经典分式化简求值复习课件.ppt

合集下载

专题复习——分式的化简求值共51页PPT

专题复习——分式的化简求值共51页PPT

谢谢!
51、 天 下 之 事 常成 于困约 ,而败 于奢靡 。——陆 游 52、 生 命 不 等 于是呼 吸,生 命是活 动。——卢 梭
53、 伟 大 的 事 业,需 要决心 ,能力 ,组织 和责任 感。 ——易 卜 生 54、 唯 书 籍 不 朽。——乔 特
专题复习——分式的化简求值
11、用道德的示范来造就一个人,显然比用法律来约束他更有价值。—— 希腊
12、法律是无私的,对谁都一视同仁。在每件事上,她都不徇私情。—— 托马斯
13、公正的法律限制不了好的自由,因为好人不会去做法律不允许的事 情。——弗劳德
14、法律是为了保护无辜而制定的。——爱略特 15、像房子一样,法律和法律都是相互依存的。——伯克
55、 为 中 华 之 崛起而 读书。 ——周 恩来

分式的化简求值课件

分式的化简求值课件
分式的化简求值课件
目录
• 分式化简概述 • 分式的约分 • 分式的通分 • 分式的化简求值
01
分式化简概述
分式化简的定义
总结词
分式化简是指将分式通过约分、通分、分子分母分解因式等方式,将其转化为 最简形式的过程。
详细描述
分式化简是数学中一个重要的概念,它涉及到分数的约分、通分、分子分母分 解因式等操作,目的是将分式简化到最简形式。最简形式是指分子和分母没有 公因式,且分子和分母互质的分式。
02
分式的约分
约分的定义和性质
约分的定义
约分是将一个分式化简为最简形 式的过程,通过约分可以简化分 式的计算和化简过程。
约分的性质
约分后分式的值不变,即约分前 后的分式相等;约分后的分式比 原分式更加简单明了,易于计算 和理解。
约分的步骤和方法
找出分子和分母的最大公约数
01
通过因式分解、质因数分解等方法找出分子和分母的最大公约
分式化简的意义和作用
总结词
分式化简在数学中具有重要的意义和作用,它可以帮助学生更好地理解分数和分式的概念,提高解题速度和准确 度。
详细描述
通过分式化简,学生可以更好地理解分数和分式的本质和特点,掌握其运算规则和技巧。同时,分式化简也可以 帮助学生提高解题速度和准确度,减少计算错误和混淆的可能性。此外,分式化简在数学研究和应用中也具有广 泛的应用价值,如在物理、化学、工程等领域中都有重要的应用。
02
分别对分子、分母进行 因式分解。
03
将每个分式化为最简比 的形式。
04
约分:如果分子、分母 有公因式,则约去公因 式。
通分的注意事项
注意最简公分母的选择
注意化简求值时的符号

北师大版数学中考专题复习之分式的化简与运算(课件)

北师大版数学中考专题复习之分式的化简与运算(课件)


b
=a(a-b b)·(a+b)b(a-b)
=a+a b .
9
分式的化简求值
例3、 先化简,再求值:
(1-1a)·a2-a 1
,其中a= 2-1
解: 原式= a-a 1·(a+1)a(a-1)=a+1 1,
当 a=
2-1 时,原式=
2-11+1=
2 2.
10
分式的化简求值
例4、 先化简,再求值:
分式的化简与运算
1
学习目标
➢ 会进行分式的约分。 ➢ 会进行因式分解。
2
学习重点
➢ 分式的约分 ➢ 分式的化简求值
3
学习难点 ➢ 约分及最简分式换
4
基本概念
约分:
分式与分数类似,也可以约分,根据分式的基 本性质,把分式中的__分__子__和___分__母__的___公___因__式_约 去,叫做分式的约分。
7
分式的化简求值
例1、下列约分正确的是(B)
A. x y 0 x y
C. xy2 1 4x2 y 4
B. x - y2 x y
x2 y2 x y
D. a m a bm b
8
分式的化简求值
例2、 化简: ( ab2-a)÷a2-b b2.
a2-ab (a+b)(a-b)ຫໍສະໝຸດ 解: 原式=不等式组
2-x≤3
的整数解中选取。
2x-4<1
,其中x的值从
13
解:
原式=
x2-1 3-3x x(x-1) ( + )÷ x+1 x+1 x+1
=x2-x+3x1+2·x(xx+-11)
(x-1)(x-2) x+1
x-2

