2011-2012八年级上数学期末试卷及答案
2011-2012学年度第一学期期末考试八年级数学试卷
2011~2012学年度第一学期期末考试八年级数学试卷一.选择题(3分X 12—36分)下列各题均有四个备这备案,其中只有一个正确答案,将你认为正确的答案一在答题卷中1.有意义,则a的取值范围是2.下列图案中,为轴对称图形的是3,在五个实数中,无理数的个数有A.4个B.3个C.2个D.1个4.下图分别给出了变量x与y之间的对应关系,其中y不是x的函数是5.一次函数y=2x-3的图象大致为6.如自,直线y=mx+n与直线y=kx+b交于点P(-1,1),则关于x的不等式。
mx+n≥kx +b的解集为A.x≥1 B.x≥-1C.x≤l D.x≤-17.甲、乙两人从学校沿相同路线前往距离学校10km的培训中心参加学习,图中后ι甲ι乙分别表示甲、乙两人前往目的地所走的路程S(km)随时间t(分)变化的函数图象.以下说法:①乙比甲提前12分钟到达;②乙只用10分钟到达培训中心。
③甲出发18分钟后乙才出发。
其中正确的有A.3个B.2个C.1个D.0个8.如图,AD⊥BC,BD=CD,且点C在AE的垂直平分线上,那么下列结论错误的是A.AB=AC B.BC=CE C.AB十BD=DE D.∠B=2∠E9.如图,把R t△ABC放在直角坐标系内,其中∠CAB=90°,点C、B的坐标分别为(1,4)、(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x-6上时,线段BC扫过的面积为A.4 B.8 C.1610.如图是相同长度的小棒换成的一组有规律的图案,图案(1)需要4根,小样,图案(2)需要10根小棒……,按此规律摆下去,第6个图案需要小棒的根数为.11.如图,在△ABC中,点E是BC上一点,点D是AE上一点,下列条件。
①DE⊥BC;②∠BDE=∠CDE;③BE=EC.共有3对组合条件:①②;①③;②③.其中能推出AB=AC的组合条件有A.3对B.2对C.1对D.0对12.如图,△ABD、△BDC都是等边三角形,点E、F分别在AB、AD上,且AE=DF,连接BF与DE交于点G,下列结论:≌△①△AED≌△DFH ; ②∠BGE=600; ③ GC=GE+GB④若AF=2AE, 则S△GE B-S△DFG=1/3S△BDC其中正确的结论是A①②③B.①②④C.③④D.①②③④二.填空题(3分×4=12分)13.9的平方根为;化简的值为;与最接近的整数为。
(完整word版)11-12上八年级期末考试数学试题参考答案及评分意见
南岸区2011—2012学年度上期期末质量监测八年级数学试题参考答案及评分意见一.BDCCB ACCBA二.11.±2; 12.32; 13.2; 14.65°、70°;15. 甲持钱45、乙持钱30; 16.(0,5)(-1,3)或(3,3)(2,1)或(-1,3)(2,1).三.17.解:原式=1+2-3+1-4…………………………………………………………(5分)=-3……………………………………………………………………(6分)18.解;A (-4,4)、B (-7,0)、C (-4,-4)、D (0,-4)、E (3,0)、F (0,4)(每个点各一分,共6分)19.解:原式=()3222229÷-+……………………………………………(3分)=28×241…………………………………………………………………(5分)=2.……………………………………………………………………………(6分)20.解: 四边形ABCD 会是菱形,理由如下: ………………………………(1分)∵在△AOB 中,AB=5,AO=2,OB=1,∴AO 2+ OB 2=22+1=5. …………(2分)又∵AB 2=(5)2=5,∴AO 2+ OB 2= AB 2.…………………………………………(3分)∴根据勾股定理的逆定理,得∠AOB=90°.…………………………………………(4分)∴AC ⊥BD .……………………………………………………………………………(5分)∵四边形ABCD 是平行四边形,∴四边形ABCD 会是菱形. ……………………(6分)四.21.解:(1)这次活动奖金的平均数是x =2001000200000550350871031055050350100087600010100003==++++⨯+⨯+⨯+⨯+⨯…(5分) 这次活动奖金的中位数是10、众数是10. ……………………………………………(7分)(2)因为这次活动奖金的平均数是200,所以商厦说“平均每份奖金200元”没有欺骗顾客,但中位数是10、众数也是10,这就是说多数顾客得奖为10元.以后遇到开奖的问题应更关心中位数和众数.………………………………………………………(10分)22.解:(1)当Q 点与D 重合时,如图①,∵四边形ABCD 是矩形,AD=5,AB=3,∴BC=AD=5,DC=AB=3, ∠C=90°.…………(3分)由折叠知'1A D=AD=5,…………………………(4分)在Rt △'1A CD 中,根据勾股定理,得21221D A DC C A '=+'22121DC D A C A -'='2235-=16=.………………………………………………………………………(5分)∵C A '1>0,∴C A '1=16=4.………………………………………………(6分)(2)'1A 在BC 上最左边时点Q 点与D 重合,此时,由(1)得,'1A C=4;……(7分)当点P 与B 重合时,图②中的'2A 在BC 上最右边.………………………………(8分)此时,由折叠知: '2A B =AB=3,则A 2C =5 -3 =2; ………………………………(9分)A '应在'1A '2A 之间移动,所以A '在BC 边上可移动的最大距离为C '1A --C '2A =4 -2 =2.……………………………………(10分)23.(1)解:由②得:14009=+y x .③ ………………………………………(2分)③-①得:12008=y .………………………………………………………………(3分)y =150.…………………………………………………………………(4分)将y =150,代入①得:50=x .……………………………………(5分)∴原方程组的解为:⎩⎨⎧==.150,50y x ……………………………………(6分) (2)所编应用题为:答案不唯一.如:一、二班共有200名学生,他们在半期数学考试中的优生率为35%,如果一班学生的优生率为5%,二班学生的优生率为45%.那么一、二班学生的学生数各是多少?(200、35%、5%、45%四个数据各一分.)……(10分)24.解:(1)DE=DG ,DE ⊥DG .理由如下:………………………………(1分)∵四边形ABCD 是正方形,∴DC=DA ,∠DCE=∠DAG=90°.又∵CE=AG ,∴△DCE ≌△GDA .∴DE=DG ,∠EDC=∠GDA .……(4分)又∵∠ADE+∠EDC=∠ADC=90°,∴∠ADE+∠GDA=90°,∴DE ⊥DG .…(5分)(2)画图如图. 四边形CEFK 为平行四边形.理由如下:……(6分)∵四边形ABCD ,∴AB ∥CD ,AB=CD .∵BK=AG ,∴GK=AK+ AG =AK+BK=AB .即 GK=CD. ……………………………………(7分)又∵K 在AB 上,点G 在BA 的延长线上,∴GK ∥CD .∴四边形CKGD 是平行四边形.∴DG=CK ,DG ∥CK .…………………………(8分)又∵四边形DEFG 都是正方形,∴EF=DG ,EF ∥DG .∴CK=EF ,CK ∥EF .…………………………(9分)∴四边形CEFK 为平行四边形.………………(10分)25.解:(1)设 x k y 11= ∵图象过(10,600)∴110600k =. ∴601=k . ∴ ()100601≤≤=x x y .………(1分)设b x k y +=22,∵图象过(0,600), (6,0),∴⎩⎨⎧=+=)2(06)1(,600b k b 将600=b 代入(2)得 600k =-.∴ ()606001002≤≤+-=x x y .………………………………………… (3分)(2)⎩⎨⎧+-==60010060x y x y 解得:⎪⎩⎪⎨⎧==225415y x ∴ M ⎪⎭⎫ ⎝⎛225,415……………(4分)∴①当4150≤≤x 时,S 1=12y y -=x x 60600100-+-=600160+-x ; ……(5分) ②当6415≤≤x 时,S 2=21y y -=()60010060+--x x 600160-=x ;……(6分) ③当106≤≤x 时S 3x 60= ……………(7分)(3)当4150≤≤x 时,200=S ,∴200600160=+-x . 解之,得()h x 25160400==.∴)(1502560km y =⨯= ……………(8分) 当6415≤≤x 时,200=S ,∴200600160=-x . 解之,得()h x 5=,∴)(300560km y =⨯=………………………………(9分)∴当106≤≤x 时,20060=x ,310=x . ∵106≤≤x , ∴310=x (舍去). 综上所述:A 加油站到甲地的距离为km 150或km 300…………………(10分)26.解:延长BA 交y 轴于E 点,(1)∵直线x y =是一、三象限的角平分线,∴∠MOE=∠MON=21×90°=45°. ∴A 点第一次落在直线y=x 上时停止旋转时,OA 旋转了45°;………………(2分)(2)∵四边形ABCO 是正方形,∴∠B=∠OAB=∠OCB=∠AO C=90°,OA = OC ,且∠BAC=∠BCA=45°.∵MN ∥AC, ∴∠BMN =∠BAC = 450, ∠BNM =∠BCA=45°,∠BMN =∠BNM. ∴BM = BN.…………………………………………………………(4分) 又∵ BA = BC, ∴BA -BM=BC -BN ,即 AM = CN.又∵∠OAM =∠OCN =900,OA = OC ,∴△OAM ≌△OCN. …(6分) ∴∠AOM= ∠CON.∴∠AOM=∠CON=21(∠AOC -∠MON ) =21(90°-45°)=22.5°,∴当MN和AC平行时,正方形OABC旋转的度数为22.5°……………………(7分)(3)p值无变化,理由如下:∵由旋转的性质得:∠AOE= ∠CON.………………………………………………(8分)又∵∠OAE+∠OAB=180°,∠OAB=90°,∴∠OAE=90°.∴∠OAE =∠OCN = 90°,.又∵OA = OC,∴△OAE≌△OCN.…………………………………………………(9分)∴OE=ON, AE=CN.又∵∠MOE=∠MON=45°,OM= OM,∴△OME≌△OMN,………………(10分)∴MN= ME= AM+ AE.∴MN= AM+ CN.∴p=MN+BN+BM=AM+CN+BN+ BM= AB+ BC=4..................................(11分)∴在正方形OABC旋转的过程中p值无变化. (12)。
2011~2012年八年级上期末数学试卷含答案
2011—2012学年第一学期期末考试试卷初二数学下列各小题均有4个选项,其中只有一个..选项是正确的,请你把正确答案的字母序号填在下表中相应题号的下面 1.若分式21x -的值为0,则x 的值为 A .1B .1-C .1±D .22x 的取值范围是A .1x >B .1x ≥C .1x <D .1x ≤ 3.已知三角形的两边长分别为3cm 和8cm ,则此三角形的第三边的长可能是 A .4cmB .5cmC .6cmD .13cm4.如图,AC ∥BD ,AD 与BC 相交于O ,4530A B ∠=∠=,,那么AOB ∠等于 A .75° B .60° C .45° D .30°5.下列判断中,你认为正确的是 AB .π是有理数 第4题C xD 26.在某次国际乒乓球单打比赛中,甲、乙两名中国选手进入最后决赛,那么下列事件为必然事件的是A .冠军属于中国选手B .冠军属于外国选手C .冠军属于中国选手甲D .冠军属于中国选手乙7.下列运算中正确的是A .623x x x = B .1x y x y -+=-+C .22222a ab b a b a b a b +++=--D .11x xy y+=+8.如图,在Rt △ABC 中,∠C =90︒,AB=4,BC =2, D 为AB 的中点,则△ACD 的面积是 AB.C .2D .49.2011年雨季,一场大雨导致一条全长为550米的污水排放管道被冲毁.为了尽量减少施工对城市交通所造成的影响,实际施工时,每天的工效比原计划增加10%,结果提前5天完成这一任务,问原计划每天铺设多少米管道?设原计划每天铺设x 米管道,所列方程正确的是A .5505505(110%)x x -=+B .5505505(110%)x x -=+ C .5505505(110%)x x-=-D .5505505(110%)x x-=-10.如图,D 是AB 边上的中点,将ABC ∆沿过D 的直线折叠,使点A 落在BC 上F 处,若50B ∠=︒,则BDF ∠度数是 第10题A .60°B .70°C .80°D .不确定 二、填空题(本题共15分,每小题3分) 11.如图,在ABC △中,∠C 是直角,AD 平分∠BAC 交BC 于点D .如果AB =8,CD =2那么△ABD 的面积 等于 .12.计算:222233yx y x-÷= . 第11题 13.如图,ABC △是等边三角形,点D 是BC 边上任意一点,DE AB ⊥于点E ,DF AC ⊥于点F .若4BC =, 则BE CF +=_____________. 14.如果11m m-=-,那么2m m += . 15.一般的,形如1x a x+=(a 是已知数)的分式方程有两个解,通常用1x ,2x 表示. 请你观察下列方程及其解的特征:(1)12x x +=的解为121x x ==;(2)152x x +=的解为12122x x ==,; (3)1103x x +=的解为12133x x ==,;…… ……解答下列问题:(1)猜想:方程1265x x +=的解为1x = ,2x = ; (2)猜想:关于x 的方程1x x += 的解为121(0)x a x a a==≠,.CBAF E B C D A第13题三、计算题(本题共15分,每小题5分)16.. 解:17.22⎤-⎦.解:18.2222+224a a a a a a +⎛⎫∙ ⎪+-+⎝⎭. 解:四、解答题(本题共10分,每小题5分)19. 已知:如图,在△ABC 中,∠B=∠C .求证:AB =AC .小红和小聪在解答此题时,他们对各自所作的辅助线叙述如下: 小红:“过点A 作AD ⊥BC 于点D ”;小聪:“作BC 的垂直平分线AD ,垂足为D ”.(1) 请你判断小红和小聪的辅助线作法是否正确; (2) 根据正确的辅助线作法,写出证明过程. 解:(1)判断: ; (2)证明:20.如图,在ABC △中,AB=AC ,D 是AB 的中点,点P 是线段CD 上不与端点重合的 任意一点,连接AP 交BC 于点E ,连接BP 交AC 于点F .求证:(1)CAE CBF =∠∠; (2)AE BF =. 证明(1)(2)五、解答题(本题共15分,每小题5分) 21.已知20x y -=, 求22y 1x y x y÷-- 的值. 解:22. 解分式方程: 223124x x x --=+-. 解:23.列方程或方程组解应用题:随着人们环保意识的增强,环保产品进入千家万户.