微生物的新陈代谢

合集下载

微生物第五章总结

微生物第五章总结
3. 嗜盐菌紫膜的光介导ATP合成
嗜盐菌在无氧条件下,利用光能所造成的紫膜蛋白上视黄醛辅基构象的变化,可使质子不断驱至膜外,从而在膜两侧建立一个质子动势,再由它来推动ATP酶合成ATP,此即为光介导ATP合成。
第二节 分解代谢和合成代谢的联系
一, 两用代谢途径
凡在分解代谢和合成代谢中均具有功能的代谢途径,称为两用代谢途径。EMP,HMP和TCA循环都是重要的两用代谢途径。如:葡萄糖通过EMP途径可分解为2个丙酮酸,反之2个丙酮酸也可通过EMP途径的逆转而合成1个葡萄糖,此即葡糖异生作用。
TCA特点:(1)氧虽不直接参与反应,但必须在有氧条件下运转(2)每分子丙酮酸可产4个NADH+H+,一个FADH2和)TCA位于一切分解代谢和合成代谢中的枢纽地位。
(二) 递氢和受氢
根据递氢特点尤其是受氢体性质的不同,可把生物氧化区分为呼吸,无氧呼吸和发酵3中类型。
一, 自养微生物的CO2固定
在微生物中CO2固定途径有四条:
(一) Calvin循环:又称Calvin-Benson循环,Calvin-Bassham循环,核酮糖二磷酸途径或还原性戊糖磷酸循环。此循环是光能自养型生物固CO2的主要途径。核酮糖二磷酸羧化酶和磷酸核酮糖液激酶是本途径的两种特有的酶。本循环可分为3个阶段:(1)羧化反应(2)还原反应(3)CO2受体再生(反应式见书P130)。Calvin循环的总反应式:6CO2+12NAD(P)H2+18ATP——→C6H12O6+12NAD(P)+18ADP+18Pi+6H2O
二, 自养微生物产ATP和产还原力
自养微生物按其最初能源的不同,可分为两大类:一类是能对无机物进行氧化而获得能量的微生物,称作化能无机自养型微生物,另一类是能利用日光辐射能的微生物,称作光能自养型微生物。两种根本的区别在于,前者生物合成的起点是建立在对氧化程度极高的CO2进行还原的基础上,而后者的起点则建立在对氧化还原水平适中的有机碳源直接利用的基础上。

chap5-微生物的新陈代谢

chap5-微生物的新陈代谢
产能: 2H2 + O2 — 2 H2O 合成代谢反应:
2H2 + CO2 — [ CH2O ] + H2O。
3 硫细菌(硫氧化细菌)
——利用H2S、S02、S2O32等无机硫化物进行自养生 长,主要指化能自氧型硫细 菌
大多数硫杆菌,脱下的H+ (e-)经cyt.c部位进入呼 吸链; 而脱氮硫杆菌从FP或 cyt.b水平进入。
代谢(metabolism):
细胞内发生的各种化学反应的总称
代谢
分解代谢(catabolism) 合成代谢(anabolism)
分解代谢
复杂分子
简单小分子 ATP [H]
(有机物)
合成代谢
生物氧化的形式:某物质与氧结合、脱氢或脱电子三种
生物氧化的功能为:
产能(ATP)、产还原力[H]和产小分子中间代谢物
外源电子供体—— H2S等无 机物氧化放出电子,最终传 至失电子的光合色素时与 ADP磷酸化偶联产生ATP。
特点:只有一个光合系统,光 合作用释放的电子仅用于NAD+ 还原NADH,电子传递不形成环 式回路。反应中心的还原依靠 外源电子供体,如S2-、S2O32等。外源电子供体在氧化过程 中放出电子,经电子传递系统 传给失去了电子的光合色素, 使其还原,同时偶联ATP的生 成。由于这个电子传递途径也 没有形成环式回路,故也称为 非环式光合磷酸化
6-磷酸-葡糖酸
6-磷酸-葡萄糖-脱水酶
特点:
KDPG KDPG醛缩酶
a、步骤简单 b、产能效率低:1 ATP
3--磷酸--甘油醛 + 丙酮酸
c、关键中间产物 KDPG,特征酶:KDPG醛缩酶
细菌:铜绿、荧光假单胞菌,根瘤菌,固氮菌,农杆菌,运动发 酵单胞菌等。

