第03讲 化学热力学基础

合集下载

2024《化学热力学基础》PPT课件

2024《化学热力学基础》PPT课件

《化学热力学基础》PPT课件目录CONTENCT •引言•热力学基本概念与定律•热化学与化学反应的热效应•熵与熵增原理•自由能与化学平衡•相平衡与相图•结论与展望01引言化学热力学的定义与重要性定义化学热力学是研究化学变化过程中热量和功的相互转化以及有关热力学函数的科学。

重要性化学热力学是化学、化工、材料、能源等领域的重要基础,对于理解化学反应的本质、优化化学反应条件、开发新能源等具有重要意义。

化学热力学的发展历史早期发展19世纪初,随着工业革命的发展,热力学理论开始形成,并逐步应用于化学领域。

经典热力学建立19世纪中叶,经典热力学理论建立,包括热力学第一定律、热力学第二定律等基本定律被提出。

现代热力学发展20世纪以来,随着量子力学、统计力学等理论的发展,化学热力学在微观层面上的研究取得了重要进展。

课程目标与学习内容课程目标掌握化学热力学的基本概念、基本原理和基本方法,能够运用热力学知识分析和解决实际问题。

学习内容包括热力学基本概念、热力学第一定律、热力学第二定律、化学平衡、相平衡、化学反应热力学等。

通过学习,学生将了解热力学在化学领域的应用,培养分析和解决化学问题的能力。

02热力学基本概念与定律80%80%100%系统与环境系统是指我们研究对象的那一部分物质或空间,具有明确的边界。

环境是指与系统发生相互作用的其他部分,是系统存在和发展的外部条件。

系统与环境之间通过物质和能量的交换而相互影响。

系统的定义环境的定义系统与环境的相互作用状态是系统中所有宏观物理性质的集合,用于描述系统的状况。

状态的概念状态函数的定义常见状态函数状态函数是描述系统状态的物理量,其值只取决于系统的始态和终态,与路径无关。

温度、压力、体积、内能等。

030201状态与状态函数热力学第一定律热力学第一定律的表述热量可以从一个物体传递到另一个物体,也可以与机械能或其他能量互相转换,但是在转换过程中,能量的总值保持不变。

热力学第一定律的数学表达式ΔU=Q+W,其中ΔU表示系统内能的变化,Q表示系统吸收的热量,W表示外界对系统所做的功。

大学化学热力学基础课件

大学化学热力学基础课件

与环境间传递的热量来衡量体系内部焓的变化。
学习交流PPT
24
H 与△U的关系
∵H = U + PV
恒压下:△H = △U + P △V △H = Qp
∴Qp = △U + p△V = △H
H - △U = p△V
对于始终态都是固、液体的反应体系
p△V ≈ 0 ∴ H ≈ △U
Qp=QV
END
学习交流PPT
计算忽略T、P对H的影响。
当H0,体系从环境吸热, H0,体系放热给环境。 当体系中只有液体和固体(基本不做体积功)或反应
在低压下恒压进行,H在数值上近似等于U。
学习交流PPT
27
(3)、反应进度和摩尔反应热
煤炭燃烧中的重要反应 C + O2 —— CO2 该反应是个放热反应,放热多少显然和反应掉多少煤炭有关。
= 800 J
2 ) 再反抗外压 p2 = 1 10 5 Pa
膨胀到 16 dm3 W2 = p外 V
1 10 5 Pa 16 dm3
= 1 10 5 ( 16 - 8 ) 10-3
= 800 (J) WB = W1 + W2 = 800 + 800
2 10 5 Pa 8 dm3
= 1600 ( J )
U = U -U △
2 1 学习交流PPT
11
3.1.2 热力学第一定律
热力学第一定律的实质是能量守恒与转化定律:
Байду номын сангаас
在任何过程中能量是不会自生自灭的,只能 从一种形式转化为另一种形式,从一个物体传 递给另一个物体,在转化和传递过程中能量的 总值不变。
U = Q +W

2024版大学化学热力学基础课件

2024版大学化学热力学基础课件

大学化学热力学基础课件contents •热力学基本概念与定律•热力学基本量与计算•热力学过程与循环•热力学在化学中的应用•热力学在物理化学中的应用•热力学在材料科学中的应用目录01热力学基本概念与定律孤立系统与外界既没有物质交换也没有能量交换的系统。

