七年级数学上册(人教版)配套教学教案 4.1.1 第2课时 从不同的方向看立体图形和立体图形的展开图
人教版数学七年级上册.从不同方向看课件
从上面看
从左面看
从正面看
从正面看
从左面看
从上面看
课堂小结
1.从正面看
2.从左面看
3.从上面看
想一想:通过本节课的学习,你有哪些收获?
课堂作业必做题:1、画出下图从正面看、从左面看、从上面看的平面示意图。 2、 课本p121第4题。
选做题: 完成课本p117的探究
正面
左面
上面
左
右
上
下
前
后
长方体
从正面看
从左边看
从上面看
一、说一说:
当堂训练
从正面看
从左面看
从上面看
2.从正面、左面、上面看下面这些图形各能得到什么平面图形?
从正面看
从左面看
从上面看
从正面看
从左面看
从上面看
二、画一画
从正面看、从左面看、从上面看,你能得出什么样的平面图形,画出它们的平面示意图
题西林壁
远近高低各不同。
不识庐山真面目,
只缘身在此山中。
苏轼
“横看成岭侧成峰”一句中,蕴含了怎样的数学道理?
4.1.1.2 从不同的方向看
学习目标:1、能辨认简单立体图形从正面看、从左面看、从上面看所得到的平面图形;2、能画出正方体及其简单组合体从正面看、从左面看、从上面看的平面示意图。
谢谢各位!
ቤተ መጻሕፍቲ ባይዱ 自学指点
看课本p117第一段和图4.1-6内容. 想一想: 1.从不同方向看立体图形,往往会得到不同形状的平面图形,因此,我们通常选择 从 、 、 方向看立体图形,并得到相应的平面图形; 2. 从左面看指从 往 看,从 上面看指从 往 看,从正面看指从 往 看,然后得到相应的平面图形。 (时间:3分钟)
人教版七年级数学上册第4章4.1几何图形4.1.1立体图形与平面图形第2课时折叠展开与从不同的方向观察几何体备
4.1 几何图形4.1.1立体图形与平面图形第3课时立体图形的展开图置疑导入归纳导入复习导入类比导入图4-1-73生活中,我们经常见到正方体形状的物体.将他们完全展开后形状是怎样的?下面我们先来将你面前的正方体盒子沿棱剪开,看看能得到一个什么样的平面图形?[说明与建议] 说明:利用常见的正方体是怎样制作的这一问题作为切入点,激发学生的兴趣,并通过动手操作让学生深刻认识正方体的面、棱之间的关系,调动学生的积极性.建议:让学生思考并动手操作,将正方体沿棱展开,再给出本节课的课题并板书:立体图形的展开图.活动内容:回答下列问题.问题1:同学们,在我们日常生活中,随处都可以见到五花八门的包装盒,你能说出几种你所见到过的包装盒的名字吗?你能说出下面几种包装盒的几何图形的名字吗?图4-1-74问题2:像上面的这几种包装盒,你知道将其拆开后会展开成什么样的平面图形吗?问题3:如果给你一些展开的包装盒的纸板,你能不能把它们恢复成完整的包装盒呢?[说明与建议] 说明:利用学生感兴趣的生活中常见的实物,贴近学生的生活,培养学生的学习兴趣,激发学生的求知欲,让学生在不知不觉中感受学习数学的乐趣,同时也让学生进一步体会了展开与折叠的两个互逆的过程,这也为新课的学习做好铺垫.建议:问题1是从学生生活中常见到的实物——几个不同形状的包装盒出发提问,首先由学生回答完成;问题2、3学生思考交流后由代表尝试回答,根据学生回答的情况教师适当引导,从而引出新课.教材母题——教材第119页练习第3题下列图形中可以作为一个正方体的展开图的是( )图4-1-75【模型建立】正方体的表面展开后有11种图形:对的面.正方体相对的面展开前与展开后都不可能相邻,更不可能有公共边和公共顶点.注意:若展开图中出现以下图案,就不能围成正方体.图4-1-76【变式变形】1.[长春中考] 下列图形中,是正方体表面展开图的是(C)图4-1-77图4-1-782.[汕尾中考] 如图4-1-78所示是一个正方体的展开图,把展开图折叠成正方体后,“你”字一面相对面上的字是(D)A.我B.中C.国D.梦3.[鸡西中考] 小亮为今年参加中考的好友小杰制作了一个正方体礼品盒(如图4-1-79),六个面上各有一个字,连起来就是“预祝中考成功”,其中“预”的对面是“中”,“成”的对面是“功”,则它的表面展开图可能是(C)图4-1-79 图4-1-804.[德州中考] 如图4-1-81所示给定的是纸盒的外表面,图4-1-82能由它折叠而成的是(B)图4-1-81 图4-1-824-1-27[命题角度1] 圆柱、圆锥、棱柱、棱锥的表面展开图圆柱、圆锥、棱柱、棱锥的表面展开图如下:注意:同一个立体图形按照不同的方式展开得到的平面图形是不一样的.例下面四个图形是多面体的展开图,其中是四棱锥的展开图的是(C)图4-1-83[命题角度2] 正方体的表面展开图正方体的表面展开后有11种图形:注意:若展开图中出现以下图案,就不能围成正方体:图4-1-84例[温州中考] 下列个图中,经过折叠能围成一个正方体的是(A)图4-1-85[命题角度3] 正方体的表面展开图中各正方形的对应关系正方体相对的面在正方体的表面展开图中其中间应当间隔1个正方形,反过来要在正方体中成为相对的面,这两个正方形无论怎样折叠都不会有相邻的边和顶点.图4-1-86例[贵阳中考] 一个正方体的表面展开图如图4-1-86所示,六个面上各有一字,连起来的意思是“预祝中考成功”,把它折成正方体后,与写有“成”字的面相对的面上的字是(B)A.中B.功C.考D.祝P118练习1.如图,右面三幅图分别是从哪个方向看这个棱柱得到的?[答案] (1)从上面看;(2)从正面看;(3)从左面看.2.如图,把相应的立体图形与它的展开图用线连起来.[答案] 如图所示:3.下列图形中可以作为一个正方体的展开图的是( )[答案] C[当堂检测]1. 【2011•龙岩】如图可以折叠成的几何体是()A.三棱柱 B.四棱柱C.圆柱 D.圆锥2. 如图,将图中的阴影部分剪下来,围成一个几何体的侧面,使AB,DC重合,则所围成的几何体图形是()A B C D3.下列四个图中,是三棱锥的表面展开图的是()A B C D4. 【2011•呼和浩特】将如图所示表面带有图案的正方体沿某些棱展开后,得到的图形是( )A B C D5. 小亮为今年参加中考的好友小杰制作了一个正方体礼品盒(如图),六个面上各有一字,连起来就是“预祝中考成功”,其中“预”的对面是“中”,“成”的对面是“功”,则它的平面展开图可能是()AA B C D参考答案:1. A2. C3. B4. C5. C正方体的平面展开图正方体是我们最常见的一种简单的立体图形,你研究过它的平面展开图?一、图形分类正方体的平面展开图按展开图中正方形所在的行数及正方形的个数,归纳起来有四情形.1. 1-4-1型:展开图有3行,中间一行有4个正方形,其余两行均1个正方形,如图1中所示.图12. 2-3-1型:展开图有3行,中间一行有3个正方形,第1行有2个正方形,第3行有1个正方形,如图2中所示.图23. 2-2-2型:展开图有3行,每一行均有2个正方形,如图3所示.图3 图44. 3-3型:展开图有2行,每一行均有3个正方形,如图4所示.二、规律探究1.排在同一条直线上的小正方形,与同一个正方形相连的两个正方形折叠后,位置关系怎样?2.正方体的平面展开图中最多只能出现几个正方形有一个公共点的情形,最多只能出现几个正方形与一个正方形相邻的情形?3.当上下、左右四个面展开成一条直线时,前后两个面不可能分布在其同侧,对吗?4.原来处于相对位置上的两个面,展开后的正方形有公共顶点和公共边吗?反之,展开图中有一个公共顶点或一条公共边的两个正方形,在折叠成正方体后,必将成为相邻的两个面吗?5.当从正方体的某顶点出发,最多只能观察到几个面?能同时看到两个相对的面吗?。
七年级数学上册(人教版)配套教学教案4.1.1第2课时从不同的方向看立体图形和立体图形的展开图
全新修订版教学设计
(教案)
七年级数学上册
老师的必备资料
家长的帮教助手
学生的课堂再现
人教版(RJ)
4.1.1 立体图形与平面图形
第2课时从不同的方向看立体图
形和立体图形的展开图
教学目标:
1.能直观认识立体图形和展开图,了解研究立体图形的方法.