10-12 第五章 微生物的代谢

10-12 第五章  微生物的代谢

1、生物氧化的形式:
包括脱氢或脱电子
①失电子:
Fe2+ → Fe3+ + e CH3-CHO
②化合物脱氢、递氢: CH3-CH2-OH
NAD NADH2
2、生物氧化的过程: 脱氢(或电子)、递氢(或电子)和受氢(或电子)三 个阶段
3、生物氧化的功能: 产能(ATP)、产还原力[H]和产小分子中间代谢物
德国: (Carl Neuberg)
目前甘油生产中使用的微生物 Dunaliella aslina(一种嗜盐藻类) 生活在盐湖及海边的岩池等盐浓度很高环境
胞内积累高浓度的甘油使细胞的渗透压保持平衡
由EMP途径中丙酮酸出发的发酵
②同型乳酸发酵:发酵产物只有乳酸
丙酮酸
NADH2
乳酸
同型乳酸发酵菌株有: 德氏乳杆菌(L.delbruckii)、嗜酸乳杆菌(L.acidophilus)、植物乳杆菌 (L.plantarum)、干酪乳杆菌(L.casei)、粪链球菌(Streptococcus faecalis)
(5)Stickland反应
氨基酸同时为碳源、氮源和能源 以一种氨基酸为H供体,而另一种氨基酸为H受体来实现 生物氧化产能的发酵类型。
3乙酸
丙氨酸
+
2甘氨酸
3NH3
CO2 ATP
Stickland反应特点:
部分氨基酸的氧化与另一些氨基酸的还原相偶联; 产能效率低,1ATP/1G。
各途经的相互关系
H2O
2-酮-3-脱氧-6-磷酸-葡萄糖酸
丙酮酸
~~醛缩酶
(KDPG)
有氧时与TCA循环连接 无氧时进行细菌乙醇发酵
葡萄糖只经过4步反应即可快速获得由EMP途径须经10步 才能获得的丙酮酸。

微生物的新陈代谢

微生物的新陈代谢

赤 木 果 藓 酮 糖 糖 糖 | + | + | 6 4 5 | | | 磷 磷 磷 酸 酸 酸
微生物的产能代谢
异养微生物的生物氧化
发酵
2 | 酮 葡 糖 酸 | 6 | 磷 酸
| 脱氧
ED 途径
丙 酮 酸 + 甘 油 醛 | 3 | 磷 酸
葡 萄 糖
ATP
ADP
葡 糖 | 6 | 磷 酸
NADP+
亚硝酸 硝化细 菌
自养微生物的生物氧化
氢的氧化 2H+
H2
微生物的产能代谢
自养微生物的生物氧化
硫的氧化 SO42-
H2S
S
SO32磷酸腺苷酸的氧化途径
SO42-
自养微生物的生物氧化
铁的氧化 Fe 3+
Fe 2+
产生的能量进行转换
底物水平磷酸化 氧化磷酸化
光合磷酸化
微生物的耗能代谢
微生物利用能量合成细胞物质及其他耗能代谢的过程,如运输 微生物利用能量合成细胞物质及其他耗能代谢的过程, 运动、生物发光等生理过程。 运动、生物发光等生理过程。
微生物的产能代谢
异养微生物的生物氧化
发酵
有 氧 机 化 物 电子 受体
a
有氧呼吸
b
呼吸 无氧呼吸
微生物的产能代谢
异养微生物的生物氧化
呼吸作用
微生物在降解底物的过程中,将释放出的电子交 微生物在降解底物的过程中, 给NAD(P)+、FAD、FMN等电子载体,再经电 ( ) 、 等电子载体, 子传递系统传递给外源电子受体, 子传递系统传递给外源电子受体,从而生成水或 其他还原型产物并释放能量的过程, 其他还原型产物并释放能量的过程,称为呼吸作 用。其中以分子氧作为最终电子受体的呼吸为有 氧呼吸, 氧呼吸,以氧化型化合物作为最终电子受体的呼 吸称为无氧呼吸。 吸称为无氧呼吸。

微生物的新陈代谢

微生物的新陈代谢

EMP途径
p 以1分子葡萄糖为底物 p 约经过10步反应 p 产生2分子丙酮酸和2分子ATP的过程 • p p p 在其总反应中,可概括成 两个阶段(耗能和产能) 三种产物(NADH+H+、丙酮酸和ATP) 10个反应步骤
生理功能
F F F F F 供应ATP 形式的能量和NADH2形式的还原力 连接其他几个重要代谢途径的桥梁 为生物合成提供多种中间代谢物 通过逆向反应可进行多糖合成 整个EMP途径的产能效率是很低的,即每一个葡 萄糖分子仅净产2个ATP,但其产生的多种中间代 谢物不仅可为合成反应提供原材料,而且起着连 接许多有关代谢途径的作用
可概括成两个阶段(耗能和产能)、三 种产物(NADH+H+、丙酮酸和ATP)和10个 反应步骤

己糖激酶 磷酸己糖异构酶
磷酸果糖激酶
果糖二磷酸醛缩酶 丙糖磷酸 异构酶 甘油醛-3-磷 酸脱氢酶
磷酸二羟丙酮
磷酸甘油 酸激酶
磷酸甘油酸 变位酶
烯醇 酶
丙酮酸激 酶
EMP途径

2NADH+H+在有氧条件下可经呼吸链的氧化磷酸化反 应产生6ATP,在无氧条件下,则可还原丙酮酸产生乳酸 或还原丙酮酸的脱羧产物——乙醛而产生乙醇
第五章 微生物的代谢和发酵
• 新陈代谢(metabolism) • 简称代谢,是指发生在活细胞中的各种分解代 谢(catabolism)和合成代谢(anabolism)的总和
• 分解代谢 • 是指复杂的有机物分子通过分解代谢酶系的 催化,产生简单分子、腺苷三磷酸(ATP)形式 的能量和还原力(或称还原当量,一般用[H]来表 示)的作用; 合成代谢又称同化作用,与分解代谢 相反,是指在合成酶的催化下,由简单小分子、ATP 形式的能量和[ H]形式的还原力共同合成复杂的生 物大分子的过程。