开放系统与外界既有能量交换又有物质交换的系统。

封闭系统与外界有能量交换但没有物质交换的系统。

热力学系统及其分类状态函数与过程函数状态函数描述系统状态的物理量,如内能、焓、熵等。

状态函数的变化只与系统的初、终态有关,与过程无关。

过程函数描述系统变化过程的物理量,如热量、功等。

过程函数的变化与具体的路径有关。

能量守恒定律能量既不能被创造也不能被消灭,只能从一种形式转化为另一种形式,或者从一个物体转移到另一个物体。

热力学第一定律表达式ΔU = Q + W,其中ΔU表示系统内能的变化,Q表示系统与外界交换的热量,W表示外界对系统所做的功。

热力学第二定律的表述不可能从单一热源吸热并全部转化为有用功而不引起其他变化。

熵增原理在孤立系统中,一切不可逆过程必然朝着熵增加的方向进行。

熵是描述系统无序度的物理量,熵增加意味着系统无序度增加。

02热力学基本量与计算温度是表示物体冷热程度的物理量,是热力学中最重要的基本量之一。

温度的概念温标的定义温度的测量温标是用来衡量温度高低的标准,常见的有摄氏温标、华氏温标和开氏温标等。

温度的测量通常使用温度计,其原理是利用物质的热胀冷缩性质或其他物理效应来测量温度。

030201温度与温标压力的概念压力是单位面积上受到的垂直作用力,是描述气体状态的重要物理量。

体积的概念体积是物体所占空间的大小,对于气体而言,体积通常是指气体所充满的容器的容积。

压力与体积的关系在温度不变的情况下,气体的压力与体积成反比关系,即波义耳定律。

压力与体积030201热量的概念热量是物体之间由于温差而传递的能量,是热力学中重要的基本概念之一。

功的概念功是力在力的方向上移动的距离的乘积,是描述系统能量转化或传递的物理量。

化学热力学基础概念

化学热力学基础概念

化学热力学基础概念化学热力学是研究化学反应中能量变化的学科,它是化学的一个重要分支。

在化学反应中,物质的能量会发生变化,热力学正是研究这种能量变化的规律和原理。

本文将介绍化学热力学的基础概念,包括能量、焓、熵和自由能等。

一、能量能量是物质存在的基本属性,是物质运动和相互作用的结果。

在化学反应中,能量的变化可以分为两类:热能和化学能。

热能是指物质的温度和热量的能量,而化学能是指物质分子之间的化学键能量。

二、焓焓是热力学中常用的一个物理量,表示系统的热能。

在化学反应中,焓的变化可以用来描述反应的放热或吸热过程。

焓的变化可以通过测量反应物和生成物的温度变化来确定。

三、熵熵是热力学中描述系统无序程度的物理量,也可以理解为系统的混乱程度。

在化学反应中,熵的变化可以用来描述反应的自发性和方向性。

熵的变化越大,反应越倾向于自发进行。

四、自由能自由能是热力学中描述系统能量状态的物理量,也是判断反应是否进行的重要指标。

自由能的变化可以用来判断反应的可逆性和方向性。

当自由能变化为负时,反应是可逆的;当自由能变化为正时,反应是不可逆的。

五、热力学第一定律热力学第一定律是热力学的基本定律之一,也被称为能量守恒定律。

它表明能量在物质转化过程中不会凭空消失或产生,只会从一种形式转化为另一种形式。

热力学第一定律可以用数学公式表示为ΔU = Q - W,其中ΔU表示系统内能的变化,Q表示系统吸收的热量,W表示系统对外界做的功。

六、热力学第二定律热力学第二定律是热力学的另一个基本定律,也被称为熵增定律。

它表明在孤立系统中,熵总是增加的,即系统的无序程度总是增加的。

热力学第二定律还提出了熵增定律的两个等价表述:卡诺定理和熵不减原理。

七、热力学第三定律热力学第三定律是热力学的最后一个基本定律,也被称为绝对零度定律。

它表明在绝对零度下,系统的熵为零。

热力学第三定律还提出了绝对零度的概念,即绝对零度是温度的最低限度,为0K或-273.15℃。

第三章 化学热力学基础

第三章 化学热力学基础

第三章化学热力学基础§3-1热力学基本概念教学目的及要求:掌握热力学中的基本概念。

教学重点:体系与环境、状态与状态函数、过程与途径的概念。

引言热力学是在研究提高热机效率的实践中发展起来的,十九世纪建立起来的热力学第一、第二定律奠定了热力学的基础,是热力学成为研究热能和机械能以及其他形式能量之间的转化规律的一门科学。

二十世纪建立的热力学第三定律使得热力学理论更加完善。

用热力学的理论和方法研究化学,则产生了化学热力学。

化学热力学可以解决化学反应的方向和限度等问题,着眼于性质的宏观变化,不涉及到物质的微观结构,只需知道研究对象的起始状态和最终状态,无需知道其变化过程的机理。

一、体系与环境体系——研究的对象环境——体系以外与体系密切相关的部分举例:按照体系与环境之间能量和物质的交换关系,通常将体系分为三类:敞开体系:同时存在能量和物质的交换;封闭体系:只存在能量交换;孤立体系:既无能量交换,又无物质交换。

举例:在热力学中,我们主要研究封闭体系。

二、状态和状态函数状态——有一系列表征体系性质的物理量所确定下来的体系的存在形式。

状态函数: 用来说明、确定体系所处状态的宏观物理量。

如:温度、压力、体积等。

举例:始态——体系发生变化前的状态;终态——体系发生变化后的状态。

状态函数的变化量用希腊字母Δ表示,例如始态温度是T1,终态温度是T2,则状态函数T的改变量是ΔT = T2 - T1。

状态函数具有以下特点:1、状态一定,状态函数的值一定;2、殊途同归(即状态函数变化量只取决于体系的始态和终态);3、周而复始变化为零(无论经过什么变化,只要回到始态,状态函数变化量为零)。

