山东省烟台市2016-2017学年高一上学期期末考试数学试题 Word版含答案

合集下载

山东省济南市2016-2017学年高一数学下学期期末考试试题(含解析)

山东省济南市2016-2017学年高一数学下学期期末考试试题(含解析)

2016—2017学年度第二学期期末考试高一数学试题第I卷(选择题,每题5分,共60分)一、选择题(本大题包括12小题,每小题5分,共60分,每小题给出的四个选项中,只有.. 一项是符合题目要求的,请将正确选项填涂在答题卡上)1. -HI.: -:":1的值是()A. B. C. D.2 2【答案】A【解析】由题意可得:.ii、二、.iii —T-二'.in ri = ■. -i ='.本题选择A选项.2. 已知I.::. li ■:.H.I :■::',且丄-「一L;,则".的值分别为()A. - 7,—5B. 7 , - 5C. —7, 5D. 7 , 5【答案】C【解析】试题分析:沁:iQ,,」「■;.■<:, ,解得:—一‘,故选C.考点:向量相等3. 在区间上随机取一个数,「:的值介于0到之间的概率为()A. B. C. D.【答案】A【解析】在区间上随机取一个数x,即x€时,要使:左;的值介于0到之间,」I 7T TTX TI 卜TT TTX TI需使或:'■■■;2 2或:冬詔,区间长度为,TT¥由几何概型知:•「•一的值介于0到之间的概率为.本题选择A选项.4. 已知圆._ + ||r.[:上任意一点M关于直线• I . ■的对称点N也再圆上,则的值为()A. |B. 1C. :'D. 2【答案】D【解析】T圆x2+y2- 2x+my=0上任意一点M关于直线x+y=0的对称点N也在圆上,•••直线x+y=0经过圆心I ,故有[- ■,解得m=2,本题选择D选项•5. 下列函数中,周期为,且在 |上单调递增的奇函数是()A. -;|||;:;- - :B. _ I :;C. . - ;D. . -din --;【答案】C【解析】化简所给函数的解析式:A. --…凡,该函数周期为,函数为偶函数,不合题意;B. ■. |~ ■-,该函数周期为,在|上单调递减,不合题意;C. . - ' :: - ..ii ■■-,该函数周期为,在|上单调递增,函数是奇函数符合题意;D. ■■■ - siix::-:'一:汎汽喪,该函数周期为.':i,不合题意;本题选择C选项•6. 已知7血中,i",t;分别是角-F; <的对边,讥山,则=()A. L 辽B. I:.C. J.35 或£D.【答案】B【解析】由题意结合正弦定理可得,汕" ,a<b,则A<B=60°A=45°.本题选择B选项.点睛:1 •在解三角形的问题中,三角形内角和定理起着重要作用,在解题时要注意根据这个定理确定角的范围及三角函数值的符号,防止出现增解或漏解.2 •正、余弦定理在应用时,应注意灵活性,尤其是其变形应用时可相互转化•如a2= b2+ c2—2bccos A可以转化为sin2 A = sin2 B+ sin2 C —2sin Bsin CCos A 利用这些变形可进行等式的化简与证明.7. 将函数• -,「:.的图象向右平移个单位长度,再向上平移1个单位长度,则所得的图象对应的解析式为()•A. 二I wB. . - ' ■ iii ■C. . - I .:■!. -D. .-11 -【答案】B【解析】将函数• -的图象向右平移个单位长度,所得的图象对应的解析式为:=|'二in'-,再向上平移1个单位长度,所得的图象对应的解析式为.- I本题选择B选项.点睛:由y= sin x的图象,利用图象变换作函数y= Asin( w x +© )( A> 0, 3> 0)( x€ R)的图象,要特别注意:当周期变换和相位变换的先后顺序不同时,原图象沿x轴的伸缩量的区别•先平移变换再周期变换(伸缩变换),平移的量是| 0 |个单位;而先周期变换(伸缩变换)再平移变换,平移的量是A个单位.8. 如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件)•若这两组数据的中位数相等,且平均值也相等,则x和y的值分别为()甲组S62 516 1 ? yX 4?gA. 3 , 5B. 5 , 5C. 3 , 7D. 5 , 7【答案】C【解析】由已知中甲组数据的中位数为"h,故乙数据的中位数为即一二,,可得乙数据的平均数为'-,即甲数据的平均数为■-,故’「r-... ■=■■,故选.【方法点睛】本题主要考查茎叶图的应用、中位数、平均数的求法,属于难题•要解答本题首先要弄清中位数、平均数的定义,然后根据定义和公式求解,(1)中位数,如果样本容量是奇数中间的数既是中位数,如果样本容量为偶数中间两位数的平均数既是中位数;(2)众数是一组数据中出现次数最多的数据; (3)平均数既是样本数据的算数平均数「 .9. 在;中,点在上,且汕二j| ,点Q 是AC 的中点,若:-.二:丄工, 贝g"等于()•A. ( — 6,21)B. (6 , - 21)C. (2, - 7) D. (— 2,7)【答案】A【解析】由题意可得:I I 7「I 、: ,则:N 二,结合题意可得::」.,「: I-.,.:.本题选择A 选项.10. 从某高中随机选取 5名高一男生,其身高和体重的数据如下表所示: 身高x(cm)160165170175180身高y(kq)63 66 70 72 74根据上表可得回归直线方程 ,「:一....据此模型预报身高为172cm 的高一男生的体重为 A. 70.09 B. 70.12 C. 70.55 D. 71.05 【答案】B【解析】由表中数据可得样本中心点一定在回归直线方程上故'.■: 解得 W 1故「二门in当 x=172 时,:I! ::•「丨:工J 门|丄、, 本题选择B 选项.点睛: (1)正确理解计算;「•的公式和准确的计算是求线性回归方程的关键. ⑵ 回归直线方程 li-. - 1必过样本点中心■■- •63^ 55 + 70 + 72 + 7-15-〔-心,(3)在分析两个变量的相关关系时,可根据样本数据作出散点图来确定两个变量之间是否具有相关关系,若具有线性相关关系,则可通过线性回归方程来估计和预测. 11.函数匸-:1、|门 +- ■. I--: 的最大值为( )A. B. 1 C. D. 【答案】A【解析】整理函数的解析式:t(x) = |sin(x + 鲁)+ cosjx-^ = |sin(x + ^ + sin(x + ^ 6 . i lit 6 二評叫X+詁弓 本题选择A 选项•12. 已知是两个单位向量,且■■ I. ..I i| . ii.若点C 在一,1 •内,且—二二,则------------ »------------ K-------------- 1- mOC 二 mOA + nOBfrn.in 曲),则R 二()A. B. 3 C. D. :;因为I :-是两个单位向量,且■ '■■■ - ■: .'I ■.所以'' :'K ,故可建立直角坐标系如图所示。

