3的值有3种情况,则a2有3种情况,共有3×3=9种情况;第四类,a3-a1=8,a1,a3的值有2种情况,则a2有4种情况,共有2×4=8种情况;第五类,a3-a1=9,a1,a3的值有1种情况,则a2有5种情况,共有1×5=5种情况;则选取这样的三个数方法种数共有5+8+9+8+5=35种,故选C.12.B 第一类,有一个人分到一支钢笔和一支签字笔,这种情况下的分法:先将一支钢笔和一支签字笔分给一个人,有4种分法,将剩余的2支钢笔, 1支签字笔分给剩余3名同学,有3种分法,共有3×4=12种不同的分法;第二类,有一自己分到两支签字笔,这种情况下的分法:先将两支签字笔分给一个人,有4种情况,将剩余的3支钢笔分给剩余3个人,只有1种分法,共有4×1=4种不同的分法;第三类,有一个人分到两支钢笔,这种情况的分法:先将两支钢笔分给一个人,有4种情况,再将剩余的两支签字笔和一支钢笔分给剩余的3个人,有3种分法,那共有3×4=12种差别的分法.综上所述,总共有12+4+12=28种差别的分法.故选B.13.52 因为24=6×4×1×1=6×2×2×1=4×3×2×1=3×2×2×2,对于上述四种情况掷这四个骰子时,分别有=12,=12,=24,=4种情形,综上共有12+12+24+4=52种情形.14.260 由题意,区域A有5种涂色要领.区域B有4种涂色要领.区域C的涂色方法可分2类:若C与A涂同色,区域D有4种涂色要领.若C与A涂不同色,此时区域C有3种涂色要领,区域D也有3种涂色要领.所以共有5×4×4+5×4×3×3=260种涂色要领.15.21 若甲,乙都参加,则甲只能参加C项目,乙只能参加A项目,有3种方法;若甲参加,乙不参加,则甲只能参加C项目,有=6种方法;若甲参加,乙不参加,则乙只能参加A项目,有=6种方法;若甲不到场,乙不参加,有=6种方法.凭据分类计数原理,共有3+6+6+6=21种.16.C根据题意,分3种情况讨论:①个位数字为0,在前面5个数位中任选2个,安排2个数字4,有C52=10种情况,将剩下的3个数字全分列,摆设在其他的数位,有=6种情况,则此时有10×6=60个偶数.②个位数字为2,0不克不及在首位,有4种情况,在剩下的4个数位中任选2个,安排2个数字4,有C42=6种情况,将剩下的2个数字全分列,摆设在其他的数位,有=2种情况,则此时有4×6×2=48个偶数.③个位数字为4,0不克不及在首位,有4种情况,将剩下的4个数字全分列,摆设在其他的数位,有=24种情况,则此时有4×24=96个偶数.共有60+48+96=204个差别的偶数.故选C.17.4因为1x −1y=12019,即2 019y-2 019x=xy,所以(x-2 019)(y+2 019)=-2 0192.因为已知x,y∈N*,所以y+2 019>0,x-2 019<0.又2 019=3×673,故有以下情况:若x-2 019=-3,y+2 019=673×2 019,得x=2 016,y=1 356 768,若x-2 019=-9,y+2 019=6732,得x=2 010,y=450 910,若x-2 019=-673,y+2 019=3×2 019,得x=1 346,y=4 038,若x-2 019=-1,y+2 019=2 0192,得x=2 018,y=2 019×2 018,即(x,y)的值共4个.18.48 含有★的平行四边形.左上角的顶点有4种可能,右下角的顶点有12种可能.由一个左上角顶点和一个右下角顶点就能组成一个平行四边形,所以共有48个含有★的平行四边形.11。
2019届高考理科数学一轮复习课时提升作业:第10章 10.1《分类加法计数原理与分步乘法计数原理》(含答案)
课时提升作业六十四分类加法计数原理与分步乘法计数原理(25分钟 50分)一、选择题(每小题5分,共35分)1.教学大楼共有五层,每层均有两个楼梯,由一层到五层的走法有 ( )A.10种B.25种C.52种D.24种【解析】选D.每相邻的两层之间各有2种走法,共分4步,由分步乘法计数原理,共有24种不同的走法.2.设集合A={1,2,3,4},m,n∈A,则方程+=1表示焦点位于x轴上的椭圆有( ) A.6个 B.8个 C.12个 D.16个【解析】选A.分三类,当n=1时,有m=2,3,4,共3个;当n=2时,有m=3,4,共2个;当n=3时,有m=4,共1个.由分类加法计数原理得共有3+2+1=6(个).【加固训练】(2019·沈阳模拟)椭圆+=1的焦点在y轴上,且m∈{1,2,3,4,5},n∈{1,2,3,4,5,6,7},则这样的椭圆的个数为 .【解析】以m的值为标准分类,分为五类.第1类:当m=1时,使n>m的n有6种选择;第2类:当m=2时,使n>m的n有5种选择;第3类:当m=3时,使n>m的n有4种选择;第4类:当m=4时,使n>m的n有3种选择;第5类:当m=5时,使n>m的n有2种选择.由分类加法计数原理,符合条件的椭圆共有20个.答案:203.(2019·开封模拟)甲、乙、丙三个人踢毽子,互相传递,每人每次只能踢一下,由甲开始踢,经过4次传递后,毽子又被踢回给甲,则不同的传递方式共有( ) A.4种 B.6种 C.10种 D.16种【解题提示】按甲先传给乙,先传给丙两种情况分类计数.【解析】选B.第一类:甲先传给乙,如图所示.,有3种传法.第二类:甲先传给丙时也有3种传法,由分类加法计数原理,共有3+3=6(种)传递方法.4.(2019·滨州模拟)集合P={x,1},Q={y,1,2},其中x,y∈{1,2,3,…,9},且P⊆Q.