2018年高考物理二轮复习拔高:第9讲 磁场及带电粒子在磁场中的运动-物理小金刚系列
高中物理带电粒子在磁场中的运动知识点汇总(K12教育文档)
(完整word版)高中物理带电粒子在磁场中的运动知识点汇总(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整word版)高中物理带电粒子在磁场中的运动知识点汇总(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整word版)高中物理带电粒子在磁场中的运动知识点汇总(word版可编辑修改)的全部内容。
难点之九:带电粒子在磁场中的运动一、难点突破策略(一)明确带电粒子在磁场中的受力特点1. 产生洛伦兹力的条件:①电荷对磁场有相对运动.磁场对与其相对静止的电荷不会产生洛伦兹力作用. ②电荷的运动速度方向与磁场方向不平行.2。
洛伦兹力大小:当电荷运动方向与磁场方向平行时,洛伦兹力f=0;当电荷运动方向与磁场方向垂直时,洛伦兹力最大,f=qυB;当电荷运动方向与磁场方向有夹角θ时,洛伦兹力f= qυB·sin θ3。
洛伦兹力的方向:洛伦兹力方向用左手定则判断4。
洛伦兹力不做功.(二)明确带电粒子在匀强磁场中的运动规律带电粒子在只受洛伦兹力作用的条件下:1. 若带电粒子沿磁场方向射入磁场,即粒子速度方向与磁场方向平行,θ=0°或180°时,带电粒子粒子在磁场中以速度υ做匀速直线运动.2. 若带电粒子的速度方向与匀强磁场方向垂直,即θ=90°时,带电粒子在匀强磁场中以入射速度υ做匀速圆周运动.①向心力由洛伦兹力提供:R v m qvB 2= ②轨道半径公式:qB mv R =③周期:qB m 2v R 2T π=π=,可见T 只与q m 有关,与v 、R 无关.(三)充分运用数学知识(尤其是几何中的圆知识,切线、弦、相交、相切、磁场的圆、轨迹的圆)构建粒子运动的物理学模型,归纳带电粒子在磁场中的题目类型,总结得出求解此类问题的一般方法与规律。
高考物理二轮复习第9讲磁场性质及带电粒子在磁场中的运动课件
例1如图所示,用绝缘细线悬挂一个导线框,导线框是由两同心半
圆弧导线和直导线ab、cd(ab、cd在同一条水平直线上)连接而成
的闭合回路,导线框中通有图示方向的电流,处于静止状态。在半
圆弧导线的圆心处沿垂直于导线框平面的方向放置一根长直导线
P。当P中通以方向向外的电流时( D )
A.导线框将向左摆动
(3)如把x轴上方运动的半周与x轴下方运动的半周称为一周期的
话,则每经过一周期,在x轴上粒子右移的距离。
(4)在与x轴的所有交点中,粒子两次通过同一点的坐标位置。
17
命题热点一
命题热点二
0
答案:(1)
命题热点三
0
(2)4∶3 (3)
2
(+3)0
(4)
2
(k=1,2,3,…)
4
B,x轴下方的磁场的磁感应强度为 3 B。现有一质量为m、电荷量为
-q的粒子以速度v0从坐标原点O沿y轴正方向进入上方磁场。在粒
子运动过程中,与x轴交于若干点。不计粒子的重力。
12/8/2021
(1)求粒子在x轴上方磁场中做匀速圆周运动的半径。
(2)设粒子在x轴上方的周期为T1,x轴下方的周期为T2,求T1∶T2。
12/8/2021
3π
7 0
。
14
命题热点一
命题热点二
命题热点三
规律方法带电粒子在磁场中运动的一般解题方法
1.找圆心:用几何方法确定圆心的位置,画出运动轨迹。
12/8/2021
15
命题热点一
命题热点二
命题热点三
2.求半径:分析带电粒子在磁场中的运动,对于轨迹圆半径的求解
是解决问题的瓶颈。求解半径一般来说有以下两种情况:(1)若题
高考物理二轮专题复习练案:第9讲 磁场及带电粒子在磁场中的运动含解析
专题三第9讲限时:40分钟一、选择题(本题共8小题,其中1~4题为单选,5~8题为多选)1.(2018·山东省潍坊市高三下学期一模)如图所示,导体棒ab用绝缘细线水平悬挂,通有由a到b的电流。
ab正下方放一圆形线圈,线圈通过导线,开关与直流电源连接。
开关闭合瞬间,导体棒ab将(B)A.向外摆动B.向里摆动C.保持静止,细线上张力变大D.保持静止,细线上张力变小[解析]开关闭合瞬间,圆形线圈的电流顺时针方向,根据右手螺旋定则可知导体棒ab 的磁场方向竖直向下,根据左手定则可知导体棒ab将向里摆动,故B正确,ACD错误;故选B。
2.(2018·山东省历城高三下学期模拟)如图所示,用绝缘细线悬挂一个导线框,导线框是由两同心半圆弧导线和在同一条水平直线上的直导线EF、GH连接而成的闭合回路,导线框中通有图示方向的电流,处于静止状态。
在半圆弧导线的圆心处沿垂直于导线框平面的方向放置一根长直导线O。
当O中通以垂直纸面方向向里的电流时(D)A.长直导线O产生的磁场方向沿着电流方向看为逆时针方向B.半圆弧导线ECH受安培力大于半圆弧导线FDG受安培力C.EF所受的安培力方向垂直纸面向外D.从上往下看,导线框将顺时针转动[解析]当直导线O中通以垂直纸面方向向里的电流时,由安培定则可判断出长直导线O产生的磁场方向为顺时针方向,选项A错误;磁感线是以O为圆心的同心圆,半圆弧导线与磁感线平行不受安培力,选项B错误;由左手定则可判断出直导线EF所受的安培力方向垂直纸面向里,选项C 错误;GH 所受的安培力方向垂直纸面向外,从上往下看,导线框将顺时针转动,选项D 正确;故选D 。
3.(2018·河南省郑州市高三下学期模拟)如图所示,在边长为L 的正方形ABCD 阴影区域内存在垂直纸面的匀强磁场,一质量为m 、电荷量为q (q <0)的带电粒子以大小为v 0的速度沿纸面垂直AB 边射入正方形,若粒子从AB 边上任意点垂直射入,都只能从C 点射出磁场,不计粒子的重力影响。
