09-10(1)微积分A试卷A
微积分试卷及答案4套
微积分试卷及答案4套(共14页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2微积分试题 (A 卷)一. 填空题 (每空2分,共20分)1. 已知,)(lim 1A x f x =+→则对于0>∀ε,总存在δ>0,使得当时,恒有│ƒ(x )─A│< ε。
2. 已知2235lim2=-++∞→n bn an n ,则a = ,b = 。
3. 若当0x x →时,与 是等价无穷小量,则=-→ββα0limx x 。
4. 若f (x )在点x = a 处连续,则=→)(lim x f ax 。
5. )ln(arcsin )(x x f =的连续区间是 。
6. 设函数y =ƒ(x )在x 0点可导,则=-+→hx f h x f h )()3(lim000______________。
7. 曲线y = x 2+2x -5上点M 处的切线斜率为6,则点M 的坐标为 。
8. ='⎰))((dx x f x d 。
9. 设总收益函数和总成本函数分别为2224Q Q R -=,52+=Q C ,则当利润最大时产量Q 是 。
二. 单项选择题 (每小题2分,共18分) 1. 若数列{x n }在a 的邻域(a -,a +)内有无穷多个点,则( )。
(A) 数列{x n }必有极限,但不一定等于a (B) 数列{x n }极限存在,且一定等于a(C) 数列{x n }的极限不一定存在 (D) 数列{x n }的极限一定不存在2. 设11)(-=x arctgx f 则1=x 为函数)(x f 的( )。
3(A) 可去间断点 (B) 跳跃间断点 (C) 无穷型间断点 (D) 连续点3. =+-∞→13)11(lim x x x( )。
(A) 1 (B) ∞ (C) 2e (D)3e4. 对需求函数5p eQ -=,需求价格弹性5pE d -=。
微积分A第一学期期末试卷A及答案
《微积分A 》期末试卷(A 卷)班级 学号 姓名 成绩一、求解下列各题(每小题7分,共35分) 1设,1arctan 122---=x x x x y 求.y '2 求不定积分.)ln cos 1sin (2dx x x xx⎰++ 3求极限.)(tanlim ln 110x x x ++→ 4 计算定积分,)(202322⎰-=a x a dxI 其中.0>a 5 求微分方程.142+='-''x y y 的通解. 二、完成下列各题(每小题7分,共28分)1 设当0→x 时,c bx ax e x---2是比2x 高阶的无穷小,求c b a ,,的值. 2求函数)4()(3-=x x x f 在),(+∞-∞内的单调区间和极值.3 设)(x y y =是由方程组⎪⎩⎪⎨⎧=--+=⎰01cos sin )cos(20t t y du t u x t所确定的隐函数,求.dx dy 4 求证:.sin sin42222⎰⎰ππππ=dx xxdx xx.三、(8分)设)(x y 在),0[+∞内单调递增且可导,又知对任意的,0>x 曲线)(x y y =,上点)1,0(到点),(y x 之间的弧长为,12-=y s 试导出函数)(x y y =所满足的微分方程及初始条件,并求)(x y 的表达式. 四、(8分)过点)0,1(-作曲线x y =的切线,记此切线与曲线x y =、x 轴所围成的图形为D ,(1) 求图形D 的面积;(2) 求D 绕x 轴旋转一周所得旋转体的体积.五、(7分)求证:方程010cos 042=++⎰⎰-xt xdt e dt t 有并且只有一个实根.六、(8分)一圆柱形桶内有500升含盐溶液,其浓度为每升溶液中含盐10克。
现用浓度为每升含盐20克的盐溶液以每分钟5升的速率由A 管注入桶内(假设瞬间即可均匀混合),同时桶内的混合溶液也以每分钟5升的速率从B 管流出。
09-10本微积分I(A)参考答案及评分标准(修改)
广东金融学院期末考试试题标准答案及评分标准 学期:2009—2010学年第一学期 考试科目:微积分I (A 卷) 出卷老师:李芳使用班级:09级本科班(除数学和计算机专业)标准答案和评分标准:一、填空题(每小题3分,共15分):1. 3;2. 1y x =+;3. ;1y =4. x (2ln x +1);5.评分标准:填对1题得3分,填错得0分。
二、单项选择题(每小题3分,共15分):6. A7. B8.B9. B 10. D评分标准:填对1题得3分,填错得0分。