今年1月小明家将天燃气热水器换成了太阳能热水器.去年12月份小明家的燃气费是96元,从今年1月份起天燃气价格每立方米上涨25%,小明家2月份的用气量比去年12月份少10立方米,2月份的燃气费是90元.问小明家2月份用气多少立方米? 解:六、解答题(本题共9分,其中24小题4分,25小题小题5分)24. 如图,ABC △中,90ACB ∠=°,将ABC △沿着一条直线折叠后,使点A 与点C 重合(图②).(1)在图①中画出折痕所在的直线l .设直线l 与AB AC ,分别相交于点D E ,,连结CD .(画图工具不限,不要求写画法) (2)请你找出完成问题(1)后所得到的图形中的等腰三角形.(用字母表示,不要求证明) 解:(2)25. 已知:如图,ABC △中,45ACB ∠=︒,AD ⊥BC 于D ,CF 交AD 于点F ,连接BF 并延长交AC 于点E ,BAD FCD ∠=∠. 求证:(1)△ABD ≌△CFD ;(2)BE ⊥AC . 证明:(1)(2)①A B ②B 折叠后七、解答题(本题6分)26.已知ABC △,以AC 为边在ABC △外作等腰ACD △, 其中AC =AD .(1)如图1,若2DAC ABC ∠=∠,△ACB ≌△DAC , 则ABC ∠= °;(2)如图2,若30ABC ∠=︒,ACD △是等边三角形, AB =3,BC =4. 求BD 的长. 解:(2)答案及评分参考一 、选择题(本题共30分,每小题3分)11. 8, 12.392x -, 13. 2, 14. 1 ,15.1215,5x x ==(2分);21a a +(1分)三、计算下列各题(本题共20分,每小题5分) 16.解: 1=3452⨯⨯⨯==分分.................................................................5分222(13)(62)..........................................288⎤-⎦=+--=++=分分....................................4=分分2222222+224(2)2(2)(2)=.......................3(2)(2)(2)(2)422+4(2)................................................4(2)(2)4 (2)a a a a a a a a a a a a a a a a a a a a a a a a a a +⎛⎫∙ ⎪+-+⎝⎭⎡⎤-+++∙⎢⎥+-+-+⎣⎦-++=∙+-+=-分分....................................................................5分四、解答题(本大题共2个小题,每小题5分,共10分) 19. 解:(1)判断:小红的辅助线作法正确 ;………….1分 (2)证明:∵AD ⊥BC ,∴ ∠ADB=∠ADC =90°.…………………………2分 ∵ ∠B=∠C ,AD =AD . ………………………………………3分 ∴ △ABD ≌△ACD .………………………………4分 ∴ AB =AC . ……………………………………..5分 20.证明(1) ∵ AB=AC ,D 是AB 的中点,∴ CD 平分∠ACB ………………………………………1分 ∴ ACP BCP ∠=∠ ∵ CP CP =,∴ △ACP ≌△BCP ………………………………2分 ∴ CAE CBF ∠=∠…………………………………3分 (2) ∵BCF ACE ∠=∠, CBF CAE ∠=∠,BC AC =,∴ △ACE ≌△BCF …………………………………………………………………4分 ∴ BF AE =. ………………………………………………………………………5分 五、解答题(本大题共15分,每小题5分) 21.解:原式=()())(y x y x y x y-⋅-+………………………………………………………2分 =yx y+………………………………………………………………………3分 ∵ 20x y -=, ∴ x =2y∴y x y +=312=+y y y ………………………………………………………………5分 22. 解分式方程:223124x x x --=+-. 解:22(2)(4)3x x ---=..................................................................................................2分45x -=-.………………………………………………………………3分54x =.………………………………………………………………..4分经检验,54x =是原方程的解.……………………………………………………….5分23.解:解:设小明家2月份用气x 立方米,则去年12月份用气(x +10) 立方米.-------1分 根据题意,得%251096109690⨯+=+-x x x .………………………………………….2分 解这个方程,得x =30 .…………………………………………………………………..3分 经检验,x =30是所列方程的根.………….……………………………………………….4分 答:小明家2月份用气30立方米. …………………………………………………….5分 六、解答题(本大题共9分,其中24小题4分,25小题小题5分) 24. 解:(1)如图所示: 2分 (2)ADC △,BDC △为等腰三角形. 4分25,∴ ∠ADC=∠FDB=90°.∵ 45ACB ∠=︒,∴ 45ACB DAC ∠=∠=︒……………………..1分∴ AD=CD. ………………………………………2分 ∵ BAD FCD ∠=∠,∴ △ABD ≌△CFD ………………………………3分(2) ∴ BD=FD. ………………………………………………………………………4分 ∵ ∠FDB=90°,∴ 45FBD BFD ∠=∠=︒. ∵ 45ACB ∠=︒, ∴ 90BEC ∠=︒.∴ BE ⊥AC .……………………………………………………………………………5分 七、解答题(本题6分)26. 解:(1)45;…….………………………………………………………………………..2分 (2)如图2,以A 为顶点AB 为边在ABC △外作BAE ∠=60°, 并在AE 上取AE =AB ,连结BE 和CE .∵ ACD △是等边三角形, ∴AD =AC ,DAC ∠=60°. ∵ BAE ∠=60°,∴ DAC ∠+BAC ∠=BAE ∠+BAC ∠.即EAC ∠=BAD ∠. ∴EAC △≌BAD △. …….…………………………….3分∴ EC =BD.∵ BAE ∠=60°,AE =AB=3, ∴ AEB △是等边三角形,∴ =60EBA ∠︒,EB =3.………………………………………………………………….4分∵ 30ABC ∠=︒, ∴ 90EBC ∠=︒.∵ 90EBC ∠=︒,EB =3,BC =4,∴ EC =5…………………………………………………………………………………5分 ∴ BD =5. ……………………………………………………………………………….6分A AEBCD2图。
2011-2012学年度第一学期期末考试八年级数学试卷
2011~2012学年度第一学期期末考试八年级数学试卷一.选择题(3分X 12—36分)下列各题均有四个备这备案,其中只有一个正确答案,将你认为正确的答案一在答题卷中1.有意义,则a的取值范围是2.下列图案中,为轴对称图形的是3,在五个实数中,无理数的个数有A.4个B.3个C.2个D.1个4.下图分别给出了变量x与y之间的对应关系,其中y不是x的函数是5.一次函数y=2x-3的图象大致为6.如自,直线y=mx+n与直线y=kx+b交于点P(-1,1),则关于x的不等式。
mx+n≥kx +b的解集为A.x≥1 B.x≥-1C.x≤l D.x≤-17.甲、乙两人从学校沿相同路线前往距离学校10km的培训中心参加学习,图中后ι甲ι分别表示甲、乙两人前往目的地所走的路程S(km)随时间t(分)变化的函数图象.以乙下说法:①乙比甲提前12分钟到达;②乙只用10分钟到达培训中心。
③甲出发18分钟后乙才出发。
其中正确的有A.3个B.2个C.1个D.0个8.如图,AD⊥BC,BD=CD,且点C在AE的垂直平分线上,那么下列结论错误的是A.AB=AC B.BC=CE C.AB十BD=DE D.∠B=2∠E9.如图,把R t△ABC放在直角坐标系内,其中∠CAB=90°,点C、B的坐标分别为(1,4)、(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x-6上时,线段BC扫过的面积为A.4 B.8 C.1610.如图是相同长度的小棒换成的一组有规律的图案,图案(1)需要4根,小样,图案(2)需要10根小棒……,按此规律摆下去,第6个图案需要小棒的根数为.11.如图,在△ABC中,点E是BC上一点,点D是AE上一点,下列条件。
①DE⊥BC;②∠BDE=∠CDE;③BE=EC.共有3对组合条件:①②;①③;②③.其中能推出AB=AC的组合条件有A.3对B.2对C.1对D.0对12.如图,△ABD、△BDC都是等边三角形,点E、F分别在AB、AD上,且AE=DF,连接BF与DE交于点G,下列结论:≌△①△AED≌△DFH ; ②∠BGE=600; ③ GC=GE+GB④若AF=2AE, 则S△GE B-S△DFG=1/3S△BDC其中正确的结论是A①②③B.①②④C.③④D.①②③④二.填空题(3分 ×4=12分)13.9的平方根为;化简的值为;与最接近的整数为。
2011~2012学年度八年级上册期末数学试卷
2010-2011学年第一学期初二年级期末考试数 学 试 卷2011年1月一、选择题(共8个小题,每小题4分,共32分) 1.要使分式1x x-的值为0,x 的值为 A .0B .1C .-1D .0和12.在函数y =13x -中,自变量x 的取值范围是 A .x > 3 B .x ≥ 3 C .x ≠ 3 D .x ≥-3 3. 下列图形中不是..轴对称图形的是 A .线段 B .角C .等腰直角三角形D .含40º和80º角的三角形 4. 如图,△ABC ≌△A ’B ’C ,∠ACB =90°, ∠A ’C B =20°,则∠BCB ’的度数为 A .20° B .40°C .70°D .90°5. 已知点P (-2,3)关于x 轴的对称点为Q (a ,b ),则a b +的值是 A.5B.-5C.1D.-16.如图,是屋架设计图的一部分,点D 是斜梁AB 的中点,立柱BC , DE 分别垂直横梁AC ,AB = 8m ,∠A = 30°,则DE 等于 A.1mB.2mA'B'CBA初一数学第二学期期末试卷第2页(共7页)C.3m D.4m7.观察右图中的函数图象,得关于x 的不等式ax -bx <c 的 解集为A.x < 3 B.x < 0C.x < 1 D.x > 18. 如图,Rt △ABC 中,∠ACB = 90°,∠B = 50°,D ,F 分别是BC , AC 上的点,DE ⊥AB ,垂足为E ,CF =BE ,DF =DB ,则∠ADE 的度 数为A .40°B .50°C .70°D .71°二、填空题(共4个小题,每小题4分,共16分)9.若一次函数y =2x +1的图象经过点(1,a ),则a 的值为 . 10.计算:(21x 3)÷(7 x 2 ) = . 11.分解因式:221x x -+ = .12.下面的图表是我国数学家发明的“杨辉三角”, 此图揭示了()na b +(n 为非负整数)的展开式的项数及各项系数的有关规律.请你观察,并根据此规律写出:(a+b )7的展开式共有 项,第二项的系数是 , na b +()的展开式共有 项,各项的系数和...是 .xE F ABCD共有5项共有3项共有2项共有4项各项系数和:4各项系数和:2各项系数和:8各项系数和:16(a+b)4 = a 4+4a 3b+6a 2b 2+4ab 3+b 4• • • • • • •(a+b)3=a 3+3a 2b+3ab 2+b 3• • • • • • •• • • • • • •(a+b)2=a 2+2ab+b 2(a+b)1=a+b • • • • • • •64113311211111三、解答题(共10个小题,共45分)13.(3分)01). 14.(3分)计算:2(2)(2)4x y x y y -++.15.(3分)因式分解:2327x -. 16.(4分)计算:55x yx y y x+--.17.(6分)已知23a b +=,求222[2(2)]2a b a b b +-+÷的值.初一数学第二学期期末试卷第4页(共7页)18.(5分)解方程:341x x =+ . 19. (6分)解方程:21133x xx x =+++ .20.(5分)在边长为1的小正方形组成的正方形网格中建立如 图所示的平面直角坐标系,已知格点三角形ABC (三角形的三个顶点都在小正方形的顶点上). (1)写出△ABC 的面积;(2)画出△ABC 关于y 轴对称的△A 1B 1C 1; (3)写出点A 及其对称点A 1的坐标.21.(5分)如图,点B 、F 、C 、E 在同一直线上,BF =EC ,∠1=∠2,∠B =∠E .求证:AB =DE .21F EABCD22.(5分)如图,在Rt △ABC 中,∠CAB = 90°,AB = AC ,直线DE 过点A ,CD ⊥DE ,BE ⊥DE ,CD = 4,BE = 3,求DE 的长.四、解答题(共4个小题,共27分)23.(6分)有两块面积相同的小麦试验田,第一块使用原品种,第二块使用新品种,分别收获小麦9000千克和15000千克.已知第二块试验田每公顷的产量比第一块多3000千克,分别求这两块试验田每公顷的产量.CBAD E321初一数学第二学期期末试卷第6页(共7页)24.(6分)在直角坐标系xoy 中,矩形ABCD 四个顶点的坐标分别为A (1,1),B (3,1),C (3,2),D (1,2),直线l :y kx b =+与直线2y x =-平行. (1)求k 的值;(2)若直线l 过点D ,求直线l 的解析式;(3)若直线l 同时与边AB 和CD 都相交,求b 的取值范围.25.(8分)如图,在平面直角坐标系xoy 中,直线l 1:3y x =-+与l 2:1133y x =+ 交于点C ,分别交x 轴交于点A ,B . (1)求点A ,B ,C 的坐标; (2)求△ABC 的面积;(3)在直线l 1上是否存在点P ,使△PBA 是 等腰直角三角形,若存在,求出点P 的坐标; 若不存在,说明理由.l 1:13x+13xy =26.(7分)阅读下列材料,解答相应问题:已知△ABC 是等边三角形,AD 是高,设AD = h .点P (不与点A 、B 、C 重合)到AB 的距离PE = h 1,到AC 的距离PF = h 2,到BC 的距离PH = h 3.如图1,当点P 与点D 重合时,我们容易发现:h 1=12 h ,h 2=12h ,因此得到:h 1+ h 2 = h .小明同学大胆猜想提出问题:如图2,若点P 在 BC 边上,但不与点D 重合,结论h 1+ h 2 = h 还成立吗? 通过证明,他得到了肯定的答案.证明如下:证明:如图3,连结AP . ∴ABC ABP APC S S S ∆∆∆=+.设等边三角形的边长AB =BC =CA =a . ∵AD ⊥BC ,PE ⊥AB ,PF ⊥AC ,∴12BC ⋅AD = 12AB ⋅PE +12AC ⋅PF ∴12a ⋅h = 12a ⋅h 1 +12a ⋅ h 2. ∴ h 1+ h 2 = h .(1)进一步猜想:当点P 在BC 的延长线上,上述结论 还成立吗?若成立,请你证明;若不成立,请猜想h 1,h 2 与 h 之间的数量关系,并证明.(借助答题卡上的图4) (2)我们容易知道,当点P 在CB 的延长线及直线AB , AC 上时,情况与前述类似,这里不再说明。