微生物新陈代谢

微生物新陈代谢

生物氢气
某些微生物能够利用光合作用或发酵作用产 生氢气,为氢能源的生产提供了新的途径。
感谢您的观看
THANKS
微生物新陈代谢的类型
01
02
03
有氧呼吸
微生物在有氧环境下,通 过氧化反应将有机物彻底 氧化分解,释放出能量。
无氧呼吸
微生物在无氧环境下,通 过发酵或无氧呼吸将有机 物氧化分解,释放出能量。
光合作用
某些光合细菌和藻类能够 利用光能将二氧化碳和水 转化为有机物,并释放出 氧气。
微生物新陈代谢的过程
的作用下进一步分解,释放大量能量。
无氧呼吸的产物
要点一
总结词
无氧呼吸的产物通常是二氧化碳、乙醇、乳酸等。
要点二
详细描述
在无氧呼吸过程中,有机物被氧化分解成不同的产物,例 如,葡萄糖在乳酸菌的无氧呼吸过程中被分解成乳酸,而 在酵母菌的无氧呼吸过程中则被分解成乙醇和二氧化碳。 这些产物对于微生物本身具有一定的生理意义,例如乳酸 可以降低细胞内的pH值,增强微生物的耐酸性;乙醇和二 氧化碳则可以作为微生物的能量来源和碳源。
无氧呼吸的能量转换
总结词
无氧呼吸的能量转换效率通常较低,但也有例外。
详细描述
无氧呼吸过程中释放的能量并不像有氧呼吸那样完全 、高效地转换为ATP中的化学能。因此,无氧呼吸的 能量转换效率通常较低。然而,有些微生物在无氧呼 吸过程中也能产生大量的能量,例如醋酸细菌的无氧 呼吸过程就可以产生大量的能量,其能量转换效率与 有氧呼吸相差无几。此外,一些微生物在无氧呼吸过 程中可以将部分能量转换为热能,以维持微生物自身 的温度。
发酵的产物
总结词
发酵的产物包括酒精、乳酸、乙酸、丁酸等,这些产物具有广泛的应用价值。

第六章微生物代谢

第六章微生物代谢

TCA循环的重要特点
为糖类、脂类、蛋白质三大物质转化中心枢纽。 循环中的某些中间产物是一些重要物质生物合成的前体; 生物体提供能量的主要形式; 为人类利用生物发酵生产所需产品提供主要的代谢途径。如 柠檬酸发酵;Glu发酵等。
(二)递氢和受氢 经过上述4条途径脱氢后,通过呼吸链等方式 传递,最终可与氧、无机氧或有机物等氢受体相结
2、HMP途径
磷酸戊糖进一步代谢有两种结局:
①磷酸戊糖经转酮—转醛酶系催化,又生成磷酸己糖 和磷酸丙糖(3-磷酸甘油醛),磷酸丙糖借EMP途径 的一些酶,进一步转化为丙酮酸。称为不完全HMP途 径。
②由六个葡萄糖分子参加反应,经一系列反应,最后 回收五个葡萄糖分子,消耗了1分子葡萄糖(彻底氧化 成CO2 和水),称完全HMP途径。
CO2、H2O 还原型中间代谢 产物醇、酸 NO2、N2 次之 少
电子传递链
完整
不完整
无,底物水平磷 酸化
二、自养微生物产ATP和产还原力 按能量来源不同可分为:
化能自养型
光能自养型
(一)化能自养微生物 还原CO2所需要的ATP和[H]是通过氧化无机物而获得的
硝化细菌、铁细菌、硫细菌、氢细菌
自养微生物氧化磷酸化效率低
葡萄糖 磷酸二羟丙酮
②异型乳酸发酵
乙醇
ATP ADP NAD+ NADH
乙醛
乙酰CoA
NAD+ NADH
乙酰磷酸
葡萄糖
6-磷酸 葡萄糖
6-磷酸葡 5-磷酸 萄糖酸 -CO2 木酮糖 3-磷酸 -2H 甘油醛
2ADP 2ATP
乳酸
(3)Stickland反应
1934年Stickland发现Closterdium sporogenes(生孢梭菌)能 利用一些氨基酸同时作为碳源、氮源和能源, 以一种氨基酸作供氢体,以另一种氨基酸作为受氢体而实现 产能的独特发酵类型。 CH3 CHNH2 + 2 CH2NH2 COOH ADP+Pi

微生物代谢途径

微生物代谢途径

微生物代谢途径
【微生物代谢途径】
微生物代谢途径是指微生物在其内部产生能量或物质的代谢过程。

这些过程可以分为三大类:新陈代谢、重组代谢和合成代谢。

1.新陈代谢:
新陈代谢是指微生物从外界获取的能量或物质,通过氧化降解的过程,转化成它们所需要的化学能,如糖类、脂肪、蛋白质等,并发放出氧气或二氧化碳等有机化合物。

