七年级数学下册第四章三角形周周测4(4.3)(新版)北师大版

合集下载

(常考题)北师大版初中数学七年级数学下册第四单元《三角形》测试题(答案解析)

(常考题)北师大版初中数学七年级数学下册第四单元《三角形》测试题(答案解析)

一、选择题1.将一副三角板的直角顶点重合按如图所示方式放置,得到下列结论,其中正确的结论有( ) ①13∠=∠;②180BAE CAD ∠+∠=︒; ③若//BC AD ,则230∠=︒; ④若150CAD ∠=︒,则4C ∠=∠.A .1个B .2个C .3个D .4个 2.下列长度的三条线段,能组成三角形的是( )A .5,6,11B .3,4,8C .5,6,10D .6,6,13 3.已知三角形的两边长分别为3cm 和8cm ,则此三角形的第三边的长可能是( ) A .13cmB .6cmC .5cmD .4cm4.如图,12AB =,CA AB ⊥于A ,DB AB ⊥于B ,且4AC cm =,P 点从B 向A 运动,每分钟走1m ,Q 点从B 向D 运动,每分钟走2m ,P ,Q 两点同时出发,运动______分钟后CAP 与PQB △全等( )A .4或6B .4C .6D .55.有下列长度的三条线段,能组成三角形的是( )A .2cm ,3cm ,4cmB .1cm ,4cm ,2cmC .1cm ,2cm ,3cmD .6cm ,2cm ,3cm6.如图,在△ABC 中,已知点D ,E ,F 分别为边AC ,BD ,CE 的中点,且阴影部分图形面积等于4平方厘米,则△ABC 的面积为( )平方厘米A .8B .12C .16D .187.如图,△ABC 和△AED 共顶点A ,AD =AC ,∠1=∠2,∠B =∠E . BC 交AD 于M ,DE 交AC 于N ,甲说:“一定有△ABC ≌△AED .”乙说:“△ABM ≌△AEN .”那么( )A .甲、乙都对B .甲、乙都不对C .甲对、乙不对D .甲不对、乙对8.在ABC ∆中,AD 是BC 边上的中线,点G 是重心,如果6AG =,那么线段DG 的长为( ) A .3 B .4 C .9 D .12 9.以下列长度的三条线段为边能组成三角形的是( )A .2、3、1B .2、3、5C .10、4、5D .14、15、1610.工人师傅常用直角尺平分一个角,做法如下:如图所示,在∠AOB 的边OA ,OB 上分别取OM =ON ,移动直角尺,使直角尺两边相同的刻度分别与M ,N 重合(即CM =CN ).此时过直角尺顶点C 的射线OC 即是∠AOB 的平分线.这种做法的道理是( )A .HLB .SASC .SSSD .ASA11.如图,要测量河两岸相对的两点A 、B 的距离,先过点B 作BF AB ⊥,在BF 上找点D ,过D 作DE BF ⊥,再取BD 的中点C ,连接AC 并延长,与DE 交点为E ,此时测得DE 的长度就是AB 的长度.这里判定ABC 和EDC △全等的依据是( )A .ASAB .SASC .SSSD .AAS12.如图,已知ABC ADE △≌△,若70E ∠=︒,30D ∠=︒,则BAC ∠的度数是( )A .80︒B .70︒C .40︒D .30二、填空题13.如图,90MON ∠=︒,点A ,B 分别在射线OM ,ON 上,BE 平分NBA ∠,BE 的反向延长线与BAO ∠的平分线交于点C ,则ACB ∠的度数是_______.14.如图,Rt ABC 和Rt EDF 中,AE CF =,在不添加任何辅助线和字母的情况下,请你添加一个条件__________使Rt ABC 和Rt EDF 全等.15.如图,BF 平分∠ABD ,CE 平分∠ACD ,BF 与CE 交于G ,若130,90BDC BGC ∠=︒∠=︒,则∠A 的度数为_________.16.如图,点D 在ABC 的边BA 的延长线上,点E 在BC 边上,连接DE 交AC 于点F ,若3117DFC B ∠∠==︒,C D ∠=∠,则BED ∠=________.17.如图,ABC DEF △≌△,点B 、F 、C 、E 在同一条直线上,AC 、DF 交于点M ,30ACB ∠=︒,则AMF ∠的度数是______°.18.如图的三角形纸片中,AB =8cm ,BC =6cm ,AC =5cm .点D 是AC 上一点,沿过BD 折叠,使点C 落在AB 上的点E 处,则AED 的周长为___________cm .19.如图,在AOB ∠的两边上,分别取OM=ON ,在分别过点M 、N 作OA 、OB 的垂线,交点P ,画射线OP ,则OP 平分AOB ∠的依据是____________20.用12根等长的火柴棒拼成一个等腰三角形,火柴棒不允许剩余、重叠、折断,则能摆出不同的等腰三角形的个数为________个.三、解答题21.如图,在△ABC 中,AB =BC ,∠B =90°,AD 是∠BAC 的平分线,CE ⊥AD 于点E .求证:AD =2CE .22.如图(1)在凸四边形ABCD 中,3060ABC ADC AD DC ∠=︒∠=︒=,,. (1)如图(2),若连接AC ,则ADC 的形状是________三角形,你是根据哪个判定定理?答:______________________________________(请写出定理的具体内容)(2)如图(3),若在四边形ABCD 的外部以BC 为一边作等边BCE ,并连接AE .请问:BD 与AE 相等吗?若相等,请加以证明;若不相等,请说明理由.23.如图,点B 、E 、C 、F 四点在一条直线上,∠A =∠D ,AB //DE ,老师说:再添加一个条件就可以使△ABC ≌△DEF .下面是课堂上三个同学的发言,甲说:添加AB =DE ;乙说:添加AC //DF ;丙说:添加BE =CF .(1)甲、乙、丙三个同学说法正确的是________; (2)请你从正确的说法中选择一种,给出你的证明.24.如图,ABC 中,AD 平分BAC ∠,P 为AD 延长线上一点,PE BC ⊥于点E ,若70C ∠=︒,24B ∠=︒,求P ∠的度数.25.将Rt ABC △的直角顶点C 置于直线l 上,AC BC =,分别过点 A 、B 作直线l 的垂线,垂足分别为点D 、E ,连接AE .若3BE =, 5DE =.求ACE △的面积.26.已知:D ,A ,E 三点都在直线m 上,在直线m 的同一侧作ABC ,使AB AC =,连接BD ,CE .(1)如图①,若90BAC ∠=︒,BD m ⊥,CE m ⊥,求证ABD ACE ≅; (2)如图②,若BDA AEC BAC ∠=∠=∠,请判断BD ,CE ,DE 三条线段之间的数量关系,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】利用同角的余角相等可判断①,利用角的和差与直角三角形的性质可判断②,利用平行线的性质先求解CAD ∠,再利用结论②可判断③,由150CAD ∠=︒,先求解230∠=︒, 如图,记,AB DE 交于,G 再求解90AGE ∠=︒, 再利用三角形的外角的性质求解4∠, 从而可判断④. 【详解】 解:90BAC DAE ∠=∠=︒, 122390∴∠+∠=∠+∠=︒,13∴∠=∠,故①符合题意, 19090180BAE CAD BAE DAE BAC DAE ∠+∠=∠+∠+∠=∠+∠=︒+︒=︒,故②符合题意;//,BC AD180C CAD ∴∠+∠=︒, 45C ∠=︒, 135CAD ∴∠=︒,218018013545CAD ∴∠=︒-∠=︒-︒=︒, 故③不符合题意; 150180CAD BAE CAD ∠=︒∠+∠=︒,, 30BAE ∴∠=︒, 如图,记,AB DE 交于,G60E ∠=︒,180306090AGE ∴∠=︒-︒-︒=︒,45,B C ∠=∠=︒4904545.AGE B ∴∠=∠-∠=︒-︒=︒ 4.C ∴∠=∠ 故④符合题意,综上:符合题意的有①②④. 故选:.C 【点睛】本题考查的是角的和差,余角与补角,平行线的性质,三角形的内角和定理,三角形的外角的性质,掌握以上知识是解题的关键.2.C解析:C 【分析】根据三角形的两边和大于第三边解答. 【详解】A 、5+6=11,故不能构成三角形;B 、3+4<8,故不能构成三角形;C 、5+6>10,故能构成三角形;D 、6+6<13,故不能构成三角形; 故选:C. 【点睛】此题考查三角形的三边关系,熟记三角形的任意两边之和大于第三边,两边之差小于第三边是解题的关键.3.B解析:B 【分析】利用三角形的三边关系即可求解. 【详解】解:第三边长x 的范围是:8383x -<<+,即5cm 11cm x <<, 故选:B . 【点睛】本题考查三角形的三边关系,掌握两边之和大于第三边,两边之差小于第三边是解题的关键.4.B解析:B 【分析】分当△CPA ≌△PQB 时和当△CPA ≌△PQB 时,两种情况进行讨论,求得BQ 和BP 的长,分别求得P 和Q 运动的时间,若时间相同即可,满足全等,若不等,则不能成立. 【详解】解:当△CPA ≌△PQB 时,BP=AC=4(米), 则BQ=AP=AB-BP=12-4=8(米), A 的运动时间是:4÷1=4(分钟), Q 的运动时间是:8÷2=4(分钟), 则当t=4分钟时,两个三角形全等; 当△CPA ≌△QPB 时,BQ=AC=4(米), AP=BP=12AB =6(米), 则P 运动的时间是:6÷1=6(分钟), Q 运动的时间是:4÷2=2(分钟), 故不能成立.总之,运动4分钟后,△CPA 与△PQB 全等, 故选B . 【点睛】本题考查了全等三角形的判定,注意分△CPA ≌△PQB 和△CPA ≌△QPB 两种情况讨论是关键.5.A解析:A 【分析】根据三角形的特性:两边之和大于第三边,三角形的两边的之差一定小于第三边;进行解答即可. 【详解】A 、2+3>4,能围成三角形;B 、1+2<4,所以不能围成三角形;C 、1+2=3,不能围成三角形;D 、2+3<6,所以不能围成三角形; 故选:A . 【点睛】本题主要考查了三角形的三边关系的应用,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.6.C解析:C 【分析】根据三角形的中线将三角形分成面积相等的两个三角形进行解答即可. 【详解】解:∵F 是EC 的中点, ∴142AEF AFC AEC S S S ∆∆∆===, ∴8AEC S ∆=, ∵ E 是BD 的中点 ,∴ABE AED S S ∆∆=,BEC ECD S S ∆∆=, ∵8AED ECD AEC S S S ∆∆∆+==, ∴8ABE BEC AEC S S S ∆∆∆+==,∴228=16ABC ABE BEC AEC AEC S S S S S ∆∆∆∆∆=++==⨯, 故选:C . 【点睛】本题考查了三角形的中线与三角形的面积关系,熟练掌握三角形的中线将三角形分成面积相等的两个三角形是解答的关键.7.A解析:A 【分析】利用AAS 判定△ABC ≌△AED ,则可得到AB=AE ,再利用ASA 判定△ABM ≌△AEN . 【详解】 ∵∠1=∠2,∴∠1+∠MAC =∠2+∠MAC ,∴∠BAC =∠EAD , 在△BAC 和△EAD 中,B E BAC EAD AC AD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△BAC ≌△EAD , ∴甲说的正确;∵△BAC ≌△EAD (AAS ), ∴AB=AE ,在△BAM 和△EAN 中,12B E AB AE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△BAM ≌△EAN (ASA ), ∴乙说的正确; 故选A . 【点睛】本题考查了三角形全等的判定方法,根据题目的特点,补充适当条件,活用判定定理是解题的关键.8.A解析:A 【分析】根据三角形重心的定义求解即可. 【详解】∵AD 是BC 边上的中线,点G 是重心, ∴AG :DG=2:1, ∵6AG =, ∴DG=3. 故选A. 【点睛】本题考查了三角形重心的性质,熟记重心的性质,并能灵活运用是解题的关键.9.D解析:D根据三角形三边关系解答.【详解】A 、1+2=3,故不能组成三角形;B 、2+3=5,故不能组成三角形;C 、4+5<10,故不能组成三角形;D 、14+15>16,故能组成三角形;故选:D .【点睛】此题考查三角形的三边关系:两边之和大于第三边,熟记三边关系是解此题的关键. 10.C解析:C【分析】根据题中的已知条件确定有三组边对应相等,由此证明△OMC ≌△ONC(SSS),即可得到结论.【详解】在△OMC 和△ONC 中,OM ON CM CN OC OC =⎧⎪=⎨⎪=⎩, ∴△OMC ≌△ONC(SSS),∴∠MOC=∠NOC ,∴射线OC 即是∠AOB 的平分线,故选:C.【点睛】此题考查了全等三角形的判定及性质,比较简单,注意利用了三边对应相等,熟记三角形全等的判定定理并解决问题是解题的关键.11.A解析:A【分析】根据条件可得到BC=CD ,∠ABD=∠EDC ,∠ACB=∠DCE ,可得出所用的判定方法.【详解】解:∵C 为BD 中点,∴BC=CD ,∵AB ⊥BF ,DE ⊥BF ,∴∠ABC=∠CDE=90°,且∠ACB=∠DCE ,∴在△ABC 和△EDC 中,满足ASA 的判定方法,故选:A .本题主要考查三角形全等的判定方法,掌握全等三角形的五种判定方法是解题的关键,即SSS 、SAS 、ASA 、AAS 和HL .12.A解析:A【分析】由全等三角形的性质可得到∠BAC=∠EAD ,在△ADE 中可求得∠EAD ,则可求得∠BAC .【详解】解:∵∠E=70°,∠D=30°,∴∠EAD=180°-∠E-∠D=180°-70°-30°=80°,∵△ABC ≌△ADE ,∴∠BAC=∠EAD=80°,故选:A .