潍坊市某校2011-2012学年八年级(上)期末数学试卷(含答案)
八年级数学上册期末水平测试一、精心选一选(每小题3分,共30分)1.4的平方根是 【 】 (A )2(B )2(C )±2(D )2±2.不等式组⎩⎨⎧x -1>02x <4的解集是 【 】(A )x >1 (B )x <2 (C )1<x <2 (D )无解 3.在实数5、37、3、4中,无理数是 【 】 (A )5 (B )37(C )3 (D )44.下列图形中,是轴对称图形的是 【 】(A)①② (B )③④ (C )②③ (D )①④5. 如图,数轴上的点P 表示的数可能是 【 】 (A )5(B )5-(C ) 3.8-(D )10-6.有“华南第一湖”美称的青狮潭,风光秀丽,气候宜人,2010年6月第一周每天的最高气温(单位:℃)分别是:23,24,23,24,x ,25,25,这周的平均最高气温为24°,则这组数据的众数是 【 】 (A)23 (B)24 (C)24.5 (D)257.下列多项式中,能用公式法分解因式的是 【 】 (A )xy x -2(B )xy x +2(C )22y x + (D )22y x -8.下列不等式变形正确的是 【 】 (A)由a >b ,得a -2<b -2 (B)由a >b ,得-2a <-2b①②③④(C)由a >b ,得a >b (D)由a >b ,得a 2>b 2 9.化简211a a a a --÷的结果是 【 】 (A )1a(B )a (C )a -1 (D )11a -10.为了估计水塘中的鱼数,养鱼者首先从鱼塘中捕获30条鱼,在每一条鱼身上做好记号后把这些鱼放归鱼塘.再从鱼塘中打捞200条鱼,如果在这200条鱼中有5条鱼是有记号的,则鱼塘中鱼的条数可估计为 【 】 (A)3000条 (B)2200条 (C)1200条 (D)600条 二、耐心填一填(每小题3分,共30分) 11.5-的相反数是 .12.不等式的312x +<-解集是_________.13.如图,Rt ABC △中,90C ∠=°,ABC ∠的平分线BD 交AC 于D ,若3cm CD =,则点D 到AB 的距离DE 是 cm .(第13题) (第14题) (第15题) (第17题) 14.写出下图中所表示的不等式组的解集:____________.15.如图,这是小明制作的风筝,为了平衡做成轴对称图形,已知 OC 是对称轴,∠A =35°,∠ACO =30°,那么∠BOC = . 16.化简:22(1)(1)a a +--=________.17.如图所示,一场暴雨过后,垂直于地面的一棵树在距地面3米处折断,树尖B 恰好碰到地面,经测量AB =4米,则树高为 米.18.一家小吃店原有三个品种的馄饨,其中菜馅馄饨售价为3元/碗,鸡蛋馅馄饨售价为4元/碗,肉馅馄饨售价为5元/碗.每碗有10个馄饨.若该店新增了混合馄饨,每碗3个菜馅的、3个鸡蛋馅的、4个肉馅的.算一算,混合馄饨每碗定价 元/碗. 19.因式分解:ax 2+2axy +ay 2=______________.20.中百商场一天内出售双星牌运动鞋13双,其中各种尺码的鞋的销售量如下表:鞋的尺码(cm)23.5 24 24.5 25 26销售量(双) 1 3 2 5 2 请你给该商场提出一条合理的建议:.三、用心想一想(本题共60分)21.(本题6分)给出3个整式:x2、2x+1、x2-2x.(1)从上面3个整式中,选择你喜欢的两个整式进行加法运算,若结果能因式分解,请将其因式分解;(2)从上面3个整式中,任意选择两个整式进行加法运算,其结果能因式分解的概率是多少?22.(本题6分)现有9个相同的小正三角形拼成的大正三角形,将其部分涂黑.如图(1),(2)所示.图(1) 图(2) 图(3) 图(4)(1)它们具有的特征是:①;②.(2)请在图(3),图(4)内分别设计一个新图案,使图案具有上述两个特征.23.(本题7分)水是生命之源,水是希望之源,珍惜每一滴水,科学用水,有效节水,就能播种希望.某居民小区开展节约用水活动,3月份各户用水量均比2月份有所下降,其中的20户、120户、60户节水量统计如下表:户数20 120 60 节水量(立方米/每户)22.53(1) 节水量众数是多少立方米?(2) 该小区3月份比2月份共节约用水多少立方米? (3) 该小区3月份平均每户节约用水多少立方米?24.(本题7分)物体自由下落的高度h (米)和下落时间t (秒)的关系是:在地球上大约是h =4.9t 2,在月球上大约是h =0.8t 2,当h =19.6米时, (1)物体在地球上和在月球上自由下落的时间各是多少? (2)物体在哪里下落得快?(414.12 )25.(本题8分)2010年4月14日我国青海玉树地区发生强烈地震,急需大量赈灾帐篷.某帐篷生产企业接到任务后,加大生产投入,提高生产效率,实际每天生产帐篷比原计划多200顶,现在生产3 000顶帐篷所用的时间与原计划生产2 000顶的时间相同.现在该企业每天能生产多少顶帐篷?26.(本题8分)某校七年级共有500名学生,团委准备调查他们对“低碳”知识的了解程度.(1)在确定调查方式时,团委设计了以下三种方案:方案一:调查七年级部分女生;方案二:调查七年级部分男生;方案三:到七年级每个班去随机调查一定数量的学生.请问其中最具有代表性的一个方案是______________;(2)团委采用了最具有代表性的调查方案,并用收集到的数据绘制出两幅不完整的统计图(如图①、图②所示)请你根据图中信息,将其补充完整;(3)请你估计该校七年级约有多少名学生比较了解....“低碳”知识27.(本题8分)如图1,A,B,C,D是四个小镇,它们之间(除B,C外)都有笔直的公路相连接,公共汽车行驶于城镇之间,其票价与路程成正比.已知各城镇间的公共汽车票价如下:A↔B:10元;A↔C:12.5元;A↔D:8元;B↔D:6元;C↔D:4.5元.为了B,C之间的交通方便,在B,C之间建成笔直公路,请按上述标准计算出B,C之间的公路的票价为多少元.28.(本题10分)小明利用课余时间回收废品,将卖得的钱去购买5本大小不同的两种笔记本,要求共花钱不超过28元,且购买的笔记本的总页数不低于340页,两种笔记本的价格和页数如下表.为了节约资金,小明应选择哪一种购买方案?请说明理由.大笔记本小笔记本价格(元/本) 6 5页数(页/本)100 60参考答案一、1.C 2.C 3.C 4.D 5.B 6.B 7.D 8.B 9.B 10.C二、11.5 12. 1x <- 13.3 14. 32x -<≤ 15. 115︒ 16. 4a 17.8 18. 4.1 19.a (x +y )2 20.多进25码的鞋 三、21.(1)如2221(1)x x x ++=+ (2)2322.(1)①轴对称图形 ②涂黑的小正方形都是3个 (2)略23. 解:(1)节水量的众数是2.5立方米. (2)该小区3月份比2月份共节约用水:220 2.5120360520⨯+⨯+⨯=(立方米).(3)该小区3月份平均每户节约用水:220 2.51203602012060x ⨯+⨯+⨯=++ 2.6=(立方米).24.(1)当h =19.6时,在地球:h =4.9t 2 t =2在月球:h =0.8t 2 t ≈4.95 (2)在地球上下落得快.25. 解:设现在该企业每天生产x 顶帐篷,则原计划每天生产(200)x -顶帐篷由题意得:3 000 2 000200x x =- 解得600x =经检验600x =是原方程的解 即该企业现在每天生产600顶帐篷. 26.27.解:因为票价与路程成正比,故可把票价视为路程来处理.已知:AB =10,AD =8,BD =6,AC =12.5,CD =4.5.因为AD 2+BD 2=82+62=64+36=100=102=AB 2, 所以△ABD 为直角三角形,且∠ADB =90°. 连接BC ,在Rt △BDC 中,CD =4.5,BD =6, 所以BC =7.5.故B ,C 之间公共汽车票价为7.5元. 28.解:设购买大笔记本为x 本,则购买小笔记本为(5–x )本,依题意,得⎩⎨⎧6x+5(5–x)≤28100x+60 (5–x)≥340解得,1≤ x ≤3.x 为整数,∴x 的取值为1,2,3;当x =1时,购买笔记本的总金额为6×1+5×4=26(元); 当x =2时,购买笔记本的总金额为6×2+5×3=27(元); 当x =3时,购买笔记本的总金额为6×3+5×2=28(元) ∴应购买大笔记本l 本,小笔记本4本,花钱最少.。
2011-2012学年度第一学期期末检测八年级期末数学试题
2011-2012学年度第一学期期末检测八 年 级 数 学 试 题等级: 教师评语: 注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 2.答卷前,考生务必将自己的姓名、准考证号填写在试题卷上。
3.选择题每小题选出答案后,将正确答案填写在第Ⅱ卷填空题上方的表格里,答在原题上无效.第I 卷 选择题一、选择题(把正确答案的代号填在对应的表格中,每小题3分,共30分)1. 某市有8所高中和42所初中,要了解该市中学生的视力情况,下列抽样方式获得的数据最能反映该市中学生视力情况的是 A .从该市随机选取一所中学里的学生B .从该市50所中学的学生里随机选取800名学生C .从该市的一所高中和一所初中各选取一个年级的学生D .从该市的42所初中里随机选取1000名学生2. 如图,是边长为a 、b 两个正方形套在一起,且中心重合,通过计算阴影部分的面积,能够说明下列式子成立的是 A .()()22b a b a b a -=+- B .()2222a b a ab b +=++ C .()2a b a ab a -=- D .()2a a b a ab +=+ 3. 下列说法正确的是A .()22-没有算术平方根 B 是无理数C .()22-只有一个平方根-2D .()22-4. 如图,数轴上表示5P 、N ,M 和N 关于点P 对称,则点M 表示的数是5 B.5-C.10-105. 如果关于x 不等式组30310x m x m -->⎧⎨-+<⎩无解,则m 的取值范围是A.2m <B.m ≤2C.m >2D.m ≥26. 为节约能源,不少家庭安装了太阳能热水器. 一个太阳能热水器上一般安装一个进水管(冷水管)和一个出水管(热水管). 单独开出水管,x 小时可以把水放尽;单独开进水管,y 小时可以把水注满(x y >). 如果同时打开出水管和进水管,那么注满水需要的时间是 A .11y x - B. 111y x ⎛⎫÷- ⎪⎝⎭C.11x y - D. 11y x÷- 7. 已知a 、b 、c 均为实数,且a b <,0c ≠,下列结论正确的是 A. ac bc < B. c a c b -<- C. 22a b > D.22a b c c< 8. 若△ABC 的三边长,,a b c 满足条件222506810a b c a b c +++=++,则△ABC 为 A .直角三角形 B .等腰三角形C .等腰直角三角形D .等边三角形 9. 如图,在△ABC 中,分别以点A 和点B 为圆心,大于12AB 长为半径画弧,两弧相交于点M 、N ,连接MN ,交BC 于点D ,连接AD .若△ADC 的周长等于9,AB =6,则△ABC 的周长为A.3B.12C.15D.1810. 下表为某班数学成绩的统计分布表. 已知全班共有38人,且众数为60分,中位数为70分,那么代数式x y -的算数平方根为多少?C .1 D第Ⅱ卷 非选择题一、选择题答案表二、填空题(本题共7小题,每小题3分,共21分;要求将每小题的最后结果填写在横线上.)11. 分解因式:22x y xy y -+=______________.12. 1.311= ,则1720的平方根等于_______________. 13. 当x _____________时,分式12x-有意义.14. 若1x -=,则代数式()()21414x x +-++的值为__________.15. 某同学使用计算器求30个数据的平均数时,错将其中的一个数据105输入为15,那么由此求出的平均数与实际平均数的差是_______________.16. 经过点(),0a 且平行于y 轴的直线一般用x a =表示,我们有结论:“点(),h k 关于直线x a =对称的点的坐标为()2,a h k -”. 比如()1,2-点关于1x =的对称点的坐标为()3,2. 那么点()32--,关于1x =-的对称点的坐标为_______________.17. 如图,以Rt △ABC 的三边为斜边分别向形外作等腰直角三角形. 若斜边10AB =,则图中阴影部分的面积为______________.三、解答题(本题共7小题,共69分;解答应写出文字说明、证明过程或推演步骤.)18. (每小题5分,共10分)(1)先化简,再求值:22122()121x x x xx x x x ----÷+++,其中x 满足210x x --=(2)已知2x -的平方根为±2,27x y ++的立方根为3,求22x y +的算术平方根.19. (本小题满分8分)解不等式组:331213(1)8x x x x-⎧+>+⎪⎨⎪--≤-⎩,并把它的解集在数轴上表示出来.20. (本小题9分)下图反映了我市某校甲、乙两班在学业水平考试中的学生体育成绩.(1)两班的体育成绩等级的“众数”分别是哪个等级?(2)如果依次将A、B、C、D、E五个等级记为95、85、75、65、55分,乙班体育成绩分数的中位数和众数是多少分?(3)在(2)的条件下,计算两个班的体育成绩的平均分分别是多少?21. (本题满分10分)某书店今年5月份连续两次购进一种教辅资料. 第一次用4000元购进了该种教辅资料若干本,上市后很快售完. 第二次又购进同样数量的该种教辅资料,但每本的进货价格比第一次提高了2元,因此第二次进货比第一次多用了1000元.(1)第一次进货时,该种教辅资料的价格是多少元?(2)第一次售价为12元/本,为保证第二次销售的利润率不低于第一次利润率的45,那么第二次销售时的每本售价至少..是多少元?(利润=售价-成本,利润率=利润成本×100%)22. (本小题满分10分)在学习了本册数学之后,老师组织同学们进行测量旗杆高度的试验. 以下是同学们集中的两种方案:方案一:勾股定理法,如图1先把绳子沿旗杆上端A点下垂到底端的点B,固定后再把余下的部分拉紧成线段BC (绳子的末端落在C点,并且不知道绳子总长度),然后再将绳子重新拉紧成线段AD(绳子的末端落在D点).方案二:比和比例法,如图2取一根竹竿作为参照物,立在旗杆一边. 在阳光照射下,用粉笔画出旗杆的影子和竹竿的影子,根据“旗杆长︰竹竿长=旗杆影长︰竹竿影长”可测量旗杆的高度.请选择一种方案解决下列问题(说明:若两种方案都选,取第一种方案计分)(1)为了得到旗杆的高度,试验中需要测量的数据有哪些?(2)把(1)中需要测量的数据用不同的字母表示,然后求出旗杆的高度.图1 图223. (本题满分10分)近来校车安全成为社会的焦点,某市为了更换部分陈旧车辆,需要新进A型与B型该市预计筹集的资金数至少为420万元,最多不超过500万元.