山东省烟台市高一数学上学期期末试题(含解析)-人教版高一全册数学试题

山东省烟台市高一数学上学期期末试题(含解析)-人教版高一全册数学试题

2015-2016学年某某省某某市高一(上)期末数学试卷一、选择题:本大题共10小题,每小题5分,共50分,每小题给出四个选项,只有一个选项符合题目要求.1.下列命题中正确的个数是()(1)空间中如果两个角的两边分别对应平行,那么这两个角相等(2)若直线l与平面α平行,则直线l与平面α内的直线平行或异面(3)夹在两个平行平面间的平行线段相等(4)垂直于同一直线的两条直线平行.A.0 B.1 C.2 D.32.如果两条直线l1:ax+2y+6=0与l2:x+(a﹣1)y+3=0平行,那么实数a等于()A.﹣1 B.2 C.2或﹣1 D.3.函数f(x)=e x+2x﹣3的零点所在的一个区间是()A.()B.()C.()D.()4.一个几何体的三视图如图所示,其中正视图和俯视图的都是腰长为1的两个全等的等腰直角三角形,则该几何体的体积为()A.B.C.D.5.若函数f(x)=ax+1在区间(﹣1,1)上存在一个零点,则实数a的取值X围是()A.a>1 B.a<1 C.a<﹣1或a>1 D.﹣1<a<16.过球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的表面积的比为()A.B.C.D.7.在坐标平面内,与点A(﹣2,﹣1)和点B(4,7)的距离均为5的直线共有()A.1条B.2条C.3条D.4条8.若圆锥的侧面展开图的圆心角为90°,半径为r,则该圆锥的全面积为()A.B.C.D.9.如图,AB为圆O的直径,点C在圆周上(异于点A,B),直线PA垂直于圆O所在的平面,点M,N分别为线段PB,BC的中点,有以下三个命题:①OC∩平面PAC;②MO∥平面PAC;③平面PAC∥平面MON,其中正确的命题是()A.①②B.①③C.②③D.①②③10.定义在R上的奇函数f(x),当x≥0时,f(x)=,则关于x的函数F(x)=f(x)﹣a(0<a<1)的所有零点之和为()A.1﹣2a B.2a﹣1 C.1﹣2﹣a D.2﹣a﹣1二、填空题:本大题共5小题,每小题5分,共25分.11.通过市场调查知某商品每件的市场价y(单位:圆)与上市时间x(单位:天)的数据如下:上市时间x天 4 10 36市场价y元 90 51 90根据上表数据,当a≠0时,下列函数:①y=ax+k;②y=ax2+bx+c;③y=alog m x中能恰当的描述该商品的市场价y与上市时间x的变化关系的是(只需写出序号即可).12.如图所示,在直四棱柱ABCD﹣A1B1C1D1中,当底面四边形A1B1C1D1满足条件时,有A1C⊥B1D1(注:填上你认为正确的一种情况即可,不必考虑所有可能的情况).13.若直线m被两条平行直线l1:x﹣y+1=0与l2:2x﹣2y+5=0所截得的线段长为,则直线m的倾斜角等于.14.已知函数f(x)对任意的x∈R满足f(﹣x)=f(x),且当x≥0时,f(x)=x2﹣x+1,若f(x)有4个零点,则实数a的取值X围是.15.如图,在棱长都相等的四面体SABC中,给出如下三个命题:①异面直线AB与SC所成角为60°;②BC与平面SAB所成角的余弦值为;③二面角S﹣BC﹣A的余弦值为,其中所有正确命题的序号为.三、解答题:本大题共6小题,满分75分,解答须写出文字说明、证明过程或演算步骤、16.如图,AA1B1B是圆柱的轴截面,C是底面圆周上异于A,B的一点,AA1=AB=2.(1)求证:平面AA1C⊥平面BA1C;(2)若AC=BC,求几何体A1﹣ABC的体积V.17.如图,棱长为1的正方体ABCD﹣A1B1C1D1中,E是AA1的中点.(1)求证:A1C∥平面BDE;(2)求二面角E﹣BD﹣A的正切值.18.某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品x(百台),其总成本为G(x)(万元),其中固定成本为2.8万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本).销售收入R(x)(万元)满足,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:(1)写出利润函数y=f(x)的解析式(利润=销售收入﹣总成本);(2)要使工厂有盈利,求产量x的X围;(3)工厂生产多少台产品时,可使盈利最多?19.在△ABC中,A(2,﹣1),AB边上的中线CM所在直线方程为3x+2y+1=0.角B的平分线所在直线BT的方程为x﹣y+2=0.(1)求顶点B的坐标;(2)求直线BC的方程.20.如图,AB为圆O的直径,点E,F在圆O上,且AB∥EF,矩形ABCD所在的平面与圆O 所在的平面互相垂直,且AB=2,AD=EF=1.(1)设FC的中点为M,求证:OM∥面DAF;(2)求证:AF⊥面CBF.21.设直线l的方程为(a+1)x+y+2﹣a=0(a∈R).(1)若l在两坐标轴上的截距相等,求l的方程;(2)若l不经过第二象限,某某数a的取值X围;(3)若l与x轴正半轴的交点为A,与y轴负半轴的交点为B,求△AOB(O为坐标原点)面积的最小值.2015-2016学年某某省某某市高一(上)期末数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分,每小题给出四个选项,只有一个选项符合题目要求.1.下列命题中正确的个数是()(1)空间中如果两个角的两边分别对应平行,那么这两个角相等(2)若直线l与平面α平行,则直线l与平面α内的直线平行或异面(3)夹在两个平行平面间的平行线段相等(4)垂直于同一直线的两条直线平行.A.0 B.1 C.2 D.3【分析】根据空间中的平行与垂直关系,得出命题A、B、C正确,命题D错误【解答】解:对于(1),空间中如果两个角的两边分别对应平行,那么这两个角相等或互补,∴命题(1)错误;对于(2),若直线l与平面α平行,则直线l与平面α内的直线平行或异面,根据线面平行的性质得到命题(2)正确;对于(3),夹在两个平行平面间的平行线段相等;命题(3)正确;对于(4),垂直于同一条直线的两个直线平行、相交或异面,∴命题(4)错误.故正确的命题有2个;故选:C.【点评】本题考查了空间中的平行与垂直关系的应用问题,是基础题目.2.如果两条直线l1:ax+2y+6=0与l2:x+(a﹣1)y+3=0平行,那么实数a等于()A.﹣1 B.2 C.2或﹣1 D.【分析】两条直线l1:ax+2y+6=0与l2:x+(a﹣1)y+3=0平行,直线l1的斜率存在,利用两条直线相互平行的充要条件即可得出.【解答】解:∵两条直线l1:ax+2y+6=0与l2:x+(a﹣1)y+3=0平行,直线l1的斜率存在,分别化为:y=﹣x﹣3,y=﹣,∴,﹣3≠﹣,解得a=﹣1.故选:A.【点评】本题考查了两条直线相互平行的充要条件,考查了推理能力与计算能力,属于中档题.3.函数f(x)=e x+2x﹣3的零点所在的一个区间是()A.()B.()C.()D.()【分析】将选项中各区间两端点值代入f(x),满足f(a)f(b)<0(a,b为区间两端点)的为答案.【解答】解:因为f()=<0,f(1)=e﹣1>0,所以零点在区间()上,故选C.【点评】本题考查了函数零点的概念与零点定理的应用,属于容易题.函数零点附近函数值的符号相反,这类选择题通常采用代入排除的方法求解.4.一个几何体的三视图如图所示,其中正视图和俯视图的都是腰长为1的两个全等的等腰直角三角形,则该几何体的体积为()A.B.C.D.【分析】根据三视图知几何体为一直四棱锥,结合图中数据求出该四棱锥的体积.【解答】解:由三视图知几何体为一直四棱锥,其直观图如图所示;∵正视图和侧视图是腰长为1的两个全等的等腰直角三角形,∴四棱锥的底面是正方形,且边长为1,其中一条侧棱垂直于底面且侧棱长也为1,∴该四棱锥的体积为×12×1=.故选:B.【点评】本题考查了由三视图求几何体体积的应用问题,解题的关键是判断几何体的形状,是基础题.5.若函数f(x)=ax+1在区间(﹣1,1)上存在一个零点,则实数a的取值X围是()A.a>1 B.a<1 C.a<﹣1或a>1 D.﹣1<a<1【分析】由函数的零点的判定定理可得f(﹣1)f(1)<0,解不等式求得实数a的取值X 围.【解答】解:函数f(x)=ax+1在区间(﹣1,1)上存在一个零点,则f(﹣1)f(1)<0,即(1﹣a)(1+a)<0,解得a<﹣1或a>1.故选:C.【点评】本题主要考查函数的零点的判定定理的应用,属于基础题.6.过球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的表面积的比为()A.B.C.D.【分析】由题意设出球的半径,圆M的半径,二者与OM构成直角三角形,求出圆M的半径,然后可求球的表面积,截面面积,再求二者之比.【解答】解:设球的半径为R,圆M的半径r,由图可知,R2=R2+r2,∴R2=r2,∴S球=4πR2,截面圆M的面积为:πr2=πR2,则所得截面的面积与球的表面积的比为:.故选A.【点评】本题是基础题,考查球的体积、表面积的计算,仔细体会,理解并能够应用小圆的半径、球的半径、以及球心与圆心的连线的关系,是本题的突破口.7.在坐标平面内,与点A(﹣2,﹣1)和点B(4,7)的距离均为5的直线共有()A.1条B.2条C.3条D.4条【分析】先求出线段AB的长度为10,等于5的2倍,故满足条件的直线有3条,其中有2条和线段AB平行,另一条是线段AB的中垂线.【解答】解:线段AB的长度为=10,故在坐标平面内,与点A(﹣2,﹣1)和点B(4,7)的距离均为5的直线共有3条,其中有2条在线段AB的两侧,且都和线段AB平行,另一条是线段AB的中垂线,故选 C.【点评】本题考查两点间的距离公式的应用,线段的中垂线的性质,体现了分类讨论的数学思想.8.若圆锥的侧面展开图的圆心角为90°,半径为r,则该圆锥的全面积为()A.B.C.D.【分析】根据扇形的弧长等于圆锥底面周长求出圆锥底面半径.【解答】解:圆锥的侧面积为,侧面展开图的弧长为=,设圆锥的底面半径为r′,则2πr′=,∴r′=.∴圆锥的全面积S=+=.故选:D.【点评】本题考查了圆锥的结构特征,面积计算,属于基础题.9.如图,AB为圆O的直径,点C在圆周上(异于点A,B),直线PA垂直于圆O所在的平面,点M,N分别为线段PB,BC的中点,有以下三个命题:①OC∩平面PAC;②MO∥平面PAC;③平面PAC∥平面MON,其中正确的命题是()A.①②B.①③C.②③D.①②③【分析】利用线面平行,面面平行的判定定理即可.【解答】解:点M,N分别为线段PB,BC的中点,o为AB的中点,∴MO∥PA,ON∥AC,OM∩ON=O,∴MO∥平面PAC;平面PAC∥平面MON,②③故正确;故选:C.【点评】考查了线面平行,面面平行的判断,属于基础题型,应熟练掌握.10.定义在R上的奇函数f(x),当x≥0时,f(x)=,则关于x的函数F(x)=f(x)﹣a(0<a<1)的所有零点之和为()A.1﹣2a B.2a﹣1 C.1﹣2﹣a D.2﹣a﹣1【分析】函数F(x)=f(x)﹣a(0<a<1)的零点转化为:在同一坐标系内y=f(x),y=a 的图象交点的横坐标.作出两函数图象,考查交点个数,结合方程思想,及零点的对称性,根据奇函数f(x)在x ≥0时的解析式,作出函数的图象,结合图象及其对称性,求出答案.【解答】解:∵当x≥0时,f(x)=;即x∈[0,1)时,f(x)=(x+1)∈(﹣1,0];x∈[1,3]时,f(x)=x﹣2∈[﹣1,1];x∈(3,+∞)时,f(x)=4﹣x∈(﹣∞,﹣1);画出x≥0时f(x)的图象,再利用奇函数的对称性,画出x<0时f(x)的图象,如图所示;则直线y=a,与y=f(x)的图象有5个交点,则方程f(x)﹣a=0共有五个实根,最左边两根之和为﹣6,最右边两根之和为6,∵x∈(﹣1,0)时,﹣x∈(0,1),∴f(﹣x)=(﹣x+1),又f(﹣x)=﹣f(x),∴f(x)=﹣(﹣x+1)=(1﹣x)﹣1=log2(1﹣x),∴中间的一个根满足log2(1﹣x)=a,即1﹣x=2a,解得x=1﹣2a,∴所有根的和为1﹣2a.故选:A.【点评】本题考查分段函数的图象与性质的应用问题,也考查了利用函数零点与方程的应用问题,是综合性题目.二、填空题:本大题共5小题,每小题5分,共25分.11.通过市场调查知某商品每件的市场价y(单位:圆)与上市时间x(单位:天)的数据如下:上市时间x天 4 10 36市场价y元 90 51 90根据上表数据,当a≠0时,下列函数:①y=ax+k;②y=ax2+bx+c;③y=alog m x中能恰当的描述该商品的市场价y与上市时间x的变化关系的是(只需写出序号即可)②.【分析】随着时间x的增加,y的值先减后增,结合函数的单调性即可得出结论【解答】解:∵随着时间x的增加,y的值先减后增,而所给的三个函数中y=ax+k和y=alog m x 显然都是单调函数,不满足题意,∴y=ax2+bx+c.故答案为:②.【点评】本题考查函数模型的选择,考查学生利用数学知识解决实际问题的能力,确定函数模型是关键.12.如图所示,在直四棱柱ABCD﹣A1B1C1D1中,当底面四边形A1B1C1D1满足条件AC⊥BD或四边形ABCD为菱形时,有A1C⊥B1D1(注:填上你认为正确的一种情况即可,不必考虑所有可能的情况).【分析】由假设A1C⊥B1D1,结合直四棱柱的性质及线面垂直的判定和性质定理,我们易得到A1C1⊥B1D1,即AC⊥BD,又由菱形的几何特征可判断出四边形ABCD为菱形,又由本题为开放型题目上,故答案可以不唯一.【解答】解:若A1C⊥B1D1,由四棱柱ABCD﹣A1B1C1D1为直四棱柱,AA1⊥B1D1,易得B1D1⊥平面AA1BB1,则A1C1⊥B1D1,即AC⊥BD,则四边形ABCD为菱形,故答案为:AC⊥BD或四边形ABCD为菱形.【点评】本题主要考查了空间中直线与直线之间的位置关系,属于知识的考查,属于中档题.13.若直线m被两条平行直线l1:x﹣y+1=0与l2:2x﹣2y+5=0所截得的线段长为,则直线m的倾斜角等于135°.【分析】由两平行线间的距离,得直线m和两平行线的夹角为90°.再根据两条平行线的倾斜角为45°,可得直线m的倾斜角的值.【解答】解:由两平行线间的距离为=,直线m被平行线截得线段的长为,可得直线m 和两平行线的夹角为90°.由于两条平行线的倾斜角为45°,故直线m的倾斜角为135°,故答案为:135°.【点评】本题考查两平行线间的距离公式,两条直线的夹角公式,本题属于基础题.14.已知函数f(x)对任意的x∈R满足f(﹣x)=f(x),且当x≥0时,f(x)=x2﹣x+1,若f(x)有4个零点,则实数a的取值X围是(4,+∞).【分析】根据条件可判断函数为偶函数,则要使(x)有4个零点,只需当x≥0时,f(x)=x2﹣x+1=0有两不等正根,根据二次方程的根的判定求解.【解答】解:对任意的x∈R满足f(﹣x)=f(x),∴函数为偶函数,若f(x)有4个零点,∴当x≥0时,f(x)=x2﹣x+1=0有两不等正根,∴△=a﹣4>0,∴a>4.【点评】考查了偶函数的应用和二次方程根的性质.15.如图,在棱长都相等的四面体SABC中,给出如下三个命题:①异面直线AB与SC所成角为60°;②BC与平面SAB所成角的余弦值为;③二面角S﹣BC﹣A的余弦值为,其中所有正确命题的序号为②③.【分析】①根据线面垂直性质可判断;②根据公式cosθ=cosθ1cosθ2求解即可;③找出二面角的平面角,利用余弦定理求解.【解答】解:①取AB中点M,易证AB垂直平面SMC,可得AB垂直SC,故错误;②易知BC在平面上的射影为∠ABC的角平分线,∴cos60°=cosθcos30°,∴cosθ=,故正确;③取BC中点N,∴二面角为∠ANC,不妨设棱长为1,∴cos∠ANC==,故正确,故答案为:②③.【点评】考查了线面垂直,线面角,二面角的求法.属于基础题型.三、解答题:本大题共6小题,满分75分,解答须写出文字说明、证明过程或演算步骤、16.如图,AA1B1B是圆柱的轴截面,C是底面圆周上异于A,B的一点,AA1=AB=2.(1)求证:平面AA1C⊥平面BA1C;(2)若AC=BC,求几何体A1﹣ABC的体积V.【分析】(1)证明BC⊥平面AA1C,即可证明平面AA1C⊥平面BA1C;(2)求出AC,直接利用体积公式求解即可.【解答】(1)证明:因为C是底面圆周上异于A,B的一点,AB是底面圆的直径,所以AC⊥BC.因为AA1⊥平面ABC,BC⊂平面ABC,所以AA1⊥BC,而AC∩AA1=A,所以BC⊥平面AA1C.又BC⊂平面BA1C,所以平面AA1C⊥平面BA1C.…(6分)(2)解:在Rt△ABC中,AB=2,则由AB2=AC2+BC2且AC=BC,得,所以.…(12分)【点评】本题考查线面垂直的判定,考查平面与平面垂直,考查几何体A1﹣ABC的体积,考查学生分析解决问题的能力,属于中档题.17.如图,棱长为1的正方体ABCD﹣A1B1C1D1中,E是AA1的中点.(1)求证:A1C∥平面BDE;(2)求二面角E﹣BD﹣A的正切值.【分析】(1)连AC,设AC与BD交于点O,连EO,则A1C∥EO,由此能证明A1C∥平面BDE.(2)由BD⊥AC,BD⊥EO,得∠AOE是二面角E﹣BD﹣A的平面角,由此能求出二面角E﹣BD ﹣A的正切值.【解答】证明:(1)连AC,设AC与BD交于点O,连EO,∵E是AA1的中点,O是BD的中点,∴A1C∥EO,又EO⊂面BDE,AA1⊄面BDE,所以A1C∥平面BDE.…(6分)解:(2)由(1)知,BD⊥AC,BD⊥EO,∴∠AOE是二面角E﹣BD﹣A的平面角,在Rt△AOE中,tan∠AOE==.∴二面角E﹣BD﹣A的正切值为.…(12分)【点评】本题考查线面平行的证明,考查二面角的正切值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.18.某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品x(百台),其总成本为G(x)(万元),其中固定成本为2.8万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本).销售收入R(x)(万元)满足,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:(1)写出利润函数y=f(x)的解析式(利润=销售收入﹣总成本);(2)要使工厂有盈利,求产量x的X围;(3)工厂生产多少台产品时,可使盈利最多?【分析】(1)由题意得G(x)=2.8+x.由,f(x)=R (x)﹣G(x),能写出利润函数y=f(x)的解析式.(2)当0≤x≤5时,由f(x)=﹣0.4x2+3.2x﹣2.8>0,得1<x≤5;当x>5时,由f(x)=8.2﹣x>0,得5<x<8.2.由此能求出要使工厂有盈利,产量x的X围.(3)当x>5时,由函数f(x)递减,知f(x)<f(5)=3.2(万元).当0≤x≤5时,函数f(x)=﹣0.4(x﹣4)2+3.6,当x=4时,f(x)有最大值为3.6(万元).由此能求出工厂生产多少台产品时,可使盈利最多.【解答】解:(1)由题意得G(x)=2.8+x.…(2分)∵,…(4分)∴f(x)=R(x)﹣G(x)=.…(6分)(2)∵f(x)=,∴当0≤x≤5时,由f(x)=﹣0.4x2+3.2x﹣2.8>0,得1<x≤5;.…(7分)当x>5时,由f(x)=8.2﹣x>0,得5<x<8.2.∴要使工厂有盈利,求产量x的X围是(1,8.2)..…(8分)(3)∵f(x)=,∴当x>5时,函数f(x)递减,∴f(x)<f(5)=3.2(万元).…(10分)当0≤x≤5时,函数f(x)=﹣0.4(x﹣4)2+3.6,当x=4时,f(x)有最大值为3.6(万元).…(14分)所以当工厂生产4百台时,可使赢利最大为3.6万元.…(15分)【点评】本题考查函数知识在生产实际中的具体应用,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.19.在△ABC中,A(2,﹣1),AB边上的中线CM所在直线方程为3x+2y+1=0.角B的平分线所在直线BT的方程为x﹣y+2=0.(1)求顶点B的坐标;(2)求直线BC的方程.【分析】(1)设B(x0,y0),利用中点坐标公式可得:AB的中点M,代入直线CM.又点B在直线BT上,联立即可得出.(2)设点A(2,﹣1)关于直线BT的对称点的坐标为A′(a,b),则点A′在直线BC上,利用对称的性质即可得出.【解答】解:(1)设B(x0,y0),则AB的中点M在直线CM上,所以+1=0,即3x0+2y0+6=0 ①…(2分)又点B在直线BT上,所以x0﹣y0+2=0 ②…(4分)由①②得:x0=﹣2,y0=0,即顶点B(﹣2,0).…(6分)(2)设点A(2,﹣1)关于直线BT的对称点的坐标为A′(a,b),则点A′在直线BC上,由题意知,,解得a=﹣3,b=4,即A′(﹣3,4).…(9分)因为k BC===﹣4,…(11分)所以直线BC的方程为y=﹣4(x+2),即4x+y+8=0.…(12分)【点评】本题考查了角平分线的性质、相互垂直的直线斜率之间的关系、中点坐标公式,考查了推理能力与计算能力,属于中档题.20.如图,AB为圆O的直径,点E,F在圆O上,且AB∥EF,矩形ABCD所在的平面与圆O 所在的平面互相垂直,且AB=2,AD=EF=1.(1)设FC的中点为M,求证:OM∥面DAF;(2)求证:AF⊥面CBF.【分析】(1)先证明OM∥AN,根据线面平行的判定定理即可证明OM∥面DAF;(2)由题意可先证明AF⊥CB,由AB为圆O的直径,可证明AF⊥BF,根据线面垂直的判定定理或面面垂直的性质定理即可证明AF⊥面CBF.【解答】解:(1)设DF的中点为N,连接MN,则MN∥CD,MN=CD,又∵AO∥CD,AO=CD,∴MN∥AO,MN=AO,∴MNAO为平行四边形,∴OM∥AN.又∵AN⊂面DAF,OM⊄面DAF,∴OM∥面DAF.(2)∵面ABCD⊥面ABEF,CB⊥AB,CB⊂面ABCD,面ABCD∩面ABEF=AB,∴CB⊥面ABEF.∵AF⊂面ABEF,∴AF⊥CB.又∵AB为圆O的直径,∴AF⊥BF,又∵CB∩BF=B,CB,BF⊂面CBF.∴AF⊥面CBF.【点评】本题主要考查了平面与平面垂直的判定,直线与平面平行的判定,考查了空间想象能力和转化思想,属于中档题.21.设直线l的方程为(a+1)x+y+2﹣a=0(a∈R).(1)若l在两坐标轴上的截距相等,求l的方程;(2)若l不经过第二象限,某某数a的取值X围;(3)若l与x轴正半轴的交点为A,与y轴负半轴的交点为B,求△AOB(O为坐标原点)面积的最小值.【分析】(1)对a分类讨论,利用截距式即可得出;(2)y=﹣(a+1)x+a﹣2,由于l不经过第二象限,可得,解出即可得出.(3)令x=0,解得y=a﹣2<0,解得aX围;令y=0,解得x=>0,解得aX围.求交集可得:a<﹣1.利用S△AOB= [﹣(a﹣2)]×,变形利用基本不等式的性质即可得出.【解答】解:(1)若2﹣a=0,解得a=2,化为3x+y=0.若a+1=0,解得a=﹣1,化为y+3=0,舍去.若a≠﹣1,2,化为: +=1,令=a﹣2,化为a+1=1,解得a=0,可得直线l的方程为:x+y+2=0.(2)y=﹣(a+1)x+a﹣2,∵l不经过第二象限,∴,解得:a≤﹣1.∴实数a的取值X围是(﹣∞,﹣1].(3)令x=0,解得y=a﹣2<0,解得a<2;令y=0,解得x=>0,解得a>2或a<﹣1.因此,解得a<﹣1.∴S△AOB=|a﹣2|||==3+≥3+=6,当且仅当a=﹣4时取等号.∴△AOB(O为坐标原点)面积的最小值是6.【点评】本题考查了直线的方程、不等式的性质、三角形的面积计算公式,考查了分类讨论方法、推理能力与计算能力,属于中档题.。

山东省烟台市2016年中考数学试题(word版,含解析)

山东省烟台市2016年中考数学试题(word版,含解析)