【点睛】本题主要考查全等三角形的性质,掌握全等三角形的对应角相等是解题的关键.二、填空题13.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和列式求出再根据角平分线的定义求出和然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解【详解】解:根据三角形的外角性质可得平分 解析:45︒【分析】根据三角形的一个外角等于与它不相邻的两个内角的和,列式求出ABN ∠,再根据角平分线的定义求出ABE ∠和BAC ∠,然后根据三角形的一个外角等于与它不相邻的两个内角的和,列式计算即可得解.【详解】解:根据三角形的外角性质,可得ABN AOB BAO ∠=∠+∠, BE 平分NBA ∠,AC 平分BAO ∠,12ABE ABN ∴∠=∠,12BAC BAO ∠=∠,C ABE BAC ∴∠=∠-∠,1)2ABN BAO =∠-∠, ()1122AOB BAO BAO =∠+∠-∠, 12AOB =∠, 90MON ∠=︒,90AOB ∠=︒∴,190452C ∴∠=⨯︒=︒. 故答案为:45°.【点睛】本题考查了三角形外角的性质,以及角平分线的定义,解题时注意:三角形的一个外角等于和它不相邻的两个内角的和.14.(答案不唯一)【分析】根据三角形全等判定条件即可得解;【详解】当时满足条件;∵∴∴在和中∴;故答案是:(答案不唯一)【点睛】本题主要考查了全等三角形的判定条件准确分析判断是解题的关键解析:BC DF =(答案不唯一)【分析】根据三角形全等判定条件即可得解;【详解】当BC DF =时满足条件;∵AE CF =,∴AE EC CF EC +=+,∴AC EF =,在Rt ABC 和Rt EDF 中,AC EF BC DF =⎧⎨=⎩, ∴Rt ABC Rt EDF ≅;(答案不唯一).故答案是:BC DF【点睛】本题主要考查了全等三角形的判定条件,准确分析判断是解题的关键.15.50°【分析】连接BC根据三角形内角和定理可求得∠DBC+∠DCB的度数再利用三角形内角和定理及角平分线的定义可求得∠ABC+∠ACB的度数即可求得∠A的度数【详解】解:连接BC∵∠BDC=130°解析:50°【分析】连接BC,根据三角形内角和定理可求得∠DBC+∠DCB的度数,再利用三角形内角和定理及角平分线的定义可求得∠ABC+∠ACB的度数,即可求得∠A的度数.【详解】解:连接BC,∵∠BDC=130°,∴∠DBC+∠DCB=180°−∠BDC=50°,∵∠BGC=90°,∴∠GBC+∠GCB=180°−∠BGC=90°,∴∠GBD+∠GCD=(∠GBC+∠GCB)−(∠DBC+∠DCB)=40°,∵BF平分∠ABD,CE平分∠ACD,∴∠ABD+∠ACD=2∠GBD+2∠GCD=80°,∴∠ABC+∠ACB=(∠ABD+∠ACD)+(∠DBC+∠DCB)=130°,∴∠A=180°−(∠ABC+∠ACB)=180°−130°=50°.故答案为:50°.【点睛】本题主要考查了与角平分线有关的三角形内角和问题,根据题意作出辅助线,构造出三角形是解答此题的关键.16.102°【分析】首先根据∠DFC=3∠B=117°可以算出∠B=39°然后设∠C=∠D=x°根据外角与内角的关系可得39+x+x=117再解方程即可得到x=39再根据三角形内角和定理求出∠BED的度解析:102°【分析】首先根据∠DFC=3∠B=117°,可以算出∠B=39°,然后设∠C=∠D=x°,根据外角与内角的关系可得39+x+x=117,再解方程即可得到x=39,再根据三角形内角和定理求出∠BED的度数.【详解】解:∵∠DFC=3∠B=117°,∴∠B=39°,设∠C=∠D=x°,39+x+x=117,解得:x=39,∴∠D=39°,∴∠BED=180°−39°−39°=102°.故答案为:102°.【点睛】此题主要考查了三角形外角的性质,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和.17.60【分析】根据全等三角形的性质得到∠DFE=∠ACB=30°根据三角形的外角性质计算得到答案【详解】解:∵△ABC≌△DEF∴∠DFE=∠ACB=30°∵∠AMF 是△MFC的一个外角∴∠AMF=∠解析:60【分析】根据全等三角形的性质得到∠DFE=∠ACB=30°,根据三角形的外角性质计算,得到答案.【详解】解:∵△ABC≌△DEF,∴∠DFE=∠ACB=30°,∵∠AMF是△MFC的一个外角,∴∠AMF=∠DFE+∠ACB=60°,故答案为:60.【点睛】本题考查的是全等三角形的性质、三角形的外角性质,掌握全等三角形的对应角相等是解题的关键.18.7【分析】根据折叠的性质可得BE=BC=6cmCD=DE可得AE=2cm即可求△AED的周长【详解】解:∵折叠∴△BCD≌△BED∴BE=BC=6cmCD=DE∴AE =AB﹣BE=2cm∴△AED的解析:7【分析】根据折叠的性质可得BE=BC=6cm,CD=DE,可得AE=2cm,即可求△AED的周长.【详解】解:∵折叠,∴△BCD≌△BED,∴BE =BC =6cm ,CD =DE ,∴AE =AB ﹣BE =2cm ,∴△AED 的周长=AD+DE+AE =AD+CD+AE =AC+AE =7cm .故答案为7.【点睛】本题考查了翻折变换,熟练运用折叠的性质是本题的关键.19.全等三角形判定(斜边和直角边对应相等)【分析】利用判定方法HL 证明Rt △OMP 和Rt △ONP 全等进而得出答案【详解】解:在Rt △OMP 和Rt △ONP 中∴Rt △OMP ≌Rt △ONP (HL )∴∠MOP =解析:全等三角形判定(斜边和直角边对应相等HL )【分析】利用判定方法“HL”证明Rt △OMP 和Rt △ONP 全等,进而得出答案.【详解】解:在Rt △OMP 和Rt △ONP 中,OM ON OP OP⎧⎨⎩==, ∴Rt △OMP ≌Rt △ONP (HL ),∴∠MOP =∠NOP ,∴OP 是∠AOB 的平分线.故答案为HL【点睛】本题考查了全等三角形的应用以及基本作图,熟练掌握三角形全等的判定20.2【分析】本题根据三角形的三边关系定理得到不等式组从而求出三边满足的条件再根据三边长是整数进而求解【详解】设摆出的三角形中相等的两边是x 根则第三边是()根根据三角形的三边关系定理得到:则又因为是整数 解析:2【分析】本题根据三角形的三边关系定理,得到不等式组,从而求出三边满足的条件,再根据三边长是整数,进而求解.【详解】设摆出的三角形中相等的两边是x 根,则第三边是(122x -)根,根据三角形的三边关系定理得到:122122x x x x x x +>-⎧⎨-+>⎩, 则3x >, 6x <,又因为x 是整数,∴x 可以取4或5,因而三边的值可能是:4,4,4或5,5,2;共二种情况,则能摆出不同的等腰三角形的个数为2.故答案为:2.【点睛】本题考查了三角形的三边关系:在组合三角形的时候,注意较小的两边之和应大于最大的边,三角形三边之和等于12.三、解答题21.见解析【分析】延长AB 、CE 交于点F ,证明△ABD ≌△CBF ,根据全等三角形的性质得到AD =CF ,证明△CAE ≌△FAE ,得到CE =EF ,进而证明结论.【详解】证明:延长AB 、CE 交于点F ,∵∠ABC =90°,CE ⊥AD ,∠ADB =∠CDE ,∴∠BAD =∠ECD ,在△ABD 和△CBF 中,BAD BCF AB CB ABD CBF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABD ≌△CBF (SAS ),∴AD =CF ,∵AD 是∠BAC 的平分线,∴∠CAE =∠FAE ,在△CAE 和△FAE 中,CAE FAE AE AEAEC AEF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△CAE ≌△FAE (ASA ),∴CE =EF ,∴AD =CF =2CE .【点睛】本题考查了全等三角形的判定及性质定理,熟练掌握定理是解题的关键.22.(1)等边三角形;一个内角为60°的等腰三角形是等边三角形;(2)BD EA =,理由见解析.【分析】(1)连接AC ,由AD DC =判定ADC 是等腰三角形,再根据一个内角为60°的等腰三角形是等边三角形即可解题;(2)根据等边三角形的性质得,在ADC 中,,60DC AC DCA =∠=︒,在BCE 中,,60CB CE BCE =∠=︒,继而证明DCB ACE ∠=∠,得到()BDC EAC SAS ≅,最后由全等三角形的对应边相等解题即可.【详解】解:(1)连接AC ,在ADC 中,AD DC =,∴ADC 是等腰三角形,又60ADC ∠=︒,∴ADC 是等边三角形(一个内角为60°的等腰三角形是等边三角形)故答案为:等边三角形;一个内角为60°的等腰三角形是等边三角形;(2)BD EA =,理由如下: ADC 是等边三角形,,60DC AC DCA ∴=∠=︒又BCE 是等边三角形,,60CB CE BCE ∴=∠=︒, DCA ACB ECB ACB ∴∠+∠=∠+∠即DCB ACE ∠=∠()BDC EAC SAS ∴≅BD AE ∴=.【点睛】本题考查等边三角形的判定与性质、全等三角形的判定与性质等知识,是重要考点,难度一般,掌握相关知识是解题关键.23.(1)甲、丙;(2)见详解【分析】(1)根据平行线的性质,由AB ∥DE 可得∠B =∠DEC ,再加上条件∠A =∠D ,只需要添加一个能得出对应边相等的条件,即可证明两个三角形全等,添加AC //DF 不能证明△ABC ≌△DEF ;(2)添加AB =DE ,再由条件AB ∥DE 可得∠B =∠DEC ,然后再利用ASA 判定△ABC ≌△DEF 即可.【详解】(1)解:∵AB //DE ,∴∠B =∠DEC ,又∵∠A =∠D ,∴添加AB =DE ,可得△ABC ≌△DEF (ASA );添加BE =CF ,可得BC=EF ,可得△ABC ≌△DEF (AAS )∴说法正确的是:甲、丙,故答案为:甲、丙;(2)选“甲”,理由如下:证明:∵AB ∥DE ,∴∠B =∠DEC ,在△ABC 和△DEF 中A DB DEF AB DE ∠∠⎧⎪∠∠⎨⎪⎩=== ∴△ABC ≌△DEF (ASA ).【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.24.23°【分析】在△ABC 中,利用三角形内角和定理可求出∠BAC 的度数,结合角平分线的定义可得出∠CAD 的度数,在△ACD 中,利用三角形外角定理可求出∠CDP 的度数,结合PE BC ⊥即90PED ∠=︒及三角形外角定理,从而得出P CDP PED ∠=∠-∠即可求得∠P 的度数.【详解】解:在ABC 中,70C ∠=︒,24B ∠=︒,∴180702486BAC ∠=︒-︒-︒=︒,∵AD 平分BAC ∠,∴43CAD ∠=︒,∴4370113CDP CAD C ∠=∠+∠=︒+︒=︒,∵PE BC ⊥,即90PED ∠=︒,∴1139023P CDP PED ∠=∠-∠=︒-︒=︒.【点睛】本题考查了三角形外角定理、角平分线的定义,利用三角形外角定理及角平分线的定义,求出∠CDP 的度数是解题的关键.25.32【分析】根据AAS 即可证明ACD CBE ≌,根据全等三角形的对应边相等,得出3CD BE ==, AD CE =,所而 358CE CD DE =+=+=,从而求出AD 的长,则可得到ACE △的面积.【详解】解:∵ AD CE ⊥, BE CE ⊥,∴90ADC CEB ∠=∠=︒,∵90ACB ∠=︒,∴90ACD CBE ECB ∠=∠=︒-∠,在ACD △与CBE △中,ADCCEB ACDCBE AC BC∴ACD CBE ≌(AAS) ∴ 3CD BE ==, AD CE =,∵ 358CE CD DE =+=+=,∴ 8AD =.ACE 11883222S CE AD △.【点睛】本题考查全等三角形的判定与性质,余角的性质等知识,熟悉相关性质是解题的关键. 26.(1)见详解;(2)DE =BD +CE .理由见详解【分析】(1)根据BD ⊥直线m ,CE ⊥直线m 得∠BDA =∠CEA =90°,而∠BAC =90°,根据等角的余角相等,得∠CAE =∠ABD ,然后根据“AAS”可判断△ABD ≌△CAE ;(2)由∠BDA =∠AEC =∠BAC ,就可以求出∠BAD =∠ACE ,进而由ASA 就可以得出△ABD ≌△CAE ,就可以得出BD =AE ,DA =CE ,即可得出结论.【详解】(1)证明:如图①,∵D ,A ,E 三点都在直线m 上,∠BAC =90°,∴∠BAD +∠CAE =90°,∵BD ⊥m ,CE ⊥m ,∴∠ADB =∠CEA =90°,∴∠BAD +∠ABD =90°,∴∠ABD =∠CAE ,在△ABD 和△CAE 中,ADB AEC ABD CAE AB AC ∠∠⎧⎪∠∠⎨⎪⎩===,∴△ABD ≌△CAE (AAS );(2)DE =BD +CE .理由如下:如图②,∵∠BDA =∠AEC =∠BAC ,∴由三角形内角和及平角性质,得:∠BAD +∠ABD =∠BAD +∠CAE =∠CAE +∠ACE ,∴∠ABD =∠CAE ,∠BAD =∠ACE ,在△ABD 和△CAE 中,ABD CAE AB ACBAD ACE ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△ABD ≌△CAE (ASA ),∴BD =AE ,AD =CE ,∴DE =AD +AE =BD +CE .【点睛】本题考查了全等三角形的判定与性质以及三角形内角和定理的综合应用,解题的关键是熟练掌握全等三角形的判定方法,灵活运用所学知识解决问题.。