(1)该市共有哪几种购买方案?(2)写出10辆校车的总承载量(乘坐数)y与A型校车数x之间的函数关系式;(3)怎样购买可以使得校车的总承载量最大,最大为多少?24. (本题12分)阅读下面材料:定义:顶角为36°的等腰三角形为黄金三角形. 黄金三角形具有下列性质:①BC =; ②设BD 是△ABC 的底角的平分线,则△BCD 也是黄金三角形,且D 是线段AC 的黄金分割点,即:AD AC =. 根据以上材料解答下面的问题:如图,△ABC 为黄金三角形,边AC 的垂直平分线交边AB 于点E ,交CB 的延长线于点F ,垂足为D .(1)证明:△CBE 为黄金三角形.(2)若2AB =,求BE FC +.2011—2012学年度上学期期末教学评估八年级数学试题答案及评分标准二、填空题(每小题3分,满分21分)11.()21y x -;12. ±41.47;13. 2x ≠;14. 2;15. -3;16. ()1,2-;17.50 三、解答题(共7小题,满分69分) 18. (每小题5分,共10分) 解:(1)原式=21x x+ ………………………3分 因为210x x --=,所以21x x =+ 所以原式=1 ………………………5分 (2)由题意可知:24x -=① 2727x y ++=② 解得:68x y == ………………………3分∴22y x +=2268+=100 ………………………5分19. (本题满分8分,解不等式组6分,表示2分)-2≤x <1 (图略) 20. (本题满分9分)解:(1)甲班的体育成绩等级的“众数”是C 等,乙班的体育成绩等级的“众数”是C 等;……………………… 2分 (2)按照从小到大排列102011855,65,6575,75,85,85,95,95,,,,,,故中位数是75分,众数是75分;………………………5分 (3)555651075208510955=7550x ⨯+⨯+⨯+⨯+⨯=甲分. ……………………7分551651075208511958=7850x ⨯+⨯+⨯+⨯+⨯=乙分. ……………………9分21.(本题10分)解:(1)设第一次进货时的价格为x 元,则第二次进货时的价格为(2x +)元,依题意,得:400050002x x =+,解得8x =,经检验,8x =是原方程的根. 答:第一批进货时该种教辅资料的价格是8元. ………………………5分 (2)设第二次每本的售价为y 元,依题意,得1010y -≥128485-⨯,解得y ≥14 答:第二次销售时每本售价至少..是14元. ………………………10分 22.(本题满分10分) 选择方案一解:(1)需要测量,BC BD 的长度; ………………………3分(2)记=,BC a BD b =,设AB x =,则AD x a =+ ………………………4分依据勾股定理得222AD AB BD =+∴()222x a x b +=+ ………………………7分即22222x ax a x b ++=+∴222b a x a -=,故旗杆的高度为222b a a- ………………………10分选择方案二解:(1)需要测量,,DE EF BC 的长度; ………………………3分 (2)记,,BC a DE b EF c ===,设AB x = ………………………4分依据“旗杆长︰竹竿长=旗杆影长︰竹竿影长”得x ︰b a =︰c ………………………7分即xc ab = ∴ab x c =,故旗杆的高度为ab c………………………10分23.(本题满分10分)解:(1)设A 型x ,则B 型为(10x -),由题意可得()()407210420407210500x x x x ⎧+⨯-≥⎪⎨+⨯-≤⎪⎩ ………………………3分 解之得557588x ≤≤ ………………………5分 又x 必须为整数,故7,8,9x =∴购买方案有3种:A 型7辆,B 型3辆;A 型8辆,B 型2辆;A 型9辆,B 型1辆………………………6分(2)()326010y x x =+⨯-即28600y x =-+(557588x ≤≤,且x 为整数);………………………8分 (3)由(2)知y 随x 增大而减小,当7x =时,404y =. 故当7x =时总承载量最大,最大为404个. ………………………10分24.(本题12分)(1)证明:∵△ABC 为黄金三角形,∴36,A AB AC ∠=︒=∴72ABC ACB ∠=∠=︒ ………………………2分∵DE 是AC 边的垂直平分线∴AE EC =,∴36ACE A ∠=∠=︒∴∠BEC=∠A+∠ACE=072,723636ECB ∠=︒-︒=︒ ………………………4分 ∴BEC ABC ∠=∠,即BC CE =∴△CBE 为黄金三角形. (6)(2)解:∵2AB =,∴1BC AB ==,∴1AE EC BC ===∴)213BE =-=………………………9分 连接AF ,由DE 是AC 边的垂直平分线得FA FC =∴72FAC ACB ∠=∠=︒∴36FAB AFC ∠=︒=∠,∴2FB AB == ………………………11分∴3124BE FC +=+= ………………………12分。
20112012学年度第一学期期末考试题(卷)八年
20112012学年度第一学期期末考试题(卷)八年2011—2012学年度第一学期期末考试题(卷)八年级数学A 卷(100分)一.选择题(本大题共30分,每小题3分,共10小题;请把最佳的一个选项填在题中括号内) 1.下列运算中,结果正确的是( ) A .aa a=÷33B .422)(ab ab = C .523)(a a = D .2a a a =⋅2.下列图形中,是轴对称图形.....的是( ) 3.下列各曲线中,不能表示y 是x 的函数的是( )A B CD 4. 估计2+15的运算结果应在( )A.3到4之间 B.4到5之间 C.5到6之间 D.6到7之间5.下列计算错误的是( ) A.b a a b a 3215)3)(5(=-- B.232412)13)(4(x x x x--=+-A B C D O xy O xy O xy O xyABCDE12C.273)2)(13(2++=++x xx x D.243531155ab b a c b a -=÷- 6.下列计算正确的是( ) A.2)1)(2(2--=-+x xx x B.222)(b a b a +=+C.22))((b ab a b a -=-+ D.xy x x xxy -=÷+-6)6(27. 图中全等的三角形是 ( )A.Ⅰ和ⅡB.Ⅱ和ⅣC.Ⅱ和Ⅲ D.Ⅰ和Ⅲ 8.Rt 90ABC C BAC∠∠o 在△中,=,的角平分线AD 交BC 于点D ,2CD =,则点D 到AB 的距离是( )A .1B .2C .3D .49.已知一次函数y=kx+b 的图象如图所示,则k 、b 的符号是( )A.k>0,b>0 C.k<0,b>0 10.如图,∠1=∠2,∠C=∠D ,AC 、BD 交于E 点,下列结论中不正确的是( )yA .∠DAE=∠CBEB .ΔDEA 不全等于ΔCEBC .CE=DED .ΔEAB 是等腰三角形 二.填空题(本大题共30分,每小题3分,共10小题;请把最佳答案填在题中横线上)11.点(2,3)关于y 轴对称的点的坐标为_________.12.把直线121-=x y 向上平移21个单位,可得到函数_______________.13.若直线y=kx 平行直线y=5x+3,则k=_____. 14.比较大小:-3 -1015.16的算术平方根是 .16. 函数2y x =-中自变量x的取值范围是_______________.17. 在Rt △ABC 中,∠C =90°,∠B =60°,AB =12,则BC = .18. 若函数mx m y )1(-=是正比例函数,则m 的值是 .19. 如图,△ABC 中边AB 的垂直平分线分别交BC 、AB 于点D 、E ,AE=3cm ,△ADC•的周长为9cm ,则△ABC 的周长是 .20. 大家一定知道杨辉三角(Ⅰ),观察下列等式(Ⅱ)根据前面各式规律,则5()a b += .三.解答题(本大题共40分,共6小题;请写出必要的演算、推理、解答过程) 21.化简(每题4分,共8分) (1)33+23+308)14.3(16-+--π(2)(3x —2)2—(2x+4)(2x —4)22. 分解因式(每题4分,共8分) (1) 22363ay axy ax ++ (2) 3x 3 —12x1222332234432234()()2()33()464a b a ba b a ab b a b a a b ab b a b a a b a b ab b +=++=+++=++++=++++Ⅱ11 123.(5分)已知一次函数的图像经过点(—2,-2)和点(2,4), 求这个一次函数的解析式.24.(6分)已知:如图,CAE ∠是ABC ∆的外角,12∠=∠,AD ∥BC. 求证:AB AC =25.(6分)已知:如图,AB=AD,AC=AE,∠BAD=∠CAE. 求证:BC=DE.26.(7分)甲骑自行车、AB DC E _2_1EA DCB乙骑摩托车沿相同路线由A地到B地,行驶过程中路程与时间的函数关系的图象如图7. 根据图象解决下列问题:(1) 谁先出发?先出发多少时间?谁先到达终点?先到多少时间?(2) 分别求出甲、乙两人的行驶速度;(3) 在什么时间段内,两人均行驶在途中(不包括起点和终点)?在这一时间段内: ①什么时间甲在乙的前面;②什么时间甲与乙相遇;③什么时间甲在乙后面.B卷(50分)四.解答题(本大题共50分,共6小题;请写出必要的演算、推理、解答过程)27.(8分)运用乘法公式计算:2)+b+a+-+.+-cb)(a((c)bca28.(8分)如图在AFD∆中,点A,E,F,C在∆和CEB同一条直线上,有下面四个论断:(1)AD =CB ,(2)AE =CF ,(3)D∠,(4)AD //BC .请用其B∠=中三个作为条件,余下一个作为结论,编一道数学问题,并写出解答过程.29.(8分)如图,∆ABC中BD、CD平分∠ABC、∠ACB,过D作直线平行于BC,交AB、AC于E、F,求证:EF=BE+CF.30. (8分)如图,已知直线1:23l y x =+,直线2:5ly x =-+,直线1l 、2l分别交x 轴于B 、C 两点,1l 、2l 相交于点A .(1) 求A 、B 、C 三点坐标; (2) 求△ABC 的面积.31.(8分)探索: 11)(1(2-=+-x x x )1)1)(1(32-=++-x x x x 1)1)(1(423-=+++-x x x x x1)1)(1(5234-=++++-x x x x x x...... (1)试求122222223456++++++的值;(2)判断1222222200620072008++++++Λ的值的个位数是几?32.(10分)抗震救灾中,某县粮食局为了保证库存粮食的安全,决定将甲、乙两个仓库的粮食,全部转移到具有较强抗震功能的A 、B 两仓库。
2011-2012学年度上学期期末考试八年级数学试卷
图2 DA图1m E DCBA 2011-2012学年度上学期期末考试八年级数学试题一、选择题(本大题共12小题, 每小题3分, 共36分)1、计算4的结果是()A.2B.±2C.-2D.42、函数 y =31-x 的自变量x 的取值范围是( )A.x >-3 B.x <3 C.x ≠3 D.x ≠-33、下列不是一次函数的是( ) A .y=x 1-x B. y=21x -1 C. y=21-x D. y=2x 4、 下面哪个点不在函数y=-x +3的图象上( ) A .(-1,2) B .(0,3) C .(3,0) D .(1,2) 5、点(4,5)关于y 轴的对称点的坐标是( ) A .(-4,5) B .(4,-5) C .(-4,-5) D .(4,5)6、如图1, 直线m是多边形ABCDE 的对称轴,其中∠A=130°,∠ABC =110°,那么∠BCD 的度数等于( ) A .50° B .60° C .70° D .80°7如图2,已知∠1=∠2,AC=AD ,增加下列条件之一:①AB=AE ;②BC=ED ; ③∠C =∠D ;④∠B =∠E .其中能使△ABC ≌△AED 的条件有( ) A .1个 B .2个 C .3个 D .4个 8、下列各式由左边到右边的变形中,是因式分解的为( )A .ay ax y x a +=+)(B .4)4(442+-=+-x x x xC .)12(22-=-x x x xD .x x x x x 3)4)(4(3162+-+=+-9、已知一次函数(1)y a x b =-+的图象如图3所示,那么a 的取值范围是( ) A.1a > B.1a < C.0a > D.0a <10、如图4,李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校.在课堂上,李老师请学生画出他行进的路程y (千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )图3图411、如图5,△ABC 是等边三角形,D 是BC 中点,DE ⊥AC 于E ,若CE =1,则AB =( )A .2B ..3 D .412、如图6,Rt △ACB 中,∠ACB =90°,∠ABC 的角平分线BE 和∠BAC 的外角平分线AD 相交于点P ,分别交AC 和BC 的延长线于E ,D . 过P 作PF ⊥AD 交AC 的延长线于点H ,交BC 的延长线于点F ,连结AF 交DH 于点G .则下列结论:①∠APB =45°;②PF=P A ;③BD-AH=AB ;④DG=AP+GH .其中正确的是( )A .①②③B .①②④C .②③④D .①②③④二、填空题(共4小题,每小题3分,共12分)13、计算: ⎪⎭⎫⎝⎛-⋅23313x x =________;24(2)a --=________;()532x x ÷= . 14、a 的算术平方根为8,则a 的立方根是__________。
2011-2012学年度上期期末八年级数学质量监测(含答案) 2