2016年山东省烟台市中考数学试卷一、选择题:本大题共12小题,每小题3分,共36分1.下列实数中,有理数是()A.B.C.2.下列商标图案中,既不是轴对称图形又不是中心对称图形的是()A.B.C.D.3.下列计算正确的是()A.3a2﹣6a2=﹣3 B.(﹣2a)•(﹣a)=2a2C.10a10÷2a2=5a5D.﹣(a3)2=a64.如图,圆柱体中挖去一个小圆柱,那么这个几何体的主视图和俯视图分别为()A.B.C.D.5.如图,是我们数学课本上采用的科学计算器面板,利用该型号计算器计算cos55°,按键顺序正确的是()A.B.C.D.6.某射击队要从甲、乙、丙、丁四人中选拔一名选手参赛,在选拔赛中,每人射击10次,然后从他们的成绩平均数(环)及方差两个因素进行分析,甲、乙、丙的成绩分析如表所示,丁的成绩如图所示.甲乙丙平均数方差根据以上图表信息,参赛选手应选()A.甲B.乙C.丙D.丁7.如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为()A.(3,2)B.(3,1)C.(2,2)D.(4,2)8.反比例函数y=的图象与直线y=﹣x+2有两个交点,且两交点横坐标的积为负数,则t的取值范围是()A.t< B.t> C.t≤D.t≥9.若x1,x2是一元二次方程x2﹣2x﹣1=0的两个根,则x12﹣x1+x2的值为()A.﹣1 B.0 C.2 D.310.如图,Rt△ABC的斜边AB与量角器的直径恰好重合,B点与0刻度线的一端重合,∠ABC=40°,射线CD绕点C转动,与量角器外沿交于点D,若射线CD将△ABC分割出以BC为边的等腰三角形,则点D 在量角器上对应的度数是()A.40°B.70°C.70°或80°D.80°或140°11.二次函数y=ax2+bx+c的图象如图所示,下列结论:①4ac<b2;②a+c>b;③2a+b>0.其中正确的有()A.①②B.①③C.②③D.①②③12.如图,○O的半径为1,AD,BC是⊙O的两条互相垂直的直径,点P从点O出发(P点与O点不重合),沿O→C→D的路线运动,设AP=x,sin∠APB=y,那么y与x之间的关系图象大致是()A.B.C.D.二、填空题:本大题共6个小题,每小题3分,共18分13.已知|x﹣y+2|﹣=0,则x2﹣y2的值为.14.如图,O为数轴原点,A,B两点分别对应﹣3,3,作腰长为4的等腰△ABC,连接OC,以O为圆心,CO长为半径画弧交数轴于点M,则点M对应的实数为.15.已知不等式组,在同一条数轴上表示不等式①,②的解集如图所示,则b﹣a的值为.16.如图,在平面直角坐标系中,菱形OABC的面积为12,点B在y轴上,点C在反比例函数y=的图象上,则k的值为.17.如图,C为半圆内一点,O为圆心,直径AB长为2cm,∠BOC=60°,∠BCO=90°,将△BOC绕圆心O 逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过区域(图中阴影部分)的面积为cm2.18.如图,在正方形纸片ABCD中,EF∥AD,M,N是线段EF的六等分点,若把该正方形纸片卷成一个圆柱,使点A与点D重合,此时,底面圆的直径为10cm,则圆柱上M,N两点间的距离是cm.三、解答题:本大题共7个小题,满分66分19.先化简,再求值:(﹣x﹣1)÷,其中x=,y=.20.网上购物已经成为人们常用的一种购物方式,售后评价特别引人关注,消费者在网店购买某种商品后,对其有“好评”、“中评”、“差评”三种评价,假设这三种评价是等可能的.(1)小明对一家网店销售某种商品显示的评价信息进行了统计,并列出了两幅不完整的统计图.利用图中所提供的信息解决以下问题:①小明一共统计了个评价;②请将图1补充完整;③图2中“差评”所占的百分比是;(2)若甲、乙两名消费者在该网店购买了同一商品,请你用列表格或画树状图的方法帮助店主求一下两人中至少有一个给“好评”的概率.21.由于雾霾天气频发,市场上防护口罩出现热销,某医药公司每月固定生产甲、乙两种型号的防雾霾口罩共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表:甲乙原料成本12 8销售单价18 12生产提成 1(1)若该公司五月份的销售收入为300万元,求甲、乙两种型号的产品分别是多少万只?(2)公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入﹣投入总成本)23.如图,△ABC内接于⊙O,AC为⊙O的直径,PB是⊙O的切线,B为切点,OP⊥BC,垂足为E,交⊙O于D,连接BD.(1)求证:BD平分∠PBC;(2)若⊙O的半径为1,PD=3DE,求OE及AB的长.24.【探究证明】(1)某班数学课题学习小组对矩形内两条互相垂直的线段与矩形两邻边的数量关系进行探究,提出下列问题,请你给出证明.如图1,矩形ABCD中,EF⊥GH,EF分别交AB,CD于点E,F,GH分别交AD,BC于点G,H.求证:=;【结论应用】(2)如图2,在满足(1)的条件下,又AM⊥BN,点M,N分别在边BC,CD上,若=,则的值为;【联系拓展】(3)如图3,四边形ABCD中,∠ABC=90°,AB=AD=10,BC=CD=5,AM⊥DN,点M,N分别在边BC,AB上,求的值.25.如图1,已知平行四边形ABCD顶点A的坐标为(2,6),点B在y轴上,且AD∥BC∥x轴,过B,C,D三点的抛物线y=ax2+bx+c(a≠0)的顶点坐标为(2,2),点F(m,6)是线段AD上一动点,直线OF交BC于点E.(1)求抛物线的表达式;(2)设四边形ABEF的面积为S,请求出S与m的函数关系式,并写出自变量m的取值范围;(3)如图2,过点F作FM⊥x轴,垂足为M,交直线AC于P,过点P作PN⊥y轴,垂足为N,连接MN,直线AC分别交x轴,y轴于点H,G,试求线段MN的最小值,并直接写出此时m的值.2016年山东省烟台市中考数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分1.下列实数中,有理数是()A.B.C.【考点】实数.【分析】实数分为有理数,无理数,有理数有分数、整数,无理数有根式下不能开方的,π等,很容易选择.【解答】解:A、不能正好开方,即为无理数,故本选项错误;B、不能正好开方,即为无理数,故本选项错误;C、π为无理数,所以为无理数,故本选项错误;D、小数为有理数,符合.故选D.2.下列商标图案中,既不是轴对称图形又不是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念逐项分析即可.【解答】解:A、是轴对称图形,不是中心对称图形;B、是轴对称图形,不是中心对称图形;C、既不是轴对称图形,也不是中心对称图形;D、不是轴对称图形,是中心对称图形,故选C.3.下列计算正确的是()A.3a2﹣6a2=﹣3 B.(﹣2a)•(﹣a)=2a2C.10a10÷2a2=5a5D.﹣(a3)2=a6【考点】整式的除法;合并同类项;幂的乘方与积的乘方;单项式乘单项式.【分析】根据整式的加减法可得出A选项结论不正确;根据单项式乘单项式的运算可得出B选项不正确;根据整式的除法可得出C选项正确;根据幂的乘方可得出D选项不正确.由此即可得出结论.【解答】解:A、3a2﹣6a2=﹣3a2,﹣3a2≠﹣3,∴A中算式计算不正确;B、(﹣2a)•(﹣a)=2a2,2a2=2a2,∴B中算式计算正确;C、10a10÷2a2=5a8,5a8≠5a5(特殊情况除外),∴C中算式计算不正确;D、﹣(a3)2=﹣a6,﹣a6≠a6(特殊情况除外),∴D中算式计算不正确.故选B.4.如图,圆柱体中挖去一个小圆柱,那么这个几何体的主视图和俯视图分别为()A.B.C.D.【考点】简单组合体的三视图.【分析】直接利用组合体结合主视图以及俯视图的观察角度得出答案.【解答】解:由几何体所示,可得主视图和俯视图分别为:和.故选:B.5.如图,是我们数学课本上采用的科学计算器面板,利用该型号计算器计算cos55°,按键顺序正确的是()A.B.C.D.【考点】计算器—三角函数;计算器—数的开方.【分析】简单的电子计算器工作顺序是先输入者先算,其中R﹣CM表示存储、读出键,M+为存储加键,M﹣为存储减键,根据按键顺序写出式子,再根据开方运算即可求出显示的结果.【解答】解:利用该型号计算器计算cos55°,按键顺序正确的是.故选:C.6.某射击队要从甲、乙、丙、丁四人中选拔一名选手参赛,在选拔赛中,每人射击10次,然后从他们的成绩平均数(环)及方差两个因素进行分析,甲、乙、丙的成绩分析如表所示,丁的成绩如图所示.甲乙丙平均数方差根据以上图表信息,参赛选手应选()A.甲B.乙C.丙D.丁【考点】方差;算术平均数.【分析】根据方差的计算公式求出丁的成绩的方差,根据方差的性质解答即可.【解答】解:由图可知丁射击10次的成绩为:8、8、9、7、8、8、9、7、8、8,则丁的成绩的平均数为:×(8+8+9+7+8+8+9+7+8+8)=8,丁的成绩的方差为:×[(8﹣8)2+(8﹣8)2+(8﹣9)2+(8﹣7)2+(8﹣8)2+(8﹣8)2+(8﹣9)2+(8﹣7)2+(8﹣8)2+(8﹣8)2]∵丁的成绩的方差最小,∴丁的成绩最稳定,∴参赛选手应选丁,故选:D.7.如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为()A.(3,2)B.(3,1)C.(2,2)D.(4,2)【考点】位似变换;坐标与图形性质;正方形的性质.【分析】直接利用位似图形的性质结合相似比得出AD的长,进而得出△OAD∽△OBG,进而得出AO的长,即可得出答案.【解答】解:∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,∴=,∵BG=6,∴AD=BC=2,∵AD∥BG,∴△OAD∽△OBG,∴=,∴=,解得:OA=1,∴OB=3,∴C点坐标为:(3,2),故选:A.8.反比例函数y=的图象与直线y=﹣x+2有两个交点,且两交点横坐标的积为负数,则t的取值范围是()A.t< B.t> C.t≤D.t≥【考点】反比例函数与一次函数的交点问题.【分析】将一次函数解析式代入到反比例函数解析式中,整理得出关于x的一元二次方程,由两函数图象有两个交点,且两交点横坐标的积为负数,结合根的判别式以及根与系数的关系即可得出关于k的一元一次不等式组,解不等式组即可得出结论.【解答】解:将y=﹣x+2代入到反比例函数y=中,得:﹣x+2=,整理,得:x2﹣2x+1﹣6t=0.∵反比例函数y=的图象与直线y=﹣x+2有两个交点,且两交点横坐标的积为负数,∴,解得:t>.故选B.9.若x1,x2是一元二次方程x2﹣2x﹣1=0的两个根,则x12﹣x1+x2的值为()A.﹣1 B.0 C.2 D.3【考点】根与系数的关系.【分析】由根与系数的关系得出“x1+x2=2,x1•x2=﹣1”,将代数式x12﹣x1+x2变形为x12﹣2x1﹣1+x1+1+x2,套入数据即可得出结论.【解答】解:∵x1,x2是一元二次方程x2﹣2x﹣1=0的两个根,∴x1+x2=﹣=2,x1•x2==﹣1.x12﹣x1+x2=x12﹣2x1﹣1+x1+1+x2=1+x1+x2=1+2=3.故选D.10.如图,Rt△ABC的斜边AB与量角器的直径恰好重合,B点与0刻度线的一端重合,∠ABC=40°,射线CD绕点C转动,与量角器外沿交于点D,若射线CD将△ABC分割出以BC为边的等腰三角形,则点D 在量角器上对应的度数是()A.40°B.70°C.70°或80°D.80°或140°【考点】角的计算.【分析】如图,点O是AB中点,连接DO,易知点D在量角器上对应的度数=∠DOB=2∠BCD,只要求出∠BCD的度数即可解决问题.【解答】解:如图,点O是AB中点,连接DO.∵点D在量角器上对应的度数=∠DOB=2∠BCD,∵当射线CD将△ABC分割出以BC为边的等腰三角形时,∠BCD=40°或70°,∴点D在量角器上对应的度数=∠DOB=2∠BCD=80°或140°,故选D.11.二次函数y=ax2+bx+c的图象如图所示,下列结论:①4ac<b2;②a+c>b;③2a+b>0.其中正确的有()A.①②B.①③C.②③D.①②③【考点】二次函数图象与系数的关系.【分析】根据抛物线与x轴有两个交点即可判断①正确,根据x=﹣1,y<0,即可判断②错误,根据对称轴x>1,即可判断③正确,由此可以作出判断.【解答】解:∵抛物线与x轴有两个交点,∴△>0,∴b2﹣4ac>0,∴4ac<b2,故①正确,∵x=﹣1时,y<0,∴a﹣b+c<0,∴a+c<b,故②错误,∴对称轴x>1,a<0,∴﹣>1,∴﹣b<2a,∴2a+b>0,故③正确.故选B.12.如图,○O的半径为1,AD,BC是⊙O的两条互相垂直的直径,点P从点O出发(P点与O点不重合),沿O→C→D的路线运动,设AP=x,sin∠APB=y,那么y与x之间的关系图象大致是()A.B.C.D.【考点】动点问题的函数图象.【分析】根据题意确定出y与x的关系式,即可确定出图象.【解答】解:根据题意得:sin∠APB=,∵OA=1,AP=x,sin∠APB=y,∴xy=1,即y=(1<x<2),图象为:,故选B.二、填空题:本大题共6个小题,每小题3分,共18分13.已知|x﹣y+2|﹣=0,则x2﹣y2的值为﹣4.【考点】因式分解-运用公式法;非负数的性质:绝对值;非负数的性质:算术平方根.【分析】由|x﹣y+2|﹣=0,根据非负数的性质,可求得x﹣y与x+y的值,继而由x2﹣y2=(x﹣y)(x+y)求得答案.【解答】解:∵|x﹣y+2|﹣=0,∴x﹣y+2=0,x+y﹣2=0,∴x﹣y=﹣2,x+y=2,∴x2﹣y2=(x﹣y)(x+y)=﹣4.故答案为:﹣4.14.如图,O为数轴原点,A,B两点分别对应﹣3,3,作腰长为4的等腰△ABC,连接OC,以O为圆心,CO长为半径画弧交数轴于点M,则点M对应的实数为.【考点】勾股定理;实数与数轴;等腰三角形的性质.【分析】先利用等腰三角形的性质得到OC⊥AB,则利用勾股定理可计算出OC=,然后利用画法可得到OM=OC=,于是可确定点M对应的数.【解答】解:∵△ABC为等腰三角形,OA=OB=3,∴OC⊥AB,在Rt△OBC中,OC===,∵以O为圆心,CO长为半径画弧交数轴于点M,∴OM=OC=,∴点M对应的数为.故答案为.15.已知不等式组,在同一条数轴上表示不等式①,②的解集如图所示,则b﹣a的值为.【考点】解一元一次不等式组;负整数指数幂;在数轴上表示不等式的解集.【分析】根据不等式组,和数轴可以得到a、b的值,从而可以得到b﹣a的值.【解答】解:,由①得,x≥﹣a﹣1,由②得,x≤b,由数轴可得,原不等式的解集是:﹣2≤x≤3,∴,解得,,∴,故答案为:.16.如图,在平面直角坐标系中,菱形OABC的面积为12,点B在y轴上,点C在反比例函数y=的图象上,则k的值为﹣6.【考点】反比例函数系数k的几何意义;菱形的性质.【分析】连接AC,交y轴于点D,由四边形ABCO为菱形,得到对角线垂直且互相平分,得到三角形CDO 面积为菱形面积的四分之一,根据菱形面积求出三角形CDO面积,利用反比例函数k的几何意义确定出k 的值即可.【解答】解:连接AC,交y轴于点D,∵四边形ABCO为菱形,∴AC⊥OB,且CD=AD,BD=OD,∵菱形OABC的面积为12,∴△CDO的面积为3,∴|k|=6,∵反比例函数图象位于第二象限,∴k<0,则k=﹣6.故答案为:﹣6.17.如图,C为半圆内一点,O为圆心,直径AB长为2cm,∠BOC=60°,∠BCO=90°,将△BOC绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过区域(图中阴影部分)的面积为πcm2.【考点】扇形面积的计算;旋转的性质.【分析】根据已知条件和旋转的性质得出两个扇形的圆心角的度数,再根据扇形的面积公式进行计算即可得出答案.【解答】解:∵∠BOC=60°,△B′OC′是△BOC绕圆心O逆时针旋转得到的,∴∠B′OC′=60°,△BCO=△B′C′O,∴∠B′OC=60°,∠C′B′O=30°,∴∠B′OB=120°,∵AB=2cm ,∴OB=1cm ,OC ′=,∴B ′C ′=,∴S 扇形B ′OB ==π, S 扇形C ′OC ==,∵ ∴阴影部分面积=S 扇形B ′OB +S △B ′C ′O ﹣S △BCO ﹣S 扇形C ′OC =S 扇形B ′OB ﹣S 扇形C ′OC =π﹣=π; 故答案为:π. 18.如图,在正方形纸片ABCD 中,EF ∥AD ,M ,N 是线段EF 的六等分点,若把该正方形纸片卷成一个圆柱,使点A 与点D 重合,此时,底面圆的直径为10cm ,则圆柱上M ,N 两点间的距离是 cm .【考点】圆柱的计算.【分析】根据题意得到EF=AD=BC ,MN=2EM ,由卷成圆柱后底面直径求出周长,除以6得到EM 的长,进而确定出MN 的长即可.【解答】解:根据题意得:EF=AD=BC ,MN=2EM=EF ,∵把该正方形纸片卷成一个圆柱,使点A 与点D 重合,底面圆的直径为10cm , ∴底面周长为10πcm ,即EF=10πcm , 则MN=cm , 故答案为:.三、解答题:本大题共7个小题,满分66分19.先化简,再求值:(﹣x ﹣1)÷,其中x=,y=.【考点】分式的化简求值. 【分析】首先将括号里面进行通分,进而将能分解因式的分解因式,再化简求出答案.【解答】解:(﹣x ﹣1)÷,=(﹣﹣)×=×=﹣,把x=,y=代入得:原式=﹣=﹣1+.20.网上购物已经成为人们常用的一种购物方式,售后评价特别引人关注,消费者在网店购买某种商品后,对其有“好评”、“中评”、“差评”三种评价,假设这三种评价是等可能的.(1)小明对一家网店销售某种商品显示的评价信息进行了统计,并列出了两幅不完整的统计图.利用图中所提供的信息解决以下问题:①小明一共统计了150个评价;②请将图1补充完整;③图2中“差评”所占的百分比是;(2)若甲、乙两名消费者在该网店购买了同一商品,请你用列表格或画树状图的方法帮助店主求一下两人中至少有一个给“好评”的概率.【考点】列表法与树状图法;扇形统计图;条形统计图.【分析】(1)①用“中评”、“差评”的人数除以二者的百分比之和可得总人数;②用总人数减去“中评”、“差评”的人数可得“好评”的人数,补全条形图即可;③根据×100%可得;(2)可通过列表表示出甲、乙对商品评价的所有可能结果数,通过概率公式计算可得.【解答】解:(1)①小明统计的评价一共有:=150(个);②“好评”一共有150×60%=90(个),补全条形图如图1:③图2中“差评”所占的百分比是:(2)列表如下:好中差好好,好好,中好,差中中,好中,中中,差差差,好差,中差,差由表可知,一共有9种等可能结果,其中至少有一个给“好评”的有5种,∴两人中至少有一个给“好评”的概率是.21.由于雾霾天气频发,市场上防护口罩出现热销,某医药公司每月固定生产甲、乙两种型号的防雾霾口罩共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表:甲乙原料成本12 8销售单价18 12生产提成 1(1)若该公司五月份的销售收入为300万元,求甲、乙两种型号的产品分别是多少万只?(2)公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入﹣投入总成本)【考点】一元二次方程的应用.【分析】(1)设甲型号的产品有x万只,则乙型号的产品有(20﹣x)万只,根据销售收入为300万元列出方程,求出方程的解即可得到结果;(2)设安排甲型号产品生产y万只,则乙型号产品生产(20﹣y)万只,根据公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元列出不等式,求出不等式的解集确定出y的范围,再根据利润=售价﹣成本列出W与y的一次函数,根据y的范围确定出W的最大值即可.【解答】解:(1)设甲型号的产品有x万只,则乙型号的产品有(20﹣x)万只,根据题意得:18x+12(20﹣x)=300,解得:x=10,则20﹣x=20﹣10=10,则甲、乙两种型号的产品分别为10万只,10万只;(2)设安排甲型号产品生产y万只,则乙型号产品生产(20﹣y)万只,解得:y≤15,当y=15时,W最大,最大值为91万元.【考点】解直角三角形的应用.【分析】如图作CM∥AB交AD于M,MN⊥AB于N,根据=,求出CM,在RT△AMN中利用tan72°=,求出AN即可解决问题.【解答】解:如图作CM∥AB交AD于M,MN⊥AB于N.由题意=,即=,CM=,在RT△AMN中,∵∠ANM=90°,MN=BC=4,∠AMN=72°,∴tan72°=,∵MN∥BC,AB∥CM,∴四边形MNBC是平行四边形,∴BN=CM=,23.如图,△ABC内接于⊙O,AC为⊙O的直径,PB是⊙O的切线,B为切点,OP⊥BC,垂足为E,交⊙O于D,连接BD.(1)求证:BD平分∠PBC;(2)若⊙O的半径为1,PD=3DE,求OE及AB的长.【考点】切线的性质;三角形的外接圆与外心.【分析】(1)由∠PBD+∠OBD=90°,∠DBE+∠BDO=90°利用等角的余角相等即可解决问题.(2)利用面积法首先证明==,再证明△BEO∽△PEB,得=,即==,由此即可解决问题.【解答】(1)证明:连接OB.∵PB是⊙O切线,∴OB⊥PB,∴∠PBO=90°,∴∠PBD+∠OBD=90°,∵OB=OD,∴∠OBD=∠ODB,∵OP⊥BC,∴∠BED=90°,∴∠DBE+∠BDE=90°,∴∠PBD=∠EBD,∴BD平分∠PBC.(2)解:作DK⊥PB于K,∵==,∵BD平分∠PBE,DE⊥BE,DK⊥PB,∴DK=DE,∴==,∵∠OBE+∠PBE=90°,∠PBE+∠P=90°,∴∠OBE=∠P,∵∠OEB=∠BEP=90°,∴△BEO∽△PEB,∴=,∴==,∵BO=1,∴OE=,∵OE⊥BC,∴BE=EC,∵AO=OC,∴AB=2OE=.24.【探究证明】(1)某班数学课题学习小组对矩形内两条互相垂直的线段与矩形两邻边的数量关系进行探究,提出下列问题,请你给出证明.如图1,矩形ABCD中,EF⊥GH,EF分别交AB,CD于点E,F,GH分别交AD,BC于点G,H.求证:=;【结论应用】(2)如图2,在满足(1)的条件下,又AM⊥BN,点M,N分别在边BC,CD上,若=,则的值为;【联系拓展】(3)如图3,四边形ABCD中,∠ABC=90°,AB=AD=10,BC=CD=5,AM⊥DN,点M,N分别在边BC,AB上,求的值.【考点】相似形综合题.【分析】(1)过点A作AP∥EF,交CD于P,过点B作BQ∥GH,交AD于Q,如图1,易证AP=EF,GH=BQ,△PDA∽△QAB,然后运用相似三角形的性质就可解决问题;(2)只需运用(1)中的结论,就可得到==,就可解决问题;(3)过点D作平行于AB的直线,交过点A平行于BC的直线于R,交BC的延长线于S,如图3,易证四边形ABSR是矩形,由(1)中的结论可得=.设SC=x,DS=y,则AR=BS=5+x,RD=10﹣y,在Rt△CSD中根据勾股定理可得x2+y2=25①,在Rt△ARD中根据勾股定理可得(5+x)2+(10﹣y)2=100②,解①②就可求出x,即可得到AR,问题得以解决.【解答】解:(1)过点A作AP∥EF,交CD于P,过点B作BQ∥GH,交AD于Q,如图1,∵四边形ABCD是矩形,∴AB∥DC,AD∥BC.∴四边形AEFP、四边形BHGQ都是平行四边形,∴AP=EF,GH=BQ.又∵GH⊥EF,∴AP⊥BQ,∴∠QA T+∠AQT=90°.∵四边形ABCD是矩形,∴∠DAB=∠D=90°,∴∠DAP+∠DPA=90°,∴∠AQT=∠DPA.∴△PDA∽△QAB,∴=,∴=;(2)如图2,∵EF⊥GH,AM⊥BN,∴由(1)中的结论可得=,=,∴==.故答案为;(2)过点D作平行于AB的直线,交过点A平行于BC的直线于R,交BC的延长线于S,如图3,则四边形ABSR是平行四边形.∵∠ABC=90°,∴▱ABSR是矩形,∴∠R=∠S=90°,RS=AB=10,AR=BS.∵AM⊥DN,∴由(1)中的结论可得=.设SC=x,DS=y,则AR=BS=5+x,RD=10﹣y,∴在Rt△CSD中,x2+y2=25①,在Rt△ARD中,(5+x)2+(10﹣y)2=100②,由②﹣①得x=2y﹣5③,解方程组,得(舍去),或,∴AR=5+x=8,∴===.25.如图1,已知平行四边形ABCD顶点A的坐标为(2,6),点B在y轴上,且AD∥BC∥x轴,过B,C,D三点的抛物线y=ax2+bx+c(a≠0)的顶点坐标为(2,2),点F(m,6)是线段AD上一动点,直线OF交BC于点E.(1)求抛物线的表达式;(2)设四边形ABEF的面积为S,请求出S与m的函数关系式,并写出自变量m的取值范围;(3)如图2,过点F作FM⊥x轴,垂足为M,交直线AC于P,过点P作PN⊥y轴,垂足为N,连接MN,直线AC分别交x轴,y轴于点H,G,试求线段MN的最小值,并直接写出此时m的值.【考点】二次函数综合题.【分析】(1)根据平行四边形的性质和抛物线的特点确定出点D,然而用待定系数法确定出抛物线的解析式.(2)根据AD∥BC∥x轴,且AD,BC间的距离为3,BC,x轴的距离也为3,F(m,6),确定出E(,3),从而求出梯形的面积.(3)先求出直线AC解析式,然后根据FM⊥x轴,表示出点P(m,﹣m+9),最后根据勾股定理求出MN=,从而确定出MN最大值和m的值.【解答】解:(1)∵过B,C,D三点的抛物线y=ax2+bx+c(a≠0)的顶点坐标为(2,2),∴点C的横坐标为4,BC=4,∵四边形ABCD为平行四边形,∴AD=BC=4,∵A(2,6),∴D(6,6),设抛物线解析式为y=a(x﹣2)2+2,∵点D在此抛物线上,∴6=a(6﹣2)2+2,∴a=,∴抛物线解析式为y=(x﹣2)2+2=x2﹣x+3,(2)∵AD∥BC∥x轴,且AD,BC间的距离为3,BC,x轴的距离也为3,F(m,6)∴E(,3),∴BE=,∴S=(AF+BE)×3=(m﹣2+)×3=m﹣3∵点F(m,6)是线段AD上,∴2≤m≤6,即:S=m﹣3.(2≤m≤6)(3)∵抛物线解析式为y=x2﹣x+3,∴B(0,3),C(4,3),∵A(2,6),∴直线AC解析式为y=﹣x+9,∵FM⊥x轴,垂足为M,交直线AC于P∴P(m,﹣m+9),(2≤m≤6)∴PN=m,PM=﹣m+9,∵FM⊥x轴,垂足为M,交直线AC于P,过点P作PN⊥y轴,∴∠MPN=90°,∴MN===∵2≤m≤6,∴当m=时,MN==.最大2016年6月23日。