2019版七年级数学下册第四章三角形试题新版北师大版

2019版七年级数学下册第四章三角形试题新版北师大版

第四章三角形(1)已知三角形的两边长求第三边的范围,解答这种问题的重点是求两边之和、两边之差,第三边大于两边之差小于两边之和.【例】若三角形的两边长分别为6 cm,9 cm,则其第三边的长可能为()A.2 cmB.3 cmC.7 cmD.16 cm【标准解答】选C.设第三边长为xcm.由三角形三边关系定理得9-6<x<9+6,解得3<x<15.(2)已知三条线段,判断以这三条线段为边可否构成三角形,解答的重点是只求两较短边之和,与最长边去比较.【例】以下长度的三条线段,不可以构成三角形的是()A.3,8,4B.4,9,6C.15,20,8D.9,15,8【标准解答】选A.剖析各选项:A.∵3+4<8∴不可以构成三角形;B.∵4+6>9∴能构成三角形;C.∵8+15>20∴能构成三角形;D.∵8+9>15∴能构成三角形.(3)在解决三角形中线段比较大小的问题时,我们常常会用到三角形的“三边关系定理”来解决问题,它是我们初中阶段常常用于比较线段大小的重要依照.【例】如图,点P是△ABC内随意一点,试说明PB+PC<AB+AC.【标准解答】延伸BP交AC于点D,在△ABD中,PB+PD<AB+AD①,在△PCD中,PC<PD+CD②,①+②得PB+PD+PC<AB+AD+PD+CD,即PB+PC<AB+AC.1.以下长度的三条线段,能构成三角形的是()A.1,1,2B.3,4,5C.1,4,6D.2,3,72.假如一个三角形的两边长分别为2和5,则第三边长可能是()3.某同学手里拿着长为3和2的两个木棍,想要找一个木棍,用它们围成一个三角形,那么他所找的这根木棍长知足条件的整数解是()A.1,3,5B.1,2,3C.2,3,4D.3,4,54.各边长度都是整数、最大边长为8的三角形共有个.5.如图,△ABC三边的中线AD,BE,CF的公共点G,若S△ABC=12,则图中暗影部分面积是.(1)当所求角是一个三角形的内角时,可先求出这个三角形此外两个内角的度数,再依据三角于()°°°°【标准解答】选B.∵∠A=40°,∠AOB=75°.∴∠B=180°-∠A-∠AOB=180°-40°-75°=65°,∵AB∥CD,∴∠C=∠B=65°.(2)当所求角是一个三角形的外角时,可利用三角形外角的性质联合三角形的内角和定理计算.【例】将一副惯例的三角尺按如图方式搁置,则图中∠AOB的度数为()°°°°【标准解答】选C.∵∠ACO=45°-30°=15°,∴∠AOB=∠A+∠ACO=90°+15°=105°.(3)当条件中含有平行线时,可利用平行线的性质将其转变为其余易求的角.【例】如图,已知l1∥l2,∠A=40°,∠1=60°,则∠2的度数为()°°°°【标准解答】选D.如图,方法一:∵l1∥l2,∴∠1=∠ABC=60°,∴∠2=∠A+∠ABC=60°+40°=100°;方法二:∵l1∥l2,∴∠2=∠3.∵∠1=∠4=60°,∠A=40°.∴∠2=∠3=∠A+∠4=60°+40°=100°.1.一副三角板如图叠放在一同,则图中∠α的度数为()°°°°2.如图,AB∥CD,AE交CD于C,∠A=34°,∠DEC=90°,则∠D的度数为()°°°°3.如图,在△ABC中,∠B,∠C的均分线BE,CD订交于点F,∠ABC=42°,∠A=60°,则∠BFC= ()°°°°4.如图,在△ABC中,点D,E,F分别是三条边上的点,EF∥AC,DF∥AB,∠B=45°,∠C=60°.则∠EFD=()°°°°5.如图,在△ABC中,∠A=80°,点D是BC延伸线上一点,∠ACD=150°,则∠B=°.6.如图,已知,l1∥l2,C1在l1上,而且C1A⊥△ABC1的面积为S1,△ABC2的面积为S2,△ABC3的面积为S3,小颖认为S1=S2=S3,请帮小颖说明原因.3.确立全等三角形的对应边、对应角的方法(1)在全等三角形中找对应边和对应角,重点是先找出对应极点,而后按对应极点字母的次序记两个三角形全等,再按次序写出对应边和对应角.(2)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;对应边所对的角是对应角.两条对应边所夹的角是对应角.(3)全等三角形中的公共边是对应边,公共角是对应角,对顶角是对应角.(4)最大边是对应边,最小边是对应边,最大角是对应角,最小角是对应角.【例】如图,△ABC≌△DEF,点A与点D是对应极点,则BC的对应边是,∠BAC的对应角是.【标准解答】因为点A与点D是对应极点,对应极点所对的边是对应边,因此BC的对应边是EF;又因为以对应点为极点的角是对应角,因此∠BAC的对应角是∠EDF.答案:EF∠EDF如下图,∠1=∠2,∠B=∠D,△ABC和△AED全等应表示为()A.△ABC≌△AEDB.△ABC≌△EADC.△ABC≌△ADED.△ABC≌△DEA(1)判断基本思路:在证明两个三角形全等时,常常题目中已知某些边或角的条件,常依据以下思路来找寻三角形全等的条件.(2)常有的全等三角形的基本模型:①平移变换型②轴对称变换型③旋转变化型【例1】已知:如图,E,F在AC上,AD∥CB且AD=CB,∠D=∠B.求证:AE=CF.【标准解答】∵AD∥CB,∴∠A=∠C,∵AD=CB,∠D=∠B,∴△ADF≌△CBE,∴AF=CE,∴AE=CF.【例2】如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥⊥CE于点D.求证:△BEC≌△CDA.【标准解答】∵BE⊥CE于E,AD⊥CE于D,∴∠BEC=∠CDA=90°,在Rt△BEC中,∠BCE+∠CBE=90°,在Rt△BCA中,∠BCE+∠ACD=90°,∴∠CBE=∠ACD,在△BEC和△CDA中,∠BEC=∠CDA,∠CBE=∠ACD,∵BC=AC,∴△BEC≌△CDA.1.如图,已知AB=AD,那么增添以下一个条件后,仍没法判断△ABC≌△ADC的是()A.CB=CDB.∠BAC=∠DACC.∠BCA=∠DCAD.∠B=∠D=90°2.如图,B,E,C,F在同向来线上,AB∥DE,AB=DE,BE=CF,AC=6,则DF=.△ABC中,AB=AC,点E,F分别在AB,AC上,AE=AF,BF与CE订交于点P.求证:PB=PC,并直接写出图中其余相等的线段.4.已知:如图,AB∥CD,E是AB的中点,CE=DE.求证:(1)∠AEC=∠BED.(2)AC=BD.5.如图,在四边形ABCD中,∠A=∠BCD=90°,BC=DC,延伸AD到E点,使DE=AB.求证:(1)∠ABC=∠EDC.(2)△ABC≌△EDC.6.如图,在△ABC中,AB=AC,作AD⊥AB交BC的延伸线于点D,作AE∥BD,CE⊥AC,且AE,CE 订交于点E,求证:AD=CE.用尺规作图作出图形的三个步骤:(1)剖析图形,明确作图次序.(2)选择适合的基本作图.(3)考证所作图形能否切合要求.【例1】如下图,已知线段AB,∠α,∠β,分别过A,B作∠CAB=∠α,∠CBA=∠β.(不写作法,保存作图印迹)【标准解答】如下图:.【例2】作图题(要求:用尺规作图,保存作图印迹,不写作法和证明)已知:(如图)线段a和∠α,求作:△ABC,使AB=AC=a,∠A=∠α.【标准解答】如下图:△ABC,使其两边为已知线段a,b,夹角为β.(要求:用尺规作图,写出已知、求作;保存作图印迹;不在已知的线、角上作图;不写作法)2.如图1,在△ABC中,AB=AC,D是底边BC上的一点,BD>CD,将△ABC沿AD剪开,拼成如图2的四边形ABDC′.(1)四边形ABDC′拥有什么特色?(2)请同学们在图3中,用尺规作一个以MN,NP为邻边的四边形MNPQ,使四边形MNPQ拥有上述特色(要求:写出作法,但不要求证明).追踪训练答案分析第四章三角形【追踪训练】1.【分析】选B.假如知足较小的两条线段之和大于最长的线段,那么这三条线段就能构成三角形.因为1+1=2,1+4<6,2+3<7,而3+4>5.2.【分析】选C.设第三边长为x,则由三角形三边关系定理得5-2<x<5+2,即3<x<7.应选C.3.【分析】选C.设他所找的这根木棍长为x,由题意得:3-2<x<3+2,∴1<x<5,∵x为整数,∴x=2,3,4.4.【分析】∵各边长度都是整数、最大边长为8,∴三边长能够为:1,8,8;2,7,8;2,8,8;3,6,8;3,7,8;3,8,8;4,5,8;4,6,8;4,7,8;4,8,8;5,5,8;5,6,8;5,7,8;5,8,8;6,6,8;6,7,8;6,8,8;7,7,8;7,8,8;8,8,8;答案:205.【分析】由中线性质,可得AG=2GD,则S△BGF=S△CGE=S△ABG=×S△ABD=××S△ABC=×12=2,∴暗影部分的面积为4.答案:4【追踪训练】1.【分析】选A.如图,∵∠1=60°,∠2=45°,∴∠α=180°-45°-60°=75°.2.【分析】选C.∵AB∥CD,∴∠DCE=∠A=34°,∵∠DEC=90°,∴∠D=90°-∠DCE=90°-34°=56°.3.【分析】选C.∵∠A=60°,∠ABC=42°,∴∠ACB=180°-∠A-∠ABC=78°.∵∠B,∠C的均分线为BE,CD,∴∠FBC=∠ABC=21°,∠FCB=∠ACB=39°,∴∠BFC=180°-∠FBC-∠FCB=120°.4.【分析】选B.∵EF∥AC,∴∠EFB=∠C=60°,∵DF∥AB,∴∠DFC=∠B=45°,∴∠EFD=180°-60°-45°=75°.5.【分析】∵∠ACD=∠A+∠B,∠A=80°,∠ACD=150°,∴∠B=70°.答案:706.【分析】∵直线l1∥l2,∴△ABC1,△ABC2,△ABC3的底边AB上的高相等,∴△ABC1,△ABC2,△ABC3这3个三角形同底,等高,∴△ABC1,△ABC2,△ABC3这些三角形的面积相等.即S1=S2=S3.3.确立全等三角形的对应边、对应角的方法【追踪训练】∠1=∠2,∠B=∠D,因此点C与点E,点B与点D是对应点,故应表示为△ABC≌△ADE,因此选C.【追踪训练】1.【分析】选C.A、增添CB=CD,依据SSS,能判断△ABC≌△ADC,故A选项不切合题意;B、增添∠BAC=∠DAC,依据SAS,能判断△ABC≌△ADC,故B选项不切合题意;C、增添∠BCA=∠DCA时,不可以判断△ABC≌△ADC,故C选项切合题意;D、增添∠B=∠D=90°,依据HL,能判断△ABC≌△ADC,故D选项不切合题意;应选C.2.【分析】∵AB∥DE,∴∠ABC=∠DEF,∵BE=CF,∴BC=EF,∴DF=AC=6.答案:63.【分析】在△ABF和△ACE中,∴△ABF≌△ACE(SAS),∴∠ABF=∠ACE(全等三角形的对应角相等),∴BF=CE(全等三角形的对应边相等),∵AB=AC,AE=AF,∴BE=CF,在△BEP和△CFP中,∴△BEP≌△CFP(AAS),∴PB=PC,∵BF=CE,∴PE=PF,∴图中相等的线段为PE=PF,BE=CF.4.【证明】(1)∵AB∥CD,∴∠AEC=∠ECD,∠BED=∠EDC,∵CE=DE,∴∠ECD=∠EDC,∴∠AEC=∠BED.(2)∵E是AB的中点,∴AE=BE,在△AEC和△BED中,∴△AEC≌△BED(SAS),∴AC=BD.5.【证明】(1)在四边形ABCD中,∵∠A=∠BCD=90°,∴∠B+∠ADC=180°.又∵∠ADC+∠EDC=180°,∴∠ABC=∠EDC.(2)连结AC.∵在△ABC和△EDC中∴△ABC≌△EDC.6.【证明】∵AE∥BD,∴∠EAC=∠ACB,∵AB=AC,∴∠B=∠ACB,∴∠B=∠EAC,在△ABD和△CAE中,∴△ABD≌△CAE,∴AD=CE.【追踪训练】1.【分析】已知:线段a,b和∠β.求作:△ABC,使BC=a,AC=b,∠C=β(也能够使随意两边分别等于a和b,夹角为β).2.【分析】(1)四边形ABDC′中,AB=DC′,∠B=∠C′(或四边形ABDC′中,一组对边相等,一组对角相等).(2)作法:①延伸NP;②以点M为圆心,MN为半径画弧,交NP的延伸线于点G;⑤四边形MNPQ是知足条件的四边形.。