三、计算题(每小题5分,共40分):11.原式=xx x x x x ln )1(1ln lim 1-+-→ …………1分 x xx x x x x x x x x ln 11ln lim 1ln 1ln 1lim 11+-=-+-+=→-→ …………3分 .21111lim 21=+=-→xx x x …………5分 12. 131sin lim 220-+→x x x =220321lim x x x ⋅→=.32= ……4分 ……5分13. 原式= )11ln(lim x x x e +∞→ …………2分= )11ln(lim 2x x x e +∞→=x x x e 1)11ln(lim 2+∞→ )e x xx 11lim 2(∞→或 …………3分 12lim 2+∞→=x xx e e (x x 1lim∞→或 ………4分 10==e ………5分 方法二:原式= x x x x x 1lim 22)11(lim ∞→⎥⎦⎤⎢⎣⎡+∞→ …………3分10==e ………5分14. )()(arcsin arcsin'-+'+'='2422x x x x x y …………1分 )()(arcsin x x x x x 242121211222--+-+= ……4分 2x arcsin = ……5分15.y y '''=== ………2分 ……3分…………5分 …………5分16. 方程两边求微分22(ln )(sin )()()y y d y d x e d x x d e +=+ …………1分21cos 2y y dy xdx xe dx x e dy y+=+ …………3分 21()(2cos )y y x e dy xe x dx y -=- …………4分 所以 .1cos 2)1(cos 222dx ye x x y xye dx e x yx xe dy y y y y --=--= …………5分 17. 原式=⎰-x d xln ln 112 …………3分C x +=ln arcsin …………5分18. 原式=dx x sin 2202⎰π…………2分dx x sin 220⎰=π…………3分π0)x cos (22-= …………4分 .24= …………5分四、综合应用题(每小题8分,共24分):19. 函数定义域为),(+∞-∞, …………1分 求导得 ),2(363)(2-=-='x x x x x f …………2分 令0=')(x f ,得驻点x 1 =0, x 2 = 2. …………3分所以函数的单调增区间为(-∞,0)和 (2,+∞);单调减区间为(0,2) 。
最新微积分(上)期末考试试题A卷(附答案)
一、 选择题 (选出每小题的正确选项,每小题2分,共计10分)1.1lim 2xx -→=_________。
(A ) -∞ (B ) +∞ (C ) 0 (D ) 不存在 2.当0x →时,()x xf x x+=的极限为 _________。
(A ) 0 (B ) 1 (C )2 (D ) 不存在 3. 下列极限存在,则成立的是_________。
0()()()lim ()x f a x f a A f a x -∆→+∆-'=∆0()(0)()lim (0)x f tx f B tf x→-'= 0000()()()lim 2()t f x t f x t C f x t →+--'= 0()()()lim ()x f x f a D f a a x →-'=-4. 设f (x )有二阶连续导数,且()0()(0)0,lim1,0()_______x f x f f f x x→'''==则是的。
(A ) 极小值 (B )极大值( C )拐点 (D ) 不是极值点也不是拐点 5.若()(),f x g x ''=则下列各式 成立。
()()()0A f x x φ-=()()()B f x x C φ-=()()()C d f x d x φ=⎰⎰()()()d dD f x dx x dx dx dxφ=⎰⎰ 二、 填空题(每小题3分,共18分)1. 设0(2)()0(0)0,lim1sin x f x f x x f x→===-在处可导,且,那么曲线()y f x =在原点处的切线方程是__________。
2.函数()f x =[0,3]上满足罗尔定理,则定理中的ξ= 。
3.设1(),()ln f x f x dx x'=⎰的一个原函数是那么 。
4.设(),xf x xe -=那么2阶导函数 ()___f x x ''=在点取得极_____值。