2011—2012学年度上期期末质量监测八年级数学试题(考试时间:120分钟 满分:150分)一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填在题后的括号中.1.-2倒数是( ) A .2- B .21-C .21D .22.8的立方根是( )A .±4B .4C .±2D .2 3.在下列长度的各组线段中,能组成直角三角形的是( ) A .5,6,7 B .1,4,9 C .3,4,5D .5,11,124.下列四个图形中,不能通过基本图形平移得到的是( )5,6中,有理数的个数( )A .0个B .1个C .2个D .3个 6.化简)23(+³(3-2)正确的是( )A .-1B .1 C . -2 D .2D .7.如图,以两条直线1l 、2l 的交点坐标为解的方程组是( ) A .11x y x y -=⎧⎨2-=⎩,B .121x y x y -=-⎧⎨-=-⎩,C .121x y x y -=-⎧⎨-=⎩,D .121x y x y -=⎧⎨-=-⎩,8.如图,P 是等边三角形ABC 内的一点,若将P AC 绕点A 逆时针旋转到△P′AB , 则∠P AP′ 的度数为( )A .︒30B . ︒45C . ︒60D .︒909.如图,某电信部门为了鼓励固定电话消费,推出新的优惠套餐:月租费10元;每月拔打市内电话在120分钟内时,每分钟收费0.2元,超过120分钟的每分钟收费0.1元;不足1分钟时按1分钟计费.则某用户一个月的市内电话费用y (元)与拔打时间t (分钟)的函数关系用图象表示正确的是( )10.如图,△ABC 和△ADE 都是等腰直角三角形,∠BAC=∠DAE =90°, 四边形ACDE是平行四边形,连结CE 交AD 于点F ,连结BD 交 CE 于点G , 连结BE . 下列结论中:① CE =BD ; ② △ADC 是等腰直角三角形; ③ ∠ADB =∠AEB ; ④ CD =EF .一定正确的结论有( )A .①②③B . ①②④C .①③④D .②③④7题图10题图A BCDEFGA .B .C .D .8题图二、填空题:(本大题6个小题,每小题4分,共24分) 请将正确答案直接填写在题中的横线上.11.4的平方根是_______. 12. 化简:327-= _______.13.如图,直线m 是一次函数y=kx+b 的图象,则k 的值是 _______.14.如图是举世闻名的三星堆考古中发掘出的一个梯形残缺玉片,其中AD//BC ,∠A=115°,∠D=110°. 则∠B 、∠C 的度数分别是_______.15.解古算题:今有甲、乙二人持钱不知其数,甲得乙半而钱六十;乙得甲太 半(32)而亦钱六十,则甲、乙持钱分别为__ ____.16.如图,方格纸中每个方格都是边长为1的正方形,点A 、B是方格纸中的两个格点(即正方形的顶点),A 、B 两点的坐 标分别为A (0,1)、B (1,3),则以A 、B 、C 、D 为四个格 点为顶点的平行四边形的面积是4,则满足条件的点C 、D 的坐标分别是____ _____.三、解答题:(本大题4个小题,每小题6分,共24分)解答 时每小题必须给出必要的演算过程或推理步骤.17.计算:()()161321120121--+--⎪⎭⎫ ⎝⎛+︒--π.14题图110°115° CDBA18.写出图中多边形ABCDEF 各个顶点的坐标.19.计算:32)2145051183(÷-+20.如图,□ ABCD 的两条对角线AC 、BD 相交于点O ,AB =5,AO =2,OB=1,四边ABCD 会是菱形吗?请说明理由.DBACEFCA20题图四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤.21.某商厦张贴巨幅广告,称他们这次“真心回报顾客”活动共设奖金20万元,最高奖每份1万元,平均每份200元.一顾客抽到一张奖券,奖金数为10元.她调查了周围兑奖的顾客,没有一个超过50元的,她气愤地要求商厦经理评理,经理解释“不(1)求这次活动奖金的平均数、中位数、众数;(2)你认为商厦说“平均每份奖金200元”是否欺骗了顾客?以后遇到开奖的问题你会更关心什么?22.动手操作:如图,在矩形纸片ABCD中,AB=3,AD=5.如图所示折叠纸片,使点A 落在BC边上的A/处,折痕为PQ,当点A/在BC边上移动时,折痕的端点P、Q也随之移动.若限定点P、Q分别在AB、AD边上移动.求:(1)当点Q与点D重合时,A/C的长是多少?(2)点A/在BC边上可移动的最大距离是多少?22题图23.(1)解方程组:⎩⎨⎧⨯=⋅+⋅=+;200%35%45%5,200y x y x(2)编一道应用题,使得其中的未知数满足(1)中的方程组.当然,在编拟应用题时,你可以根据实际背景适当改变上面方程中的数据但不能改变方程的形式.24. 如图,四边形ABCD 是正方形,点E 、K 分别在BC 、AB 上,点G 在BA 的延长线上,且CE =BK =AG .(1)请探究DE 与DG 有怎样的数量关系和位置关系?并说明理由.(2)以线段DE 、DG 为边作平行四边形DEFG ,连接KF (要求:在已知图中作出相应简图),猜想四边形CEFK 是怎样的特殊四边形,并说明理由.G EDCBA24题图五、解答题:(本大题2个小题,25题10分,26题12分, 共22分)解答时每小题必须给出必要的演算过程或推理步骤.25.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为1y (km ),出租车离甲地的距离为2y (km ),客车行驶时间为x (h ),1y 、2y 与x 的函数关系图象如图12所示.(1)根据图象,求出1y ,2y 关于x 的函数关系式.(2)若设两车间的距离为S (km ),请写出S 关于x 的函数关系式.(3)甲、乙两地间有A 、B 两个加油站,相距200km ,若客车进入A 站加油时,出租车恰好进入B 站加油.求A 加油站到甲地的距离.25题图26.平面直角坐标系中边长为2的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.如图,将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y x=于点M,BC边交x轴于=上时停止旋转,旋转过程中,AB边交直线y x点N.(1)求此时OA旋转的度数;(2)旋转过程中,当MN与AC平行时,求正方形OABC旋转的度数;△的周长为p,在正方形OABC旋转的过程中,p值是否有变化?(3)设MBN请证明你的结论.O南岸区2011—2012学年度上期期末质量监测八年级数学试题参考答案及评分意见一.BDCCB ACCBA二.11.±2; 12.32; 13.2; 14.65°、70°;15. 甲持钱45、乙持钱30; 16.(0,5)(-1,3)或(3,3)(2,1)或(-1,3)(2,1). 三.17.解:原式=1+2-3+1-4…………………………………………………………(5分) =-3……………………………………………………………………(6分) 18.解;A (-4,4)、B (-7,0)、C (-4,-4)、D (0,-4)、E (3,0)、F (0,4) (每个点各一分,共6分) 19.解:原式=()3222229÷-+……………………………………………(3分)=28³241…………………………………………………………………(5分)=2.……………………………………………………………………………(6分) 20.解: 四边形ABCD 会是菱形,理由如下: ………………………………(1分) ∵在△AOB 中,AB =5,AO =2,OB=1,∴AO 2+ OB 2=22+1=5. …………(2分) 又∵AB 2=(5)2=5,∴AO 2+ OB 2= AB 2.…………………………………………(3分)∴根据勾股定理的逆定理,得∠AOB=90°.…………………………………………(4分)∴AC ⊥BD .……………………………………………………………………………(5分)∵四边形ABCD 是平行四边形,∴四边形ABCD 会是菱形. ……………………(6分) 四.21.解:(1)这次活动奖金的平均数是x =2001000200000550350871031055050350100087600010100003==++++⨯+⨯+⨯+⨯+⨯…(5分) 这次活动奖金的中位数是10、众数是10. ……………………………………………(7分) (2)因为这次活动奖金的平均数是200,所以商厦说“平均每份奖金200元”没有欺骗顾客,但中位数是10、众数也是10,这就是说多数顾客得奖为10元.以后遇到开奖的问题应更关心中位数和众数.………………………………………………………(10分)22.解:(1)当Q 点与D 重合时,如图①,∵四边形ABCD 是矩形,AD=5,AB=3,∴BC=AD=5,DC=AB=3, ∠C=90°.…………(3分) 由折叠知'1A D=AD=5,…………………………(4分) 在Rt △'1A CD 中,根据勾股定理,得21221D A DC C A '=+' 22121DC D A C A -'='2235-=16=.………………………………………………………………………(5分) ∵C A '1>0,∴C A '1=16=4.………………………………………………(6分) (2)'1A 在BC 上最左边时点Q 点与D 重合,此时,由(1)得,'1A C=4;……(7分) 当点P 与B 重合时,图②中的'2A 在BC 上最右边.………………………………(8分) 此时,由折叠知: '2A B =AB=3,则A 2C =5 -3 =2; ………………………………(9分)A '应在'1A '2A 之间移动,所以A '在BC 边上可移动的最大距离为C '1A --C '2A =4 -2 =2.……………………………………(10分)23.(1)解:由②得:14009=+y x .③ ………………………………………(2分) ③-①得:12008=y .………………………………………………………………(3分)y =150.…………………………………………………………………(4分) 将y =150,代入①得:50=x .……………………………………(5分)∴原方程组的解为:⎩⎨⎧==.150,50y x ……………………………………(6分) (2)所编应用题为:答案不唯一.如:一、二班共有200名学生,他们在半期数学考试中的优生率为35%,如果一班学生的优生率为5%,二班学生的优生率为45%.那么一、八年级数学质量监测试题 11二班学生的学生数各是多少?(200、35%、5%、45%四个数据各一分.)……(10分)24.解:(1)DE=DG ,DE ⊥DG .理由如下:………………………………(1分)∵四边形ABCD 是正方形,∴DC=DA ,∠DCE=∠DAG=90°.又∵CE=AG ,∴△DCE ≌△GDA .∴DE=DG ,∠EDC=∠GDA .……(4分) 又∵∠ADE+∠EDC=∠ADC=90°,∴∠ADE+∠GDA=90°,∴DE ⊥DG .…(5分)(2)画图如图. 四边形CEFK 为平行四边形.理由如下:……(6分)∵四边形ABCD ,∴AB ∥CD ,AB=CD .∵BK=AG ,∴GK=AK+ AG =AK+BK=AB .即 GK=CD. ……………………………………(7分)又∵K 在AB 上,点G 在BA 的延长线上,∴GK ∥CD .∴四边形CKGD 是平行四边形.∴DG=CK ,DG ∥CK .…………………………(8分)又∵四边形DEFG 都是正方形,∴EF=DG ,EF ∥DG .∴CK =EF ,CK ∥EF .…………………………(9分)∴四边形CEFK 为平行四边形.………………(10分)25.解:(1)设 x k y 11= ∵图象过(10,600)∴110600k =. ∴601=k . ∴ ()100601≤≤=x x y .………(1分)设b x k y +=22,∵图象过(0,600), (6,0),∴⎩⎨⎧=+=)2(06)1(,600b k b 将600=b 代入(2)得 600k =-.∴ ()606001002≤≤+-=x x y .………………………………………… (3分) (2)⎩⎨⎧+-==60010060x y x y 解得:⎪⎩⎪⎨⎧==225415y x ∴ M ⎪⎭⎫ ⎝⎛225,415……………(4分)∴①当4150≤≤x 时,S 1=12y y -=x x 60600100-+-=600160+-x ; ……(5分) ②当6415≤≤x 时,S 2=21y y -=()60010060+--x x 600160-=x ;……(6分) ③当106≤≤x 时S 3x 60= ……………(7分)(3)当4150≤≤x 时,200=S ,∴200600160=+-x . 解之,得()h x 25160400==.∴)(1502560km y =⨯= ……………(8分)八年级数学质量监测试题 12 当6415≤≤x 时,200=S ,∴200600160=-x .解之,得()h x 5=,∴)(300560km y =⨯=………………………………(9分) ∴当106≤≤x 时,20060=x ,310=x . ∵106≤≤x , ∴310=x (舍去). 综上所述:A 加油站到甲地的距离为km 150或km 300…………………(10分)26.解:延长BA 交y 轴于E 点,(1)∵直线x y =是一、三象限的角平分线,∴∠MOE=∠MON=21³90°=45°. ∴A 点第一次落在直线y=x 上时停止旋转时,OA 旋转了45°;………………(2分)(2)∵四边形ABCO 是正方形,∴∠B=∠OAB=∠OCB=∠AO C=90°,OA = OC ,且∠BAC=∠BCA=45°. ∵MN ∥AC, ∴∠BMN =∠BAC = 450, ∠BNM =∠BCA=45°,∠BMN =∠BNM. ∴BM = BN .…………………………………………………………(4分) 又∵ BA = BC, ∴BA -BM=BC -BN ,即 AM = CN.又∵∠OAM =∠OCN =900,OA = OC ,∴△OAM ≌△OCN. …(6分)∴∠AOM= ∠CON.∴∠AOM=∠CON=21(∠AOC -∠MON ) =21(90°-45°)=22.5°, ∴当MN 和AC 平行时,正方形OABC 旋转的度数为22.5°……………………(7分)(3)p 值无变化,理由如下:∵由旋转的性质得:∠AOE= ∠CON .………………………………………………(8分) 又∵∠ OAE+∠OAB=180°,∠OAB=90°,∴∠ OAE=90°.∴∠ OAE =∠OCN = 90°,.又∵OA = OC ,∴△OAE ≌△OCN.…………………………………………………(9分) ∴OE=ON, AE=CN .又∵∠MOE=∠MON=45°,OM= OM ,∴△OME ≌△OMN ,………………(10分) ∴MN= ME= AM+ AE .∴MN= AM+ CN .∴p =MN+BN+BM=AM+CN+BN+ BM= AB+ BC=4..................................(11分) ∴在正方形OABC 旋转的过程中p 值无变化. (12)八年级数学质量监测试题13。
2011-2012人教版八年级数学上册期期末质量检查数学试卷及答案[1]
2011-2012学年度八年级上学期期末质量检查数 学 试 题(满分:150分;考试时间:120分钟)温馨提示:请在答题卡上相应题目的答题区域内作答,否则不得分。
一、选择题(每题4分,共24分):在答题卡上相应题目的答题区域内作答. 1.9的算术平方根是( )A .3±B .3C .3-D .3 2.下列运算正确的是( )A .523a a a =+ B .632a a a =⋅ C .65332)(b a b a = D .632)(a a = 3.下列图形中不是..中心对称图形的是( )A .B .C .D .4.如图,AOC ∆≌BOD ∆,∠C 与∠D 是对应角,AC 与BD 是对应边,AC=8㎝, AD=10㎝,OD=OC=2㎝,那么OB 的长是( )A .8㎝B .10㎝C .2㎝D .无法确定5.化简:=96.如图,OAB ∆绕点O 逆时针旋转 80得到OCD ∆,若∠A= 110,∠D=∙40,则∠AOD 的度数是( )A . 30B . 40C . 50D .60二、填空题(每题3分,共36分)在答题卡上相应题目的答题区域内作答. 7.用计算器比较大小:311。
(填“>”,“<”或 “=”号)8.一个正方体木块的体积是64㎝3,则它的棱长是 ㎝。
ODACBAD C9.若3=mx,2=n x ,则=+n m x 。
10.若=-++32y x 0,则=xy 。