2.会由展开图联想对应的立体图形形状.
教学重点:
1.识别一些基本几何体(直棱柱、圆柱、圆锥、球)以及它们的简单组合得到的立体图形.
2.正确判断哪些平面图形可以折叠为立体图形、某个立体图形的展开图可以是哪些平面图
形.
教学难点:
了解基本几何体与其展开图之间的关系,体会一个立体图形按照不同方式展开可得到不同的
平面展开图.
教学过程:
一、从不同方向看立体图形
1.学生阅读课本P117,图4.1-6及以上相关内容,理解从不同方向看立体图形的意义和用途.
2.练习:课本P121第4题.
3.小结:从三个不同方向看立体图形的方法.
4.小组合作探究P117图4.1-7.
问题:(1)从正面看,有几层?每一层分别有几个正方形?
(2)从上面看,有几个正方形,这些正方形是怎样排列的?
(3)从左面看,有几列?每一列有几个正方形?
(4)画出从三个不同方向看该立体图形所得到的平面图形.
5.能力提升练习:
(1)由相同的小正方体搭成的几何体从正面看和从上面看得到的平面图形如图:
画出从左面看该几何体得到的平面图形.
(2)由相同小立方块搭成的几何体从正面看和从上面看得到的平面图形如图所示:。
2020七年级数学上册(第2课时)从不同方向看立体图形和立体图形的展开图教案 (新版)新人教版
准备
PPT
教学过程 提要
环节
学生要解决的问
题或完成的任务
师生活动
设计意图
引
入
新
课
一、导入
1、导入
1、朗读诗句:题西林壁
“横看成岭侧成峰”一句中,蕴含了怎样的数学道理?
2、欣赏从不同方向看到的飞机形状图.(如上右图),它们的形状相同吗?
从不同方向看立体图形,往往会得到不同形状的平面图形.
用古诗引出课题,引起学生的好奇心,激发学生的求知欲。
教
学
过
程
二、不同方向看到的平面图形
这节课我们来学习从不同方向看立体图形和立体图形展开图(板书课题).
二、新知教学:
(一)不同方向看到的平面图形
1、问题在建筑、工程等设计中,常常用从不同方向看到的平面图形来表示立体图形.下图是某个工件的立体图.从正面、左面、上 面观察到的形状是什么样的?
结论:对于一些立体图形的问题,常把它们转化为立体图形来研究和处理,通常画出从正面、左面、上面看的平面图形来表示相应的立体图形。
3、探究:平面展开图和立体图形
如图,是一些立体图形的展开图,用它们能围成什么样的立体图形?
4、练习:
5、正方体的平面展开图:共11种情况:
3、巩固练习:见PPT
通过学生的剪、拼的实践动手活动,既培养了学生的动手操作能力,又培养学生的空间观念和几何直观。
巩固所学,让学生体验成功的快乐。
小
结
由学生谈谈本节课学到了哪些知识?
在本节中,学生只要能从一组图形中辨认出从不同方向看立体图形得到的平面图形,并能说出从不同方向看一些简单立体图形以及他们的简单组合得到的平面图形即可,对由视图想象出立体图形本章不做要求。
人教版七年级数学上册教案 从不同方向看立体图形
本课时难度较小,重视学生的自学能力的提高,教师起到引导、点拨、评价的作用.
④[习题反思]
好题题号__________________________________________
错题题号__________________________________________
反思,更进一步提升.
义务教育基础课程初中教学资料
从不同方向看立体图形
课题
第2课时从不同方向看立体图形
授课人
教
学
目
标
知识技能
能识别从不同方向看简单物体得到的平面图形.
数学思考
初步体会从不同方向观察同一物体可能看到不同的结果,发展空间思维.
教
学
目
标
问题解决
经历“从不同方向观察物体”的活动过程,发展学生的空间概念和合理的想象能力;在观察过程中,初步体会从不同方向观察同一物体得到的结果可能是不一样的;让学生学会用自己的语言合理清晰地向别人表述自己的思维过程.
图4-1-35图4-1-36
2.观察图4-1-37的三个平面图形分别是从哪个方向看图4-1-38的立体图形得到的?
图4-1-37图4-1-38
3.如图4-1-39①是一个倒扣的碗,从图②中选出从正面看、左面看、上面看它得到的图形.
图4-1-39
布置作业:教材P118练习第1题.
利用典型的练习进一步巩固所学新知,同时检测学习效果,做到“堂堂清”.
图4-1-30
图4-1-31
例2如图4-1-31是由6个相同的小正方体搭成的几何体,那么这个几何体从上面看得到的图形是(C)
图4-1-32
【拓展提升】
例3小明从正面观察如图4-1-33所示的物体,看到的是(C)
人教版七年级数学上册《立体图形与平面图形》第2课时教学课件
A
B
C
D
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
从不同的方向看立体图形:
立 体
立体图形从正面、左面、上面看得到平面图形,
图
常用这些平面图形来表示立体图形.
形
与
平
面
立体图形的展开图:
图
形
将立体图形的表面适当剪开,可以展开成平面
图形.这样的平面图形称为相应立体图形的展开图.
交流 分别从正面、左面、上面观察圆柱、球、圆锥、三棱柱, 看一看分别能得到什么平面图形?
圆锥
从正面看 从上面看
从左面看
别忘了中 间的点
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
交流
分别从正面、左面、上面观察圆柱、球、圆锥、三棱柱,
看一看分别能得到什么平面图形?
