2015年全国中考数学试题分类汇编:分式
2015届中考数学总复习 六 分式精练精析1 华东师大版
数与式——分式1一.选择题(共9小题)1.某工厂第二季度的产值比第一季度的产值增长了x%,第三季度的产值又比第二季度的产值增长了x%,则第三季度的产值比第一季度增长了()A.2x% B.1+2x% C.(1+x%)•x%D.(2+x%)•x%2.下列三个分式、、的最简公分母是()A.4(m﹣n)x B.2(m﹣n)x2C.D.4(m﹣n)x23.化简÷的结果是()A.m B.C.m﹣1 D.4.化简的结果是()A.x+1 B.x﹣1 C.﹣x D.x5.化简:﹣=()A.0 B.1 C.x D.6.若(+)•w=1,则w=()A.a+2(a≠﹣2)B.﹣a+2(a≠2)C.a﹣2(a≠2) D.﹣a﹣2(a≠﹣2)7.已知:a2﹣3a+1=0,则a+﹣2的值为()A.+1 B.1 C.﹣1 D.﹣58.当a=2时,÷(﹣1)的结果是()A.B.﹣C.D.﹣9.一个代数式的值不能等于零,那么它是()A.a2B.a0C.D.|a|二.填空题(共7小题)10.若分式有意义,则实数x的取值X围是_________ .11.代数式有意义时,x应满足的条件为_________ .12.若分式的值是0,则x的值为_________ .13.化简:=._________ .14.计算:÷= _________ .15.计算:= _________ .16.化简:= _________ .三.解答题(共8小题)17.先化简,再求值:•,其中x=2+,y=2﹣.18.计算:•.19.计算:•.20.计算(﹣)÷.21.计算:(﹣)÷.22.化简:(x2﹣2x)÷.23.已知非零实数a满足a2+1=3a,求的值.24.先化简,再求值:÷(2+),其中x=﹣1.数与式——分式1参考答案与试题解析一.选择题(共9小题)1.某工厂第二季度的产值比第一季度的产值增长了x%,第三季度的产值又比第二季度的产值增长了x%,则第三季度的产值比第一季度增长了()A.2x% B.1+2x% C.(1+x%)•x%D.(2+x%)•x%考点:一元二次方程的应用.专题:增长率问题.分析:根据题意列出正确的算式即可.解答:解:根据题意得:第三季度的产值比第一季度增长了(2+x%)•x%,故选D点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.2.下列三个分式、、的最简公分母是()A.4(m﹣n)x B.2(m﹣n)x2C D.4(m﹣n)x2考点:最简公分母.分析:确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.解答:解:分式、、的分母分别是2x2、4(m﹣n)、x,故最简公分母是4(m﹣n)x2.故选:D.点评:本题考查了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里.②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂.3.化简÷的结果是()A.m B.C.m﹣1 D.考点:分式的乘除法.专题:计算题.分析:原式利用除法法则变形,约分即可得到结果.解答:解:原式=•=m.故选:A.点评:此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.4.化简的结果是()A.x+1 B.x﹣1 C.﹣x D.x考点:分式的加减法.专题:计算题.分析:将分母化为同分母,通分,再将分子因式分解,约分.解答:解:=﹣===x,故选:D.点评:本题考查了分式的加减运算.分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.5.化简:﹣=()A.0 B1 C.x D.考点:分式的加减法.分析:原式利用同分母分式的减法法则计算,约分即可得到结果.解答:解:原式==x.故选:C点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.6.若(+)•w=1,则w=()A.a+2(a≠﹣2)B.﹣a+2(a≠2) C.a﹣2(a≠2)D.﹣a﹣2(a≠﹣2)考点:分式的混合运算.专题:计算题.分析:原式变形后,计算即可确定出w.解答:解:根据题意得:w===﹣(a+2)=﹣a﹣2.故选:D.点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.7.已知:a2﹣3a+1=0,则a+﹣2的值为()A.+1 B.1 C.﹣1 D.﹣5考点:分式的混合运算.专题:计算题.分析:已知等式变形求出a+的值,代入原式计算即可得到结果.解答:解:∵a2﹣3a+1=0,且a≠0,∴同除以a,得a+=3,则原式=3﹣2=1,故选:B.点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.8.当a=2时,÷(﹣1)的结果是()A.B.﹣ C D.﹣考点:分式的化简求值.专题:计算题.分析:通分、因式分解后将除法转化为乘法约分即可.解答:解:原式=÷=•=,当a=2时,原式==﹣.故选:D.点评:本题考查了分式的化简求值,熟悉因式分解和分式除法是解题的关键.9.一个代数式的值不能等于零,那么它是()A.a2B.a0C D.|a|考点:零指数幂;绝对值;有理数的乘方;算术平方根.分析:根据非0的0次幂等于1,可得答案.解答:解:A、当a=0时,a2=0,故A错误;B、a0=1(且a≠0),故B正确;C、当a=0时,=0,故C错误;D、当a=0时,|a|=0,故D错误.故选:B.点评:本题考查了零指数幂,非0的0次幂等于1是解题关键.二.填空题(共7小题)10.若分式有意义,则实数x的取值X围是x≠5.考点:分式有意义的条件.专题:计算题.分析:由于分式的分母不能为0,x﹣5为分母,因此x﹣5≠0,解得x.解答:解:∵分式有意义,∴x﹣5≠0,即x≠5.故答案为:x≠5.点评:本题主要考查分式有意义的条件:分式有意义,分母不能为0.11.代数式有意义时,x应满足的条件为x≠±1.考点:分式有意义的条件.分析:根据分式有意义,分母等于0列出方程求解即可.解答:解:由题意得,|x|﹣1≠0,解得x≠±1.故答案为:x≠±1.点评:本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.12.若分式的值是0,则x的值为 2 .考点:分式的值为零的条件.分析:根据分式的值为零的条件得到x﹣2=0且x≠0,易得x=2.解答:解:∵分式的值是0,∴x﹣2=0且x≠0,∴x=2.故答案为:2.点评:本题考查了分式的值为零的条件:当分式的分母不为零,分子为零时,分式的值为零.13.化简:=.a+b .考点:约分.分析:先将分式的分子因式分解,再约分,即可求解.解答:解:==.故答案为:a+b.点评:本题考查了约分的定义:约去分式的分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.由约分的概念可知,要首先将分子、分母转化为乘积的形式,再找出分子、分母的最大公因式并约去,注意不要忽视数字系数的约分.14.计算:÷=.考点:分式的乘除法.专题:计算题.分析:原式利用除法法则变形,约分即可得到结果.解答:解:原式=•=.故答案为:.点评:此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.15.计算:= a﹣2 .考点:分式的加减法.专题:计算题.分析:根据同分母分式加减运算法则,分母不变只把分子相加减即可求解.解答:解:==a﹣2.故答案为:a﹣2.点评:本题主要考查同分母分式加减,熟练掌握运算法则是解题的关键.16.化简:= x+2 .考点:分式的加减法.专题:计算题.分析:先转化为同分母(x﹣2)的分式相加减,然后约分即可得解.解答:解:+=﹣==x+2.故答案为:x+2.点评:本题考查了分式的加减法,把互为相反数的分母化为同分母是解题的关键.三.解答题(共8小题)17.先化简,再求值:•,其中x=2+,y=2﹣.考点:分式的化简求值.专题:计算题.分析:将原式第一个因式括号中两项通分并利用同分母分式的减法法则计算,分子利用完全平方公式展开,去括号合并得到最简结果,第二个因式通分并利用同分母分式的减法法则计算,分子提取﹣1并利用平方差公式分解因式,约分得到最简结果,然后将x与y的值代入化简后的式子中计算,即可得到原式的值.解答:解:原式=•=•(﹣)=4xy•=,则当x=2+,y=2﹣时,原式==﹣=﹣4.点评:此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找出最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,约分时分式的分子分母出现多项式,应先将多项式分解因式后再约分,此外化简求值题要先化简再代值.18.计算:•.考点:分式的乘除法.专题:计算题.分析:原式约分即可得到结果.解答:解:原式=•=.点评:此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.19.计算:•.考点:分式的乘除法.专题:计算题.分析:把式子中的代数式进行因式分解,再约分求解.解答:解:•=•=x点评:本题主要考查分式的乘除法,解题的关键是进行因式分解再约分.20.计算(﹣)÷.考点:分式的混合运算.分析:首先把除法运算转化成乘法运算,然后找出最简公分母,进行通分,化简.解答:解:原式=(﹣)•=(﹣)•(﹣),=﹣•,=﹣.点评:此题主要考查了分式的混合运算,通分、因式分解和约分是解答的关键.21.计算:(﹣)÷.考点:分式的混合运算.专题:计算题.分析:原式括号中两项利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.解答:解:原式=•=x﹣1.点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.22.化简:(x2﹣2x)÷.考点:分式的混合运算.专题:计算题.分析:原式利用除法法则变形,约分即可得到结果.解答:解:原式=x(x﹣2)•=x.点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.23.已知非零实数a满足a2+1=3a,求的值.考点:分式的混合运算.专题:计算题.分析:已知等式两边除以a变形后求出a+的值,两边平方,利用完全平方公式展开即可求出所求式子的值.解答:解:∵a2+1=3a,即a+=3,∴两边平方得:(a+)2=a2++2=9,则a2+=7.点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.24.先化简,再求值:÷(2+),其中x=﹣1.考点:分式的化简求值.专题:计算题.分析:先把括号内通分,再把除法运算化为乘法运算,然后把分子分母因式分解,约分后得到原式=,再把x的值代入计算.解答:解:原式=÷=÷=•=,当x=﹣1时,原式==.点评:本题考查了分式的化简求值:先把分式的分子或分母因式分解,再进行通分或约分,得到最简分式或整式,然后把满足条件的字母的值代入计算得到对应的分式的值.。
中考数学试题分类汇编 整式与分式