分式化简求值专题复习(课件)

分式化简求值专题复习(课件)
分式化简求值专题复习
施秉第二中学:向兴友
• 1、分解因式 • (1)提公因式法:ma+mb+mc= • (2)公式法: • 平方差公式:a²-b²= • 完全平方公式a²±2ab+b²= • (3)因式分解:x²+(a+b)x+ab= • 2、分式的通分:异分母的分式相加减关键在于找 再
通分。
• 3、解题目技巧:
x2 1 x2 2x 1
2
4.先简化分式: x2 1 ÷ x 1 ·(x- 1 ),然后在线-1,0,1,2 中选一个你认为合适的 x 的值,代入求值。
x2 2x 1 x
x
【课堂小结】
1. 分式的通分 2.分式的约分
【课后作业】
1、先化简,再求值(x+1- 15 )÷ x 2 8x 16 ,其中 x=2
x 1
x 1
2、先化简,再求值:(1- 1 )÷ x2 4x 4 ,其中 x 是不等式 3(x+4)-6≥0 的负整数解。
x 1
x2 1
3、先化简,再求值:( x 1 - x 2 )÷ 2x 2 x ,其中 x 满足 x2-x-1=0
x x 1 x2 2x 1
④2+ x
2x 3 4x2 9
最简公分母是:
【小题热身】
1.先简化,再求 a 2 2ab b2 ÷( 1 + 1 ) 值:其中 a,b 互为倒数。
ab
ab
2.先化简,再求值:(1- 1 )÷ x 2 2x 1 ,其中 x=-3
x2
x2 4
3.先化简,再求值:(1- 1 x )÷ x 2 2x ,其中 x= 1
• 要善于观察题目的特征,若分子,分母是多项式则应先 将其分解因式,再把除法转化为乘法,再约分化简。

分式化简求值复习ppt课件

分式化简求值复习ppt课件

x 1
xx 1
x
1x 1 x 12
xx 1
x 1
当x=2013时,原式=2013
x
直击中考
11.(2013本溪市)先化简,在求值:
(
m
m2 1 2 2m
1
m
m 2
m
)
(1
2 m
),其中m=-3
解:( m
m2 1 2 2m
1
m m2
m
)
(1
2 m
)
m 1m 1 m 12
m
mm 1
m m
2
4 2
] a
4
3
2
当a
3 2时,原式
1 32-2
1 3
3 3
6.(2013铁岭市)先化简,在求值:(1
7.(2013鞍山市)先化简,在求值:
a
1
) 1
a
2
4a a2 1
4
其中a=-2
(x 3 7 ) 4 x x3 x3
,其中 x
2 4
8.(2013抚顺市)先化简,在求值:(a 1
用符号语言表达: a c ac b d bd
两个分式相除,把除式的分子和分母颠倒位置
后再与被除式相乘。
a 用符号语言表达: c a d ad b d b c bc
分式的加减
同分母相加
B C BC AA A
异分母相加
B C BD CA BD AC
A D AD AD
AD
通分
在分式有关的运算中,一般总是先把分子、 分母分解因式;
足__x___3__
x3
1.分式的基本性质:
分式的分子与分母同乘以(或除以) 一个不为0的整式 分式的值 不变

专题复习分式的化简求值

专题复习分式的化简求值

专题复习:求代数式的值教学目标:(1)掌握求代数式的值的技巧,克服分式化简过程中的易错点,熟练准确地进行分式的化简;(2)熟练掌握一元一次方程、二元一次方程组、一元二次方程、分式方程、一元一次不等式及不等式组的解法、以及整体代入思想,准确地求出代数式的值。

