福建省三明市八年级(上)期末数学试卷

合集下载

三明市八年级上学期数学期末考试试卷

三明市八年级上学期数学期末考试试卷

三明市八年级上学期数学期末考试试卷姓名:________班级:________成绩:________一、 单选题 (共 10 题;共 23 分)1. (2 分) 今年初,惊闻海地发生地震,中国政府和人民在第一时间作出支援海地的决定:1 月 13 日,中国红十字会向海地先期捐款 1 000 000 美元,将 1 000 000 用科学记数法表示为( )A . 10×105B . 1×106C . 0.1×107D . 1×1052. (5 分) -2010 的绝对值是( )A . -2010B . 2010C.D.3. (2 分) (2020 八上·德江期末) 下列运算正确的是( ) A. B.C.D. 4. (2 分) (2020 八上·德江期末) 下列表达式中,说法正确的是( ) A . 的倒数是B . 是无理数 C . 的平方根是 D . 的绝对值是 5. (2 分) (2020 八上·德江期末) 如果一个三角形的两边长分别是 和 ,则第三边长可能是( ) A. B. C. D. 6. (2 分) (2020 八上·德江期末) 下列运算中正确的是( )第1页共9页A.B. C.D. 7. (2 分) (2020 八上·德江期末) 已知 A. B.,下列式子不成立的是( )C.D.,那么8. (2 分) (2020 八上·德江期末) 如图,已知且.下列确定 点的方法正确的是( ),求作一点 ,使 到的两边的距离相等,A. 为、∠B 两角平分线的交点;B. 为的角平分线与 AB 的垂直平分线的交点;C . 为 、AC 两边上的高的交点;D . 为 、AC 两边的垂直平分线的交点;9. (2 分) (2020 八上·德江期末) 如图,在中,上一点,与的平分线相交于点 ,则(, ), 为 延长线A. B. C.第2页共9页D.10. (2 分) (2020 八上·德江期末) 若,则()A.B. C. D.二、 填空题 (共 8 题;共 8 分)11. (1 分) 计算:0.1252018×(-8)2019=________.12. (1 分) (2019 七上·遵义月考) 计算. -5÷2×________.13. (1 分) (2020·银川模拟) 定义新运算:对于任意实数 a,b 都有:a⊕b=a(a﹣b)+1,其中等式右边是通常的加法、减法及乘法运算.如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣5,那么方程 3⊕x=13 的解为 x=________.14.(1 分)(2020 八上·德江期末) 如图,在△ABC 中,AB=AC,DE 是 AB 的垂直平分线,△BCE 的周长为 24,BC=10则 AB 的长为________15. (1 分) (2020 八上·德江期末) 实数 、 在数轴上位置如图,化简:________;16. (1 分) 命题“对顶角相等”的逆命题是________.17. (1 分) (2020 八上·德江期末) 若方程 18. (1 分) (2020 八上·德江期末) 如图,无解,则________;为等边三角形,,,且。

福建省三明市八年级上学期数学期末考试试卷

福建省三明市八年级上学期数学期末考试试卷

福建省三明市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)(2020·酒泉模拟) 下列图形是轴对称图形的是()A .B .C .D .2. (2分) (2019七下·梁园期末) 点(﹣1,3),(,5),(0,4),(﹣,﹣)中,在第一象限的是()A . (﹣1,3)B . (,5)C . (0,4)D . (﹣,﹣)3. (2分) (2020八上·桂林期末) 下列各数中是无理数的是()A . -3.14B . -2C .D .4. (2分)下列各组数中,是勾股数的一组是()A . a=4,b=3,c=5B . a=9,b=﹣12,c=15C . a=, b=2,c=2.5D . a=8,b=40,c=415. (2分) (2020八上·嘉兴期末) 已知和在一次函数为常数)的图象上,且,则的值可能是()A . -2B . -1C . 0D . 26. (2分)如图是5×5的正方形网络,以点D,E为两个顶点作位置不同的格点三角形,使所作的格点三角形与△ABC全等,这样的格点三角形最多可以画出()A . 2个B . 4个C . 6个D . 8个7. (2分)(2019·定兴模拟) 已知等腰三角形的底边长为a ,底边上的高为h ,用直尺和圆规作这个等腰三角形时,甲同学的作法是:先作底边BC=a ,再作BC的垂直平分线MN交BC于点D ,并在DM上截取DA=h ,最后连结AB、AC ,则△ABC即为所求作的等腰三角形;乙同学的作法是:先作高AD=h ,再过点D作AD的垂线MN ,并在MN上截取BC=a ,最后连结AB、AC ,则△ABC即为所求作的等腰三角形.对于甲乙两同学的作法,下列判断正确是()A . 甲正确,乙错误B . 甲错误,乙正确C . 甲、乙均正确D . 甲、乙均错误8. (2分) (2019七下·长春期中) 如图,为估计池塘岸边A、B两点的距离,小林在池塘的一侧选取一点O,测得OA=10米,OB=7米,则A、B间的距离不可能是()A . 4米B . 9米C . 15米D . 18米二、填空题 (共10题;共11分)9. (1分) (2019八下·东莞期中) 要使有意义,则x必须满足________10. (2分) (2018九上·台州期中) 如图,在△ABC中,∠A=70°,AC=BC ,以点B为旋转中心把△ABC按顺时针方向旋转得到△A′BC′,点A′恰好落在边AC上,连接C C′,则∠ACC′=________.11. (1分) (2019八下·仁寿期中) 若点A(a , 3a-b),B(b , 2a+b-2)关于x轴对称,则ab=________12. (1分) (2017八下·黄山期末) 已知函数y=2x+b经过点A(2,1),将其图象绕着A点旋转一定角度,使得旋转后的函数图象经过点B(﹣2,7).则①b=________;②旋转后的直线解析式为________.13. (1分) (2016七上·九台期中) 九台区中小学生大约有8.9万人,近似数8.9万精确到________位.14. (1分) (2020八上·大石桥月考) 如图,已知≌ ,,,则 ________度15. (1分)(2018·铜仁模拟) 如图△ABC中,∠C=90°,AC=8cm,AB的垂直平分线MN交AC于D,连接BD,若cos∠BDC= ,则BC的长为________.16. (1分) (2018八上·梅县月考) 方程组的解是________,由此我们可知一次函数y=-x与y=x+2的图像必有一个交点,且交点坐标________17. (1分)(2017·博山模拟) 如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b >kx+6的解集是________.18. (1分) (2020八上·日照期末) 如图,边长为的等边中,一动点沿从向移动,动点以同样的速度从出发沿的延长线运动,连交边于,作于,则的长为________.三、解答题 (共9题;共79分)19. (10分)已知:甲、乙两人同解方程组时,甲看错了方程(1)中的a,解得,乙看错了(2)中的b,解得,试求a+b的平方根.20. (10分) (2020九下·贵港模拟)(1)计算:(2)先化简,再求值:,在下列数﹣2,﹣1,0,1中,选你喜欢的一个数代入求值.21. (5分) (2017八上·虎林期中) 如图,A、D、F、B在同一直线上,AD=BF,AE=BC,且AE∥BC.求证:(1)△AEF≌△BCD;(2)EF∥CD.22. (1分) (2019八上·普陀期中) 已知,如图,在△ABC中,∠C=120°,边AC的垂直平分线DE与AC、AB分别交于点D和点E.(1)作出边AC的垂直平分线DE;(2)当AE=BC时,求∠A的度数.23. (6分) (2017八上·萍乡期末) 如图,平面直角坐标系中,四边形OABC是长方形,O为原点,点A在x 轴上,点C在y轴上且A(10,0),C(0,6),点D在AB边上,将△CBD沿CD翻折,点B恰好落在OA边上点E处.(1)求点E的坐标;(2)求折痕CD所在直线的函数表达式;(3)请你延长直线CD交x轴于点F.①求△COF的面积;②在x轴上是否存在点P,使S△OCP= S△COF?若存在,求出点P的坐标;若不存在,请说明理由.24. (10分)(2020·舟山模拟) 如图,一次函数y=k1x+b(k1≠0)与反比例函数y=(k2≠0)的图象交于点A(﹣1,2),B(m,﹣1).(1)求这两个函数的表达式;(2)在x轴上是否存在点P(n,0)(n>0),使△ABP为等腰三角形?若存在,求n的值;若不存在,说明理由.25. (11分) (2020九下·江阴期中) 如图①,点A表示小明家,点B表示学校.小明妈妈骑车带着小明去学校,到达C处时发现数学书没带,于是妈妈立即骑车原路回家拿书后再追赶小明,同时小明步行去学校,到达学校后等待妈妈.假设拿书时间忽略不计,小明和妈妈在整个运动过程中分别保持匀速.妈妈从C处出发x分钟时离C处的距离为y1米,小明离C处的距离为y2米,如图②,折线O-D-E-F表示y1与x的函数图像;折线O-G-F表示y2与x的函数图像.(1)小明的速度为________m/min,图②中a的值为________.(2)设妈妈从C处出发x分钟时妈妈与小明之间的距离为y米.当12≤x≤30时,求出y与x的函数表达式.26. (6分) (2020九上·浦东月考) 如图,梯形ABCD中,AD∥BC,DC⊥BC,且∠B=45°,AD=DC=1。

福建省三明市八年级上学期期末数学试卷

福建省三明市八年级上学期期末数学试卷

福建省三明市八年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)(2017·永州) 江永女书诞生于宋朝,是世界上唯一一种女性文字,主要书写在精制布面、扇面、布帕等物品上,是一种独特而神奇的文化现象.下列四个文字依次为某女书传人书写的“女书文化”四个字,基本是轴对称图形的是()A .B .C .D .2. (2分)若正方形的边长是a,面积为S,那么()A . S的平方根是aB . a是S的算术平方根C . a=±D . S=3. (2分)(2019·玉林模拟) 在平面直角坐标系中,点(﹣8,2)所在的象限是()A . 第一象限B . 第二象限C . 第三象限D . 第四象限4. (2分) (2020七下·石泉期末) 如图长方形纸片ABCD,在AD边上取一点E,沿BE折叠,使点C、D分别落在点C1、D1处,且点A刚好落在C1D1上,若∠ABC1=45°,则∠BED=()A . 112.5°B . 135°C . 125°D . 100.5°5. (2分)如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,下列说法中正确的个数是()①AC•BC=AB•CD②AC2=AD•DB③BC2=BD•BA④CD2=AD•DB.A . 1个B . 2个C . 3个D . 4个6. (2分)(2018·吉林) 如图,将△ABC折叠,使点A与BC边中点D重合,折痕为MN,若AB=9,BC=6,则△DNB的周长为()A . 12B . 13C . 14D . 157. (2分) (2015七上·海南期末) 近似数1.30是由数x四舍五入得到的数,则数x的取值范围是()A . 1.25≤x<1.35B . 1.295≤x<1.305C . 1.25<x<1.35D . 1.295<x<1.3058. (2分)用图象法解方程组时,下列选项中的图象正确的是()A .B .C .D .二、填空题 (共8题;共11分)9. (1分) (2020九下·下陆月考) 函数中自变量x的取值范围是________.10. (1分)(2019·遵义模拟) 在平面直角坐标系xOy中,点A(-2,m)绕坐标原点O顺时针旋转90°后,恰好落在图中⊙P中的阴影区域(包括边界)内,⊙P的半径为1,点P的坐标为(3,2),则m的取值范围是________.11. (2分)(2017·房山模拟) 《九章算术》是我国古代最重要的数学著作之一,在“勾股”章,记载了一道“折竹抵地”问题,叙述为:“今有竹高一丈,末折抵地,去本三尺,问折者几何?”翻译成数学问题是:在Rt△ABC中,∠ACB=90°,AC+AB=10,BC=3,求AC的长,如果设AC=x,可列出的方程为________.12. (1分)在平面直角坐标系中,点A的坐标是(﹣1,2),作点A关于y轴的对称点,得到点A',再将点A'向下平移4个单位,得到点A″,则点A″的坐标是(________,________).13. (1分)(2019·绍兴模拟) 如图,已知∠MAN=30°,点B在边AM上,且AB=4 ,点P从点A出发沿射线AN方向运动,在边AN上取点C(点C在点P右侧),连结BP,BC.设PC=m,当△BPC成为等腰三角形的个数恰好有3个时,m的值为________.14. (2分) (2016八上·余杭期中) 如图,在中,和的平分线相交于点,过点作交于,交于,过点作于,下列四个结论:① ;② ;③点到各边的距离相等;④设,,则.其中正确的结论是________.(填序号)15. (1分)(2016·沈阳) 在一条笔直的公路上有A,B,C三地,C地位于A,B两地之间,甲,乙两车分别从A,B两地出发,沿这条公路匀速行驶至C地停止.从甲车出发至甲车到达C地的过程,甲、乙两车各自与C地的距离y(km)与甲车行驶时间t(h)之间的函数关系如图表示,当甲车出发________h时,两车相距350km.16. (2分) (2019八上·涡阳月考) 若点B的坐标为(2,1),AB∥y轴,且AB=4,则点A的坐标为________.三、解答题 (共11题;共111分)17. (15分)(2016八上·无锡期末) 解方程:(1) 4x2-16=0;(2)(x-2)3=18.18. (10分) (2020九下·深圳月考) 如图,已知平行四边形对角线与交于点以边分别为边长作正方形正方形,连接.(1)求证:;(2)若,请求出的面积.19. (5分)如图,BD是菱形ABCD的对角线,点E,F分别在边CD,DA上,且CE=AF.求证:DE=DF.20. (6分) (2019八上·潮安期末) 如图,在平面直角坐标系中,点A(4,4),B(2,-4).(1)若点A关于x轴、y轴的对称点分别是点C、D,请分别描出并写出点C、D的坐标;(2)在y轴上求作一点P,使PA+PB最小(不写作法,保留作图痕迹)21. (10分) (2018九上·东台月考) 如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作⊙O的切线DF,交AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为4,∠CDF=22.5°,求阴影部分的面积.22. (10分)(2016·姜堰模拟) 已知抛物线y1=ax2﹣4ax+3(a≠0)与y轴交于点A,A、B两点关于对称轴对称,直线OB分别与抛物线的对称轴相交于点C.(1)直接写出对称轴及B点的坐标;(2)已知直线y2=bx﹣4b+3(b≠0)与抛物线的对称轴相交于点D.①判断直线y2=bx﹣4b+3(b≠0)是否经过点B,并说明理由;②若△BDC的面积为1,求b的值.23. (5分) (2019七上·开州月考) 某宾馆重新装修后,准备在大厅的主楼梯上铺设一种红地毯,已知这种地毯每平方米售价40元,主楼梯道宽2m,其侧面如图所示,求买地毯至少需要多少元?24. (5分)已知三角形的一个外角等于60°,且三角形中与这个外角不相邻的两个内角中,其中一个比另一个大10°,则这个三角形的三个内角分别是多少?25. (20分) (2017八下·安岳期中) 如图,LA , LB分别表示A步行与B骑车在同一路上行驶的路程S(千米)与时间t(小时)的关系.(1)根据图象,回答下列问题:B出发时与A相距________千米;走了一段路后,自行车发生故障进行修理所用的时间是________小时.B出发后________小时与A相遇.(2)若B的自行车不发生故障,保持出发时的速度前进,求B与A的相遇点离B的出发点相距多少千米.并在图中表示出这个相遇点C.26. (15分)(2018·漳州模拟) 某景区售票处规定:非节假日的票价打a折售票;节假日根据团队人数x(人)实行分段售票:若 10,则按原展价购买;若x>10,则其中10人按原票价购买,超过部分的按原那价打b折购买.某旅行社带团到该景区游览,设在非节假日的购票款为y1元,在节假日的购票款为y2元,y1、y2与x之间的函数图象如图所示.(1)观察图象可知:a=________,b=________;(2)当x>10时,求y2与x之间的函数表达式;(3)该旅行社在今年5月1日带甲团与5月10日(非节假日)带乙国到该景区游览,两团合计50人,共付门票款3120元,已知甲团人数超过10人,求甲团人数与乙团人数.27. (10分)(2019·贵阳) 如图(1)数学理解:如图①,△ABC是等腰直角三角形,过斜边AB的中点D作正方形DECF,分别交BC,AC于点E,F,求AB,BE,AF之间的数量关系;(2)问题解决:如图②,在任意直角△ABC内,找一点D,过点D作正方形DECF,分别交BC,AC于点E,F,若AB=BE+AF,求∠ADB的度数;(3)联系拓广:如图③,在(2)的条件下,分别延长ED,FD,交AB于点M,N,求MN,AM,BN的数量关系.参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共8题;共11分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共11题;共111分)17-1、17-2、18-1、18-2、19-1、20-1、20-2、21-1、21-2、22-1、22-2、23-1、24-1、25-1、25-2、26-1、26-2、26-3、27-1、27-2、27-3、。