中考数学试题分类汇编:整式与分式一、选择题1、实数a 、b 在数轴上的位置如图所示,则化简代数式||a +b –a 的结果是( ) A .2a +b B .2a C .a D .b2、计算)3(623m m -÷的结果是( )(A )m 3- (B )m 2- (C )m 2m 3 3、下列计算中,正确的是( )A .33x x x =∙B .3x x x -=C .32x x x ÷=D .336x x x += 4、下列运算正确的是( ) A.321x x -= B.22122xx--=-C.236()a a a -=· D.236()a a -=-4、化简:(a +1)2-(a -1)2=( )(A )2 (B )4 (C )4a (D )2a 2+25、下列计算中,正确的是( )A .325a b ab +=B .44a a a =∙ C .623a a a ÷= D .3262()a b a b = 6.对于非零实数m ,下列式子运算正确的是( )A .923)(m m =;B .623m m m =⋅;C .532m m m =+;D .426m m m =÷。
7.下列因式分解正确的是( )A .x x x x x 3)2)(2(342++-=+-;B .)1)(4(432-+-=++-x x x x ;C .22)21(41x x x -=+-;D .)(232y x y xy x y x xy y x +-=+-。
8、下列计算正确的是( )A 、623a a a =∙B 、4442b b b =∙C 、1055x x x =+ D 、87y y y =∙ 9、代数式2346x x -+的值为9,则2463x x -+的值为( )A .7 B .18 C .12D .9 10、下列各式中,与2(1)a -相等的是( )A .21a -B .221a a -+ C .221a a -- D .21a + 二、填空题1、当x=2,代数式21x -的值为_______.2、因式分解:xy 2–2xy +x = .3、分解因式:2218x -= .4、分解因式:2x -9= 。
2015年中考数学真题分类汇编 二次根式、分式和一元一次方程
二次根式、分式和一元一次方程一.选择题(共12小题)1.(2015•东营)下列计算正确的是()﹣=﹣=2.(2015•孝感)已知x=2﹣,则代数式(7+4)x2+(2+)x+的值是()C+﹣代入代数式(7+4)7+4)3+.3.(2015•咸宁)方程2x﹣1=3的解是()4.(2015•济南)若代数式4x﹣5与的值相等,则x的值是()C D5=,5.(2015•无锡)方程2x﹣1=3x+2的解为()6.(2015•大连)方程3x+2(1﹣x)=4的解是()=7.(2015•杭州)某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地面积占林地面积的20%.设把x公顷旱地改为林地,则可列方程()8.(2015•长沙)长沙红星大市场某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获利润500元,其利润率为20%.现如果按同一标价打九折销售该电器一件,那么获得的纯利润为()9.(2015•南充)学校机房今年和去年共购置了100台计算机,已知今年购置计算机数量是去年购置计算机数量的3倍,今年购置计算机的数量是()10.(2015•深圳)某商品的标价为200元,8折销售仍赚40元,则商品进价为()元.11.(2015•大庆)某品牌自行车1月份销售量为100辆,每辆车售价相同.2月份的销售量比1月份增加10%,每辆车的售价比1月份降低了80元.2月份与1月份的销售总额相同,则1月份的售价为()12.(2015•永州)永州市双牌县的阳明山风光秀丽,历史文化源远流长,尤以山顶数万亩野生杜鹃花最为壮观,被誉为“天下第一杜鹃红”.今年“五一”期间举办了“阳明山杜鹃花旅游文化节”,吸引了众多游客前去观光赏花.在文化节开幕式当天,从早晨8:00开始每小时进入阳明山景区的游客人数约为1000人,同时每小时走出景区的游客人数约为600人,已知阳明上景区游客的饱和人数约为2000人,则据此可知开幕式当天该景区游客人数饱和的时间约为()二.填空题(共14小题)13.(2015•包头)计算:(﹣)×=8.﹣14.(2015•长沙)把+进行化简,得到的最简结果是2(结果保留根号).+..15.(2015•聊城)计算:(+)2﹣=5.+3=516.(2015•滨州)计算(+)(﹣)的结果为﹣1.,求出算式()﹣()﹣+)﹣17.(2015•黔西南州)已知x=,则x2+x+1=2.)﹣+1+)+18.(2015•甘孜州)已知关于x的方程3a﹣x=+3的解为2,则代数式a2﹣2a+1的值是1.+3+319.(2015•常州)已知x=2是关于x的方程a(x+1)=a+x的解,则a的值是.a.故答案为:.20.(2015•黑龙江)某超市“五一放价”优惠顾客,若一次性购物不超过300元不优惠,超过300元时按全额9折优惠.一位顾客第一次购物付款180元,第二次购物付款288元,若这两次购物合并成一次性付款可节省18或46.8元.21.(2015•荆门)王大爷用280元买了甲、乙两种药材,甲种药材每千克20元,乙种药材每千克60元,且甲种药材比乙种药材多买了2千克,则甲种药材买了5千克.22.(2015•孝感)某市为提倡节约用水,采取分段收费.若每户每月用水不超过20m3,每立方米收费2元;若用水超过20m3,超过部分每立方米加收1元.小明家5月份交水费64元,则他家该月用水28m3.23.(2015•牡丹江)某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为100元.24.(2015•嘉兴)公元前1700年的古埃及纸草书中,记载着一个数学问题:“它的全部,加上它的七分之一,其和等于19.”此问题中“它”的值为.x=的值为,故答案为:.25.(2015•义乌市)实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两个相同的管子在容器的5cm高度处连通(即管子底离容器底5cm),现三个容器中,只有甲中有水,水位高1cm,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升cm.(1)开始注水1分钟,丙的水位上升cm.(2)开始注入或分钟的水量后,乙的水位比甲高0.5cm.cm分钟,丙的水位上升cm分钟,丙的水位上升由题意得,t,×=65÷=分钟,×=,即经过分钟时容器的水到达管子底部,乙的水位上升+2×()﹣;∵乙的水位到达管子底部的时间为;+)÷÷分钟,2×(),综上所述开始注入或分钟的水量后,乙的水位比甲高故答案为cm或.26.(2015•湘潭)湘潭盘龙大观园开园啦!其中杜鹃园的门票售价为:成人票每张50元,儿童票每张30元.如果某日杜鹃园售出门票100张,门票收入共4000元.那么当日售出成人票50张.三.解答题(共4小题)27.(2015•大连)计算:(+1)(﹣1)+﹣()0.1+21+21=1+2.28.(2015•陕西)计算:×(﹣)+|﹣2|+()﹣3.+2+8+2+2+8.29.(2015•山西)阅读与计算:请阅读以下材料,并完成相应的任务.斐波那契(约1170﹣1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用.斐波那契数列中的第n个数可以用[﹣]表示(其中,n≥1).这是用无理数表示有理数的一个范例.任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.[﹣()×[﹣[(﹣(×)﹣×1×30.(2015•广州)解方程:5x=3(x﹣4)。
最新陕西15年中考数学试题及评析(精品)
7.(3分)(2015•陕西)不等式组
的最大整数解为( ) A. 8 B. 6 解答: 解:
C. 5
D. 4
∵解不等式①得:x≥﹣8, 解不等式②得:x<6, ∴不等式组的解集为﹣8≤x<6, ∴不等式组的最大整数解为5, 故选C. 8.(3分)(2015•陕西)在平面直角坐标系中,将直线l1:y=﹣2x﹣2 平移后,得到直线l2:y=﹣2x+4,则下列平移作法正确的是( ) A.将l1向右平移3个单位长度 C. 将l1向上平移2个单位长度 解答: B. 将l1向右平移6个单位长度 D.将l1向上平移4个单位长度
3
4
5
6
(1,1)(1,2)(1,3)(1,4) (1,5) (1,6) (2,1)(2,2)(2,3)(2,4) (2,5) (2,6) (3,1)(3,2)(3,3)(3,4) (3,5) (3,6) (4,1)(4,2)(4,3)(4,4) (4,5) (4,6) (5,1)(5,2)(5,3)(5,4) (5,5) (5,6)
班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者 参赛). 规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向 上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽 胜;否则,视为平局,若为平局,继续上述游戏,直至分出胜负为止. 如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题: (1)小亮掷得向上一面的点数为奇数的概率是多少? (2)该游戏是否公平?请用列表或树状图等方法说明理由.(骰子: 六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体) 解 解:(1)∵向上一面的点数为奇数有3种情况, 答: ∴小亮掷得向上一面的点数为奇数的概率是: . (2)填表如下: 1 2 1 2 3 4 5
全国181套中考数学试题分类汇编5分式
5:分式一、选择题1.(重庆江津4分)下列式子是分式的是A 、2x B 、1x x + C 、2x y + D 、xπ【答案】B 。
【考点】分式的定义。
【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式:∵2x ,2x y +,xπ的分母中均不含有字母,∴它们是整式,而不是分式;1x x +分母中含有字母,因此是分式。
故选B 。
2.(浙江金华、丽水3分)计算111a a a ---的结果为A 、11a a +- B 、1a a -- C 、﹣1D 、2【答案】C 。
【考点】分式的加减法。
【分析】根据同分母的分式加减,分母不变,分子相加减的运算法则,得111111a a a a a --==----。
故选C 。
3.(广西来宾3分)计算11xx y--的结果是A 、()y x x y -- B 、()2x y x x y +- C 、()2x y x x y -- D 、()y x x y -【答案】A 。
【考点】分式的加减法。
【分析】首先通分,然后根据同分母的分式加减运算法则求解即可求得答案:()()()11x y x y x x yx x y x x y x x y --=-=-----。
故选A 。
4.(江苏苏州3分)已知1112a b -=,则ab a b-的值是A .12B .-12C .2D .-2【答案】D 。
【分析】观察已知和所求的关系,容易发现把已知通分后,再求倒数即可:1111222b a ab a b ab a b--=⇒=⇒=--。
故选D 。
5.(江苏南通3分)设0m >n >,224m n mn +=,则22m n m n-=A .2 3B . 3C . 6D .3 【答案】A 。
【考点】代数式变换,完全平方公式,平方差公式,根式计算。
【分析】由224m n mn +=有()()2262m n mn m n mn +=-= ,,因为0m >n >,所以m n +=,m n -=,则()()22m n m n m n m nm nm n+--===A 。
2015中考数学分式及其运算总复习课件试题(中考题)全面版.ppt
(3)分式的乘除法:ba·dc=__bacd__;ba÷dc=__abdc__. (4)分式的乘方 (ba)n=__bann(n 为正整数)__.