高中物理竞赛带电粒子在电磁场中的运动知识点讲解
高中物理竞赛带电粒子在电磁场中的运动知识点讲解要点讲解学习这部分知识,首先要清楚重力场、电场和磁场对带电粒子的作用的性质,以及重力场、电场和磁场对带电粒子作用力的区别:只要带电粒子处于重力场中,就一定会受到重力,而且带电粒子所受重力一定是恒力;只要带电粒子处于电场中,就一定分受到电场力,而且,如果电场是匀强电场,那么带电粒子所受电场力一定是恒力;在磁场中,只有带电粒子运动才可能受到洛仑兹力作用,只有带电粒子的运动方向不与磁场方向平行,带电粒子才一定受到洛仑兹力作用。
同时,要注意,洛仑兹力的方向与带电粒子的运动方向垂直,这就意味着,作曲线运动的带电粒子所受的洛仑兹力是变力。
重力、电场力对带电粒子作功;而洛仑兹力对带电粒不作功。
因此,在很多情况下,需要从能量变化的角度考虑问题。
【例题分析】例1.用轻质绝缘细线把带负电的小球悬挂在O点,在没有磁场时,小球在竖直平面内AB之间来回摆动,当小球经过悬点正下方时悬线对小球的拉力为。
现在小球摆动的空间加上方向垂直纸面向外的磁场,如图11-4-1所示,此时小球仍AB之间来回摆动,用表示小球从A向B摆经过悬点正下方时悬线的拉力,用表示小球从B向A 摆经过悬点正下时悬线的拉力。
则(A)(B)(C)(D)分析:带电小球在最低点的受力情况,由于小球做圆周运动,根据牛顿运动定律便可求解。
解:在没有磁场时,小球在悬点正下方时受两个力:拉力和重力mg。
根据牛顿第二定律,有式中V为小球过悬点正下方时的速率,L为摆长,所以小球摆动区加了如图11-4-1示的磁场后,小球摆动的过程中还受洛仑兹力的作用,因洛仑兹力方向和小球运动方向垂直,不改变小球到达悬点正下方的速率V,但小球在悬点正下方时除受悬线拉力和重力外还受洛仑兹力f.当小球由A向B摆动时,f的方向左手定则判断是沿悬线向下,根据牛顿第二定律,小球在悬点正下方时有得当球从B向A摆动经悬点正下方时,洛仑兹力的方向是沿悬线向上,根据牛顿第二定律可得结果是因此(B)选项是正确的。
2018年高考物理专题复习《带电粒子在磁场中的运动》课件
磁场的性质及磁场对电流的作用(H) 典题1(多选)(2017全国Ⅰ卷)如图,三根相互平行的固定长直导线 L1、L2和L3两两等距,均通有电流I,L1中电流方向与L2中的相同,与 L3中的相反,下列说法正确的是( BC )
A.L1所受磁场作用力的方向与L2、L3所在平面垂直 B.L3所受磁场作用力的方向与L1、L2所在平面垂直 C.L1、L2和L3单位长度所受的磁场作用力大小之比为1∶1∶ 3 D.L1、L2和L3单位长度所受的磁场作用力大小之比为 3 ∶ 3∶1
A. ห้องสมุดไป่ตู้∶2
B. 2∶1
C. 3∶1
D.3∶ 2
解析
最远的出射点和入射点的连线为粒子在磁场中做匀速圆周运动的 ������ 直径, 如图所示。 由几何关系可以得到, 当速度为 v 1 入射时, 半径 R1 =2 , 当速度为 v 2 入射时, 半径 R 2 = 2 R, 再由 R= ������������ 可得,v 2 ∶v 1 = 3∶1, 故选 项 C 正确。
解析 利用同向电流相互吸引,异向电流相互排斥,受力分析如下
设任意两导线间作用力大小为F,则 L1受合力F1=2Fcos 60°=F,方向与L2、L3所在平面平行; L2受合力F2=2Fcos 60°=F,方向与L1、L3所在平面平行; L3所受合力F3=2Fcos 30°= 3F ,方向与L1、L2所在平面垂直; 故选B、C。
1.(2017全国Ⅱ卷)如图,虚线所示的圆形区域内存在一垂直于纸面 的匀强磁场,P为磁场边界上的一点。大量相同的带电粒子以相同 的速率经过P点,在纸面内沿不同方向射入磁场。若粒子射入速率 为v1,这些粒子在磁场边界的出射点分布在六分之一圆周上;若粒子 射入速率为v2,相应的出射点分布在三分之一圆周上。不计重力及 带电粒子之间的相互作用。则v2∶v1为( C )
高三物理二轮复习 专题八 磁场及带电体在磁场中的运动
外,现将B处的长直导线撤走,而将C处
知A处直导线的电流在O点产生的 磁场方向水平向右,D处直导线
的长直导线平移到圆心O处,则圆心O处 的电流在O点产生的磁场方向竖
的长直导线所受安培力的方向( C )
A.沿∠COB的角平分线向下
B.沿∠AOB的角平分线向上
直向上,且两处直导线的电流在 O点产生的磁场大小相等,由矢 量的叠加原理知O处的磁场方向 沿∠AOB的角平分线向上,由左
视角一 电流磁场及磁场的命叠题加视角
题组冲关
如[例下1图] 所如示图,所当示通,有M、电N流和的P长是直以导 MN线在思M路、探N究两处(1时)如,何根判据断安电培 流周定
则为可直知径,的二半者圆在弧圆上心的O三处点产,生O为的半磁圆感应围强的度磁的场大?小都为B1/2;当将M
处弧长的直圆导心线,移∠至MOP处P=时6,0°两,直在导M线、在N圆心O处产生的磁感应强度的大 小处也各为有B一1/条2,长作直平导行线四垂边直形 穿过,纸由面图,中的(几2)空何间关某系点,由可多得电c流os形3成0°的=磁
所轨受水安培 平力对向称右放,置大一小恒 根定均,匀故金金属属棒棒向 .右从做t=匀0加时速刻直起线,运动棒,上在有T2如~图T乙内金所属示棒 所的受持安续培力交与变前电半流个I周,期周大期小为相T等,,最方大向值相反 为,Im金,属图棒甲向中右I做所匀示减方速向直为线电运动流,正
一方个向周.期结则束金时属金棒属(棒A速B度C恰) 好为零,以后始终向右重复上述运动,选项A、B、
B导2 线中通有大小相等的恒定电流,方 场,如何求该点的磁感应强
B2向1=如BB21图=所23, 示故 ,这选时项OB点正的确磁,感选应项强A、 度C、度D?错误.