其中最重要的过程是糖酵解,也叫作糖苷水解或糖酵解反应,即将糖苷分解成更小的物质,如乳糖、果糖、麦芽糖等,同时产生氧气。

2.重组代谢:
重组代谢是指微生物从外界获取的物质通过氧化或合成反应,在细胞内重新构建新的物质,用于生物组成的物质改变。

其包括:碳水化合物代谢、脂肪代谢、氨基酸代谢、脱氢代谢、磷酸酯代谢、光合作用、氧化还原反应等。

3.合成代谢:
合成代谢是指微生物从外界获取的能量或物质,经过重组代谢后重新构建出新的物质,用于细胞的生长和繁殖。

这个过程主要分为三个部分:合成物的构建、调节物质的合成比例及调节物质的转运。

它包括:脂肪酸合成、碳水化合物合成、蛋白质合成、核酸合成等。

- 1 -。

微生物的新陈代谢

微生物的新陈代谢

微生物的新陈代谢1.新陈代谢、生物体从环境摄取营养物转变为自身物质,同时将自身原有组成转变为废物排出到环境中的不断更新的过程。

2.生物水解、细胞内的糖,蛋白质和脂肪展开水解水解分解成co2和水,并释放能量的过程。

3.体温、有机体利用氧气通过新陈代谢水解有机化合物释放出来化学能的过程。

4.呼吸链、在生物氧化过程中,从代谢物上脱下的氢由一系列传递体依次传达,最后与氧构成水的整个体系称作体温链5.无氧呼吸、生物在无氧条件下进行呼吸,包括底物氧化及能量产生的代谢过程。

6.蒸煮、细菌和酵母等微生物在无氧条件下,酶促发展水解糖分子产生能量的过程。

7.同型酒精发酵、酿酒酵母能够通过emp途径进行同型酒精发酵,即为由emp途径新陈代谢产生的丙酮酸经过脱羧释出co2,同时分解成乙醛,乙醛拒绝接受糖酵解过程中释放出来的nadh+h+被转换成乙醇。

异型酒精发酵、一些细菌能够通过hmp途径进行异型乳酸发酵产生乳酸、乙醇和co2等8.stickland反应、某些专性厌氧细菌如梭状芽孢杆菌在厌氧条件下生短时,以一种氨基酸做为氢的供体,展开水解脱氨,另一种氨基酸作氢的受体,展开还原成脱氨,两者偶联展开水解还原成脱氨。

这其中存有atp分解成。

9.两用代谢途径、既可用于代谢物分解又可用于合成的代谢途径。

如三羧酸循环。

10.新陈代谢止跌顺序、就是另一类补足两用新陈代谢途径中因合成代谢而消耗的中间代谢物的那些反应11.乙醛酸循环、在植物和微生物中存有一个与三羧酸循环二者相似的代谢过程,其代谢中间产物有乙醛酸,这个生化过程称为乙醛酸循环12.固氮酶、一种能将分子氮转换成氨的酶13.异形胞、某些丝状蓝藻所特有的变态营养细胞,是一种缺乏光合结二重、通常比普通营养细胞小的厚壁特化细胞。

异形胞中所含多样的固氮酶,为蓝藻固氮的场所。

14.类菌体、根瘤菌进入宿主根部皮层细胞后,分化成膨大、形状各异、并无产卵能力,但具备很强固氮活性的细胞。

15.豆血红蛋白、豆科植物根瘤中发现的血红蛋白样红色蛋白质。

微生物的新陈代谢

微生物的新陈代谢

典型的呼吸链
呼吸的过程
葡萄糖经过糖酵解(EMP途径)作用形成的丙酮酸, 丙酮酸进入三羧酸循环(简称TCA循环),被彻底氧化生 成CO2和水,同时释放大量能量。
2. 无氧呼吸
某些厌氧菌和兼性厌氧菌在无氧条件下进行的、呼吸链末 端的氢受体为外源无机氧化物(少数为有机氧化物)的生 物氧化。产能效率较低。 特点: 1) 底物按常规脱下的氢经部分呼吸链传递; 2) 最终由氧化态的无机物或有机物受氢; 3) 氧化磷酸化产能。 与有氧呼吸的异同: 无氧呼吸和有氧呼吸一样需要细胞色素等电子传递体,在 能量分级释放过程中伴随着磷酸化作用,也能产生很多能 量,但只有部分能量随电子(或H)传递给氧化物,使得 生成的能量不如有氧呼吸产生得多。
注:沼气的产生并不只是产甲烷菌参与,还有一些发酵 性细菌、产氢产乙酸细菌的参与,并且具有阶段性。
②产乙酸细菌产生乙酸。
3. 发 酵
广义发酵: 任何利用微生物来生产大量菌体或有用代谢产物或食品饮料的 一类生产方式。 狭义发酵: 在无氧等外源受氢体(外源最终电子受体)条件下,底物脱氢 以后产生的还原力[H]未经过呼吸链传递而直接交给某一内源 中间代谢产物接受,以实现底物水平磷酸化产能的生物氧化反 应。
具有ED途径的微生物
革兰氏阴性菌中分布较广 Pseudomonas saccharophila (嗜糖假单胞杆菌) Ps.aeruginosa (铜绿假单胞杆菌) Ps.fluorescens (荧光假单胞杆菌) Ps.lindneri (林氏假单胞菌) Z.Mobilis (运动发酵单胞菌) Alcaligens eutrophus (真氧产碱菌)
附:白酒的制作
附:红葡萄酒与白葡萄酒的区别
a) 原料不同。根据所用葡萄品种的颜色不同:葡萄分为白色品 种(白皮白肉)、红色品种(红皮白肉)和染色品种(红皮 红肉)三大类;