北师大版七年级下册数学第四章《三角形》测试卷(附答案)

北师大版七年级下册数学第四章《三角形》测试卷(附答案)

ED,连接 CG.
(1)求证:BE=CG; (2)求证:BE+CF>EF.
答案解析部分
一、单选题
1.【答案】 B 2.【答案】 C 3.【答案】 C 4.【答案】 C 5.【答案】 A 6.【答案】D 7.【答案】 D 8.【答案】 B 9.【答案】 D 10.【答案】 B 二、填空题
11.【答案】 8 12.【答案】 75° 13.【答案】 BD=AC 14.【答案】 15° 15.【答案】 1 三、解答题
= 180∘ − ∠1 − ∠2 ,
20.【答案】 证明:假设∠1≠∠A+∠B, 在△ABC 中,∠A+∠B+∠2=180°,如下图所示:
∴∠A+∠B=180°﹣∠2, ∵∠1+∠2=180°, ∴∠1=180°﹣∠2, ∴∠1=∠A+∠B, 与假设相矛盾, ∴假设不成立, ∴原命题成立即:∠1=∠A+∠B. 四、作图题 21.【答案】 (1)解:如图
又 AC⊥BD,所以 AB=BC.所以∠BAC=∠BCA,
因为∠ABC+∠BAC+∠BCA=180º,所以 58º+2∠BAC=180º.所以∠BAC=61º
18.【答案】 解:①情况一:AC+AD=6,BC+BD=15. ∵AD=BD,AB=AC, ∴2AD+AD=6, ∴AD=2. ∴AB=4,BC=13. ∵AB+AC<BC, ∴不能构成三角形,故这种情况不成立. ②情况二:AC+AD=15,BC+BD=6. 同理①得 AB=10,BC=1, ∵AB+AC>BC,AB-AC<BC, ∴能构成三角形,腰长为 10,底边长为 1. 故这个等腰三角形的腰和底分别为 10 和 1. 19.【答案】 证明:如图,连接 , ∵ ∠ + ∠ = 360∘ − ∠1 − ∠2 , ∠ + ∠ + ∠ ∴ ∠ + ∠ − (∠ + ∠ + ∠ ) = 180∘ , ∴ ∠ + ∠ = ∠ + ∠ + ∠ + 180∘ .

七年级数学下册第四章三角形单元综合测试新版北师大版.doc

七年级数学下册第四章三角形单元综合测试新版北师大版.doc

2019-2020 年七年级数学下册 第四章 三角形单元综合测试(新版)北师大版一、填空题(每小题 2 分,共 20 分)1.在直角三 角形中,若两个锐角的比为 2∶ 3,那么两个锐角中较大的锐角为度。

2.若∠ B=∠ A+∠ C ,则△ ABC 是三角形;∠ A=1B1 C ,则△ ABC23是三角形。

4 3. 如图,若∠ 1=27o ,∠ 2=95o ,∠ 3=38o ,则∠ 4=。

231A4. △ ABC 中,若∠ A=80o , O 为三条角平分线的交点,则∠BOC=。

OBC5.若等腰三角形一个内角为 50o ,则另两个内角为。

B6.有一个角是 60°的三角形是等边三角形。

7. 如图,△ ABC 中, AD ⊥ BC 于 D ,要使△ ABD ≌△ ACD ,若根据“ HL ”判定,还需要加条 AD 件,若加条件∠ B=∠ C ,则可用 判定。

C8. AD 是⊿ ABC 的中线。

⊿ ABD 的周长比⊿ ADC 的周长大4,则 AB 与 AC 的差为 _________ 。

9.如图,沿 AM 折叠,使 D 点落在 BC 上的 N 点处,如果 AD=7cm ,,NM=DM=5cm ,∠ DAM=30,则 AN= cm cm ,∠ NAM= ;二、选择题(每小题 3 分,共 30 分)1. 如图, PD ⊥ AB 于 D ,PE ⊥ AC 于 E ,且 PD=PE ,则△ APD 与△ APE 全等的理由是( )A . SSSB. ASAC. SSAD . HLC2. 已知等腰三角形的两边长是 4cm 和 9cm ,则此三角形的周长是()A . 17cmB . 13cmC . 22cmD .17cm 或 22cm A3. 如图, ACB90 , CDAB, 则 1与 B 的关系 是()D1A .互余B .互补C .相等D.不确定BC4.在下列结论中: ( 1)有一个外角是 120°的等腰三角形是等边三角形( 2)有两个外角相等的等腰三角形是等 边三角形( 3)有一边上的高也是这边上的中线的等腰三角形是等边三角形( 4)三个外角都相等的三角形是等边三角形。