把满足上述条件的一个有序整数对(x,y)作为一个点的坐标,则这样的点的个数是 ( )A.9B.14C.15D.21【解析】选B.当x=2时,x≠y,点的个数为1×7=7(个);当x≠2时,x=y,点的个数为7×1=7(个),则共有14个点.5.如果一个三位正整数如“a1a2a3”满足a1<a2,且a2>a3,则称这样的三位数为凸数(如120,343,275等),那么所有凸数的个数为 ( )A.240B. 204C.729D.920【解题提示】按a2取2,3,4,…,9分8类计数.【解析】选A.若a2=2,则“凸数”为120与121,共2个,若a2=3,则“凸数”有2×3=6(个),若a2=4,满足条件的“凸数”有3×4=12(个),…,若a2=9,满足条件的“凸数”有8×9=72(个), 所以所有凸数有2+6+12+20+30+42+56+72=240(个).6.(2019·济宁模拟)用4种不同的颜色填涂如图所示的1,2,3,4,5五个区域,要求一区一色,邻区异色,则不同的填涂方法种数是 ( )A.120B.96C.72D.48【解题提示】先涂区域1有4种方法,区域2有3种涂色方法,区域3有2种涂色方法,区域4有2种涂色方法,区域5有2种涂色方法,根据分步乘法计数原理,问题得以解决.【解析】选B.先涂区域1有4种方法,区域2有3种涂色方法,区域3有2种涂色方法,区域4有2种涂色方法,区域5有2种涂色方法,根据分步乘法计数原理,得到共有4×3×2×2×2=96(种).【加固训练】用1,3,5,7,9五个数字中的三个替换直线方程Ax+By+C=0中的A,B,C,若A,B,C的值互不相同,则不同的直线共有 ( )A.25条B.60条C.80条D.181条【解题提示】A,B,C的值互不相同,用1,3,5,7,9五个数字来替换,是分步乘法计数原理.【解析】选B.用1,3,5,7,9五个数字中的三个来替换A,B,C;A,B,C的值互不相同,是分步乘法计数原理,直线条数是5×4×3=60.7.(2019·福州模拟)设集合I={1,2,3,4,5},选择I的两个非空子集A和B,要使B中最小的数大于A中最大的数,则不同的选择方法共有 ( )A.50种B.49种C.48种D.47种【解题提示】以A中最大的数为标准,进行分类讨论,A中最大的数可能为1,2,3,4共四种情况. 【解析】选B.当A中最大的数为1时,B可以是{2,3,4,5}的非空子集,即有24-1=15(种)方法; 当A中最大的数为2时,A可以是{2},也可以是{1,2},B可以是{3,4,5}的非空子集,即有2×(23-1)=14(种)方法;当A中最大的数为3时,A可以是{3},{1,3},{2,3},{1,2,3},B可以是{4,5}的非空子集,即有4(22-1)=12(种)方法;当A中最大的数为4时,A可以是{4},{1,4},{2,4},{3,4},{1,2,4},{1,3,4},{2,3,4},{1,2,3,4},B可以是{5},有8×1=8(种)方法,故共有15+14+12+8=49(种)方法.二、填空题(每小题5分,共15分)8.若在正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,则一个正五棱柱对角线共有条.【解析】如图,在正五棱柱ABCDE-A1B1C1D1E1中,从顶点A出发的对角线有两条:AC1,AD1,同理从B,C,D,E点出发的对角线也有两条,共2×5=10(条).答案:10【加固训练】(2019·安徽高考)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有 ( )A.24对B.30对C.48对D.60对【解析】选C.与正方体的一个面上的一条对角线成60°角的对角线有8条,故共有8对,正方体的12条面对角线共有96对,且每对均重复计算一次,故共有=48对.9.(2019·北京模拟)三边长均为正整数,且最大边长为11的三角形的个数为 .【解析】由题意知本题是一个分类计数问题,另外两边长用x,y表示,且不妨设1≤x≤y≤11,要构成三角形,必须x+y≥12.当y取值11时,x=1,2,3,…,11,可有11个三角形;当y取值10时,x=2,3,…,10,可有9个三角形;当y取值分别为9,8,7,6时,x取值个数分别是7,5,3,1,所以根据分类加法计数原理知所求三角形的个数为11+9+7+5+3+1=36.答案:3610.(2019·青岛模拟)用红,黄,蓝,绿,黑这5种颜色给如图所示的四连圆涂色,要求相邻两个圆所涂颜色不能相同,红色至少要涂两个圆,则不同的涂色方案种数为 .【解析】根据题意,红色至少要涂两个圆,而且相邻两个圆所涂颜色不能相同,则红色只能涂第一、三个圆、第二、四个圆或第一、四个圆,分3种情况讨论:①用红色涂第一、三个圆,此时第2个圆不能为红色,有4种涂色方法,第4个圆也不能为红色,有4种涂色方法,则此时共有4×4=16(种)涂色方案;②同理,当用红色涂第二、四个圆也有16种涂色方案;③用红色涂第一、四个圆,此时需要在剩下的4种颜色中,任取2种,涂在第二、三个圆中,有=12(种)涂色方案;则一共有16+16+12=44(种)不同的涂色方案.答案:44(20分钟 35分)1.(5分)(2019·烟台模拟)某体育彩票规定:从01至36共36个号中抽出7个号为一注,每注2元.某人想从01至10中选3个连续的号,从11至20中选2个连续的号,从21至30中选1个号,从31至36中选1个号组成一注,则这人把这种特殊要求的号买全,至少要花 ( )A.3360元B.6720元C.4320元D.8640元【解题提示】根据题意,依次计算“01至10中三个连号的个数”、“11至20中两个连号的个数”、“21至30中单选号的个数”、“31至36中单选号的个数”,进而由分步乘法计数原理计算可得答案.