状态函数的变化与过程的途径无关。

体系的量度性质或广延性质——体系的强度性质——三、过程与途径体系的状态发生变化,从始态变到终态,我们说体系经历了一个热力学过程,简称过.程.。

上述变化过程可以采取许多种不同的方式,我们把这每一种具体的方式成为一种途径..。

大学化学热力学基础ppt课件

大学化学热力学基础ppt课件

01
耗散结构理论
研究非平衡态系统中自组织现象的理论 框架,探讨系统如何通过自组织形成有 序结构。
02
03
协同学
研究非平衡态系统中各部分之间协同 作用的理论,揭示系统如何通过协同 作用实现自组织过程。
谢谢聆听
03
开放系统
与外界既有能量交换又有物质交换的系统。
热力学平衡态与过程
平衡态
在不受外界影响的条件下,系统各部 分的宏观性质不随时间变化的状态。
热力学过程
系统由一个平衡态转变到另一个平衡 态的经过。
热力学第一定律
内容
热量可以从一个物体传递到另一个物体,也可以与机械能或其他能量互相转换,但是在转换过程中,能量的总值 保持不变。
热力学性质的计算
热容
系统在某一过程中,温度升高(或降低)1K 所吸收(或放出)的热量,称为该系统在该过 程中的“热容”,用C表示。
热力学温度
热力学温标所表示的温度叫做热力学温度,用T表示, 单位是开尔文(K)。
焓变与熵变
在化学反应中,反应前后物质的焓的差值称为 焓变,用ΔH表示;反应前后物质的熵的差值 称为熵变,用ΔS表示。
03
热化学方程式的书写与计算
04
生成焓与燃烧焓的概念及应用
盖斯定律及应用
盖斯定律的内容与意义 利用盖斯定律计算反应热
热化学方程式的加和与相 减
盖斯定律在工业生产中的 应用
化学反应方向判据
焓变与熵变对反应方向 的影响
沉淀溶解平衡与溶度积 常数
01
02
03
自由能变化与反应方向 的关系
04
影响沉淀溶解平衡的因 素
实际循环效率分析
循环效率定义
评价热机或制冷机性能的重要指标,表示有用功与输入功的比值。循环效率越高,表示 机器性能越好。

高考化学物理化学:化学反应的热力学基础

高考化学物理化学:化学反应的热力学基础

高考化学物理化学:化学反应的热力学基础在高考化学中,物理化学的部分涉及到许多重要的概念和原理,其中化学反应的热力学基础是一个关键的知识点。

它帮助我们理解化学反应能否自发进行,以及在什么条件下会发生。

让我们一起来深入探讨这个有趣而又实用的主题。

首先,我们来了解一下什么是热力学。

热力学主要研究的是能量的转化以及在转化过程中所遵循的规律。

对于化学反应来说,热力学关心的是反应过程中的能量变化。

化学反应的热力学基础中,有两个非常重要的概念:焓(H)和熵(S)。

焓是一个与内能和压力、体积有关的热力学函数。

简单来说,焓变(ΔH)反映了化学反应中热量的变化。

如果一个化学反应的焓变小于零,也就是反应过程中放出热量,我们称这个反应是放热反应;反之,如果焓变大于零,即反应过程中吸收热量,就是吸热反应。

举个例子,燃烧煤炭就是一个典型的放热反应,它为我们提供了热能;而碳酸钙分解成氧化钙和二氧化碳的反应则是吸热反应,需要从外界吸收热量才能进行。

熵则是用来描述系统混乱程度的一个物理量。

一个系统的熵越大,说明它的混乱程度越高。

在化学反应中,熵变(ΔS)可以帮助我们判断反应的自发趋势。

如果熵变大于零,意味着反应后系统的混乱程度增加,有利于反应自发进行;若熵变小于零,反应后系统的混乱程度减小,反应自发进行的趋势就较小。

比如,将固体氯化钠溶解在水中,钠离子和氯离子在水中自由运动,混乱程度增加,熵变大于零。

那么,如何判断一个化学反应能否自发进行呢?这就要用到吉布斯自由能(G)的概念。

吉布斯自由能的变化(ΔG)与焓变、熵变以及温度(T)之间存在这样的关系:ΔG =ΔH TΔS。

当ΔG小于零的时候,反应在给定条件下能够自发进行;当ΔG等于零时,反应处于平衡状态;当ΔG大于零时,反应不能自发进行。

温度在化学反应的自发性判断中也起着重要的作用。

对于某些反应,在低温时可能不能自发进行,但在高温时却可以;而对于另一些反应,情况可能正好相反。

比如,氯化铵分解为氨气和氯化氢的反应,在低温下熵增不足以弥补焓增,ΔG大于零,反应不能自发进行;但在高温下,TΔS 的值增大,使得ΔG 小于零,反应可以自发进行。