教学重点:熟练准确地进行分式的化简,会利用条件准确求出代数式的值教学难点:克服分式化简过程中的易错点,准确地化简分式。

一、课题引入(2分钟)教师课件展示:学习目标:(1)掌握求代数式的值的技巧,克服分式化简过程中的易错点,熟练准确地进行分式的化简;(2)熟练掌握一元一次方程、二元一次方程组、一元二次方程、分式方程、一元一次不等式及不等式组的解法、以及整体代入思想,准确地求出代数式的值。

二、知识梳理:(4-5分钟)(教师请学生观察课件展示的题目,学生总结所涉及的知识和方法,教师板书)教师课件展示整理的知识与方法求代数式的值所涉及到的知识与方法有:(1)化简部分:其中有添括号、去括号的方法,因式分解,整式的运算法则;分式的通分、约分,分式的运算法则等。

(2)求值部分:涉及到解一元一次方程,分式方程,二元一次方程组,一元二次方程的解法,一元一次不等式及不等式组的解法与其整数解,整体代入法等 (0的正根。

2x ,其中x是方程x 44x x 4x x )x 2x 2x 1x (4)(2b a 4b a 足2b),其中a、b满a 2b a 5b (2ab a 9b 6ab a (3);3x 2x 1,x满足方程2x x 4)2x 12-2-(2)(x 1的最小整数解;3,其中x是不等式x 12x x 2x x )1x 2-x -x 1-x (1)到哪些知识与方法:下列求代数式的值会用222222222=--++-÷--+-⎩⎨⎧=-=+---÷-+-+=+-÷+->-++-÷+;三、典例分析:(8-10分钟)教师用投影仪展示学生的错误解答(2-3名)。

人教版数学八年级培优竞赛 分式化简与求值 专题课件

人教版数学八年级培优竞赛 分式化简与求值 专题课件

b
c
a
(1)因 a a1= 3 ,所以
a a1
2
9,
a2 1 7 ,再次两边平方得 a4 1 47 ;
a2
a4
(2)
a4
a2 a2
1
a2
1
1
1 a2
1.
8
12.已知下面一列等式:1× 1 =1- 1 ;1 × 1 = 1 - 1 ;1 × 1 = 1 - 1 ;1 × 1 =
ab3
ba
A. 1
3
B.- 1
3
C.3 D.-3
2.已知: 1 - 1 =3,则 2x 3xy 2y 的值是( D )
xy
x xy y
A.- 7
2
B.- 11
2
C. 9
2
D. 3
4
3.当 x 分别取-2018、-2017、-2016、……、-2、-1、0、1、1 、1 、……、
23
1 、 1 、 1 时,计算分式 x2 1 的值,再将所得结果相加,其和等于( C )
14.有一列按一定顺序和规律排列的数:
第一个数是 1 ;第二个数是 1 ;第三个数是 1 ;…对任何正整数 n,第(n
1 2
23
3 4
+1)个数
的和等于 2 . nn 2
(1)经过探究,我们发现: 1 =1- 1 ; 1 = 1 - 1 ; 1 = 1 - 1 ;请直接写出
1 2
2 23 2 3 34 3 4
2
22 3 2 33 4 3 44 5
1 - 1 ;……
45
(1)请你按这些等式左边的结构特征写出它的一般性等式;
(2)验证一下你写出的等式是否成立; (3)利用等式计算: 1 + 1 + 1 + 1 的值.