高一数学上学期期末考试试题含解析

高一数学上学期期末考试试题含解析
【解析】
【分析】
先由奇函数的性质,得到 ,求出 ;再由二次函数的单调性,以及奇函数的性质,得到函数 在区间 上单调递减,进而可求出结果。
【详解】因为函数 是奇函数,
所以 ,即 ,解得: ;
因此
根据二次函数的性质,可得,当 时,函数 在区间 上单调递减,在区间 上单调递增;
又因为 ,所以由奇函数的性质可得:函数 在区间 上单调递减;
,即至少遇到4个红灯的概率为0。33。
(3)设事件 为遇到6个及6个以上红灯,则至多遇到5个红灯为事件 .
则 。
【点睛】本题主要考查互斥事件的概率计算,以及概率的性质的应用,熟记概率计算公式,以及概率的性质即可,属于常考题型。
19。一商场对5年来春节期间服装类商品的优惠金额 (单位:万元)与销售额 (单位:万元)之间的关系进行分析研究并做了记录,得到如下表格.
【分析】
根据奇偶性的概念,判断函数 的奇偶性,再结合函数单调性,即可解所求不等式。
【详解】因为 的定义域为 ,
由 可得,函数 是奇函数;
根据幂函数单调性可得, 单调递增;所以函数 是增函数;
所以不等式 可化为 ,
因此 ,解得: 。
故选:D
【点睛】本题主要考查由函数单调性与奇偶性解不等式,熟记函数奇偶性的概念,会根据函数解析式判定单调性即可,属于常考题型.
【解析】
【分析】
(1)根据换元法,令 ,即可结合已知条件求出结果;
(2)根据指数函数单调性,即可得出单调区间.
【详解】(1)令 ,即 ,
代入 ,可得 ,
所以
(2)因为 ,根据指数函数单调性,可得:
函数 的单调增区间是 ,单调减区间是 。
【点睛】本题主要考查求函数解析式,以及求指数型函数的单调区间,灵活运用换元法求解析式,熟记指数函数的单调性即可,属于常考题型.

山东省烟台市2021-2022学年高一上学期期末考试数学试卷

山东省烟台市2021-2022学年高一上学期期末考试数学试卷

2021~2022学年度第一学期期末学业水平诊断高一数学注意事项:1.本试题满分150分,考试时间为120分钟。

2.答卷前,务必将姓名和准考证号填涂在答题纸上。

3.使用答题纸时,必须使用0.5毫米的黑色签字笔书写,要字迹工整,笔迹清晰;超出答题区书写的答案无效;在草稿纸、试题卷上答题无效。

一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.sin 210=A.12−B.12C.2−2.函数ln(4)y x =−的定义域为A.(0,4)B.(0,4]C.[0,4)D.[0,4]3.下列选项中不能用二分法求图中函数零点近似值的是DB4.下列函数中,既是奇函数又在区间(0,)+∞上单调递增的是 A.2xy = B.sin y x = C.3y x=D.ln y x =5.已知 1.13a =,0.23b =,2log 0.3c =,则,,a b c 的大小关系为 A.b a c << B.b c a <<C.c a b<< D.c b a <<6.已知函数(1),1()1(),1ex f x x f x x +<⎧⎪=⎨≥⎪⎩ ,则(1ln 5)f −+的值为A.15B.5C.e 5D.5e7.水车是一种利用水流的动力进行灌溉的工具,其工作示意图如图所示.设水车的直径为8m ,其中心O 到水面的距离为2m ,水车逆时针匀速旋转,旋转一周的时间是120s .当水车上的一个水筒A 从水中(0A 处)浮现时开始计时,经过t (单位:s )后水筒A 距离水面的高度为()f t (在水面下高度为负数),则(140)f = A.3mB.4mC.5mD.6m8.设,a b ∈R ,定义运算,,a a ba b b a b ≥⎧⊗=⎨<⎩,则函数()sin cos f x x x =⊗的最小值为 A.1−B.2−C.12−D.0二、选择题:本题共4小题,每小题5分,共20分。

山东省烟台市2019-2020学年高三上学期期中数学试题(解析版)

山东省烟台市2019-2020学年高三上学期期中数学试题(解析版)