11.Rt △ABC 中,∠C=90°,∠B=2∠A ,BC=3cm ,AB=_________cm 12.一个边长为a 的正方形广场,扩建后的正方形广场的边长比原来大10米,则扩建后的广场面积增大了 米2. 13..在平面直角坐标系xOy 中,已知点A (2,-2),在y 轴上确定点P ,使△AOP 为等腰三角形,则符合条件的有_______个14.下列命题中,不正确的是( )A .关于直线对称的两个三角形一定全等B .角的对称轴是角平分线所在的直线C .等边三角形有3条对称轴 D.线段的对称轴是其垂直平分线D .等腰三角形一边上的高、中线及这边所对角的角平分线重合 15.如图,在△ABC 中,∠C=90°,AD 平分∠BAC ,BC=10cm ,BD=7cm ,则点D 到AB 的距离为_____________cm .16.已知如图,图中最大的正方形的面积是( )A .2aB .22b a +C .222b ab a ++D .22b ab a ++17.直线62-=x y 关于y 轴对称的直线的解析式为 ( )A .62+=x yB .62+-=x yC .62--=x yD .62-=x y18.如图,AB=AC ,AD=AE ,∠B=50°,∠AEC=120°,则∠DAC 的度数等于 ( ) A .120° B .70° C .60° D .50°三、解答题(共60分)。
2011-2012学年度第一学期八年级数学期末考试试题答案
2011-2012学年度第一学期八年级数学期末考试试题(考试时间:120分钟 总分:100分)一、选择题(每小题3分,共24分,下列各题所用的四个选项中,有且只有一个是正确的) 1.B 2.D 3.C 4.D 5.B 6.A 7.B 8.C 二、填空题(每空3分,共30分)9.百,2 10.7 11. AC =BD 或∠ABC =90°等 12.1 13.⎩⎨⎧=-=32y x 14.120 15.1016.y=2x+5 17.(-3,3) 18.103三、解答题:(本大题共10小题,共96分) 19. 由题意得2x -y =16 y =-8 ∴ x =4∴-2xy =-2×4×(-8)=64 ∴-2xy 的平方根是±8. 20. (1)把点(2,m )代入x y 21=得,m=1 (2)把点(-1,-5)、(2,1)代入y =kx +b 得, ⎩⎨⎧=+-=+-125b k b k 解得,⎩⎨⎧-==32b k∴ 一次函数的解析式为:32-=x y (3)如图,直线32-=x y 与x 轴交于点B (23,0) 与直线x y 21=相交于点A (2,1) ∴ OB=23 ∴ S △OA B =431232121=⨯⨯=⋅A y OB 22.(1)△ADG 是直角三角形,∵AF 、DE 是∠BAD 、∠ADC 的平分线, ∴∠FAD=21∠BAD ,∠ADE=21∠ADC , ∵四边形ABCD 是平行四边形,∴∠BAD+∠ADC=180°, ∴∠FAD+∠ADE=90°, ∴∠AGD=90°,∴△ADG 是直角三角形.(2)∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD=BC=6,AB=CD=4, ∴∠FAD=∠AFB , ∵∠FAD=∠BAF , ∴∠BAF=∠AFB , ∴AB=BF=4, ∴CF=6-4=2.23. 由题意可知,将木块展开,长为2+0.2×2=2.4米;宽为1米. 于是最短路径为:2214.2+=2.6米.故答案为:2.6.22.(1)观察表格,可知这组样本数据的平均数是0311321631741250x -⨯+⨯+⨯+⨯+⨯==,∴这组样本数据的平均数为2.∵在这组数据中,3出现了17次,出现的次数最多, ∴这组数据的众数是3.∵将这组样本数据从小到大的顺序排列,其中处于中间的两个数都是2有2222+= ∴这组数据的中位数为2.(2)∵在50名学生中,读书多于2册的学生有18名,有1830050⨯=108. 24.⑴连结AB ,作线段AB 的垂直平分线,交过点B 的水平线于点P.⑵作点B 关于x 轴的对称点B ′(-1,-1),连结AB ′交x 轴于点Q , 设直线AB ′的函数关系式为y=kx+b(k ≠0),将A 、B ′的坐标代入,得4133y x =+ 令y=0,得x= 14-, 所以点Q 的坐标为(14-,0) 25. 画图形如下:(1) (2) (3) 26. (1)证明:连结AD∵△ABC 是等腰直角三角形,D 是BC 的中点 ∴AD⊥BC,AD = BD = DC ,∠DAQ =∠B 又∵BP = AQ ∴△BPD≌△AQD∴PD = QD,∠ADQ =∠BDP ∵∠BDP +∠ADP = 90°∴∠ADQ +∠ADP =∠PDQ =90° ∴△PDQ 为等腰直角三角形.(2)当P 点运动到AB 的中点时,四边形APDQ 是正方形. 由(1)知△ABD 为等腰直角三角形.当P 点运动到AB 的中点时,DP⊥AB,即∠APD =90° 又∵∠A =90°,∠PDQ =90° ∴四边形APDQ 为矩形 又∵DP = AP = AB∴四边形APDQ 是正方形.27. (1)小颖的理由:依次连接矩形各边的中点所得到的四边形是菱形,小明的理由:∵ABCD 是矩形, ∴AD ∥BC ,则∠DAC=∠ACB ,又∵∠CAE=∠CAD ,∠ACF=∠ACB , ∴∠CAE=∠CAD=∠ACF=∠ACB , ∴AE=EC=CF=FA ,∴四边形AECF 是菱形. (2)方案一:S 菱形=S 矩形-4S △AEH =12×5-4× 12×6× 52=30(cm )2, 方案二:设BE=x ,则CE=12-x ,∴ AE 2=BE 2+AB 2=x 2+25由AECF 是菱形,则AE 2=CE 2∴x 2+25=(12-x )2,∴ x=24119, S 菱形=S 矩形-2S △ABE = 12×5-2×12×5×24119≈35.21(cm )2. 28.:(1)晚0.5,两城相距300km ;(2)①设直线BC 的解析式为s=kt+b , ∵B (0.5,300),C (3.5,0), ∴ {3.5k+b=00.5k+b=300, 解得 {k=-100b=350, ∴s=-100t+350;②设第二列动车组列车MN的解析式为s=k1t+b1,∵M(1,0),N(3,300),∴{k1+b1=03k1+b1=300,解得{k1=150b1=150,∴s=150t-150,由①可知直线BC的解析式为s=-100t+350,∴150t-150=-100t+350,解得t=2,∴2-1=1.答:第二列动车组列车出发后1小时与普通列车相遇.。
(E)2011-2012学年八年级上册数学期末考试试卷及答案(实用)
(总分100分 答卷时间120分钟)一、选择题:本大题共8小题,每小题2分,共16分.在每小题给出的四个选项中,恰有一项....是符合题目要求的,请将正确选项的代号填入 题前括号内.【 】1.计算的结果是A .a 5B .a 6C .a 8D .3 a 2【 】2.若正比例函数的图像经过点(-1,2),则这个图像必经过点A .(1,2)B .(-1,-2)C .(2,-1)D .(1,-2)【 】3.下列图形是轴对称图形的是A .B .C .D .【 】4.如图,△ACB ≌△A ’CB ’,∠BCB ’=30°,则∠ACA ’的度数为A .20°B .30°C .35°D .40°【 】5.一次函数y =2x -2的图象不经过...的象限是 A .第一象限B .第二象限 C .第三象限D .第四象限【 】6.从实数,,0,π,4中,挑选出的两个数都是无理数的为A .,0B .π,4C .,4D .,π【 】7.若且,,则的值为A .-1B .1C .D .【 】8.明明骑自行车去上学时,经过一段先上坡后下坡的路,在这段路上所走的路程s(单位:千米)与时间t (单位:分)之间的函数关系如图所示.放学后如果按原路返回,且往返过程中,上坡速度相同,下坡速度相同,那么他回来时,走这段路所用的时间为 A .12分 B .10分 C .16分 D .14分二、填空题:本大题共10小题,第9~14题,每小题2分,第15~18题,每小题3分,共24分.不需写出解答过程,请把最后结果填在题中横线上. 9.计算:=.10.一次函数中,y 随x 增大而减小,则k 的取值范是.CB(第4题)(第8题)s /11.分解因式:=.12.如图,在Rt △ABC 中,∠B =90°,ED 是AC 的垂直平分线,交AC 于点D ,交BC 于点E .已知∠BAE =16°,则∠C 的度数 为.13.计算:()2009-(-)0+=. 14.当时,代数式的值为. 15.若,则x +y =.16.如图,直线经过点和点,直线过点A ,则不等式的解集为.17.如图,小量角器的零度线在大量角器的零度线上, 且小量角器的中心在大量角器的外缘边上.如果 它们外缘边上的公共点在小量角器上对应的度数为66°,那么在大量角器上对应的度数为__________ (只需写出0°~90°的角度).18.已知△ABC 中,AB =BC ≠AC ,作与△ABC 只有一条公共边,且与△ABC 全等的三角形,这样的三角形一共能作出个.三、解答题:本大题共10小题,共60分.解答时应写出文字说明、证明过程或演算步骤.(19~20题,第19题6分,第20题5分,共11分)19.(1)化简:.(2)分解因式:.20.如图,一块三角形模具的阴影部分已破损.(1)如果不带残留的模具片到店铺加工一块与原来的模具△的形状和大小完全相同的模具△,需要从残留的模具片中度量出哪些边、角?请简要说明理由.(2)作出模具的图形(要求:尺规作图,保留作图痕迹,不写作法和证明).(第21题5分,第22题5分,共10分)(第20题)ADEB(第12题)(第17题)(第16题)21.已知,求的值.22.如图,直线:与直线:相交于点. (1)求的值;(2)不解关于的方程组请你直接写出它的解.(第23题5分,第24题6分,共11分)23.如图,在平面直角坐标系中,,,. (1)在图中画出关于轴的对称图形; (2)写出点的坐标.(第23题)x(第22题)24.如图,四边形ABCD 的对角线AC 与BD 相交于O 点,∠1=∠2,∠3=∠4.求证:(1)△ABC ≌△ADC ; (2)BO =DO .(第25题6分,第26题6分,共12分)25.只利用一把有刻度...的直尺,用度量的方法,按下列要求画图:(1)在图1中用下面的方法画等腰三角形ABC 的对称轴.① 量出底边BC 的长度,将线段BC 二等分,即画出BC 的中点D ;② 画直线AD ,即画出等腰三角形ABC 的对称轴.(2)在图2中画∠AOB 的对称轴,并写出画图的方法.【画法】26.已知线段AC 与BD 相交于点O ,连结AB 、DC ,E 为OB 的中点,F 为OC 的中点,连结EF (如图所示).(1)添加条件∠A =∠D ,∠OEF =∠OFE ,求证:AB =DC .(2)分别将“∠A =∠D ”记为①,“∠OEF =∠OFE ”记为②,“AB =DC ”记为③,若添加条件②、③,以①为结论构成另一个命题,则该命题是_________命题 (选择“真”或“假”填入空格,不必证明).BC图1AOB 图21 23 4AB CDO (第24题)(第27题8分)27.如图,在平面直角坐标系中,已知直线的解析式为,直线交轴于点,交轴于点.(1)若一个等腰直角三角形OBD的顶点D与点C重合,直角顶点B在第一象限内,请直接写出点B的坐标;(2)过点B作x轴的垂线l,在l上是否存在一点P,使得△AOP的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;(3)试在直线AC上求出到两坐标轴距离相等的所有点的坐标.(第27题)(第28题8分)28.元旦期间,甲、乙两个家庭到300km外的风景区“自驾游”,乙家庭由于要携带一些旅游用品,比甲家庭迟出发0.5h(从甲家庭出发时开始计时),甲家庭开始出发时以60km/h的速度行驶.途中的折线、线段分别表示甲、乙两个家庭所走的路程y甲(km)、y乙(km)与时间x(h)之间的函数关系对应图象,请根据图象所提供的信息解决下列问题:(1)由于汽车发生故障,甲家庭在途中停留了h;(2)甲家庭到达风景区共花了多少时间;(3)为了能互相照顾,甲、乙两个家庭在第一次相遇后约定两车的距离不超过15km,请通过计算说明,按图所表示的走法是否符合约定.y八年级数学(参考答案)一、选择题(本题共8小题;每小题2分,共16分)1.B2.D3.A4.B5.B6.D 7.C 8.D二、填空题(本大题共10小题,第9~14题,每小题2分,第15~18题,每小题3分,共24分.)9.10.k<-211.m n(m-n) 12.37°13.0 14.15.9 16.-2<x<-117.48°18.7三、解答题(本大题共10小题,共60分.)19.解:(1)……………………………………………………4分…………………………………………………………………6分(2)= …………………………………………………………3分= …………………………………………………………5分20.(1)只要度量残留的三角形模具片的∠B,∠C的度数和边BC的长,因为两角及其夹边对应相等的两个三角形全等.……………………………3分(2)按尺规作图的要求,正确作出的图形.……………………………5分21.解:=……………………………………………2分=……………………………………………3分=………………………………………………………………………4分当时,原式=……………………………………………5分22.解:(1)∵在直线上,∴当时,.……………………………………………3分(2)解是…………………………………………………………………5分23.(1)画图正确;………………………………………………………………………2分(2)………………………………………………5分24.证明:(1)在△ABC和△ADC中∴△ABC≌△ADC.………………………………………………………3分(2)∵△ABC≌△ADC∴AB=A D……………………………………………………………………4分又∵∠1=∠2∴BO=DO…………………………………………………………………6分25.(1)画图正确…………………………………………………………………………2分(2) ①利用有刻度的直尺,在∠AOB的边OA、OB上分别截取OC、OD,使OC=OD;②连接CD,量出CD的长,画出线段CD的中点E;③画直线OE,直线OE即为∠AOB的对称轴.………………………………6分(作图正确2分,作法正确2分)26.(1)∵∠OEF=∠OFE∴OE=OF…………………………………………………………………………1分∵E为OB的中点,F为OC的中点,∴OB=OC……………………………………………………………………………2分又∵∠A=∠D,∠AOB=∠DOC,△AOB≌△DOC………………………………………………………………4分∴AB=DC…………………………………………………………………………5分(2)假………………………………………………………………………………6分27.(1)B(2,2);………………………………………………………………………2分(2)∵等腰三角形OBD是轴对称图形,对称轴是l,∴点O与点C关于直线l对称,∴直线AC与直线l的交点即为所求的点P.……………………………………3分把x=2代入,得y=1,∴点P的坐标为(2,1)……………………………………………………………4分(3)设满足条件的点Q的坐标为(m,),由题意,得或……………………………………………6分解得或…………………………………………………………7分∴点Q的坐标为(,)或(,)……………………………………8分(漏解一个扣2分)28.(1)1;…………………………………………………………………………………1分(2)易得y乙=50x-25…………………………………………………………………2分当x=5时,y=225,即得点C(5,225).由题意可知点B(2,60),……………………………………………………3分设BD所在直线的解析式为y=kx+b,∴解得∴BD所在直线的解析式为y=55x-50.………………………………………5分当y=300时,x=.答:甲家庭到达风景区共花了h.……………………………………………6分(3)符合约定.…………………………………………………………7分由图象可知:甲、乙两家庭第一次相遇后在B和D相距最远.在点B处有y乙-y= -5x+25=-5×2+25=15≤15;在点D有y—y乙=5x-25=≤15.……………………………………………8分世上没有一件工作不辛苦,没有一处人事不复杂。