2大 小 为 B1. 若 将 M 处 长 直 导 线 移 至 P 处 , 则 O 点 的 磁 感 应 强 度 大 小 为 B2 ,
2018届高考物理二轮复习板块一专题三电场和磁场3_2磁场及带电粒子在磁场中的运动课件2018042
mv 2 平向右的安培力F安,由牛顿第二定律,得FN-F安= r ,解得 FN=1.5 N,每一条轨道对金属细杆的作用力大小为0.75 N,由 牛顿第三定律,可知金属细杆运动到P点时对每一条轨道的作用 力大小为0.75 N,选项D正确.
[答案]
D
考向二 [归纳提炼]
带电粒子在磁场中的运动
1.带电粒子在匀强磁场中的运动 (1)若v∥B,带电粒子不受洛伦兹力,在匀强磁场中做匀速 直线运动. (2)若v⊥B,且带电粒子仅受洛伦兹力作用,则带电粒子在 垂直于磁感线的平面内以入射速度v做匀速圆周运动,洛伦兹力 v2 mv 2πR 提供向心力.由qvB=m R ,可得半径R= qB ,则周期T= v = 2πm qB .周期T与粒子运动的速度v或半径R无关.
板 块 一
专题突破复习
专 题 三
电场和磁场
第二讲
磁场及带电粒子在磁场中的运动
知识网络构建
结网建体 把脉考向
[高考调研] [知识建构] 1.考查方向:①结合电流周围的 磁场分布特点考查磁场的性 质.②结合现代科学技术考查 带电粒子在磁场中的运动.③ 结合几何关系考查带电粒子在 有界磁场中的临界问题. 2.常用的思想方法:①对称思 想.②等效思想.③极限思 想.④放缩法.⑤平移法.⑥ 旋转法.
[解析] 同向电流相互吸引,反向电流相互排斥.对L1进行 受力分析,如下图所示,可知L1所受磁场力的方向与L2、L3所在 的平面平行;对L3进行受力分析,如右图所示,可知L3所受磁场 力的方向与L1、L2所在的平面垂直.任意两根导线间的作用力的 大小是相等的,若两根导线间相互作用力为F,L1、L2受到的磁 场力的合力大小相同,根据平行四边形定则作出几何图形,根 据几何知识可求解,经分析知B、C正确.
精选-高考物理二轮复习专题三电场和磁场第9讲磁场及带电粒子在磁场中的运动课件
C.流经 L2 的电流在 b 点产生的磁感应强度大小为112B0
D.流经 L2 的电流在 a 点产生的磁感应强度大小为172B0
[解析] A、C 对:原磁场、电流的磁场方向如图所示,由题意知
在 b 点:12B0=B0-B1+B2 在 a 点:13B0=B0-B1-B2 由上述两式解得 B1=172B0,B2=112B0。
专题整合突破
专题三 电场和磁场
第9讲 磁场及带电粒子在磁场中的运动
1
微网焦
4
复习练案
微网构建
高考真题
1.(多选)(2018·全国Ⅱ,20)如图,纸面内有两条互相垂直的长直绝缘导线
L1、L2,L1 中的电流方向向左,L2 中的电流方向向上;L1 的正上方有 a、b 两点,
A. 3∶2
(C)
B. 2∶1
C. 3∶1
D.3∶ 2
[解析] 本题考查带电粒子在磁场中的运动。 由于是相同的粒子,粒子进入磁场时的速度大小相同,由 qvB=mvR2可知,R=mqBv,即粒子在磁场中做圆周运动的半径 相同。若粒子运动的速度大小为 v1,如图所示,通过旋转圆 可知,当粒子的磁场出射点 A 离 P 点最远时,则 AP=2R1; 同样,若粒子运动的速度大小为 v2,粒子的磁场出射点 B 离 P 点最远时,则 BP=2R2,由几何关系可知,R1=R2,R2=Rcos30°= 23R,则vv21= RR21= 3,C 项正确。
3.(2017·全国卷Ⅲ,18)如图,在磁感应强度大小为B0的匀强磁场中,两 长直导线P和Q垂直于纸面固定放置,两者之间的距离为l。在两导线中均通有方 向垂直于纸面向里的电流I时,纸面内与两导线距离均为l的a点处的磁感应强度 为零。如果让P中的电流反向、其他条件不变,则a点处磁感应强度的大小为
2018大二轮高考总复习物理课件:第9讲 磁场及带电粒子在磁场中的运动
1-3.(多选)(2017·全国卷Ⅱ)某同学自制的简易电动机示意图如图所示.矩形线圈 由一根漆包线绕制而成,漆包线的两端分别从线圈的一组对边的中间位置引出,并作 为线圈的转轴.将线圈架在两个金属支架之间,线圈平面位于竖直面内,永磁铁置于 线圈下方.为了使电池与两金属支架连接后线圈能连续转动起来,该同学应将( AD )
(1)区域Ⅰ中磁感应强度B0的大小; (2)环形区域Ⅱ的外圆半径R至少为多大? (3)粒子从A点出发到再次经过A点所用的最短时间.