福建省三明市八年级上学期数学期末考试试卷

福建省三明市八年级上学期数学期末考试试卷

福建省三明市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2019·永州) 改革开放以来,我国众多科技实体在各自行业取得了举世瞩目的成就,大疆科技、华为集团、太极股份和凤凰光学等就是其中的杰出代表.上述四个企业的标志是轴对称图形的是()A .B .C .D .2. (2分) (2017八上·阳谷期末) 下列计算正确的是()A . (2ab3)•(﹣4ab)=2a2b4B . ,C . (xy)3•(﹣x2y)=﹣x3y3D . (﹣3ab)•(﹣3a2b)=9a3b23. (2分) (2017八上·金牛期末) 要使式子有意义,则x的取值范围是()A . x>2B . x>﹣2C . x≥2D . x≥﹣24. (2分) (2017七下·苏州期中) 如图,在五边形ABCDE中,∠A+∠B+∠E=α,DP、CP分别平分∠EDC、∠BCD,则∠P的度数是()A . α﹣90°B . 90°C .D . 540°5. (2分) (2017八上·阳谷期末) 一个多边形的内角和等于1080°,这个多边形的边数为()A . 6B . 7C . 8D . 96. (2分)(2018·北部湾模拟) 某种病毒近似于球体,它的半径约为0.000000005米,用科学记数法表示为()A . 5×108B . 5×109C . 5×10﹣8D . 5×10﹣97. (2分) (2018七下·江都期中) 如果是完全平方式,则常数m的值是()A . 8B . -8C .D . ±88. (2分)(2011·绍兴) 如图,在△ABC中,分别以点A和点B为圆心,大于 AB的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB=7,则△ABC的周长为()A . 7B . 14C . 17D . 209. (2分) (2016七下·邹城期中) 如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐的角∠A 是120°,第二次拐的角∠B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C 的大小是()A . 150°B . 130°C . 140°D . 120°10. (2分) (2015八下·深圳期中) 如图,点E是▱ABCD的边CD的中点,AD,BE的延长线相交于点F,DF=3,DE=2,则▱ABCD的周长为()A . 5B . 7C . 10D . 14二、填空题 (共6题;共7分)11. (1分) (2020九上·龙岩期末) 如图,已知正六边形ABCDEF的外接圆半径为2cm,则正六边形的边心距是________cm.12. (2分) (2018九下·滨海开学考) 如图,△ABC的3个顶点都在⊙O上,直径AD=2,∠ABC=30°,则AC 的长度是________.13. (1分) (2015七下·鄄城期中) 已知(a+b)2=9,ab=﹣,则a2+b2的值等于________.14. (1分)(2012·台州) 分解因式:m2﹣1=________.15. (1分) (2017八下·金堂期末) 若关于x的方程________;16. (1分) (2017八上·杭州月考) 如图,在Rt△ABC 中,以△ABC 的一边为边画等腰三角形,使得它的第三个顶点在△ABC 的其他边上,试画出所有不同的等腰三角形并说明画图方法.三、解答题 (共8题;共85分)17. (10分) (2017七下·江阴期中) 如图,△ABC中,∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于A1 .(1)当∠A为70°时,∵∠ACD﹣∠ABD=∠________∴∠ACD﹣∠ABD=________°∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线∴∠A1CD﹣∠A1BD= (∠ACD﹣∠ABD)∴∠A1=________°;(2)∠A1BC的角平分线与∠A1CD的角平分线交于A2,∠A2BC与A2CD的平分线交于A3,如此继续下去可得A4、…、An,请写出∠A与∠An的数量关系________;(3)如图2,四边形ABCD中,∠F为∠ABC的角平分线及外角∠DCE的平分线所在的直线构成的角,若∠A+∠D=230度,则∠F=________.(4)如图3,若E为BA延长线上一动点,连EC,∠AEC与∠ACE的角平分线交于Q,当E滑动时有下面两个结论:①∠Q+∠A1的值为定值;②∠Q﹣∠A1的值为定值.其中有且只有一个是正确的,请写出正确的结论,并求出其值.18. (10分)求值:x2(x﹣1)﹣x(x2+x﹣1),其中x=.19. (10分)计算:(1)(a﹣3b﹣2)﹣2•(ab3)﹣3(2)÷(﹣)(3)(a﹣3﹣÷(4)(﹣)0﹣(﹣)2+2﹣2﹣(﹣1)3.20. (15分)(1)画出△ABC关于y轴对称的图形△A1B1C1;(2)在x轴上找出点P,使得点P到点A、点B的距离之和最短(保留作图痕迹)21. (5分)从一座楼房的房顶掉下一个小球,经过某个窗户下边框外时的速度为vo=2.75米/秒,再经过2.5秒,小球着地,已知小球降落的高度h=vot+ gt2 ,其中g=9.8米/秒2 ,求该窗户下边框的高度.22. (10分) (2017七下·临川期末) 把下面的推理过程补充完整,并在括号内注明理由.如图,点B、D在线段AE上,BC∥EF,AD=BE,BC=EF,试说明:(1)∠C=∠F;(2)AC∥DF.23. (10分) (2018七下·黑龙江期中) 某超市销售甲、乙两种商品,五月份该超市第一次购进甲商品50件,乙商品30件,用去1400元,第二次购进甲商品40件,乙商品40件,用去1600元.(1)求两种商品进价分别是多少元.(2)由于商品受到市民欢迎,六月份决定再购进甲乙两种商品共80件,且进价不变,甲种商品售价15元,乙种商品售价40元,该超市为使甲、乙两种商品共80件的总利润(利润=售价﹣进价)不少于600元,但又不超过610元.请你帮助该超市设计相应的进货方案.24. (15分)如图,在平面直角坐标系中,点A(﹣3b,0)为x轴负半轴上一点,点B(0,4b)为y轴正半轴上一点,其中b满足方程:3(b+1)=6.(1)求点A、B的坐标;(2)点C为y轴负半轴上一点,且△ABC的面积为12,求点C的坐标;(3)在x轴上是否存在点P,使得△PBC的面积等于△ABC的面积的一半?若存在,求出相应的点P的坐标;若不存在,请说明理由.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共85分)17-1、17-2、17-3、17-4、18-1、19-1、19-2、19-3、19-4、20-1、21-1、22-1、22-2、23-1、23-2、24-1、24-2、24-3、。

福建省三明市八年级上学期数学期末试卷

福建省三明市八年级上学期数学期末试卷

福建省三明市八年级上学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2018八上·宝安月考) 下列实数中是无理数的是()A .B .C .D . 02. (2分)(2013·成都) 要使分式有意义,则x的取值范围是()A . x≠1B . x>1C . x<1D . x≠﹣13. (2分) 4的算术平方根是()A . 2B . ±2C .D .4. (2分) (2017八上·云南月考) 下列式子化简后的结果为x6的是()A . x3+x3B . x3•x3C . (x3)3D . x12÷x25. (2分) (2016九上·宜城期中) 下列汽车标志中,既是轴对称图形又是中心对称图形的是()A .B .C .D .6. (2分) (2020八上·怀柔期末) 下列事件中,满足随机事件且该事件每个结果发生的可能性都相等的是().A . 一个密封的纸箱里有7个颜色不同的球,从里面随意摸出一个球,摸出每个球的可能性相同.B . 在80个相同的零件中,检验员从中取出一个零件进行检验,取出每件产品的可能性相同.C . 一枚质地均匀的骰子,任意掷一次,1-6点数朝上的可能性相同.D . 小东经过任意一个有红绿灯的路口,遇到红、黄和绿指示灯的可能性相同.7. (2分)如果分式中,x、y的值都变为原来的一半,则分式的值()A . 不变B . 扩大2倍C . 缩小2倍D . 以上都不对8. (2分)如图,在△ABC中,AB>AC,点D、E分别是边AB、AC的中点,点F在BC边上,连接DE、DF、EF,则添加下列哪一个条件后,仍无法判断△FCE与△EDF全等()A . ∠A=∠DFEB . BF=CFC . DF∥ACD . ∠C=∠ED F二、填空题 (共8题;共8分)9. (1分)(2017·新吴模拟) 若在实数范围内有意义,则x的取值范围是________.10. (1分) (2020八下·察哈尔右翼前旗期末) 若的整数部分为x,小数部分为y,则的值是________.11. (1分) (2017八上·台州期中) 如图,一副分别含有30°和45°的两个直角三角板,拼成如图图形,其中∠C=90°,∠B=45°,∠E=30°.则∠BFD的度数是________.12. (1分)已知:如图:△ABC中,∠B、∠C的角平分线交于点O,若∠A=60°,则∠BOC=________13. (1分)如图是一个转盘,转一次指针指向灰色部分的概率是________14. (1分) (2018八上·南召期中) 如图,,只需补充一个条件:________,就可得△ABD≌△CDB.15. (1分) (2020九上·呼兰期末) 已知中,,交于,且,,,,则的长度为________.16. (1分) (2016八上·柳江期中) 如图,已知AD=BC,根据“SSS”,还需要一个条件________,可证明△ABC≌△BAD;根据“要SAS”,还需要一个条件________,可证明△ABC≌△BAD.三、解答题 (共12题;共87分)17. (6分)化简:.18. (5分)计算:.19. (5分)(1)约分(2)通分和20. (5分)(2018·宁波模拟) 化简计算①π0+2﹣1﹣﹣|1﹣ |② ﹣2③ ﹣( +2)④3 ﹣9 +3⑤ ÷ ﹣× + .21. (5分) (2019八上·澧县期中) 解方程:=1+ .22. (5分)计算:(1)(π﹣3.14)0﹣|﹣3|+()﹣1+(﹣1)2016(2)÷ .23. (10分) (2019九上·福鼎开学考) 如图,平行四边形ABCD的边OA在x轴上,将平行四边形沿对角线AC对折,AO的对应线段为AD,且点D,C,O在同一条直线上,AD与BC交于点E.(1)求证:△ABC≌△CDA.(2)若直线AB的函数表达式为,求三角线ACE的面积.24. (5分)如图,△ABC中,E是BC边上的中点,DE⊥BC于E,交∠BAC的平分线AD于D,过D点作DM⊥AB于M,作DN⊥AC于N,试证明:BM=CN.25. (5分) 2013年4月20日,雅安发生7.0级地震,某地需550顶帐篷解决受灾群众临时住宿问题,现由甲、乙两个工厂来加工生产.已知甲工厂每天的加工生产能力是乙工厂每天加工生产能力的1.5倍,并且加工生产240顶帐篷甲工厂比乙工厂少用4天.(1)求甲、乙两个工厂每天分别可加工生产多少顶帐篷?(2)若甲工厂每天的加工生产成本为3万元,乙工厂每天的加工生产成本为2.4万元,要使这批救灾帐篷的加工生产总成本不高于60万元,至少应安排甲工厂加工生产多少天?26. (10分)如图,平行四边形ABCD在平面直角坐标系中,AD=6,若OA,OB的长是关于x的一元二次方程x2﹣7x+12=0的两个根,且OA>OB.(1)若点E为x轴上的点,且△AOE的面积为.求:①点E的坐标;②证明:△AOE∽△DAO;(2)若点M在平面直角坐标系中,则在直线AB上是否存在点F,使以A,C,F,M为顶点的四边形为菱形?若存在,请直接写出F点的坐标;若不存在,请说明理由.27. (15分) (2017八下·兴化期末) 如图,在△ABC中,⊙O经过A、B两点,圆心O在BC边上,且⊙O与BC边交于点E,在BC上截取CF=AC,连接AF交⊙O 于点D,若点D恰好是的中点.(1)求证:AC是⊙O的切线;(2)若BF=17,DF=13,求⊙O的半径r;(3)若∠ABC=30°,动直线l从与点A、O重合的位置开始绕点O顺时针旋转,到与OC重合时停止,设直线l与AC的交点为F,点Q为OF的中点,过点F作FG⊥BC于G,连接AQ、QG.请问在旋转过程中,∠AQG的大小是否变化?若不变,求出∠AQG的度数;若变化,请说明理由.28. (11分) (2020七下·北京月考) 阅读理解:我们把对非负实数“四舍五入”到个位的值记为,即当为非负整数时,若,则.例如:,,….请解决下列问题:(1) ________;(2)若,则实数的取值范围是________;(3)① ;②当为非负整数时,;③满足的非负实数只有两个.其中结论正确的是________(填序号)参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共8题;共8分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共12题;共87分)17-1、18-1、19-1、19-2、20-1、21-1、22-1、22-2、23-1、23-2、24-1、25-1、26-1、26-2、27-1、27-2、27-3、28-1、28-2、28-3、。