化学热力学基础

化学热力学基础

化学热力学基础热力学是研究能量变化和转化的科学,而化学热力学则专注于研究化学反应中的能量变化和转化。

在化学反应中,物质的能量发生了变化,这种变化可以通过热力学原理和方程来描述和计算。

本文将介绍化学热力学的基本概念、方程和应用。

一、热力学基本概念1. 系统和周围:热力学研究的对象称为系统,而系统以外的一切称为周围。

系统和周围可以通过物质和能量的交换而发生相互作用。

2. 状态函数:热力学的基本量不依赖于路径,只与初始状态和终态有关,被称为状态函数。

例如温度、压力、体积、内能等都是状态函数。

3. 第一法则:能量守恒定律,即能量既不能创造也不能消失,只能从一种形式转化为另一种形式。

对于化学反应,能量的变化可以表示为热量和功的转化。

4. 第二法则:熵增原理,即自然界趋向于无序与熵增加的状态。

化学反应中,反应通常会使系统的熵增加。

5. 第三法则:绝对零度,即温度低于绝对零度(0K)时,系统的熵趋于零。

这个法则揭示了温度对于熵的影响。

二、熵变与自由能1. 熵变:熵变(ΔS)是描述系统熵增或减的度量,根据熵变可以判断反应的方向性和自发性。

当ΔS大于零时,反应向有序的方向进行,反之向无序的方向进行。

2. 熵变的计算:对于化学反应,熵变可以根据摩尔熵变的差值计算得到。

摩尔熵变可以通过标准摩尔熵的差异计算得到。

3. 自由能:自由能(G)是描述系统可用能量的函数,用于预测反应的可能性。

自由能与熵变和焓变有关,可以通过关联熵变、焓变和温度的方程计算得到。

三、焓变与反应热量1. 焓变:焓变(ΔH)是化学反应中吸热或放热的度量,可以用于判断反应的放热性质和温度变化。

当ΔH小于零时,反应放热;当ΔH 大于零时,反应吸热。

2. 焓变的计算:焓变可以通过化学反应的热化学方程式和反应热量的测定来计算得到。

3. 反应热量:反应热量是化学反应中产生或吸收的热量,可以通过实验测量得到。

反应热量可以用于判断反应的热效应及其在工业和实验室中的应用。

无机化学教学3章化学热力学基础PPT课件

无机化学教学3章化学热力学基础PPT课件

反应自发性的判断
1 2
自发反应的定义
自发反应是指不需要外界作用就能自动进行的反 应。
自发性的判断依据
根据热力学第二定律,自发反应总是向着能量降 低、熵增加的方向进行。
3
自发性与焓变和熵变的关系
自发反应总是向着ΔH - TΔS < 0的方向进行,其 中ΔH为焓变,ΔS为熵变,T为绝对温度。
反应热的计算
表述
$Delta U = Q + W$,其中$Delta U$表示系统内能的变化,$Q$表示系统吸 收或放出的热量,$W$表示外界对系统做的功。
热和功的转化
热转化为功
当系统体积膨胀对外做功时,吸收的 热量会部分转化为对外做功。
功转化为热
当外界对系统做功使得系统体积压缩 时,外界所做的功会全部转化为系统 内的热量。
表述
熵增加原理指出,在封闭系统中,总熵(即系统熵与环境熵 的和)总是增加的。
卡诺循环与熵的概念
卡诺循环
卡诺循环是理想化的热机工作过程, 由四个可逆过程组成(等温吸热、等 温放热、绝热膨胀、绝热压缩)。
熵的概念
熵是描述系统混乱度或无序度的物理 量,其值越大,系统的无序度越高。
熵增加原理
表述
解释
应用
04 热力学第三定律
定义与表述
热力学第三定律通常表述为
在绝对零度时,任何完美晶体的熵值为零。
另一种表述为
不可能通过有限步骤将绝对温度降到绝对零度。
绝对熵的求算
根据热力学第三定律,绝对熵可以通 过计算完美晶体在绝对零度时的熵值 来获得。
在计算过程中,需要考虑晶体的原子 排列、分子振动等因素对熵值的影响。
热力学的主要概念
状态函数

第3章化学热力学基础.ppt

第3章化学热力学基础.ppt

2019-11-27
感谢你的阅读
12
假设在恒外力 F 作用下,活塞从 I 位移动 到 II 位,移动距离为 l 。
按照传统的功的定义,环境对体系的功 W = F • l
2019-11-27
感谢你的阅读
13
W = F • l
=
F S
• l •S
F S
是外压 p;
l •S 是体积,
这个体积等于体系的体积改变量 V 的 相反数 - V。
途径 I
途径 II 4 10 5 Pa
0.5 dm3
2019-11-27
感谢你的阅读
2 105 Pa 1 dm3
11
4 体积功
在热力学过程中,体系在反抗外界压强 发生体积变化时,有功产生,这种功称为体 积功(W) ,单位为 J。
由于液体和固体在变化过程中体积变化 较小,
因此体积功的讨论常常是对气体而言。
P外= 8
P= 8 V= 2
P外= 1
P2 = 1 V2 = 16
W2 = - p外 V = - 1105 Pa (16 - 2) 10-3 m3 = - 1400 J
W1 = - 800 J
2019-11-27
感谢你的阅读
27
Wb = W1 + W2 = (- 800 J )+ ( - 1400 J )
所以
QA ≠ QB
因此, 热量 Q 也和途径有关。
2019-11-27
感谢你的阅读
29
结论:热和功均不是体系的状态函数,不 能谈体系在某种状态下具有多少功或具有多少 热。
① 热和功是与过程相联系的物理量,只 有在能量交换的过程中才会有具体的数值。