[思路点拨] (1)粒子从A点出发到再次经过A点,说明问题具有周期性和多解 性;(2)带电粒子由径向射入磁场区域Ⅰ,又沿径向射出,由此通过画轨迹可以确定 半径r1,粒子从Q点回到区域Ⅰ,可通过画轨迹确定半径r2;(3)利用周期性分析从A 点出发到再次经过A点所用时间最短的条件,从而确定最短时间.
解析:由于带电粒子流的速度均相同,则当飞入A、B、C这三个选项中的磁场 时,它们的轨迹对应的半径均相同,唯有D选项因为磁场是2B0,它的半径是之前半 径的一半.然而当粒子射入B、C两选项时,均不可能汇聚于同一点.而D选项粒子 是向下偏转,但仍不能汇聚一点,所以只有A选项,能汇聚于一点.
高频考点3 带电粒子在匀强磁场中的多解问题
,半径公式R=
mv qB
,周期公式T=
2πR v
=
2qπBm,运动时间t=vs =2απT.
02
高频考点突破
高频考点1 磁场对电流的作用
1-1.(多选) (2017·全国卷Ⅰ)如图,三根相互平行的固定长直 导线L1、L2和L3两两等距,均通有电流I,L1中电流方向与L2中的 相同,与L3中的相反.下列说法正确的是( BC )
流间同向吸引、反向排斥,各导线受力如图所示,由图中几何
高中物理二轮复习课件磁场及带电粒子在磁场中的运动
粒子进出磁场的边界时,需满足一定的速度方向 和角度条件。
带电粒子进出边界条件判断
速度方向
粒子速度方向与磁场边界的夹角决定了粒子是否能进入或离开磁 场。
粒子电性
根据左手定则,不同电性的粒子在磁场中受力方向不同,因此进出 边界的条件也有所不同。
边界形状
直线边界和曲线边界对粒子进出条件的影响不同,需分别讨论。
初速度方向与磁场方向平行
01
粒子不受洛伦兹力作用,做匀速直线运动。
初速度方向与磁场方向垂直
02
粒子受洛伦兹力作用做匀速圆周运动。
初速度方向与磁场方向成一定角度
03
粒子运动轨迹既不是直线也不是圆,而是一条螺旋线。
典型例题解析
01
例题一
02
一质量为$m$、电荷量为$q$ 的带正电粒子以速度$v_0$从O 点沿垂直于磁场方向射入磁感 强度为B的匀强磁场中,已知粒 子在磁场中运动的半径为$R$, 求粒子的运动周期。
洛伦兹力演示仪、电源、粒子源、测量尺、真空泵等。
操作注意事项
确保实验环境干燥、无尘;粒子源和测量设备需精确校准;实验过程中保持磁场稳定。
数据处理方法和误差来源分析
数据处理方法
通过测量粒子运动轨迹的半径,结合已知的粒子速度、电荷量和磁场强度,计算粒子的质量或荷质比 。
误差来源分析
可能包括测量误差(如轨迹半径的测量)、设备误差(如磁场强度的波动)以及环境因素(如温度、 湿度变化)等。
匀强磁场与非匀强磁场特点
匀强磁场特点
磁感应强度大小处处相等、方向处处相同。
非匀强磁场特点
磁感应强度大小或方向发生变化。
地球磁场简介
地磁场定义
地球本身是一个巨大的磁体,地球周围存在的磁场称为地磁 场。
高考物理一轮复习 第9章 磁场 第3节 带电粒子在复合场中的运动教案-人教版高三全册物理教案
第3节 带电粒子在复合场中的运动带电粒子在组合场中的运动 [讲典例示法]带电粒子在电场和磁场的组合场中运动,实际上是将粒子在电场中的加速与偏转,跟在磁场中偏转两种运动有效组合在一起,有效区别电偏转和磁偏转,寻找两种运动的联系和几何关系是解题的关键。
当带电粒子连续通过几个不同的场区时,粒子的受力情况和运动情况也发生相应的变化,其运动过程则由几种不同的运动阶段组成。
[典例示法] (2018·全国卷Ⅱ)一足够长的条状区域内存在匀强电场和匀强磁场,其在xOy 平面内的截面如图所示:中间是磁场区域,其边界与y 轴垂直,宽度为l ,磁感应强度的大小为B ,方向垂直于xOy 平面;磁场的上、下两侧为电场区域,宽度均为l ′,电场强度的大小均为E ,方向均沿x 轴正方向;M 、N 为条状区域边界上的两点,它们的连线与y 轴平行。
一带正电的粒子以某一速度从M 点沿y 轴正方向射入电场,经过一段时间后恰好以从M 点入射的速度从N 点沿y 轴正方向射出。
不计重力。
(1)定性画出该粒子在电、磁场中运动的轨迹; (2)求该粒子从M 点入射时速度的大小;(3)若该粒子进入磁场时的速度方向恰好与x 轴正方向的夹角为π6,求该粒子的比荷及其从M 点运动到N 点的时间。
[解析] (1)粒子在电场中的轨迹为抛物线,在磁场中为圆弧,上下对称,如图(a)所示。
图(a)(2)设粒子从M 点射入时速度的大小为v 0,进入磁场的速度大小为v ,方向与电场方向的夹角为θ,如图(b ),速度v 沿电场方向的分量为v 1。
图(b)根据牛顿第二定律有qE =ma ① 由运动学公式有l ′=v 0t ② v 1=at ③ v 1=v cos θ④设粒子在磁场中做匀速圆周运动的轨迹半径为R ,由洛伦兹力公式和牛顿第二定律得qvB =mv 2R⑤ 由几何关系得l =2R cos θ ⑥ 联立①②③④⑤⑥式得v 0=2El ′Bl。
⑦(3)由运动学公式和题给数据得 v 1=v 0cot π6⑧联立①②③⑦⑧式得q m =43El ′B 2l2⑨设粒子由M 点运动到N 点所用的时间为t ′,则t ′=2t +2⎝ ⎛⎭⎪⎫π2-π62πT ⑩式中T 是粒子在磁场中做匀速圆周运动的周期, T =2πmqB⑪由③⑦⑨⑩⑪式得t ′=Bl E ⎝ ⎛⎭⎪⎪⎫1+3πl 18l ′。
高考物理二轮复习 专题四 电场和磁场 4.9 磁场及带电粒子在磁场中的运动课件
由题意知,第 1 次调节电压到 U1,使原本打在 Q 点的离子打
在 N 点,5L = 6L
U1 U0
5
此时,原本半径为 r1 的打在 Q1 的离子打在 Q 上6rL1 =
U1 U0
测得 r1=652L
第 2 次调节电压到 U2,使原本打在 Q1 的离子打在 N 点,原本 半径为 r2 的打在 Q2 的离子打在 Q 上,则
三、洛伦兹力:
1.计算公式:F=_____q_v_B__s_in_θ_____,其中 θ 为 B 与 v 的夹角. (1)v∥B 时,F=_____0_______. (2)v⊥B 时,F=___q_v_B_______. (3)v=0 时,F=_____0_______. 2.方向判定:用_____左__手__定__则_______,注意“四指”指向 __正__电__荷__的__运__动__方__向____,与____负__电__荷______的运动方向相反.