北师大七年级数学下第四章三角形单元达标检测试卷含答案

北师大七年级数学下第四章三角形单元达标检测试卷含答案

第四章三角形达标检测卷题号一二三总分得分一、选择题(每题3分,共30分)1.如图所示的图形中共有( )三角形A.3个B.4个C.5个D.6个2.桥梁上的拉杆,电视塔的底座,都是三角形结构,而活动挂架是四边形结构,这是分别利用三角形和四边形的( )A.稳定性,稳定性B.稳定性,不稳定性C.不稳定性,稳定性D.不稳定性,不稳定性3.下列各图中,作出AC边上的高,正确的是( )4.如图,△ABC≌△EDF,AF=20,EC=8,则AE等于( )A.6B.8C.10D.125.如图,AB∥ED,CD=BF,若要说明△ABC≌△EDF,则还需要补充的条件可以是( )A.AC=EFB.AB=EDC.∠B=∠ED.不用补充6.如图,在△ABC中,∠ABC,∠ACB的平分线BE,CD相交于点F,∠A=60°,则∠BFC等于( )A.118°B.119°C.120°D.121°7.两根木棒的长分别为4 cm和9 cm,要选择第三根木棒,将它们钉成一个三角形.如果第三根木棒的长度为奇数,那么第三根木棒的长度的取值情况有( )A.3种B.4种C.5种D.6种8.如图,下列四个条件: ①B C=B'C;②AC=A'C;③∠A'CA=∠B'CB;④AB=A'B'.从中任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是( )A.1B.2C.3D.49.如图,在△ABC中,E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC,△ADF,△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF-S△BEF等于( )A.1B.2C.3D.410.如图,△ABC的三个顶点和它内部的点P1,把△ABC分成3个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1,P2,把△ABC分成5个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1,P2,P3,把△ABC分成7个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1,P2,P3,…,P n,把△ABC 分成( )个互不重叠的小三角形.A.2nB.2n+1C.2n-1D.2(n+1)二、填空题(每题3分,共24分)11.三角形按内角的大小可分为三类:锐角三角形、___________三角形和三角形.12.要测量河两岸相对的两点A,B间的距离(AB垂直于河岸BF),先在BF上取两点C,D,使CD=CB,再作出BF的垂线DE,且使A,C,E三点在同一条直线上,如图,可以得到△EDC≌△ABC,所以ED=AB.因此测得ED的长就是AB的长.判定△EDC≌△ABC的理由是___________.13.如图,E点为△ABC的边AC的中点,CN∥AB,若MB=6 cm,CN=4 cm,则AB= .14.若等腰三角形的周长为26 cm,一边长为11 cm,则腰长为.15.已知△ABC的三边长分别为a,b,c,若a=3,b=4,则c的取值范围是;已知四边形ABCD的四边长分别为a,b,c,d,若a=3,b=4,d=10,则c的取值范围是.16.如图,在△ABC中,AD是BC边上的高,BE是AC边上的高,且AD,BE交于点F,若BF=AC,CD=3,BD=8,则线段AF的长度为.17.如图是由相同的小正方形组成的网格,点A,B,C均在格点上,连接AB,AC,则∠1+∠2= .18.如图,在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E在同一条直线上,连接BD,BE.有以下四个结论:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④∠ACE=∠DBC.其中结论正确的是.(填序号)三、解答题(19题7分,20,21题每题8分,25题13分,其余每题10分,共66分)19.尺规作图:如图,小明在作业本上画的△ABC被墨迹污染,他想画一个与原来完全一样的△A'B'C',请帮助小明想办法用尺规作图法画出△A'B'C'(不写作法,保留作图痕迹),并说明你的理由.20.如图,在△ABC中,AE⊥BC于点E,AD为∠BAC的平分线,∠B=40°,∠C=70°,求∠DAE的度数.21.如图,在△ABC中,AB=AC,D在AC的延长线上,试说明:BD-BC<AD-AB.22.如图,在8×8的正方形网格中,有十二棵小树,请你把这个大正方形划分成四块,要求每块的形状、大小都相同,并且每块中恰好有三棵小树,你能行吗?23.如图,已知△ABC≌△ADE,AB与ED交于点M,BC与ED,AD分别交于点F,N.请写出图中两对全等三角形(△ABC≌△ADE除外),并选择其中的一对加以说明.24.如图,在Rt△ABC中,∠ACB=90°,BC=2 cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5 cm,求线段AE的长.25.已知点P是Rt△ABC斜边AB上一动点(不与点A,B重合),分别过点A,B 向直线CP作垂线,垂足分别为点E,F,点Q为斜边AB的中点.(1)如图①,当点P与点Q重合时,AE与BF的位置关系是___________,QE与QF的数量关系是___________;(2)如图②,当点P在线段AB上且不与点Q重合时,试判断QE与QF的数量关系,并说明理由.(温馨提示:直角三角形斜边上的中线等于斜边的一半)参考答案一、1.【答案】D 2.【答案】B3.【答案】C解:过顶点B向AC边所在的直线作垂线,顶点和垂足之间的线段就是高,只有选项C正确,故选C.4.【答案】A解:因为△ABC≌△EDF,所以AC=EF.所以AE=CF.因为AF=20,EC=8,所以AE=CF=6.故选A.5.【答案】B解:由已知条件AB∥ED可得,∠B=∠D,由CD=BF可得,BC=DF,再补充条件AB=ED,可得△ABC≌△EDF,故选B.6.【答案】C解:因为∠A=60°,所以∠ABC+∠ACB=120°.因为BE,CD分别是∠ABC,∠ACB的平分线,所以∠CBE=∠ABC,∠BCD=∠BCA.所以∠CBE+∠BCD=(∠ABC+∠BCA)=60°.所以∠BFC=180°-60°=120°.故选C.7.【答案】A8.【答案】B9.【答案】B解:易得S△ABE=×12=4,S△ABD=×12=6,所以S△ADF-S△BEF=S△ABD-S△ABE=2.10.【答案】B解:△ABC的三个顶点和它内部的点P1,把△ABC分成的互不重叠的小三角形的个数=3+2×0,△ABC的三个顶点和它内部的点P1,P2,把△ABC分成的互不重叠的小三角形的个数=3+2×1,△ABC的三个顶点和它内部的点P1,P2,P3,把△ABC分成的互不重叠的小三角形的个数=3+2×2,所以△ABC的三个顶点和它内部的点P1,P2,P3,…,P n,把△ABC分成的互不重叠的小三角形的个数=3+2(n-1)=2n+1.二、11.【答案】直角钝角12.【答案】ASA解:由题意可知,∠ECD=∠ACB,∠EDC=∠ABC=90°,CD=CB,故可用ASA说明两三角形全等.13.【答案】10 cm解:由CN∥AB,点E平分AC,可得∠EAM=∠ECN,A E=CE.又因为∠AEM=∠CEN,所以△AEM≌△CEN.所以AM=CN=4 cm.所以AB=AM+MB=4+6=10(cm).14.【答案】7.5 cm或11 cm解:①当腰长为11 cm时,底边长为26-11-11=4(cm),此时能构成三角形;②当底边长为11 cm时,腰长为(26-11)÷2=7.5(cm),此时能构成三角形.15.【答案】1<c<7;3<c<1716.【答案】5解:由已知可得,∠ADC=∠BDF=∠BEC=90°,所以∠DAC=∠DBF.又因为AC=BF,所以△ADC≌△BDF.所以AD=BD=8,DC=DF=3.所以AF=AD-DF=8-3=5.17.【答案】90°解:如图,由题意可知,∠ADC=∠E,AD=BE,CD=AE,所以△ADC≌△BEA.所以∠CAD=∠2.所以∠1+∠2=∠1+∠CAD=90°.18.【答案】①②③解:因为∠BAC=∠DAE=90°,所以∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE.因为在△BAD和△CAE中,AB=AC,∠BAD=∠CAE,AD=AE,所以△BAD≌△CAE(SAS).所以BD=CE.故①正确.因为△BAD≌△CAE,所以∠ABD=∠ACE.因为∠ABD+∠DBC=45°,所以∠ACE+∠DBC=45°.所以∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°.所以BD⊥CE.故②③正确.只有当∠ABD=∠DBC时,④中结论才成立.故正确的结论有①②③.三、19.解:作出△A'B'C'如图所示.在△ABC和△A'B'C'中,∠B=∠B',BC=B'C',∠C=∠C',所以△ABC≌△A'B'C'.20.解:在△ABC中,因为∠B=40°,∠C=70°,所以∠BAC=180°-∠B-∠C=70°.因为AD为∠BAC的平分线,所以∠CAD=∠BAC=35°.因为AE⊥BC,所以∠AEC=90°.所以∠CAE=90°-∠C=20°.所以∠DAE=∠CAD-∠CAE=15°.21.解:因为AB=AC,所以AD-AB=AD-AC=CD.因为BD-BC<CD,所以BD-BC<AD-AB.22.解:如图所示.(答案不唯一)23.解:△AEM≌△ACN,△BMF≌△DNF,△ABN≌△ADM.(任写其中两对即可) 选择△AEM≌△ACN.因为△ABC≌△ADE,所以AC=AE,∠C=∠E,∠CAB=∠EAD.所以∠EAM=∠CAN.在△AEM和△ACN中,因为所以△AEM≌△ACN(ASA).选择△ABN≌△ADM,因为△ABC≌△ADE,所以AB=AD,∠B=∠D.因为∠BAN=∠DAM,所以△ABN≌△ADM(ASA).选择△BMF≌△DNF,因为△ABC≌△ADE,所以AB=AD,∠B=∠D.因为∠BAN=∠DAM,所以△ABN≌△ADM(ASA).所以AN=AM.所以BM=DN.因为∠B=∠D,∠BFM=∠DFN,所以△BMF≌△DNF(记分S).(任选一对进行说明即可)24.解:因为∠ACB=90°,所以∠ECF+∠BCD=90°.因为CD⊥AB,所以∠BCD+∠B=90°.所以∠ECF=∠B.在△ABC和△FCE中,∠B=∠ECF,BC=CE,∠ACB=∠FEC=90°,所以△ABC≌△FCE(ASA).所以AC=FE.因为AE=AC-CE,EC=BC=2 cm,EF=5 cm,所以AE=5-2=3(cm).25.解:(1)AE∥BF;QE=QF(2)QE=QF.理由:如图,延长EQ交BF于点D,由题意易得AE∥BF,所以∠AEQ=∠BDQ.在△AEQ和△BDQ中,∠AQE=∠BQD,∠AEQ=∠BDQ,AQ=BQ,所以△AEQ≌△BDQ.所以EQ=DQ.因为∠DFE=90°,所以QE=QF.。

最新北师大版七年级下数学 第四章 三角形 周周测4(4.3)

最新北师大版七年级下数学  第四章 三角形 周周测4(4.3)

第四章三角形周周测41. 如图,已知∠A=∠D,∠1=∠2,那么要得到△ABC≌△DEF,还应给出的条件可以是()A. ∠E=∠BB. ED=BCC. AB=EFD. AF=CD2. 下列条件中,能判定△ABC≌△DEF的是()A. AB=DE,BC=EF,∠A=∠EB. ∠A=∠E,A B=EF,∠B=∠DC. ∠A=∠D,∠B=∠E,∠C=∠FD. ∠A=∠D,∠B=∠E,AC=DF3.如图,AB∥CD,且AB=CD,则△ABE≌△CDE的根据是()[来源学科网ZXXK]A. 只能用ASAB. 只能用SSSC. 只能用AASD. 用ASA或AAS4.如图,∠E=∠F=90°,∠B=∠C,AE=AF,结论:①EM=FN;②CD=DN;③∠FAN=∠EAM;④△ACN≌△ABM.其中正确的有()A. 1个B. 2个C. 3个D. 4个5. 如图,(1)连结A D后,当AD=,AB=,BD=时,可用“SS S”推得△ABD≌△DCA.(2)连结BC后,当AB=,BC=,AC=时,可推得△ABC≌△DCB.[来源学§科§网]6. 如图,在△ABC中,已知AB=AC,D为BC的中点,则△ABD≌△A CD,根据是,AD与BC的位置关系是.7. 如图,在四边形ABCD中,E点在AD上,其中∠BAE=∠B CE=∠ACD=90°,且BC=C E.试说明:△ABC与△DEC全等.8.我们把两组邻边相等的四边形叫做“筝形”.如图,四边形ABCD是一个筝形,其中AB=CB,AD=CD.对角线AC,BD 相交于点O,OE ⊥AB,OF ⊥CB,垂足分别是E,F.试说明:O E=OF.9.如图,已知AD =BE ,BC =EF ,AC =DF.求证:(1)BC ∥EF ;(2)∠C =∠BOD.[来源学科网]10..如图,点B 、C 、D 、E 在同一直线上,已知AB=EC ,AD=FE ,BC=DF ,探索AB 与EC 的位置关系?并说明理由[来源:] F E C D B A第四章三角形周周测4参考答案与解析1.D2. D3. D4. C5. (1)DA DC CA (2) DC CB DB6. SSS AD⊥BC7. 解析:∵∠BAE=∠BCE=∠ACD=90°,∴∠DCE+∠ECA=∠ECA+∠ACB,∴∠DCE=∠ACB,且∠B+∠CEA=180°,又∠DEC+∠CEA=180°,∴∠B=∠DEC,在△ABC和△DEC中,∴△ABC≌△DEC(ASA).8.解:证明:∵在△ABD和△CBD中,AB=CB,AD=BD,BD=BD,∴△ABD≌△CBD(SSS),[来源学§科§网Z§X§X§K]∴∠ABD=∠CB D,∴BD平分∠ABC.[来源学科网]又∵OE⊥AB,OF⊥CB,∴OE=OF.9. (1)∵AD=BE,[来源:Z+xx+]∴AD+DB=BE+DB,即AB=DE,∵AB=DE,AC=DF,BC=EF,[来源:Z,xx,]∴△ABC≌△DEF,∴∠B=∠E,∴BC∥EF(2) ∵BC∥EF,∴∠DOB=∠F,∵∠C=∠F,∴∠DOB=∠C10. AB 与EC 的位置关系是:AB ∥EC. 理由:∵BC=DF ,∴BD=CF.在△ABD 和△FCE 中BD CE AD EFAB FC =⎧⎪=⎨⎪=⎩∴△ABD ≌△FCE (S.S.S.) ∴∠B=∠FCE,∴AB ∥EC.。