4.最简分式 如果一个分式的分子与分母没有公因式,那么这个分式叫 做最简分式.
5.分式的约分、通分 把分式中分子与分母的公因式约去,这种变形叫做约分, 约分的根据是分式的基本性质.
1.(2013·盘锦)若式子 xx+1有意义,则 x 的取值范围是 x≥-1且x≠0
.
2.(2014·广州)计算xx2--24的结果是( B )
A.x-2
B.x+2
x-4 C. 2
x+2 D. x
3.(2013·沈阳)化简x-2 1+1-3 x的结果是( B )
1
1
5
5
A.x-1 B.1-x C.x-1 D.1-x
解:方程两边都乘(x+3)(x-3),得 3+x(x+3)=x2-9,3+ x2+3x=x2-9,解得 x=-4,检验:把 x=-4 代入(x+3)(x-3)≠0, ∴x=-4 是原分式方程的解
A. 5+1 B.1 C.-1 D.-5 (2)(2014·娄底)先化简xx22--49÷(1-x-1 3),再从不等式 2x-3<7 的正整数解中选一个使原式有意义的数代入求值.
解
:
原
式
=
(x+2)(x-2) (x+3)(x-3)
x-3-1 ÷ x-3
=
((xx++23))((xx--23))·xx--34=((xx++23))((xx--24)),不等式 2x-3<7,
是( D )
A.x≠1 B.x≥0 C.x>0 D.x≥0 且 x≠1
中考复习数学真题汇编:分式方程及应用
一、选择题1.(2015四川省遂宁市,9,4分)遂宁市某生态示范园,计划种植一批核桃,原计划总产量达36万千克.为了满足市场需求,现决定改良核桃品种,改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万千克.种植亩数减少了20亩,则原计划和改良后平均每亩产量各多少万千克?设原计划每亩平均产量x万千克,则改良后平均亩产量为1.5x万千克.根据题意列方程为().A.B.C.D.【答案】A.【解析】相等关系:原计划种植亩数-实际种植亩数=20.由题意可得方程.注意此类题并不难,同学们出错最多的地方就是审题不清,而误选其它答案.这样可以少出错:一是要明白x 的含义,而是要区分是谁与谁的差,这样不容易不错.2.(2015四川省自贡市,3,4分)方程=0的解是 ······································()A.1或-1 B.-1 C.0 D.1【答案】D3.(2015天津市,8,3分)分式方程的解是()A.x=0B.x=3C.x=5D.x=9【答案】D4. (2015年山东省济宁市)解分式方程时,去分母后变形正确的为()A. 2+(+2)=3(-1)B. 2-+2=3(-1)C. 2-(+2)=3D. 2-(+2)=3(-1)【答案】D5.(2015贵州遵义,7,3分)若x=3是分式方程的根,则a的值是()A.5 B.-5 C.3 D.-3【答案】A【解析】解:根据方程根的意义,将x=3代入分式方程得:,即转换成关于a的一元一次方程,解得a=5,故选A.6.(2015湖南常德,7,3分)分式方程的解为()A. 1B. 2C.D. 0【答案】A二、填空题1.(2015四川省巴中市,14,3分)分式方程的解x= .【答案】4.2.(2015山东省德州市,14,4分)方程的解为x= .【答案】23.(2015湖南省长沙市,16,3分)分式方程的解为________.【答案】4.(2015四川省凉山州市,16,4分)分式方程的解是.【答案】【解析】解:方程两边乘,得;移项,合并得,故答案为.5.(2015山东省威海市16,3分)分式方程的解为.【答案】x=4.【解析】方程两边同乘以(x-3),得1-x=-1-2(x-3).解得x=4.经检验,x=4是原方程的解.6.(2015浙江省温州市,14,5分)方程的根是________.【答案】x=27.(2015江苏淮安,9,3分)方程的解是。
中考2015年中考数学真题分类汇编 二次根式、分式和一元一次方程
C.x=3
D x=﹣3
.
考 解一元一次方程. 菁优网版权所有
点:
分 方程移项合并,把 x 系数化为 1,即可求出解.
析:
解 解:方程 2x﹣1=3x+2,
答: 移项得:2x﹣3x=2+1,
合并得:﹣x=3.
解得:x=﹣3,
故选 D.
点 此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系
2.(2015•孝感)已知 x=2﹣ ,则代数式(7+4 )x2+(2+ )x+ 的值是( )
A.0
B.
C.2+
D 2﹣
.
考 二次根式的化简求值. 菁优网版权所有
点:
分 未知数的值已给出,利用代入法即可求出.
析:
解 解:把 x=2﹣ 代入代数式(7+4 )x2+(2+ )x+ 得:
答:
=(7+4 )(7﹣4 )+4﹣3+ =49﹣48+1+ =2+ . 故选 C.
析:
解 解:根据题意得:4x﹣5=
,
答: 去分母得:8x﹣10=2x﹣1,
D 2
.
中考真题
解得:x= ,
故选 B.
点 此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系
评: 数化为 1,求出解.
5.(2015•无锡)方程 2x﹣1=3x+2 的解为( )
A.x=1
B.x=﹣1
,则 x2+x+1= 2 .
考 二次根式的化简求值. 菁优网版权所有
点: 分 先根据完全平方公式变形,再代入求出即可.
【9份】2015年全国各地中考数学试题(真题)分类汇编(精品推荐)
二、填空题
1.(2015•南京)若式子 在实数范围内有意义,则x的取值范围是.
2.(2015•南京)计算 的结果是.
3.(2015•四川自贡)化简: =.
考点:绝对值、无理数、二次根式
分析:本题关键是判断出 值得正负,再根据绝对值的意义化简.
略解:∵ ∴ ∴ ;故应填 .
4.(2015•四川自贡)若两个连续整数 满足 ,则 的值是.
A.x≤2 B. x≥2 C. x<2 D.x>2
6.(2015•浙江杭州)若 k<<k+1(k是整数),则k=( )
A. 6B.7C. 8D. 9
【答案】D.
【考点】估计无理数的大小.
【分析】∵ ,
∴k=9. B. C. D.
8.(2015•重庆B)计算 的值是()
考点:无理数、二次根式、求代数式的值.
分析:本题关键是判断出 值是在哪两个连续整数之间.
略解:∵ ∴ ∴ ∴ ;故应填7.
5.(2015•四川资阳)已知: ,则 的值为_________.
三.解答题
1.(2015•江苏苏州)计算: .
【考点分析】考察实数计算,中考必考题型。难度很小。
【详细分析】解:原式=3+5-1=7.