福建省三明市三元区2023-2024学年八年级上学期期末数学试题

福建省三明市三元区2023-2024学年八年级上学期期末数学试题

福建省三明市三元区2023-2024学年八年级上学期期末数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题A.52︒B.538.《九章算术》是中国古代的一本重要数学著作,其中有一道方程的应用题:六只燕,共重16两,雀重燕轻.互换其中一只,恰好一样重.问每只雀、燕的重量各为多少?”解:设雀每只x 两,燕每只y 两,则可列出方程组为()A .561656x y x y y x +=⎧⎨+=+⎩B .561645x y x y y x +=⎧⎨+=+⎩C .651665x y x y y x+=⎧⎨+=+⎩D .651654x y x y y x+=⎧⎨+=+⎩9.在平面直角坐标系中,直线l 是函数21y x =-的图象,将直线l 平移后得到直线21y x =+,则下列平移方式正确的是()A .将直线l 向上平移2个单位长度B .将直线l 向下平移2个单位长度C .将直线l 向左平移2个单位长度D .将直线l 向右平移2个单位长度10.如图,点(0,1)A ,点1(2,0)A ,点()23,2A ,点3(5,1)A ,点4(6,3)A …,按照这样的规律下去,点2024A 的坐标为()A .()3035,1011B .()3036,1011C .()3035,1013D .()3036,1013二、填空题13.把方程24x y +=变形,用含x 的代数式表示14.根据右图中呈现的开立方运算关系,可以得出15.在““探索一次函数y kx =系中的三个点:()(0,2,A B 函数的图像,并得到对应的函数表达式11k b +,2233,k b k b ++的值,其中最大的值等于16.如图,在ABC 中,AD 上,FH AD ⊥,交AE 于点G ②2ACF F ADF ∠=∠+∠;③其中结论正确的为三、解答题17.计算:63810⨯-+18.解方程:821x y x y +=⎧⎨-=⎩19.如图,在 ABC 中,AN 平分∠BAC 交BC 于N ,∠B =50°,∠ANC =80°,求∠C 的度数.20.如图,已知梯子10m AB AD ==,D 点到地面的垂直距离6m DE =,两墙的距离13m CE =.求B 点到地面的垂直距离BC .21.已知点(),A a b a b +-,()21,37B b a -+关于x 轴对称,求a ,b 的值.22.某校为了解学生利用课余时间参加义务劳动的情况,随机调查了部分学生参加义务劳动的时间(单位:h ).根据统计的结果,绘制出如下条形统计图.请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为_________;(2)求统计的这部分学生参加义务劳动时间这组数据的平均数、众数和中位数;(3)若该校有600名学生参加了义务劳动,估计其中劳动时间超过2.5h 的学生人数.23.某商店销售3台A 型和5台B 型电脑的利润为3000元,销售5台A 型和3台B 型电脑的利润为3400元.(1)求每台A 型电脑和B 型电脑的销售利润各多少元?(2)该商店计划一次购进两种型号的电脑共50台,设购进A 型电脑n 台,这50台电脑的销售总利润为w 元.请写出w 关于n 的函数关系式,并判断总利润能否达到26000元,请说明理由.24.如图1,在ABC 中,点D ,E 分别在AB ,AC 上,DE BC ∥,点F 在DE 延长线上,180ADE BCF ∠+∠=︒.(1)求证:AB CF ;(2)如图2,连接BE ,若40ABE ∠=︒,60ACF ∠=︒,求BEC ∠的度数;(3)如图3,在(2)的条件下,点G 是线段FC 延长线上一点,若BE 平分ABG ∠,:2:7GBC ECB ∠∠=,求F ∠的度数.25.如图是某机场监控屏显示两飞机的飞行图象,1号指挥机(看成点P )始终以3km/min 的速度在离地面5km 高的上空匀速向右飞行,2号试飞机(看成点Q )一直保持在1号机P 的正下方.2号机从原点O 处沿函数关系式为h s =的射线OA 方向爬升,到4km 高的A 处便立刻转为水平飞行,再过1min 到达B 处开始沿直线BC 降落,要求1min 后到达高度为3km 的点C 处.(1)求2号机的爬升速度;(2)求BC 的h 关于s 的函数关系式,并预计2号机着陆点的坐标;(3)通过计算说明两机距离PQ 不超过3km 的时长是多少.。

福建省三明市八年级上学期期末数学试卷

福建省三明市八年级上学期期末数学试卷

福建省三明市八年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)的值是()A . ±2B . 2C . -2D . 以上答案都不对2. (2分) (2020七下·和平期末) 估计的值()A . 在3到4之间B . 在4到5之间C . 在5到6之间D . 在2到3之间3. (2分) (2017七下·马龙期末) 已知是二元一次方程的解,则2m-n的算术平方根为()A . ±2B . 2C .D . 44. (2分) (2016八上·宁城期末) 下列运算中正确的是()A .B . ·C .D .5. (2分)一个饭店所有员工的月收入情况如下:精力领班迎宾厨房厨师助理服务员洗碗工人数/人1222382月收入/元4700190015002200150014001200你认为用来描述该饭店员工的月收入水平不太恰当的是()A . 所有员工月收入的平均数B . 所有员工月收入的中位数C . 所有员工月收入的众数D . 所有员工月收入的中位数或众数6. (2分)如图,在DABC 中,AB = AC , E 、D 分别为 AB 、AC 边上的中点,连接 BD 、CE 交于O ,此图中全等三角形的对数为()对.A . 4B . 3C . 2D . 17. (2分)(2019·陕西模拟) 如图,在四边形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,分别以AB,BC,DC为边向外作正方形,它们的面积分别为S1、S2、S3 .若S2=48,S3=9,则S1的值为()A . 18B . 12C . 9D . 38. (2分)下列各角不是多边形的内角的是()A . 180°B . 540°C . 1900°D . 1080°二、填空题 (共6题;共8分)9. (3分)(2015七下·无锡期中) 计算a6÷a2=________,(﹣3xy3)3=________,(﹣0.125)2015×82016=________.10. (1分)(2017·盐都模拟) 分解因式:2x2﹣8=________.11. (1分) (2020八下·上虞期末) 命题“对角线互相垂直且相等的四边形是正方形”成为真命题,须添加一个条件,你认为应添加的这个条件是:________。

八年级上册三明数学期末试卷测试卷(解析版)

八年级上册三明数学期末试卷测试卷(解析版)