微积分试卷及规范标准答案6套
微积分试题 (A 卷)一. 填空题 (每空2分,共20分)1. 已知,)(lim 1A x f x =+→则对于0>∀ε,总存在δ>0,使得当时,恒有│ƒ(x )─A │< ε。
2. 已知2235lim2=-++∞→n bn an n ,则a = ,b = 。
3. 若当0x x →时,α与β 是等价无穷小量,则=-→ββα0limx x 。
4. 若f (x )在点x = a 处连续,则=→)(lim x f ax 。
5. )ln(arcsin )(x x f =的连续区间是 。
6. 设函数y =ƒ(x )在x 0点可导,则=-+→hx f h x f h )()3(lim000______________。
7. 曲线y = x 2+2x -5上点M 处的切线斜率为6,则点M 的坐标为 。
8. ='⎰))((dx x f x d 。
9. 设总收益函数和总成本函数分别为2224Q Q R -=,52+=Q C ,则当利润最大时产量Q 是 。
二. 单项选择题 (每小题2分,共18分) 1. 若数列{x n }在a 的邻域(a -,a +)内有无穷多个点,则( )。
(A) 数列{x n }必有极限,但不一定等于a (B) 数列{x n }极限存在,且一定等于a(C) 数列{x n }的极限不一定存在 (D) 数列{x n }的极限一定不存在2. 设11)(-=x arctgx f 则1=x 为函数)(x f 的( )。
(A) 可去间断点 (B) 跳跃间断点 (C) 无穷型间断点 (D) 连续点 3. =+-∞→13)11(lim x x x( )。
(A) 1 (B) ∞ (C)2e (D) 3e4. 对需求函数5p eQ -=,需求价格弹性5pE d -=。
当价格=p ( )时,需求量减少的幅度小于价格提高的幅度。
(A) 3 (B) 5 (C) 6 (D) 105. 假设)(),(0)(lim ,0)(lim 0x g x f x g x f x x x x ''==→→;在点0x 的某邻域内(0x 可以除外)存在,又a 是常数,则下列结论正确的是( )。
微积分II期末(A)卷答案
《微积分II 》期末考试题(A )答案一、填空题(每小题2分,共16分)1、{(,)0,0}x y y x x y ≤≥+>2、=)1,1(dz 2211(ln 2)22e dx e dy ++ 3、 04、235、sin ()x y x c e-=+ 二、选择题(每小题2分,共16分)1、 D2、D3、C4、B5、D6、C三、解答题(每小题5分,共40分)1、解:令xz e yz xy z y x F --=),,(则 xzz y xz x xe y F z x F ze y F --=-=-=,, 所以 xz xz z x xey ze y F F x z +-=-=∂∂ xzz y xe y z x F F y z +-=-=∂∂ 2、两边求全微分02)(=+---dz e dz xy d ez xy 02)(=+-+--dz e dz xdy ydx e z xy2)(-+=-z xy e xdy ydx e dz3、解:e e x dx e dx e dy xe dx dxdy xe x x xy xy D xy 1)()1()(101001011010=+=-===----⎰⎰⎰⎰⎰⎰ 4、解:因为 11)1(5lim 22=++∞→nn n n n ,又 ∑∞=121n n 收敛,所以∑∞=++12)1(5n n n n 收敛. 5、 313)1(3lim lim 11→+⋅=+∞→+∞→n n n nn n n n a a , 故收敛半径为3.又3=x 时, 级数∑∑∞=∞==⋅11133n n n n n n 发散, 3-=x 时, 级数()∑∑∞=∞=-=⋅-11)1(33n n n n n n n 收敛, 故收敛域为)3,3[- 6、解 1110<=-∑∞=x x x x n∑∑∞=++∞=-=-=-⋅-=-=∴012022233331133)(x n n x n n x x x x x x x x f 收敛域为13<x 即3<x 因此)3,3(330122--=-∑∞=++x n n x x x7、微分方程的特征方程为0522=+-r r特征根i r 211+=,i r 212-=,故方程通解为)2sin 2cos (21x c x c e y x+=。
高数期末试题
2 1
f ( x)dx 1 , 证明在(0,3)内存在
, 使 f ( ) f ( ) 0.