涉及的公式为:金额=单价×数量
金额
单价
数量
乒乓球
1.5×20=30
1.5
20
球拍
22
将相关数据代入①即可解得:
解:设购买球拍 个,依题意得:
解之得:
由于 取整数,故 的最大值为7。
6.(山东菏泽)13.不等式组 的解集是__________-1≤x<3
7.(云南)已知不等式组 ,其解集在数轴上表示正确的是( )
2015年中考数学真题分类汇编 因式分解
因式分解一.选择题(共18小题)1.(2015•连云港)下列运算正确的是()A.235 B. 5A﹣23A C.A2•A36D.()222考点:同底数幂的乘法;合并同类项;完全平方公式.分析:根据同类项、同底数幂的乘法和完全平方公式计算即可.解答:解:A、2A与3B不能合并,错误;B、5A﹣23A,正确;C、A2•A35,错误;D、()22+22,错误;故选B.点评:此题考查同类项、同底数幂的乘法和完全平方公式,关键是根据法则进行计算.2.(2015•营口)下列计算正确的是()A.|﹣2﹣2 B.A2•A36C.(﹣3)﹣2=D.=3考点:同底数幂的乘法;绝对值;算术平方根;负整数指数幂.分析:分别根据绝对值的性质、同底数幂的乘法法则、负整数指数幂的运算法则及数的开方法则对各选项进行逐一计算即可.解答:解:A、原式=2≠﹣2,故本选项错误;B、原式5≠A6,故本选项错误;C、原式=,故本选项正确;D、原式=2≠3,故本选项错误.故选C.点评:本题考查的是同底数幂的乘法,熟知绝对值的性质、同底数幂的乘法法则、负整数指数幂的运算法则及数的开方法则是解答此题的关键.3.(2015•包头)下列计算结果正确的是()A.2A33=3A6B.(﹣A)2•A3=﹣A6C.(﹣)﹣2=4 D.(﹣2)0=﹣1考点:同底数幂的乘法;合并同类项;幂的乘方与积的乘方;零指数幂;负整数指数幂.分析:根据同底数幂的乘法的性质,负整数指数幂,零指数幂,合并同类项的法则,对各选项分析判断后利用排除法求解.解答:解:A、2A33=3A3,故错误;B、(﹣A)2•A35,故错误;C、正确;D、(﹣2)0=1,故错误;故选:C.点评:本题考查了合并同类项,同底数幂的乘法,负整数指数幂,零指数幂,理清指数的变化是解题的关键.4.(2015•宿迁)计算(﹣A3)2的结果是()A.﹣A5B.A5C.﹣A6D.A6考点:幂的乘方与积的乘方.分析:根据幂的乘方计算即可.解答:解:(﹣A3)26,故选D点评:此题考查幂的乘方问题,关键是根据法则进行计算.5.(2015•潍坊)下列运算正确的是()A.B.3x2y﹣x23C.D.(A2B)36B3考点:幂的乘方与积的乘方;合并同类项;约分;二次根式的加减法.分析:A:根据二次根式的加减法的运算方法判断即可.B:根据合并同类项的方法判断即可.C:根据约分的方法判断即可.D:根据积的乘方的运算方法判断即可.解答:解:∵,∴选项A不正确;∵3x2y﹣x22x2y,∴选项B不正确;∵,∴选项C不正确;∵(A2B)36B3,∴选项D正确.故选:D.点评:(1)此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①()(m,n是正整数);②()(n是正整数).(2)此题还考查了二次根式的加减法,要熟练掌握,解答此题的关键是要明确二次根式的加减法的步骤:①如果有括号,根据去括号法则去掉括号.②把不是最简二次根式的二次根式进行化简.③合并被开方数相同的二次根式.(3)此题还考查了合并同类项,以及约分的方法的应用,要熟练掌握.6.(2015•荆州)下列运算正确的是()A.=±2 B.x2•x36C.D.(x2)36考点:幂的乘方与积的乘方;实数的运算;同底数幂的乘法.分析:根据算术平方根的定义对A进行判断;根据同底数幂的乘法对B进行运算;根据同类二次根式的定义对C进行判断;根据幂的乘方对D进行运算.解答:解:2,所以A错误;B.x2•x35,所以B错误;不是同类二次根式,不能合并;D.(x2)36,所以D正确.故选D.点评:本题考查实数的综合运算能力,综合运用各种运算法则是解答此题的关键.7.(2015•哈尔滨)下列运算正确的是()A.(A2)57B.A2•A46C.3A2B﹣32=0 D.()2=考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.分析:根据幂的乘方、同底数幂的乘法和同类项合并计算即可.解答:解:A、(A2)510,错误;B、A2•A46,正确;C、3A2B与32不能合并,错误;D、()2=,错误;故选B.点评:此题考查幂的乘方、同底数幂的乘法和同类项合并,关键是根据法则进行计算.8.(2015•株洲)下列等式中,正确的是()A.3A﹣21 B.A2•A35C.(﹣2A3)2=﹣4A6D.(A﹣B)22﹣B2考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法;完全平方公式.分析:结合选项分别进行幂的乘方和积的乘方、合并同类项、同底数幂的乘法、完全平方公式等运算,然后选择正确选项.解答:解:A、3A﹣2,原式计算错误,故本选项错误;B、A2•A35,原式计算正确,故本选项正确;C、(﹣2A3)2=4A6,原式计算错误,故本选项错误;D、(A﹣B)22﹣22,原式计算错误,故本选项错误.故选B.点评:本题考查了幂的乘方和积的乘方、合并同类项、同底数幂的乘法、完全平方公式等知识,掌握运算法则是解答本题关键.9.(2015•潜江)计算(﹣2A2B)3的结果是()A.﹣6A6B3B.﹣8A6B3C.8A6B3D.﹣8A5B3考点:幂的乘方与积的乘方.分析:根据幂的乘方和积的乘方的运算法则求解.解答:解:(﹣2A2B)3=﹣8A6B3.故选B.点评:本题考查了幂的乘方和积的乘方,解答本题的关键是掌握幂的乘方和积的乘方的运算法则.10.(2015•湖北)下列运算中正确的是()A.A3﹣A2B.A3•A412C.A6÷A23D.(﹣A2)3=﹣A6考点同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.:分析:根据合并同类项,可判断A;根据同底数幂的乘法,可判断B;根据同底数幂的除法,可判断C;根据积的乘方,可判断D.解答:解:A、合并同类项系数相加字母部分不变,故A错误;B、同底数幂的乘法底数不变指数相加,故B错误;C、同底数幂的除法底数不变指数相减,故C错误;D、积的乘方等于乘方的积,故D正确;故选:D.点评:本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.11.(2015•梅州)下列计算正确的是()A.23B.x2•x36C.(x3)26D.x9÷x33考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.分析:A、原式不能合并,错误;B、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;C、原式利用幂的乘方运算法则计算得到结果,即可做出判断;D、原式利用同底数幂的除法法则计算得到结果,即可做出判断.解答:解:A、原式不能合并,错误;B、原式5,错误;C、原式6,正确;D、原式6,错误.故选C.点评:此题考查了同底数幂的除法,合并同类项,同底数幂的乘法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.12.(2015•淮安)计算A×3A的结果是()A.A2B.3A2C.3A D.4A 考点:单项式乘单项式.分析:根据单项式与单项式相乘,把它们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.解答:解:A×33A2,故选:B.点评:本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.13.(2015•黄石)下列运算正确的是()A.4m﹣3 B.2m2•m3=2m5C.(﹣m3)29D.﹣(2n)=﹣2n考点:单项式乘单项式;合并同类项;去括号与添括号;幂的乘方与积的乘方.分析:分别利用合并同类项法则以及单项式乘以单项式运算法则和幂的乘方、去括号法则化简各式判断即可.解答:解:A、4m﹣3m,故此选项错误;B、2m2•m3=2m5,正确;C、(﹣m3)26,故此选项错误;D、﹣(2n)=﹣m﹣2n,故此选项错误;故选:B.点评:此题主要考查了合并同类项法则以及单项式乘以单项式运算法则和幂的乘方、去括号法则等知识,正确掌握运算法则是解题关键.14.(2015•铜仁市)下列计算正确的是()A.A22=2A4B.2A2×A3=2A6C.3A﹣21 D.(A2)36考点:单项式乘单项式;合并同类项;幂的乘方与积的乘方.分析:根据合并同类项法则、单项式乘法、幂的乘方的运算方法,利用排除法求解.解答:解:A、应为A22=2A2,故本选项错误;B、应为2A2×A3=2A5,故本选项错误;C、应为3A﹣21,故本选项错误;D、(A2)36,正确.故选:D.点评:本题主要考查了合并同类项的法则,幂的乘方的性质,单项式的乘法法则,熟练掌握运算法则是解题的关键.15.(2015•黔东南州)下列运算正确的是()A.(A﹣B)22﹣B2B.3﹣2 C.A(A2﹣A)2D.考点:单项式乘多项式;立方根;合并同类项;完全平方公式.分析:根据完全平方公式,合并同类项,单项式乘多项式,立方根的法则进行解答.解答:解:A、应为(A﹣B)22﹣22,故本选项错误;B、3﹣2,正确;C、应为A(A2﹣A)3﹣A2,故本选项错误;D、应为=2,故本选项错误.故选:B.点评:本题考查了完全平方公式,合并同类项,单项式乘多项式,立方根,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.16.(2015•佛山)若(2)(x﹣1)2,则()A. 1 B.﹣2 C.﹣1 D. 2考点:多项式乘多项式.分析:依据多项式乘以多项式的法则,进行计算,然后对照各项的系数即可求出m,n的值.