A.指南针可以仅具有一个磁极 B.指南针能够指向南北,说明地球具有磁场 C.指南针的指向会受到附近铁块的干扰 D.在指南针正上方附近沿指针方向放置一直导线,导线通电 时指南针不偏转
解析:任何磁体均具有两个磁极,故 A 错.指南针之所以能指 向南北,是因为指南针的两个磁极受到磁场力的作用,这说明地球 具有磁场,即 B 正确.放在指南针附近的铁块被磁化后,反过来会 影响指南针的指向,即 C 正确.通电直导线产生的磁场对其正下方 的指南针有磁场力的作用,会使指南针发生偏转,故 D 错.
(1)求原本打在 MN 中点 P 的离子质量 m; (2)为使原本打在 P 的离子能打在 QN 区域,求加速电压 U 的调节范围; (3)为了在 QN 区域将原本打在 MQ 区域的所有离子检测完整,求需要调 节 U 的最少次数.(取 lg2=0.301,lg3=0.477,lg5=0.699)
高考物理总复习 第九单元 磁场 微专题8 带电粒子在组合场和复合场中的运动(含解析)
微专题8 带电粒子在组合场和复合场中的运动一带电粒子在组合场中的运动组合场是指电场与磁场同时存在或者磁场与磁场同时存在,但各位于一定的区域内,并不重叠的情况。
所以弄清带电粒子在电场及磁场中的运动形式、规律和研究方法是解决此类问题的基础。
1.基本类型运动类型带电粒子在匀强电场中加速(v0与电场线平行或为零)带电粒子在匀强电场中偏转(v0⊥E)带电粒子在匀强磁场中匀速运动(v0与磁感线平行)带电粒子在匀强磁场中偏转(v0与磁感线垂直)受力特点受到恒定的电场力;电场力做功不受磁场力作用受磁场力作用;但磁场力不做功运动特征匀变速直线运动类平抛运动匀速直线运动匀速圆周运动研究方法牛顿运动定律匀变速运动学规律牛顿运动定律匀变速运动学公式正交分解法匀速直线运动公式牛顿运动定律向心力公式圆的几何知识表达方式如何求运动时间、速度和位移如何求飞行时间、偏移量和偏转角-如何求时间和偏转角用匀变速直线运动的基本公式、导出公式和推论求解飞出电场时间:t=打在极板上t=偏移量:y=偏转角:tan-时间t=T(θ是圆心角,T是周期)偏转角sin θ=(l是磁场宽度,R是粒子轨道半径)α=运动情境2.解题思路题型1电场与磁场的组合例1如图所示,在xOy直角坐标系中,第Ⅰ象限内分布着方向垂直纸面向里的匀强磁场,第Ⅱ象限内分布着沿y轴负方向的匀强电场。
初速度为零、带电荷量为q、质量为m的粒子经过电压为U的电场加速后,从x轴上的A点垂直x轴进入磁场区域,重力不计,经磁场偏转后过y轴上的P点且垂直于y轴进入电场区域,在电场中偏转并击中x轴上的C点。
已知OA=OC=d。
则磁感应强度B和电场强度E分别为多少?解析设带电粒子经电压为U的电场加速后速度为v,则qU=mv2带电粒子进入磁场后,由洛伦兹力提供向心力qBv=依题意可知r=d,联立解得B=带电粒子在电场中偏转,做类平抛运动,设经时间t从P点到达C点,由d=vt,d=t2联立解得E=。
2019年高考物理二轮复习必刷题——带电粒子在磁场中的运动(附答案)
2019年高考物理二轮复习必刷题——带电粒子在磁场中的运动(附答案)一、计算题1.电子质量为m,电荷量为q,以速度v0与x轴成θ角射入磁感应强度为B的匀强磁场中,最后落在x轴上的P点,如图所示,求:(1)电子运动的轨道半径R;(2)OP的长度;(3)电子由O点射入到落在P点所需的时间t.2.如图所示,在xOy坐标平面的第一象限内有一沿y轴负方向的匀强电场,在第四象限内有一垂直于平面向外的匀强磁场,一质量为m,带电量为+q的粒子(重力不计)经过电场中坐标为(3L,L)的P点时的速度大小为V0.方向沿x轴负方向,然后以与x轴负方向成45°角进入磁场,最后从坐标原点O射出磁场求:(1)匀强电场的场强E的大小;(2)匀强磁场的磁感应强度B的大小;(3)粒子从P点运动到原点O所用的时间。
3.如图所示,一带电微粒质量为m=2.0×10-11kg、电荷量q=+1.0×10-5C,从静止开始经电压为U1=100V的电场加速后,水平进入两平行金属板间的偏转电场中,微粒射出电场时的偏转角θ=60°,并接着沿半径方向进入一个垂直纸面向外的圆形匀强磁场区域,微粒射出磁场时的偏转角也为θ=60°.已知偏转电场中金属板长L=10√3cm,圆形匀强磁场的半径为R=10√3cm,重力忽略不计.求:(1)带电微粒经加速电场后的速度大小;(2)两金属板间偏转电场的电场强度E的大小;(3)匀强磁场的磁感应强度B的大小.4.如图,空间存在方向垂直于纸面(xOy平面)向里的磁场。
在x≥0区域,磁感应强度的大小为B0;x<0区域,磁感应强度的大小为λB0(常数λ>1)。
一质量为m、电荷量为q(q>0)的带电粒子以速度v0从坐标原点O 沿x轴正向射入磁场,此时开始计时,当粒子的速度方向再次沿x轴正向时,求(不计重力)(1)粒子运动的时间;(2)粒子与O点间的距离。