分式的化简与求值

分式的化简与求值

分式的化简与求值例1 化简分式:分析直接通分计算较繁,先把每个假分式化成整式与真分式之和的形式,再化简将简便得多.=[(2a+1)-(a-3)-(3a+2)+(2a-2)]例2 求分式当a=2时的值.分析与解先化简再求值.直接通分较复杂,注意到平方差公式:a2-b2=(a+b)(a-b),可将分式分步通分,每一步只通分左边两项.例3 若abc=1,求分析本题可将分式通分后,再进行化简求值,但较复杂.下面介绍几种简单的解法.解法1 因为abc=1,所以a,b,c都不为零.解法2 因为abc=1,所以a≠0,b≠0,c≠0.例4 化简分式:分析与解三个分式一齐通分运算量大,可先将每个分式的分母分解因式,然后再化简.例5 化简计算(式中a,b,c两两不相等):似的,对于这个分式,显然分母可以分解因式为(a-b)(a-c),而分子又恰好凑成(a-b)+(a-c),因此有下面的解法.解例6 已知:x+y+z=3a(a≠0,且x,y,z不全相等),求分析本题字母多,分式复杂.若把条件写成(x-a)+(y-a)+(z-a)=0,那么题目只与x-a,y-a,z-a有关,为简化计算,可用换元法求解.解令x-a=u,y-a=v,z-a=w,则分式变为u2+v2+w2+2(uv+vw+wu)=0.由于x,y,z不全相等,所以u,v,w不全为零,所以u2+v2+w2≠0,从而有例7 化简分式:解法1 利用比例的性质解决分式问题.(1)若a+b+c≠0,由等比定理有所以a+b-c=c,a-b+c=b,-a+b+c=a,于是有(2)若a+b+c=0,则a+b=-c,b+c=-a,c+a=-b,于是有解法2 设参数法.令则a+b=(k+1)c,①a+c=(k+1)b,②b+c=(k+1)a.③①+②+③有2(a+b+c)=(k+1)(a+b+c),所以 (a+b+c)(k-1)=0,故有k=1或 a+b+c=0.当k=1时,当a+b+c=0时,练习四1.化简分式:2.计算:3.已知:(y-z)2+(z-x)2+(x-y)2=(x+y-2z)2+(y+z-2x)2+(z+x-2y)2,的值.。

八年级数学上册第十五章分式专题课堂八分式的化简求值课件

八年级数学上册第十五章分式专题课堂八分式的化简求值课件
6.有这样一道题:“计算x2-x2-2x+1 1 ÷xx2-+1x -x 的值,其中 x=2020”甲 同学把“x=2020”错抄成“x=2002”,但他的计算结果也正确,你说这是 怎么回事?于是甲同学认为无论 x 取何值,代数式的值都不变,他说得对 吗? 解:对.∵原式=xx-+11 ·x(xx-+11) -x =x-x=0,∴把 x=2020 错 抄成 x=2002,他的计算结果也正确
第十五章 分 式
专题课堂(八) 分式的化简求值
类型一 化简后直接代入 1.(河南中考)先化简,再求值:(x+1 1 -1)÷x2-x 1 ,其中 x= 2 +1.
解:当 x= 2 +1 时,原式=x-+x1 ·(x+1)x(x-1) =1-x=- 2
2.(2019·黄冈)先化简,再求值.
5a+3b ( a2-b2
解:原式=(2xx--23 -xx--22 )÷(xx--12)2 =xx--12 ·(xx--12)2 =x-1 1 , 当 x=0 时,原式=-1
5.(2019·安顺)先化简(1+x-2 3 )÷x2-x2-6x+1 9 ,再从不等式组
-2x<4, 3x<2x+4
的整数解中选一个合适的 x 的值代入求值.
解:原式=x-x-3+3 2 ×(x+(1x)-(3)x-2 1) =xx-+31 ,解不等式组
-2x<4①, 3x<2x+4② 得-2<x<4,∴其整数解为-1,0,1,2,3,∵要使 原分式有意义,∴x 可取 0,2.∴当 x=0 时,原式=-3(或当 x=2 时,
原式=-13 )
类型四 分式化简说理
解:原式=[(a+(2a)-(2)a-2 2) +a-1 2 ]·a(a-2 2) =(aa+-22 +
1 a-2

第五讲:分式的化简与求值(提高培优)

第五讲:分式的化简与求值(提高培优)

上课内容: 分式的化简与求值 上课时间: 7-28(16:00-18:00) 学员: 戴永杰 代课老师:游老师授课内容: 第2讲 分式的化简与求值分式的基本概念分式的定义:一般地,若A 、B 表示两个整式,并且B 中含有字母,那么式子AB叫做分式,其中A 叫分子,B 叫分母,0B ≠。