6第六章 微生物的代谢

6第六章 微生物的代谢

发酵的类型
1.由EMP途径中丙酮酸出发的发酵
丙酮酸EMP途径的关键产物,由丙酮酸出发,在 不同微生物中可进入不同的发酵途径,如:同型酒 精发酵、同型乳酸发酵、丙酸发酵、混合酸发酵、 丁酸发酵等。
2.通过HMP途径的发酵——异型乳酸发酵 (heterolactic fermentation)凡葡萄糖发酵后产生乳 酸、乙醇(乙酸)和CO2等多种产物的发酵即异型 乳酸发酵;相对的如只产生2分子乳酸的发酵则称 同型乳酸发酵(homolactic fermentation)
第六章 微生物的代谢
Microbial metabolism
概述
新陈代谢(metabolism)简称代谢,是指发生在活细胞 中的各种分解代谢(catabolism)和合成代谢 (anabolism)的总和。
分解代谢又称异化作用,指复杂的有机分子在分解代谢 酶系的催化下产生简单分子、能量和还原力的作用。
TCA循环在微生物生命活动中的意义:
(1)彻底氧化,为微生物生长提供大量的能 量。 (2) 位于一切分解代谢与合成代谢的中枢地 位,为有机物的合成提供大量的原料。 (3)工业生产中可利用这一途径生产柠檬酸、 苹果酸、琥珀酸、谷氨酸等工业原料。
6.1.1.2 递氢和受氢
在生物体中,贮存在葡萄糖等有机物中 的化学能,经上述的多种途径脱氢后, 经过呼吸链等方式递氢,最终与受氢体 (氧、无机物或有机物)结合,以释放 其化学潜能。
1.EMP途径(Embdem-Meyerhof-Parnas pathway)或糖酵解途径(Glycolysis Pathway )
是绝大多数生物所共有的一条主流代谢途径。
1分子葡萄糖,经10步反应,产生2分子丙酮 酸 苷、酸)2分和子2N分A子DAHT2(P。还原型烟酰胺腺嘌呤二核

微生物第五章微生物的新陈代谢

微生物第五章微生物的新陈代谢

第五章微生物的新陈代谢一、名词解释新陈代谢:是推动生物一切生命活动的动力源和各种生命物质的“加工厂”,是活细胞中一切有序化学反应的总和。

生物氧化:发生在活细胞内的一系列产能性氧化反应。

呼吸:是一种最重要最普遍的生物氧化或产能过程。

呼吸链:指位于原核微生物的细胞膜或真核生物的线粒体膜上,由一系列氧化还原势呈梯度差的,链状排列的递氢体或递电子体所组成的连续反应体系。

无氧呼吸:指的是呼吸链末端的氢受体为外源无机氧化物(少数有机氧化物)的生物氧化。

发酵:在无氧等外源氢受体的条件下,底物脱氢后产生的还原力未经呼吸链传递而直接交给内源性中间代谢产物接受,以实现底物水平磷酸化产能的一类生物氧化反应。

同型酒精发酵:酵母在无氧条件下,通过EMP途径,即葡萄糖-丙酮酸-乙醛-乙醇的过程,称为同型酒精发酵。

异型酒精发酵:细菌通过HMP 途径进行,产生1分子乙醇和 1 分子乳酸,称为细菌异型酒精发酵。

Stickland 反应:某些专性厌氧细菌如梭状芽孢杆菌、生孢梭菌、肉毒梭菌、斯氏梭菌在厌氧条件下生长时,以一种氨基酸作为底物进行氧化脱氢(即供氢体),脱下的氢(还原力)以另外一种氨基酸作为氢受体进行还原脱氨,两者偶联进行,实现生物氧化产能的发酵类型称为Stickland 反应。