5.如图所示,一带电微粒质量为m=2.0×10-11kg、电荷量q=+1.0×10-5C,从静止开始经电压为U1=100V的电场加速后,水平进入两平行金属板间的偏转电场中,微粒射出电场时的偏转角θ=30°,并接着进入一个方向垂直纸面向里、宽度为D=34.6cm的匀强磁场区域.已知偏转电场中金属板长L=10cm,两板间距d=17.3cm,重力不计.求:(1)带电微粒进入偏转电场时的速率v1;(√3≈1.73)(2)偏转电场中两金属板间的电压U2;(3)为使带电微粒不会由磁场右边射出,该匀强磁场的磁感应强度B至少多大?6.如图所示,两平行金属板AB中间有互相垂直的匀强电场和匀强磁场.A板带正电荷,B板带等量负电荷,电场强度为E;磁场方向垂直纸面向里,磁感应强度为B1.平行金属板右侧有一挡板M,中间有小孔O′,OO′是平行于两金属板的中心线.挡板右侧有垂直纸面向外的匀强磁场,磁场应强度为B2.CD为磁场B2边界上的一绝缘板,它与M板的夹角θ=45°,O′C=a,现有一大量质量均为m,电荷量为q的带正电的粒子(不计重力),自O点沿OO′方向水平向右进入电磁场区域,其中有些粒子沿直线OO′方向运动,通过小孔O′进入匀强磁场B2,如果该粒子恰好以竖直向下的速度打在CD板上的E点,求:(1)进入匀强磁场B2的带电粒子的速度大小v;(2)CE的长度.7. 如图所示为质谱仪的原理图,A 为粒子加速器,电压为U 1;B 为速度选择器,磁场与电场正交,磁感应强度为B 1,板间距离为d ;C 为偏转分离器,磁感应强度为B 2.今有一质量为m 、电量为q 的正离子经加速后,恰好通过速度选择器,进入分离器后做半径为R 的匀速圆周运动,求: (1)粒子的速度v(2)速度选择器的电压U 2(3)粒子在B 2磁场中做匀速圆周运动的半径R .8. 一个重力不计的带电粒子,以大小为v 的速度从坐标(0,L )的a 点,平行于x 轴射入磁感应强度大小为B 、方向垂直纸面向外的圆形匀强磁场区域,并从x 轴上b 点射出磁场,射出速度方向与x 轴正方向夹角为60°,如图.求:(1)带电粒子在磁场中运动的轨道半径;(2)带电粒子的比荷mq 及粒子从a 点运动到b 点的时间;(3)其他条件不变,要使该粒子恰从O 点射出磁场,求粒子入射速度大小.9. 如图所示,一电子的电荷量为e ,以速度v 垂直射入磁感应强度为B 、宽度为d 的有界匀强磁场中,穿过磁场时的速度方向与原来电子入射方向的夹角是θ=30°,求: (1)电子运动的轨道半径r ; (2)电子的质量m ;(3)电子穿过磁场的时间t 。
高考物理二轮总复习课后习题专题3 电场与磁场 专题分层突破练9 带电粒子在复合场中的运动 (2)
专题分层突破练9 带电粒子在复合场中的运动A组1.(多选)如图所示为一磁流体发电机的原理示意图,上、下两块金属板M、N水平放置且浸没在海水里,金属板面积均为S=1×103m2,板间距离d=100 m,海水的电阻率ρ=0.25 Ω·m。
在金属板之间加一匀强磁场,磁感应强度B=0.1 T,方向由南向北,海水从东向西以速度v=5 m/s流过两金属板之间,将在两板之间形成电势差。
下列说法正确的是( )A.达到稳定状态时,金属板M的电势较高B.由金属板和流动海水所构成的电源的电动势E=25 V,内阻r=0.025 ΩC.若用此发电装置给一电阻为20 Ω的航标灯供电,则在8 h内航标灯所消耗的电能约为3.6×106JD.若磁流体发电机对外供电的电流恒为I,则Δt时间内磁流体发电机内部有电荷量为IΔt的正、负离子偏转到极板2.(重庆八中模拟)质谱仪可用于分析同位素,其结构示意图如图所示。
一群质量数分别为40和46的正二价钙离子经电场加速后(初速度忽略不计),接着进入匀强磁场中,最后打在底片上,实际加速电压U通常不是恒定值,而是有一定范围,若加速电压取值范围是(U-ΔU,U+ΔU),两种离子打在底的值约为片上的区域恰好不重叠,不计离子的重力和相互作用,则ΔUU( )A.0.07B.0.10C.0.14D.0.173.在第一象限(含坐标轴)内有垂直xOy平面周期性变化的均匀磁场,规定垂直xOy平面向里的磁场方向为正方向,磁场变化规律如图所示,磁感应强度的大小为B0,变化周期为T0。
某一带正电的粒子质量为m、电荷量为q,在t=0时从O点沿x轴正方向射入磁场中并只在第一象限内运动,若要求粒子在t=T0时距x轴最远,则B0= 。
4.(福建龙岩一模)如图所示,在xOy平面(纸面)内,x>0区域存在方向垂直纸面向外的匀强磁场,第三象限存在方向沿、电荷量为q的带正电粒子(不计重力),以大小为v、方向与y轴正方向夹角θ=60°的速度沿纸面从坐标为(0,√3L)的P1点进入磁场中,然后从坐标为(0,-√3L)的P2点进入电场区域,最后从x轴上的P3点(图中未画出)垂直于x轴射出电场。
(完整版)高中物理带电粒子在磁场中的运动(提纲、例题、练习、解析)