化学热力学基础PPT课件

化学热力学基础PPT课件

相平衡条件
在三组分系统中,除了温度、压 力恒定外,还需要满足各相中三 组分的摩尔分数相等。
三组分系统
含有三个组分的系统。
相图复杂性
由于三组分系统的自由度增加, 相图的复杂性也显著增加,需要 借助计算机模拟等手段进行分析 。
应用领域
三组分系统相图在石油化工、冶 金、陶瓷等领域有广泛应用,用 于指导多组分体系的分离、提纯 和合成等过程。
热力学第一定律
能量守恒定律
能量不能凭空产生或消失,只能从一种形式转化为另一种 形式。
热力学第一定律的表述
热量可以从一个物体传递到另一个物体,也可以与机械能 或其他能量互相转换,但是在转换过程中,能量的总值保 持不变。
热力学第一定律的数学表达式
ΔU = Q + W,其中ΔU表示系统内能的变化,Q表示系统 与外界交换的热量,W表示外界对系统所做的功。
工业生产应用
氯碱工业、电解冶炼、有机电化学合成、电化学分析等。
06
界面现象与胶体性质探讨
表面张力和表面能概念引入和计算方法
表面张力定义
作用于液体表面,使液体表面积 缩小的力。
表面能定义
恒温恒压下,增加单位表面积时, 体系自由能的增加值。
计算方法
通过测量液体表面张力或表面能相 关的物理量,如接触角、表面张力 系数等,利用相关公式进行计算。
01
胶体性质
丁达尔效应、电泳现象、布朗运 动等。
02
03
稳定性影响因素
分析方法
电解质种类和浓度、pH值、温 度等。
通过实验研究不同因素对胶体稳 定性的影响,利用相关理论进行 解释和预测。
界面现象在日常生活和工业生产中应用举例
日常生活应用

化学热力学基础概念

化学热力学基础概念

化学热力学基础概念热力学是研究能量转化和能量传递规律的科学,而化学热力学则是热力学在化学领域的应用。

化学热力学基础概念是学习化学热力学的第一步,掌握这些基础概念对于深入理解化学反应过程和能量变化至关重要。

一、热力学系统在化学热力学中,我们首先要了解的概念是热力学系统。

热力学系统是指我们研究的对象,可以是封闭系统、开放系统或孤立系统。

封闭系统是与周围环境隔绝但能交换能量的系统,开放系统可以与周围环境交换能量和物质,而孤立系统则与外界完全隔绝,既不能交换能量也不能交换物质。

二、热力学过程热力学过程描述了系统从一个状态变化到另一个状态的过程。

常见的热力学过程包括等温过程、绝热过程、等压过程和等体过程。

在等温过程中,系统的温度保持不变;在绝热过程中,系统与外界没有热量交换;在等压过程中,系统的压强保持不变;在等体过程中,系统的体积保持不变。

三、热力学状态函数热力学状态函数是描述系统状态的函数,与系统的过程无关,只与系统的初末状态有关。

常见的热力学状态函数包括内能、焓、熵和自由能等。

内能是系统的热力学状态函数,表示系统的总能量;焓是在恒压条件下的状态函数,表示系统的热力学状态;熵是系统的无序程度的度量,是一个状态函数;自由能是系统能量的一种表达形式,包括吉布斯自由能和哈密顿量等。

四、热力学第一定律热力学第一定律是能量守恒定律在热力学中的表述,它指出能量可以从一种形式转化为另一种形式,但总能量守恒。

数学表达式为ΔU = q + w,即系统内能的变化等于系统吸收的热量与对外界做的功的和。

其中,ΔU表示内能的变化,q表示吸收的热量,w表示对外界做的功。

五、热力学第二定律热力学第二定律是热力学中最重要的定律之一,它规定了自然界中热现象发生的方向。

热力学第二定律有多种表述形式,其中最著名的是克劳修斯表述和开尔文表述。

克劳修斯表述指出热量不会自发地从低温物体传递到高温物体,而开尔文表述则指出不可能制造出一个只吸收热量而不做功的系统。

第三章化学原理热力学优秀课件

第三章化学原理热力学优秀课件

• 化学热力学回答前3个问题,但不能回答后2 个问题,后2个问题由化学动力学等回答
• (四)热力学研究方法特点
• 1. 研究系统的宏观性质

即大量质点的平均行为,所得结论具有
统计意义;不涉及个别质点的微观结构及个
体行为不依据物质结构的知识
• 2. 不涉及时间概念

无机化学课的化学热力学初步,着重应
• 例2:密度ρ • 277K,1mol H2O(l)密度ρ= 1 g·cm-3 • 277K, 5mol H2O(l)密度ρ= 1 g·cm-3 • 可见, ρ与物质的量无关,是强度性质 • 小结:常见的状态函数 • 广度性质:V、n、U、H、S、G…… • (数学上是“一次齐函数”,《物理化学》) • 强度性质:p、T、ρ(密度)、电导率、粘
• 系统分类

• 按系统与环境的关系(有无物质交换和/或能量交换) 进行分类

物质交换 能量交换
• 敞开体系 有

• (open system)
• 封闭体系 无

• (closed system)
• 孤立体系 无

• (isolated system)
• 例:
• 热水置于敞口瓶中——“敞开体系”
• 热水置于敞口瓶中加盖——“封闭体系”
• 2.状态函数(state functions)
• 即确定体系热力学状态的物理量。如:p,V,T,n, ρ(密度),U(热力学能或内能),H(焓),S (熵),G(自由能)等
• 3 状态函数的特征
• 一个体系的某个状态函数的值改变,该体系的 状态就改变了