九 . (8 分) 设 f ( x) 有连续导数 , 且 lim
x 0
f ( x) f ( x) 2, ex 1
f (0) 0, 证明 x 0 是 f ( x) 的
x 0
____________ .
2.
I1
ln 2 x dx 与 I 2 x
dx 中 收 敛 的 为 _____________, 其 值 等 于 x ln 3 x
___________. 3.
1
1
3 1 x 2 dx _____________,
1
1
x 1 x 2 dx _____________ .
2x 1 x2
( x 1) 是否恒为常数.
y 1 dy d 2 y 2 2 六. (9 分) 设 arctan ln( x y ) 确定函数 y y ( x) , 求 , 2 . x 2 dx dx
信息与电子二学部学生会学习部整理
七. (10 分) 求下列反常积分. (1)
1
二. (9 分) 求极限 lim(cos x x sin x) .
x2 x 0
三. (9 分) 求不定积分 ( x arctan x
1 x e )dx . x2
1
四. (9 分) 求 f ( x) 3 ( x 2 2 x) 2 在区间 [1,3] 上的最大值和最小值.
五. (8 分) 判断 f ( x) arctan x arcsin
0
x
是 f ( x) 的极值点, 并判断 f (0) 是极大值还是极小值.
微积分试卷及答案
2009 — 2010 学年第 2 学期 课程名称 微积分B 试卷类型 期末A 考试形式 闭卷 考试时间 100 分钟 命 题 人 2010 年 6 月10日 使用班级教研室主任 年 月 日 教学院长 年 月 日姓 名 班 级 学 号,一、填充题(共5小题,每题3分,共计15分)1.2ln()d x x x =⎰ . 2.cos d d xx =⎰ .3.312d x x --=⎰.4.函数22x y z e+=的全微分d z = .5.微分方程ln d ln d 0y x x x y y +=的通解为 .二、选择题(共5小题,每题3分,共计15分)1.设()1xf e x '=+,则()f x = ( ). /(A) 1ln x C ++ (B) ln x x C +(C) 22x x C++ (D) ln x x x C -+2.设2d 11xk x +∞=+⎰,则k = ( ).(A) 2π(B) 22π(C) 2 (D) 24π3.设()z f ax by =+,其中f 可导,则( ).(A)z z ab x y ∂∂=∂∂ (B) z z x y ∂∂=∂∂ (C)z z ba x y ∂∂=∂∂ (D) z z xy ∂∂=-∂∂ 4.设点00(,)x y 使00(,)0x f x y '=且00(,)0y f x y '=成立,则( ) ;(A) 00(,)x y 是(,)f x y 的极值点 (B) 00(,)x y 是(,)f x y 的最小值点 (C) 00(,)x y 是(,)f x y 的最大值点 (D) 00(,)x y 可能是(,)f x y 的极值点 5.下列各级数绝对收敛的是( ).(A) 211(1)nn n ∞=-∑(B)1(1)nn ∞=-∑(C) 13(1)2nnn n ∞=-∑ (D) 11(1)nn n ∞=-∑三、计算(共2小题,每题5分,共计10分) 】 1.2d x x e x ⎰2.40⎰四、计算(共3小题,每题6分,共计18分)1.设arctany z x =,求2,.z z z x y x y ∂∂∂∂∂∂∂, 2.设函数vz u =,而222,23u x y v x y =+=+,求,z zx y ∂∂∂∂.3.设方程xyz =确定隐函数(,)z f x y =,求,.z z x y ∂∂∂∂五、计算二重积分sin d d Dxx y x ⎰⎰其中D 是由三条直线0,,1y y x x ===所围成的闭区域.(本题10分) 六、(共2小题,每题8分,共计16分)1.判别正项级数12nn n∞=∑的收敛性.