带电粒子在磁场中的运动【学习目标】1.掌握带电粒子在匀强磁场中做匀速圆周运动的特点和解决此类运动的方法2.理解质谱仪和回旋加速器的工作原理和作用【要点梳理】要点一:带电粒子在匀强磁场中的运动要点诠释:1.运动轨迹带电粒子(不计重力)以一定的速度v进入磁感应强度为B的匀强磁场中:(1)当v∥B时,带电粒子将做匀速直线运动;(2)当v⊥B时,带电粒子将做匀速圆周运动;(3)当v与B的夹角为θ(θ≠0°,90°,180°)时,带电粒子将做等螺距的螺旋线运动.说明:电场和磁场都能对带电粒子施加影响,带电粒子在匀强电场中只在电场力作用下,可能做匀变速直线运动,也可能做匀变速曲线运动,但不可能做匀速直线运动;在匀强磁场中,只在磁场力作用下可以做曲线运动.但不可能做变速直线运动.2.带电粒子在匀强磁场中的圆周运动如图所示,带电粒子以速度v垂直磁场方向入射,在磁场中做匀速圆周运动,设带电粒子的质量为m,所带的电荷量为q.(1)轨道半径:由于洛伦兹力提供向心力,则有2vqvB mr=,得到轨道半径mvrqB=.(2)周期:由轨道半径与周期之间的关系2rTvπ=可得周期2mTqBπ=.说明:(1)由公式mvrqB=知,在匀强磁场中,做匀速圆周运动的带电粒子,其轨道半径跟运动速率成正比.(2)由公式2mTqBπ=知,在匀强磁场中,做匀速圆周运动的带电粒子,周期跟轨道半径和运动速率均无关,而与比荷qm成反比.注意:mvrqB=与2mTqBπ=是两个重要的表达式,每年的高考都会考查.但应用时应注意在计算说明题中,两公式不能直接当原理式使用.要点二:带电粒子在匀强磁场中做圆周运动的问题分析要点诠释:1.分析方法/Bq 或时间”的基本方法和规律,具体分析为: (1)圆心的确定带电粒子进入一个有界磁场后的轨道是一段圆弧,如何确定圆心是解决问题的前提,也是解题的关键.首先,应有一个最基本的思路:即圆心一定在与速度方向垂直的直线上.通常有两种确定方法:①已知入射方向和出射方向时,可以通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图甲所示,图中P 为入射点,M 为出射点,O 为轨道圆心).②已知入射方向和出射点的位置时,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心(如图乙所示,P 为入射点,M 为出射点,O 为轨道圆心).(2)运动半径的确定:作入射点、出射点对应的半径,并作出相应的辅助三角形,利用三角形的解析方法或其他几何方法,求解出半径的大小,并与半径公式mvr Bq=联立求解. (3)运动时间的确定粒子在磁场中运动一周的时间为T ,当粒子运动的圆弧所对应的圆心角为α时,其运动时间可由下式表示:360t T α=︒(或2t T απ=).可见粒子转过的圆心角越大,所用时间越长. 2.有界磁场(1)磁场边界的类型如图所示(2)与磁场边界的关系①刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切.②当速度v 一定时,弧长(或弦长)越长,圆周角越大,则带电粒子在有界磁场中运动的时间越长. ③当速率v 变化时,圆周角越大的,运动的时间越长. (3)有界磁场中运动的对称性①从某一直线边界射入的粒子,从同一边界射出时,速度与边界的夹角相等; ②在圆形磁场区域内,沿径向射入的粒子,必沿径向射出. 3.解题步骤带电粒子在匀强磁场中做匀速圆周运动的解题方法——三步法: (1)画轨迹:即确定圆心,几何方法求半径并画出轨迹.(2)找联系:轨道半径与磁感应强度、运动速度相联系,偏转角度与圆心角运动时间相联系,在磁场中运动的时间与周期相联系.(3)用规律:即牛顿第二定律和圆周运动的规律,特别是周期公式、半径公式.注意:道PM 对应的圆心角α,即αϕ=,如图所示.(2)圆弧轨道PM 所对圆心角α等于PM 弦与切线的夹角(弦切角)θ的2倍,即2αθ=,如图所示. 要点三:质谱仪要点诠释: (1)构造质谱仪由粒子注入器、加速电场、速度选择器、偏转电场和照相底片组成,如图所示.(2)工作原理 ①加速:212qU mv =, ②偏转:2v qvB m r=,由以上两式得:粒子在磁场中作匀速圆周运动的半径12mur B q=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全国卷Ⅲ 平面OM和平面ON之间的夹角为30° 2. 2016· ,其横截 面(纸面)如图所示,平面OM上方存在匀强磁场,磁感应强度大小为 B,方向垂直于纸面向外.一带电粒子的质量为m,电荷量为 q(q>0).粒子沿纸面以大小为v的速度从OM的某点向左上方射入磁 场,速度与OM成30° 角.已知该粒子在磁场中的运动轨迹与ON只有 一个交点,并从OM上另一点射出磁场.不计重力.粒子离开磁场的 出射点到两平面交线O的距离为( ) mv 3mv A.2qB B. qB 2mv 4mv C. D. qB qB
答案:D
这些曲线上,每一点小磁针N极受力方向为该点的磁场方向, 其疏密反映了磁场的强弱,磁感线是一组闭合曲线,在空间中互不相 交. 二、磁感应强度 是描述磁场的大小和方向的物理量,用B表示,是矢量. 三、安培定则 用来判断电流周围的磁场方向,如通电直导线,用右手握住导 线,让伸直的大拇指所指的方向跟电流方向一致,弯曲的四指所指的 方向就是磁场的环绕方向. 四、左手定则 用来判断电流或运动电荷在磁场中的受力方向,应用时伸开左 手,四指指向电流(正电荷运动)方向,大拇指指向为受力方向.