别忘了中间的线,看得见的线 用实线,看不见的线用虚线
从正面看 从左面看
从上面看
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
交流 分别从正面、左面、上面观察圆柱、圆锥、球、三棱柱, 看一看分别能得到什么平面图形?
小组合作 1.独立观察思考,画出平面图形; 2.分组交流讨论,得出最终结果; 3.分小组展示讨论结果.
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
三棱柱
从正面看 从左面看 从上面看
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
拓展 分别从正面、左面、上面观察下面这个三棱柱,看一看 分别能得到什么平面图形?
三棱柱
从正面看
物体摆放的方式不同,从同一方向 看,得到的平面图形也会有所不同.
从上面看
人教版七年级数学上册4.1.1第2课时从不同的方向看立体图形和立体图形的展开图1教案设计
第 2 课时从不同的方向看立体图形和立体图形的睁开图1.经历从不同方向察看物体的活动过程,初步领会从不同方向察看同一物体可能看到不同样的结果;2.能画出从不同方向看一些简单几何体以及由它们构成的简单组合体获得的平面图形,认识直棱柱、圆柱、圆锥的睁开图或依据睁开图判断立体图形.(要点,难点 )一、情境导入《题西林壁》苏东坡横当作岭侧成峰,远近高低各不同.不识庐山真面目,只缘身在此山中.诗中描述出诗人面对庐山看到的两幅不同的画面,你能用简短的图形把它们形象的勾画出来吗?二、合作研究研究点一:从不同的方向察看立体图形【种类一】判断从不同的方向看到的图形沿圆柱体上底面直径截去一部分后的物体如下图,它从上边看到的图形是()分析:从上边看依旧可获得两个半圆的组合图形.应选 D.方法总结:本题考察了从不同的方向察看物体.在解题时要注意,看不见的线画成虚线,看得见的线画成实线.【种类二】画从不同的方向看到的图形如下图,由五个小立方体构成的立体图形,请你分别画出从它的正面、左面、上边三个方向看所获得的平面图形.分析:从正面看所获得的图形,从左往右有三列,分别有1,1,2 个小正方形;从左面看所获得的图形,从左往右有两列,分别有2, 1 个小正方形;从上边看所获得的图形,从左往右有三列,分别有2, 1,1 个小正方形.解:如下图:方法总结:画出从不同的方向看物体的形状的方法:第一察看物体,画出视图的外轮廓线,而后将视图增补完好,此中看得见部分的轮廓线往常画成实线,看不见部分的轮廓线通常画成虚线.在画三种视图时,从正面、上边看到的图形要长对正,从正面、左面看到的图形要高平齐,从上边、左面看到的图形要宽相等.研究点二:立体图形的睁开图【种类一】几何体的睁开图过正方体中有公共极点的三条棱的中点切出一个平面,形成如图几何体,其正确睁开图为 ()分析:选项 A、C、D 折叠后都不切合题意,只有选项 B 折叠后两个剪去的三角形与另一个剪去的三角形交于一个极点,与正方体三个剪去的三角形交于一个极点切合.应选 B.方法总结:考察几何体的睁开图.解决此类问题,要充足考虑带有各样符号的面的特色及地点.【种类二】由睁开图判断几何体下边的睁开图能拼成如图立体图形的是()分析:立体图形是三棱柱,睁开图应当是:三个长方形,两个三角形,两个三角形位于三个长方形双侧; A 答案折叠后两个长方形重合,故清除;C、 D 折叠后三角形都在一侧,故清除;应选 B.方法总结:本题主要考察了睁开图折叠成几何体.经过联合立体图形与平面图形的互相转变,理解和掌握几何体的睁开图,要注意多从实物出发,而后再从给定的图形中辨识它们可否折叠成给定的立体图形.三、板书设计1.从不同的方向察看立体图形(1)判断从不同的方向看到的图形(2)依据从不同的方向看到的图形判断几何体2.立体图形的睁开图(1)几何体的睁开图(2)由睁开图判断几何体本课时先经过创建情形,超越学科界线,让苏东坡的一首《题西林壁》把同学们带入了一个如诗如画的境地,再从诗歌中提炼出隐含的数学知识,激发学生的学习兴趣.由小组合作,让学生主体参加,研究新知,充足表现了以学生为主体的新理念.。
七年级数学上册(人教版)配套教学学案4.1.1第2课时从不同的方向看立体图形和立体图形的展开图
全新修订版教学设计
(学案)
七年级数学上册
老师的必备资料
家长的帮教助手
学生的课堂再现
人教版(RJ)
第四章几何图形初步
4.1 几何图形
4.1.1 几何图形与平面图形
第2课时从不同的方向看立体图形和立体图形的展开图
学习目标:1.从不同方向观察一个物体,体会其观察结果的不一样性.
2.能画出从不同方向看一些基本几何体或其简单组合得到的平面图形.
3.初步建立空间观念.
学习重点:识别并会画出从不同方向看简单几何体所得到的平面图形.
学习难点:识别并会画出从不同方向看简单组合体所得到的平面图形.
使用要求:1.阅读课本P119
2.尝试完成教材P120练习第1题;
3.限时15分钟完成本导学案(合作或独立完成均可);
4.课前在小组内交流展示.
一、自主学习:
1.观察你身边的一个物体,试着从不同的角度去看它,你看到的形状是一样的吗?
2.下面这几个几何体,试着从不同角度去看看,你得到了怎样的几何图形?
【老师提示】:我们从不同的方向观察同一个物体时,可能看到不同的图形.为了能完整确切地表达物体的形状和大小,必须从多方面观察物体.
在几何中,我们通常选择从正面、从左面、从上面三个方向来观察物体.通过这样的观
察,就能把一个立体图形用几个平面图形来描述.
3.分别正面、左面、上面再来观察上面的三个几何体,把观察的结果与同学交流.