八年级上册三明数学期末试卷测试卷(解析版)一、八年级数学全等三角形解答题压轴题(难)1.如图,在ABC 中,45ABC ∠=,AD ,BE 分别为BC ,AC 边上的高,连接DE ,过点D 作DF DE ⊥与点F ,G 为BE 中点,连接AF ,DG .(1)如图1,若点F 与点G 重合,求证:AF DF ⊥;(2)如图2,请写出AF 与DG 之间的关系并证明.【答案】(1)详见解析;(2)AF=2DG,且AF ⊥DG,证明详见解析.【解析】【分析】(1) 利用条件先△DAE ≌△DBF,从而得出△FDE 是等腰直角三角形,再证明△AEF 是等腰直角三角形,即可.(2) 延长DG 至点M,使GM=DG,交AF 于点H,连接BM, 先证明△BGM ≌△EGD,再证明△BDM ≌△DAF 即可推出.【详解】解:(1)证明:设BE 与AD 交于点H..如图,∵AD,BE 分别为BC,AC 边上的高,∴∠BEA=∠ADB=90°.∵∠ABC=45°,∴△ABD 是等腰直角三角形.∴AD=BD.∵∠AHE=∠BHD,∴∠DAC=∠DBH.∵∠ADB=∠FDE=90°,∴∠ADE=∠BDF.∴△DAE ≌△DBF.∴BF=AE,DF=DE.∴△FDE是等腰直角三角形.∴∠DFE=45°.∵G为BE中点,∴BF=EF.∴AE=EF.∴△AEF是等腰直角三角形.∴∠AFE=45°.∴∠AFD=90°,即AF⊥DF.(2)AF=2DG,且AF⊥DG.理由:延长DG至点M,使GM=DG,交AF于点H,连接BM,∵点G为BE的中点,BG=GE.∵∠BGM∠EGD,∴△BGM≌△EGD.∴∠MBE=∠FED=45°,BM=DE.∴∠MBE=∠EFD,BM=DF.∵∠DAC=∠DBE,∴∠MBD=∠MBE+∠DBE=45°+∠DBE.∵∠EFD=45°=∠DBE+∠BDF,∴∠BDF=45°-∠DBE.∵∠ADE=∠BDF,∴∠ADF=90°-∠BDF=45°+∠DBE=∠MBD.∵BD=AD,∴△BDM≌△DAF.∴DM=AF=2DG,∠FAD=∠BDM.∵∠BDM+∠MDA=90°,∴∠MDA+∠FAD=90°.∴∠AHD=90°.∴AF⊥DG.∴AF=2DG,且AF⊥DG【点睛】本题考查三角形全等的判定和性质,关键在于灵活运用性质.2.如图,已知△ABC中,AB=AC=20cm,BC=16cm,点D为AB的中点.(1)如果点P 在线段BC 上以6cm /s 的速度由B 点向C 点运动,同时点Q 在线段CA 上由C 向A 点运动.①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,△BPD 与△CQP 是否全等,请说明理由;②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使△BPD 与△CQP 全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P 与点Q 第一次在△ABC 的哪条边上相遇?【答案】(1)①△BPD ≌△CQP ,理由见解析;②V 7.5Q =(厘米/秒);(2)点P 、Q 在AB 边上相遇,即经过了803秒,点P 与点Q 第一次在AB 边上相遇. 【解析】【分析】(1)①先求出t=1时BP=BQ=6,再求出PC=10=BD ,再根据∠B =∠C 证得△BPD ≌△CQP ;②根据V P ≠V Q ,使△BPD 与△CQP 全等,所以CQ =BD =10,再利用点P 的时间即可得到点Q 的运动速度;(2)根据V Q >V P ,只能是点Q 追上点P ,即点Q 比点P 多走AB +AC 的路程,设运动x 秒,即可列出方程1562202x x ,解方程即可得到结果. 【详解】(1)①因为t =1(秒),所以BP =CQ =6(厘米)∵AB =20,D 为AB 中点,∴BD =10(厘米)又∵PC =BC ﹣BP =16﹣6=10(厘米)∴PC =BD∵AB =AC ,∴∠B =∠C ,在△BPD 与△CQP 中, BP CQ B C PC BD =⎧⎪∠=∠⎨⎪=⎩,∴△BPD≌△CQP(SAS),②因为V P≠V Q,所以BP≠CQ,又因为∠B=∠C,要使△BPD与△CQP全等,只能BP=CP=8,即△BPD≌△CPQ,故CQ=BD=10.所以点P、Q的运动时间84663BPt(秒),此时107.543QCQVt(厘米/秒).(2)因为V Q>V P,只能是点Q追上点P,即点Q比点P多走AB+AC的路程设经过x秒后P与Q第一次相遇,依题意得156220 2x x,解得x=803(秒)此时P运动了8061603(厘米)又因为△ABC的周长为56厘米,160=56×2+48,所以点P、Q在AB边上相遇,即经过了803秒,点P与点Q第一次在AB边上相遇.【点睛】此题考查三角形全等的证明,三角形与动点相结合的解题方法,再证明三角形全等时注意顶点的对应关系是证明的关键.3.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.【答案】(1)证明见解析;(2)∠FAE=135°;(3)证明见解析.【解析】【分析】(1)根据已知条件易证∠BAC=∠DAE ,再由AB=AD ,AE=AC ,根据SAS 即可证得△ABC ≌△ADE ;(2)已知∠CAE=90°,AC=AE ,根据等腰三角形的性质及三角形的内角和定理可得∠E=45°,由(1)知△BAC ≌△DAE ,根据全等三角形的性质可得∠BCA=∠E=45°,再求得∠CAF=45°,由∠FAE=∠FAC+∠CAE 即可得∠FAE 的度数;(3)延长BF 到G ,使得FG=FB ,易证△AFB ≌△AFG ,根据全等三角形的性质可得AB=AG ,∠ABF=∠G ,再由△BAC ≌△DAE ,可得AB=AD ,∠CBA=∠EDA ,CB=ED ,所以AG=AD ,∠ABF=∠CDA ,即可得∠G=∠CDA ,利用AAS 证得△CGA ≌△CDA ,由全等三角形的性质可得CG=CD ,所以CG=CB+BF+FG=CB+2BF=DE+2BF .【详解】(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE ,在△BAC 和△DAE 中,AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩, ∴△BAC ≌△DAE (SAS );(2)∵∠CAE=90°,AC=AE ,∴∠E=45°,由(1)知△BAC ≌△DAE ,∴∠BCA=∠E=45°,∵AF ⊥BC ,∴∠CFA=90°,∴∠CAF=45°,∴∠FAE=∠FAC+∠CAE=45°+90°=135°;(3)延长BF 到G ,使得FG=FB ,∵AF ⊥BG ,∴∠AFG=∠AFB=90°,在△AFB 和△AFG 中,BF F AFB AFG AF AF G =⎧⎪∠=∠⎨⎪=⎩, ∴△AFB ≌△AFG (SAS ),∴AB=AG ,∠ABF=∠G ,∵△BAC ≌△DAE ,∴AB=AD ,∠CBA=∠EDA ,CB=ED ,∴AG=AD ,∠ABF=∠CDA ,∴∠G=∠CDA ,在△CGA和△CDA中,GCA DCACGA CDAAG AD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CGA≌△CDA,∴CG=CD,∵CG=CB+BF+FG=CB+2BF=DE+2BF,∴CD=2BF+DE.【点睛】本题考查全等三角形的判定与性质,解决第3问需作辅助线,延长BF到G,使得FG=FB,证得△CGA≌△CDA是解题的关键.4.如图,在△ABC中,∠ABC为锐角,点D为直线BC上一动点,以AD为直角边且在AD 的右侧作等腰直角三角形ADE,∠DAE=90°,AD=AE.(1)如果AB=AC,∠BAC=90°.①当点D在线段BC上时,如图1,线段CE、BD的位置关系为___________,数量关系为___________②当点D在线段BC的延长线上时,如图2,①中的结论是否仍然成立,请说明理由.(2)如图3,如果AB≠AC,∠BAC≠90°,点D在线段BC上运动.探究:当∠ACB多少度时,CE⊥BC?请说明理由.【答案】(1)①垂直,相等.②都成立,理由见解析;(2)45°,理由见解析【解析】【分析】(1)①根据∠BAD=∠CAE ,BA=CA ,AD=AE ,运用“SAS ”证明△ABD ≌△ACE ,根据全等三角形性质得出对应边相等,对应角相等,即可得到线段CE 、BD 之间的关系;②先根据“SAS ”证明△ABD ≌△ACE ,再根据全等三角形性质得出对应边相等,对应角相等,即可得到①中的结论仍然成立;(2)先过点A 作AG ⊥AC 交BC 于点G ,画出符合要求的图形,再结合图形判定△GAD ≌△CAE ,得出对应角相等,即可得出结论.【详解】(1):(1)CE 与BD 位置关系是CE ⊥BD ,数量关系是CE=BD .理由:如图1,∵∠BAD=90°-∠DAC ,∠CAE=90°-∠DAC ,∴∠BAD=∠CAE .又 BA=CA ,AD=AE ,∴△ABD ≌△ACE (SAS )∴∠ACE=∠B=45°且 CE=BD .∵∠ACB=∠B=45°,∴∠ECB=45°+45°=90°,即 CE ⊥BD .故答案为垂直,相等;②都成立,理由如下:∵∠BAC =∠DAE =90°,∴∠BAC +∠DAC =∠DAE +∠DAC ,∴∠BAD =∠CAE ,在△DAB 与△EAC 中,AD AE BAD CAE AB AC ⎧⎪∠∠⎨⎪⎩=== ∴△DAB ≌△EAC ,∴CE =BD ,∠B =∠ACE ,∴∠ACB +∠ACE =90°,即CE ⊥BD ;(2)当∠ACB =45°时,CE ⊥BD (如图).理由:过点A 作AG ⊥AC 交CB 的延长线于点G ,则∠GAC =90°,∵∠ACB =45°,∠AGC =90°﹣∠ACB ,∴∠AGC =90°﹣45°=45°,∴∠ACB =∠AGC =45°,∴AC =AG ,在△GAD 与△CAE 中,AC AG DAG EAC AD AE ⎧⎪∠∠⎨⎪⎩=== ∴△GAD ≌△CAE ,∴∠ACE =∠AGC =45°,∠BCE=∠ACB +∠ACE =45°+45°=90°,即CE ⊥B C .5.已知:平面直角坐标系中,点A (a ,b )的坐标满足|a ﹣b|+b 2﹣8b+16=0.(1)如图1,求证:OA 是第一象限的角平分线;(2)如图2,过A 作OA 的垂线,交x 轴正半轴于点B ,点M 、N 分别从O 、A 两点同时出发,在线段OA 上以相同的速度相向运动(不包括点O 和点A ),过A 作AE⊥BM 交x 轴于点E ,连BM 、NE ,猜想∠ONE 与∠NEA 之间有何确定的数量关系,并证明你的猜想;(3)如图3,F 是y 轴正半轴上一个动点,连接FA ,过点A 作AE⊥AF 交x 轴正半轴于点E ,连接EF ,过点F 点作∠OFE 的角平分线交OA 于点H ,过点H 作HK⊥x 轴于点K ,求2HK+EF 的值.【答案】(1)证明见解析 (2)答案见解析 (3)8【解析】【分析】(1)过点A 分别作x 轴,y 轴的垂线,垂足分别为M 、N ,则AN =AM,根据非负数的性质求出a 、b 的值即可得结论;(2)如图2,过A 作AH 平分∠OAB ,交BM 于点H ,则△AOE ≌△BAH ,可得AH =OE ,由已知条件可知ON=AM ,∠MOE =∠MAH ,可得△ONE ≌△AMH ,∠ABH =∠OAE ,设BM 与NE 交于K ,则∠MKN =180°﹣2∠ONE =90°﹣∠NEA ,即2∠ONE ﹣∠NEA =90°; (3)如图3,过H 作HM ⊥OF ,HN ⊥EF 于M 、N ,可证△FMH ≌△FNH ,则FM =FN ,同理:NE =EK ,先得出OE+OF ﹣EF =2HK ,再由△APF ≌△AQE 得PF =EQ ,即可得OE+OF =2OP =8,等量代换即可得2HK+EF 的值.【详解】解:(1)∵|a ﹣b|+b 2﹣8b+16=0∴|a ﹣b|+(b ﹣4)2=0∵|a ﹣b|≥0,(b ﹣4)2≥0∴|a ﹣b|=0,(b ﹣4)2=0∴a =b =4过点A 分别作x 轴,y 轴的垂线,垂足分别为M 、N ,则AN =AM∴OA 平分∠MON即OA 是第一象限的角平分线(2)过A 作AH 平分∠OAB ,交BM 于点H∴∠OAH =∠HAB =45°∵BM ⊥AE∴∠ABH =∠OAE 在△AOE 与△BAH 中OAE ABH OA ABAOE BAH ==∠∠⎧⎪=⎨⎪∠∠⎩, ∴△AOE ≌△BAH (ASA )∴AH =OE在△ONE 和△AMH 中OE AH NOE MAH ON AM =⎧⎪∠∠⎨⎪=⎩=, ∴△ONE ≌△AMH (SAS )∴∠AMH =∠ONE设BM 与NE 交于K∴∠MKN =180°﹣2∠ONE =90°﹣∠NEA∴2∠ONE ﹣∠NEA =90°(3)过H 作HM ⊥OF ,HN ⊥EF 于M 、N可证:△FMH ≌△FNH (SAS )∴FM =FN同理:NE =EK∴OE+OF ﹣EF =2HK过A 作AP ⊥y 轴于P ,AQ ⊥x 轴于Q可证:△APF ≌△AQE (SAS )∴PF =EQ∴OE+OF =2OP =8∴2HK+EF =OE+OF =8【点睛】本题考查非负数的性质,平面直角坐标系中点的坐标,等腰直角三角形,全等三角形的判定和性质.二、八年级数学 轴对称解答题压轴题(难)6.如图,在△ABC 中,AB=BC=AC=20 cm .动点P ,Q 分别从A ,B 两点同时出发,沿三角形的边匀速运动.已知点P ,点Q 的速度都是2 cm/s ,当点P 第一次到达B 点时,P ,Q 两点同时停止运动.设点P 的运动时间为t (s ).(1)∠A=______度;(2)当0<t <10,且△APQ 为直角三角形时,求t 的值;(3)当△APQ 为等边三角形时,直接写出t 的值.【答案】(1)60;(2)103或203;(3)5或20 【解析】【分析】(1)根据等边三角形的性质即可解答;(2)需分∠APQ=90°和∠AQP=90°两种情况进行解答;(3)需分以下两种情况进行解答:①由∠A=60°,则当AQ=AP 时,△APQ 为等边三角形;②当P 于B 重合,Q 与C 重合时,△APQ 为等边三角形.【详解】解:(1)60°.(2)∵∠A=60°,当∠APQ=90°时,∠AQP=90°-60°=30°.∴QA=2PA .即2022 2.t t -=⨯解得 10.3t = 当∠AQP=90°时,∠APQ=90°-60°=30°.∴PA=2QA .即2(202)2.t t -=解得 20.3t =∴当0<t <10,且△APQ 为直角三角形时,t 的值为102033或. (3)①由题意得:AP=2t ,AQ=20-2t ∵∠A=60°∴当AQ=AP 时,△APQ 为等边三角形 ∴2t=20-2t ,解得t=5②当P 于B 重合,Q 与C 重合,则所用时间为:4÷2=20 综上,当△APQ 为等边三角形时,t=5或20. 【点睛】本题考查了等边三角形和直角三角形的判定以及动点问题,解答的关键在于正确的分类讨论以及对所学知识的灵活应用.7.定义:如果一条线段将一个三角形分成2个小等腰三角形,我们把这条线段叫做这个三角形的“好线”:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的“好好线”. 理解:(1)如图1,在ABC ∆中,AB AC =,点D 在AC 边上,且AD BD BC ==,求A ∠的大小;(2)在图1中过点C 作一条线段CE ,使BD ,CE 是ABC ∆的“好好线”; 在图2中画出顶角为45的等腰三角形的“好好线”,并标注每个等腰三角形顶角的度数(画出一种即可); 应用:(3)在ABC ∆中,27B ∠=,AD 和DE 是ABC ∆的“好好线”,点D 在BC 边上,点E 在AC 边上,且AD BD =,DE CE =,请求出C ∠的度数.【答案】(1)36°;(2)见详解;(3)18°或42° 【解析】 【分析】(1)利用等边对等角得到三对角相等,设∠A=∠ABD=x ,表示出∠BDC 与∠C ,列出关于x 的方程,求出方程的解得到x 的值,即可确定出∠A 的度数.(2)根据(1)的解题过程作出△ABC的“好好线”;45°自然想到等腰直角三角形,过底角一顶点作对边的高,发现形成一个等腰直角三角形和直角三角形.直角三角形斜边的中线可形成两个等腰三角形;第二种情形以一底角作为新等腰三角形的底角,则另一底角被分为45°和22.5°,再以22.5°分别作为等腰三角形的底角或顶角,易得其中作为底角时所得的三个三角形恰都为等腰三角形;(3)用量角器,直尺标准作27°角,而后确定一边为BA,一边为BC,根据题意可以先固定BA的长,而后可确定D点,再分别考虑AD为等腰三角形的腰或者底边,兼顾A、E、C在同一直线上,易得2种三角形ABC;根据图形易得∠C的值;【详解】解:(1)∵AB=AC,∴∠ABC=∠C,∵BD=BC=AD,∴∠A=∠ABD,∠C=∠BDC,设∠A=∠ABD=x,则∠BDC=2x,∠C=°180-2x可得°180-22x x∴x=36°则∠A=36°;(2)如图所示:(3)如图所示:①当AD=AE时,∵2x+x=27°+27°,∴x=18°;②当AD=DE时,∵27°+27°+2x+x=180°,综上所述,∠C为18°或42°的角.【点睛】本题主要考查了三角形内角、外角间的关系及等腰三角形知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.8.在等边△ABC中,点D在BC边上,点E在AC的延长线上,DE=DA(如图1).(1)求证:∠BAD=∠EDC;(2)若点E关于直线BC的对称点为M(如图2),连接DM,AM.求证:DA=AM.【答案】(1)见解析;(2)见解析【解析】【分析】(1)根据等边三角形的性质,得出∠BAC=∠ACB=60°,然后根据三角形的内角和和外角性质,进行计算即可.(2)根据轴对称的性质,可得DM=DA,然后结合(1)可得∠MDC=∠BAD,然后根据三角形的内角和,求出∠ADM=60°即可.【详解】解:(1)如图1,∵△ABC是等边三角形,∴∠BAC=∠ACB=60°,∴∠BAD=60°﹣∠DAE,∠EDC=60°﹣∠E,又∵DE=DA,∴∠E=∠DAE,∴∠BAD=∠EDC.(2)由轴对称可得,DM=DE,∠EDC=∠MDC,∵DE=DA,∴DM=DA,由(1)可得,∠BAD=∠EDC,∴∠MDC=∠BAD,∵△ABD中,∠BAD+∠ADB=180°﹣∠B=120°,∴∠MDC+∠ADB=120°,∴∠ADM=60°,∴△ADM是等边三角形,【点睛】本题主要考察了轴对称和等边三角形的性质,解题的关键是熟练掌握这些性质.9.如图,在平面直角坐标系中,点B 坐标为()6,0-,点A 是y 轴正半轴上一点,且10AB =,点P 是x 轴上位于点B 右侧的一个动点,设点P 的坐标为()0m ,.(1)点A 的坐标为___________;(2)当ABP △是等腰三角形时,求P 点的坐标;(3)如图2,过点P 作PE AB ⊥交线段AB 于点E ,连接OE ,若点A 关于直线OE 的对称点为A ',当点A '恰好落在直线PE 上时,BE =_____________.(直接写出答案) 【答案】(1)()0,8;(2)()4,0或()6,0或7,03⎛⎫ ⎪⎝⎭;(3)425【解析】 【分析】(1)根据勾股定理可以求出AO 的长,则可得出A 的坐标; (2)分三种情况讨论等腰三角形的情况,得出点P 的坐标; (3)根据PE AB ⊥,点A '在直线PE 上,得到EAGOPG ,利用点A ,A '关于直线OE 对称点,根据对称性,可证'OPG EAO ,可得'8OP OA ,82AP,设BE x =,则有6AE x ,根据勾股定理,有:22222BP BE EP AP AE解之即可. 