两用代谢途径:凡在分解代谢和合成代谢中均具有功能的代谢途径。

代谢回补顺序:是指能补充两用代谢途径中因合成代谢而消耗的中间代谢物的应。

乙醛酸循环:中间代谢物中存在乙醛酸的循环。

固氮酶:是一种复合蛋白,由固二氮酶和固二氮酶还原酶两种相互分离的蛋白构成。

异形胞:某些丝状蓝藻所特有地变态营养细胞, 是一种缺乏光合结构、通常比普通营养细胞大地厚壁特化细胞。

类菌体:根瘤菌进入宿主根部皮层细胞后,分化成膨大、形状各异、无繁殖能力,但具有很强固氮活性的细胞。

豆血红蛋白:豆科植物根瘤中发现的血红蛋白样红色蛋白质。

有抗氧化活性,可避免同类细菌中的固氮酶受到抑制,是共生固氮所必需的。

第五章 微生物的新陈代谢

第五章 微生物的新陈代谢

顺序严格的系列反应 由酶催化,条件温和
大部分为ATP 高
生物氧化的过程
脱氢(或电子) 递氢(或电子) 受氢(或电子) 三阶段
生物氧化的功能: 产能(ATP)
产还原力【H】 小分子中间代谢物
生物氧化的类型
呼吸 无氧呼吸 发酵
(一)、底物脱氢的4条途径:
1、糖酵解途径
(Embden-Meyerhof-Parnas pathway,简称EMP途径)
ED途径的特点是:
①具有一特征性反应——葡萄糖经转化为2-酮-3-脱氧-6磷酸葡萄糖酸后,裂解成丙酮酸和3-磷酸甘油醛;3-磷 酸甘油醛再经EMP途径转化成为丙酮酸。结果是1分子葡 萄糖产生2分子丙酮酸,1分子ATP。
②存在一特征性酶——KDPG醛缩酶;
③其终产物2分子丙酮酸的来历不同,即一个由KDPG裂解 而来,另一由EMP途径转化而来;
(4)氨基酸发酵产能——Stickland反应
• —种氨基酸作底物脱氢(即氢供体),而以另 一种氨基酸作氢受体而实现生物氧化产能 的独特发酵类型,称为Stickland反应。每 分子氨基酸仅产1个ATP。
底物水平磷酸化(substrate level phosphorylation)
物质在生物氧化过程中,常生成一些含有高能键的化合物, 而这些化合物可直接偶联ATP或GTP的合成。
发酵的类型
• (1)由EMP途径中丙酮酸出发的发酵 丙酮酸是EMP途径的关键产物,由它出发,
在不同微生物中可进入不同发酵途径。 如:酿酒酵母:同型酒精发酵;
德氏乳杆菌、嗜酸乳杆菌、植物乳杆菌、干 酪乳杆菌:同型乳酸发酵。 利用:工业发酵手段生产代谢产物。鉴定菌 种。
(2)通过HMP途径的发酵——异型乳酸发酵

微生物第四章

微生物第四章

第四章微生物的代谢代谢(metabolism):也称新陈代谢,指生物体内进行的全部化学反应的总和。

(一)分解代谢:细胞将大分子物质降解成小分子物质,并在此过程中产生能量的过程。

不同营养类型的微生物进行分解代谢所利用的物质不同,异氧微生物利用的是有机物,自养微生物利用的是无机物。

(二)合成代谢:细胞利用简单的小分子物质合成复杂的大分子物质,并在此过程中贮藏能量的过程。

(三)物质代谢:物质在体内进行转化的过程。

(四)能量代谢:伴随物质转化而发生的能量形式相互转化的过程。

(五)初级代谢:能使营养物转化为结构物质、具生理活性物质或提供生长能量的一类代谢。

产物有小分子前体物、单体、多聚体等生命必需物质。

(六)次级代谢:某些微生物进行的非细胞结构物质和维持其正常生命活动的非必须物质的代谢。

产物有抗生素、酶抑制剂、毒素、甾体化合物等,与生命活动无关,不参与细胞结构,也不是酶活性必需,但对人类有用。

合成代谢和分解代谢的关系1.分解代谢为合成代谢提供能量和原料,保证正常合成代谢的进行,合成代谢又为分解代谢创造更好的条件。

2.合成代谢和分解代谢都是由一系列连续的酶促反应构成的,前一步反映的产物是后续反应的底物。

微生物代谢的特点1.代谢旺盛(代谢强度高、转化能力强)2.代谢类型多样化(导致营养类型的多样化)3.某些微生物在代谢过程中除产生其生命活动必须的初级代谢产物和能量外,还会产生一些次级代谢产物,次级代谢产物与人类生产与生活密切相关,是微生物学的重要研究领域。

4.微生物的代谢作用使得微生物在自然界的物质循环中起着极其重要的作用。

第一节微生物的能量代谢第二节微生物的物质代谢第三节微生物代谢的调节第四节微生物次级代谢与次级代谢产物第一节微生物的能量代谢微生物能量代谢是指微生物把环境提供的能源或本身储存的能源转变为微生物生命活动所需能源的过程。

微生物的产能代谢是指生物体内经过一系列连续的氧化还原反应,逐步分解并释放能量的过程,又称生物氧化。

微生物的新陈代谢

微生物的新陈代谢
吸收利用。
脂类的代谢
部分微生物能够通过β-氧化等 途径,将脂肪酸分解为乙酰
CoA,进而进入三羧酸循环进 行代谢。
氮源代谢
氨基酸的代谢
微生物可利用氨基酸作为氮源和 碳源,通过转氨基作用和脱氨基 作用将氨基酸转化为其他含氮化 合物和碳骨架。
铵盐的代谢
铵盐是微生物常用的无机氮源, 可通过谷氨酸脱氢酶等酶的作用 ,将铵盐转化为氨基酸等有机氮 化合物。
蛋白质组学技术
利用蛋白质组学技术,如蛋白质质谱分析、蛋白质互作分析等,研究 微生物新陈代谢过程中的蛋白质组成、结构和功能。
组学技术在微生物新陈代谢研究中的应用
代谢组学技术
通过代谢组学技术,如代谢物质谱分析、代谢通路分析等,研究微生物代谢产物的种类 、含量和变化规律,揭示微生物新陈代谢的代谢网络和调控机制。
微生物具有极强的环境适应能力,能够在各 种极端环境中生存和繁殖,如高温、低温、 高盐、高辐射等。
微生物对环境的影响
微生物的代谢活动对环境产生深远影响,如参与地 球化学循环、促进有机物分解、产生温室气体等。
微生物与环境的互作
微生物通过代谢活动与周围环境进行物质和 能量的交换,同时也受到环境因素的影响和 制约。
微生物通过呼吸作用将有机物氧化分 解成小分子物质,同时释放出能量。 呼吸作用包括有氧呼吸和无氧呼吸两 种类型。
发酵作用
某些微生物在无氧条件下,通过发酵 作用将有机物分解并产生能量。发酵 过程中会产生一些特定的代谢产物, 如酒精(如蓝藻、紫藻等)能够通过光合作用,利用光能将无机物合成有机物,并储存能量。光合作用分为 产氧光合作用和不产氧光合作用两种类型。
微生物燃料电池
利用微生物将有机物转化为电能,同 时处理有机废水,实现能源回收和废 水处理双重目的。
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