二、合作探究:
1.分别从正面、左面、上面三个方向观察下面的几何体,把观察到的图形画出来.(1)从正面看从左面看从上面看。
七年级上册数学学案设计4.1.1第2课时从不同的方向看立体图形和立体图形的展开图(附模拟试卷含答案)
第四章几何图形初步4.1 几何图形4.1.1 几何图形与平面图形第2课时从不同的方向看立体图形和立体图形的展开图学习目标:1.从不同方向观察一个物体,体会其观察结果的不一样性.2.能画出从不同方向看一些基本几何体或其简单组合得到的平面图形.3.初步建立空间观念.学习重点:识别并会画出从不同方向看简单几何体所得到的平面图形.学习难点:识别并会画出从不同方向看简单组合体所得到的平面图形.使用要求:1.阅读课本P1192.尝试完成教材P120练习第1题;3.限时15分钟完成本导学案(合作或独立完成均可);4.课前在小组内交流展示.一、自主学习:1.观察你身边的一个物体,试着从不同的角度去看它,你看到的形状是一样的吗?2.下面这几个几何体,试着从不同角度去看看,你得到了怎样的几何图形?【老师提示】:我们从不同的方向观察同一个物体时,可能看到不同的图形.为了能完整确切地表达物体的形状和大小,必须从多方面观察物体.在几何中,我们通常选择从正面、从左面、从上面三个方向来观察物体.通过这样的观察,就能把一个立体图形用几个平面图形来描述.3.分别正面、左面、上面再来观察上面的三个几何体,把观察的结果与同学交流.二、合作探究:1.分别从正面、左面、上面三个方向观察下面的几何体,把观察到的图形画出来.(1)从正面看从左面看从上面看(2)从正面看从左面看从上面看(3)从正面看从左面看从上面看2.先阅读P119的教材再完成P119的探究.(1)小组合作,可用正立体积木摆出书上的立体图形,再观察.(2)改变正立体积木的摆放位置,你摆我答,合作学习.(3)观察身边的几何体,如文具盒、同学的水杯等物品,与同学交流分别从正面、左面、上面所看到的几何图形.【老师提示】对于一些立体图形的问题,常把它们转化为平面图形来研究和处理. 3.P120练习第1题.3.苏东坡有一首诗《题西林壁》“横看成岭侧成峰,远近高低各不同.不识庐山真面目,只缘身在此山中.”为什么横看成岭侧成峰?这有怎样的数学道理?三、学习小结:四、作业:P123习题4.1第4、9、10、13题.(准备长方体形状的包装盒至少一个)2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.下列各组图形中都是平面图形的是( )A .三角形、圆、球、圆锥B .点、线段、棱锥、棱柱C .角、三角形、正方形、圆D .点、角、线段、长方体2.如图,甲从A 点出发向北偏东70°走到点B ,乙从点A 出发向南偏西15°方向走到点C ,则∠BAC 的度数是( )A.125°B.160°C.85°D.105°3.把图1所示的正方体的展开图围成正方体(文字露在外面),再将这个正方体按照图2,依次翻滚到第1格,第2格,第3格,第4格,此时正方体朝上一面的文字为( )A.富B.强C.文D.民4.解方程()4.50.79x x +=,最简便的方法应该首先( )A.去括号B.移项C.方程两边同时乘10D.方程两边同时除以4.55.若方程3x -5=1与方程2102a x --=有相同的解,则a 的值为( ) A.2B.0C.32D.12- 6.方程2395123x x x +--=+去分母得( ) A.3(2x+3)-x=2(9x-5)+6 B.3(2x+3)-6x=2(9x-5)+1C.3(2x+3)-x=2(9x-5)+1D.3(2x+3)-6x=2(9x-5)+6 7.下面合并同类项正确的是( )A.23325x x x +=B.2221a b a b -=C.0ab ab --=D.220xy xy -+= 8.下列各式中,与xy 2是同类项的是( )A .-2xy 2B .2x 2yC .xyD .x 2y 29.已知整数a 0,a 1,a 2,a 3,a 4,…,满足下列条件:a 0=0,a 1=﹣|a 0+1|,a 2=﹣|a 1+2|,a 3=﹣|a 2+3|,…,以此类推,a 2019的值是( )A.﹣1009B.﹣1010C.﹣2018D.﹣2020 10.小明做了以下4道计算题:①(-1)2010=2010;②0-(-1)=-l ;③-+=-;④÷(-)=-1. 其中做对的共有 A .1道 B .2道 C .3道 D .4道11.在下列各数: ()2-+, 23-, 413⎛⎫- ⎪⎝⎭, 325⎛⎫- ⎪⎝⎭, ()01-, 3-中,负有理数的个数是( )A .2个 B .3个 C .4个 D .512.﹣1+3的结果是( )A .﹣4B .4C .﹣2D .2二、填空题13.将一副三角板如图放置,若∠AOD=30°,则∠BOC=______.14.已知AOB 100∠=,BOC 60∠=,OM 平分AOB ∠,ON 平分BOC ∠,那么MON ∠等于______度.15.一件上衣按成本价提高50%后标价为105元,这件上衣的成本价为_____元.16.已知关于x 的一元一次方程1x-3=4x+3b 2017的解为x=4,那么关于y 的一元一次方程1y-1-3=4y-1+3b 2017()()的解y=____. 17.小明在做解方程的作业时,不小心将方程中的一个常数污染得看不清楚,方程是:122y y +=--¤ .小明翻看了书后的答案,此方程的解是y= 12- ,则这个常数是_______. 18.将多项式xy 3-x 2y+2x 3-5y 2按字母x 降幂排列是:______.19.-4的倒数是________,相反数是_______.绝对值是_________.20.﹣(﹣82)=_____;﹣(+3.73)=_____;﹣(﹣27)=_____.三、解答题21.已知:AOD 160∠=,OB ,OM ,ON 是AOD ∠内的射线.()1如图1,若OM 平分AOB ∠,ON 平分BOD.∠当射线OB 绕点O 在AOD ∠内旋转时,MON ∠=______度.()2OC 也是AOD ∠内的射线,如图2,若BOC 20∠=,OM 平分AOC ∠,ON 平分BOD ∠,当BOC ∠绕点O 在AOD ∠内旋转时,求MON ∠的大小. ()3在()2的条件下,若AOB 10∠=,当BOC ∠在AOD ∠绕O 点以每秒2的速度逆时针旋转t 秒,如图3,若AOM ∠:DON 2∠=:3,求t 的值.22.如图,某景区内的环形路是边长为1200米的正方形ABCD ,现有1号、2号两辆游览车分别从出口A 和景点C 同时出发,1号车沿A→B→C→D→A 路线、2号车沿C→B→A→D→C 路线连续循环行驶,供游客随时免费乘车(上、下车的时间忽略不计),两车速度均为300米/分.(1)如图1,设行驶时间为t 分(0≤t≤8)①1号车、2号车离出口A 的路程分别为_____米,_____米;(用含t 的代数式表示)②当两车相距的路程是600米时,求t 的值;(2)如图2,游客甲在BC 上的一点K (不与点B 、C 重合)处候车,准备乘车到出口A ,设CK=x 米. 情况一:若他刚好错过2号车,则他等候并搭乘即将到来的1号车;情况二:若他刚好错过1号车,则他等候并搭乘即将到来的2号车.请判断游客甲在哪种情况下乘车到出口A 用时较多?(含候车时间)23.在某市一项城市美化工程招标时,有甲、乙两个工程队投标.经测算:甲队单独完成这项工程需要60天;若由甲队先做20天,剩下的工程由甲、乙一起做24天可完成.(1)乙队单独完成这项工程需要多少天?(2)已知甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱,还是由甲、乙两队全程一起做完成该工程省钱?24.某中学七年级一班有44人,某次活动中分为四个组,第一组有a人,第二组比第一组的一半多5人,第三组人数等于前两组人数的和.(1)求第四组的人数(用含a的代数式表示).(2)试判断a=12时,是否满足题意.25.以直线AB上点O为端点作射线OC,使∠BOC=60°,将直角△DOE的直角顶点放在点O处.(1)如图1,若直角△DOE的边OD放在射线OB上,则∠COE= ;(2)如图2,将直角△DOE绕点O按逆时针方向转动,使得OE平分∠AOC,说明OD所在射线是∠BOC的平分线;(3)如图3,将直角△DOE绕点O按逆时针方向转动,使得∠COD=15∠AOE.求∠BOD的度数.26.先化简,再求值(1)求代数式14(4a2-2a-8)-(12a-1),其中a=1;(2)求代数式12x-2(x-13y2)+(-32x+13y2)的值,其中x=23,y=-2.27.已知|x+1|+(y+2)2=0,求x+y的值.28.