【详解】解:(1)∵点B 坐标为6,0,点A 是y 轴正半轴上一点,且10AB =,∴ABO 是直角三角形,根据勾股定理有:22221068AOAB BO ,∴点A 的坐标为()0,8; (2)∵ABP △是等腰三角形, 当BPAB 时,如图一所示:OP BP BO,∴1064∴P点的坐标是()4,0;=时,如图二所示:当AP ABOP BO∴6∴P点的坐标是()6,0;=时,如图三所示:当AP BP设OP x =,则有6AP x∴根据勾股定理有:222OP AO AP += 即:22286x x解之得:73x =∴P 点的坐标是7,03; (3)当ABP △是钝角三角形时,点A '不存在; 当ABP △是锐角三角形时,如图四示:连接'OA ,∵PE AB ⊥,点A '在直线PE 上,∴AEG △和GOP 是直角三角形,EGAOGP∴EAGOPG ,∵点A ,A '关于直线OE 对称点, 根据对称性,有'8OA OA ,'EAEA∴'FAO FAO,'FAE FAE∴'EAGEAO则有:'OPG EAO∴'AOP 是等腰三角形,则有'8OP OA ,∴22228882APAO OP ,设BE x ,则有6AE x ,根据勾股定理,有:22222BP BE EP AP AE 即:2222688210x x解之得:425BE x【点睛】本题考查了三角形的综合问题,涉及的知识点有:解方程,等腰三角形的判定与性质,对称等知识点,能分类讨论,熟练运用各性质定理,是解题的关键.10.教材呈现:如图是华师版八年级上册数学教材第94页的部分内容.2.线段垂直平分线.我们已经知道线段是轴对称图形,线段的垂直平分线是线段的对称轴,如图,直线MN 是线段AB 的垂直平分线,P 是MN 上任一点,连结PA 、PB ,将线段AB 沿直线MN 对称,我们发现PA 与PB 完全重合,由此即有:线段垂直平分线的性质定理 线段垂直平分线上的点到线段的距离相等.已知:如图,MN ⊥AB ,垂足为点C ,AC =BC ,点P 是直线MN 上的任意一点.求证:PA =PB .分析:图中有两个直角三角形APC 和BPC ,只要证明这两个三角形全等,便可证明PA =PB .定理证明:请根据教材中的分析,结合图①,写出“线段垂直平分线的性质定理”完整的证明过程. 定理应用:(1)如图②,在△ABC 中,直线m 、n 分别是边BC 、AC 的垂直平分线,直线m 、n 的交点为O .过点O 作OH ⊥AB 于点H .求证:AH =BH .(2)如图③,在△ABC 中,AB =BC ,边AB 的垂直平分线l 交AC 于点D ,边BC 的垂直平分线k 交AC 于点E .若∠ABC =120°,AC =15,则DE 的长为 . 【答案】(1)见解析;(2)5 【解析】 【分析】定理证明:先证明△PAC ≌△PBC ,然后再运用三角形全等的性质进行解答即可;(1)连结AO、BO、CO利用线段的垂直平分线的判定和性质即可解答;(2)连接BD,BE,证明△BDE是等边三角形即可解答.【详解】解:定理证明:∵MN⊥AB,∴∠PCA=∠PCB=90°.又∵AC=BC,PC=PC,∴△PAC≌△PBC(SAS),∴PA=PB.定理应用:(1)如图2,连结OA、OB、OC.∵直线m是边BC的垂直平分线,∴OB=OC,∵直线n是边AC的垂直平分线,∴OA=OC,∴OA=OB∵OH⊥AB,∴AH=BH;(2)如图③中,连接BD,BE.∵BA=BC,∠ABC=120°,∴∠A=∠C=30°,∵边AB的垂直平分线交AC于点D,边BC的垂直平分线交AC于点E,∴DA=DB,EB=EC,∴∠A=∠DBA=30°,∠C=∠EBC=30°,∴∠BDE=∠A+∠DBA=60°,∠BED=∠C+∠EBC=60°,∴△BDE是等边三角形,∴AD=BD=DE=BE=EC,∵AC =15=AD +DE +EC =3DE , ∴DE =5, 故答案为:5. 【点睛】本题考查了线段的垂直平分线的性质、全等三角形的判定和性质、等边三角形的判定和性质等知识,掌握并灵活运用数学基本知识是解答本题的关键.三、八年级数学整式的乘法与因式分解解答题压轴题(难)11.(1)你能求出(a ﹣1)(a 99+a 98+a 97+…+a 2+a +1)的值吗?遇到这样的问题,我们可以先从简单的情况入手,分别计算下列各式的值. (a ﹣1)(a +1)= ; (a ﹣1)(a 2+a +1)= ; (a ﹣1)(a 3+a 2+a +1)= ;…由此我们可以得到:(a ﹣1)(a 99+a 98+…+a +1)= . (2)利用(1)的结论,完成下面的计算: 2199+2198+2197+…+22+2+1.【答案】(1)21a -,31a -,41a -,1001a -(2)20021- 【解析】 【分析】根据简单的多项式运算推出同类复杂多项式运算结果的一般规律,然后根据找出的规律进行解决较难的运算问题. 【详解】解:(1)21a - 31a - 41a - 1001a - (2)1991981972222221+++⋅⋅⋅++ =()21- ⨯(1991981972222221+++⋅⋅⋅++) =20021-. 【点睛】考查了学生的基础运算能力和对同一类运算问题计算结果的一般规律性洞察力.12.一个四位数,记千位上和百位上的数字之和为x ,十位上和个位上的数字之和为y ,如果x y =,那么称这个四位数为“和平数”.例如:1423,14x =+,23y =+,因为x y =,所以1423是“和平数”. (1)直接写出:最小的“和平数”是 ,最大的“和平数”是 ;(2)将一个“和平数”的个位上与十位上的数字交换位置,同时,将百位上与千位上的数字交换位置,称交换前后的这两个“和平数”为一组“相关和平数”. 例如:1423与4132为一组“相关和平数”求证:任意的一组“相关和平数”之和是1111的倍数.(3)求个位上的数字是千位上的数字的两倍且百位上的数字与十位上的数字之和是12的倍数的所有“和平数”;【答案】(1)1001,9999;(2)见详解;(3)2754和4848【解析】【分析】(1)根据和平数的定义,即可得到结论;(2)设任意的两个“相关和平数”为abcd,badc(a,b,c,d分别取0,1,2, (9)a≠0,b≠0),于是得到abcd badc+=1100(a+b)+11(c+d)=1111(a+b),即可得到结论.(3)设这个“和平数”为abcd,于是得到d=2a,a+b=c+d,b+c=12k,求得2c+a=12k,即a=2、4,6,8,d=4、8、12(舍去)、16(舍去);①、当a=2,d=4时,2(c+1)=12k,得到c=5则b=7;②、当a=4,d=8时,得到c=4则b=8,于是得到结论;【详解】解:(1)由题意得,最小的“和平数”1001,最大的“和平数”9999,故答案为:1001,9999;(2)设任意的两个“相关和平数”为abcd,badc(a,b,c,d分别取0,1,2,…,9且a≠0,b≠0),则abcd badc+=1100(a+b)+11(c+d)=1111(a+b);即两个“相关和平数”之和是1111的倍数.(3)设这个“和平数”为abcd,则d=2a,a+b=c+d,b+c=12k,∴2c+a=12k,即a=2、4,6,8,d=4、8、12(舍去)、16(舍去),①当a=2,d=4时,2(c+1)=12k,可知c+1=6k且a+b=c+d,∴c=5则b=7,②当a=4,d=8时,2(c+2)=12k,可知c+2=6k且a+b=c+d,∴c=4则b=8,综上所述,这个数为:2754和4848.【点睛】本题考查了因式分解的应用,正确的理解新概念和平数”是解题的关键.13.探究阅读材料:“若x 满足()()806030x x --=,求()()228060x x -+-的值” 解:设()80x a -=,()60x b -=,则()()806030x x ab --==,()()806020a b x x +=-+-=,所以()()22228060x x a b -+-=+()22220230340a b ab =+-=-⨯=.解决问题:(1)若x 满足()()451520x x --=-,求()()224515x x -+-的值. (2)若x 满足()()22202020184040x x -+-=,求()()20202018x x --的值. (3)如图,正方形ABCD 的边长为x ,20AE =,30CG =,长方形EFGD 的面积是700,四边形NGDH 和MEDQ 都是正方形,PQDH 是长方形,求图中阴影部分的面积(结果必须是一个具体的数值).【答案】(1)940;(2)2018;(3)2900【解析】【分析】(1)根据材料提供的方法进探究,设(45-x )=a ,(x-15)=b ,则有()()451520x x ab --==-,()()4515=30a b x x +=-+-,据此即可求出()()224515x x -+-的值; (2)(2020-x )=m ,( x-2018)=n ,则()()2222202020184040,2x x m n m n -+-=+=+=,则可求出()()20202018x x --的值; (3)根据题意知S 四EFGD =(x-20)(x-30)=700,知S 正MEDQ =(x-20)2,S 正DHNG =(x-30)2,S 四PQDN =(x-20)(x-30)=700,设x-20=a ,30-x=b ,则有-ab=700,据此即可求出阴影部分的面积.【详解】解:(1)设(45-x )=a ,(x-15)=b ,则有()()451520x x ab --==-,()()4515=30a b x x +=-+-∴()()()()2222224515=230220940x x a b a b ab -+-+=+-=-⨯-=;(2)(2020-x )=m ,( x-2018)=n ,则()()2222202020184040,2x x m n m n -+-=+=+=∴()()20202018x x --=-()()20202018x x -- ()()222+-44040-201822m n m n mn +-=== ∴()()20202018x x --=-mn=2018;(3)根据题意知S 四EFGD =(x-20)(x-30)=700,S 正MEDQ =(x-20)2,S 正DHNG =(x-30)2,S 四PQDN =(x-20)(x-30)=700设x-20=a ,30-x=b ,∴-ab=700,∴()()()()222222302021027001500x x a b a b ab -+-=+=+-=-⨯-=∴S 阴影=1500+700+700=2900故答案为:(1)940;(2)2018;(3)2900【点睛】本题考查完全平方公式,换元法等知识,解题的关键是学会利用换元法解决问题,熟练掌握完全平方公式.14.阅读材料后解决问题:小明遇到下面一个问题:计算(2+1)(22+1)(24+1)(28+1).经过观察,小明发现如果将原式进行适当的变形后可以出现特殊的结构,进而可以应用平方差公式解决问题,具体解法如下:(2+1)(22+1)(24+1)(28+1)=(2+1)(2﹣1)(22+1)(24+1)(28+1)=(22﹣1)(22+1)(24+1)(28+1)=(24﹣1)(24+1)(28+1)=(28﹣1)(28+1)=216﹣1请你根据小明解决问题的方法,试着解决以下的问题:(1)(2+1)(22+1)(24+1)(28+1)(216+1)=_____.(2)(3+1)(32+1)(34+1)(38+1)(316+1)=_____.(3)化简:(m +n )(m 2+n 2)(m 4+n 4)(m 8+n 8)(m 16+n 16).【答案】232﹣1 32312-; 【解析】【分析】(1)原式变形后,利用题中的规律计算即可得到结果;(2)原式变形后,利用题中的规律计算即可得到结果;(3)分m=n 与m≠n 两种情况,化简得到结果即可.【详解】(1)原式=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)=232-1;(2)原式=12(3-1)(3+1)(32+1)(34+1)(38+1)(316+1)=32312-; (3)(m+n )(m 2+n 2)(m 4+n 4)(m 8+n 8)(m 16+n 16).当m≠n 时,原式=1m n -(m-n )(m+n )(m 2+n 2)(m 4+n 4)(m 8+n 8)(m 16+n 16)=3232m n m n--; 当m=n 时,原式=2m•2m 2…2m 16=32m 31.【点睛】此题考查了平方差公式,弄清题中的规律是解本题的关键.15.阅读材料:要把多项式am+an+bm+bn 因式分解,可以先把它进行分组再因式分解:am+an+bm+bn=(am +an )+(bm +bn )=a (m +n )+b (m +n )=(a +b )(m +n ),这种因式分解的方法叫做分组分解法.(1)请用上述方法因式分解:x 2-y 2+x-y(2)已知四个实数a 、b 、c 、d 同时满足a 2+ac=12k ,b 2+bc=12k .c 2+ac=24k ,d 2+ad=24k ,且a≠b ,c≠d ,k≠0①求a+b+c 的值;②请用含a 的代数式分别表示b 、c 、d【答案】(1)(x −y )(x +y +1);(2)①0a b c ++=;②3b a =-,2c a =,3d a =-【解析】【分析】(1)将x 2 - y 2分为一组,x-y 分为一组,前一组利用平方差公式化为(x+y)(x-y),再提取公因式即可求解.(2)①已知22a ac b bc +=+=12k ,可得220a b ac bc -+-=,将等号左边参照(1)因式分解,即可求解.②由a 2+ac=12k ,c 2+ac=24k 可得2(a 2+ac)= c 2+ac ,即可得出c=2a ,同理得出3b a =-,3d a =-【详解】(1)x 2-y 2+x-y = (x 2 -y 2)+(x-y)=(x+y)(x-y)+(x-y)=(x-y)(x+y+1)故答案为:(x-y)(x+y+1)(2)①22a ac b bc +=+=12k220a b ac bc -+-=()()0a b a b c -++=∵a b∴0a b c ++=②∵a 2+ac=12k ,c 2+ac=24k2(a 2+ac)= c 2+ac∴2a 2+ac- c 2=0得(2a-c)(a+c)=0∵a 2+ac=12k ≠0即a(a+c)≠0∴c=2a ,a 2=4k∵b 2+bc=12k∴b 2+2ba=3a 2则(a −b )(3a +b )=0∵a ≠b∴3b a =-同理可得d 2+ad=24k ,c 2+ac=24kd 2+ad=c 2+ac(d −c )(a +d +c )=0∵c d ≠∴0a d c ++=∴3d a =-故答案为:0a b c ++=;3b a =-,2c a =,3d a =-【点睛】本题考查了用提取公因式法、运用公式法、分组分解法进行因式分解.四、八年级数学分式解答题压轴题(难)16.我们知道,假分数可以化为整数与真分数的和的形式,例如:76112333+==+. 在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”. 例如:像33x x -+,23x x -,…这样的分式是假分式;像23x -,23x x-,…这样的分式是真分式. 类似的,假分式也可以化为整式与真分式的和(差)的形式. 例如:将分式2253x x x +-+拆分成一个整式与一个真分式的和(差)的形式.方法一:解:由分母为3x +,可设225(3)()x x x x a b +-=+++则由22225(3)()33(3)(3)x x x x a b x ax x a b x a x a b +-=+++=++++=++++ 对于任意x ,上述等式均成立,∴3235a a b +=⎧⎨+=-⎩,解得12a b =-⎧⎨=-⎩∴225(3)(1)2(3)(1)22133333x x x x x x x x x x x x +-+--+-==-=--+++++ 这样,分式2253x x x +-+就被拆分成一个整式与一个真分式的和(差)的形式. 方法二:解:2225332(3)(3)2(3)32213333333x x x x x x x x x x x x x x x x x x x +-+---+-+-++===--=--+++++++ 这样,分式2253x x x +-+就拆分成一个整式与一个真分式的和(差)的形式. (1)请仿照上面的方法,选择其中一种方法将分式2731x x x ---拆分成一个整式与一个真分式的和(差)的形式;(2)已知整数x 使分式225112x x x +-+的值为整数,求出满足条件的所有整数x 的值. 【答案】(1)961x x ---;(2)x=-1或-3或11或-15. 【解析】【分析】 (1)先变形2731x x x ---=26691x x x x --+--,由“真分式”的定义,仿照例题即可得出结论;(2)先把分式化为真分式,再根据分式的值为整数确定整数x 的值.【详解】解:(1)2731x x x ---=26691x x x x --+-- =(1)6(1)91x x x x ----- =961x x ---; (2)225112x x x +-+= 2242132x x x x +++-+ =2(2)(2)132x x x x +++-+=13212x x +-+, ∵x 是整数,225112x x x +-+也是整数, ∴x+2=1或x+2=-1或x+2=13或x+2=-13,∴x=-1或-3或11或-15.【点睛】本题考查了逆用整式和分式的加减法对分式进行变形.解决本题的关键是理解真分式的定义对分子进行拆分.17.观察下列各式:111121212==-⨯,111162323==-⨯,1111123434==-⨯,1111204545==-⨯,1111305656==-⨯,… ()1请你根据上面各式的规律,写出符合该规律的一道等式:________()2请利用上述规律计算:()1111...1223341n n ++++=⨯⨯⨯+________ (用含有n 的式子表示)()3请利用上述规律解方程:()()()()111121111x x x x x x x ++=---++. 【答案】1111426767==-⨯ 1n n + 【解析】【分析】 根据阅读材料,总结出规律,然后利用规律变形计算即可求解.【详解】解:()11111(426767==-⨯答案不唯一); 故答案为1111426767==-⨯; ()2原式1n n =+; 故答案为1n n + ()3分式方程整理得:111111121111x x x x x x x -+-+-=---++, 即1221x x =-+,方程两边同时乘()()21x x --,得()122x x +=-,解得:5x =,经检验,5x =是原分式方程的解.【点睛】此题主要考查了阅读理解型的规律探索题,利用分数和分式的性质,把分式进行变形是解题关键.18.某商场计划销售A ,B 两种型号的商品,经调查,用1500元采购A 型商品的件数是用600元采购B 型商品的件数的2倍,一件A 型商品的进价比一件B 型商品的进价多30元. (1)求一件A ,B 型商品的进价分别为多少元?(2)若该商场购进A ,B 型商品共100件进行试销,其中A 型商品的件数不大于B 型的件数,已知A 型商品的售价为200元/件,B 型商品的售价为180元/件,且全部能售出,求该商品能获得的利润最小是多少?【答案】(1) B 型商品的进价为120元, A 型商品的进价为150元;(2) 5500元.【解析】分析:(1)设一件B 型商品的进价为x 元,则一件A 型商品的进价为(x+30)元,根据“用1500元采购A 型商品的件数是用600元采购B 型商品的件数的2倍”,这一等量关系列分式方程求解即可;(2)根据题意中的不等关系求出A 商品的范围,然后根据利润=单价利润×减数函数关系式,根据函数的性质求出最值即可.详解:(1)设一件B 型商品的进价为x 元,则一件A 型商品的进价为(x+30)元. 由题意: =×2,解得x=120,经检验x=120是分式方程的解,答:一件B 型商品的进价为120元,则一件A 型商品的进价为150元.(2)因为客商购进A 型商品m 件,销售利润为w 元.m≤100﹣m ,m≤50,由题意:w=m (200﹣150)+(100﹣m )(180﹣120)=﹣10m+6000,∵﹣10<0,∴m=50时,w 有最小值=5500(元)点睛:此题主要考查了分式方程和一次函数的应用等知识,解题关键是理解题意,学会构建方程或一次函数解决问题,注意解方式方程时要检验.19.甲、乙两商场自行定价销售某一商品.(1)甲商场将该商品提价25%后的售价为1.25元,则该商品在甲商场的原价为 元;(2)乙商场定价有两种方案:方案①将该商品提价20%;方案②将该商品提价1元。