例: 状态1 状态2

p = 101.325 kPa 320 kPa

化学热力学基础

化学热力学基础

化学热力学基础热力学是研究物质能量转化与传递规律的学科,它在化学中起着重要的作用。

化学热力学是热力学在化学中的应用,它研究化学反应中的能量变化、熵变以及自由能的变化。

本文将介绍化学热力学的基础知识,包括能量、熵和自由能的概念,以及它们在化学反应中的应用。

一、能量能量是物质存在和运动的基本属性,也是化学反应中的核心概念。

在化学热力学中,常用的能量单位是焦耳(J),它表示物质发生转换时释放或吸收的能量。

能量可以按照不同的形式进行分类,包括动能、势能和内能等。

动能是物体由于运动而具有的能量,它与物体的质量和速度有关。

势能是物体由于位置而具有的能量,如重力势能、电位能等。

内能是物质分子或原子内部的能量,包括分子的振动、转动和电子的能级等。

在化学反应中,能量可以从一个物质转移到另一个物质,或由一个形式转化为另一个形式。

根据能量守恒定律,能量在转移和转化过程中总量保持不变。

二、熵熵是描述物质混乱程度的物理量,也是化学热力学中的重要概念。

熵的单位是焦耳/开尔文(J/K)。

熵的增加代表物质的混乱程度增加,而熵的减少代表物质的有序程度增加。

根据熵的定义,封闭系统内熵的增加是不可逆的,即系统的熵在不受外界干扰情况下只能增加或保持不变,而不会减少。

化学反应中的熵变是反应前后熵的差值。

当化学反应导致物质的混合或混乱程度增加时,反应的熵变为正值;当化学反应导致物质的有序程度增加时,反应的熵变为负值。

三、自由能自由能是热力学中一个基本概念,它表示系统进行非体积功(P-V 功)时可利用的能量。

自由能的单位与能量相同,为焦耳(J)。

在化学反应中,可以根据自由能的变化来判断反应的进行方向和可逆性。

当自由能变化为负值时,反应是可逆的,可自发进行;而当自由能变化为正值时,反应是不可逆的,需要外界输入能量才能进行。

化学反应的自由能变化可以用自由能变化(ΔG)来表示。

ΔG与反应的熵变(ΔS)和焓变(ΔH)之间存在着关系:ΔG = ΔH - TΔS,其中T为温度(单位为开尔文)。

2019最新第3章化学热力学基础数学

2019最新第3章化学热力学基础数学

‘Heat is the internal energy of a
system’. 热是体系的内能---动能和势能 的总和。
功:
• 除了热的形式以外,各种被传 递的能量全叫做功,用W表示。
如电功,膨胀功,机械功等。
在热力学中,功分为体积功和其它 功(或称有用功)。
• SI单位J, 1J = 1 kg m2/s2
加热过程
须进一步了解几个概念:
“能”: • “能”是做功的能力;“能”
是转变热的能力。
• 能易变化,主要以热(量)和 功的形式表现出来。
热力学能:
热力学体系内部的能量称为热力学能。 用符号U表示。
一个体系的总能量是动能和势能的总和, 包括:
• 分子的动能; • 质点间相互吸引能和排斥能; • 分子内的能量;原子核内的能量等。 热力学能是状态函数,是一种广度性质。
U = U终 - U始
3-1-2 热力学第一定律 体系和环境之间的能量交换:
热传递
做功
在能量交换过程中,体系的热力学能将 发生变化.
1 热力学第一定律: 自然界一切物质都具有能量,能 量有各种不同的形式,能够从一 种形式转化为另一种形式,从一 个物体传递给另一个物体,而在 转化和传递过程中能量的总数量 不变。
CH4(g)+2O2 CO2(g)+2H2O (l ) ΔH =? ΔH = ΔH1 +ΔH2= - (802 +88) = - 890 kJ
焓是一种广度性质。
例:当P=105 Pa, N2(g)+3H2(g) 2NH3(g) ΔrHθ(298K) = -92.2 kJ/mol ΔrHθ(1000K) = -106.1 kJ/mol

大学无机化学第3章 化学热力学初步

大学无机化学第3章 化学热力学初步
特征可归纳为:“状态函数有特征,状态一定值一
定,殊途同归变化等,周而复始变化零。” 状态函数变化值 终态值 始态值
( 1 )一个体系的某个状态函数的值改变,该 体系的状态就改变了。 例: 状态1 状态2 p = 101.325 kPa 320 kPa 物理量 = 纯数 量纲 状态的变化——过程(process)
(2)殊途同变化等 例:始态 T1 298K → 350K T2 终态 ↓ ↑ 520K → 410K ( → 途经1 , →途经2 ) 途经1 和途经2: △T = T2 - T1 =350K – 298K = 52K 状态函数的变化只取决于始态和终态,而与 途经无关。
(3)周而复始变化零 始态、终态 T1 、T2 298K ← 350K
二、功(work)
当体系发生变化时,在体系与环境间除热以外
的其它各种形式的能量传递,都称为功。
与热一样,功是与过程相联系的量,所以功也不
是体系的状态函数。单位:J。 体积功 功 其它功:电功、机械功……

功=力×位移=f×Δl =
f l s P外 V s
P外·ΔV : 体积功。(在化学热力学中 只考虑体积功) •符号W,由于功的传递具有方向性, 所以规定: (1) 体系对环境作功为正值: W>0 体积功=P·ΔV (2) 环境对体系作功为负值: W<0
1-2
体系和环境
一、定义 体系:被划分为研究对象的那部分物质或空间 称为体系(system) 。 环境:体系以外的并且与体系有关系的其他部 分物质或空间称为环境(surrounding) 。
二、体系的分类
敞开体系:体系与环境之间既有物质交换,
又有能量交换。如,开口的热水杯。 封闭体系:体系与环境之间没有物质交换, 只有能量交换。如,带盖的热水杯。 孤立体系:体系与环境之间既没有物质交换, 也没有能量交换。如,带塞的暖水瓶。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中化学奥林匹克竞赛辅导讲座第3讲化学热力学基础【竞赛要求】热力学能(内能)、焓、热容、自由能和熵的概念。