、2. 求幂级数1(1)2nnn x n ∞=-⋅∑收敛区间(不考虑端点的收敛性).七、求抛物线22y x =与直线4y x =-所围成的图形的面积(本题10分)八、设102()101x x x f x x e ⎧≥⎪⎪+=⎨⎪<⎪+⎩,求2(1)d f x x-⎰.(本题6分)徐州工程学院试卷2009 — 2010 学年第 2 学期 课程名称 微积分B试卷类型 期末B 考试形式 闭卷 考试时间 100 分钟命 题 人 杨淑娥 2010 年 6 月10日 使用班级 09财本、会本、信管等 教研室主任 年 月 日 教学院长 年 月 日姓 名 班 级 学 号,一、填充题(共5小题,每题3分,共计15分)1. 2cos d 2x x ⎰ .2.22d dt d x txe x =⎰ .3.212d x x -=⎰.4.函数z =的全微分d z = . :5.微分方程11d d 0x y y x +=的通解为 .二、选择题(共5小题,每题3分,共计15分) 1.设(ln )1f x x '=+,则()f x = ( ).(A) xx e C ++ (B)212x e x C ++(C) 21ln (ln )2x x C ++ (D) 212x x e e C++2.下列广义积分发散的是 ( ).(A)1+∞⎰ (B) 1d xx +∞⎰(C)21d x x +∞⎰(D)1+∞⎰3. 设22()z f x y =+,且f 可微,则z z yx x y ∂∂-=∂∂ .(A) 2z (B) z (C) x y + (D) 0:4.函数32(,)6121f x y y x x y =-+-+的极大值点为( ) (A) (1,2) (B) (2,1) (C) (3,2)- (D) (3,2)-- 5.下列级数绝对收敛的是( ). (A)1(1)nn ∞=-∑ (B)11(1)nn n ∞=-∑ (C)1(1)nn n∞=-∑ (D)311(1)nn n ∞=-∑三、计算(共2小题,每题5分,共计10分) 1.sin d x x x⎰^2.0x⎰四、计算(共3小题,每题6分,共计18分)1.设z =,求2,.z z z x y x y ∂∂∂∂∂∂∂,2. 设函数2ln z u v =,而,32u xy v x y ==-,求,z zx y ∂∂∂∂.3.设方程22220x y z xyz ++-=确定隐函数(,)z f x y =,求,.z z x y ∂∂∂∂五、计算二重积分2d d Dx y x y ⎰⎰,其中D 是由三条直线0,0x y ==与221x y +=所围成的位于第一象限的图形.(本题10分)六、(共2小题,每题8分,共计16分)1. 判别正项级数11(21)!n n ∞=+∑的收敛性.2. 求幂级数21(2)n n x n ∞=-∑收敛区间(不考虑端点的收敛性).七、求由曲线y x =与2y x =所围成的平面图形的面积. (本题10分))八、设210()0xx x f x e x ⎧+<=⎨≥⎩,求31(2)d f x x -⎰.(本题6分)徐州工程学院试卷2010 — 2011 学年第 二 学期 课程名称 微积分 试卷类型 期末A 考试形式 闭卷 考试时间 100 分钟 命 题 人 张娅 2011 年 5 月 20日 使用班级教研室主任 年 月 日 教学院长 年 月 日姓 名 班 级 学 号一、填充题(共 5 小题,每题 3 分,共计15 分) 1. 函数()ln z y x =-+的定义域为 。
《微积分》期末考试试卷(含ABC三套)
四、计算题 1、求极限 lim
x 。 (6 分) x 0 2 4 x
B、 lim f (0 x) f (0)
x 0
f (x) f (0) x
)
D、 lim
x 0
f ( x x) f ( x) x
4、 (ln x)dx =( A、 ln x
2
B、 ln x C )
C、
2
1 x
1 D、 C x
5、定积分为零的是( A、 ( x 3 x 5 )dx
四、计算题 1、求极限 lim