【解析】选D.从01至10中选3个连续的号共有8种选法;从11至20中选2个连续的号共有9种选法;从21至30中选1个号有10种选法;从31至36中选一个号有6种选法,由分步乘法计数原理知共有8×9×10×6=4320(种)选法,至少需花4320×2=8640(元).【加固训练】如图所示,在A,B间有四个焊接点1,2,3,4,若焊接点脱落导致断路,则电路不通.今发现A,B之间电路不通,则焊接点脱落的不同情况有 ( )A.9种B.11种C.13种D.15种【解析】选C.按照焊接点脱落的个数进行分类:第1类,脱落1个,有1,4,共2种;第2类,脱落2个,有(1,4),(2,3),(1,2),(1,3),(4,2),(4,3),共6种;第3类,脱落3个,有(1,2,3),(1,2,4),(2,3,4),(1,3,4),共4种;第4类,脱落4个,有(1,2,3,4),共1种.根据分类加法计数原理,共有2+6+4+1=13种焊接点脱落的情况.2.(5分)(2019·成都模拟)设三位数n=(即n=100a+10b+c,其中a,b,c∈N*),若以a,b,c 为三条边的长可以构成一个等腰(含等边)三角形,则这样的三位数n有 ( )A.45个B.81个C.165个D.216个【解析】选C.由题意知以a,b,c为三条边的长可以构成一个等腰(含等边)三角形,先考虑等边三角形情况,则a=b=c=1,2,3,4,5,6,7,8,9,此时n有9个,再考虑等腰三角形情况,若a,b是腰,则a=b,当a=b=1时,c<a+b=2,则c=1,与等边三角形情况重复;当a=b=2时,c<4,则c=1,3(c=2的情况等边三角形已经讨论了),此时n有2个;当a=b=3时,c<6,则c=1,2,4,5,此时n有4个;当a=b=4时,c<8,则c=1,2,3,5,6,7,有6个;当a=b=5时,c<10,则c=1,2,3,4,6,7,8,9,有8个;当a=b=6,7,8,9时,c各有8个.由分类加法计数原理知n有2+4+6+8+8+8+8+8=52(个),同理,若a,c是腰时也有52个,b,c是腰时也有52个,所以n共有9+3×52=165(个).【加固训练】1.(2019·菏泽模拟)将一个四棱锥S-ABCD的每个顶点染上一种颜色,并使同一条棱的两个端点异色,如果只有5种颜色可供使用,那么不同的染色方法的总数是 .【解析】设想染色按S-A-B-C-D的顺序进行,对S,A,B染色,有5×4×3=60(种)染色方法.由于C点的颜色可能与A同色或不同色,这影响到D点颜色的选取方法数,故分类讨论:C与A同色时(此时C对颜色的选取方法唯一),D应与A(C),S不同色,有3种选择;C与A不同色时,C有2种可选择的颜色,D也有2种颜色可供选择.从而对C,D染色有1×3+2×2=7(种)染色方法.由分步乘法计数原理,总的染色方法有60×7=420(种).答案:420【一题多解】本题还可以用以下方法求解根据所用颜色种数分类可分三类:第一类:用三种颜色,此时A与C,B与D分别同色,问题相当于从5种颜色中选3种涂三个点.共=60(种)涂法;第二类:用4种颜色,此时A与C,B与D中有且只有一组同色,涂法种数为2=240(种); 第三类:用5种颜色,涂法种数共有=120(种).综上可知,满足题意的染色方法总数为60+240+120=420(种).答案:4202.用红、黄、蓝三种颜色去涂图中标号为1,2,…,9的9个小正方形(如图),使得任意相邻(有公共边)的小正方形所涂颜色都不相同,且标号为1,5,9的小正方形涂相同的颜色,则符合条件的所有涂法共有种.【解析】把区域分为三部分,第一部分1,5,9,有3种涂法.第二部分4,7,8,当5,7同色时,4,8各有2种涂法,共4种涂法;当5,7异色时,7有2种涂法,4,8均只有1种涂法,故第二部分共4+2=6种涂法.第三部分2,3,6与第二部分一样,共6种涂法.由分步乘法计数原理,可得共有3×6×6=108(种)涂法.答案:1083.(12分)给程序命名,需要用3个字符,其中首字符要求用字母A~G或U~Z,后两个要求用数字1~9.问最多可以给多少个程序命名?【解题提示】要给一个程序命名,可以分三个步骤:第1步,选首字符;第2步,选中间字符;第3步,选最后一个字符.而首字符又可以分为两类.【解析】先计算首字符的选法.由分类加法计数原理,首字符共有7+6=13种选法.再计算可能的不同程序名称.由分步乘法计数原理,最多可以有13×9×9=1053个不同的名称,即最多可以给1053个程序命名.4.(13分)某小组有10人,每人至少会英语和法语中的一门,其中8人会英语,5人会法语.(1)从中任选一个会外语的人,有多少种选法?(2)从中选出会英语与会法语的各1人并安排到相应工作岗位,有多少种不同的安排方法? 【解析】由于8+5=13>10,所以10人中必有3人既会英语又会法语,5人只会英语,2人只会法语.(1)可分类完成此事:一类是只会英语,一类是既会英语也会法语,一类是只会法语,共有5+3+2=10(种).(2)分4类,共有N=5×2+5×3+2×3+3×2=37(种)方法.。
2019高考数学(全国、理科)一轮复习课件:第55讲 分类加法计数原理与分步乘法计数原理
栏目 导引
专题一
集合、常用逻辑用语、函数与导数、不等式
课前双基巩固
题组二 常错题
索引:分类、分步时出错或对概念的理解出错.