生成焓、生成自由能、标准熵及有关计算。

自由能变化与反应的方向性。

吉布斯-亥姆霍兹方程极其应用。

范特霍夫标准熵及其应用。

热化学循环。

【知识梳理】一、基本概念1、体系和环境体系:我们研究的对象,称为体系。

环境:体系以外的其它部分,称为环境。

例如:我们研究杯子中的H2O,则H2O是体系,水面上的空气,杯子皆为环境。

当然,桌子、房屋、地球、太阳也皆为环境。

但我们着眼于和体系密切相关的环境,即为空气和杯子等。

又如:若以N2和O2混合气体中的O2作为体系,则N2是环境,容器也是环境。

按照体系和环境之间的物质、能量的交换关系,将体系分为三类:(1)敞开体系:既有物质交换,也有能量交换。

(2)封闭体系:无物质交换,有能量交换。

(3)孤立体系:既无物质交换,也无能量交换。

例如:一个敞开瓶口,盛满热水的瓶子,水为体系,则是敞开体系; 若加上一个盖子,则成为封闭体系; 若将瓶子换成杜瓦瓶(保温瓶),则变成孤立体系。

热力学上研究得多的是封闭体系。

2、状态和状态函数状态:由一系列表征体系性质的物理量所确定下来的体系的一种存在形式,称为体系的状态。

状态函数:确定体系状态的物理量,是状态函数。

例:某理想气体体系n = 1 mol,p = 1.013×105 Pa,V = 22.4 dm3,T = 273 K这就是一种存在状态(我们称其处于一种标准状态)。

是由n,p,V,T所确定下来的体系的一种状态,因而n,p,V,T都是体系的状态函数。

状态一定,则体系的状态函数一定。

体系的一个或几个状态函数发生了变化,则体系的状态也要发生变化。

始态和终态:体系变化前的状态为始态;变化后的状态为终态。

状态函数的改变量:状态变化始态和终态一经确定,则状态函数的改变量是一定的。

例如:温度的改变量用△T表示,则△T = T终-T始同样理解△n,△p,△V等的意义。

3、过程和途径过程:体系的状态发生变化,从始态到终态,我们说经历了一个热力学过程。

简称过程。

若体系在恒温条件下发生了状态变化,我们说体系的变化为“恒温过程”,同样理解“恒压过程”、“恒容过程”。

若体系变化时和环境之间无热量交换,则称为之“绝热过程”。

途径:完成一个热力学过程, 可以采取不同的方式。

我们把每种具体的方式,称为一种途径。

过程着重于始态和终态;而途径着重于具体方式。

例如:某理想气体,状态函数改变量,取决于始终态,无论途径如何不同。

如上述过程的两种途径中: △p = p 终-p 始= 2×105 Pa -1×105 Pa = 1×105 Pa △V = V 终-V 始= 1dm 3-2dm 3 = -1dm 3 4、体积功化学反应过程中,经常发生体积变化。

体系反抗外压改变体积,产生体积功。

设:在一截面积为 S 的圆柱形筒内发生化学反应,体系反抗外压 p 膨胀,活塞从 I 位移动到 II 位。

这种 W = p ·△V 称为体积功,以 W 体表示。

若体积变化 △V = 0,则 W 体= 0我们研究的体系与过程,若不加以特别说明,可以认为只做体积功。

即:W = W 体5、热力学能(内能)体系内部所有能量之和,包括分子原子的动能,势能,核能,电子的动能……, 以及一些尚未研究的能量,热力学上用符号 U 表示。

虽然体系的内能尚不能求得,但是体系的状态一定时,内能是一个固定值,因此,U 是体系的状态函数。

体系的状态发生变化,始终态一定,则内能变化(△U )是一定值,△U = U 终- U 始理想气体是最简单的体系, 可以认为理想气体的内能只是温度的函数, 温度一定, 则 U 一定。

即 △T = 0,则 △U = 0。

二、热力学第一定律 1、热力学第一定律的表示恒温过程某体系由状态I 变化到状态II,在这一过程中体系吸热Q,做功(体积功) W,体系的内能改变量用△U表示,则有:△U = Q–W(3-1)体系的内能变化量等于体系从环境吸收的热量减去体系对环境所做的功。

显然,热力学第一定律的实质是能量守恒例如:某过程中,体系吸热100 J,对环境做功20 J,求体系的内能改变量和环境的内能改变量。

由第一定律表达式:△U = Q -W = 100 J -20 J = 80 J 从环境考虑,吸热-100 J,做功-20 J,所以:△U环= (-100 J) -(-20 J) = -80 J 体系的内能增加了80 J,环境的内能减少了80 J。

2、功和热(1)功和热的符号规定Q是指体系吸收的热量。

体系吸热为正;放热为负。

W是指体系对环境所做的功。

体系对环境做功为正;环境对体系做功为负。

(2)功和热与途径有关体系由同一始态经不同途径变化到同一终态时,不同途径作的功和热量变化不同,所以功和热不是状态函数。

只提出过程的始终态,而不提出具体途径时,是不能计算功和热的。

3、理想气体向真空膨胀——理想气体的内能法国盖·吕萨克在1807年,英国焦耳在1834年做了此实验:连通器放在绝热水浴中,A 侧充满气体,B 侧抽成真空。

实验时打开中间的活塞,使理想气体向真空膨胀。

结果发现,膨胀完毕后,水浴的温度没有变化,△T = 0,说明体系与环境之间无热交换,Q = 0。

又因是向真空膨胀,p外= 0,所以W = p外·△V = 0。

根据热力学第一定律:△U = Q-W = 0-0 = 0三、热化学1、化学反应的热效应当生成物的温度恢复到反应物的温度时,化学反应中所吸收或放出的热量,称为化学反应热效应,简称反应热(无非体积功)。