计算:-3- 2 +(-4)-(-1).【参考答案】***一、选择题1.C2.A3.A4.D5.A6.D7.D8.A9.B10.B11.C12.D二、填空题13.150°14. SKIPIF 1 < 0 或80解析:20或8015.70元16.517.118.2x3-x2y+xy3-5y219.- SKIPIF 1 < 0 , 4, 4;解析:-14, 4, 4;20.﹣3.73 SKIPIF 1 < 0解析:﹣3.73 2 7三、解答题21.(1) 80;(2) 70°;(3)t为21秒.22.2400﹣300t23.(1)90天.(2)由甲乙两队全程合作完成该工程省钱.24.(1)(34-3a)(2)a=12时,第四组的人数为-2,不符合题意25.(1)30;(2)答案见解析;(3)65°或52.5°.26.(1)-1(2)227.﹣3.28.-82019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图,C ,D 是线段 AB 上两点,若 CB=4cm ,DB=7cm ,且 D 是 AC 的中点,则 AB 的长等于( )A.6cmB.7cmC.10cmD.11cm2.题目文件丢失!3.如图,点C 、D 是线段AB 上的两点,点D 是线段AC 的中点.若AB=10cm ,BC=4cm ,则线段DB 的长等于( )A.2cmB.3cmC.6cmD.7cm4.某车间有34名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮和3个小齿轮配成一套,问分别安排多少名工人加工大小齿轮,才能刚好配套?若设加工大齿轮的工人有x 名,则可列方程为( )A .3×10x=2×16(34﹣x)B .3×16x=2×10(34﹣x)C .2×16x=3×10(34﹣x)D .2×10x=3×16(34﹣x)5.将一个周长为42cm 的长方形的长减少3cm ,宽增加2cm ,能得到一个正方形.若设长方形的长为xcm ,根据题意可列方程为( )A .x+2=(21﹣x )﹣3B .x ﹣3=(21﹣x )﹣2C .x ﹣2=(21﹣x )+3D .x ﹣3=(21﹣x )+26.学友书店推出售书优惠方案:①一次性购书不超过100元,不享受优惠;②一次性购书超过100元,但不超过200元,一律打9折;③一次性购书超过200元,一律打8折.如果小明同学一次性购书付款162元,那么他所购书的原价为( )A .180元B .202.5元C .180元或202.5元D .180元或200元7.某天数学课上老师讲了整式的加减运算,小颖回到家后拿出自己的课堂笔记,认真地复习老师在课堂上所讲的内容,她突然发现一道题目:()()2222223355a ab ba ab b a +---++= 26b -,空格的地方被墨水弄脏了,请问空格中的一项是( )A.+2abB.+3abC.+4abD.-ab 8.已知a+b =4,c ﹣d =3,则(b+c )﹣(d ﹣a )的值等( )A .1B .﹣1C .7D .﹣79.单项式4223ab c -的系数与次数分别是( ) A .2,5- B .2,5 C .2,63- D .2,73- 10.下列各式从左到右的变形错误的是( )A .(y ﹣x )2=(x ﹣y )2B .﹣a ﹣b=﹣(a+b )C .(a ﹣b )3=﹣(b ﹣a )3D .﹣m+n=﹣(m+n )11.﹣(﹣2)等于( )A.﹣2B.2C.12D.±212.下列运算结果为正数的是()A.-22 B.(-2)2 C.-23 D.(-2)3二、填空题13.将一副三角板如图放置,若∠AOD=30°,则∠BOC=______.14.已知x﹣2y+3=8,则整式x﹣2y的值为_____.15.某次数学测验中有16道选择题,评分办法:答对一道得6分,答错一道扣2分,不答得0分.某学生有一道题未答,那么这个同学至少要答对________道题,成绩才能在60分以上.16.请写出一个系数含π,次数为3的单项式,它可以是________.17.在两个形状、大小完全相同的大长方形内,分别互不重叠地放入四个如图③的小长方形后得图①和图②,已知大长方形的长为a,两个大长方形未被覆盖部分,分别用阴影表示,则图①阴影部分周长与图②阴影部分周长的差是______.(用含a的代数式表示)18.若||2a=,则a=__________.19.比较大小:23⎛⎫-+ ⎪⎝⎭___34--.(选用>、<、=号填写)20.已知∠A=35°10′48″,则∠A的余角是__________.三、解答题21.已知:如图,直线AB、CD相交于点O,EO⊥CD于O.(1)若∠AOC=36°,求∠BOE的度数;(2)若∠BOD:∠BOC=1:5,求∠AOE的度数;(3)在(2)的条件下,请你过点O画直线MN⊥AB,并在直线MN上取一点F(点F与O不重合),然后直接写出∠EOF的度数.22.如图,O为直线AB上一点,∠AOC=50°20′,OD平分∠AOC,∠DOE=90°.(1)求∠DOB的度数;(2)请你通过计算说明OE是否平分∠COB.23.如图,AB=12cm,点C是线段AB上的一点,BC=2AC.动点P从点A出发,以3cm/s的速度向右运动,到达点B后立即返回,以3cm/s的速度向左运动;动点Q从点C出发,以1cm/s的速度向右运动.设它们同时出发,运动时间为ts.当点P与点Q第二次重合时,P、Q两点停止运动.(1)AC=__cm,BC=__cm;(2)当t为何值时,AP=PQ;(3)当t为何值时,PQ=1cm.24.小明家使用的是分时电表,按平时段(6:00﹣22:00)和谷时段(22:00一次日6:00)分别计费,平时段每度电价为0.61元,谷时段每度电价为0.30元,小明将家里2005年1月至5月的平时段和谷时段的用电量分别用折线图表示(如图),同时将前4个月的用电量和相应电费制成表格(如表)根据上述信息,解答下列问题:(1)计算5月份的用电量和相应电费,将所得结果填入表1中;(2)小明家这5个月的月平均用电量为度;(3)小明家这5个月的月平均用电量呈 趋势(选择“上升”或“下降”);这5个月每月电费呈 趋势(选择“上升”或“下降”);(4)小明预计7月份家中用电量很大,估计7月份用电量可达500度,相应电费将达243元,请你根据小明的估计,计算出7月份小明家平时段用电量和谷时段用电量.25.先化简,再求值:[(x ﹣y )2+(x+y )(x ﹣y )]÷2x,其中x =﹣1,y =2.26.先化简,再求值:2(﹣3xy+52x 2)+5(2xy ﹣x 2),其中x =﹣2,y =12. 27.计算:28.(1)计算1114125522-+---();(2)计算()()32112321133⎛⎫-+⨯-⨯-÷- ⎪⎝⎭.【参考答案】***一、选择题1.C2.B3.D4.B5.D6.C7.A8.C9.D10.D11.B12.B二、填空题13.150°14.15.1216.πx3或πr2h 或 SKIPIF 1 < 0πr2h(答案不唯一)解析:πx 3或πr 2h 或13πr 2h(答案不唯一)17. SKIPIF 1 < 0解析:1 a 218. SKIPIF 1 < 0解析:219.>.20.54°49′12″三、解答题21.(1)54°;(2)120°;(3)∠EOF的度数为30°或150°.22.(1) 154°50′;(2)见解析23.824.(1)65+45=110,46.95;(2)99;(3)上升;下降;(4)平时段300度,谷时用200度.25.x-y,-3.26.4xy,-4.27.-128.(1)-2;(2)-14.。
4.1.1折叠、展开与从不同方向观察立体图形(教案)-2023-2024学年七年级上册数学(人教版)
一、教学内容
本节课选自人教版七年级上册数学第4章《几何图形初步》中的4.1.1节“折叠、展开与从不同方向观察立体图形”。教学内容主要包括以下三个方面:
1.折叠:通过实际操作,让学生掌握正方体、长方体等简单立体图形的折叠方法,并理解其展开图形的特征。
此外,在小组讨论环节,学生们表现出了很高的积极性。他们围绕立体图形在实际生活中的应用展开了热烈的讨论,并提出了一些有趣的观点。这表明,学生们能够将所学知识与现实生活联系起来,这对于他们理解抽象的几何概念具有重要意义。
在今后的教学中,我需要关注以下几个方面:
1.对于教学难点,要设计更多的实例和练习,帮助学生巩固所学知识,提高解决问题的能力。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考,如“你们认为这些立体图形的折叠和展开在哪些场合下最有用?”