NO3- NO2- SO42- CO2
能量生成效率低于氧
第二节 化能自养微生物的生物氧化
一些微生物可以从氧化无机物获得能量, 同化合成细胞物质,这类细菌称为化能自 养微生物。它们在无机能源氧化过程中通 过氧化磷酸化产生ATP。 能源:

H2 NH3 S Fe
H2+½ O2H2O G0’=-237.2kJ/mol
DO变化与pH变化的关联
100 80
DO (%)
7.20
7.15
pH
60 7.10 40 20 0 10 11 12 13 Time (h) 14 15 16 7.05
DO (%) pH
7.00
2 菌株特性研究
大肠杆菌DH5a在基本培养基中生长差,产生 乙酸多,不利外源基因表达 DA19是DH5a的突变株,在同样培养基中产生 乙酸少,菌体生长多,外源基因表达高

氨的氧化
NH4++1½ O2NO2-+2H++H2O G0’=-270.7kJ/mol NO2-+½ O2NO3G0’=-77.4kJ/mol NH3和NO2-是可以用作能源的最普通的无机氮化合物,
能被硝化细菌所氧化,硝化细菌可分为两个亚群:亚 硝化细菌和硝化细菌。
氨氧化为硝酸的过程可分为两个阶段,先由亚硝化细 菌将氨氧化为亚硝酸,再由硝化细菌将亚硝酸氧化为 硝酸。由氨氧化为硝酸是通过这两类细菌依次进行的。
固氮的生化机制
2H+ 产能代 谢 e铁氧化蛋白 其他电子递 体 eH2 钼铁蛋 白
铁蛋白
e-
MgATP
MgADP+Pi 6H++N 2
2NH3
N2+8[H]+18~24ATP
2NH3+H2+ 18~24ATP + 18~24Pi
4. 细胞结构物质合成
氨基酸 核苷酸 多糖 脂肪
应用
ATP和NADPH2由光反应产生 首先固定CO2:CO2与核酮糖1,5-二磷酸 (RuBP)经核酮糖二磷酸羧化酶-加氧酶 (Rubisco)作用形成2个3-磷酸甘油酸 大部分3-磷酸甘油酸用于生成RuBP,少 部分用于合成葡萄糖 反应:
6 CO2 + 12 NADPH + 12 H+ + 18 ATP → C6H12O6 + 6 H2O + 12 NADP+ + 18 ADP + 18 Pi
1) 有氧呼吸
底物脱下的氢 经过完整的呼 吸链(电子传递 链,Electron Transfer Chain -ETC)传递,最 终被外源分子 氧接受,产生 水并释放出ATP 形式的能量
电子传递系统
ATP的生成
2) 无氧呼吸
呼吸链末端的电子受体不是氧 可作为电子受体的物质:



TCA循环
功能
提供还原力:3 NADH2,1 FADH2 提供能量:形成1 GTP 提供前体化合物:


a-酮戊二酸 琥珀酸 草酰乙酸
AcCoA+3NAD+FAD+GDP+Pi+2H2O 2CO2+3NADH2+FADH2+GTP+CoA
2. 烃的利用
能分解烃类的微生物