2019-2020学年度第一学期期中学业水平诊断高三数学注意事项:1.本试题满分150分,考试时间为120分钟。

2.答卷前,务必将姓名和准考证号填涂在答题卡上。

3.使用答题纸时,必须使用0.5毫米的黑色签字笔书写,要字迹工整,笔迹清晰。

超出答题区书写的答案无效;在草稿纸、试题卷上答题无效。

一、选择题:本大题共13小题,每小题4分,共52分。

在每小题给出的四个选项中,第1~10题只有一项符合题目要求,第11~13题有多项符合题目要求。

全部选对的得4分,选对但不全的得2分,有选错的得0分。

1.设全集U 是实数集R ,{}{}2=log 1,13M x x N x x >=<<,则()U M N ⋂=ð( ) A. {}23x x << B. {}3x x < C. {}12x x <≤ D. {}2x x ≤【答案】C 【解析】 【分析】先解对数不等式得出集合M ,再利用补集、交集的概念求解.【详解】由2log 1x >解得2x >,则{|2}M x x =>,于是{|2}U M x x =≤ð. 又{}13N x x =<<,所以(){|12}U M N x x =<≤ð.故选:C.【点睛】本题考查补集、交集的运算以及对数函数的性质,是一道基础题.2.已知等差数列{}n a 中,()12n n n a a -≥>,若324314a a a ==,,则1a =( ) A. 1- B. 0C.14 D.12【答案】B【解析】 【分析】设出公差d ,利用等差数列各项间的关系(2343,a a d a a d =-=+)求出d ,然后1a 易求. 【详解】设公差为d ,则2224333()().a a a d a d a d =-+=-因324314a a a ==,,所以23=14d -,则214d =.由()12n n n a a -≥>,可得0d >,所以12d =.所以13121202a a d =-=-⨯=.故选:B.【点睛】本题考查等差数列的基本量运算.一般以1,a d 为基本量列出方程组求解,有时也可利用()n m a a n m d =+-来简化运算.3.已知1sin 23α=,则2πcos 4α⎛⎫-= ⎪⎝⎭( ) A.16B.13 C.12D.23【答案】D 【解析】 【分析】利用二倍角公式(2cos 21cos 2x x +=)即可求解. 【详解】2π1π1π1cos cos 21cos 2424222ααα⎡⎤⎛⎫⎛⎫⎛⎫-=-+=-+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦1π1111112cos 2sin 2==.222222323αα⎛⎫=-+=+⨯+ ⎪⎝⎭ 故选:D.【点睛】本题考查三角恒等变换求值,考查二倍角余弦公式、诱导公式.把待求转化为已知需要增倍、降次,自然可以联想到二倍角公式.4.我国古代数学著作《九章算术》中有如下问题:“今有金箠,长五尺,斩本一尺,重十斤,斩末一尺,重四斤,问次一尺各重几何?”意思是:“现有一根金杖,长5尺,一头粗,一头细,在粗的一端截下1尺,重10斤;在细的一端截下1尺,重4斤,问依次每一尺各重多少斤?”设该问题中的金杖由粗到细是均匀变化的,则其重量为( ) A.5.5斤 B. 8.5斤 C. 35斤 D. 40斤【答案】C 【解析】 【分析】金杖从粗到细各尺的重量依次构成等差数列,则所求即为该数列的前5项和,利用1()2n n nS a a =+可求.【详解】由题意得,金杖从粗到细各尺的重量依次构成等差数列, 数列共有5项,首项为10,末项为4,所求为该数列的前5项和, 即51555()(104)3522S a a =+=⨯+=. 故选:C.【点睛】本题考查实际问题中的数列问题,考查利用1()2n n nS a a =+求数列的前n 项和.解题的关键是从实际问题中抽象出数列模型,得出数列的首项、末项、公差、项数等数据.5.设正实数,,a b c 分别满足2321,log 1,log 1aa b b c c ⋅===,则,,a b c 的大小关系为( )A. a b c >>B. b a c >>C. c b a >>D. a c b >>【答案】C 【解析】 【分析】把,,a b c 看作方程的根,利用数形结合思想把方程的根转化为函数图象交点的横坐标,则可以利用图象比较大小.【详解】由已知可得231112,log ,log ,a b c a b c=== 作出函数232,log ,log xy y x y x ===的图象,它们与函数1y x=图象的交点的横坐标分别为,,a b c , 如图所示,易得c b a >>. 故选:C.【点睛】本题考查函数与方程,基本初等函数的图象.对于含有指数、对数等的方程,若不能直接求得方程的根,一般可以利用数形结合思想转化为函数图象的交点问题.6.在ABC △中,BD 为AC 边上的中线,E 为BD 的三等分点且2DE BE =,则=CE uur( )A. 1566BA BC -B.5166BA BC - C. 1566BA BC +D. 5166BA BC +【答案】A 【解析】 【分析】作出示意图,利用向量的线性运算逐步把CE 用基向量BA BC ,表示出来即可. 【详解】如图,由BD 为AC 边上的中线,可得1()2BD BA BC =+. 由2DE BE =,可得13BE BD =. 所以1115()3666CE BE BC BD BC BA BC BC BA BC =-=-=+-=-. 故选:A.【点睛】本题考查平面向量的线性运算,利用基向量表示目标向量,一般可作出示意图帮助理解和寻找关联.7.已知函数()f x 是定义在R 上的奇函数,且当0x <时,()21xf x -=-,若()()2320f a f a -+≤,则实数a 的取值范围为( ) A. (][),31,-∞-+∞ B. []3,1-C. ()3,1-D. ()(),31,-∞-⋃+∞【答案】A 【解析】 【分析】先判断函数()f x 的单调性,再把()()2320f a f a -+≤转化为自变量的关系,进而可解得a 的取值范围.【详解】当0x <时,()21xf x -=-,所以()f x 在(,0)-∞上单调递减且()0f x >.又()f x 是定义在R 上的奇函数,(0)0f =, 所以()f x 在(,)-∞+∞上单调递减.由()()2320f a f a -+≤,可得2(3)(2)f a f a -≤-,则2(3)(2)f a f a -≤-,所以232a a -≥-,即2230a a +-≥,解得3a ≤-或1a ≥. 故选:A.【点睛】本题考查利用函数的奇偶性、单调性求解函数不等式.一般思路是先判断函数的单调性,再把函数不等式转化为自变量的关系.8.已知函数()2f x x =的图象在1x =处的切线与函数()e xg x a=的图象相切,则实数a =( )A.B.C.2D. 【答案】B 【解析】 【分析】先求函数()2f x x =的图象在1x =处的切线,再根据该切线也是函数()e xg x a=图象的切线,设出切点即可求解.【详解】由()2f x x =,得()2f x x '=,则()12f '=, 又(1)1f =,所以函数()2f x x=图象在1x =处的切线为12(1)y x -=-,即21y x =-.设21y x =-与函数()e xg x a=的图象相切于点00(,)x y ,由e ()xg x a '=,可得00000e ()2,e ()21,x x g x ag x x a ⎧==⎪⎪⎨⎪==-⎩'⎪解得32031,e 22x a ==故选:B.【点睛】本题考查导数的几何意义与函数图象的切线问题.已知切点时,可以直接利用导数求解;切点未知时,一般设出切点,再利用导数和切点同时在切线和函数图象上列方程(组)求解.9.已知函数()()()sin 0,0,0πf x A x A ωϕωϕ=+>><<的周期为π,将其图象向右平移6π个单位长度后关于y 轴对称,现将()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为()g x,若π3g ⎛⎫-= ⎪⎝⎭π4f ⎛⎫= ⎪⎝⎭( ) 的A.B. -C.D.【答案】B 【解析】 【分析】由周期求ω,由平移对称求ϕ,由()g x 求A ,然后可得答案. 【详解】由周期为π,可得=2ω. 由图象向右平移6π个单位长度后关于y 轴对称, 可得ππ2π()62k k ϕ⎛⎫⨯-+=+∈ ⎪⎝⎭Z ,结合0πϕ<<,可得5π=6ϕ. 所以5π()sin 26f x A x ⎛⎫=+⎪⎝⎭,5π()sin 6g x A x ⎛⎫=+ ⎪⎝⎭. ππ5πsin 336g A A ⎛⎫⎛⎫-=-+== ⎪ ⎪⎝⎭⎝⎭所以ππ5π4262f ⎛⎫⎛⎫=+=-⎪ ⎪⎝⎭⎝⎭. 故选:B.【点睛】本题考查三角函数的图象与性质.一般可以通过周期性、对称性等性质求出A ωϕ,,等参数的值. 10.已知函数()m f x x x =+与函数()ln 3x g x x =-+的图象在区间1,22⎡⎤⎢⎥⎣⎦上恰有两对关于x 轴对称的点,则实数m 的取值范围是( ) A. 5ln 2,24⎡⎫+⎪⎢⎣⎭B. 5ln 2,24⎛⎫+⎪⎝⎭C. [)2ln 2,2-D. ()2ln 2,2-【答案】A 【解析】【分析】()f x 与()g x 的图象有两对关于x 轴对称的点,则()f x 与()g x -的图象有两个交点,则()()f x g x +有两个零点.然后可以分离参数,构造函数,利用函数的单调性、极值求出参数m 的取值范围.【详解】由题意可得()f x 与()g x -的图象在区间1,22⎡⎤⎢⎥⎣⎦上恰有两个交点,则()()f x g x +的图象在区间1,22⎡⎤⎢⎥⎣⎦上恰与x 轴有两个交点.令ln ()()30m x f x g x x x x+=+-+=,则23ln m x x x =--, 设2()3ln h x x x x =--与y m =的图象在区间1,22⎡⎤⎢⎥⎣⎦上恰有两个交点.1(21)(1)()32x x h x x x x--'=--=-,当112x <<时,()0h x '>,()h x 单调递增; 当12x <<时,()0h x '<,()h x 单调递减, 又15ln 2,(1)2,(2)2ln 2,24h h h ⎛⎫=+==- ⎪⎝⎭1(2)2h h ⎛⎫> ⎪⎝⎭, 所以5ln 224m +≤<. 故选:A.【点睛】本题考查导数的应用,利用导数研究函数的性质,进而解决有关函数与方程、函数零点和图象交点的问题.解题的关键是在图象交点、函数零点、方程根之间进行等价转化,合理利用分离参数、构造函数解决问题.11.下列结论正确的是( ) A. 若0,0a b c d >><<,则一定有b a c d> B. 若0x y >>,且1xy=,则()21log 2x yx x y y +>>+C. 设{}n a 是等差数列,若210a a >>,则2a >D. 若[)0,x ∈+∞,则()21ln 18x x x +≥- 【答案】AC 【解析】 【分析】利用不等式的性质、数列的性质、导数等逐一判断各选项是否正确. 【详解】选项A ,由0c d <<,可得0c d ->->,则110d c->->, 又0a b >>,所以a b d c ->-,则b ac d>,故A 正确. 选项B ,取12,2x y ==,则221154,,log ()log 1282x y x x y y +==+=>,不等式不成立,故B 不正确.选项C ,由题意得1322a a a +=且13a a ≠,所以21311=()22a a a +>⨯=C 正确. 选项D ,设21()ln(1)8h x x x x =+-+,则1(3)()1144(1)x x x h x x x -'=-+=++,当03x <<时,()0h x '<,则()h x 单调递减,()(0)0h x h <=,故D 不正确. 故选:AC.【点睛】本题综合考查不等式、基本不等式、数列等知识.判断不等式成立需要严格证明,判断不等式不成立只需举出一个反例即可. 12.已知函数()π1sin sin 34f x x x ⎛⎫=⋅+- ⎪⎝⎭的定义域为[](),m n m n <,值域为11,24⎡⎤-⎢⎥⎣⎦,则n m -的值不可能是( ) A.5π12B.7π12C.34π D.11π12【答案】CD 【解析】【分析】先化简()f x 的解析式,作出()f x 的图象,容易得出n m -的取值范围,则可得答案. 【详解】()π1sin sin 34f x x x ⎛⎫=⋅+- ⎪⎝⎭11=sin sin 24x x x ⎛⎫- ⎪ ⎪⎝⎭211=sin cos 224x x x +- ()11=1cos 22444x x -+-112cos 2222x x ⎛⎫=- ⎪ ⎪⎝⎭1π=sin 226x ⎛⎫- ⎪⎝⎭.作出函数()f x 的图象如图所示,在一个周期内考虑问题,易得π,25π7π66m n ⎧=⎪⎪⎨⎪≤≤⎪⎩或π5π,267π6m n ⎧≤≤⎪⎪⎨⎪=⎪⎩满足题意,所以n m -的值可能为区间π2π33⎡⎤⎢⎥⎣⎦,内的任意实数.所以A,B 可能,C,D 不可能. 故选:CD.【点睛】本题考查三角恒等变换和三角函数的图象与性质.解题的一般思路是先把解析式化成sin()y A x ωϕ=+的形式,再结合图象研究性质.13.已知函数()y f x =是R 上的奇函数,对任意x ∈R ,都有()()()22f x f x f -=+成立,当[]12,0,1x x ∈,且12x x ≠时,都有()()12120f x f x x x ->-,则下列结论正确的有( )A. ()()()()12320190f f f f +++⋅⋅⋅+=B. 直线5x =-是函数()y f x =图象的一条对称轴C. 函数()y f x =在[]7,7-上有5个零点D. 函数()y f x =在[]7,5--上为减函数【答案】ABD【解析】【分析】先由题意判断函数()f x 的单调性、奇偶性、对称性、周期性,进而作出函数的草图,结合图象逐一判断各选项是否正确.【详解】由奇函数可得(0)0f =.由(2)()(2)f x f x f -=+令2x =可得(2)0f =,则()(2)f x f x =-,()f x 的图象关于直线1x =对称.()(2)(2)[(22)](4)f x f x f x f x f x =-=--=----=-,所以()f x 是周期为4的周期函数.当[]12,0,1x x ∈,且12x x ≠时,都有()()12120f x f x x x ->-,所以()f x 在区间[]0,1上单调递增.根据以上信息可画出函数()f x 的草图如图所示.选项A,易得(1)(3)(2017)(2019)0f f f f +==+=,(2)(4)(2018)0f f f ====, 所以()()()()12320190f f f f +++⋅⋅⋅+=,A 正确.选项B ,直线5x =-是函数()y f x =图象的一条对称轴,B 正确.选项C ,函数()y f x =在[]7,7-上有7个零点,C 不正确.选项D ,函数()y f x =在[]7,5--上为减函数,D 正确.故选:ABD.【点睛】本题综合考查函数的单调性、奇偶性、周期性等性质.二、填空题,本大题共有4个小题,每小题4分,共16分。

二项式定理(1)

二项式定理(1)