4.满足 a,b∈ -1,0,1,2 ,且关于 x 的 [答案] 13
[解析] 方程 ax2+2x+b=0 有实数解,分析 方程 ax +2x+b=0 有实数解的有序数对 讨论:①当 a=0 时,原方程很显然为垂直 a,b的个数为________. 于 x 轴的直线方程,有实数解,此时 b 可以 取 4 个值,故有 4 个有序数对;②当 a≠0 时,需要 Δ=4-4ab≥0,即 ab≤1,显然有 3 个实数对不满足题意,分别为(1,2),(2, 1),(2,2),因为(a,b)共有 3×4=12(个) 实数对,所以满足条件的有 9 个实数对.根 据分类加法计数原理知,所求有序数对的个 数为 4+9=13.
[解析] A 分别从 2 名教 师中选 1 名,4 名学生中 选 2 名安排到甲地参加 社会实践活动即可, 则乙 地就安排剩下的教师与 学生, 故不同的安排方法 2 共有 C1 2C4=12(种).故选 A.
栏目 导引
专题一
集合、常用逻辑用语、函数与导数、不等式
课前双基巩固
知识聚焦
基本形式 一般形式 区别 分 类 加 完成一件事有两类不同方案,在 完成一件事需要两个步骤, 做第 1 分类加法计数原理与分步乘法 法 计 数 第 1 类方案中有 m 种不同的方法, 步有 m 种不同的方法,做第 2 步 计数原理,都涉及完成一件事 原理 在第 2 类方案中有 n 种不同的方 有 n 种不同的方法,那么完成这 情的不同方法种数.它们的区 法,那么完成这件事共有 N = 件 事 共 有 N = 别在于:分类加法计数原理与 用其中的任何一种方法都可以
高考数学(理)一轮规范练【55】分类加法计数原理与分步乘法计数原理(含答案)
课时规范练55分类加法计数原理与分步乘法计数原理课时规范练第85页一、选择题1.5名应届毕业生报考3所高校,每人报且仅报1所院校,则不同的报名方法的种数是( )A.35B.53C.D.答案:A解析:第n名应届毕业生报考的方法有3种(n=1,2,3,4,5),根据分步计数原理,不同的报名方法共有3×3×3×3×3=35(种).2.已知集合M∈{1,-2,3},N∈{-4,5,6,-7},从两个集合中各取一个元素作为点的坐标,则这样的坐标在平面直角坐标系中可表示第一、二象限内不同的点的个数是( )A.18B.10C.16D.14答案:D解析:M中元素作为横坐标,N中元素作为纵坐标,则在第一、二象限内点的个数有3×2=6;M中元素作为纵坐标,N中元素作为横坐标,则在第一、二象限内点的个数有2×4=8,共有6+8=14个.3.某位高三学生要参加高校自主招生考试,现从6所高校中选择3所报考,其中2所学校的考试时间相同,则该学生不同的报名方法种数是( )A.12B.15C.16D.20答案:C解析:若该考生不选择两所考试时间相同的学校,有=4种报名方法;若该考生选择两所考试时间相同的学校之一,有=12种报名方法,故共有4+12=16种不同的报名方法.4.甲、乙、丙三位志愿者安排在周一至周五参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面,不同的安排方案共有( )A.20种B.30种C.40种D.60种答案:A解析:可将安排方案分为三类:①甲排在周一,共有种排法;②甲排在周二,共有种排法;③甲排在周三,共有种排法,故不同的安排方案共有=20种.故选A.5.某单位有7个连在一起的车位,现有3辆不同型号的车需停放,如果要求剩余的4个车位连在一起,则不同的停放方法的种数为( )A.16B.18C.24D.32答案:C解析:若将7个车位从左向右按1~7进行编号,则该3辆车有4种不同的停放方法:(1)停放在1~3号车位;(2)停放在5~7号车位;(3)停放在1,2,7号车位;(4)停放在1,6,7号车位.每一种停放方法均有=6种,故共有24种不同的停放方法.6.某化工厂生产中需依次投放2种化工原料,现已知有5种原料可用,但甲、乙两种原料不能同时使用,且依次投料时,若使用甲原料,则甲必须先投放,则不同的投放方案有( )A.10种B.12种C.15种D.16种答案:C解析:依题意,可将所有的投放方案分成三类,①使用甲原料,有·1=3种投放方案;②使用乙原料,有·=6种投放方案;③甲、乙原料都不使用,有=6种投放方案,所以共有3+6+6=15种投放方案.二、填空题7.将数字1,2,3,4,5,6按第一行1个数,第二行2个数,第三行3个数的形式随机排列,设N i(i=1,2,3)表示第i行中最大的数,则满足N1<N2<N3的所有排列的个数是.(用数字作答)答案:240解析:由已知数字6一定在第三行,第三行的排法种数为=60;剩余的三个数字中最大的一定排在第二行,第二行的排法种数为=4,由分步计数原理满足条件的排列个数是240.8.某电子元件是由3个电阻组成的回路,其中有4个焊点A,B,C,D,若某个焊点脱落,整个电路就不通,现在发现电路不通了,那么焊点脱落的可能情况共有种.答案:15解析:若有一个焊点脱落,则有4种情况;若有2个焊点脱落,则有=6种情况;若有3个焊点脱落,则有=4种情况;若所有焊点脱落,有1种情况,共有4+6+4+1=15种情况.9.甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是.(用数字作答)答案:336解析:分两类:每级台阶上1人共有种站法;一级2人,一级1人,共有·种站法,故共有·=336种站法.三、解答题10.如图,一个环形花坛分成A,B,C,D四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,求不同的种法总数.解:若种4种不同的花,则有4×3×2×1=24种种法;若种3种不同的花,则有×3×2×2=48种种法;若种2种不同的花,则有×2=12种种法;共有24+48+12=84种.11.直角坐标系xOy平面上,平行直线x=n(n=0,1,2,…,5)与平行直线y=n(n=0,1,2,…,5)组成的图形中,矩形共有多少个?解:在垂直于x轴的6条直线中任取2条,在垂直于y轴的6条直线中任取2条,4条直线相交得出一个矩形,所以矩形总数为=15×15=225个.12.某电视台连续播放6个广告,其中有3个不同的商业广告、两个不同的宣传广告、一个公益广告,要求最后播放的不能是商业广告,且宣传广告与公益广告不能连续播放,两个宣传广告也不能连续播放,则有多少种不同的播放方式?解:用1,2,3,4,5,6表示广告的播放顺序,则完成这件事有三类方法.第一类:宣传广告与公益广告的播放顺序是2,4,6,分6步完成这件事,共有3×3×2×2×1×1=36种不同的播放方式.第二类:宣传广告与公益广告的播放顺序是1,4,6,分6步完成这件事,共有3×3×2×2×1×1=36种不同的播放方式.第三类:宣传广告与公益广告的播放顺序是1,3,6,同样分6步完成这件事,共有3×3×2×2×1×1=36种不同的播放方式.由分类加法计数原理得:6个广告不同的播放方式有36+36+36=108种.希望对大家有所帮助,多谢您的浏览!。
2024年新高考数学一轮复习题型归纳与达标检测第55讲分类加法计数原理与分步乘法计数原理(讲)
第55讲分类加法计数原理与分步乘法计数原理思维导图知识梳理1.分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法.2.分步乘法计数原理完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法.题型归纳题型1 分类加法计数原理【例11】满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为()A.14B.13C.12 D.10【解析】选B当a=0时,关于x的方程为2x+b=0,此时有序数对(0,-1),(0,0),(0,1),(0,2)均满足要求;当a≠0时,Δ=4-4ab≥0,ab≤1,此时满足要求的有序数对为(-1,-1),(-1,0),(-1,1),(-1,2),(1,-1),(1,0),(1,1),(2,-1),(2,0).综上,满足要求的有序数对共有13个.故选B.【例12】在所有的两位数中,个位数字大于十位数字的两位数的个数为________.【解析】按十位数字分类,十位可为1,2,3,4,5,6,7,8,共分成8类,在每一类中满足条件的两位数分别有8个,7个,6个,5个,4个,3个,2个,1个,则共有8+7+6+5+4+3+2+1=36个两位数.【答案】36【跟踪训练11】如图,从A到O有________种不同的走法(不重复过一点).【解析】分3类:第一类,直接由A到O,有1种走法;第二类,中间过一个点,有A→B→O和A→C→O 2种不同的走法;第三类,中间过两个点,有A→B→C→O和A→C→B→O 2种不同的走法.由分类加法计数原理可得共有1+2+2=5种不同的走法.【答案】5【跟踪训练12】若椭圆x2m+y2n=1的焦点在y轴上,且m∈{1,2,3,4,5},n∈{1,2,3,4,5,6,7},则这样的椭圆的个数为________.【解析】当m=1时,n=2,3,4,5,6,7,共6个;当m=2时,n=3,4,5,6,7,共5个;当m=3时,n=4,5,6,7,共4个;当m=4时,n=5,6,7,共3个;当m=5时,n=6,7,共2个.故共有6+5+4+3+2=20个满足条件的椭圆.【答案】20【跟踪训练13】如果一个三位正整数如“a1a2a3”满足a1<a2且a2>a3,则称这样的三位数为凸数(如120,343,275等),那么所有凸数的个数为________.【解析】若a2=2,则百位数字只能选1,个位数字可选1或0,“凸数”为120与121,共2个.若a2=3,则百位数字有两种选择,个位数字有三种选择,则“凸数”有2×3=6(个).若a2=4,满足条件的“凸数”有3×4=12(个),…,若a2=9,满足条件的“凸数”有8×9=72(个).所以所有凸数有2+6+12+20+30+42+56+72=240(个).【答案】240【名师指导】题型2 分步乘法计数原理【例21】(1)已知集合M={-3,-2,-1,0,1,2},P(a,b)(a,b∈M)表示平面上的点,则P可表示坐标平面上第二象限的点的个数为()A.6B.12C.24 D.36(2)有6名同学报名参加三个智力项目,每项限报一人,且每人至多参加一项,则共有________种不同的报名方法.