石家庄20112012学年度八年级数学上册期末试题答案
2011--2012学年度第一学期期末考试八年级数学(冀教版)参考答案及评分标准一、本大题共12个小题,每小题2分,共24分.DABAC BDCAD CB二、本大题共6个小题,每小题3分,共18分. 13.2;14.12; 15.12x y =⎧⎨=⎩; 16.15; 17.3; 18.(25,1). 三、本大题共58分.解:19.(1)原式=2(4333)3-⨯-------------------------------------------------------------------3分=2323⨯=.------------------------------------------------------------------------5分 (2)去分母,得:12x +≥3(1)x -,去括号,得:1+2x ≥33x -,移项,合并同类项,得:-x ≥-4,系数化为1,得x ≤ 4.-------------------------------------------------4分把这个不等式的解集表示在数轴上,如图所示.----------------------------------------------------------------------------5分20.解:原式=(211a a a a ---)÷a =1a a -×1a =11a -.--------------------------------------------3分 当a =12+时,原式=11a -=1211+-=12=22.---------------------------------------------5分21.解:(1)AD=AE . ----------------------------------------------------------------------------------1分 (2) 互相垂直. ---------------------------------------------------------------------------------------------2分 连接OA ,BC ,∵CD ⊥AB ,BE ⊥AC ,∴∠ADC =∠AEB =90°, 在Rt △ADO 与Rt △AEO 中,∵OA=OA ,AD=AE ,∴Rt △ADO ≌Rt △AEO .∴ ∠DAO =∠EAO .即OA 是∠BAC 的平分线.---------------------------------------------------5分 又∵AB =AC ,∴ OA ⊥BC .------------------------------------------------------------------------------6分0 1 2 3 4 -1 -2 -322.解:(1)作图如图1;------------------------------------------2分 (2)∵AB =5,BC =35,AC =52, ∵222(5)(35)54550(52)+=+==,∴222AB BC AC += ∴△ABC 为直角三角形.--------------------------------- ------------------7分 23.------------------------------------------------------------------------------------------画对一个2分,共6分24.解:依题意如图2,在Rt △ABC 中, ∠C =90°,AC =4,AB =3BC . ∵222AB BC AC -=,∴222(3)4BC BC -=,即2284BC = ,∴22BC =,∵0BC >, ∴2BC =,∴332AB BC ==, ----------------------------------------------------------------4分 ∵22981(32)18,()24==, ∴32 4.5<.------------------------------------------------------7分 ∴梯子的长度不足4.5米.-------------------------------------------------------------------------------8分25.解:(1)设组建中型图书角x 个,则组建小型图书角为(30-x )个.由题意,得8030(30)17004055(30)1440x x x x +-≤⎧⎨+-≤⎩解这个不等式组,得:14≤x ≤16. 由于x 只能取整数,∴x 的取值是14,15,16.---------------------------------------------------------3分当x =14时,30-x =16;当x =15时,30-x =15;当x =16时,30-x =14. 故有三种组建方案:方案一:中型图书角14个,小型图书角16个; 方案二:中型图书角15个,小型图书角15个;方案三:中型图书角16个,小型图书角14个. ------------------------------------------------------6分(2)方案一的费用是:800×14+500×16=19200(元); 方案二的费用是:800×15+500×15=19500(元);A 'B 'C ' 图1 1 2 xO 1-1 A BCy-1 -2 -2 2ABC图2方案三的费用是:800×16+500×14=19800(元). ∵19200<19500<19800, ∴方案一费用最低,最低费用是19200元. --------------------------8分26.解:(1)1010x y +, 2020x y +或20()x y xy+; ----------------------------------------------------2分 (2)2y x +;yx xy+2.------------------------------------------------------------------------------------------4分(3)∵P -Q =2y x +-y x xy +2=()()y x y x +-22,-------------------------------------------------------------6分∵x >0,y >0且x ≠y , ∴()2y x ->0,()y x +2>0,∴()()y x y x +-22>0, ∴P -Q >0 , ∴P >Q - ∴李大妈的购买方式更合算.----------------------------------------------------------------------------------8分。
2011-2012学年八年级(上)期末数学试卷
2011-2012学年八年级(上)期末数学试卷一、选择题(共6小题,每小题3分,满分18分)1.有下列几种说法:①1的平方根是1;②无论x取任何实数,式子都有意义;③无理数是无限小数;④是分数,其中正确的个数是()2.(3分)下列运算正确的是()3.(3分)(2008•宝安区二模)在线段、平行四边形、菱形、正方形、梯形、等边三角形中既是轴对称图形又是中心对称图形的有()4.(3分)如图数轴上的点A、C分别表示﹣1和1,BC⊥AC且BC=1,以A为圆心,AB为半径作弧交数轴于点D,则点D表示的数是()﹣1 +15.(2012•西城区模拟)正方形具备而菱形不具备的性质是()6.(2006•枣庄)在下列图形中,沿着虚线将长方形剪成两部分,那么由这两部分既能拼成三角形,又能拼成平行四边形和梯形的可能是()二、填空题(共9小题,每小题3分,满分27分)7.(3分)的平方根是_________.8.(3分)已知a m=2,a n=3,则a2n﹣m=_________.9.(3分)分解因式:(a﹣b)2﹣4(a﹣b)+4=_________.10.已知a、b均为实数且+(ab﹣7)2=0,则a2+b2=_________.11.(3分)在平行四边形ABCD中,对角线AC与BD相交于点O,若AC=6,BD=8,则边AB的取值范围是_________.12.(3分)如图,四边形ABCD是正方形,点E是CD上一点,点F是CB延长线上一点,且DE=BF,通过观察与思考可以知道△AFB可以看作是_________绕_________,顺时针旋转_________得到△AEF 是_________三角形.13.菱形的对角线长分别是6cm和8cm,则菱形的周长是_________.14.(3分)如图,在边长为6cm的菱形中∠DAB=60°,E为AC上一动点,当E运动到某个位置时,BE+DE有最小值,这个最小值是_________.15.(3分)(2008•随州)如图,梯形ABCD中,AD∥BC,AB=DC,∠ABC=72°,现平行移动腰AB至DE后,再将△DCE沿DE折叠,得△DC′E,则∠EDC′的度数是_________度.三、解答题(共8小题,满分75分)16.(8分)分解因式(1)2x5﹣32x;(2)(x﹣y)2+4xy.17.(10分)化简求值.(1)[(x+y)(x﹣y)﹣(x﹣y)2+2y(x﹣y)]÷(﹣2y),其中x=﹣,y=2.(2)已知x2﹣2x﹣2=0,求(x﹣1)2+(x+3)(x﹣3)+(x﹣3)(x﹣1)的值.18.(9分)有一块铁皮零件,AB=4cm,BC=3cm,CD=12cm,AD=13cm.按照规定标准,这个零件中∠B=90°,求这块铁皮零件的面积.19.(9分)(2006•陕西)观察下面网格中的图形,解答下列问题:(1)将网格中左图沿水平方向向右平移,使点A移至点A′处,作出平移后的图形:(2)(1)中作出的图形与右边原有的图形,组成一个新的图形,这个新图形是中心对称图形,还是轴对称图形?20.(9分)如图,在四边形ABCD中,∠B=∠D=90°,∠AEC=∠BAD,则AE与DC的位置有什么关系?并说明理由.21.(9分)如图所示,P是正方形ABCD的边CD上任意一点,PE⊥BD 于E,PF⊥AC于F,则PE+PF=1,求正方形ABCD的面积.22.(10分)如图,△ABC中,D为AB的中点,E为AC上一点,过D作DF∥BE交AC于O,EF∥AB.(1)猜想:OD与OF之间的关系是_________.(2)证明你的猜想.23.(11分)如图,在等腰梯形ABCD中,AD∥BC,AB=DC=5,AD=6,BC=12,动点P从A点出发以每秒1个单位的速度向终点D运动,动点Q 从C点出发以每秒2个单位的速度向终点B运动,两点同时出发,设运动时间为t.(1)梯形ABCD的面积是_________.(2)①当t为多少秒时,四边形ABQP是平行四边形?②当t为多少秒时,四边形ABQP是梯形?(3)当t=3秒时通过计算判断四边形ABQP是否是直角梯形?参考答案:1.B2.D3.C4.C5.C6.C(a﹣b﹣2)2.7.正负根号3. 8.10. 11 11. 1<AB<712. △AED点A,90°等腰直角13. 20 14. 6cm15. 3616. 解:(1)原式=2x(x4﹣16),=2x(x2﹣4)(x2+4),=2x(x﹣2)(x+2)(x2+4);(2)原式=x2﹣2xy+y2+4xy,=(x+y)2.17.解:(1)原式=(x﹣y)[(x+y)﹣(x﹣y)+2y]÷(﹣2y)=2y﹣2x,当x=﹣,y=2时,原式=2×2﹣2×(﹣)=5;(2)原式=x2﹣2x+1+x2﹣9+x2﹣4x+3=3x2﹣6x﹣5,原式=3(x2﹣2x)﹣5=3×2﹣5=1.18.解:在Rt△ABC中,AB=4cm,BC=3cm,∴AC2=25.即AC2+CD2=AD2.∴△ACD为直角三角形,∴3×4×+5×12×=6+30=36cm2.19.20. 解:AE∥DC,理由是:∵四边形ABCD的内角和为360°,∠B=∠D=90°,∴∠BAD+∠C=180°,又∵∠AEC=∠BAD,∴∠AEC+∠C=180°,∴AE∥DC.21. 解:∵正方形ABCD,PE⊥BD于E,PF⊥AC于F,∴四边形OEPF为矩形,三角形PFC为等腰直角三角形,∴PE=OF,PF=CF,∴PE+PF=OF+CF=OC=1,∴OA=1,BD=2,∴正方形ABCD的面积=△ABD的面积+△BCD的面积=×2×1+×2×1=2,所以正方形ABCD的面积为2.22. 解:(1)OD=OF;(2)∵EF∥AB,DF∥BE,∴四边形BDFE是平行四边形,∴BD=EF,∵D是AB的中点,∴AD=BD,∴EF=AD,∵EF∥AB,∴∠ADO=∠EFO,∠DAO=∠FEO,∴,∴△ADO≌△EFO,∴OD=OF.23. 解:(1)由题意得,AB=DC=5,AD=6,BC=12,∴BE=(BC﹣AD)=3,在RT△ABE中,AE==4,∴S梯形ABCD=(AD+BC)×AE=36.(2)由题意得,AP,BQ=BC﹣2t=12﹣2t,①AP=BQ即可满足四边形ABQP是平行四边形,即t=12﹣2t,∴t=4秒.即:t为4秒时,四边形ABQP是平行四边形;②要使四边形ABQP是梯形,只需满足AP≠BQ即可,这时t≠4;即t不为4秒时,四边形ABQP是梯形;(3)当t=3秒时,AP=t=3,BQ=12﹣2t=6,此时,P为AD的中点,Q为BC中点,∵AB=DC=5,∴此时PQ所在直线是梯形ABCD的对称轴,∴PQ⊥BC,PQ⊥AD,又AP∥BQ∴ABQP是直角梯形.。
2011-2012学年八年级数学上期末试题
②在上网时间相同的条件下,请你帮该用户选择哪种方式上网更省钱?
25.(10分)如图所示,在△ABE和△ACD中,给出以下4个论断:(1)AB=AC;(2)AD=AE;(3)AM=AN;(4)AD⊥DC,AE⊥BE,以其中3个论断为题设,填入下面的“已知”栏中,1个论断为结论,填入下面的“求证”栏中,使之组成一个真命题,并写出证明过程。
12.比较大小:-3- .13. 的算术平方根是.
14.函数 中自变量 的取值范围是_______________.
15.在Rt△ABC中,∠C=90°,∠B=60°,AB=12,则BC=.
16.若函数 是正比例函数,则m的值是.
17.如图,△ABC中边AB的垂直平分线分别交BC、AB于点D、E,AE=3cm,△ADC的周长为9cm,则△ABC的周长是.
15、如图,已知AB=CD,AD=BC,则图中全等三角形共有()
A.2对B、3对C、4对D、5对
16、某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是()
A、带①去;B、带②去;C、带③去;D、①②③都带去.