2022-2023学年福建省三明市三元区八年级(上)期末数学试卷

2022-2023学年福建省三明市三元区八年级(上)期末数学试卷

2022-2023学年福建省三明市三元区八年级(上)期末数学试卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列四组数能作为直角三角形的三边长的是()A.1,2,3B.2,3,4C.3,4,5D.4,5,62.甲、乙、丙、丁四人进行射箭测试,每人10次,测试成绩的平均数都是9.1环,方差分别是s甲2=0.50,s乙2=0.54,s丙2=0.58,s丁2=0.65,则测试成绩最稳定的是()A.甲B.乙C.丙D.丁3.4的算术平方根是()A.±2B.﹣2C.2D.44.已知一次函数y=2x+b的图象经过点(1,0),则b的值是()A.0B.2C.﹣1D.﹣25.如图,已知a∥b,∠1=55°,∠A=25°,则∠2的度数为()A.65°B.70C.75°D.80°6.地球的水资源越来越枯竭,全世界都提倡节约用水,小明把自己家1月至6月份的用水量绘制成折线图,那么小明家这6个月的月平均用水量是()A.10吨B.9吨C.8吨D.7吨7.在平面直角坐标系中,点P(﹣20,a)与点Q(﹣20,13)关于x轴对称,则a的值为()A.13B.20C.﹣20D.﹣138.在同一平面直角坐标系中,一次函数y=ax+b与y=mx+n的图象如图所示,方程组的解为()A.B.C.D.9.《孙子算经》中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,木长多少尺?若设绳子长x尺,木长y尺,所列方程组正确的是()A.B.C.D.10.正方形A1B1C1O、A2B2C2C1、A3B3C3C2,按如图的方式放置,A1、A2、A3、…和点C1、C2、C3、…,分别在直线y=x+1和x轴上,则点B的坐标是()A.(64,127)B.(127,64)C.(255,128)D.(128,255)第Ⅱ卷二、填空题:本题共6小题,每小题4分,共24分.11.﹣8的立方根是.12.A点坐标是(﹣1,﹣2),则A在第象限.13.若是二元一次方程2x+y=6的一个解,则k的值为.14.在Rt△ABC中,∠C=90°,AB=13,BC=5,则AC=.15.将长方形纸片ABCD沿EF折叠,得到如图所示的图形,若∠1=40°,则∠AEF=度.16.如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大的直角三角形,则这最大的直角三角形的面积是.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.计算:.18.解方程组:.19.在边长为1的小正方形网格中,△AOB的顶点均在格点上.以O为原点,1为单位长度建立如图所示的平面直角坐标系.(1)B点关于y轴的对称点的坐标为;(2)将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1.20.如图,在△ABC中,AB=AC,E在BA延长线上.(1)用尺规作图,在∠EAC内部作射线AD,使得AD∥BC(保留作图痕迹,不写做法).(2)证明:AD平分外角∠EAC.21.每年4月23日是世界读书日,某校为了解学生课外阅读情况,随机抽取20名学生,对每人每周用于课外阅读的平均时间(单位:分钟)进行调查,结果填入下表:306081504011013014690100 60811201407081102010081整理数据:课外阅读平均时间(x分钟)0≤x<4040≤x<8080≤x<120120≤x<160人数a5b4分析数据:平均数中位数众数80m n 请根据以上提供的信息,解答下列问题:(1)填空:a=,b=;m=,n=;(2)已知该校学生1200人,若每人每周用于课外阅读的平均时间不少于80分钟为达标,请估计达标的学生数;(3)设阅读一本课外书的平均时间为260分钟,请选择适当的统计量,估计该校学生每人一年(按52周计)平均阅读多少本课外书?22.2022年,我市一电动自行车专卖店计划购进A、B两种符合国家标准的新款电动自行车.已知购进2辆A型比购进1辆B型多用2000元;购买2辆A型和3辆B型共用14000元.(1)求出A、B两种型号的电动车各自的进货单价;(2)该专卖店计划购进这两种型号的电动自行车共30辆,且A型数量不低于20辆.商家决定A型车以每辆2800元出售,B型车每辆3500元出售.该专卖店该如何安排进货方案,才能使销售完后获利最大,最大利润是多少?23.如图1,已知两条直线AB,CD被直线EF所截,分别交于点E,点F,EM平分∠AEF交CD于点M,且∠FEM=∠FME.(1)判断直线AB与直线CD是否平行,并说明理由;(2)如图2,点G是射线MD上一动点(不与点M,F重合),EH平分∠FEG交CD于点H,过点H 作HN⊥EM于点N,设∠EHN=α,∠ECF=β.①当点G在点F的右侧时,若α=30°,求β的度数;②当点G在运动过程中,α和β之间有怎样的数量关系?请写出你的猜想,并加以证明.24.如图,平面直角坐标系中,线段AB的端点为A(﹣6,5),B(5,16).(1)求AB所在直线的解析式;(2)某同学设计了一个动画:在函数y=mx+n(m≠0,y≥0)中,分别输入m和n的值,使得到射线CD,其中C(c,0).当c=2时,会从C处弹出一个光点P.并沿CD飞行;当c≠2时,只发出射线而无光点弹出.①若有光点P弹出,试推算m,n应满足的数量关系;②当有光点P弹出,并击中线段AB上的整点(横、纵坐标都是整数)且﹣2≤x≤3时,线段AB就会发光,求满足条件的整数m的值.25.如图,在△ABC中,∠ACB=90°,点E,F在边AB上,将边AC沿CE翻折,使点A落在AB上的D 点处,再将边CB沿CF翻折,使点B落在CD的延长线上的点B'处.(1)求∠ECF的度数;(2)若CE=4B'F=1,求线段BC的长;(3)在(2)的条件下,求△ABC的面积.。