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(3)解决实际问题时,难以将所学知识灵活运用。
举例:在计算立体图形的表面积和体积时,部分学生可能会忘记使用正确的公式或方法。
在教学过程中,教师应针对教学难点进行有效指导,通过实际操作、示例讲解、讨论交流等方式,帮助学生突破难点,确保学生能够理解透彻本节课的核心知识。
四、教学流程
(一)导入新课(用时5分钟)
(2)从不同方向观察立体图形,学会用简单的几何语言描述观察到的形状。
举例:从正面、侧面、上面等不同方向观察正方体和长方体,让学生能够用“有几个面、面的形状和大小”等几何语言进行描述。
七年级上册数学人教版4.1.1 第2课时 从不同的方向看立体图形和立体图形的展开图
初中数学集体备课活页纸学科初中数学主备人 节次第 周第 节课题 4.1.1 第2课时 从不同的方向看立体图形和立体图形的展开图课时 1 课型 新授课教学目标 1.初步体会从不同的方向观察同一个物体可能 会看到不同的平面图形,能识别简单物体从正面看、从左面看、从上面看的平面图形.2.在平面图形和立体图形互相转换的过程中,初步建立空间观念. 教学重点能由立体图形抽象得到平面图形,能根据得到的平面图形推测出立体图形;立体图形的展开图画法教学难点 由平面图推测出立体图,正确表示立体图形的展开图课 堂 教 学 设 计教学环节教学过程二次备课第一步: 交流预习环节1:教师提问 引入:如图,把茶壶放在桌面上,那么下面五幅图片分别是从哪个方向看得到的?环节2:师友释疑如图,这是一个工件的立体图,设计师常常画出从不同的方向看得到的平面图形来表示它,下面是从正面看、从左面看、从上面看得到的平面图形,你能说出各平面图形是从哪个方位观看得到?第二步: 互助探究环节1:师友探究1.如图是由若干小正方体搭成的几何体,我们分别从正面看、从左面看和从上面看得到的平面图形分别是怎样的呢?请同学们尝试画一画.2.画出正方体、长方体、圆柱体、圆锥、四棱锥、三棱柱从正面、左面、上面看物体得到的平面图形.环节2:教师讲解将一个正方体的表面沿某些棱剪开,能展成哪些平面图形?环节1:师友探究思考:1.观察上面的11种正方体的展开图有没有什么规律?2.小组讨论这些正方体展开图可以分为几类?哪几号展开图可以分为一类,为什么?第三步:分层提高环节1 师友训练1.下列图形中,不是正方体表面展开图的是()2.小明从正面观察如图所示的两个物体,看到的是()A. B. C. D.3.下图是由一些相同的小正方体构成的几何体从正面、左面、上面看得到的三个平面图形,这些相同的小正方体的个数是( )A .4个 B.5个 C.6个 D .7个环节2 教师提升1.下列立体图形的平面展开图是什么?第四步:总结归纳环节1:师友归纳•这节课我学会(懂得)了……•这节课我想对师傅(学友)说……环节2:教师归纳1.从不同方向看平面图,由立体图推平面图,由平面图推测立体图。
人教版七年级数学上册教材配套教学精品课件 4.1.2 从不同的方向看立体图形(课件)
A.4个 B.5个 C.6个 D.7个
4.用小立方块搭一个几何体,如图是从正面和上面看到的几何体的形状图,
最少需要_5__个小立方块,最多需要_9__个小立方块.
5.如图,右边的平面图分别是从哪个方向看左边的立体图形得到的?
6.一辆汽车从小明的面前经过,小明拍摄了一组照片,请按照汽车被摄入镱 头的先后顺序给上面的照片编号,并与同伴进行交流.
(2)求这个几何体的表面积为
.
解:(1)几何体的形状图如下:
(2)根据题意,得 每个小正方形的面积为1cm2,
所以几何体的表面积为:1 × (6 × 2 + 6 × 2 + 5 × 2) = 34cm2.
我们从不同的方向观察一物体时,可能看到不同的图形. 其中,把从正 面看到的图叫做主视图,把从左面看到的图叫做左视图,从上面看到的图叫 做俯视图.
这个几何体最少需要_1_0__个小正方体,最多需要_1_5__个小正方体.
1.如图,小明从上面观察一个圆柱体邮筒和一个正方体箱子,看到的是( A)
2. 下图是一块带有圆形空洞和方形空洞的小木板,则下列物体中既可以堵
住圆形空洞,又可以堵住方形空洞的是 ( B )
3. 下图是由一些相同的小正方体构成的几何体的从正面、左面、上面看
1.了解立体图形与平面图形之间的联系; 2.能画出简单立体图形从不同方向看得到的平面图形.(重点、难点)
小华和小颖看到的图像一样吗?下面四幅图中,你认为哪幅是小 华看到的?哪幅是小颖看到的?
如果你想看到所有的物体,那么你应该站在什么位置?
下面的五幅图分别是从什么方向看到的?
对于一些立体图形的问题,常把它们转化为平面图形来研究和处理. 从 不同方向看立体图形,往往会得到不同形状的平面图形.在建筑、工程等设 计中,也常常用从不同方向看到的平面图形来表示立体图形.