解答:解:∵原式2﹣22,∴1,﹣2.∴1﹣2=﹣1.故选:C.点评:本题考查了多项式的乘法,熟练掌握多项式乘以多项式的法则是解题的关键.17.(2015•酒泉)下列运算正确的是()A.x224B.(A﹣B)22﹣B2C.(﹣A2)3=﹣A6D.3A2•2A3=6A6考点:完全平方公式;合并同类项;幂的乘方与积的乘方;单项式乘单项式.分析:根据同类项、完全平方公式、幂的乘方和单项式的乘法计算即可.解答:解:A、x22=2x2,错误;B、(A﹣B)22﹣22,错误;C、(﹣A2)3=﹣A6,正确;D、3A2•2A3=6A5,错误;故选C.点评:此题考查同类项、完全平方公式、幂的乘方和单项式的乘法,关键是根据法则进行计算.18.(2015•常德)下列等式恒成立的是()A.()222B.()22B2C.A426D.A224考点:完全平方公式;合并同类项;幂的乘方与积的乘方.专题:计算题.分析:原式各项计算得到结果,即可做出判断.解答:解:A、原式22+2,错误;B、原式2B2,正确;C、原式不能合并,错误;D、原式=2A2,错误,故选B.点评:此题考查了完全平方公式,合并同类项,以及幂的乘方与积的乘方,熟练掌握运算法则及公式是解本题的关键.二.填空题(共12小题)19.(2015•苏州)计算:A•A2= A3.考点:同底数幂的乘法.专题:计算题.分析:根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,即•计算即可.解答:解:A•A21+23.故答案为:A3.点评:本题主要考查同底数幂的乘法的性质,熟练掌握性质是解题的关键.20.(2015•天津)计算;x2•x5的结果等于x7.考点:同底数幂的乘法.分析:根据同底数幂的乘法,可得答案.解答:解:x2•x52+57,故答案为:x7.点评:本题考查了同底数幂的乘法,同底数幂的乘法底数不变指数相加.21.(2015•柳州)计算:A×A2.考点:同底数幂的乘法.分析:根据同底数幂的乘法计算即可.解答:解:A×2.故答案为:A2.点评:此题考查同底数幂的乘法,关键是根据同底数幂的乘法法则计算.22.(2015•安顺)计算:= 9 .考点:幂的乘方与积的乘方;同底数幂的乘法.分析:根据同底数幂的乘法,可得(﹣3)2011•(﹣3)2,再根据积的乘方,可得计算结果.解答:解:(﹣3)2013•(﹣)2011=(﹣3)2•(﹣3)2011•(﹣)2011=(﹣3)2•{,﹣3×(﹣),}2011=(﹣3)2=9,故答案为:9.点评:本体考查了幂的乘方与积的乘方,先根据同底数幂的乘法计算,再根据积的乘方计算.23.(2015•大庆)若A25,B216,则().考点:幂的乘方与积的乘方.分析:根据幂的乘方与即的乘方,即可解答.解答:解:∵A25,B216,∴()2=5,()2=16,∴,∴,故答案为:.点评:本题考查了幂的乘方与即的乘方,解决本题的关键是注意公式的逆运用.24.(2015•黔东南州)A6÷A2= A4.考点:同底数幂的除法.分析:根据同底数幂的除法,可得答案.解答:解:A6÷A24.故答案为:A4.点评:本题考查了同底数幂的除法,同底数幂的除法底数不变指数相减.25.(2015•宝应县一模)已知103,102,则102m﹣n的值为.考点:同底数幂的除法;幂的乘方与积的乘方.分析:根据幂的乘方,可得同底数幂的除法,根据同底数幂的除法,可得答案.解答:解:10232=9,102m﹣102m÷10,故答案为:.点评:本题考查了同底数幂的除法,利用幂的乘方得出同底数幂的除法是解题关键.26.(2015•漳州)计算:2A2•A4= 2A6.。
2015年中考数学专题复习第5讲:分式(含详细参考答案)
2015年中考数学专题复习第五讲:分式【基础知识回顾】一、分式的概念若A,B表示两个整式,且B中含有那么式子就叫做公式【名师提醒:①:若则分式AB无意义②:若分式AB=0,则应且】二、分式的基本性质分式的分子分母都乘以(或除以)同一个的整式,分式的值不变。
1、a ma m⋅⋅=a mb m÷÷= (m≠0)2、分式的变号法则ba-=b3、约分:根据把一个分式分子和分母的约去叫做分式的约分。
约分的关键是确保分式的分子和分母中的约分的结果必须是分式4、通分:根据把几个异分母的分式化为分母分式的过程叫做分式的通分通分的关键是确定各分母的【名师提醒:①最简分式是指②约分时确定公因式的方法:当分子、分母是多项式时,公因式应取系数的应用字母的当分母、分母是多项式时应先再进行约分③通分时确定最简公分母的方法,取各分母系数的相同字母分母中有多项式时仍然要先通分中有整式的应将整式看成是分母为的式子④约分通分时一定注意“都”和“同时”避免漏乘和漏除项】三、分式的运算:1、分式的乘除①分式的乘法:ba.dc=②分式的除法:ba÷dc= =2、分式的加减①用分母分式相加减:ba±ca=②异分母分式相加减:ba±dc= =【名师提醒:①分式乘除运算时一般都化为法来做,其实质是的过程②异分母分式加减过程的关键是】3、分式的乘方:应把分子分母各自乘方:即(ba)m =1、分式的混合运算:应先算再算最后算有括号的先算括号里面的。
2、分式求值:①先化简,再求值。
②由值的形式直接化成所求整式的值③式中字母表示的数隐含在方程的题目条件中【名师提醒:①实数的各种运算律也符合公式②分式运算的结果,一定要化成③分式求值不管哪种情况必须先 此类题目解决过程中要注意整体代入 】【重点考点例析】考点一:分式有意义的条件例1 (2012•宜昌)若分式21a +有意义,则a 的取值范围是( ) A .a=0 B .a=1 C .a≠-1 D .a≠0点评:本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.对应训练1.(2012•湖州)要使分式1x有意义,x 的取值范围满足( ) A .x=0 B .x≠0 C .x >0 D .x <0考点二:分式的基本性质运用例2 (2012•杭州)化简216312m m --得 ;当m=-1时,原式的值为 . 对应训练2.(2011•遂宁)下列分式是最简分式的( )A .223a a bB .23a a a -C .22 a b a b ++D .222a ab a b-- 考点三:分式的化简与求值例3 (2012•南昌)化简:2211a a a a a --÷+.点评:本题考查的是分式的乘除法,即分式乘除法的运算,归根到底是乘法的运算,当分子和分母是多项式时,一般应先进行因式分解,再约分.例4 (2012•安徽)化简211x x x x+-- 的结果是( ) A .x+1 B .x-1 C .-x D .x点评:本题考查了分式的加减运算.分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.例5 (2012•天门)化简221(1)11x x -÷+- 的结果是( ) A .21(1)x + B .21(1)x - C .2(1)x + D .2(1)x - 点评:此题考查了分式的化简混合运算,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,同时注意最后结果必须为最简分式.例6 (2012•遵义)化简分式222()1121x x x x x x x x --÷---+,并从-1≤x≤3中选一个你认为合适的整数x 代入求值.点评:此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,约分时分式的分子分母出现多项式,应先将多项式分解因式后再约分.对应训练3.(2012•河北)化简22111x x ÷--的结果是( ) A .21x - B .321x - C .21x - D .2(x+1) 4.(2012•绍兴)化简111x x --可得( ) A .21x x - B .21x x -- C .221x x x +- D .221x x x-- 5.(2012•泰安)化简22()2-24m m m m m m -÷+-= . 6.(2012•资阳)先化简,再求值:2221(1)11a a a a a --÷---+,其中a 是方程x 2-x=6的根.考点四:分式创新型题目例7 (2012•凉山州)对于正数x ,规定1()1f x x =+,例如:11(4)145f ==+,114()14514f ==+,则 111(2012)(2011)(2)(1)()()()220112012f f f f f f f ++⋅⋅⋅++++⋅⋅⋅++= .对应训练7.(2012•临沂)读一读:式子“1+2+3+4+…+100”表示从1开始的100个连续自然数的和,由于式子比较长,书写不方便,为了简便起见,我们将其表示为1001n n =∑,这里“∑”是求和符号,通过对以上材料的阅读,计算201211(1)n n n ==+∑ .【聚焦山东中考】 一、选择题1.(2012•潍坊)计算:2-2=( ) A .14 B .2 C .14- D .4 2.(2012•德州)下列运算正确的是( ) A .42= B .(-3)2=-9C .2-3=8D .20=0 3.(2012•临沂)化简4(1)22a a a +÷--的结果是( ) A .2a a + B .2a a + C .2a a - D .2a a - 4.(2012•威海)化简的结果是( )A .B .C .D .二、填空题 5.(2012•聊城)计算:24(1)42a a a +÷=-- . 6.(2011•泰安)化简:22()224x x x x x x -÷+--的结果为 . 三、解答题7.(2012·济南)化简:2121224a a a a a --+÷--.8.(2012•烟台)化简:222844(1)442a a a a a a+--÷+++.9.(2012•青岛)化简:2211(1)12a a a a -+++。
2015年中考数学真题分类汇编 分式和二次根式