x 二项式定理1.【来源】浙江省 2017 届高三“超级全能生”3 月联考数学试题 在二项式(2x - 1)6的展开式中,常数项是( C )xA .-240B .240C .-160D .160答案及解析:2.【来源】安徽省黄山市 2019 届高三第一次质量检测(一模)数学(理)试题在(1+x )6(1-2x )展开式中,含 x 5 的项的系数是( D ) A. 36B. 24C. -36D. -243.【来源】新疆维吾尔自治区 2018 届高三第二次适应性(模拟)检测数学(理)试题若⎛ 2 1 ⎫n- x ⎪ 展开式中含 x 项的系数为-80,则 n 等于( A )⎝ ⎭A .5B .6 C.7 D .84.【来源】浙江省金丽衢十二校联考 2017 届高考二模数学试题在(1+x 3)(1﹣x )8 的展开式中,x 5 的系数是( A ) A .﹣28B .﹣84C .28D .84答案及解析:【考点】二项式定理的应用.【分析】利用二项式定理的通项公式求解即可.【解答】解:由(1+x 3)展开可知含有 x 3 与(1﹣x )8 展开的 x 2 可得 x 5 的系数; 由(1+x 3)展开可知常数项与(1﹣x )8 展开的 x 5,同样可得 x 5 的系数; ∴含 x 5 的项+=28x 5﹣56x 5=﹣28x 5;∴x 5 的系数为﹣28, 故选 A【点评】本题主要考查二项式定理的应用,求展开式的系数把含有 x 5 的项找到.从而可以利用通项求解.属于中档题5.【来源】北京东城景山学校 2016-2017 学年高二下学期期中考试数学(理)试题设(3x -1)4 = a + a x + a x 2 + a x 3 + a x 4 ,则 a + a + a + a的值为( A ).12341234A .15B .16C .1D .-15答案及解析: 在(3x -1)4= a + a x + a x 2 + a x 3 + a x 4 中,令 x = 0 ,可得 a = 1 ,1234再令 x = 1可得 a 0 + a 1 + a 2 + a 3 + a 4 = 16 , 所以 a 1 + a 2 + a 3 + a 4 = 15 .n 7 7 7 故选 A .6.【来源】北京西城八中少年班 2016-2017 学年高一下学期期末考试数学试题在(x + y )n的展开式中,若第七项系数最大,则 n 的值可能等于( D ).A .13,14B .14,15C .12,13D .11,12,13答案及解析:(x + y )n 的展开式第七项系数为 C 6 ,且最大,可知此为展开式中间项,当展开式为奇数项时: n= 6 , n = 12 ,2当有偶数项时 n + 1= 6 , n = 11, 2 或 n + 1 = 7 , n = 13 ,2故 n = 11,12 ,13 . 选 D .7.【来源】广东省广州市海珠区 2018 届高三综合测试(一)数学(理)试题(x + y )(2x - y )6 的展开式中 x 4 y 3 的系数为( D )A .-80B .-40C. 40D .808.【来源】广东省潮州市 2017 届高三数学二模试卷数学(理)试题 在(1﹣2x )7(1+x )的展开式中,含 x 2 项的系数为( B ) A .71 B .70 C .21 D .49答案及解析:【分析】先将问题转化为二项式(1﹣2x )7 的系数问题,利用二项展开式的通项公式求出展开式的第 r+1 项,令 x 的指数分别等于 1,2 求出特定项的系数【解答】解:(1﹣2x )7(1+x )的展开式中 x 2 的系数等于(1﹣2x )7 展开式的 x 的系数+(1﹣2x )7 展开式的 x 2 的系数,(x+1)7 展开式的通项为 T r+1=(﹣2)r C r x r ,故展开式中 x 2 的系数是(﹣2)2C 2+(﹣2)•C 1=84﹣14=60,故选:B .9.【来源】浙江省新高考研究联盟 2017 届第四次联考数学试题 在二项式(x 2- 1)5 的展开式中,含 x 7的项的系数是( C )xA . -10B. 10C. -5D. 510.【来源】辽宁省重点高中协作校 2016-2017 学年高二下学期期末考试数学(理)试题 已知(1 + x )n的展开式中只有第 6 项的二项式系数最大,则展开式奇数项的二项式系数和为( D ) A .212B .211C.210D .2911.【来源】上海市浦东新区 2018 届高三上学期期中考试数学试卷展开式中的常数项为( C )x -A.-1320B.1320C.-220D.22012.【来源】浙江省绍兴一中2017 届高三上学期期末数学试题在(x﹣y)10 的展开式中,系数最小的项是(C )A.第4 项B.第5 项C.第6 项D.第7 项答案及解析:【考点】二项式定理的应用.【分析】由二项展开式可得出系数最小的项系数一定为负,再结合组合数的性质即可判断出系数最小的项.【解答】解:展开式共有11 项,奇数项为正,偶数项为负,且第6 项的二项式系数最大,则展开式中系数最小的项第 6项.故选C.13.【来源】浙江省金华十校联考2017 届高三上学期期末数学试题在(1﹣x)n=a0+a1x+a2x2+a3x3+…+a n x n中,若2a2+a n﹣5=0,则自然数n的值是(B)A.7 B.8 C.9 D.10答案及解析:【考点】二项式定理的应用.【分析】由二项展开式的通项公式T r+1=•(﹣1)r x r可得a r=(﹣1)r•,于是有2(﹣1)2+(﹣1)n﹣5=0,由此可解得自然数n 的值.【解答】解:由题意得,该二项展开式的通项公式•(﹣1)r x r,∴该项的系数,∵2a2+a n﹣5=0,∴2(﹣1)2+(﹣1)n﹣5=0,即+(﹣1)n﹣5•=0,∴n﹣5 为奇数,∴2==,∴2×=,∴(n﹣2)(n﹣3)(n﹣4)=120.∴n=8.故答案为:8.14.【来源】浙江省重点中学2019 届高三上学期期末热身联考数学试题⎛ 2 ⎫5 1⎪1展开式中,x2的系数是( B )⎝⎭A、80B、-80C、40D、-4015.【来源】山东省德州市2016-2017 学年高二下学期期末考试数学(理)试题a 2 4如果x + x - 的展开式中各项系数之和为2,则展开式中x 的系数是( C ) x xA.8 B.-8 C.16 D.-1616.【来源】云南省昆明市第一中学2018 届高三第八次月考数学(理)试题x x2 ⎪ ⎛1- 1 ⎫ (1+ x )6x 3⎝ ⎭ 展开式中 x 的系数为(B )A .-14B .14C. 15D .3017.【来源】安徽省安庆一中、山西省太原五中等五省六校(K12 联盟)2018 届高三上学期期末联考数学(理)试题在二项式(x - 1)n 的展开式中恰好第 5 项的二项式系数最大,则展开式中含有 x 2项的系数是( C )xA .35B .-35C .-56D .56答案及解析:第五项的二项式系数最大,则,通项,令,故系数.18.【来源】辽宁省实验中学、沈阳市东北育才学校等五校 2016-2017 学年高二下学期期末联考数学(理)试题 在( - 2)n 的展开式中,各项的二项式系数之和为 64,则展开式中常数项为( A )xA .60B .45C . 30D .1519.【来源】湖北省武汉市 2018 届高三四月调研测试数学理试题 在(x + 1-1)6 的展开式中,含 x 5项的系数为( B )xA .6B .-6C .24D .-24答案及解析:的展开式的通项 .的展开式的通项=. 由 6﹣r ﹣2s=5,得 r+2s=1,∵r ,s ∈N ,∴r=1,s=0. ∴的展开式中,含 x 5 项的系数为 . 故选:B .20.【来源】辽宁省抚顺市 2018 届高三 3 月高考模拟考试数学(理)试题在(2 -1)6 的展开式中,含 1项的系数为( C )xA. -60B. 160C. 60D. 6421.【来源】2018 年高考真题——数学理(全国卷Ⅲ)(x 2+ 2)5 的展开式中 x 4 的系数为( C )xA .10B .20C .40D .80答案及解析:由题可得 令 ,则所以x2× 4x9 n故选 C.22.【来源】浙江省金华市十校联考 2016-2017 学年高二下学期期末数学试卷在(x 2﹣4)5 的展开式中,含 x 6 的项的系数为( D ) A .20 B .40 C .80 D .160答案及解析:【分析】=(﹣4)r,令 10﹣2r=6,解得 r=2,由此能求出含 x 6 的项的系数.【解答】解:∵(x 2﹣4)5, ∴T r+1==(﹣4)r,令 10﹣2r=6,解得 r=2, ∴含 x 6 的项的系数为=160. 故选:D .23.【来源】浙江省诸暨市牌头中学 2018 届高三 1 月月考数学试题 在⎛x 2 - ⎝2 ⎫6的展开式中,常数项为( D )⎪⎭ A .-240 B .-60 C .60 D .24024.【来源】浙江省湖州市 2017 届高三上学期期末数学试题在(1﹣x )5+(1﹣x )6+(1﹣x )7+(1﹣x )8 的展开式中,含 x 3 的项的系数是( D ) A .121 B .﹣74C .74D .﹣121答案及解析:【考点】二项式定理的应用.【分析】利用等比数列的前 n 项公式化简代数式;利用二项展开式的通项公式求出含 x 4 的项的系数,即是代数式的含 x 3 的项的系数.【解答】解:(1﹣x )5+(1﹣x )6+(1﹣x )7+(1﹣x )8 ==,(1﹣x )5 中 x 4 的系数 ,﹣(1﹣x )9 中 x 4 的系数为﹣C 4=﹣126,﹣126+5=﹣121. 故选:D25.【来源】甘肃省兰州市第一中学 2018 届高三上学期期中考试数学(理)试题在(x 2-1)(x +1)4 的展开式中,x 3 的系数是( A ) A .0B .10C .-10D .20答案及解析:(x +1)4 的展开式的通项, 因此在(x 2-1)(x +1)4 的展开式中,x 3 的系数是26.【来源】山西重点中学协作体 2017 届高三暑期联考数学(理)试题在二项式 + 1的展开式中,前三项的系数成等差数列,把展开式中所有的项重新排成一列,有理项都互 x xx 1 ⎝ ⎭不相邻的概率为( D ) A . 16B . 14C. 1 3D . 51227.【来源】湖北省孝感市八校 2017-2018 学年高二上学期期末考试数学(理)试题已知C 0- 4C 1+ 42C 2- 43C 3+ + (-1)n 4nC n= 729 ,则C 1+ C 2+ + C n的值等于( C )nnnnnA .64B .32 C.63 D .31答案及解析:nnn因为 ,所因,选 C. 28.【来源】辽宁省重点高中协作校 2016-2017 学年高二下学期期末考试数学(理)试题若òn(2x -1)dx = 6 ,则二项式(1 - 2x )n的展开式各项系数和为( A ) A .-1 B .26 C .1 D . 2n29.【来源】浙江省金华十校 2017 届高三数学模拟试卷(4 月份)数学试题若(x -1)8=1+a 1x +a 2x 2+…+a 8x 8,则 a 5=( B ) A .56B .﹣56C .35D .﹣35答案及解析:利用通项公式即可得出. 解:通项公式 T r+1=(﹣1)8﹣r x r ,令 r=5,则(﹣1)3=﹣56.故选:B .30.【来源】广东省茂名市五大联盟学校 2018 届高三 3 月联考数学(理)试题6⎛ 1 ⎫ x 4在( + x ) 1+ y ⎪ 的展开式中, y 2 项的系数为( C )A .200B .180 C. 150 D .120答案及解析:展开式的通项公式,令可得:,,展开式的通项公式 ,令可得,据此可得: 项的系数为 .本题选择 C 选项.31.【来源】吉林省长春外国语学校 2019 届高三上学期期末考试数学(理)试题 (2-x )(1+2x )5 展开式中,含 x 2 项的系数为( B )x x 0 1 2 2017 3n nx A . 30 B . 70 C .90 D .-15032.【来源】浙江省新高考研究联盟 2017 届第三次联考数学试题若(1 + x )3 + (1 + x )4 + (1 + x )5 + + (1 + x )2017 = a + a x + a x 2 + + a x 2017 ,则 a 的值为( D )3 2017 32018 420174201833.【来源】广东省肇庆市 2017 届高考二模数学(理)试题若(x 6+ 1 )n的展开式中含有常数项,则 n 的最小值等于( C )A .3B .4C .5D .6答案及解析:【分析】二项式的通项公式 T r+1=C )r ,对其进行整理,令 x 的指数为 0,建立方程求出 n 的最小值.【解答】解:由题意 )n 的展开式的项为)r =C n r=C r令r=0,得 r ,当 r=4 时,n 取到最小值 5故选:C .【点评】本题考查二项式的性质,解题的关键是熟练掌握二项式的项,且能根据指数的形式及题设中有常数的条 件转化成指数为 0,得到 n 的表达式,推测出它的值.34.【来源】上海市金山中学 2017-2018 学年高二下学期期中考试数学试题 设(3x -1)6= a x 6+ a x 5+ + a x + a ,则| a | + | a | + | a | + + | a| 的值为…( B )651126(A) 26(B) 46(C) 56(D) 26+ 4635.【来源】浙江省台州市 2016-2017 学年高二下学期期末数学试题x -已知在( 2 1 )n的展开式中,第 6 项为常数项,则 n =( D )A .9B .8C .7D .6答案及解析:【考点】二项式系数的性质. 【分析】利用通项公式即可得出. 【解答】解:∵第 6 项为常数项,由 =﹣ •x n ﹣6,可得 n ﹣6=0.解得 n=6. 故选:D .36.【来源】山东省潍坊寿光市 2016-2017 学年高二下学期期末考试数学(理)试题⎛ 1 ⎫6+ 2x ⎪ ⎝ ⎭的展开式中常数项为( B ) A .120B .160C. 200D .24037.【来源】北京西城八中少年班 2016-2017 学年高一下学期期末考试数学试题 (2x + 3)4 = a + a x + a x 2 + a x 3 + a x 4(a + a + a )2 - (a + a )2若0 1 2 3 4,则 0 2 41 3 的值为( A ). 5 x A . C B . C C . C D . Cx x A .1 B .-1 C .0 D .2答案及解析:令 x = 1, a + a + + a = (2 + 3)4 ,1 4令 x = -1, a - a + a - a + a= (-2 + 3)4 ,1234而 (a + a + a )2 - (a + a )22413= (a 0 + a 2 + a 4 + a 1 + a 3 )(a 0 - a 1 + a 2 - a 3 + a 4 )= (2 + 选 A .3)4 (-2 + 3)4 = (3 - 4)4 = 1. 38.【来源】云南省曲靖市第一中学 2018 届高三 4 月高考复习质量监测卷(七)数学(理)试题设 i 是虚数单位,a 是(x + i )6的展开式的各项系数和,则 a 的共轭复数 a 的值是( B ) A . -8iB . 8iC . 8D .-8答案及解析:由题意,不妨令 ,则,将转化为三角函数形式,,由复数三角形式的乘方法则,,则,故正确答案为 B.39.【来源】福建省三明市 2016-2017 学年高二下学期普通高中期末数学(理)试题 a 2 52x + x - 的展开式中各项系数的和为-1,则该展开式中常数项为( A ) x xA .-200B .-120 C.120 D .20040.【来源】甘肃省天水一中 2018 届高三上学期第四次阶段(期末)数学(理)试题已知(1+ax )(1+x )5 的展开式中 x 2 的系数为 5,则 a =( D )A.-4B.-3C.-2D.-141.【来源】广东省深圳市宝安区 2018 届高三 9 月调研测数学(理)试题(1 + 1)(1 + x )5 展开式中 x 2 的系数为 ( A )xA .20B .15C .6D .142.【来源】甘肃省民乐一中、张掖二中 2019 届高三上学期第一次调研考试(12 月)数学(理)试题⎛ a ⎫ ⎛1 ⎫5x + ⎪ 2x - ⎪ ⎝ ⎭ ⎝⎭ 的展开式中各项系数的和为 2,则该展开式中常数项为( D )A .-40B .-20C .20D .4043.【来源】浙江省名校协作体 2018 届高三上学期考试数学试题⎛ 1+ 2⎫(1- x )4 展开式中 x 2 的系数为( C ) x ⎪ ⎝ ⎭A .16B .12C .8D .444.【来源】山西省太原市 2018 届高三第三次模拟考试数学(理)试题已知(x -1)(ax +1)6展开式中 x 2 的系数为 0,则正实数a = ( B ) 22 A .1B .C.53D . 2x 4 5 5 答案及解析:的展开式的通项公式为.令 得 ;令得.展开式 为. 由题意知,解得(舍).故选 B. 45.【来源】吉林省松原市实验高级中学、长春市第十一高中、东北师范大学附属中学 2016 届高三下学期三校联合模拟考试数学(理)试题(x +1)2 (x - 2)4的展开式中含 x 3 项的系数为( D )A .16B .40 C.-40 D .846.【来源】海南省天一大联考 2018 届高三毕业班阶段性测试(三)数学(理)试题若(2x - 3)2018= a + a x + a x 2 + L + ax 2018 ,则 a + 2a + 3a + L + 2018a= ( D )122018A .4036B .2018C .-2018D .-4036123201847.【来源】湖北省天门、仙桃、潜江 2018 届高三上学期期末联考数学(理)试题(1 + x )8 (1 + y )4 的展开式中 x 2y 2 的系数是 ( D )A .56B .84C .112D .168答案及解析:因的展开式 的系数 ,的展开式 的系数 ,所的系数.故选 D.48.【来源】北京西城八中 2016-2017 学年高一下学期期末考试数学试题 ⎛ x 2 - 在二项式⎝ 1 ⎫5⎪⎭ 的展开式中,含 x 的项的系数是( C ). A .-10B .-5C .10D .5答案及解析:解: ⎛ x 2 - 1 ⎫5⎪ 的展开项T = C k (x 2 )k (-x -1 )5-k = (-1)5-k C k x 3k -5 ,令3k - 5 = 4 ,可得 k = 3, ⎝x ⎭ k +1 5 5∴ (-1)5-k C k = (-1)5-3 C 3= 10 . 故选 C .49.【来源】广东省化州市 2019 届高三上学期第二次模拟考生数学(理)试题 已知(x +1)(ax - 1)5的展开式中常数项为-40,则 a 的值为( C )xA. 2B. -2C. ±2D. 450.【来源】福建省“华安一中、长泰一中、南靖一中、平和一中”四校联考 2017-2018 学年高二下学期第二次联考试题(5 月)数学(理)试题若(1 - 2 x )n(n ∈ N *) 的展开式中 x 4的系数为 80,则(1 - 2 x )n的展开式中各项系数的绝对值之和为( C ) A .32B .81C .243D .256。

山东省各校2020-2021学年高一下学期英语4月月考试题精选汇编 语法填空专题 Word版含答案

山东省各校2020-2021学年高一下学期英语4月月考试题精选汇编 语法填空专题 Word版含答案

山山山山山2020-2021山山山山山山山山4山山山山山山山山山-山山山山山山山东省枣庄市滕州第一中学2020-2021学年高一下学期4月月考英语试题第二节(共10小题;每小题1.5分,满分15分)阅读下面材料,在空白处填入1个适当的单词或括号内单词的正确形式。

The giant panda, also ___56___(know) as panda bear or simply panda, is a bear native ___57___ south central China. In the past many years, the giant panda ___58___(drive) out of the lowland areas where it once lived as a result of farming, deforestation (森林砍伐) and other __59___(develop). Wild population estimates (评估) vary:one estimate shows that there are about 1,590 individuals ___60___(1ive) in the wild, while a 2016 study estimated that this figure could be as high as 2,000 to 3,000. Some reports also show that ___61___ number of giant pandas in the wild is on the rise.The West first learned of the giant panda on March 11, 1869, ___62__ the French missionary (传教士) Armand David received a panda skin from a hunter. In 1936, Ruth Harkness became the first Westerner to bring a live giant panda named Su Lin to the Brookfield Zoo in Chicago. To protect the pandas, in 2012, Earthwatch Institute, a global nonprofit that teams volunteers with scientists to conduct important ___63___(science) research, launched (发起) a program called “On the Trail of Giant Panda”. This program, based in the Wolong National Nature Reserve, allows ___64__(volunteer) to work up close with pandas cared for in captivity (圈养), and help them ___65___(gradual) adapt to life in the wild.【答案】【答案】56. known 57. to 58. has been driven 59. development 60. living 61. the62. when 63. scientific 64. volunteers 65. gradually【解析】这是一篇说明文。

2022-2023学年山东省烟台市高一上学期期末考试化学试题

2022-2023学年山东省烟台市高一上学期期末考试化学试题

2022-2023学年山东省烟台市高一上学期期末考试化学试题1.下列说法错误的是A.腹泻患者可以适当饮用添加蔗糖、氯化钠等电解质的饮用水B.松花蛋是一种常见食品,若食用时有氨气的味道,可以蘸些食醋C.“雨过天晴云破处,这般颜色做将来”,所描述的瓷器天青色来自氧化亚铁D.用高铁酸钾(K 2 FeO 4 )处理饮用水,不仅可以杀菌消毒,还能沉降水中的悬浮物2.下列物质应用错误的是A.CaO可作食品干燥剂B.激光打印机墨粉中含有Fe 2 O 3C.SO 2可作食品添加剂D.NaHCO 3可作食品膨松剂3.配制一定物质的量浓度的NaOH溶液,下列操作会导致所配溶液浓度偏高的是A.用托盘天平和称量纸称量NaOH固体B.容量瓶中有少量蒸馏水C.容量瓶盛过NaOH溶液,使用前未洗涤D.定容时,仰视刻度线4.关于下列仪器说法错误的是A.①③可用于过滤B.②为坩埚,可用于灼烧固体C.④中若装有CaCl 2,可用于干燥NH 3D.⑤可以用酒精灯直接加热5.用N A代表阿伏伽德罗常数的数值,下列说法正确的是A.浓盐酸与足量MnO 2反应生成11.2 L Cl 2,转移电子数为N AB.将1 mol Cl 2通入足量水中,HClO、Cl -、ClO -微粒数之和为2N AC.有铁粉参加的反应,若生成2 mol Fe 2+,则转移电子数一定为4N AD.0.1 mol FeCl 3加入沸水中完全反应生成Fe(OH) 3胶体粒子数小于0.1N A6.下列离子方程式书写正确的是A.向Ba(OH) 2溶液中逐滴滴加NH 4 HSO 4溶液至刚好沉淀完全: Ba 2++2OH -+NH +H ++SO = NH 3 ·H 2 O+H 2 O+BaSO 4↓B.Fe 3 O 4和足量稀硝酸反应:Fe 3 O 4+8H + = Fe 2++2Fe 3++4H 2 OC.过量SO 2通入NaClO溶液中:SO 2+H 2 O+ClO - = HClO+HSOD.强碱性溶液中NaClO将Mn 2+氧化成MnO 2:Mn 2++ClO -+H 2 O = MnO 2↓+Cl -+2H +7.下列由实验现象所得结论正确的是A.向BaCl 2溶液中通入X气体,产生白色沉淀,则X气体可能是SO 2或CO 2B.某溶液中加入BaCl 2溶液,产生不溶于稀硝酸的白色沉淀,则原溶液中一定有Ag +C.某溶液中加入Na 2 CO 3溶液有白色沉淀,再滴加盐酸沉淀消失,则原溶液中一定有Ca 2+D.某溶液中加入稀盐酸产生使品红溶液褪色的气体,则原溶液中可能含SO 或HSO8.如图是N、S及其化合物的“价—类”二维图,下列说法正确的是A.在一定条件下,a可将c、d还原为bB.c'使品红褪色的原理与HClO的漂白原理相同C.a与浓e、a'与浓e'均能发生氧化还原反应D.常温下,Fe与浓e和浓e'均不反应9.用铁泥(主要成分为Fe2O3,还含有少量FeO和Fe)制备纳米Fe3O4的流程如下。