福建省三明市八年级上学期数学期末考试试卷

福建省三明市八年级上学期数学期末考试试卷

福建省三明市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单项选择题(共10个小题,每小题3分,满分30分) (共10题;共29分)1. (2分)(2018·淄博) 下列图形中,不是轴对称图形的是()A .B .C .D .2. (3分) (2020八下·偃师期末) 经研究发现,2019年新型冠状病毒,它的单细胞的直径范围在60纳米~140纳米(1纳米=10﹣9米)之间,则最大直径140纳米用科学记数法表示为()A . 140×10﹣9米B . 14×10﹣8米C . 1.4×10﹣7米D . 1.4×107米3. (3分) (2020八上·西青期末) 若,则的值为()A .B . -2C .D .4. (3分) (2019八上·郓城期中) 点P(﹣3,5)关于x轴的对称点P′的坐标是()A . (3,5)B . (5,﹣3)C . (3,﹣5)D . (﹣3,﹣5)5. (3分) (2018九上·渝中期末) 在函数 y=中,自变量x的取值范围是()A . x>2B . x≤2且x≠0C . x<2D . x>2且x≠06. (3分)下列因式分解正确的是()A . x2﹣4=(x+4)(x﹣4)B . x2+2x+1=x(x+2)+1C . 3mx﹣6my=3m(x﹣6y)D . 2x+4=2(x+2)7. (3分)若等腰三角形一边长为5,另一边长为6,则这个三角形的周长是()A . 16B . 17C . 16或17D . 158. (3分)(2020·遵化模拟) 已知:,则的值是()A .B .C . 3D . -39. (3分)如图,直线a、b、c表示三条公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()A . 一处B . 两处C . 三处D . 四处10. (3分)(2019·北京模拟) 如图,在矩形ABCD中,AB=2,BC=3,点P在矩形的边上沿B→C→D→A运动.设点P运动的路程为x,△AB P的面积为y,则y关于x的函数图象大致是()A .B .C .D .二、填空题(共7个小题,每小题4分,满分28分) (共7题;共26分)11. (4分) (2017八上·邓州期中) 计算:(﹣0.125)2017×82018=________.12. (4分) (2019八上·海淀期中) 已知:在中,,,分别是线段,上的一点,且 .(1)如图 1,若,是中点,则的度数为________.(2)借助图2探究并直接写出和的数量关系________.13. (4分) (2015七下·深圳期中) 如图,已知∠BAC=∠DAE=90°,AB=AD,要使△ABC≌△ADE,还需要添加的条件是________.14. (4分) (2019八下·农安期末) 若关于的方程无解,则的值为________.15. (4分) (2017七上·拱墅期中) 若关于的多项式与的和是一个单项式,且,则的值为________.16. (2分)已知关于x的方程=2的解是正数,则m的范围是________ .17. (4分)(2020·宿迁) 如图,在矩形ABCD中,AB=1,AD= ,P为AD上一个动点,连接BP,线段BA 与线段BQ关于BP所在的直线对称,连接PQ,当点P从点A运动到点D时,线段PQ在平面内扫过的面积为________.三、解答题(一)(共3个小题,每小题6分,满分18分) (共3题;共18分)18. (6分) (2020七下·宜兴期中) 计算:(1);(2)3a3×2a6-3a12¸a3.(3)(m-2n)(m+2n)(4)(x+2y-3)(x-2y+3)19. (6分)(2019·江北模拟) 先化简,再求值:( +1)(a-1),其中a= .20. (6分) (2019八下·富顺期中) 作图:(1)在图1中,画出△CDE关于直线AB的对称图形(2)在图2中,已知∠AOB和C、D两点,在∠AOB内部找一点P,使PC=PD,且P到∠AOB的两边OA、OB的距离相等.四、解答题(二)(共3个小题,每小题8分,满分24分) (共3题;共24分)21. (8分)如图,在△ABC中,M为BC的中点,DM⊥BC,DM与∠BAC的角平分线交于点D,DE⊥AB,DF⊥AC,E、F为垂足,求证:BE=CF.22. (8分) (2016八下·云梦期中) 已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.23. (8分) (2017七上·闵行期末) “新禧”杂货店去批发市场购买某种新型儿童玩具,第一次用1200元购得玩具若干个,并以7元的价格出售,很快就售完.由于该玩具深受儿童喜爱,第二次进货时每个玩具的批发价已比第一次提高了20%,他用1500元所购买的玩具数量比第一次多10个,再按8元售完,问该老板两次一共赚了多少钱?五、解答题(三)(共2个小题,每小题10分,满分20分) (共2题;共20分)24. (10分)△ABC为等腰直角三角形,AB=AC,△ADE为等腰直角三角形,AD=AE,点D在直线BC上,连接CE.(1)判断:①CE、CD、BC之间的数量关系;②CE与BC所在直线之间的位置关系,并说明理由;(2)若D在CB延长线上,(1)中的结论是否成立?若成立,请直接写出结论,若不成立,请说明理由;(3)若D在BC延长线上,(1)中的结论是否成立?若成立,请直接写出结论,若不成立,请写出你发现的结论,并计算:当CE=10cm,CD=2cm时,BC的长.25. (10.0分) (2020八上·松北期末) 已知在△ABC中,AB=AC,射线BM、BN在∠ABC内部,分别交线段AC于点G、H.(1)如图1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于点D,分别交BC、BM于点E、F.①求证:∠1=∠2;②如图2,若BF=2AF,连接CF,求证:BF⊥CF;(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若∠BFE=∠BAC=2∠CFE,求的值.参考答案一、单项选择题(共10个小题,每小题3分,满分30分) (共10题;共29分) 1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题(共7个小题,每小题4分,满分28分) (共7题;共26分)11-1、12-1、12-2、13-1、14-1、15-1、16-1、17-1、三、解答题(一)(共3个小题,每小题6分,满分18分) (共3题;共18分)18-1、18-2、18-3、18-4、19-1、20-1、20-2、四、解答题(二)(共3个小题,每小题8分,满分24分) (共3题;共24分)21-1、22-1、22-2、23-1、五、解答题(三)(共2个小题,每小题10分,满分20分) (共2题;共20分)24-1、24-2、24-3、25-1、25-2、。