分式和二次根式一.选择题(共17小题)1.(2015•南昌)计算(﹣1)0的结果为()A.1 B.﹣1 C.0 D.无意义考点:零指数幂.分析:根据零指数幂的运算方法:a0=1(a≠0),求出(﹣1)0的结果为多少即可.解答:解:∵(﹣1)0=1,∴(﹣1)0的结果为1.故选:A.点评:此题主要考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:(1)a0=1(a≠0);(2)00≠1.2.(2015•陕西)计算:(﹣)0=()A.1 B.﹣C.0 D.考点:零指数幂.分析:根据零指数幂:a0=1(a≠0),求出(﹣)0的值是多少即可.解答:解:(﹣)0=1.故选:A.点评:此题主要考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.3.(2015•凉山州)(π﹣3.14)0的相反数是()A.3.14﹣πB.0 C. 1 D.﹣1考点:零指数幂;相反数.分析:首先利用零指数幂的性质得出(π﹣3.14)0的值,再利用相反数的定义进行解答,即只有符号不同的两个数交互为相反数.解答:解:(π﹣3.14)0的相反数是:﹣1.故选:D.点评:本题考查的是相反数的定义以及零指数幂的定义,正确把握相关定义是解题关键.4.(2015•上海)当a>0时,下列关于幂的运算正确的是()A.a0=1 B.a﹣1=﹣a C.(﹣a)2=﹣a2D.考点:负整数指数幂;有理数的乘方;分数指数幂;零指数幂.分析分别利用零指数幂的性质以及负指数幂的性质和分数指数幂的性质分别分析求出即可.:解答:解:A、a0=1(a>0),正确;B、a﹣1=,故此选项错误;C、(﹣a)22,故此选项错误;D、(a>0),故此选项错误.故选:A.点评:此题主要考查了零指数幂的性质以及负指数幂的性质和分数指数幂的性质等知识,正确把握相关性质是解题关键.5.(2015•莱芜)甲乙两人同时从A地出发到B地,如果甲的速度v保持不变,而乙先用v的速度到达中点,再用2v的速度到达B地,则下列结论中正确的是()A.甲乙同时到达B地B.甲先到达B地C.乙先到达B地D.谁先到达B地与速度v有关考点:列代数式(分式).分析:设从A地到B地的距离为2s,根据时间=路程÷速度可以求出甲、乙两人同时从A地到B地所用时间,然后比较大小即可判定选择项.解答:解:设从A地到B地的距离为2s,而甲的速度v保持不变,∴甲所用时间为,又∵乙先用v的速度到达中点,再用2v的速度到达B地,∴乙所用时间为,∴甲先到达B地.故选:B.点评:此题主要考查了一元一次方程在实际问题中的应用,解题时首先正确理解题意,根据题意设未知数,然后利用已知条件和速度、路程、时间之间的关系即可解决问题.6.(2015•甘孜州)使二次根式的有意义的x的取值范围是()A.x>0 B.x>1 C.x≥1D.x≠1考点:二次根式有意义的条件.分析:根据中a≥0得出不等式,求出不等式的解即可.解答解:要使有意义,必须x﹣1≥0,解得:x≥1.:故选C . 点评: 本题考查了二次根式有意义的条件,解一元一次不等式的应用,解此题的关键是得出关于x 的不等式,难度适中. 7.(2015•黄冈)下列结论正确的是( ) A . 3a 3b ﹣a 22B .单项式﹣x 2的系数是﹣1C .使式子有意义的x 的取值范围是x >﹣1D . 若分式的值等于0,则±1 考点:二次根式有意义的条件;合并同类项;单项式;分式的值为零的条件.分析:根据合并同类项,可判断A ;根据单项式的系数是数字因数,可判断B ;根据二次根式的被开方数是非负数,可判断C ;根据分式的分子为零分母不为零,可判断D .解答: 解:A 、合并同类项系数相加字母部分不变,故A 错误;B 、单项式﹣x 2的系数是﹣1,故B 正确;C 、式子有意义的x 的取值范围是x >﹣2,故C 错误; D 、分式的值等于0,则1,故D 错误; 故选:B .点评:本题考查了二次根是有意义的条件,二次根式有意义的条件是分式的分子为零分母不为零,二次根式有意义的条件是被开方数是非负数.8.(2015•随州)若代数式+有意义,则实数x 的取值范围是( ) A . x ≠1 B . x ≥0 C . x ≠0 D . x ≥0且x ≠1考点: 二次根式有意义的条件;分式有意义的条件.分析: 先根据分式及二次根式有意义的条件列出关于x 的不等式组,求出x 的取值范围即可.解答: 解:∵代数式+有意义,∴,解得x ≥0且x ≠1.故选D . 点评: 本题考查的是二次根式及分式有意义的条件,熟知二次根式具有非负性是解答此题的关键.9.(2015•荆门)当1<a <2时,代数式1﹣的值是( ) A . ﹣1 B . 1 C . 2a ﹣3 D . 3﹣2a考点: 二次根式的性质与化简.分析: 首先判断出a ﹣2<0,1﹣a <0,进而利用绝对值以及二次根式的性质化简求出即可.解答:解:∵当1<a<2时,∴a﹣2<0,1﹣a<0,∴1﹣2﹣﹣1=1.故选:B.点评:此题主要考查了二次根式以及绝对值的化简,正确得出各项符号是解题关键.10.(2015•重庆)化简的结果是()A.4B.2C.3D.2考点:二次根式的性质与化简.分析:直接利用二次根式的性质化简求出即可.解答:解:=2.故选:B.点评:此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.11.(2015•淮安)下列式子为最简二次根式的是()A.B.C.D.考点:最简二次根式.分析:判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.解答:解:A、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A正确;B、被开方数含能开得尽方的因数或因式,故B错误;C、被开方数含能开得尽方的因数或因式,故C错误;D、被开方数含分母,故D错误;故选:A.点评:本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.12.(2015•扬州)下列二次根式中的最简二次根式是()A.B.C.D.考点:最简二次根式.分析:判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.解答:解:A、符合最简二次根式的定义,故本选项正确;B、原式=,被开方数含能开得尽方的因数,不是最简二次根式,故本选项错误;C、原式=,被开方数含能开得尽方的因数,不是最简二次根式,故本选项错误;D、被开方数含分母,不是最简二次根式,故本选项错误;故选:A点评:本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.13.(2015•贵港)计算×的结果是()A.B.C.3D.5考点:二次根式的乘除法.分析:根据二次根式的乘法计算即可.解答:解:×=.故选B.点评:此题考查二次根式的乘法,关键是根据二次根式的乘法法则进行计算.14.(2015•新疆)下列运算结果,错误的是()A .﹣(﹣)=B.(﹣1)0=1 C.(﹣1)+(﹣3)=4 D.×=考点:二次根式的乘除法;相反数;有理数的加法;零指数幂.分析:分别利用去括号法则以及零指数幂的性质和有理数加法以及二次根式乘法运算法则化简各式求出即可.解答:解:A、﹣(﹣)=,正确,不合题意;B、(﹣1)0=1,正确,不合题意;C、(﹣1)+(﹣3)=﹣4,错误,符合题意;D、×=,正确,不合题意;故选:C.点评:此题主要考查了去括号法则以及零指数幂的性质和有理数加法以及二次根式乘法运算等知识,正确掌握运算法则是解题关键.15.(2015•烟台)下列等式不一定成立的是()A .=(b≠0)B.a3•a﹣5=(a≠0)C.a2﹣4b2=(2b)(a﹣2b)D.(﹣2a3)2=4a6考点:二次根式的乘除法;幂的乘方与积的乘方;因式分解-运用公式法;负整数指数幂.分析:分别利用二次根式的性质以及负整数指数幂的性质和平方差公式以及积的乘方运算法则化简求出即可.解答:解:A、=(a≥0,b>0),故此选项错误,符合题意;B、a3•a﹣5=(a≠0),正确,不合题意;C、a2﹣4b2=(2b)(a﹣2b),正确,不合题意;D、(﹣2a3)2=4a6,正确,不合题意.故选:A.点评:此题主要考查了二次根式的性质以及负整数指数幂的性质和平方差公式以及积的乘方运算法则等知识,正确掌握运算法则是解题关键.16.(2015•安徽)计算×的结果是()A.B. 4 C.D. 2 考点:二次根式的乘除法.分析:直接利用二次根式的乘法运算法则求出即可.解答:解:×4.故选:B.点评:此题主要考查了二次根式的乘法运算,正确化简二次根式是解题关键.17.(2015•凉山州)下列根式中,不能与合并的是()A.B.C.D.考点:同类二次根式.分析:将各式化为最简二次根式即可得到结果.解答:解:A、,本选项不合题意;B、,本选项不合题意;C、,本选项合题意;D、,本选项不合题意;故选C.点评:此题考查了同类二次根式,熟练掌握同类二次根式的定义是解本题的关键.二.填空题(共9小题)18.(2015•河北)若2b≠0,则的值为.考点:分式的化简求值.专题:计算题.分析:把2b代入原式计算,约分即可得到结果.解答:解:∵2b,∴原式,故答案为:点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.(2015•河南)计算:(﹣3)0+3﹣1= .考点:负整数指数幂;零指数幂.分析:根据任何非零数的零次幂等于1,有理数的负整数指数次幂等于正整数次幂的倒数进行计算即可得解.解答:解:(﹣3)0+3﹣1=1.故答案为:.点评:本题主要考查了零指数幂,负指数幂的运算.负整数指数为正整数指数的倒数;任何非0数的0次幂等于1.20.(2015•威海)计算:20+()﹣1的值为 3 .考点:负整数指数幂;零指数幂.分析:根据0次幂和负整数指数幂,即可解答.解答: 解:20+()﹣1=1+2=3.故答案为:3.点评: 本题考查了0次幂和负整数指数幂,解决本题的关键是熟记相关法则.21.(2015•泰州)2﹣1等于 . 考点: 负整数指数幂.