(3)(2019·郑州市第一次质量预测)《中国诗词大会》(第三季)亮点颇多,在“人生自有诗意”的主题下,十场比赛每场都有一首特别设计的开场诗词在声光舞美的配合下,百人团齐声朗诵,别有韵味.若《沁园春·长沙》、《蜀道难》、《敕勒歌》、《游子吟》、《关山月》、《清平乐·六盘山》排在后六场,且《蜀道难》排在《游子吟》的前面,《沁园春·长沙》与《清平乐·六盘山》不相邻且均不排在最后,则后六场的排法有________种.(用数字作答)【解析】(1)确定第二象限的点,可分两步完成:第一步确定a,由于a<0,所以有3种方法;第二步确定b,由于b>0,所以有2种方法.由分步乘法计数原理,得到第二象限的点的个数是3×2=6.(2)每项限报一个,且每人至多参加一项,因此可由项目选人,第一个项目有6种选法,第二个项目有5种选法,第三个项目有4种选法,根据分步乘法计数原理,可得不同的报名方法共有6×5×4=120(种).(3)分两步完成:①《蜀道难》、《敕勒歌》、《游子吟》、《关山月》进行全排有A44种,若《蜀道难》排在《游子吟》的前面,则有12A44种;②《沁园春·长沙》与《清平乐·六盘山》插入已经排列好的四首诗词形成的前4个空位(不含最后一个空位)中,插入法有A24种.由分步乘法计数原理,知满足条件的排法有12A44A24=144(种).【答案】(1)A(2)120(3)144【跟踪训练21】如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A.24 B.18C.12 D.9【解析】选B从E点到F点的最短路径有6条,从F点到G点的最短路径有3条,所以从E点到G 点的最短路径有6×3=18(条),故选B.【跟踪训练22】如图,某电子器件由3个电阻串联而成,形成回路,其中有6个焊接点A,B,C,D,E,F,如果焊接点脱落,整个电路就会不通.现发现电路不通,那么焊接点脱落的可能情况共有________种.【解析】因为每个焊接点都有脱落与未脱落两种情况,而只要有一个焊接点脱落,则电路就不通,故共有26-1=63种可能情况.【答案】63【名师指导】利用分步乘法计数原理解决问题的策略(1)利用分步乘法计数原理解决问题时要注意按事件发生的过程来合理分步,即分步是有先后顺序的,并且分步必须满足:完成一件事的各个步骤是相互依存的,只有各个步骤都完成了,才算完成这件事.(2)分步必须满足的两个条件:一是各步骤相互独立,互不干扰;二是步与步之间确保连续,逐步完成.题型3 两个计数原理的综合应用【例31】用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有________个.(用数字作答)【解析】①当组成四位数的数字中有一个偶数时,四位数的个数为C35·C14·A44=960.②当组成四位数的数字中不含偶数时,四位数的个数为A45=120.故符合题意的四位数一共有960+120=1 080(个).【答案】 1 080【例32】如图,图案共分9个区域,有6种不同颜色的涂料可供涂色,每个区域只能涂1种颜色的涂料,其中2和9同色,3和6同色,4和7同色,5和8同色,且相邻区域的颜色不相同,则不同的涂色方法有()A.360 种B.720 种C.780 种D.840 种【解析】首先从6种不同颜色的涂料中选出4种分别涂2和9、3和6、4和7、5和8八块,共有A46种涂法,然后根据条件可知只需从余下的两种不同颜色的涂料中选一种涂区域1即可,有2种涂法,所以满足要求的涂法有2×A46=720(种).选B.【答案】B【例33】(1)如果一条直线与一个平面垂直,那么称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是() A.48 B.18C.24 D.36(2)如果一条直线与一个平面平行,那么称此直线与平面构成一个“平行线面组”.在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平行线面组”的个数是()A.60 B.48C.36 D.24【解析】(1)第1类,对于每一条棱,都可以与两个侧面构成“正交线面对”,这样的“正交线面对”有2×12=24(个);第2类,对于每一条面对角线,都可以与一个对角面构成“正交线面对”,这样的“正交线面对”有12个.所以正方体中“正交线面对”共有24+12=36(个).(2)长方体的6个表面构成的“平行线面组”的个数为6×6=36,另含4个顶点的6个面(非表面)构成的“平行线面组”的个数为6×2=12,故符合条件的“平行线面组”的个数是36+12=48.【答案】(1)D(2)B【跟踪训练31】如图所示的五个区域中,现有四种颜色可供选择,要求每一个区域只涂一种颜色,相邻区域所涂颜色不同,则不同的涂色方法种数为()A.24 B.48C.72 D.96【解析】选C分两种情况:①A,C不同色,先涂A有4种,C有3种,E有2种,B,D各有1种,有4×3×2=24种涂法.②A,C同色,先涂A有4种,E有3种,C有1种,B,D各有2种,有4×3×2×2=48种涂色.