2016-2017学年山东省烟台市高一下学期期中考试物理试题

2016-2017学年山东省烟台市高一下学期期中考试物理试题

2016-2017学年山东省烟台市高一下学期期中考试物理试题第I卷(选择题共42分)一、选择题:(本题共14小题,每小题3分。

共42分。

其中第1-7题在每小题给出的四个选项中,只有一项符合题目要求,第8-14题有多项符合题目要求。

全部选对得3分,选对但不全得2分,错选得0分)1. 下列说法符合史实的是()A. 牛顿发现了行星的运动规律B. 开普勒发现了万有引力定律C. 卡文迪许第一次在实验室里测出了引力常量D. 牛顿发现了海王星和冥王星2. 下列关于匀速圆周运动的说法正确的是()A. 匀速圆周运动的物体是处于平衡状态B. 匀速圆周运动是一种匀速运动C. 匀速圆周运动是一种匀变速曲线运动D. 匀速圆周运动是一种速度和加速度都不断改变的运动3. 有两个大小相同的实心铁球和实心木球,旋转在同一水平桌面上。

若选定地面为参考平面,比较这两个球的重力势能的大小,则()A. 若甲、乙两物体与水平面动摩擦因数相同,则甲的质量较大B. 若甲、乙两物体与水平面动摩擦因数相同,则乙的质量较大C. 甲与地面间的动摩擦因数一定大于乙与地面间的动摩擦因数D. 甲与地面间的动摩擦因数一定小于乙与地面间的动摩擦因数7. 质量为1kg的物体,由空中某点开始做自由落体运动,经6s落地,以下说法中正确的是(2)()g m s10/A. 第2s内小球的动能增量为100JB. 6s内物体重力势能减小了1800JC. 2s末重力做功的瞬时功率为150WD. 第3s内重力做功的平均功率为200W8. 做匀速圆周运动的物体,下列物理量中保持不变的是()A. 线速度B. 向心加速度C. 周期D.动能9. 地球同步卫星距地心的距离为r ,运行速率为1v ,向心加速度大小为1a ,地球赤道上的物体随地球自转的向心加速度大小为2a ,第一宇宙速度为2v ,地球半径为R 。

则( )A. 12::a a r R =B. 2212::a a R r =C. 2212::v v R r =D. 12::v v R r =10. 如图所示为一皮带传动装置,右轮半径为2r ,a 是它边缘上的一点,左侧是一轮轴,大轮的半径为4r ,小轮半径为2r ,b 点在小轮上,到轮中心的距离为r ,c 点和d 点分别位于小轮和大轮的边缘上,若传动过程中皮带不打滑,则( )A. a 点与b 点的线速度大小相等B. a 点与b 点的角速度大小相等C. a 点与c 点的线速度大小相等D. a 点与d 点的向心加速度大小相等11. 铁路弯道处内外轨道高度是不同的,已知内外轨道平面与水平面的倾角为θ,转弯处的弯道半径为R ,如图所示。

人教版数学高一第二章点,直线,平面之间的位置关系单元测试精选(含答案)2

人教版数学高一第二章点,直线,平面之间的位置关系单元测试精选(含答案)2

【答案】A
15.如图,在三棱柱 ABC-A′B′C′中,点 E、F、H、K 分别为 AC′、CB′、A′B、B′C′
的中点,G 为△ABC 的重心,从 K、H、G、B′中取一点作为 P,使得该三棱柱恰有 2
条棱与平面 PEF 平行,则点 P 为 ( )
A.K
B.H
C.G
D.B′
【来源】人教 A 版高中数学必修二第 2 章 章末综合测评 3
A.30°
B.60°
C.90°
D.120°
【来源】人教 A 版高中数学必修二第二章 章末检测卷
【答案】C
19.如图,α⊥β,α∩β=l,A∈α,B∈β,A、B 到 l 的距离分别是 a 和 b,AB 与α、β
试卷第 5页,总 17页
所成的角分别是θ和φ,AB 在α、β内的射影长分别是 m 和 n,若 a>b,则 ( )
【来源】2013-2014 学年福建省清流一中高一下学期第二次阶段考数学试卷(带解析) 【答案】①②
30.如图所示,在正方体 ABCD A1B1C1D1 中, M,N 分别是棱 AA1 和 AB 上的点, 若 B1MN 是直角,则 C1MN ________.
试卷第 8页,总 17页
【来源】人教 A 版 2017-2018 学年必修二第 2 章 章末综合测评 1 数学试题 【答案】90°
29.如图,将边长为1的正方形 ABCD 沿对角线 AC 折起,使得平面 ADC 平面 ABC , 在折起后形成的三棱锥 D ABC 中,给出下列三个命题: ① DBC 是等边三角形; ② AC BD ; ③三棱锥 D ABC 的体积是 2 .
6
其中正确命题的序号是* * * .(写出所有正确命题的序号)
试卷第 1页,总 17页

河南省郑州市2016-2017学年高一上学期期末考试数学试题 Word版含答案

河南省郑州市2016-2017学年高一上学期期末考试数学试题 Word版含答案

河南省郑州市2016-2017学年高一上学期期末考试数学试题 Word版含答案数学试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若$\{1,2\}\subset A\subset\{1,2,3,4,5\}$,则满足条件的集合$A$的个数是()A。

6B。

8C。

7D。

92.设$a,b\in\mathbb{R}$,集合$A=\{1,a+b,a\},B=\{0,\frac{b}{a},b\}$,若$A=B$,则$b-a=$()A。

2B。

$-1$C。

1D。

$-2$3.下列各组函数中$f(x)$与$g(x)$的图象相同的是()A。

$f(x)=x,g(x)=|x|$B。

$f(x)=x^2,g(x)=\begin{cases}x,&(x\geq 0)\\-x,&(x<0)\end{cases}$C。

$f(x)=1,g(x)=x$D。

$f(x)=x,g(x)=\begin{cases}x,&(x\geq0)\\0,&(x<0)\end{cases}$4.下列函数中,既是偶函数又在$(-\infty,0)$内为增函数的是()A。

$y=-\frac{1}{2}$B。

$y=x^2$C。

$y=x+1$D。

$y=\log_3(-x)^2$5.三个数$a=0.32,b=\log_2 0.3,c=2^0.3$之间的大小关系为()A。

$a<c<b$B。

$a<b<c$C。

$b<a<c$D。

$b<c<a$6.下列叙述中错误的是()A。

若点$P\in\alpha,P\in\beta$且$\alpha\cap\beta=l$,则$P\in l$B。

三点$A,B,C$能确定一个平面C。

若直线$a\parallel b$,则直线$a$与$b$能够确定一个平面D。

若点$A\in l,B\in l$且$A\in\alpha,B\in\alpha$,则$l\subset\alpha$7.方程$\log_3 x+x=3$的解所在区间是()A。

山东省烟台市2015届高三上学期期末统考数学(理)试题word版含答案

山东省烟台市2015届高三上学期期末统考数学(理)试题word版含答案

2014—2015年度第一学期高三期末检测数学(理)第Ⅰ卷一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、已知集合{}|11M x x =-<,集合{}2|23N x x x =-<,则R MC N =( )A .{}|02x x <<B .{}|12x x -<<C .{}|123x x x x -<<≤<或 D .φ 2、若函数()35(2)5x x f x f x x -≥⎧=⎨+<⎩,则()2f 的值为( )A .2B .3C .4D .5 3、将函数sin(2)3y x π=-的图象向右平移12π个单位,然后纵坐标不变横坐标伸长为原来的2倍,得到解析式为( ) A .5sin()12y x π=-B .cos y x =C .cos y x =-D .sin y x =- 4、如右图放置的六条棱长都相等的三棱锥,则这个几何体的侧视图是( )A .等腰三角形B .对边三角形C .直角三角形D .无两边相等的三角形5、已知ABC ∆的重心为G ,角,,A B C 所对的边分别为,,a b c 若2330aGA bGB cGC ++=,则sin :sin :sin A B C =( )A .1:1:1B 2C .2:1D .3:26、某次数学摸底考试共有10道选择题,每道题四个选项中有且只有一个选项是正确的;张三同学没道题都随机地从中选出一个答案,记该同学至少答对9道题的概率为P ,则下列数据中与P 的值最接近的是( )A .4310-⨯ B .5310-⨯ C .6310-⨯ D .7310-⨯7、在7(1)ax +的展开式中,3x 项的系数是2x 项系数和5x 项系数的等比中项,则实数a 的值为( )A .259 B .45 C .253D .538、已知函数()()2,log x a f x ag x x -==(其中0a >且1a ≠),若()()440f g -<,则()(),f x g x 在同一坐标系内的大致图象是( )9、已知双曲线22221x y a b-=的焦点到其渐近线的距离等于2,抛物线22y px =的焦点为双曲线的右焦点,双曲线截抛物线所得的线段长为4,则抛物线方程为( ) A .24y x = B.2y = C.2y = D .28y x = 10、定义在R上的函数()f x 满足()()22f x f x +=,当(]0,2x ∈时,()(](]220,1l o g1,2x x x f x x x ⎧-⎪=⎨-⎪⎩,若(]4,2x ∈--时,()142t f x t ≤-有解,则实数t 的取值范围是( ) A .[)()2,00,1- B .[)()2,01,-+∞ C .[]2,1-- D .(](],20,1-∞-第Ⅱ卷二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卷的横线上。

2020届山东省烟台市高三上学期期末考试数学试题(PDF版)

2020届山东省烟台市高三上学期期末考试数学试题(PDF版)

2019-2020学年度第一学期期末学业水平诊断高三数学注意事项:1. 本试题满分150分,考试时间为120分钟。

2. 答卷前务必将姓名和准考证号填涂在答题纸上。

3. 使用答题纸时,必须使用0.5毫米的黑色签字笔书写,要字迹工整,笔迹淸晰。

超出答题区书写的答案无效;在草稿纸、试题卷上答题无效。

一、单项选择题:本题共8小題,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合題目要求的。

1. 己知集合A={X|X2-X-2≤0}, B={x|y= ,则A∪B=A. {x|-l≤x≤2}B. {x|0≤x≤2}C. {x|x≥-l}D. {x|x≥0}2. “x∈R,x2-x+l>0”的否定是A. x∈R, X2-X+1≤0B. x∈R, x2-x+1<0C. x∈R, x2-x+l<0D. x∈R, x2-x+l≤03. 若双曲线(a>0,b>0)的离心率为,则其渐近线方程为A. 2x±3y=0B. 3x±2y=0C. x±2y=0D. 2x±y=04.设a=log0.53,b=0.53,c= ,则a,b,c的大小关系为A.a<b<cB. a<c<bC. b<a<cD. b<c<a5.为弘扬我国古代的“六艺文化”,某夏令营主办单位计划利用暑期开设“礼”“乐”“射”“御”“书”“数”六门体验课程,每周一门,连续开设六周.若课程“乐”不排在第一周,课程“御”不排在最后一周,则所有可能的排法种数为A. 216B. 480C. 504D. 6246. 函数y=|x|+sinx的部分图象可能是7.若x=α时,函数f(x)=3sinx+4cosx取得最小值,则sinα=A. B. C. D.8.函数,若方程f(x)=-2x+m有且只有两个不相等的实数根,则实数m的取值范围是A. (-∞,4)B. (-∞,4]C. (-2,4)D. (-2,4]二、多项选择题:本題共4小题,每小题5分,共20分。

山东省烟台市2020-2021学年高一上学期期末考试化学试题(解析版)

山东省烟台市2020-2021学年高一上学期期末考试化学试题(解析版)
答案为D。
7.如图是喷泉实验装置,在烧瓶中充满干燥气体,胶头滴管及烧杯中分别盛有相同液体。下列组合不能形成喷泉的是
A.HCl与滴有石蕊溶液的水
B.Cl2与饱和食盐水溶液
C.SO2与NaOH溶液
D.NH3与滴有酚酞溶液的水
【答案】B
【解析】
【分析】
若气体与液体能相互反应或气体易溶于液体,从而使圆底烧瓶内的气压骤降,这种情况下可形成喷泉,据此分析作答。
【答案】D
【解析】
【分析】
【详解】A.浓硝酸使石蕊试液变红,然后利用浓硝酸的强氧化性将有色物质氧化,使溶液褪色,而稀硝酸只能使石蕊试液变红不能褪色,能够说明浓硝酸的氧化性强于稀硝酸,故A不符合题意;
B.浓硝酸能将NO氧化成NO2,体现浓硝酸的强氧化性,而稀硝酸不能将NO氧化成NO2,从而说明浓硝酸的氧化性强于稀硝酸,故B不符合题意;
D.MnO2与足量浓盐酸反应,化学方程式为: ,10.44g MnO2的物质的量为0.12mol,生成氯气的物质的量为0.12mol,分子数为0.12 NA,D项正确;
答案选AD。
12.为防止废弃的硒单质(Se)造成环境污染,通常用浓硫酸将其转化成SeO2,再用KI溶液处理后回收Se。发生反应:①Se+2H2SO4(浓)=2SO2↑+SeO2+2H2O;②SeO2+4KI+4HNO3=4KNO3+Se+2I2+2H2O,下列说法正确的是
C. 碱性溶液中:K+、CO 、NO 、SO
D 无色溶液中:Mg2+、NH 、OH-、Cl-
【答案】C【解析】【 Nhomakorabea析】【详解】A.酸性溶液中,Fe2+被NO 氧化为Fe3+,故不选A;
B.酸性溶液中,Cl-、ClO-发生归中反应生成氯气,故不选B;

人教版数学高一第三章直线与方程单元测试精选(含答案)3

人教版数学高一第三章直线与方程单元测试精选(含答案)3

d
Ax0 By0 C A2 B2
.已知点 P1, P2
到直线 l
的有向距离分别是 d1, d2 ,给出以下命题:
试卷第 6页,总 10页
①若 d1 d2 0 ,则直线 P1P2 与直线 l 平行; ②若 d1 d2 0 ,则直线 P1P2 与直线 l 平行; ③若 d1 d2 0 ,则直线 P1P2 与直线 l 垂直;④若 d1d2 0 ,则直线 P1P2 与直线 l 相交;
25.直线 l1:x+my+6=0 与 l2:(m-2)x+3y+2m=0,若 l1//l2 则 m =__________;
【来源】[中学联盟]山东省栖霞市第一中学 2017-2018 学年高一上学期期末测试数学试 题
【答案】 1 1
26.直线 y= x 关于直线 x=1 对称的直线方程是________;
则 m 的倾斜角可以是:①15°;② 30°;③ 45°;④ 60°;⑤ 75°. 其中正确答案的序号是______.(写出所有正确答案的序号) 【来源】2011 届陕西省师大附中、西工大附中高三第七次联考文数
【答案】①或⑤
30.定义点 P(x0 , y0 ) 到直线 l : Ax By C 0( A2 B 2 0) 的有向距离为
评卷人 得分
二、填空题
22.在四边形 ABCD 中,AB = DC = (1,1),且 BA + BC =
|BA| |BC|
|B3BDD| ,则四边形 ABCD 的面积


【来源】2015 高考数学(理)一轮配套特训:4-3 平面向量的数量积及应用(带解析)
【答案】 3
23.直线 ax+2y-4=0 与直线 x+y-2=0 互相垂直,那么 a=______________ ;