七年级数学下册第四章三角形周周测34.2新版北师大版

七年级数学下册第四章三角形周周测34.2新版北师大版

第四章三角形周周测31. 对于图形的全等,下列叙述不正确的是()A. 一个图形经过旋转后得到的图形,与原来的图形全等B. 一个图形经过中心对称后得到的图形,与原来的图形全等C. 一个图形放大后得到的图形,与原来的图形全等D. 一个图形经过轴对称后得到的图形,与原来的图形全等2. 观察如下图所示的各个图形,其中全等图形正确的是().A. ②≌④B. ⑤≌⑧C. ①≌⑥D.③≌⑦3. 如图,△ABC≌△A E D,∠C=400,∠E AC=300,∠B=300,则∠E AD=();A. 300B. 700C. 400D. 11004.公路BC所在的直线恰为AD的垂直平分线,则下列说法中:①小明从家到书店与小颖从家到书店一样远;②小明从家到书店与从家到学校一样远;③小颖从家到书店与从家到学校一样远;④小明从家到学校与小颖从家到学校一样远. 正确的是()A. ①③B. ②③C. ②④D. ③④5. 如图,AD是三角形ABC的对称轴,点E、F是AD上的两点,若BD=2,AD=3,则图中阴影部分的面积是_______.6.如图,ΔABC≌ΔD EF,∠A=25°,∠B=65°,BF=3㎝,求∠D FE的度数和E C的长.第四章三角形周周测3参考答案与解析1.C2.C3.D4. B解析:∵公路BC所在的直线恰为AD的垂直平分线,∴ΔABC≌ΔDBC,∴CA=CB,BA=BD,故可判断出②小明从家到书店与从家到学校一样远;③小颖从家到书店与从家到学校一样远;而无法判断出①小明从家到书店与小颖从家到书店一样远;④小明从家到学校与小颖从家到学校一样远,故选B.5.3解析:∵轴对称的两个图形全等,∴阴影部分的面积是整个三角形面积的一半,即阴影部分的面积等于ΔABD的面积,而ΔAB D的面积=0.5×2×3=3,故答案为:3.6.∠D FE=65°;E C=3cm.解析:根据已知条件,△ABC≌△DEF,可知∠E=∠B=65°,BF=BC,可证EC=BF=3cm,做题时要正确找出对应边,对应角.△ABC中∠A=25°,∠B=65°,∴∠BCA=180°-∠A-∠B=180°-25°-65°=90°,∵△ABC≌△DEF,∴∠BCA=∠DFE,BC=EF,∴EC=BF=3cm,∴∠DFE=90°,EC=3cm.。

北师大版七年级下数学第四章《三角形》测试题

北师大版七年级下数学第四章《三角形》测试题

初中数学试卷北师大版七年级下数学第四章《三角形》测试题班级:姓名:成绩一、细心选一选:(每题3分,共30分)本卷满分:共120分题号 1 2 3 4 5 6 7 8 9 10 答案1.下列长度的三条线段可以组成三角形的是()(A)3 4 2 (B)12 5 6 (C)1 5 9 (D)5 2 72. 一个三角形的三个内角中,至少有()(A)一个锐角(B)两个锐角(C)一个钝角(D)一个直角3. 具备下列条件的两个三角形中,不一定全等的是 ( )(A) 有两边一角对应相等 (B) 三边对应相等(C) 两角一边对应相等(D)有两边对应相等的两个直角三角形4.适合条件2∠A=2∠B=∠C的三角形是()(A)直角三角形(B)锐角三角形(C)钝角三角形(D)不能确定5、适合条件∠A-∠B=∠C的三角形是()(A)锐角三角形(B)直角三角形(C)钝角三角形(D)不能确定6.一个三角形的两边分别是4和9,而第三边的长为奇数,则第三边的长是()(A)3或5或7 (B)9或11或13(C)5或7或9 (D)7或9或117.能使两个直角三角形全等的条件是()(A ) 两直角边对应相等 (B ) 有两边相等 (C ) 两锐角对应相等 (D ) 斜边相等8.已知△ABC ≌△DEF ,∠A=70°,∠E=30°,则∠F 的度数为 ( )(A ) 80° (B ) 70° (C ) 30° (D ) 100°9、如图5,⊿ABC 中,∠ACB=900,把⊿ABC 沿AC 翻折180°,使点B 落在B ’的位置,则关于线段AC 的性质中,准确的说法是( )A 、是边BB ’上的中线 B 、是边BB ’上的高C 、是∠BAB ’的角平分线D 、以上三种性质都有 10、根据下列条件作三角形,不能唯一确定三角形的是( )A 、已知三个角B 、已知三条边C 、已知两角和夹边D 、已知两边和夹角二、仔细补一补:(每题3分共30分)11、在△ABC 中,若∠A=27°32’, ∠B=62°28’,则这个三角形为 三角形; 若∠A :∠B :∠C=1:3:5,这个三角形为 三角形。

北师大版七年级下册数学第四章三角形-测试题附答案

北师大版七年级下册数学第四章三角形-测试题附答案

北师大版七年级数学下册第四章三角形测试题评卷人得分一、单选题1.一个三角形的两边长分别为3cm和7cm,则此三角形的第三边的长可能是()A.3cm B.4cm C.7cm D.11cm2.已知三条线段的比是:①1:3:4;②1:2:3;③1:4:6;④3:3:6;⑤6:6:10;⑥3:4:5.其中可构成三角形的有()个A.1个B.2个C.3个D.4个3.已知三角形的三边长为连续整数,且周长为12cm,则它的最短边长为()A.2cm B.3cm C.4cm D.5cm4.如果一个三角形的三个外角之比为2:3:4,则与之对应的三个内角度数之比为() A.4:3:2B.3:2:4C.5:3:1D.3:1:55.如图所示,在△ABC中,∠B=40°,∠A=50°,将其折叠,使点A落在CB边上A′处,折痕为CD,则∠A′DB的度数为()A.40°B.30°C.20°D.10°6.如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20°B.30°C.35°D.40°7.如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画了一个与书上完全一样的三角形,那么亮亮画图的依据是()A.SSS B.SAS C.ASA D.AAS8.如图,小明把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是:()A.带①去B.带②去C.带③去D.①②③都带去9.如图(1),已知两个全等三角形的直角顶点及一条直角边重合.将△ACB绕点C按顺时∆''的位置,其中A C'交直线AD于点E,A B''分别交直线AD、AC于针方向旋转到A CB点F、G,则在图(2)中,全等三角形共有()A.5对B.4对C.3对D.2对10.如图,△ABE、△ADC和△ABC分别是关于AB,AC边所在直线的轴对称图形,若∠1:∠2:∠3=7:2:1,则∠α的度数为().A.126°B.110°C.108°D.90°评卷人得分二、填空题11.若三角形的两边长分别是2和7,则第三边长c的取值范围是_______;当周长为奇数时,第三边长为________;当周长是5的倍数时,第三边长为________.12.若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC为公共边的“共边三角形”有________对13.三角形的三边长分别为5,1+2x,8,则x的取值范围是.14.如图,△ABC≌△DEF,请根据图中提供的信息,写出x=.15.在△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E,在BC上,BE=BF,连结AE,EF和CF,此时,若∠CAE=30°,那么∠EFC=_______.16.如图,已知AC=DB,要使△ABC≌△DCB,则需要补充的条件为_____.17.如图,AC=BC,DC=EC,∠ACB=∠ECD=90°,且∠EBD=38°,则∠AEB=________.18.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=度.评卷人得分三、解答题19.在△ABC中,AB=2BC,AD、CE分别是BC、AB边上的高,试判断AD和CE的大小关系,并说明理由.20.如图,已知∠A=20°,∠B=27°,AC⊥DE,求∠1,∠D的度数.21.已知在△ABC中,∠A:∠B:∠C=2:3:4,CD是∠ACB平分线,求∠A和∠CDB的度数.22.如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:BD=CE.23.(1)如图,在△ABC中,∠B=40°,∠C=80°,AD⊥BC于D,且AE平分∠BAC,求∠EAD的度数.(2)上题中若∠B=40°,∠C=80°改为∠C>∠B,其他条件不变,请你求出∠EAD与∠B、∠C之间的数列关系?并说明理由.24.如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.求证:(1)EC=BF;(2)EC⊥BF.25.如图1,OP是∠MON的平分线,请你利用该图形画一对以OP所在直线为对称轴的全等三角形,并将添加的全等条件标注在图上.请你参考这个作全等三角形的方法,解答下列问题:(1)如图2,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC和∠BCA 的平分线,AD、CE相交于点F,求∠EFA的度数;(2)在(1)的条件下,请判断FE与FD之间的数量关系,并说明理由;(3)如图3,在△ABC中,如果∠ACB不是直角,而(1)中的其他条件不变,试问在(2)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由.参考答案1.C【解析】试题解析:设第三边长为xcm,根据三角形的三边关系可得:7-3<x<7+3,解得:4<x<10,故答案为C.考点:三角形三边关系.2.B【解析】【分析】根据三角形中任意两条边之和大于第三边,任意两条边之差小于第三边即可求解.【详解】解:①设三条线段分别为x,3x,4x,则有x+3x=4x,不符合三角形任意两边大于第三边,故不可构成三角形;②设三条线段分别为x,2x,3x,则有x+2x=3x,不符合三角形任意两边大于第三边,故不可构成三角形;③设三条线段分别为x,4x,6x,则有x+4x<6x,不符合三角形任意两边大于第三边,故不可构成三角形;④设三条线段分别为3x ,3x ,6x ,则有3x +3x =6x ,不符合三角形任意两边大于第三边,故不可构成三角形;能构成三角形的是⑤⑥.故本题答案选B.【点睛】本题利用了三角形三边的关系求解,掌握该知识点是解答本题的关键.3.B【解析】【分析】设大小处于中间的边长是xcm ,则最大的边是(x+1)cm ,最小的边长是(x-1)cm ,根据三角形的周长即可求得x ,进而求解.【详解】设大小处于中间的边长是xcm ,则最大的边是(x +1)cm ,最小的边长是(x −1)cm .则(x +1)+x +(x −1)=12,解得:x =4,则最短的边长是:4−1=3cm .故选B.【点睛】本题考查了三角形的周长,适当的设三边长是关键.4.C【解析】【分析】根据三角形外角和为0360,三角形内角和为0180,即可求解.【详解】解:设三个外角分别为2x ,3x ,4x ,三角形外角和为360°,所以2x +3x +4x =360°,所以x =40°,所以三个外角是80°,120°,160°,所以对应内角比为5:3:1,故选C.【点睛】本题考查了三角形外角和和内角和的相关知识,掌握该知识点是解答本题的关键.5.D【解析】∵Rt△ABC中,∠ACB=90°,∠A=50°,∴∠B=90°-50°=40°,∵将其折叠,使点A落在边CB上A′处,折痕为CD,则∠CA'D=∠A,∵∠CA'D是△A'BD的外角,∴∠A′DB=∠CA'D-∠B=50°-40°=10°.故选D.6.B【解析】【分析】先根据全等三角形的性质得∠ACB=∠A′CB′,两边减去∠A′CB即可得到∠ACA′=∠BCB′=30°.【详解】解:∵△ACB≌△A′CB′,∴∠ACB=∠A′CB′,∴∠ACB-∠A′CB=∠A′CB′-∠A′CB,即∠ACA′=∠B′CB,又∵∠B′CB=30°∴∠ACA′=30°.故选:B.【点睛】本题主要考查了全等三角形的性质.7.C【解析】【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出.【详解】根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选:C.【点睛】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理并灵活运用是解题的关键.8.C【解析】【分析】本题就是已知三角形破损部分的边角,得到原来三角形的边角,根据三角形全等的判定方法,即可求解.【详解】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.应带③去.故选:C.【点睛】此题主要考查了全等三角形的判定方法的开放性的题,要求学生将所学的知识运用于实际生活中,要认真观察图形,根据已知选择方法.9.B【解析】试题分析:根据旋转的性质和全等三角形的判定,有∆'≌△ACE,A EF∆'≌△FDC,A CA∆''≌△ACD,GB CA CB∆'≌△AGF.共4对.故选B.10.C【解析】【分析】根据题意可设∠1=7x,∠2=2x,∠3=x,即可得到∠1,∠2,∠3,再利用三角形外角的性质得到∠EAC=108°,最后根据三角形的内角和定理计算即可.【详解】∵∠1:∠2:∠3=7:2:1,∴设∠1=7x,∠2=2x,∠3=x,由∠1+∠2+∠3=180°得:7x+2x+x=180°,解得x=18,故∠1=7×18=126°,∠2=2×18=36°,∠3=1×18=18°,∵△ABE和△ADC是△ABC分别是关于AB,AC边所在直线的轴对称图形,∴∠DCA=∠E=∠3=18°,∠2=∠EBA=∠D=36°,∠4=∠EBA+∠E=36°+18°=54°,∠5=∠2+∠3=18°+36°=54°,故∠EAC=∠4+∠5=54°+54°=108°在△EGF与△CAF中,∠E=∠DCA,∠DFE=∠CFA,∴∠α=∠EAC=108°.故选C.【点睛】此题考查轴对称的性质,三角形内角和定理和三角形外角的性质,解题关键在于掌握内角和定理.11.5<c<96或86【解析】【分析】(1).根据三角形的三边关系即可求出c的取值范围.(2).根据“偶数和偶数之和为偶数,偶数与奇数之和为奇数,奇数和奇数之和为偶数”即可解答.(3).用含有c的式子表示出周长为5的倍数,结合第三边c的取值范围,进而求出c的值.【详解】解:根据三角形的三边关系,可得7-2<c<7+2,即5<c<9,由于2+7=9是奇数,故当c为偶数时周长为奇数,即c的取值为6,8,当周长是5的倍数是,则有2+7+c=5n,且第三边取值范围为5<c<9,故周长的取值范围为14~18,故n=3,解得c=6.【点睛】本题主要考查了三角形的三边关系,偶数和偶数之和为偶数,偶数与奇数之和为奇数,奇数和奇数之和为偶数,掌握这两个知识点是解答本题的关键.12.3【解析】图中以BC为公共边的”共边三角形”有△ABC,△DBC,△EBC,共3对.故选B.13.1<x<6【解析】试题分析:根据三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边.解:由题意,有8﹣5<1+2x<8+5,解得:1<x<6.考点:三角形三边关系.14.20【解析】试题分析:如图,∠A=180°﹣50°﹣60°=70°,∵△ABC≌△DEF,∴EF=BC=20,即x=20。