判断分式: ①原式中含有分数线;②分母中含有字母且分母不等于0; ③必须要看原式的最初形式分式有意义(或分式存在)的条件:分式的分母不等于零即0B ≠。

因此,要使分式无意义,只需分式的分母等于0板块一 基础练习1.使分子、分母中的最高次项的系数都为正.22333107385y x x x yx +-+-=2. 通分22222b)(a b ,)(2b ,2+--b a b a a 约分: 43273a a -= ;m m m -+-1122= ; 3. 已知xzyz xy z y x z y x 3232432222+++-==,则的值是4.若分式y x xy -3的值是5,则x 、y 都扩大为原来的21倍后,这个分式的值为 . 5.分式236562+--x x x 的值为0,则x 的值为板块二 中考必考知识点 6. 代数式1133342x y m n a x b π+-+,,,,,2-a 中,分式有( )。

A .1个 B .2个 C .3个 D .4个7.若分式25011250x x -++有意义,x 的值是______;若分式无意义,则x ______;若250011250x x-=++,则x ______; 8. ⑦ xy y x y x y x yx 222)()]11(211[+÷++++ ⑧)]121()144[(48122a a a a -÷-+⋅--三、本次课后作业:见学生学案。

四、学生对于本次课的评价:○ 特别满意 ○ 满意 ○ 一般 ○ 差 学生签字:分式的化简与求值分式的基本概念分式的定义:一般地,若A 、B 表示两个整式,并且B 中含有字母,那么式子AB叫做分式,其中A 叫分子,B 叫分母,0B ≠。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题复习 分式及分式的
化简求值
1.分式的定义:
形如 A ,其中 A ,B 都是整式, B 且 B 中含有字母.
2.分式有意义的条件: B≠0 分式无意义的条件: B = 0
3.分式值为 0 的条件: A=0且 B ≠0
【2010-10】在函数中,y 1 自x 变量x的取值范围
是 x 。3
x3
【2013-7】要使分式
在分式有关的运算中,一般总是先把分子、 分母分解因式;
注意:过程中,分子、分母一般保持分解因 式的形式。
因式分解
方法一:提公因式法
方法二:公式法
完全平方式:a2 2ab b2 a b2 a2 2ab b2 a b2平方差式: a2 b来自 a ba b因式分解练习
1、a2 2a 2、x2 2x 1 3、a2 4a 4 4、x2 6x 9 5、a2 1 6、x2 4 6、a2 9
得数是( D)
的值为0,你认为x可取
A.9 B.±3 C.﹣3 D.3
练一练
3
1.(2013抚顺市)如果分式 取值范围是( )C
x 1有意义,则x的
A.全体实数 B.x=1 C.x≠1 D.X=0
2.(2013营口市)函数
值范围是___x___.5
y
2x x 5中,自变量x的取
3.(2013铁岭市)函数
3.先化简,再求值:
(
m2 1 m2 2m 1
m m2
m
)
(1, 2其) 中m=-3.
m
用符号语言表达: a c ac b d bd
两个分式相除,把除式的分子和分母颠倒位置
后再与被除式相乘。
用符号语言表达: a c a d ad b d b c bc
{ 同分母相加
分式的加减
异分母相加
B C BC AA A
B C BD CA BD AC
A D AD AD
AD
通分
y
x 1
x 2有意义,则 自变
量x的取值范围是____x___1_且__x__. 2
分式的基本性质:
分式的分子与分母同乘以(或除以) 一个不为0的整式 分式的值 不变
用式子表示: A
AXM
=
B
(B X M )
A A÷M B = ( B÷M )
(其中M为 不为0 的整式)
两个分式相乘,把分子相乘的积作为积的分子, 把分母相乘的积作为积的分母。
分式化简求值的一般解题思路为:
1、利用因式分解、通分、约分等进行化简;
2、求值时,要注意:字母的取值,一定要使 原分式有意义,而不是只看化简后的式子。
作业
1.先化简,再求值:(1
a
1
) 1
a
2
a24a1,4其中a=-2
2.先化简,再求值: (1 1 ) x x ,1其中x=2. 1 x x 1 x
相关文档
最新文档