分析:负整数指数幂:a ﹣()p ,依此计算即可求解. 解答: 解:2﹣1=1=.故答案是:.点评: 本题考查了负整数指数幂.负整数指数为正整数指数的倒数.22.(2015•贵港)若在实数范围内有意义,则x 的取值范围是 x ≥﹣2 . 考点: 二次根式有意义的条件.分析: 根据二次根式有意义的条件:被开方数为非负数可得2≥0,再解不等式即可.解答: 解:∵二次根式在实数范围内有意义,∴被开方数2为非负数, ∴2≥0,解得:x ≥﹣2. 故答案为:x ≥﹣2.点评: 此题主要考查了二次根式中被开方数的取值范围,关键把握二次根式中的被开方数是非负数.23.(2015•南京)计算的结果是 5 .考点: 二次根式的乘除法. 分析: 直接利用二次根式的性质化简求出即可.解答: 解:=×=5. 故答案为:5.点评: 此题主要考查了二次根式的乘除运算,正确掌握二次根式的性质是解题关键.24.(2015•泰州)计算:﹣2等于 2 .考点:二次根式的加减法.分析:先把各根式化为最简二次根式,再合并同类项即可.解答: 解:原式=3﹣=2.故答案为:2. 点评:本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.25.(2015•哈尔滨)计算﹣3= .考点:二次根式的加减法.专题:计算题.分析:原式各项化为最简二次根式,合并即可得到结果.解答:解:原式=2﹣3×=2﹣=.故答案为:.点评:此题考查了二次根式的加减法,熟练掌握运算法则是解本题的关键.26.(2015•眉山)计算:2= ﹣.。
2015年中考数学真题分类汇编 分式
分式一.选择题(共11小题)1.(2015•台州)把多项式2x2﹣8分解因式,结果正确的是()A. 2(x2﹣8)B. 2(x﹣2)2C.2(2)(x﹣2)D.2x(x﹣)考点:提公因式法与公式法的综合运用.分析:首先提取公因式2,进而利用平方差公式分解因式得出即可.解答:解:2x2﹣8=2(x2﹣4)=2(x﹣2)(2).故选:C.点评:此题主要考查了提取公因式法以及公式法分解因式,熟练应用平方差公式分解因式是解题关键.2.(2015•枣庄)如图,边长为a,b的矩形的周长为14,面积为10,则a22的值为()A.140 B.70 C.35 D.24考点:因式分解的应用.分析:由矩形的周长和面积得出7,10,再把多项式分解因式,然后代入计算即可.解答:解:根据题意得:7,10,∴a22()=10×7=70;故选:B.点评:本题考查了矩形的性质、分解因式、矩形的周长和面积的计算;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.3.(2015•衡阳)若分式的值为0,则x的值为()A.2或﹣1 B.0 C. 2 D.﹣1考点:分式的值为零的条件.分析:分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.解答:解:由题意可得:x﹣2=0且1≠0,解得2.故选:C.点评:此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.4.(2015•丽水)分式﹣可变形为()A .﹣B.C.﹣D.考点:分式的基本性质.分析:先提取﹣1,再根据分式的符号变化规律得出即可.解答:解:﹣=﹣=,故选D.点评:本题考查了分式的基本性质的应用,能正确根据分式的基本性质进行变形是解此题的关键,注意:分式本身的符号,分子的符号,分母的符号,变换其中的两个,分式的值不变.5.(2015•山西)下列运算错误的是()A.=1 B.x22=2x4 C.﹣D.=考点:分式的乘除法;绝对值;合并同类项;零指数幂.专题:计算题.分析:A、原式利用零指数幂法则计算得到结果,即可做出判断;B、原式合并同类项得到结果,即可做出判断;C、原式利用绝对值的代数意义判断即可;D、原式利用乘方的意义计算得到结果,即可做出判断.解答:解:A、原式=1,正确;B、原式=2x2,错误;C、﹣,正确;D、原式=,正确,故选B点评:此题考查了分式的乘除法,绝对值,合并同类项,以及零指数幂,熟练掌握运算法则是解本题的关键.6.(2015•南昌)下列运算正确的是()A.(2a2)3=6a6B.﹣a2b2•33=﹣3a2b5C.•=﹣1 D.﹣1考点:分式的乘除法;幂的乘方与积的乘方;单项式乘单项式;分式的加减法.专题:计算题.分析:A、原式利用幂的乘方与积的乘方运算法则计算得到结果,即可做出判断;B、原式利用单项式乘以单项式法则计算得到结果,即可做出判断;C、原式约分得到结果,即可做出判断;D、原式变形后,利用同分母分式的减法法则计算,约分即可得到结果.解答:解:A、原式=8a4,错误;B、原式=﹣3a3b5,错误;C、原式﹣1,错误;D、原式﹣1,正确;故选D.点评:此题考查了分式的乘除法,幂的乘方与积的乘方,单项式乘单项式,以及分式的加减法,熟练掌握运算法则是解本题的关键.7.(2015•义乌市)化简的结果是()A. 1 B.C.x﹣1 D.考点:分式的加减法.专题:计算题.分析:原式变形后,利用同分母分式的减法法则计算即可得到结果.解答:解:原式=﹣1.故选A点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.8.(2015•济南)化简﹣的结果是()A. 3 B.m﹣3 C.D.考点:分式的加减法.专题:计算题.分析:原式利用同分母分式的减法法则计算,约分即可得到结果.解答:解:原式3.故选A.点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.9.(2015•山西)化简﹣的结果是()A.B.C.D.考点:分式的加减法.专题:计算题.分析:原式第一项约分后,利用同分母分式的减法法则计算,即可得到结果.解答:解:原式=﹣=﹣==,故选A.点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.10.(2015•江西)下列运算正确的是()A.(2a2)3=6a6B.﹣a2b2•33=﹣3a2b5 C.﹣1 D.•=﹣1考点:分式的加减法;幂的乘方与积的乘方;单项式乘单项式;分式的乘除法.专题:计算题.分析:A、原式利用幂的乘方及积的乘方运算法则计算得到结果,即可做出判断;B、原式利用单项式乘以单项式法则计算得到结果,即可做出判断;C、原式变形后,利用同分母分式的减法法则计算得到结果,即可做出判断;D、原式约分得到结果,即可做出判断.解答:解:A、原式=8a6,错误;B、原式=﹣3a3b5,错误;C、原式﹣1,正确;D、原式=•﹣1,错误,故选C点评:此题考查了分式的加减法,幂的乘方与积的乘方,单项式乘单项式,以及分式的乘除法,熟练掌握运算法则是解本题的关键.11.(2015•益阳)下列等式成立的是()A.B.= C.=D.=﹣考点:分式的混合运算.专题:计算题.分析:原式各项计算得到结果,即可做出判断.解答:解:A、原式=,错误;B、原式不能约分,错误;C、原式,正确;D、原式﹣,错误,故选C点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.二.填空题(共13小题)12.(2015•黄冈)分解因式:x3﹣2x2x(x﹣1)2.考点:提公因式法与公式法的综合运用.分析:首先提取公因式x,进而利用完全平方公式分解因式即可.解答:解:x3﹣2x2(x2﹣21)(x﹣1)2.故答案为:x(x﹣1)2.点评:此题主要考查了提取公因式法以及公式法分解因式,熟练应用完全平方公式是解题关键.13.(2015•黄石)分解因式:3x2﹣27= 3(3)(x﹣3).考点:提公因式法与公式法的综合运用.专题:因式分解.分析:观察原式3x2﹣27,找到公因式3,提出公因式后发现x2﹣9符合平方差公式,利用平方差公式继续分解.解答:解:3x2﹣27,=3(x2﹣9),=3(3)(x﹣3).故答案为:3(3)(x﹣3).点评:本题主要考查提公因式法分解因式和利用平方差公式分解因式,熟记公式是解题的关键,难点在于要进行二次分解因式.14.(2015•巴中)分解因式:2a2﹣42= 2(a﹣1)2.考点:提公因式法与公式法的综合运用.专题:因式分解.分析:先提公因式2,再利用完全平方公式分解因式即可.解答:解:2a2﹣42,=2(a2﹣21),=2(a﹣1)2.故答案为:2(a﹣1)2点评:本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.15.(2015•潍坊)因式分解:2﹣76 a(x﹣1)(x﹣6).考点:因式分解-十字相乘法等;因式分解-提公因式法.专题:计算题.分析:原式提取a,再利用十字相乘法分解即可.解答:解:原式(x2﹣76)(x﹣1)(x﹣6),故答案为:a(x﹣1)(x﹣6)点评:此题考查了因式分解﹣十字相乘法,以及提取公因式法,熟练掌握因式分解的方法是解本题的关键.16.(2015•菏泽)若x2(x﹣3)()对x恒成立,则 4 .考点:因式分解-十字相乘法等.分析:利用多项式乘法去括号,得出关于n的关系式进而求出n的值.解答:解:∵x2(x﹣3)(),∴x22+(n﹣3)x﹣3n,故n﹣3=1,解得:4.故答案为:4.点评:此题主要考查了多项式乘以多项式,正确去括号得出是解题关键.17.(2015•内江)已知实数a,b满足:a2+1=,b2+1=,则2015﹣ 1 .考点:因式分解的应用;零指数幂.分析:由于a2+1=,b2+1=,两式相减可得a2﹣b2=﹣,则有()(a﹣b)=,分解因式可得,依此可得2015﹣20150,再根据零指数幂的计算法则计算即可求解.解答:解:∵a2+1=,b2+1=,两式相减可得a2﹣b2=﹣,()(a﹣b)=,[()+1](a﹣b)=0,∴a﹣0,即,∴2015﹣20150=1.故答案为:1.点评:考查了因式分解的应用,零指数幂,本题关键是得到.18.(2015•珠海)若分式有意义,则x应满足x≠5.考点:分式有意义的条件.分析:根据分式的分母不为零分式有意义,可得答案.