山东省烟台市2023-2024学年高一下学期期末考试化学试题(含答案)

山东省烟台市2023-2024学年高一下学期期末考试化学试题(含答案)

烟台市2023-2024学年高一下学期期末考试化学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

可能用到的相对原子质量:H 1 C 12 O 16 S 32 Cu 64 Br 80一、选择题:本题共10小题,每小题2分,共20分。

每小题只有一个选项符合题意。

1.化学与现代科技的发展密切相关。

下列说法正确的是A .华为“麒麟9000”芯片的主要成分与光导纤维相同B .“长征七号”使用的推进剂煤油可由煤的干馏得到C .“神舟十七号”使用的太阳能电池供电时化学能转化为电能D .“深海一号”潜水器母船海水浸泡区镶上铝基,利用了牺牲阳极保护法2.下列物质应用错误的是A .、用于制造氢弹B .福尔马林用于食品保鲜C .油脂用于制取甘油D .聚四氟乙烯用于制作不粘锅的涂层3.下列化学用语表述正确的是A .乙醛的结构简式:B .的电子式:C .乙酸的空间填充模型:D .的结构示意图:4.五种短周期元素在元素周期表中的位置如图所示。

其中Y 原子核外电子数是X 原子的2倍,下列说法错误的是A .M 、W 、X 的原子半径大小:M >W >XB .最高价氧化物对应水化物的酸性:Y <ZC .简单氢化物的还原性:X <YD .与水化合生成对应的酸5.下列说法正确的是2H 3H 3CH COH 4NH Cl 2S 2MXA .用溴的溶液可鉴别分馏汽油和裂化汽油B .糖类、油脂和蛋白质均可在一定条件下水解C .甲烷、苯和葡葡糖均不能使酸性溶液褪色D .与组成上相差1个,一定互为同系物6.实验室提供的玻璃仪器有试管、导管、烧杯、酒精灯、分液漏斗、玻璃棒、胶头滴管(数量不限),选用上述仪器(非玻璃仪器任选)不能完成的实验是A .检验淀粉是否水解 B .粗盐提纯C .从碘水中萃取碘D .验证非金属性:S >C >Si7.下列说法错误的是A .VIIA 元素随着原子序数的递增,元素对应单质的熔沸点逐渐升高B .碱金属元素随着原子序数的递增,原子半径增大,元素的金属性增强C .VIIA 元素随着原子序数的递增,元素对应氢化物的稳定性越来越弱D .IA 族元素原子和VIIA 族元素原子形成的化学键一定是离子键8.已知反应:,下列说法错误的是A .该反应为取代反应B .乙的结构简式为C .1 mol 甲反应的n (Na )与之比为1∶1D .乙、丙均能与Na 按物质的量1∶2反应9.人工合成淀粉的部分过程如图所示。

【Word版解析】山东省烟台市2013届高三上学期期末考试 数学(文)试题

【Word版解析】山东省烟台市2013届高三上学期期末考试 数学(文)试题

山东烟台市2012—2013年度第一学期高三期末检测数学(文)注意事项:1.本试题满分150分,考试时间为120分钟。

2.使用答题纸时,必须使用0.5毫米的黑色墨水签字笔书写,作图时,可用2B 铅笔。

要字迹工整,笔迹清晰。

超出答题区书写的答案无效;在草稿纸,试题卷上答题无效。

3.答卷前将密封线内的项目填写清楚。

一、选择题:本大题共12小题;每小题5分,共60分,每小题给出四个选项,只有一个选项符合题目要求,把正确选项的代号涂在答题上卡上。

1.已知{1,2}A =-,{22}B x x =-≤<,则A B I 等于 A.{12}x x -≤≤B.{2}C.{1}-D.{1,2}-【答案】D【解析】因为{1,2}A =-,{22}B x x =-≤<,所以{1,2}A B =-I ,选D.2.已知点(1,1),(2,)A B y -,向量a=(1,2),若//AB a uu u r r,则实数y 的值为A.5B.6C.7D.8【答案】C【解析】(3,1)AB y =-,因为//AB a uu u r r ,所以1230y --⨯=,即7y =,选C.3.已知1sin()23πα+=,则cos(2)πα+的值为 A.79- B.79 C.29 D.23-【答案】B【解析】由1sin()23πα+=得1sin()cos 23παα+==。

所以227cos(2)cos 2(2cos 1)12cos 9παααα+=-=--=-=,选B.4.函数2()1(1)f x n x x=+-的零点所在的大致区间是A.(0,1)B.(1,2)C.(2,e)D.(3,4)【答案】B【解析】因为(1)1220f n =-<,(2)1310f n =->,所以函数的零点所在的大致区间是(1,2)中间,选B.5.已知动点P(m,n)在不等式组400x y x y x +≤⎧⎪-≥⎨⎪≥⎩表示的平面区域内部及其边界上运动,则35n z m -=-的最小值是 A.4B.3C.53D.13【答案】D【解析】做出不等式组对应的平面区域OAB .因为35n z m -=-,所以z 的几何意义是区域内任意一点(,)P x y 与点(5,3)M 两点直线的斜率。

2023-2024学年山东省烟台市高三上学期期末考试化学试题(解析版)

2023-2024学年山东省烟台市高三上学期期末考试化学试题(解析版)

山东省烟台市2023-2024学年高三上学期期末考试化学试题注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

可能用到的相对原子质量:Li 7O 16S 32Mn 55Cu 64I 127一、选择题:本题共10小题,每小题2分,共20分。

每小题只有一个选项符合题意。

1.中华文化源远流长,化学与文化传承密不可分。

下列说法错误的是A.粮食酿酒过程中碳元素仅被还原B.“白青[Cu 2(OH)2CO 3]得铁化为铜”,其中白青属于盐C.闻名世界的秦兵马俑是陶制品,由黏土经高温烧结而成D.“盖此矾色绿,味酸,烧之则赤”,“味酸”是因绿矾水解产生H +【答案】A【解析】【详解】A .粮食酿酒过程中,粮食中的淀粉水解生成葡萄糖,葡萄糖在酒化酶作用下生成乙醇和二氧化碳,该过程中碳元素部分被还原,部分被氧化,故A 错误;B .从组成分析Cu 2(OH)2CO 3属于碱式盐,故B 正确;C .陶瓷由黏土高温烧结而成,故C 正确;D .绿矾为42FeSO 7H O ,溶于水电离出Fe 2+,Fe 2+水解产生H +使溶液呈酸性,故D 正确;故选:A 。

2.实验室中下列做法正确的是A.用铜丝代替铂丝做焰色试验B.用剩的白磷放回盛有水的广口瓶中C.用10mL 量筒量取8.50mLNaOH 溶液D.浓硝酸保存在带橡胶塞的棕色细口瓶中【答案】B【解析】【详解】A.铜元素的焰色呈绿色,会干扰其它金属元素的焰色,不能用铜丝代替铂丝做焰色试验,A项错误;B.白磷易自燃,用剩的白磷放回盛有水的广口瓶中,B项正确;C.量取8.50mLNaOH溶液应该用碱式滴定管,量筒精度不够,不能用量筒,10mL量筒只能量取8.5mLNaOH 溶液,C项错误;D.浓硝酸具有强氧化性,会腐蚀橡胶塞,保存浓硝酸的细口瓶不能用橡胶塞,D项错误;答案选B。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山东省烟台市2016-2017学年高一上学期期末考试第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若直线10mx ny +-=过第一、三、四象限,则( )A .0,0m n >>B .0,0m n <>C .0,0m n ><D .0,0m n << 2.函数()1xf x e x=-的零点所在的区间是( ) A .10,2⎛⎫ ⎪⎝⎭ B .1,12⎛⎫ ⎪⎝⎭ C .31,2⎛⎫ ⎪⎝⎭ D .3,22⎛⎫⎪⎝⎭3.设,,l m n 表示三条直线,,,αβγ表示三个平面,则下面命题中不成立的是( ) A .若.l m αα⊥⊥,则l m ;B .若,,m m l n β⊂⊥是l 在β内的射影,则m n ⊥;C .若,,m n m n αα⊂⊄ ,则n α ;D .若.αγβγ⊥⊥,则αβ .4.若直线()()1:3410l k x k y -+++=与()()2:12330l k x k y ++-+=垂直,则实数k 的值是( )A .3或-3B . 3或4 C. -3或-1 D .-1或4 5.一个几何体的三视图如下图所示,则该几何体的表面积为( )A .10+.1012.11+6.直线102nmx y +-=在y 轴上的截距是-1,0y --=的倾斜角的2倍,则( )A .2m n ==-B . 2m n == C. 2m n ==-D .2m n ==7.母线长为1的圆锥的侧面展开图的圆心角等于120︒,则该圆锥的体积为( )A B C. 881π D .1081π8.在正方体1111ABCD A BC D -中,CD 的中点为1,M AA 的中点为N ,则异面直线1C M 与BN 所成角为( )A .30︒B .60︒ C. 90︒ D .120︒9.已知点(),M a b 在直线34200x y +-= ) A .3 B . 4 C. 5 D .610.已知边长为a 的菱形ABCD 中,60ABC ∠=︒,将该菱形沿对角线AC 折起,使BD a =,则三棱锥D ABC -的体积为( )A .36aB .312a C. 312 D .31211.已知三棱柱111ABC A B C -的所有棱长都相等,侧棱垂直于底面,且点D 是侧面11BB C C 的中心,则直线AD 与平面11BB C C 所成角的大小是( ) A .30︒ B .45︒ C. 60︒ D .90︒12.如图,在多面体ABCDEF 中,四边形ABCD 是边长为3的正方形,3,2EF AB EF = ,且点E 到平面ABCD 的距离为2,则该多面体的体积为( )A .92 B .5 C. 6 D .152第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知直线3450x y +-=与直线6140x my ++=平行,则它们之间的距离是 .14.设函数()2,1ln ,1x x f x x x -⎧<=⎨≥⎩,若函数()y f x k =-有且只有两个零点,则实数k 的取值范围是 .15.已知点()0,2关于直线l 的对称点为()4,0,点()6,3关于直线l 的对称点为,则m n += .16.定义点()00,P x y 到直线()22:00l Ax By C A B ++=+≠的有向距离为d =.已知点12,P P 到直线l 的有向距离分别是12,d d ,给出以下命题:①若12d d =,则直线12PP 与直线l 平行;②若12d d =-,则直线12PP 与直线l 垂直;③若120d d ⋅>,则直线12PP 与直线l 平行或相交;④若120d d ⋅<,则直线12PP 与直线l 相交,其中所有正确命题的序号是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.如图,三棱柱111ABC A B C -的侧棱垂直于底面,其高为6cm ,底面三角形的边长分别为3,4,5cm cm cm ,以上、下底面的内切圆为底面,挖去一个圆柱,求剩余部分几何体的体积V .18.过点()3.0P 有一条直线l ,它夹在两条直线1:220l x y --=与2:30l x y ++=之间的线段恰被点P 平分,求直线l 的方程.19.如图,四棱锥P ABCD -中,,1,2,BC AD BC AD AC CD ==⊥ ,且平面PCD ⊥平面ABCD .(1)求证:AC PD ⊥;(2)在线段PA 上是否存在点E ,使BE 平面PCD ?若存在,确定点E 的位置,若不存在,请说明理由.20.如图,在ABC ∆中,边BC 上的高所在的直线方程为320,x y BAC -+=∠的平分线所在的直线方程为0y =,若点B 的坐标为()1,3.(1)求点A 和点C 的坐标; (2)求ABC ∆的面积.21. 某化工厂每一天中污水污染指数()f x 与时刻x (时)的函数关系为()()[]25log 121,0,24f x x a a x =+-++∈,其中a 为污水治理调节参数,且()0,1a ∈.(1)若12a =,求一天中哪个时刻污水污染指数最低;(2)规定每天中()f x 的最大值作为当天的污水污染指数,要使该厂每天的污水污染指数不超过3,则调节参数a 应控制在什么范围内?22.已知在三棱锥P ABC -中,,E F 分别是,AC AB 的中点,,ABC PEF ∆∆都是正三角形,PF AB ⊥.(1)求证:PC ⊥平面PAB ;(2)求二面角P AB C --的平面角的余弦值;(3)若点,,,P A B C 在一个表面积为12π的球面上,求ABC ∆的边长.试卷答案一、选择题1-5: CBDAC 6-10: AACBD 11、12:CD二、填空题13.125 14. 1+2∞(,) 15. 33516. ③④三、解答题17.解:111334636(cm )2ABC A B C V -⨯=⨯=三棱柱. …………………3分 设圆柱底面圆的半径为r ,则22341345ABC S r AB BC AC ∆⨯⨯===++++, ……………………6分1236(cm )OO V r h ππ==圆柱. ………………………9分所以11113(366)cm ABC A B C OO V V V π-=-=-三棱柱圆柱. ……………………10分18.解:设直线l 夹在直线12,l l 之间的线段是AB (A 在1l 上,B 在2l 上),,A B 的坐标分别是()()1122,,,x y x y .因为AB 被点P 平分,所以12126,0x x y y +=+=,于是21216,x x y y =-=-.……………………3分由于A 在1l 上,B 在2l 上,所以1111220(6)()30x y x y --=⎧⎨-+-+=⎩,解得111116,33x y ==,即A 的坐标是1116,33⎛⎫⎪⎝⎭. ……………………6分直线PA 的方程是0316110333y x --=--, ……………………10分 即 8240x y --=.所以直线l 的方程是8240x y --=. …………………12分 19.证明:DC BEF PA(1)连接AC ,∵平面PCD ⊥平面ABCD ,平面PCD I 平面ABCD CD =,AC CD ⊥,AC ⊂平面ABCD ,∴AC ⊥平面PCD , ……………………4分 ∵PD ⊂平面PCD ,所以AC PD ⊥.……………………5分 (2) 当点E 是线段PA 的中点时,//BE 平面PCD . ……………………6分 证明如下:分别取,AP PD 的中点,E F ,连接,,.BE EF CF 则EF 为PAD ∆的中位线, 所以//EF AD ,且112EF AD ==, 又//BC AD ,所以//BC EF ,且BC EF =,所以四边形BCFE 是平行四边形,所以//BE CF , …………………10分 又因为BE ⊄平面PCD ,CF ⊂平面PCD所以//BE 平面PCD .…………………12分 20.解:(1)由320x y y -+=⎧⎨=⎩,得顶点(2,0)A -. …………………2分又直线AB x 轴是BAC ∠的平分线,故直线AC 的斜率为1-,AC 所在直线的方程为2y x =-- ①直线BC 上的高所在直线的方程为320x y -+=,故直线BC 的斜率为3-, 直线BC 方程为33(1)y x -=--,即3 6.y x =-+ ② ……………4分 联立方程①②,得顶点C 的坐标为(4,6)-. ………………6分(2 ………………8分又直线BC 的方程是360x y +-=,所以A 到直线BC 的距离 ………………10分所以ABC ∆ ……………12分21.解:(1) …………………2分当()2f x =即4x =.所以一天中早上4点该厂的污水污染指数最低. …………………4分 (2)设()25log 1t x =+,则当024x ≤≤时,01t ≤≤.则()31, 01, 1t a t ag t t a a t -++≤≤⎧=⎨++<≤⎩, …………………7分显然()g t 在[]0,a 上是减函数,在[],1a 上是增函数,则()()(){}max max 0,1f x g g =, …………………9分 因为()()031,12g a g a =+=+,则有 ()()0313123g a g a =+≤⎧⎪⎨=+≤⎪⎩,解得23a ≤, ……………………11分又(0,1)a ∈,故调节参数a . ……………………12分 22.(1)证明:连接FC ,因为在等边ABC ∆中, F 为AB 中点,所以AB CF ⊥. 因为AB CF ⊥,AB PF ⊥,PF CF=F . 所以AB ⊥平面PCF ,又PC ⊂平面PCF ,所以PC AB ⊥, ………………2分 在PAC ∆中,PE 为边AC 上的中线, 又1122PE EF BC AC ===, 所以PAC ∆为直角三角形,且AP PC ⊥. ………………4分 因为PC AB ⊥,PC AP ⊥,AP AB A =I ,所以PC ⊥平面PAB . ……………………5分(2)解:由(1)可知, PFC ∠为所求二面角的平面角.设AB a =,则2a PF =,FC =在直角三角形CFP 中,cos PF PFC FC ∠==……………………8分(3)解:设球半径为r ,则2412r ππ=,所以r =………………9分 设ABC ∆的边长为a ,因为PC ⊥平面PAB ,,AP PB ⊂平面PAB 所以PC AP ⊥,PC BP ⊥,且由(2)知,2PC a =. 因为PF AF FB ==,所以PAB ∆为直角三角形,且PA PB ⊥,2PA PB ==,2a =,所以a =…………………12分。

相关文档
最新文档