故共有24+48=72种涂色方法.【跟踪训练32】用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有() A.144个B.120个C.96个D.72个【解析】选B由题意可知,符合条件的五位数的万位数字是4或5.当万位数字为4时,个位数字从0,2中任选一个,共有2×4×3×2=48个偶数;当万位数字为5时,个位数字从0,2,4中任选一个,共有3×4×3×2=72个偶数.故符合条件的偶数共有48+72=120(个).【跟踪训练33】如图所示,在连接正八边形的三个顶点而成的三角形中,与正八边形有公共边的三角形有________个(用数字作答).【解析】把与正八边形有公共边的三角形分为两类:第一类,有一条公共边的三角形共有8×4=32(个).第二类,有两条公共边的三角形共有8个.由分类加法计数原理知,共有32+8=40(个).【答案】40【名师指导】。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时规范练55 分类加法计数原理与分步乘法计数原理基础巩固组1.已知两条异面直线a,b上分别有5个点和8个点,则这13个点可以确定不同的平面个数为()A.40B.16C.13D.102.现有6名同学去听同时进行的5个课外知识讲座,每名同学可自由选择其中的一个讲座,不同选法的种数是()A.56B.65C. D.6×5×4×3×23.现有4种不同颜色要对如图所示的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法共有()A.24种B.30种C.36种D.48种4.有a,b,c,d,e共5个人,从中选1名组长和1名副组长,但a不能当副组长,则不同选法的种数是()A.20B.16C.10D.65.我们把各个数位上的数字之和为6的四位数称为“六合数”(如2 013是“六合数”),则“六合数”中首位为2的共有()A.18个B.15个C.12个D.9个6.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有()A.4种B.10种C.18种D.20种7.高三年级的三个班去甲、乙、丙、丁四个工厂参加社会实践,但去哪个工厂可自由选择,甲工厂必须有班级去,则不同的分配方案有()A.16种B.18种C.37种D.48种8.(2017福建漳州质检)将1,2,3,…,9这9个数字填在如图的9个空格中,要求每一行从左到右,每一列从上到下分别依次增大.当3,4固定在图中的位置时,填写空格的方法有()A.6种B.12种C.18种D.24种〚导学号21500585〛9.(2017山东济宁模拟)若甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法共有种.10.三边长均为正整数,且最大边长为11的三角形的个数是.综合提升组11.从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为()A.24B.18C.12D.612.某体育彩票规定:从01至36共36个号中抽出7个号为一注,每注2元.某人想从01至10中选3个连续的号,从11至20中选2个连续的号,从21至30中选1个号,从31至36中选1个号组成一注,则这人把这种特殊要求的号买全,至少要花()A.3 360元B.6 720元C.4 320元D.8 640元13.(2017河南商丘二模,理9)高考结束后高三年级的8名同学准备拼车去旅游,其中一班、二班、三班、四班每班各2名,分别乘甲、乙两辆汽车,每车限坐4名同学(乘同一辆车的4名同学不考虑位置),其中一班的2名同学是孪生姐妹,需乘同一辆车,则乘坐甲车的4名同学中恰有2名同学是来自同一班级的乘坐方式共有()A.18种B.24种C.48种D.36种14.如图所示,一个地区分为5个行政区域,现给该地区的地图涂色,要求相邻区域不得使用同一种颜色,现有4种颜色可供选择,则涂色方法共有的种数为.〚导学号21500586〛15.我们把中间位上的数字最大,而两边依次减小的多位数称为“凸数”.如132,341等,则由1,2,3,4,5可以组成无重复数字的三位凸数的个数是.16.已知集合M={1,2,3,4},集合A,B为集合M的非空子集,若对∀x∈A,y∈B,x<y恒成立,则称(A,B)为集合M的一个“子集对”,则集合M的“子集对”共有个.创新应用组17.(2017重庆一中诊断)对甲、乙、丙、丁四人进行编号,甲不编“1”号、乙不编“2”号、丙不编“3”号、丁不编“4”号的不同编号方法有()A.8种B.9种C.10种D.11种18.如图,在由若干个同样小的平行四边形组成的大平行四边形内有一个★,则含有★的平行四边形共有个.(用数字作答)〚导学号21500587〛参考答案课时规范练55分类加法计数原理与分步乘法计数原理1.C分两类情况讨论:第1类,直线a分别与直线b上的8个点可以确定8个不同的平面;第2类,直线b分别与直线a上的5个点可以确定5个不同的平面.