解答:解:要使分式有意义,得x﹣5≠0,解得x≠5,故答案为:x≠5.点评:本题考查了分式有意义的条件,分式的分母不为零分式有意义.19.(2015•上海)如果分式有意义,那么x的取值范围是x≠﹣3 .考分式有意义的条件.点:分析:根据分式有意义的条件是分母不为0,列出算式,计算得到答案.解答:解:由题意得,3≠0,即x≠﹣3,故答案为:x≠﹣3.点评:本题考查的是分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.20.(2015•无锡)化简得.考点:约分.分析:首先分别把分式的分母、分子因式分解,然后约去分式的分子与分母的公因式即可.解答:解:==故答案为:.点评:此题主要考查了约分问题,要熟练掌握,解答此题的关键是要明确:①分式约分的结果可能是最简分式,也可能是整式.②当分子与分母含有负号时,一般把负号提到分式本身的前面.③约分时,分子与分母都必须是乘积式,如果是多项式的,必须先分解因式.21.(2015•吉林)计算:•= .考点:分式的乘除法.专题:计算题.分析:原式变形后,约分即可得到结果.解答:解:原式=•.故答案为:.点评:此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.22.(2015•梅州)若,对任意自然数n都成立,则,b﹣;计算:….考点:分式的加减法.专题:计算题.分析:已知等式右边通分并利用同分母分式的加法法则计算,根据题意确定出a与b的值即可;原式利用拆项法变形,计算即可确定出m的值.解答:解:,可得2n()﹣1,即,解得:,﹣;(1﹣+﹣+…+﹣)=(1﹣)=,故答案为:;﹣;.点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.23.(2015•泉州)计算: 2 .考点:分式的加减法.专题:计算题.分析:原式利用同分母分式的加法法则计算,约分即可得到结果.解答:解:原式2,故答案为:2点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.24.(2015•昆明)计算:﹣= .考点:分式的加减法.分析:根据同分母分式加减法法则:同分母的分式相加减,分母不变,把分子相加减,求解即可.解答:解:原式===.故答案为:.点评:本题考查了分式的加减法,解答本题的关键是掌握同分母分式加减法法则:同分母的分式相加减,分母不变,把分子相加减.三.解答题(共6小题)25.(2015•眉山)计算:.考点:分式的乘除法.分析:将每个分式的分子、分母分解因式后将除法变为乘法后约分即可.解答:解:=•=.点评:本题考查了分式的乘除法,解题的关键是能够对分式的分子、分母进行因式分解,难度不大.26.(2015•柳州)计算:+.。
2015年中考数学试卷解析分类汇编(第1期)专题7_分式与分式方程
……
, 6-210119412…01…22101G6B5001
) 6(65415 .83.346.31383%.0X%503X2%4329.02.605214001.%“591…%053”1X33…X
XX “” … 3…22016 XX
, 2016
,即 x2﹣2x=1,
经检验 x=﹣1 与 x=1+ 都为分式方程的解. 故选 D. 点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求 解.解分式方程一定注意要验根.
8. (2015 山东济宁,8,3 分)解分式方程
时,去分母后变形正确的为( )
A.2+(x+2)=3(x-1) B.2-x+2=3(x-1)
C.2-(x+2)=3
D. 2-(x+2)=3(x-1)
【答案】D
【解析】
试题分析: 根据分式方程的特点, 原方程化为: 第 3 页 共 41 页
分式与分式方程
一.选择题 1.(2015•淄博第 10 题,4 分)若关于 x 的方程 + =2 的解为正数,则 m 的取值范围是( )
A. m<6 B.
m>6 C. m<6 且 m≠0 D. m>6 且 m≠8
Байду номын сангаас
考点: 分式方程的解.. 分析: 先得出分式方程的解,再得出关于 m 的不等式,解答即可. 解答: 解:原方程化为整式方程得:2﹣x﹣m=2(x﹣2),
A. x≤2 B.
x≤2 且 x≠1 C. x<2 且 x≠1 D. x≠1
考点: 函数自变量的取值范围..
, 2016
XX “” … 3…22016 XX
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分类训练四 分式
时间:30分钟 满分60分 得分
考点1 分式有意义、无意义、值为0的条件(每小题2分,共8分) 1、(2015•金华)要使分式有意义,则x 的取值应满足( )
A .
x=﹣2
B .
x ≠2
C .
x >﹣2
D .
x ≠﹣2
2、(2015•衡阳)若分式的值为0,则x 的值为( )
A .
2或﹣1
B .
C .
2
D .
﹣1
3、(2015•黔西南州)分式有意义,则x 的取值范围是( )
A . x >1
B .
x ≠1
C .
x <1
D .
一切实数
4、(2015•绥化)若代数式
的值等于0,则x= .
考点2 分式的化简与求值 (1---4题每小题2分,5---11题各4分,12--14各5分,共52
分)
1、(2015•绍兴)化简的结果是( )
A .
x+1
B
.
C .
x ﹣1
D .
2、(2015•济南)化简﹣的结果是( )
A .
m+3 B .
m ﹣3 C .
D
.
3、(2015•淄博)计算﹣
的结果是 .
4、(2015•包头)化简:(a ﹣
)÷
= .
5、(2015年浙江衢州)先化简,再求值:(
)
2
3
9x x x
--÷,其中1x =-
.
6、(2015•湖州)计算:.
7、(2015•东莞)先化简,再求值:,其中.
8、(2015•武威)先化简,再求值:÷(1﹣),其中x=0.
9、(2015•河南)先化简,再求值:÷(﹣),其中a=+1,b=﹣1.
10、(2015•邵阳)先化简(﹣)•,再从0,1,2中选一个合适的x的值代入求值.
11、(2015•莱芜)先化简,再求值:(1﹣),其中x=3.
12、(2015•烟台)先化简:÷(﹣),再从﹣2<x<3的范围内选取一个你最喜欢的值代入,求值.
13、(2015•绥化)先化简,再求值:(﹣)÷,其中x=tan60°+2.
14、(2015•安顺)先化简,再求值:÷(x﹣2+),其中x=﹣1.
分类训练四分式答案
考点1 分式有意义、无意义、值为0的条件
1、D.
解析:根据分式有意义的条件是分母不等于零,可得
x+2≠0,据此求出x的取值范围即可.
解:∵分式有意义,
∴x+2≠0,
∴x≠﹣2,
即x的取值应满足:x≠﹣2.
故选:D.
2、C.
解析:分式的值为0的条件是:(1)分子为0;(2)分
母不为0.两个条件需同时具备,缺一不可.据
此可以解答本题.
解:由题意可得:x﹣2=0且x+1≠0,
解得x=2.
故选:C.
3、B.
解析:分母为零,分式无意义;分母不为零,分式有意义.解:由分式有意义,得
x﹣1≠0.
解得x≠1,
故选:B.
4、2
解析:根据分式的值为零的条件可以求出x的值.
解:由分式的值为零的条件得x2﹣5x+6=0,
2x﹣6≠0,
由x2﹣5x+6=0,得x=2或x=3,
由2x﹣6≠0,得x≠3,
∴x=2,
故答案为2.
考点2 分式的化简与求值
1、
解析:原式变形后,利用同分母分式的减法法则计算即可得到结果.
解:原式=﹣
===x+1.
故选A
2、
A.
解析:原式利用同分母分式的减法法则计算,约分即可得到结果.解:原式===m+3.
故选A.
3、.
解析:根据同分母分式加减运算法则计算即可,最后要注意
将结果化为最简分式.
解:原式=
=
=,
故答案为:.
4、
解析:
原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.
解:原式=
•
=
•
=
,
故答案为:
5、解析:原式=()()
()
2
33333
x x x x x x x x +-⋅=+=+-, 当1x =-时,原式= ()()
2
1312-+⨯-=- 6、 解析: 原式利用同分母分式的减法法则计算,约分即
可得到结果.
解:原式=
=
=a+b .
7、 解析:
分式的化简,要熟悉混合运算的顺序,分子、分母能因式分
解的先因式分解;除法要统一为乘法运算,注意化简后,将
,代入化简后的式子求出即可.
解:
=÷(+)
=÷ =×
=,
把
,代入原式====.
8、
解析:先根据分式混合运算的法则把原式进行化简,再把x=0代入进行计算即可.
解:原式=÷(﹣)
=•
=,
当x=0时,原式=.
9、
解析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a与b的值代
入计算即可求出值.
解:原式=•=,
当a=+1,b=﹣1时,原式=2.
10、
解析:原式括号中两项通分并利用同分母分式的减法法则计算,
约分得到最简结果,把x=1代入计算即可求出值.
解:原式=•=,
当x=1时,原式=.
11、
解析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即
可求出值.
解:原式=•
=•
=,
当x=3时,原式=2.
12、
解析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.
解:原式=÷=•=,
当x=2时,原式=4.
13、
解析:原式括号中两项通分并利用同分母分式的减法法则计算,
同时利用除法法则变形,约分得到最简结果,把x的值代
入计算即可求出值.
解:原式=[﹣
]•=•=
•=,
当x=tan60°+2=+2时,原式=.
14、
解析:先根据分式混合运算的法则把原式进行化简,再把x
的值代入进行计算即可.
解:原式=÷
=•
=,
当x=﹣1时,原式=
= =.。