0.4
0.3 0.2 0.1 0 0
D=0.352 h
-1
1
2 3 4 5 Acetate in Feed (g/L)
0.2 0.4 0.6 0.8 -1 Dilution Rate (h )
碳源的流加 恒溶氧 恒pH
(a) 恒溶氧流加
原理 随菌体浓度增加,耗氧速率(OUR)增加,在一定供 氧条件下溶氧下降。碳源消耗引起耗氧速率降低和溶氧 急速上升。限制葡萄糖流加可造成溶氧振荡,发酵液中 浓度可维持在不能测出的低浓度,避免乙酸积累。
HMP途径
Glucose 6-phosphate + 2 NADP+ + H2O → ribulose 5-phosphate + 2 NADPH + 2 H+ + CO2
磷酸戊糖途径提供 NADPH的方式
ED途径
Entner-Doudoroff pathway Glucose + ADP +Pi +NAD + NADP 2Pyruvate + ATP + NADH2 + NADPH2
1 发酵过程分析应用实例
大肠杆菌高密度培养 在葡萄糖为碳源的培养基中大肠杆菌会产生副产物乙酸, 抑制生长和外源基因表达。发酵过程中维持葡萄糖限制 的状态能有效避免乙酸的积累。 控制碳源流加避免溢流代谢物积累
20
5 Q (10 IFN u/L)
0.5 Q (g/ ) A gh
16 12 8 4 0 0 0.294 0.148
硝化细菌都是一些专性好氧的革兰氏阳 性细菌,以分子氧为最终电子受体,且 大多数是专性无机营养型。它们的细胞 都具有复杂的膜内褶结构,这有利于增 加细胞的代谢能力。硝化细菌无芽孢, 多数为二分裂殖,生长缓慢,平均代时 在10h以上,分布非常广泛。
硫的氧化
S2-+2O2SO42 S0+1½ O2+H2OSO42-+2H+
Pichia pastoris表达血管生长抑制素
Pichia pastoris具有很强的醇氧化酶(AOX1)启 动子 外源基因插入并保持完整的AOX1显示Mut+表 型,外源基因插入破坏AOX1显示MutS表型。 发酵的生长阶段以甘油为碳源,表达阶段以甲 醇为碳源。 表达血管生长抑制素的P. pastoris为MutS,甲 醇利用能力很差。
蛋白 核酸 多糖 脂肪
分解代谢的三个阶段
分解代谢的三个阶段
1. 第一阶段是将蛋白质、多糖及脂类等大分子 营养物质降解成为氨基酸、单糖及脂肪酸等 小分子物质; 2. 第二阶段是将第一阶段产物进一步降解成更 为简单的乙酰辅酶A、丙酮酸以及能进入三羧 酸循环的某些中间产物,在这个阶段会产生 一些ATP、NADH及FADH2; 3. 第三阶段是通过三羧酸循环将第二阶段产物 完全降解生成CO2,并产生ATP、NADH及 FADH2。 第二和第三阶段产生的ATP、NADH及 FADH2通过电子传递链被氧化,可产生大量 的ATP。
G0’=-794.5kJ/mol
G0’=-584.9kJ/mol
硫杆菌能够利用一种或多种还原态或部分还原态的硫 化合物(包括硫化物、元素硫、硫代硫酸盐、多硫酸盐 和亚硫酸盐)作能源。 H2S首先被氧化成元素硫,随之被硫氧化酶和细胞色素 系统氧化成亚硫酸盐,放出的电子在传递过程中可以 偶联产生四个ATP。 亚硫酸盐的氧化可分为两条途径,一是直接氧化成 SO42-的途径,由亚硫酸盐-细胞色素c还原酶和末端细 胞色素系统催化,产生一个ATP;二是经磷酸腺苷硫酸 的氧化途径,每氧化一分子SO32-产生2.5个ATP。-
2. 糖异生
不是简单的酵 解途径的逆转
3. 固氮
生物固氮反应的6个要素
1. ATP 的供应 2. 还原力及其传递载体 3. 固氮酶(nitrogenase) 4. 还原底物N2
5. 镁离子
6. 严格的厌氧环境
固氮酶 2个固氮铁氧还蛋白(还 原酶) 1个钼铁氧还蛋白(固氮 酶) 固氮消耗大量能量 N2+3H22NH3 H=-91.2kJ
-1
12 8 4 0
rG (g h )
240 180 120 60 0 28
-1
4 3 2 1 0
-1
10 8 6 4 2 0 4 8 12 16 20 24 0
0.20 0.15 0.10 0.05 0.00
0
4
8
12
16
20
24
Time(h)
Time (h)
QG (g g h )
16
Glucose (g l )
a. EMP途径 b. HMP途径 c. ED途径 d. TCA循环
糖酵解途径 Embden-Meyerhof-Parnas pa还原力(NADH2) 提供前体化合物



6-磷酸葡萄糖 磷酸三碳糖 磷酸烯醇式丙酮酸 丙酮酸
总反应: Glucose+2Pi+2ADP+2NAD+ 2Pyruvate+2ATP+2NADH+2H++2H2O
(b) 恒pH流加
复合培养基中碳源消耗后,氨基酸异化代谢引起pH上 升,加入碳源pH下降。 大肠杆菌表达hEGF由phoA启动子控制。
360 20
6 16 0.30 0.25
-1 -1
Cell(g l ) -1 Phosphate(mmol l )
A
300
-1
B
5
14 12
hEGF(mg l )
第六章 微生物的新陈代谢
代谢
代谢(metabolism)是细胞内发生的各种 化学反应的总称,它主要由分解代谢 (catabolism)和合成代谢(anabolism)两个 过程组成。 分解代谢:将大分子物质降解成小分子 物质的过程。 合成代谢是:将简单的小分子物质合成 复杂大分子的过程。
能量与代谢的关系
能量代谢的中心任务 有机物 日光
还原态无 机物
通用能源 ATP
第一节 化能异氧微生物的生物氧化和产能
形式:与氧结合,脱氢,失去电子 过程:脱氢(电子),递氢,受氢 功能:产能(ATP),产还原力([H]),产小 分子中间代谢物 类型:发酵,有氧呼吸,无氧呼吸
相关文档
最新文档