热点追踪 考向一 磁场对通电导体的作用力 【例1】 某同学自制一电流表,其原理如图所示.质量为m的均匀 细金属杆MN与一竖直悬挂的绝缘轻弹簧相连,弹簧的劲度系数为k,在 矩形区域abcd内有匀强磁场,磁感应强度大小为B,方向垂直纸面向 外.MN的右端连接一绝缘轻指针,可指示出标尺上的刻度.MN的长度 大于ab,当MN中没有电流通过且处于静止时,MN与矩形区域的ab边重 合,且指针指在标尺的零刻度;当MN中有电流时,指针示数可表示电流 强度.MN始终在纸面内且保持水平,重力加速度为g. (1)当电流表的示数为零时,求弹簧的伸长量; (2)为使电流表正常工作,判断金属杆MN中电 流的方向; (3)若磁场边界ab的长度为L1,bc的长度为L2, 此电流表的量程是多少?
五、安培力和洛伦兹力的比较 名称 安培力 项目 作用对象 通电导体 F安=BLI(I⊥B) 力的大小 F安=0(I∥B)
力的方向
洛伦兹力
作用效果 本质联系
运动电荷 F洛=qvB(v⊥B) F洛=0(v∥B) 左手定则(F洛垂直于v与B所 左手定则(F安垂直于I与B所决 决定的平面,且需区分正负 定的平面) 电荷) 改变导体棒的运动状态,对 只改变速度的方向,不改变 导体棒做功,实现电能和其 速度的大小;洛伦兹力永远 他形式的能的相互转化 不对电荷做功 安培力实际上是在导线中定向移动的电荷所受到的洛伦兹 力的宏观表现
答案:D
四川卷 如图所示,正六边形abcdef区域内有垂直于纸面 3. 2016· 的匀强磁场.一带正电的粒子从f点沿fd方向射入磁场区域,当速度大 小为vb时,从b点离开磁场,在磁场中运动的时间为tb;当速度大小为 vc时,从c点离开磁场,在磁场中运动的时间为tc.不计粒子重力,则 ( ) A.vb∶vc=1∶2,tb∶tc=2∶1 B.vb∶vc=2∶1,tb∶tc=1∶2 C.vb∶vc=2∶1,tb∶tc=2∶1 D.vb∶vc=1∶2,tb∶tc=1∶2
全国卷Ⅰ 两相邻匀强磁场区域的磁感应强度大小不同、 4. 2015· 方向平行.一速度方向与磁感应强度方向垂直的带电粒子(不计重 力),从较强磁场区域进入到较弱磁场区域后,粒子的( ) A.轨道半径减小,角速度增大 B.轨道半径减小,角速度减小 C.轨道半径增大,角速度增大 D.轨道半径增大,角速度减小
高考巡航 全国卷Ⅱ一圆筒处于磁感应强度大小为 B 的匀强磁场中, 1.2016· 磁场方向与筒的轴平行,筒的横截面如图所示.图中直径 MN 的两端 分别开有小孔,筒绕其中心轴以角速度 ω 顺时针转动.在该截面内, 一带电粒子从小孔 M 射入筒内, 射入时的运动方向与 MN 成 30° 角. 当 筒转过 90° 时,该粒子恰好从小孔 N 飞出圆筒.不计重力.若粒子在 筒内未与筒壁发生碰撞,则带电粒子的比荷为( ) ω ω A. B. 3B 2B ω 2ω C. B D. B
解析:本题考查带电粒子在匀强磁场中的运动,意在考查学生对带 电粒子在磁场中运动规律的理解能力、应用数学处理物理问题的能 力.准确作出带电粒子在磁场中的运动轨迹是解题关键,在应考时可以 应用直尺及圆规或小硬币辅助作图.如图所示为粒子在匀强磁场中的运 动轨迹示意图,设出射点为P,粒子运动轨迹与ON的交点为Q,粒子入 射方向与OM成30° 角,则射出磁场时速度方向与MO成30° 角,由几何关 系可知,PQ⊥ON,故出射点到O点的距离为轨迹圆直径的2倍,即4R, mv 又粒子在匀强磁场中运动的轨迹半径R= qB ,所以D正确.
解析:本题考查带电粒子在有界磁场中的运动,意在考查学生应 用磁场对运动电荷的作用规律解题的能力.由题可知,粒子在磁场中 做圆周运动的轨迹如图所示,由几何关系可知,粒子在磁场中做圆周 运动的圆弧所对的圆心角为30° ,因此粒子在磁场中运动的时间为t= 1 2πm 12× qB ,粒子在磁场中运动的时间与筒转过90° πm 1 2π q ω 所用的时间相等,即6qB=4× ω ,求得m=3B, A项正确. 答案:A
解析:
本题考查带电粒子在磁场中的运动问题,意在考查学生应用磁场 对运动电荷的作用规律解决问题的能力.本题解题的关键是要确定粒 子做圆周运动的圆心,再根据几何关系求出粒子做圆周运动的半径及 运动轨迹所对应的圆心角.
设正六边形的边长为 L,一带正电的粒子从 f 点沿 fd 方向射入磁 场区域,当速度大小为 vb 时,从 b 点离开磁场,由几何关系可知,粒 子在磁场中做圆周运动的半径 rb=L, 粒子在磁场中做圆周运动的轨迹 mv2 b 所对应的圆心角为 120° ,由洛伦兹力提供向心力 Bqvb= L ,得 L= mvb 2πL 1 2πm qB ,且 T= vb ,得 tb=3· qB ;当速度大小为 vc 时,从 c 点离开磁场, 由几何关系可知,粒子在磁场中做圆周运动的轨迹所对应的圆心角 2θ 1 2L =60° ,粒子在磁场中做圆周运动的半径 rc=L+sinθ=2L,同理有 2L mvc 1 2πm = qB ,tc=6· qB ,解得 vb∶vc=1∶2,tb∶tc=2∶1,A 项正确. 答案:A