北师大版七年级下册数学第四章三角形测试题

北师大版七年级下册数学第四章三角形测试题
6.如图5—21所示,在ΔABC中,AB=AC,CD平分∠ACB交AB于点D,AE∥DC交BC的延长线于点E,已知∠E=36°,则∠B=度.
7.任意画一个锐角三角形、一个直角三角形、一个钝角三角形,然后画出经过每个三角形中最大角的顶点的角平分线、中线和高.观察这三个图形,说出所画的角平分线、中线和高在三角形的内部还是外部.
九年级(上)期末数学试卷
一.选择题(共10小题)
1.在比例尺为1:n的某市地图上,A,B两地相距5cm,则A,B之间的实际距离为()
A. n cmB. cmC.5ncmD.25 cm
2.如图,是由四个完全相同的小正方形组成的立体图形,它的俯视图是()
A. B. C. D.
3.有三张正面分别写有数字1,2,﹣3的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,记录卡片上的数字,然后放回卡片,再将这三张卡片背面朝上洗匀后随机抽取一张,记录卡片上的数字,则记录的两个数字乘积是正数的概率是( )
(1)判断线段MN与线段BM的位置关系与数量关系,说明理由;
(2)如果CD=5,求NF的长.
23.某商店购进一批成本为每件30元的商品,经调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足一次函数关系,其图象如图所示.
(1)求该商品每天的销售量y与销售单价x之间的函数关系式;
(2)若商店按单价不低于成本价,且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润w(元)最大?最大利润是多少?
8.如图5—22所示,DE是过ΔABC的顶点A且 与BC平行的直线,请利用这个图形说明∠BAC+∠B+∠C=180°.
9.如图5—23所示,已知∠XOY=90°,点A,B分别在射线OX,OY上移动.BE是∠ABY的平分线,BE的反向延长线与∠OAB的平分线相交于点C,则∠ACB的大小是否变化?如果保持不变,请说明原因;如果随点A,B的移动而发生变化,求出变化范围.

最新北师大版七年级数学下册第4章三角形测试卷含答案

最新北师大版七年级数学下册第4章三角形测试卷含答案

第四章测试卷一、选择题(每题3分,共30分)1.若三角形有两个内角的和是85°,那么这个三角形是( ) A.钝角三角形B.直角三角形C.锐角三角形D.不能确定2.如图,BC⊥AE于点C,CD∥AB,∠DCB=40°,则∠A的度数是( ) A.70° B.60°C.50° D.40°3.现有3 cm,4 cm,7 cm,9 cm长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是( )A.1 B.2C.3 D.44.下列说法正确的是( )A.面积相等的两个图形是全等图形B.全等三角形的周长相等C.所有正方形都是全等图形D.全等三角形的边相等5.如图,AD是△ABC的角平分线,过点D向AB,AC两边作垂线,垂足分别为E,F,那么下列结论中不一定正确的是( )A.BD=CD B.DE=DFC.AE=AF D.∠ADE=∠ADF6.如图,AD∥BC,AB∥CD,AC,BD交于O点,过O点的直线EF交AD于E点,交BC于F点,且BF=DE,则图中的全等三角形共有( )A.6对B.5对C.3对D.2对7.将一副三角尺按下列方式进行摆放,∠1,∠2不一定互补的是( )8.如图是工人师傅用同一种材料制成的金属框架,已知∠B=∠E,AB=DE,BF =EC,其中△ABC的周长为24 cm,CF=3 cm,则制成整个金属框架所需这种材料的总长度为( )A.45 cm B.48 cmC.51 cm D.54 cm9.根据下列已知条件,能画出唯一一个△ABC的是( )A.AB=3,BC=4,AC=8 B.AB=4,BC=3,∠A=30°C.∠A=60°,∠B=45°,AB=4 D.∠C=90°,AB=610.如图,在△ABC中,AC⊥CB,CD平分∠ACB,点E在AC上,且CE=CB,则下列结论:①DC平分∠BDE;②BD=DE;③∠B=∠CED;④∠A+∠CED=90°,其中正确的有( )A.1个B.2个C.3个D.4个二、填空题(每题3分,共30分)11.如图,照相机的底部用三脚架支撑着,请你说说这样做的依据是_________ _______.12.如图,点B,C,E,F在同一直线上,AB∥DC,DE∥GF,∠B=∠F=72°,则∠D =________.13.已知三角形的两边长分别为2 和7,第三边长为偶数,则三角形的周长为__________.14.如图,点C ,F 在线段BE 上,BF =EC ,∠1=∠2.请你添加一个条件,使△ABC ≌△DEF ,这个条件可以是____________(不再添加辅助线和字母). 15.如图,在△ABC 中,BC =8 cm ,AB >BC ,BD 是AC 边上的中线,△ABD 与△BDC 的周长的差是2 cm ,则AB =__________.16.设a ,b ,c 是△ABC 的三边长,化简|a +b -c |+|b -c -a |+|c -a -b |=__________.17.如图,D ,E ,F 分别为AB ,AC ,BC 上的点,且DE ∥BC ,△ABC 沿线段DE 折叠,使点A 落在点F 处.若∠B =50°,则∠BDF =________.18.如图,已知边长为1的正方形ABCD ,AC ,BD 交于点O ,过点O 任作一条直线分别交AD ,BC 于点E ,F ,则阴影部分的面积是________.19.如图,AD ,AE 分别是△ABC 的角平分线、高线,且∠B =50°,∠C =70°,则∠EAD =________.20.如图,已知四边形ABCD 中,AC 平分∠BAD ,CE ⊥AB 于点E ,且AE =12(AB +AD ),若∠D =115°,则∠B =________.三、解答题(21~24题每题9分,其余每题12分,共60分)21.如图,点B ,F ,C ,E 在一条直线上,FB =CE ,AB ∥ED ,AC ∥F D.试说明:AC =DF .22.如图,在△ABC中,AD是角平分线,∠B=54°,∠C=76°.(1)求∠ADB和∠ADC的度数;(2)若DE⊥AC于E,求∠EDC的度数.23.如图,在正方形ABCD中,点E,F分别在边AB,BC上,AE=BF,AF和DE 相交于点G.(1)观察图形,写出图中所有与∠AED相等的角;(2)选择图中与∠AED相等的任意一个角,并加以说明.24.如图,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,D为AB 边上一点.试说明:BD=AE.25.如图,小明和小月两家位于A,B两处隔河相望,要测得两家之间的距离,小明设计方案如下:①从点A出发沿河岸画一条射线AM;②在射线AM上截取AF=FE;③过点E作EC∥AB,使B,F,C在一条直线上;④CE的长就是A,B间的距离.(1)请你说明小明设计的原理.(2)如果不借助测量仪,小明的设计中哪一步难以实现?(3)你能设计出更好的方案吗?26.如图①,在Rt△ABC中,AB=AC,∠BAC=90°,过点A的直线l绕点A旋转,BD⊥l于D,CE⊥l于E.(1)试说明:DE=BD+CE.(2)当直线l绕点A旋转到如图②所示的位置时,(1)中结论是否成立?若成立,请说明;若不成立,请探究DE,BD,CE又有怎样的数量关系,并写出探究过程.答案一、1.A 2.C 3.B 4.B 5.A 6.A7.D 8.A 9.C 10.D 二、11.三角形的稳定性12.36° 点拨:因为AB ∥DC ,DE ∥GF ,∠B =∠F =72°,所以∠DCE =∠B =72°,∠DEC =∠F =72°.在△CDE 中,∠D =180°-∠DCE -∠DEC =180°-72°-72°=36°. 13.15或17 14.CA =FD (答案不唯一)15.10 cm 点拨:由题意知(AB +BD +AD )-(BC +BD +CD )=2 cm ,AD =CD ,则AB -BC =2 cm.所以AB =BC +2=8+2=10(cm). 16.3a +b -c 17.80° 18.1419.10° 点拨:由AD 平分∠BAC ,可得∠DAC =12∠BAC =12×(180°-50°-70°)=30°.由AE ⊥BC ,可得∠EAC =90°-∠C =20°,所以∠EAD =30°-20°=10°.20.65° 点拨:过C 作CF ⊥AD ,交AD 的延长线于F .因为AC 平分∠BAD , 所以∠CAF =∠CAE . 因为CF ⊥AF ,CE ⊥AB , 所以∠AFC =∠AEC =90°. 在△CAF 和△CAE 中,⎩⎨⎧∠CAF =∠CAE ,∠AFC =∠AEC ,AC =AC ,所以△CAF ≌△CAE (AAS ). 所以FC =EC ,AF =AE . 因为AE =12(AB +AD ),所以AF =12(AE +EB +AD ),即AF =BE +AD . 所以DF =BE . 在△FDC 和△EBC 中,⎩⎨⎧CF =CE ,∠CFD =∠CEB ,DF =BE ,所以△FDC ≌△EBC (SAS ). 所以∠FDC =∠EBC . 又因为∠ADC =115°,所以∠FDC =180°-115°=65°. 所以∠B =65°.三、 21.解:因为AB ∥ED ,AC ∥FD ,所以∠B =∠E ,∠ACB =∠DFE . 因为FB =CE ,所以BF +FC =CE +FC , 即BC =EF .所以△ABC ≌ △DEF (ASA ). 所以AC =DF .22.解:(1)因为∠B =54°,∠C =76°,所以∠BAC =180°-54°-76°=50°. 因为AD 平分∠BAC , 所以∠BAD =∠CAD =25°.所以∠ADB =180°-54°-25°=101°,∠ADC =180°-101°=79°. (2)因为DE ⊥AC , 所以∠DEC =90°.所以∠EDC =180°-90°-76°=14°.23.解:(1)由题可知∠DAG ,∠AFB ,∠CDE 与∠AED 相等.(2)(答案不唯一)选择∠DAG =∠AED .说明如下:因为四边形ABCD 是正方形, 所以∠DAB =∠B =90°,AD =AB . 在△DAE 和△ABF 中,⎩⎨⎧AD =BA ,∠DAE =∠B =90°,AE =BF ,所以△DAE ≌△ABF (SAS ). 所以∠ADE =∠BAF .因为∠DAG +∠BAF =90°,∠GDA +∠AED =90°, 所以∠DAG =∠AED .24.解:因为△ABC 和△ECD 都是等腰直角三角形,且∠ACB =∠DCE =90°,所以AC =BC ,CD =CE , ∠ACE +∠ACD =∠BCD +∠ACD . 所以∠ACE =∠BCD . 在△ACE 和△BCD 中,⎩⎨⎧AC =BC ,∠ACE =∠BCD ,CE =CD ,所以△ACE ≌△BCD (SAS ). 所以BD =AE .25.解:(1)全等三角形的对应边相等.(2)③难以实现.(3)略(答案不唯一,只要设计合理即可). 26.解:(1)因为BD ⊥l ,CE ⊥l ,所以∠ADB =∠AEC =90°. 所以∠DBA +∠BAD =90°. 又因为∠BAC =90°, 所以∠BAD +∠CAE =90°. 所以∠DBA =∠CAE .因为AB =AC ,∠ADB =∠CEA =90°,所以△ABD≌△CAE(AAS).所以AD=CE,BD=AE.则AD+AE=BD+CE,即DE=BD+CE.(2)(1)中结论不成立.DE=BD-CE.同(1)说明△ABD≌△CAE,所以BD=AE,AD=CE.又因为AE-AD=DE,所以DE=BD-CE.。