根据分类加法计数原理知,共可以确定8+5=13个不同的平面.2.A6名同学中的每一名同学都可以从5个课外知识讲座中任选一个,由分步乘法计数原理可知不同的选法种数是56.故选A.3.D按A→B→C→D的顺序分四步着色,共有4×3×2×2=48种不同的着色方法.4.B当a当组长时,则共有1×4=4种选法;当a不当组长时,因为a也不能当副组长,则共有4×3=12种选法.因此共有4+12=16种选法.5.B依题意知,这个四位数的百位上的数字、十位、个位上的数字之和为4.由4,0,0组成3个数,分别为400,040,004;由3,1,0组成310,301,130,103,013,031共6个数;由2,2,0组成3个数,分别为220,202,022;由2,1,1组成3个数,分别为211,121,112,共计3+6+3+3=15(个).6.B赠送1本画册,3本集邮册,需从4人中选出1人赠送画册,其余赠送集邮册,有种方法;赠送2本画册,2本集邮册,只需从4人中选出2人赠送画册,其余2人赠送集邮册,有种方法.由分类加法计数原理,知不同的赠送方法有=10(种).7.C三个班去四个工厂,不同的分配方案共43种,甲工厂没有班级去的分配方案共33种,因此满足条件的不同的分配方案共有43-33=37(种).8.A因为每一行从左到右,每一列从上到下分别依次增大,1,2,9只有一种填法,5只能填在右上角或左下角,5填好后与之相邻的空格可填6,7,8中的任一个,余下的两个数字按从小到大只有一种填法.共有2×3=6种填法,故选A.9.24分步完成,首先甲、乙两人从4门课程中同选1门,有4种方法;其次甲从剩下的3门课程中任选1门,有3种方法;最后乙从剩下的2门课程中任选1门,有2种方法.于是,甲、乙所选的课程中恰有1门相同的选法共有4×3×2=24(种).10.36另两边长用x,y(x,y∈N+)表示,不妨设1≤x≤y≤11,要构成三角形,必须x+y≥12.当y取11时,x可取1,2,3,…,11,有11个三角形;当y取10时,x可取2,3,…,10,有9个三角形;……当y取6时,x只能取6,只有1个三角形.所以所求三角形的个数为11+9+7+5+3+1=36.11.B三位数可分成两类,第一类是奇偶奇,其中个位有3种选择,十位有2种选择,百位有2种选择,共有3×2×2=12(个);第二类是偶奇奇,个位有3种选择,十位有2种选择,百位有1种选择,共有3×2×1=6(个).故由分类加法计数原理,可知共有奇数12+6=18(个).故选B.12.D从01至10中选3个连续的号共有8种选法;从11至20中选2个连续的号共有9种选法;从21至30中选1个号有10种选法;从31至36中选1个号有6种选法,由分步乘法计数原理知共有8×9×10×6=4 320种选法,故至少要花4 320×2=8 640(元).13.B第一类,一班的2名同学在甲车上,甲车上剩下的2名要来自不同的班级,从三个班级中选两个有=3种不同的选法,然后分别从选择的班级中再选择1名学生,有=4种不同的选法,故有3×4=12种不同的选法.第二类,一班的2名同学不在甲车上,则从剩下的3个班级中选择一个班级的2名同学在甲车上,有=3种不同的选法,然后再从剩下的两个班级中分别选择1名有=4种不同的选法,这时共有3×4=12种不同的选法.根据分类加法计数原理知,共有12+12=24种不同的乘车方式,故选B.14.72因为区域1与其他4个区域都相邻,首先考虑区域1,有4种涂法,然后再按区域2,4同色和不同色,分为两类:第一类,区域2,4同色,有3种涂法,此时区域3,5均有2种涂法,共有4×3×2×2=48种涂法;第二类,区域2,4不同色,先涂区域2,有3种涂法,再涂区域4,有2种涂法,此时区域3,5都只有1种涂法,共有4×3×2×1×1=24种涂法.根据分类加法计数原理知,共有48+24=72种满足条件的涂色方法.15.20根据“凸数”的特点,中间的数字只能是3,4,5,故分三类,第一类,当中间数字为3时,此时有2种(132,231);第二类,当中间数字为4时,从1,2,3中任取两个放在4的两边,故有=6种;第三类,当中间数字为5时,从1,2,3,4中任取两个放在5的两边,故有=12种;根据分类加法计数原理知,由1,2,3,4,5可以组成无重复数字的三位凸数的个数是2+6+12=20.16.17当A={1}时,B有23-1=7种情况;当A={2}时,B有22-1=3种情况;当A={3}时,B有1种情况;当A={1,2}时,B有22-1=3种情况;当A={1,3},{2,3},{1,2,3}时,B均有1种情况.故满足题意的“子集对”共有7+3+1+3+3=17(个).17.B依题意,符合要求的编号方法为“1”号是乙、丙、丁三人中的某一个.①当乙的编号为“1”时,其他人的编号如下:显然,此时有3种不同的编号方法;②当丙的编号为“1”时,其他人的编号如下:显然,此时有3种不同的编号方法;③当丁的编号为“1”时,其他人的编号如下:显然,此时有3种不同的编号方法.由分类加法计数原理,知不同的编号方法有3+3+3=9(种).18.48含有★的平行四边形的左上角的顶点有4种可能,右下角的顶点有12种可能.由一个左上角顶点和一个右下角顶点就能构成一个平行四边形,所以共有48个含有★的平行四边形.。