七年级数学上册 4.1.1从不同的方向看物体 课件(共21张PPT)
教学目标
• 知识目标:能画出从不方向观察几 何体的平面图形(三视图). • 能力目标:由三视图想象出立体图 形 • 情感目标:经历立体图形与平面图 形互相转化的过程.
从上面看 俯视图 从左边看
长方体
左视图 从正面看
主视图
俯视图
左视图
主视图
俯视图 左视图
主视图
俯视图
左视图
学.科.网
主视图
从你所在的位置看这组几何体,看到的是什么 样子?能否把你所看到的样子画下来?
正视图
左视图
俯视图
组卷网
正视图
左视图
俯视图
考考你
正视图( 左视图 ( 俯视图 (
A) A
B
)
)
A
B
C
正视图 (
B
B C
)
左视图 (
)
俯视图(
)
A
B
C
从上面看
从左面看
从正面看
主视图
左视图
俯视图
立体图形和平面图形的转化:
1 5
4 1 2 4
6 1
2
1---- -3
2--------6
5---------4
课堂小结
这节课我们学习了从三个不同的方向看立 体图形
1.从正面看------主视图 2.从左面看------左视图 3.从上面看------俯视图
下面是一个组合图形的三视图,请描述物体形状
主视图
左视图
俯视图
物体形状
有一个正方体,在它的各个面上分别涂了 白、红、黄、兰、绿、黑六种颜色。甲、乙、 丙三位同学从三个不同的角度去观察此正方体, 结果如下图,问这个正方体各个面的对面的颜 色是什么?
人教版七年级数学上册同步备课《第四章》 4.1.2 从不同方向看立体图形与立体图形的展开图(教学设计
4.1.2 从不同方向看立体图形与立体图形的展开图教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》七年级上册(以下统称“教材”)第四章“几何图形初步”4.1.2 从不同方向看立体图形与立体图形的展开图,内容包括:能识别简单物体从正面看、从左面看、从上面看的平面图形;知道一些简单的立体图形的展开图.2.内容解析本节课是人教版数学七年级上册第四章第一节第二课时的内容,在认识了常见的平面图形和立体图形以后,教材安排了从不同方向看立体图形和展开立体图形的内容,目的是让学生在这样的活动中体验立体图形和平面图形之间的相互转化,从而初步建立空间观念,培养空间想象力.在本节中,学生只要能从一组图形中辨认出从不同方向看立体图形得到的平面图形,并能说出从不同方向看一些简单立体图形以及他们的简单组合得到的平面图形即可,对由视图想象出立体图形本章不作要求.基于以上分析,确定本节课的教学重点为:认识几何体与众不同方向看它所得的平面图形之间的关系;了解一些简单的立体图形和它的展开图之间的关系.二、目标和目标解析1.目标(1)通过自主阅读教材中的内容,了解正数与负数是从实际需要中产生的,培养学生的抽象能力.(2)结合实际生活情境中的具体数字,理解正数、负数及0的意义,掌握正数、负数的表示方法.(3)会用正数、负数表示具有相反意义的量,培养学生的抽象能力和应用意识.2.目标解析使学生能从一组图形辨认出从不同方向看立体图形得到的平面图形,并能说出从不同方向看一些简单立体图形(直棱柱、圆柱、圆锥、球) 以及它们的简单组合得到的平面图形;在从不同方向看立体图形的活动过程中,体验立体图形与平面图形之间的相互转化,从而建立空间观念,发展几何直觉;能从不同方向看立体图形,并用平面图形描述从不同方向看一些立体图形得到的平面图形;形成主动探究的意识,丰富学生数学活动的成功体验,激发学生对几何图形的好奇心,发展学生的审美情趣.三、教学问题诊断分析学生通过前一学段的学习已经认识了部分常见的几何图形,具有了一定的认知基础。
初中数学教学课例《七年级上册1.4.1从不同的方向看》教学设计及总结反思
法,提高综合素质,在数学教学过程中,需要教导学生 进行自我反思问题。对学生而言,反思的目的在于通过 自己的感悟不断纠正己身,实现批评与自我批评,达到 自我提高完善的能力。比如:积累错题,时常翻看错题 本,以后就不会在类似的问题上出现错误。通过这样的 教学方式,培养学生的自学能力,让他们在反思中理解, 在理解中提高。同时在做人做事的过程中,反思也是极 为重要的。
初中数学教学课例《七年级上册 1.4.1 从不同的方向看》教 学设计及总结反思
学科
初中数学
教学课例名
《七年级上册 1.4.1 从不同的方向看》
称
学习重点:
1、经历从不同方向观察物体和与他人合作交流,
发展空间观念.
2、初步体会从不同方向观察同一物体可能看到的
不同的图形. 教材分析
3、能识别简单的三视图,会画立方体及其简单组
正方体来让大家以小组交流讨论的形式,让大家参与到 教学策略选
整节课堂中来,让同学们明白从不同的方向看能看到不 择与设计
同的形状,在巩固提升阶段,我会播放多媒体课件,让
同学们独立思考,并小组交流讨论,目的是有意识的培
养大家的空间观念,提升空间想象能力。
1、本节课我将以成绩中间的一个学生来关注,首
先我会拿出事先准备的正方体六个,然后摆出一个形
完成,达到一个巩固提高的目的。
本节课我主要请教了学校的其他老教师,主要从教 学目标、重难点的选择、教学过程等方面,特别是教学 过程,选择一个适合学生,能让同学们容易接受的教学 方式来让同学们更好的接受本节课的知识。
传统的教学方法一直以教师为中心,以知识为中 心,学生被动地接受、记忆知识,这种教学方法限制了学 生的思维,抑制了学生的学习兴趣和热情,这不仅不能 促进学生的发展,反而成为学生发展的阻力。针对这一 弊端,新课程标准提倡要转变教学观念,改变教学方法, 要创造轻松愉快的教学氛围。结合数学学科的特征,我 课例研究综 认为,要实现数学学科丰富的育人价值需要通过数学教 述 师在课堂教学中适切地进行教育。教育的内容包括:具 备数学思考的能力;激发爱祖国、爱科学的热情;培养 独立思考、勇攀高峰的创新精神;唤起对数学美、思维 美的体悟。从而提出以下几点小对策:
初中数学七年级上册(人教版)精品教案-4.1.1 第2课时 从不同的方向看立体图形和立体图形的展开图1.doc