1 cos x 。 (6 分) x 0 x2
2、 y ln( x x 2 a 2 ), 求y 。 (8 分)
3、 y cos x , 求dy 。 (8 分)
4、求 arctan xdx 。 (10 分)
2 sin 3 xdx 。 5、求 (10 分) 2
sin x A、 lim 1 x x
2
sin
B、 lim
x 0
1 x
1 x 1
C、 lim
x
2
tan x 1 x
D、 lim x sin
x
1 1 x
)
3、若函数 y f ( x) 在点 x=0 处可导,则 f (0) =( A、 f (0) C、 lim
x 0
2 2
B、 ( x 3 x 5 1)dx
2 2
C、 x sin xdx
2
D、 x 2 cos xdx
2
二、填空题(每空 3 分,共 18 分) 1、若函数 y f ( x) 在点 x。连续,则 lim f ( x) f ( x0 ) =
微积分(上)理工课程试题(A)及其答案
微积分(上)理工 课程试题(A )合分人: 复查人:一、求解下列各题(每小题5分,共 25 分)1. 设221,1()2,1x x x f x x x x ⎧-+≤=⎨->⎩, 求(1)(1)f a f a +--, 其中0a >.2. 求102sin lim ||1x x xx e →⎛⎫⎪+ ⎪+⎝⎭.3. 求33sin sin 3lim x x xx→-4. 已知()F x 在[1,1]-上连续,在(1,1)-内()F x '=且3(1),2F π=求().F x5. 讨论级数21(0)nn n c c∞=>∑的敛散性.二、求解下列各题(每小题6分,共30分)1.设212sin ,0()0,0x x x f x xx ⎧+≠⎪=⎨⎪=⎩, 求(0)f '.2. 求()3f x =-的极值.3. 设()y y x =由方程(s in )s in [()]()f x f y f x y +=+所确定, 其中()f t 可导, 且()cos[()]().f y f y f x y ''≠+ 求.dy4. 设222sec sec tan x t y t t t⎧=⎨=-⎩ , 求22.d ydx5. 将21()23f x x x =--展开为(1)x -的幂级数, 并指出其收敛区间.三、求下列积分(每小题7分,共 28 分)1. 求45sin cos x xdx ⎰.2. 求2(1)x xxedx e +⎰.3. 求1⎰.4. 求22ππ-⎰.四、应用题(共10 分)设曲线为ln.y x(1)求该曲线过原点的切线方程;(2)求由上述切线与曲线及x轴所围平面图形的面积;(3)求(2)中平面图形绕y轴旋转一周所生成的旋转体的体积.五、证明题(共 7 分)若()f x 在(,)-∞+∞上连续, 且0()(2)().xF x x t f t dt =-⎰证明: 当()f x 为单调递减时, ()F x 必定单调递增.2009级微积分(上)理工课程试题(A )(答案) 一. 1解:原式=22[2(1)(1)][(1)(1)1]a a a a +-+----+=22aa-+2解:102sin (0)lim 2111x x xf x e --→⎛⎫⎪=-=-= ⎪+⎝⎭102sin (0)lim 0111x x xf x e ++→⎛⎫⎪=+=+= ⎪+⎝⎭故原式=1 3解:原式=23cos 3cos 3lim3x x xx→-=0sin 3sin 3lim 2x x x x→-+=4 5分 4解:()arcsin (11)F x x cx ==+-<<⎰因()F x 在[1,1]-上连续,且3(1),2F π=故c π=()arcsin (11)F x x x π=+-≤≤5解:2112(1)1limlimn n n n nnn u c nu cc++→∞→∞+==故当01c <<时,级数发散;当1c >时,级数收敛;但1c =时,lim 0n n u →∞≠,级数发散。
微积分试卷及答案4套