最新北师大版七年级数学下册《第四章三角形》单元测试题(含答案)

最新北师大版七年级数学下册《第四章三角形》单元测试题(含答案)

第四章自我综合评价本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷36分,第Ⅱ卷64分,共100分,考试时间90分钟.第Ⅰ卷(选择题共36分)一、选择题(每小题3分,共36分)1.下列长度的三条线段能组成三角形的是( )A.1,2,3.5 B.4,5,9C.20,15,8 D.5,15,82.如图4-Z-1,在△ABC中,AD是高,AE是∠BAC的平分线,AF是BC 边上的中线,则下列线段中,最短的是( )图4-Z-1A.AB B.AE C.AD D.AF3.一个缺角的三角形ABC残片如图4-Z-2所示,量得∠A=40°,∠B=65°,则这个三角形残缺前的∠C的度数为( )A.55°B.65°C.75°D.85°图4-Z-24.如图4-Z-3,两个三角形为全等三角形,则∠α的度数是( )图4-Z-3A.72°B.60°C.58°D.50°5.在△ABC中,∠A=∠B+∠C,∠B=2∠C-6°,则∠C的度数为( ) A.90°B.58°C.54°D.32°6.如图4-Z-4所示,已知正方形网格中每个小方格的边长均为1,A,B 两点在小方格的顶点上,点C也在小方格的顶点上,且以A,B,C为顶点的三角形的面积为1个平方单位,则点C的个数为( )图4-Z-4A.3 B.4 C.5 D.67.如图4-Z-5,在△ABC和△DEC中,AB=DE.若添加条件后使得△ABC≌△DEC,则在下列条件中,不能添加的是( )A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.∠B=∠E,∠A=∠D D.BC=EC,∠A=∠D图4-Z-58.如图4-Z-6所示,CD⊥AB,BE⊥AC,垂足分别为D,E,CD,BE相交于点O,BE=CD.则图中全等的三角形共有( )图4-Z-6A.0对B.1对C.2对D.3对9.根据下列已知条件,能画出唯一的△ABC的是( )A.AB=3,BC=4,CA=8 B.AB=4,BC=3,∠A=30°C.∠A=35°,∠B=65°,AB=7 D.∠C=90°,AB=810.如图4-Z-7,点A,D,C,E在同一条直线上,AB∥EF,AB=EF,∠B =∠F,AE=10,AC=7,则CD的长为( )A.5.5 B.4 C.4.5 D.311.如图4-Z-8,在等边三角形ABC中,M,N分别在BC,AC上移动,且BM=CN,则∠BAM+∠ABN的度数是( )图4-Z-8A.60°B.55°C.45°D.不能确定12.如图4-Z-9,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF,CE,且∠FBD=35°,∠BDF=75°,下列说法:①△BDF ≌△CDE,②△ABD和△ACD的面积相等,③BF∥CE,④∠DEC=70°,其中正确的有( )图4-Z-9A.1个B.2个C.3个D.4个请将选择题答案填入下表:二、填空题(每小题3分,共12分)13.如图4-Z-10,一架梯子斜靠在墙上,梯子与地面的夹角∠ABC=60°,则梯子与墙的夹角∠BAC=________.图4-Z-1014.空调安装在墙上时,一般都会用如图4-Z-11所示的方法固定在墙上,这种方法应用的数学知识是________________.图4-Z-1115.如图4-Z-12所示,AD为△ABC的中线,DE⊥AB于点E,DF⊥AC于点F,AB=6,AC=8,DE=3,则DF=________.图4-Z-1216.如图4-Z-13,∠ACB=90°,AC=BC,AD⊥CE于点D,BE⊥CD交CD 的延长线于点E,AD=2.4 cm,DE=1.7 cm,则BE的长为________.图4-Z-13三、解答题(共52分)17.(8分)如图4-Z-14,在△ABC中,∠ACB=90°,CD是AB边上的高,且AB=13 cm,BC=12 cm,AC=5 cm,求:(1)△ABC的面积;(2)CD的长.图4-Z-1418.(8分)完成下面的说理过程.已知:如图4-Z-15所示,OA=OB,AC=BC.图4-Z-15试说明:∠AOC=∠BOC.解:在△AOC和△BOC中,因为OA=______,AC=______,OC=______,所以________≌________(SSS),所以∠AOC=∠BOC(__________________).19.(8分)如图4-Z-16所示,已知AB=AC,EB=EC,试说明BD=CD的理由.图4-Z-1620.(8分)如图4-Z-17,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.试说明:△AEC≌△BED.图4-Z-1721.(10分)七年级(2)班的篮球啦啦队为了在明天的比赛中给同学们加油助威,提前每人制作了一面同一规格的三角形彩旗.小贝放学回家后,发现自己的彩旗破损了一角(如图4-Z-18①),他想用彩纸重新制作一面彩旗.(1)请你帮助小贝,用直尺与圆规在彩纸上(如图②)作出一个与破损前完全一样的三角形(不写作法,保留作图痕迹);(2)你作图的理由是判定三角形全等条件中的“________”.图4-Z-1822.(10分)如图4-Z-19所示,已知CE⊥AB于点E,BD⊥AC于点D,BD 与CE交于点O,且AO平分∠BAC.(1)图中有多少对全等三角形?请你一一列举出来(不要求说明理由).(2)小明说:欲说明BE=CD,可先说明△AOE≌△AOD得到AE=AD,再说明△ADB≌△AEC得到AB=AC,然后利用等式的性质即可得到BE=CD,请问他的说法正确吗?如果不正确,请说明理由;如果正确,请按他的思路写出推导过程.(3)要得到BE=CD,你还有其他的思路吗?请仿照小明的说法具体说一说你的想法.图4-Z-19详解详析1.[解析] C 利用三角形的三边关系判断.2.C3.C4.A5.D6.D7.[解析] D A项,添加BC=EC,∠B=∠E可用SAS判定两个三角形全等,故A选项正确;B项,添加BC=EC,AC=DC可用SSS判定两个三角形全等,故B 选项正确;C项,添加∠B=∠E,∠A=∠D可用ASA判定两个三角形全等,故C 选项正确;D项,添加BC=EC,∠A=∠D后是SSA,无法证明三角形全等,故D 选项错误.故选D.8.C9.C10.[解析] B 因为AB∥EF,所以∠A=∠E.在△ABC和△EFD中,∠A=∠E,AB=EF,∠B=∠F,所以△ABC≌△EFD(ASA),所以AC=DE=7,所以AD=AE -DE=10-7=3,所以CD=AC-AD=7-3=4.11.[解析] A 因为△ABC为等边三角形,所以∠ABC=∠ACB=60°,AB=BC.在△ABM和△BCN中,AB=BC,∠ABM=∠BCN,BM=CN,所以△ABM≌△BCN(SAS),所以∠BAM=∠NBC.因为∠NBC+∠ABN=∠ABC=60°,所以∠BAM+∠ABN=60°.12.D13.30°14.三角形具有稳定性15.9 416.0.7 cm17.解:(1)△ABC的面积=12BC·AC=30(cm2).(2)因为△ABC的面积=12AB·CD=30 cm2,所以CD=30÷(12AB)=30÷132=6013(cm).18.OB BC OC△AOC△BOC全等三角形的对应角相等19.[解析] 已知条件中有两组对边相等,可以考虑利用“边边边”来说明两个三角形全等,从而缩短已知和结论之间的距离.解:由题意知AB=AC,EB=EC,又AE=AE,所以△ABE≌△ACE(SSS),所以∠AEB=∠AEC,所以∠DEB=∠DEC(等角的补角相等).在△DBE和△DCE中,因为EB=EC(已知),∠DEB=∠DEC(已证),ED=ED(公共边),所以△DBE≌△DCE(SAS),所以BD=CD.20.解:设AE和BD相交于点O,则∠AOD=∠BOE.因为在△AOD和△BOE中,∠A=∠B,所以∠BEO=∠2.又因为∠1=∠2,所以∠1=∠BEO,所以∠AEC=∠BED.在△AEC和△BED中,因为∠A=∠B,AE=BE,∠AEC=∠BED,所以△AEC≌△BED(ASA).21.解:(1)如图中的△ABC.(2)ASA22.解:(1)共4对,分别是△AOE≌△AOD,△BOE≌△COD,△AOB≌△AOC,△ABD≌△ACE.(2)正确.因为CE⊥AB于点E,BD⊥AC于点D,所以∠AEO=∠ADO.因为AO平分∠BAC,所以∠OAE=∠OAD.在△AOE和△AOD中,因为∠AEO=∠ADO,∠OAE=∠OAD,AO=AO,所以△AOE≌△AOD,所以AE=AD.在△ADB和△AEC中,因为∠BAD=∠CAE,AD=AE,∠ADB=∠AEC,所以△ADB≌△AEC,所以AB=AC,所以AB-AE=AC-AD,即BE=CD.(3)答案不唯一,如可先说明△AOE≌△AOD,得到OE=OD,再说明△BOE≌△COD,得到BE=CD.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章三角形周周测4
1. 如图,已知∠A=∠D,∠1=∠2,那么要得到△ABC≌△DEF,还应给出的条件可以是( )
A. ∠E=∠B
B. ED=BC
C. AB=EF
D. AF=CD
2. 下列条件中,能判定△ABC≌△DEF的是( )
A. AB=DE,BC=EF,∠A=∠E
B. ∠A=∠E,A B=EF,∠B=∠D
C. ∠A=∠D,∠B=∠E,∠C=∠F
D. ∠A=∠D,∠B=∠E,AC=DF
3.如图,AB∥CD,且AB=CD,则△ABE≌△CDE的根据是( )
A. 只能用ASA
B. 只能用SSS
C. 只能用AAS
D. 用ASA或AAS
4.如图,∠E=∠F=90°,∠B=∠C,AE=AF,结论:①EM=FN;②CD=DN;③∠FAN=∠EAM;④△ACN≌△ABM.其中正确的有( )
A. 1个
B. 2个
C. 3个
D. 4个
5. 如图,(1)连结A D后,当AD=,AB=,BD=时,可用“SS S”推得△ABD≌△DCA.
(2)连结BC后,当AB=,BC=,AC=时,可推得△ABC≌△DCB.
6. 如图,在△ABC中,已知AB=AC,D为BC的中点,则△ABD≌△A CD,根据是,AD与BC的位置关系是 .
7. 如图,在四边形ABCD中,E点在AD上,其中∠BAE=∠B CE=∠ACD=90°,且BC=C E.试说明:△ABC与△DEC全等.
8.我们把两组邻边相等的四边形叫做“筝形”.如图,四边形ABCD 是一个筝形,其中AB=CB,AD=CD.对角线AC,BD 相交于点O,OE ⊥AB,OF ⊥CB,垂足分别是E,F.试说明:O E
=OF.
9.如图,已知AD =BE ,BC =EF ,AC =DF. 求证:(1)BC∥EF;(2)∠C=∠BOD.
10..如图,点B 、C 、D 、E 在同一直线上,已知AB=EC ,AD=FE ,BC=DF ,探索AB 与EC 的位置关系?并说明理由
F
E
C D
B
A。

相关文档
最新文档