17、在下列各数:3.1415926、 、0.2、 、- 、 、 、3.121121112…(中间依次增加1)中,无理数的个数( )
7.在右图中作出函数y=2x+6的图象,利用图象解答下列问题:
①求方程2x+6=0的解;
②求不等式2x+6>0的解;
③若-1≤y≤3,求x的取值范围。
8.随着网络时代的到来,很多家庭都接入了网络,电信局规定了拨号入网两种收费方式,用户可以任选其一:A:计时制:0.05元/分;B:全月制:54元/月(限一部个人住宅电话入网)。此外B种上网方式要加收通信费0.02元/分。
2011-2012八年级上期期末试题八数
2011—2012学年度上学期期末考试八年级数学试卷姓名:学号:得分:一、选择题(每小题3分,共30分) 请将你认为正确的答案代号填在下表中1.对称现象无处不在,请你观察下面的四个图形,它们体现了中华民族的传统文化,其中,可以看作是轴对称图形的有 A .1个B .2个C .3个D .4个2.如图,D 、E 、F 分别是等边△ABC 各边上的点,且AD =BE =CF ,则△DEF 的形状是 A .等边三角形 B .腰和底边不相等的等腰三角形 C .直角三角形 D .不等边三角形 3.如果2(x -2)3=643,则x 等于A .21 B .27 C .21或27 D .以上答案都不对4.下列多项式中不含因式(x -1)的是 A .x 3-x 2-x +1 B .x 2+y -xy -x C .x 2-2x -y 2+1 D .(x 2+3x )2-(2x +2)25.估算324+的值 A .在5和6之间B .在6和7之间C .在7和8之间D .在8和9之间6.下列可使两个直角三角形全等的条件是 A .一条边对应相等 B .斜边和一直角边对应相等 C .一个锐角对应相等 D .两个锐角对应相等7.化简()()()()13131313842++++得A .()2813+B .()2813-C .1316-D .()132116-8.如图,∠B 、∠C 的平分线相交于F ,过点F 作DE ∥BC ,交 AB 于D ,交AC 于E ,那么下列结论正确的是 ①△BDF 、△CEF 都是等腰三角形; ②DE =BD +CE ; ③△ADE 的周长为AB +AC ; ④BD =CE ;A .③④B .①②C .①②③D .②③④9.图中的三角形是有规律地从里到外逐层排列的。
设y 为第n 层 (n 为正整数)三角形的个数,则下列函数关系式中正确的是 A .y =4n -4 B .y =4n C .y =4n +4D .y =n 210.父亲节,学校“文苑”专栏登出了某同学回忆父亲的小诗:“同辞家门赴车站,别时叮咛语千万,学子满载信心去,老父怀抱希望还。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011-2012八年级第一学期期末练习数学试卷 2012.011. 32- 的绝对值是( )A .32B .32-C .8D .8-2. 若分式1263+-x x 的值为0,则( )A .2-=xB .2=xC .21=xD .21-=x3. 如图,ABC ∆是等边三角形,点D 在AC 边上,︒=∠35DBC ,则A D B C ∠的度数为( ) A .︒25 B .︒60 C .︒85 D .︒954. 下列计算正确的是( )A .632a a a =⋅B .236a a a =⋅C .632)(a a =D .2)2)(2(2-=-+a a a 5. 小彤的奶奶步行去社区卫生院做理疗,从家走了15分钟到达距离家900米的社区卫生院,她用了20分钟做理疗,然后用10分钟原路返回家中,那么小彤的奶奶离家的距离S (单位:米)与时间t (单位:分)之间的函数关系图象大致是( )6. 已知一个等腰三角形两边长分别为5,6,则它的周长为( ) A .16 B .17 C .16或 17D .10或 12 7. 根据分式的基本性质,分式xx --432可变形为( )A .432---x xB .x x ---432C .x x --423D .423---x x 8. 已知1=-b a ,则b b a 222--的值为( )A .0B .1C .2D .4 9. 如图,BD 是ABC ∆的角平分线,BC DE //,DE 交AB 于E ,若BC AB =,则下列结论中错误的是( ) A .AC BD ⊥ B .EDA A ∠=∠ C .BC AD =2 D .ED BE = 10. 已知定点M (1x ,1y )、N (2x ,2y )(21x x >)在直线2+=x y 上,若)()(2121y y x x t -⋅-=,则下列说明正确的是( )①tx y =是比例函数;②1)1(++=x t y 是一次函数;③t x t y +-=)1(是一次函数;④函数x tx y 2--=中y 随x 的增大而减小; A .①②③ B .①②④ C .①③④ D .①②③④11. 9的平方根是_____.12. 分解因式:=+-y xy y x 22_________________.13. 函数5+=x xy 的自变量x 的取值范围是_______. 14. 如图在中,AC AB =,︒=∠40A , AB 的垂直平分线MN 交AC 于D ,则=∠DBC _______度.15. 如图,直线b kx y +=与坐标轴交于A (3-,0),B (0,5)两点, 则不等式0<--b kx 的解集为_________. 16. 观察下列式子:第1个式子:222345=-;第2个式子:22251213=- 第3个式子:22272425=-;…… 按照上述式子的规律,第5个式子为22211(_____)(_____)=-; 第n 个式子为_______________________________(n 为正整数)17. 计算:(1)10)31()2011(4---+; (2))4)(()2(2b a b a b a -++-.18. 如图,在34⨯正方形网格中,阴影部分是由5个小正方形组成的一个图形,请你用两种方法分别在下图方格内...添涂2个小正方形,使这7个小正方形组成的图形是轴对称图形。
19. 先化简,再求值:xx x x 24)11(22+-÷-,其中1-=x .20. 如图,ABC ∆中,AC AB =,AM 是BC 边上的中线,点N 在AM 上,求证NC NB =.21. 如图,已知直线b x y +=21经过点A (4,3),与y 轴交于点B 。
(1)求B 点坐标;(2)若点C 是x 轴上一动点,当BC AC +的值最小时,求C 点坐标.22. 如图,在四边形ABCD 中,︒=∠90B ,AB DE //,DE 交BC 于E ,交AC 于F ,BC DE =,︒=∠=∠30ACB CDE 。
(1)求证:FCD ∆是等腰三角形;(2)若4=AB ,求CD 的长。
23. 小丽想用一块面积为2400cm 的正方形纸片,沿着边的方向裁出一块面积为2300cm 的长方形纸片,使它长宽之比为2:3,请你说明小丽能否用这块纸片裁出符合要求的长方形纸片。
24. 如图,AD 是ABC ∆的角平分线,H ,G 分别在AC ,AB 上,且BD HD =. (1)求证:B ∠与AHD ∠互补;(2)若︒=∠+∠1802DGA B ,请探究线段AG 与线段AH 、HD 之间满足的等量关系,并加以证明。
25. 设关于x 一次函数11b x a y +=与22b x a y +=,我们称函数)()(2211b x a n b x a m y +++=(其中1=+n m )为这两个函数的生成函数。
(1)请你任意写出一个1+=x y 与13-=x y 的生成函数的解析式; (2)当c x =时,求c x y +=与c x y -=3的生成函数的函数值;(3)若函数11b x a y +=与22b x a y +=的图象的交点为P (a ,5),当12211==b a b a 时,求代数式na ma b a a n b a a m 22)()(2222221221+++++的值.26. 已知A (1-,0),B (0,3-),点C 与点A 关于坐标原点对称,经过点C 的直线与y 轴交于点D ,与直线AB 交于点E ,且E 点在第二象限。
(1)求直线AB 的解析式;(2)若点D (0,1),过点B 作CD BF ⊥于F ,连接BC ,求D B F ∠的度数及BCE ∆的面积;(3)若点G (G 不与C 重合)是动直线CD 上一点,且BA BG =,试探究ABG ∠与ACE ∠之间满足的等量关系,并加以证明。
八年级第一学期期末练习数学参考答案与评分标准2012.1一、选择题(本题共30分,每小题3分)1. A 2.B 3. D 4.C 5.D 6.C 7. A 8.B 9.C 10.B 二、填空题(本题共18分,每小题3分)11. ±3 12. y (x -1)2 13. x ≠ -5 14. 30 15.3->x 16. 61, 60 ( 1分) ; (2n 2+2n +1) 2-(2n 2+2n ) 2 =(2n +1)2 ( 2分)三、解答题(本题共52分;第17题8分;第18 题~第21题各4分;第22题~第24题 各5分; 第25题6分; 第26题7分)说明:解法不同于参考答案, 正确者可参照评分标准相应给分..0312******* (1):17.1=-+=⎪⎭⎫ ⎝⎛--+-)(解 (2) (2a-b ) 2+ (a +b )(4a -b )=4a 2 -4ab +b 2 +4a 2 -ab +4ab -b 2 ………………………………………………3分 =8a 2-ab . ……………………………………………………………………4分 18. 答案不唯一,参见下图. 正确画出一个图给2分; 累计4分.221419.121(2)(2)(2)1.2: x x x x x x x x x x x x -⎛⎫-÷ ⎪+⎝⎭-+=⋅+--=-解当1-=x 时, 原式=3221)1(121-=----=--x x 20. 证明: ∵ AB =AC , AM 是BC ∴ AM ⊥BC . ∴ AM 垂直平分BC . ∵ 点N 在AM 上,∴ NB =NC . 21. 解:(1)由点A (4, 3)在直线b x y +=21.4213b +⨯=b =1.∴ B (0, 1).………………………………………………3分 ………………………………………………4分………………………………………………2分(2) 如图, 作点A (4, 3)关于x 轴的对称点A ' (4, -3),连接BA '交x 轴于点C , 则此时AC +BC 取得最小值. …………………………………2分 设直线BA '的解析式为1+=kx y , 依题意 -3=4k +1. k =-1.∴ 直线BA '的解析式为1+-=x y . …………………………………………………3分 令y =0, 则x =1.∴ C (1, 0). …………………………………………………4分 22.解: (1) 证明:∵ DE //AB , ∠B =90°, ∴ ∠DEC =90°.∴ ∠DCE =90°-∠CDE =60°. ∴ ∠DCF =∠DCE -∠ACB =30°.∴ ∠CDE =∠DCF . …………………………………………………1分 ∴ DF =CF .∴ △FCD 是等腰三角形. …………………………………………………2分 (2) 解: 在△ACB 和△CDE 中,⎪⎩⎪⎨⎧︒=∠=∠=︒=∠=∠,30,,90 CDE ACB DE BC DEC B ∴ △ACB ≌△CDE .∴ AC =CD . …………………4分在Rt △ABC 中, ∠B =90°, ∠ACB =30°,AB =4,∴ AC =2AB =8.∴ CD =8. …………………………………………………………5分 23. 解:设长方形纸片的长为3x (x >0)cm ,则宽为2x cm ,依题意得3x ⋅2x =300. ……………………………………………………………………2分 6x 2=300. x 2=50.∵ x >0, ∴ x =50. ……………………………………………………………………3分 ∴ 长方形纸片的长为350cm. ∵ 50>49,∴50>7.∴ 350>21, 即长方形纸片的长大于20cm. …………………………………………4分 由正方形纸片的面积为400 cm 2, 可知其边长为20cm, ∴ 长方形的纸片长大于正方形纸片的边长.答: 小丽不能用这块纸片裁出符合要求的长方形纸片. …………………………5分 24. 解:(1)证明:在AB 上取一点M , 使得AM =AH , 连接DM .∵ ∠CAD =∠BAD , AD =AD ,∴ △AHD ≌△AMD . ……………………1分 ∴ HD =MD , ∠AHD =∠AMD . ∵ HD =DB ,∴ DB= MD .∴ ∠DMB =∠B . …………………………2分∵ ∠AMD +∠DMB =180︒,∴ ∠AHD +∠B =180︒. ………………………3分 即 ∠B 与∠AHD 互补.(2)由(1)∠AHD=∠AMD , HD =MD , ∠AHD +∠B =180︒.∵ ∠B +2∠DGA =180︒,F E D C B A HDCA∴ ∠AHD =2∠DGA . ∴ ∠AMD =2∠DGM .∵ ∠AMD =∠DGM +∠GDM . ∴ 2∠DGM=∠DGM +∠GDM .∴ ∠DGM =∠GDM . ………………………………………………………………4分 ∴ MD =MG . ∴ HD = MG .∵ AG = AM +MG ,∴ AG = AH +HD . ……………………………………………………………5分 25. 解:(1)答案不唯一. 比如取m =2时, n =-1.生成函数为y =2(x +1)-(3x -1)=-x +3,即y =-x +3. ……………………………1分 (2)当x =c 时,y =m (x +c )+n (3x -c )=2c (m +n ). ……………………………………………2分∵1=+n m ,∴ y =2c (m +n )=2c . ……………………………………………3分 (3)法一:∵点 P (a , 5) 在11b x a y +=与22b x a y +=的图象上,∴ 511=+b a a ,522=+b a a . …………………………………………………4分 ∴ a 12a 2+b 12=( a 1a +b 1)2 -2 aa 1b 1 =52 -2 aa 1b 1, a 22a 2+b 22= (a 2a +b 2)2 -2aa 2b 2=52 -2aa 2b 2. …………………………………………………5分当 a 1b 1= a 2b 2=1时,m (a 12a 2+b 12) +n (a 22a 2+b 22)+ 2ma +2na = m (52 -2a ) + n (52 -2a ) + 2ma +2na =25(m +n ). ∵1=+n m ,∴ m (a 12a 2+b 12) +n (a 22a 2+b 22)+ 2ma +2na =25(m +n )=25. ……………………………6分 法二:∵点P (a , 5)在11b x a y +=与22b x a y +=的图象上,∴ 511=+b a a ,522=+b a a . …………………………………………………4分当 a 1b 1= a 2b 2 =1时,m (a 12a 2+b 12) +n (a 22a 2+b 22)+2ma +2na= m (a 12a 2 +2aa 1b 1+b 12) +n (a 22a 2 +2aa 2b 2+b 22) =m (a 1a +b 1) 2+ n (a 2a +b 2) 2 …………………………………………………5分 =m ⋅52+n ⋅52=25(m +n ). ∵ m +n =1,∴ m (a 12x 2+b 12) +n (a 22x 2+b 22)+2ma +2na =25(m +n )=25. ……………………………6分 26. 解:(1)依题意,设直线AB 的解析式为3-=kx y .∵ A (-1,0)在直线上, ∴ 0= -k -3. ∴ k=-3.∴直线AB 的解析式为33y x =--. …………………………………………1分 (2)如图1,依题意,C (1,0),OC =1.由D (0,1),得OD =1.在△DOC 中,∠DOC =90°,OD =OC =1. 可得 ∠CDO =45°. ∵ BF ⊥CD 于F , ∴ ∠BFD =90°.∴ ∠DBF =90°-∠CDO =45°. …………………2分可求得直线CD 的解析式为 1.y x =-+由 331y x y x =--⎧⎨=-+⎩,,解得23.x y =-⎧⎨=⎩,∴ 直线AB 与CD 的交点为E (-2,3). 过E 作EH ⊥y 轴于H , 则EH =2. ∵ B (0,- 3), D (0,1), ∴ BD =4.∴ 114241 6.22BCE BDE BDC S S S ∆∆∆=+=⨯⨯+⨯⨯=………………………………4分 (3)连接BC , 作BM ⊥CD 于M . ∵ AO =OC ,BO ⊥AC , ∴ BA =BC .∴ ∠ABO =∠CBO .设 ∠CBO =α,则∠ABO =α,∠ACB =90︒-α. ∵ BG =BA , ∴ BG =BC . ∵ BM ⊥CD ,∴ ∠CBM =∠GBM .设∠CBM =β,则∠GBM =β,∠BCG =90︒-β.(i) 如图2,当点G 在射线CD 的反向延长线上时, ∵ ∠ABG =222(),αβαβ+=+∠ECA =180(90)(90).αβαβ----=+∴ ∠ABG =2∠ECA . ……………………6分 (ii) 如图3,当点G 在射线CD 的延长线上时, ∵ ∠ABG =222(),αβαβ-=-∠ECA =(90)(90).βααβ---=-∴ ∠ABG =2∠ECA . ……………………7分综上,∠ABG =2∠ECA .说明:第(3)问两种情况只要做对一种给 2分;累计3分.。