(1)恒容反应热恒容反应中,△V = 0,故W = p·△V = 0则有:△r U = Qv - W = Qv即:△r U = Qv(3-2)Qv 是恒容反应中体系的热量,从△r U = Qv可见,在恒容反应中体系所吸收的热量,全部用来改变体系的内能。

当△r U > 0 时,Qv> 0,是吸热反应△r U < 0 时,Qv< 0,是放热反应则Qv和状态函数的改变量△r U建立了联系。

(2)恒压反应热恒压反应中,△p = 0,则有:△r U = Qp -W = Qp-p·△V = Qp-△(pV)所以:Qp=△r U + △(pV)Qp= △r U +△(pV)= (U2-U1) + (p2V2-p1V1)= (U2 + p2V2) -(U1 + p1V1)U,p,V都是状态函数,所以U + pV也是一个状态函数,令H = U + pV,则Qp=△(U + pV) 即:△r H = Qp(3-3)H称热焓,或焓,是一个新的状态函数。

关于焓H:H = U + pV,由于U 不可求,故焓H不可求;是一种和能量单位一致的物理量;量度性质,有加合性。

对于理想气体,H也只和T有关。

Qp = △r H说明,在恒压反应中,体系所吸收的热量Qp,全部用来改变体系的热焓。

△r H > 0 时,Qp> 0,是吸热反应△r H < 0 时,Qp< 0,是放热反应注意:△r U,Qv ,△r H,Qp的单位均为焦耳J。

(3)Qp 和Qv的关系同一反应的Qp 和Qv并不相等。

Qv = △r U,Qp= △r U + p△V = △r H由于两个△r U近似相等(对于理想气体,两个△r U相等),所以:Qp = Qv+ p△V对于无气体参与的液体、固体反应,由于△V很小,故p△V可以忽略,则近似有:Qp = Qv对于有气体参加反应,△V不能忽略,p△V=△nRT ,所以:Qp = Qv+△nRT(3-4)即△r H = △r U +△nRT对于1摩尔反应在标态下进行,则有:△r H0m = △r U0m+(12νν-)RT(3-5)式中2ν是方程式中气态产物化学式前计量数之和,1ν是方程式中气态反应物化学式前计量数之和。

2、热化学方程式(1)要写明反应的温度和压强。

若不注明,则表示为:298K,1.013×105 Pa,即常温常压。

(2)注明物质的存在状态。

固相:s,液相:l,气相:g,水溶液:aq。

有必要时,要注明固体的晶形,如:石墨,金刚石等。

(3)方程的系数可以是整数,也可以是分数。

因系数只代表化学计量数,不表示分子个数。

(4)注明反应的热效应。

如:①C (石墨) + O2 (g) = CO2 (g) △r Hm= -393.5 kJ·mol-1②C (金刚石) + O2 (g) = CO2 (g) △r Hm= -395.4 kJ·mol-1③H2 (g) + 1/2 O2 (g) = H2O(g) △r Hm= -241.8 kJ·mol-1④H2 (g) + 1/2 O2 (g) = H2O(l) △r Hm= -285.8 kJ·mol-1⑤2H2 (g) + O2 (g) = 2H2O(l) △r Hm= -571.6 kJ·mol-1⑥H2O(g) = H2 (g) + 1/2 O2 (g) △r Hm= +241.8 kJ·mol-1从①和②对比,可以看出写出晶形的必要性。

③和④对比,可以看出写出状态的必要性。

④和⑤对比,可以看出计量数不同的热量变化。

③和⑥对比,可以看出互逆反应热效应的关系。

3、盖斯定律1836年,Hess 提出定律,指出:一个化学反应,不论是一步完成,是分数步完成,其热效应是相同的。

前面讲过,热量的吸收和放出,是和途径相关的。

Hess 定律成立的原因,在于当时研究的反应,基本上都是在恒压下进行的。

即反应体系压强和外压相等。

这时,Qp= △r H,H是终态函数,故不受途径影响。

亦即,Hess 定律暗含的条件:每步均恒压。

Hess 定律的实际意义:有的反应虽然简单,但其热效应难以测得。

例如:C + 1/2O2 = CO,是很简单的反应,但是难于保证产物的纯度,所以,反应热很难直接测定。

应用Hess 定律,可以解决这一难题。

已知:C (石墨) + O2 (g) = CO2 (g) (1)△r H)1(m= -393.5 kJ·mol-1CO (g) + 1/2 O2 (g) = CO2 (g) (2)△r H)2(m= -238.0 kJ·mol-1(1)式-(2)式,得C (石墨) + 1/2 O2 (g) = CO2 (g)△r Hm =△r H)1(m-△r H)2(m= -393.5 kJ·mol-1-(-238.0 kJ·mol-1)= -110.5 kJ·mol-14、生成热(1)定义:某温度下,由处于标准态的各种元素的指定单质,生成标准态的1 mol 某物质时的热效应,叫做该物质的标准摩尔生成热。

相关文档
最新文档