微积分试卷及答案4套微积分试题(A卷)一.填空题(每空2分,共20分)1.已知$\lim\limits_{x\to1^+}f(x)=A$,则对于$\forall\epsilon>0$,总存在$\delta>0$,使得当$x\to1^+$时,恒有$|f(x)-A|<\epsilon$。
2.已知$\lim\limits_{n\to\infty}\dfrac{a_n^2+bn+5}{n^2+3n-2}=2$,则$a=1$,$b=3$。
3.若当$x\to x_0$时,$\alpha$与$\beta$是等价无穷小量,则$\lim\limits_{x\to x_0}\dfrac{\alpha-\beta}{\beta}=0$。
4.若$f(x)$在点$x=a$处连续,则$\lim\limits_{x\toa}f(x)=f(a)$。
5.函数$f(x)=\ln(\arcsin x)$的连续区间是$(0,1]$。
6.设函数$y=f(x)$在$x$点可导,则$\lim\limits_{h\to0}\dfrac{f(x+3h)-f(x)}{h}=3f'(x)$。
7.曲线$y=x^2+2x-5$上点$M$处的切线斜率为6,则点$M$的坐标为$(-1,2)$。
8.$\dfrac{d(xf'(x))}{dx}=xf''(x)+2f'(x)$。
9.设总收益函数和总成本函数分别为$R=24Q-2Q^2$,$C=Q+5$,则当利润最大时产量$Q=6$。
二.单项选择题(每小题2分,共18分)1.若数列$\{x_n\}$在$a$的$\epsilon$邻域$(a-\epsilon,a+\epsilon)$内有无穷多个点,则(B)数列$\{x_n\}$极限存在,且一定等于$a$。
2.设$f(x)=\arctan\dfrac{2}{x-1}$,则$x=1$为函数$f(x)$的(A)可去间断点。
微积分A习题+答案
2
cot 2 x
2x 3 12、 lim x 2 x 1
13、 lim
x 0
x 1
1 1 1 ( ) x sin x tan x sin x ( 14、 极限 lim ) x x A. 1 B. 0 C. 1 D..
版权归文理学部微积分 A 课程建设团队所有 共 86 页,第 3 页
2 n 1 2 2 2 n n n n 3 1 x 1 1 x 1 x3
1
4、 lim
ex 5、 lim
x 0
6、 lim
x
2sin x 3 x sin x 2 x
7、 lim
n
n4 n 1 n2
ln(sec x tan x) . sin x
11、 lim
3x 2 5 2 sin x 5 x 3 x
四、概念与定理相关
1
1、 x 0 是函数 f ( x)
2 x 1 2 1
1 x
的
间断点
ke 2 x , x0 2、已知函数 f ( x) ,当 k 1 cos x, x 0
的单调增加区间是单调减少区间上二阶导数大于0则下列关系式成立的是在区间51上的最大值为最小值为四凹凸性与拐点函数arctan20152016学年微积分a1练习册版权归文理学部微积分a课程建设团队所有共86页第16axbxaxbxcx20152016学年微积分a1练习册版权归文理学部微积分a课程建设团队所有共86页第17第四部分不定积分一不定积分的概念tanxdxcossin3lndxtanlncos20152016学年微积分a1练习册版权归文理学部微积分a课程建设团队所有共86页第18sincosdxsinxdxsincossecxdx13arctan17sin20152016学年微积分a1练习册版权归文理学部微积分a课程建设团队所有共86页第19arctanxdxarcsinxdxlnxdx20152016学年微积分a1练习册版权归文理学部微积分a课程建设团队所有共86页第2014coslnxdx16ln17cosaxdxsinaxsinaxsinaxsinaxsinsinsinsincotsincotsin20152016学年微积分a1练习册版权归文理学部微积分a课程建设团队所有共86页第21第五部分定积分一定积分与变上限函数c