福建省三明市八年级上学期数学期末考试试卷

福建省三明市八年级上学期数学期末考试试卷

福建省三明市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共13题;共26分)1. (2分)若方程组的解为,则直线y=mx+n与y=﹣ex+f的交点坐标为()A . (﹣4,6)B . (4,6)C . (4,﹣6)D . (﹣4,﹣6)2. (2分) (2017七下·涪陵期末) 不等式组的解集在数轴上表示为()A .B .C .D .3. (2分) (2018七下·宁远期中) 某校课外小组的学生分组课外活动,若每组7人,则余下3人;若每组8人,则少5人,求课外小组的人数x和应分成的组数y.依题意可得方程组()A .B .C .D .4. (2分)若x=﹣2是关于x的方程(a﹣4)x﹣16=0的一个解,则a=()A . ﹣4B . 2C . 4D . 65. (2分) (2019八上·确山期中) 如图,在中,,,,则()A . 50°B . 55°C . 60°D . 65°6. (2分)(2020·南通模拟) 如图,平行四边形ABCD中,对角线AC,BD相交于点O,点E是CD的中点,则△ODE与△AOB的面积比为()A . 1:2B . 1:3C . 1:4D . 1:57. (2分)下列命题中,真命题是()A . 两个无理数相加的和一定是无理数B . 三角形的三条中线一定交于一点C . 菱形的对角线一定相等D . 同圆中相等的弦所对的弧一定相等8. (2分) (2019八下·大名期中) 已知坐标平面内一点A(2,1),O为原点,B是x轴上一个动点,如果以点B,O,A为顶点的三角形是等腰三角形,那么符合条件的动点B的个数为()A . 2个B . 3个C . 4个D . 5个9. (2分)如图,在数轴上所表示的是哪一个不等式的解集()A . x>-1B . ≥-3C . x+1≥-1D . -2x>410. (2分)正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=kx-k的图象大致是().A .B .C .D .11. (2分)如图,在平面直角坐标系中,以O(0,0)、A(1,-1)、B(2,0)为顶点,构造平行四边形,下列各点中不能作为平行四边形第四个顶点坐标的是()A . (3,-1)B . (-1,-1)C . (1,1)D . (-2,-1)12. (2分)如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为2,若A(4,0),B(2,2),则点D的坐标为()A . (1,2)B . (1,1)C . (,)D . (2,1)13. (2分) (2017七下·抚宁期末) 由方程组可得出x与y的关系式是()A . x+y=9B . x+y=3C . x+y=-3D . x+y=-9二、填空题 (共3题;共4分)14. (1分)(2010·希望杯竞赛) 右图中的正五角星有________条对称轴,图中与∠A的2倍互补的角有________个。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级(上)期末数学试卷一、选择题(本大题共10小题,共20.0分)1.4的平方根是()A. 16B. 2C. ±2D. ±22.下列各组数中是勾股数的是()A. 4,5,6B. 0.3,0.4,0.5C. 1,2,3D. 5,12,133.如图,数轴上A,B,C,D四点中,与−3对应的点距离最近的是()A. 点AB. 点BC. 点CD. 点D4.如图,直线a∥b,∠1=75°,∠2=35°,则∠3的度数是()A. 75∘B. 55∘C. 40∘D. 35∘5.对于命题“若a2>b2,则a>b.”下列关于a,b的值中,能说明这个命题是假命题的是()A. a=2,b=3B. a=−3,b=2C. a=3,b=−2D. a=−2,b=36.在平面直角坐标系中,点M在第四象限,到x轴、y轴的距离分别为6,4,则点M的坐标为()A. (4,−6)B. (−4,6)C. (−6,4)D. (−6,−4)7.已知x=2ky=3k是二元一次方程2x+y=14的解,则k的值是()A. 2B. −2C. 3D. −38.如果数据x1,x2,…,x n的方差是3,则另一组数据2x1,2x2,…,2x n的方差是()A. 3B. 6C. 12D. 59.如图1,甲、乙两个容器内都装了一定数量的水,现将甲容器中的水匀速注入乙容器中.图2中的线段AB,CD分别表示容器中的水的深度h(厘米)与注入时间t (分钟)之间的函数图象.下列结论错误的是()A. 注水前乙容器内水的高度是5厘米B. 甲容器内的水4分钟全部注入乙容器C. 注水2分钟时,甲、乙两个容器中的水的深度相等D. 注水1分钟时,甲容器的水比乙容器的水深5厘米10.如图,在同一直角坐标系中,直线l1:y=kx和l2:y=(k-2)x+k的位置可能是()A. B.C. D.二、填空题(本大题共6小题,共18.0分)11.-8的立方根是______.12.比较大小:43______52.13.写出命题“对顶角相等”的逆命题______.14.某单位要招聘1名英语翻译,张明参加招聘考试的成绩如表所示,若把听、说、读、30%30%20%20%______.15.x+1的图象经过A(a,m),B(a+1,n)两点,则m______n.(填“>”或“<”)16.如图,ABCD是长方形地面,长AB=10m,宽AD=5m,中间竖有一堵砖墙高MN=1m.一只蚂蚱从点A爬到点C,它必须翻过中间那堵墙,则它至少要走______m.三、计算题(本大题共1小题,共8.0分)17.计算题:(1)27+13−12(2)185×25÷(-22)四、解答题(本大题共8小题,共54.0分)18.解方程组:2x−y=53x+2y=4.19.在一次捐款活动中,学校团支书想了解本校学生的捐款情况,随机抽取了50名学生的捐款进行了统计,并绘制成如图所示的统计图.(1)这50名同学捐款的众数为______元,中位数为______元;(2)如果捐款的学生有300人,估计这次捐款有多少元?20.如图,方格纸中每个小正方形的边长为1,四边形ABCD的顶点都在格点上.(1)在方格纸上建立平面直角坐标系,使四边形ABCD的顶点A,C的坐标分别为(-5,-1),(-3,-3),并写出点D的坐标;(2)在(1)中所建坐标系中,画出四边形ABCD关于x轴的对称图形A1B1C1D1,并写出点B的对应点B1的坐标.21.阅读下列一段文字:在直角坐标系中,已知两点的坐标是M(x1,y1),N(x2,y2)),M,N两点之间的距离可以用公式MN=(x1−x2)2+(y1−y2)2计算.解答下列问题:(1)若点P(2,4),Q(-3,-8),求P,Q两点间的距离;(2)若点A(1,2),B(4,-2),点O是坐标原点,判断△AOB是什么三角形,并说明理由.22.如图,直线l:y1=-54x-1与y轴交于点A,一次函数y2=34x+3图象与y轴交于点B,与直线l交于点C.(1)画出一次函数y2=34x+3的图象;(2)求点C坐标;(3)如果y1>y2,那么x的取值范围是______.23.某水果店购进苹果与提子共60千克进行销售,这两种水果的进价、标价如下表所示,如果店主将这些水果按标价的8折全部售出后,可获利210元,求该水果店购进苹果和提子分别是多少千克?24.如图,已知在△ABC中,CE是外角∠ACD的平分线,BE是∠ABC的平分线.(1)求证:∠A=2∠E,以下是小明的证明过程,请在括号里填写理由.证明:∵∠ACD是△ABC的一个外角,∠2是△BCE的一个外角,(已知)∴∠ACD=∠ABC+∠A,∠2=∠1+∠E(______)∴∠A=∠ACD-∠ABC,∠E=∠2-∠1(等式的性质)∵CE是外角∠ACD的平分线,BE是∠ABC的平分线(已知)∴∠ACD=2∠2,∠ABC=2∠1(______)∴∠A=2∠2-2∠1(______)=2(∠2-∠1)(______)=2∠E(等量代换)(2)如果∠A=∠ABC,求证:CE∥AB.25.如图,在平面直角坐标系中,直线AB过点A(-1,1),B(2,0),交y轴于点C,点D(0,n)在点C上方.连接AD,BD.(1)求直线AB的关系式;(2)求△ABD的面积;(用含n的代数式表示)(3)当S△ABD=2时,作等腰直角三角形DBP,使DB=DP,求出点P的坐标.答案和解析1.【答案】C【解析】解:∵(±2)2=4,∴4的平方根是±2,故选:C.根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2.【答案】D【解析】解:A、∵52+42≠62,∴这组数不是勾股数;B、∵0.32+0.42=0.52,但不是整数,∴这组数不是勾股数;C、∵12+22≠32,∴这组数不是勾股数;D、∵52+122=132,∴这组数是勾股数.故选:D.根据勾股定理的逆定理分别进行分析,从而得到答案.此题主要考查了勾股数的定义,解答此题要用到勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则△ABC是直角三角形.3.【答案】B【解析】解:∵<<,即1<<2,∴-2<<-1,∴由数轴知,与对应的点距离最近的是点B,故选:B.先估算出-的范围,结合数轴可得答案.本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.4.【答案】C【解析】【分析】本题考查了平行线的性质和三角形外角的性质,熟练掌握性质定理是解题的关键.根据平行线的性质得出∠4=∠1=75°,然后根据三角形外角的性质即可求得∠3的度数.【解答】解:如图:∵直线a∥b,∠1=75°,∴∠4=∠1=75°,∵∠2+∠3=∠4,∴∠3=∠4-∠2=75°-35°=40°.故选C.5.【答案】B【解析】解:在A中,a2=4,b2=9,且3>2,此时不但不满足a2>b2,也不满足a>b不成立故A选项中a、b的值不能说明命题为假命题;在B中,a2=9,b2=2,且-2<3,此时满足满足a2>b2,但不能满足a>b,即意味着命题“若a2>b2,则a>b”不能成立,故B选项中a、b的值能说明命题为假命题;在C中,a2=9,b2=4,且3>-2,满足“若a2>b2,则a>b”,故C选项中a、b的值不能说明命题为假命题;在D中,a2=4,b2=9,且-2<3,此时不但不满足a2>b2,也不满足a>b不成立,故D选项中a、b的值不能说明命题为假命题;故选:B.说明命题为假命题,即a、b的值满足a2>b2,但a>b不成立,把四个选项中的a、b的值分别代入验证即可.本题主要考查假命题的判断,举反例是说明假命题不成立的常用方法,但需要注意所举反例需要满足命题的题设,但结论不成立.6.【答案】A【解析】解:因为点M在第四象限,所以其横、纵坐标分别为正数、负数,又因为点M到x轴的距离为6,到y轴的距离为4,所以点M的坐标为(4,-6).故选:A.已知点M在第四象限内,那么横坐标大于0,纵坐标小于0,进而根据到坐标轴的距离判断坐标.本题主要考查了点在第四象限时点的坐标的符号,点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值.7.【答案】A【解析】解:将代入二元一次方程2x+y=14,得7k=14,解得k=2.故选:A.根据方程的解的定义,将方程2x+y=14中x,y用k替换得到k的一元一次方程,进行求解.考查了二元一次方程的解的定义,只需把方程的解代入,进一步解一元一次方程即可.8.【答案】C【解析】解:∵一组数据x1,x2,x3…,x n的方差为3,∴另一组数据2x1,2x2,2x3…,2x n的方差为22×3=12.故选:C.如果一组数据x1、x2、…、x n的方差是s2,那么数据kx1、kx2、…、kx n的方差是k2s2(k≠0),依此规律即可得出答案.本题考查了方差的定义.当数据都加上一个数时,平均数也加上这个数,方差不变,即数据的波动情况不变;当数据都乘以一个数时,平均数也乘以这个数(不为0),方差变为这个数的平方倍.9.【答案】D【解析】解:由图可得,注水前乙容器内水的高度是5厘米,故选项A正确,甲容器内的水4分钟全部注入乙容器,故选项B正确,注水2分钟时,甲容器内水的深度是20×=10厘米,乙容器内水的深度是:5+(15-5)×=10厘米,故此时甲、乙两个容器中的水的深度相等,故选项C正确,注水1分钟时,甲容器内水的深度是20-20×=15厘米,乙容器内水的深度是:5+(15-5)×=7.5厘米,此时甲容器的水比乙容器的水深15-7.5=7.5厘米,故选项D错误,故选:D.根据题意和函数图象,可以判断各个选项中的说法是否正确,从而可以解答本题.本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.10.【答案】B【解析】解:当k>2时,正比例函数y=kx图象经过1,3象限,一次函数y=(k-2)x+k 的图象1,2,3象限;当0<k<2时,正比例函数y=kx图象经过1,3象限,一次函数y=(k-2)x+k 的图象1,2,4象限;当k<0时,正比例函数y=kx图象经过2,4象限,一次函数y=(k-2)x+k的图象2,3,4象限,当(k-2)x+k=kx时,x=<0,所以两函数交点的横坐标小于0,故选:B.根据正比例函数与一次函数的图象性质作答.此题考查了一次函数的图象和正比例函数的图象,熟知一次函数的图象与系数的关系是解答此题的关键.11.【答案】-2【解析】解:∵(-2)3=-8,∴-8的立方根是-2.故答案为:-2.利用立方根的定义即可求解.本题主要考查了立方根的概念.如果一个数x的立方等于a,即x的三次方等于a(x3=a),那么这个数x就叫做a的立方根,也叫做三次方根.读作“三次根号a”其中,a叫做被开方数,3叫做根指数.12.【答案】<【解析】解:∵=,=,48<50,∴<.故答案为:<.两个正根式比较大小,可比较其被开方数的大小,被开方数大的哪个就大;的被开方数是48,的被开方数是50,比较、解答出即可.本题主要看考查了实数大小的比较,任意两个实数都可以比较大小:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.13.【答案】如果两个角相等,那么这两个角是对顶角【解析】解:命题“对顶角相等”的逆命题是如果两个角相等,那么这两个角是对顶角,故答案为:如果两个角相等,那么这两个角是对顶角.根据逆命题的定义可以写出命题“对顶角相等”的逆命题,本题得以解决.本题考查命题与定理,解题的关键是明确逆命题的定义,可以写出一个命题的逆命题.14.【答案】84【解析】解:张明的平均成绩为:90×30%+80×30%+83×20%+82×20%=84;故答案为84.根据加权平均数的计算公式进行计算即可.此题考查了加权平均数的计算公式,要熟练掌握,解答此题的关键是要明确:数据的权能够反映数据的相对“重要程度”,要突出某个数据,只需要给它较大的“权”,权的差异对结果会产生直接的影响.15.【答案】>【解析】解:∵一次函数y=-2x+1的图象经过A(a,m),B(a+1,n)两点,∴m=-2a+1,n=-2a-1∴m>n故答案为:>将点A,点B坐标代入可求m,n的值,即可比较m,n的大小.本题考查了一次函数图象上点的坐标特征,熟练掌握函数图象上的点的坐标满足函数解析式.16.【答案】13【解析】解:如图所示,将图展开,图形长度增加2MN,原图长度增加2米,则AB=10+2=12m,连接AC,∵四边形ABCD是长方形,AB=12m,宽AD=5m,∴AC=m,∴蚂蚱从A点爬到C点,它至少要走13m的路程.故答案为:13.连接AC,利用勾股定理求出AC的长,再把中间的墙平面展开,使原来的矩形长度增加而宽度不变,求出新矩形的对角线长即可.本题考查的是平面展开最短路线问题及勾股定理,根据题意画出图形是解答此题的关键.17.【答案】解:(1)原式=33+33-23=433;(2)原式=185×20÷(-22)=72÷(-8)=-72÷8=-9=-3.【解析】(1)先化简各二次根式,再合并同类二次根式即可得;(2)根据二次根式的混合运算顺序和运算法则计算可得.本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.18.【答案】解:2x−y=5①3x+2y=4②①×2+②得到,7x=14,x=2把x=2代入①得到y=-1,∴x=2y=−1.【解析】利用加减消元法解方程组即可.本题考查二元一次方程组的解法,解题的关键是熟练掌握加减消元法、代入消元法解方程组,属于中考常考题型.19.【答案】15 15【解析】解:(1)这50名同学捐款的众数为15元,第25个数和第26个数都是15元,所以中位数为15元;故答案为15,15;(2)样本的平均数=(5×8+10×14+15×20+20×6+25×2)=13(元),300×13=3900,所以估计这次捐款有3900元.(1)根据众数和中位数的定义求解;(2)先计算出样本的平均数,然后利用样本估计总体,用样本平均数乘以300即可.本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了中位数.20.【答案】解:(1)如图所示,点D(-1,-2).(2)如图所示,四边形A1B1C1D1即为所求,点B的对应点B1的坐标为(-4,5).【解析】(1)根据点A与点C的坐标可得平面直角坐标系,继而可得点D的坐标;(2)分别作出四个顶点关于x轴的对称点,再首尾顺次连接可得.此题主要考查了作图-轴对称变换,正确得出对应点位置是解题关键.21.【答案】解:(1)P,Q两点间的距离=(−3−2)2+(−8−4)2=13;(2)△AOB是直角三角形,理由如下:AO2=(1-0)2+(2-0)2=5,BO2=(4-0)2+(-2-0)2=20,AB2=(4-1)2+(-2-2)2=25,则AO2+BO2=AB2,∴△AOB是直角三角形.【解析】(1)根据两点间的距离公式计算;(2)根据勾股定理的逆定理解答.本题考查的是考查的是两点间的距离公式,勾股定理的逆定理,如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.22.【答案】x<-2【解析】解:(1)∵y2=x+3,∴当y2=0时,x+3=0,解得x=-4,当x=0时,y2=3,∴直线y2=x+3与x轴的交点为(-4,0),与y轴的交点B的坐标为(0,3).图象如下所示:(2)解方程组,得,则点C坐标为(-2,);(3)如果y1>y2,那么x的取值范围是x<-2.故答案为x<-2.(1)分别求出一次函数y2=x+3与两坐标轴的交点,再过这两个交点画直线即可;(2)将两个一次函数的解析式联立得到方程组,解方程组即可求出点C坐标;(3)根据图象,找出y1落在y2上方的部分对应的自变量的取值范围即可.本题考查了一次函数的图象与性质,两直线交点坐标的求法,一次函数与一元一次不等式,都是基础知识,需熟练掌握.23.【答案】解:设该水果店购进苹果x千克,购进提子y千克,根据题意得:x+y=60(8×0.8−3)x+(10×0.8−4)y=210,解得:x=50y=10.答:该水果店购进苹果50千克,购进提子10千克.【解析】设该水果店购进苹果x千克,购进提子y千克,根据该水果店购进苹果与提子共60千克且销售利润为210元,即可得出关于x,y的二元一次方程组,解之即可得出结论.本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.24.【答案】三角形外角的性质角平分线的性质等量代换提取公因数【解析】解:(1)∵∠ACD是△ABC的一个外角,∠2是△BCE的一个外角,(已知),∴∠ACD=∠ABC+∠A,∠2=∠1+∠E(三角形外角的性质),∴∠A=∠ACD-∠ABC,∠E=∠2-∠1(等式的性质),∵CE是外角∠ACD的平分线,BE是∠ABC的平分线(已知),∴∠ACD=2∠2,∠ABC=2∠1(角平分线的性质),∴∠A=2∠2-2∠1(等量代换),=2(∠2-∠1)(提取公因数),=2∠E(等量代换);(2)由(1)可知:∠A=2∠E∵∠A=∠ABC,∠ABC=2∠ABE,∴2∠E=2∠ABE,即∠E=∠ABE,∴AB∥CE.(1)根据角平分线的性质以及三角形外角的性质即可求证;(2)由(1)可知:∠A=2∠E,由于∠A=∠ABC,∠ABC=2∠ABE,所以∠E=∠ABE,从而可证AB∥CE.本题考查三角形的综合问题,涉及平行线的判定,三角形外角的性质,角平分线的性质,需要学生灵活运用所学知识.25.【答案】解:(1)设直线AB的解析式为:y=kx+b,把点A(-1,1),B(2,0)代入得,1=−k+b0=2k+b,解得:k=−13b=23,∴直线AB的关系式为:y=-13x+23;(2)由(1)知:C(0,23),∴CD=n-23,∴△ABD的面积=12×(n-23)×1+12(n-23)×2=32n-1;(3)∵△ABD的面积=32n-1=2,∴n=2,∴D(0,2),∴OD=OB,∴△BOD三等腰直角三角形,∴BD=22,如图,∵△DBP是等腰直角三角形,DB=DP,∴∠DBP=45°,∴∠OBP=45°,∴∠OBP=90°,∴PB=2DB=4,∴P(2,4)或(-2,0).【解析】(1)设直线AB的解析式为:y=kx+b,把点A(-1,1),B(2,0)即可得到结论;(2)由(1)知:C(0,),得到CD=n-,根据三角形的面积公式即可得到结论;(3)根据三角形的面积得到D(0,2),求得OD=OB,推出△BOD三等腰直角三角形,根据勾股定理得到BD=2,根据等腰直角三角形的性质即可得到结论.本题考查了待定系数法求一次函数的解析式,等腰直角三角形的性质,正确的作出图形是解题的关键.。

相关文档
最新文档