第2课时从不同的方向看立体图形和立体图形的展开图1.经历从不同方向观察物体的活动过程,初步体会从不同方向观察同一物体可能看到不一样的结果;2.能画出从不同方向看一些简单几何体以及由它们组成的简单组合体得到的平面图形,了解直棱柱、圆柱、圆锥的展开图或根据展开图判断立体图形.(重点,难点)一、情境导入《题西林壁》苏东坡横看成岭侧成峰,远近高低各不同.不识庐山真面目,只缘身在此山中.诗中描绘出诗人面对庐山看到的两幅不同的画面,你能用简洁的图形把它们形象的勾勒出来吗?二、合作探究探究点一:从不同的方向观察立体图形【类型一】判断从不同的方向看到的图形沿圆柱体上底面直径截去一部分后的物体如图所示,它从上面看到的图形是( )解析:从上面看依然可得到两个半圆的组合图形.故选D.方法总结:本题考查了从不同的方向观察物体.在解题时要注意,看不见的线画成虚线,看得见的线画成实线.【类型二】画从不同的方向看到的图形如图所示,由五个小立方体构成的立体图形,请你分别画出从它的正面、左面、上面三个方向看所得到的平面图形.解析:从正面看所得到的图形,从左往右有三列,分别有1,1,2个小正方形;从左面看所得到的图形,从左往右有两列,分别有2,1个小正方形;从上面看所得到的图形,从左往右有三列,分别有2,1,1个小正方形.解:如图所示:方法总结:画出从不同的方向看物体的形状的方法:首先观察物体,画出视图的外轮廓线,然后将视图补充完整,其中看得见部分的轮廓线通常画成实线,看不见部分的轮廓线通常画成虚线.在画三种视图时,从正面、上面看到的图形要长对正,从正面、左面看到的图形要高平齐,从上面、左面看到的图形要宽相等.探究点二:立体图形的展开图【类型一】几何体的展开图过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其正确展开图为( )解析:选项A、C、D折叠后都不符合题意,只有选项B折叠后两个剪去的三角形与另一个剪去的三角形交于一个顶点,与正方体三个剪去的三角形交于一个顶点符合.故选B.方法总结:考查几何体的展开图.解决此类问题,要充分考虑带有各种符号的面的特点及位置.【类型二】由展开图判断几何体下面的展开图能拼成如图立体图形的是( )解析:立体图形是三棱柱,展开图应该是:三个长方形,两个三角形,两个三角形位于三个长方形两侧;A答案折叠后两个长方形重合,故排除;C、D折叠后三角形都在一侧,故排除;故选B.方法总结:此题主要考查了展开图折叠成几何体.通过结合立体图形与平面图形的相互转化,理解和掌握几何体的展开图,要注意多从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形.三、板书设计1.从不同的方向观察立体图形(1)判断从不同的方向看到的图形(2)根据从不同的方向看到的图形判断几何体2.立体图形的展开图(1)几何体的展开图(2)由展开图判断几何体本课时先通过创设情景,跨越学科界限,让苏东坡的一首《题西林壁》把同学们带入了一个如诗如画的境界,再从诗歌中提炼出隐含的数学知识,激发学生的学习兴趣.由小组合作,让学生主体参与,探索新知,充分体现了以学生为主体的新理念.。
人教版七年级数学上册 导学案:4.1.1 第2课时 从不同方向看立体图形和立体图形的展开图【精品】
第四章几何图形初步4.1 几何图形4.1.1 立体图形与平面图形第2课时从不同的方向看立体图形和立体图形的展开图学习目标:1. 了解立体图形与平面图形之间的联系.2. 能画出简单立体图形从不同方向看得到的平面图形.3. 了解研究立体图形的方法,体会一个立体图形按照不同方式展开可得到不同的平面展开图.4. 通过展开与折叠,了解棱柱、棱锥、圆柱、圆锥、长方体、正方体的表面展开图或根据展开图判断立体图形.重点:了解立体图形从不同方向看能够得到平面图形,了解基本几何体与其展开图的关系,体会一个立体图形可以有多种展开图.难点:会画简单立体图形从不同方向看得到的平面图形,能够画出简单立体图形的展开图,或根据展开图判断立体图形.一、要点探究探究点1:从不同的方向看立体图形合作探究:画出正方体、长方体、圆柱体、圆锥、四棱锥、三棱柱从正面、左面、上面看得到的平面图形.各能得到什么平面图形?针对训练图中的几何体从正面看得到的平面图形是____,从左面看得到的平面图形是____,从上面看得到的平面图形是____.探究点2:立体图形的展开图 合作探究:将一个正方体的表面沿某些棱剪开,能展成哪些平面图形?思考:正方体展开图可以分为几种?这些展开图有没有什么规律?哪些展开图可以分为一类,为什么?要点归纳:1.巧记正方体的展开图口诀:正方体盒巧展开,六个面儿七刀裁,十一类图记分明; 一四一呈6种,二三一有3种,二二二与三三各1种;对面相隔不相连,识图巧排“凹”和“田”.2.一个多面体的展开图中,在同一直线上的相邻的三个线框中,首尾两个线框是立体图形中相对的两个面. 针对训练1. 下列图形中,不是正方体表面展开图的是 ()2. “坚”在下,“就”在后,“胜”和“利”在哪里?3. 下面图形是一些多面体的表面展开图,?4. 下列立体图形的平面展开图是什么?二、课堂小结常见几何体的展开图:2. 下图是一块带有圆形空洞和方形空洞的小木板,则下列物体中既可以堵住圆形空洞, 又可以堵住方形空洞的是( )3. 下图是由一些相同的小正方体构成的几何体的从正面、左面、上面看得到的三个平面 图形,这些相同的小正方体的个数是 ( ) A .4个 B .5个C.6个D.7个4. 下列的三幅平面图是三棱柱的表面展开图的有(多选) ( )5. 如图是一个立方体纸盒的展开图,使展开图沿虚线折叠成正方体后相对面上的两个数互为相反数,求:a= ;b= ;c= .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全新修订版教学设计
(教案)
七年级数学上册
老师的必备资料
家长的帮教助手
学生的课堂再现
人教版(RJ)
4.1.1 立体图形与平面图形
第2课时从不同的方向看立体图
形和立体图形的展开图
教学目标:
1.能直观认识立体图形和展开图,了解研究立体图形的方法.
2.会由展开图联想对应的立体图形形状.
教学重点:
1.识别一些基本几何体(直棱柱、圆柱、圆锥、球)以及它们的简单组合得到的立体图形.
2.正确判断哪些平面图形可以折叠为立体图形、某个立体图形的展开图可以是哪些平面图形.
教学难点:
了解基本几何体与其展开图之间的关系,体会一个立体图形按照不同方式展开可得到不同的平面展开图.
教学过程:
一、从不同方向看立体图形
1.学生阅读课本P117,图4.1-6及以上相关内容,理解从不同方向看立体图形的意义和用途.
2.练习:课本P121第4题.
3.小结:从三个不同方向看立体图形的方法.
4.小组合作探究P117图4.1-7.
问题:(1)从正面看,有几层?每一层分别有几个正方形?
(2)从上面看,有几个正方形,这些正方形是怎样排列的?
(3)从左面看,有几列?每一列有几个正方形?
(4)画出从三个不同方向看该立体图形所得到的平面图形.
5.能力提升练习:
(1)由相同的小正方体搭成的几何体从正面看和从上面看得到的平面图形如图:
画出从左面看该几何体得到的平面图形.
(2)由相同小立方块搭成的几何体从正面看和从上面看得到的平面图形如图所示:。