常用数学建模

合集下载

数学建模常用方法

数学建模常用方法

数学建模常用方法建模常用算法,仅供参考:1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用M a t l a b作为工具)3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用L i n d o、L i n g o软件实现)4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用M a t l a b进行处理)一、在数学建模中常用的方法:1.类比法2.二分法3.量纲分析法4.差分法5.变分法6.图论法7.层次分析法8.数据拟合法9.回归分析法10.数学规划(线性规划、非线性规划、整数规划、动态规划、目标规划)11.机理分析12.排队方法13.对策方法14.决策方法15.模糊评判方法、16.时间序列方法17.灰色理论方法18.现代优化算法(禁忌搜索算法、模拟退火算法、遗传算法、神经网络)二、用这些方法可以解下列一些模型:优化模型、微分方程模型、统计模型、概率模型、图论模型、决策模型。

数学建模常用模型方法总结

数学建模常用模型方法总结

数学建模常用模型方法总结无约束优化线性规划连续优化非线性规划整数规划离散优化组合优化数学规划模型多目标规划目标规划动态规划从其他角度分类网络规划多层规划等…运筹学模型(优化模型)图论模型存储论模型排队论模型博弈论模型可靠性理论模型等…运筹学应用重点:①市场销售②生产计划③库存管理④运输问题⑤财政和会计⑥人事管理⑦设备维修、更新和可靠度、项目选择和评价⑧工程的最佳化设计⑨计算器和讯息系统⑩城市管理优化模型四要素:①目标函数②决策变量③约束条件④求解方法(MATLAB--通用软件LINGO--专业软件)聚类分析、主成分分析因子分析多元分析模型判别分析典型相关性分析对应分析多维标度法概率论与数理统计模型假设检验模型相关分析回归分析方差分析贝叶斯统计模型时间序列分析模型决策树逻辑回归传染病模型马尔萨斯人口预测模型微分方程模型人口预测控制模型经济增长模型Logistic 人口预测模型战争模型等等。

灰色预测模型回归分析预测模型预测分析模型差分方程模型马尔可夫预测模型时间序列模型插值拟合模型神经网络模型系统动力学模型(SD)模糊综合评判法模型数据包络分析综合评价与决策方法灰色关联度主成分分析秩和比综合评价法理想解读法等旅行商(TSP)问题模型背包问题模型车辆路径问题模型物流中心选址问题模型经典NP问题模型路径规划问题模型着色图问题模型多目标优化问题模型车间生产调度问题模型最优树问题模型二次分配问题模型模拟退火算法(SA)遗传算法(GA)智能算法蚁群算法(ACA)(启发式)常用算法模型神经网络算法蒙特卡罗算法元胞自动机算法穷举搜索算法小波分析算法确定性数学模型三类数学模型随机性数学模型模糊性数学模型。

数学建模简单13个例子全解

数学建模简单13个例子全解

数学建模简单13个例子全解1. 线性回归模型线性回归是一种基本的数学建模方法,用于预测一个因变量与一个或多个自变量之间的关系。

通过最小化误差平方和来拟合一个直线或平面,使其能够最好地拟合数据。

2. 逻辑回归模型逻辑回归是一种用于分类问题的建模方法。

它通过将线性回归模型的输出变换为一个概率值,从而将输入样本分为两个不同的类别。

3. K-means聚类模型K-means聚类是一种无监督学习算法,用于将样本分为若干个不同的簇。

它根据样本之间的相似性将它们分配到不同的簇中。

4. 决策树模型决策树是一种基于规则的分类模型。

它通过一系列的决策节点和叶节点来对输入样本进行分类。

5. 随机森林模型随机森林是一种集成学习模型,它由多个决策树组成。

它通过对每个决策树的预测结果进行投票来进行分类。

6. 支持向量机模型支持向量机是一种基于最大间隔原则的分类模型。

它通过寻找一个超平面来将数据样本分成不同的类别。

7. 主成分分析模型主成分分析是一种降维技术,它将原始数据投影到一个低维空间中,以便尽可能保留数据的方差。

8. 马尔可夫链模型马尔可夫链是一种离散时间概率模型,它假设过去的状态对于预测未来的状态是有用的。

9. 指数平滑模型指数平滑是一种时间序列预测方法,它使用加权平均法来对下一个时间点的预测值进行估计。

10. 神经网络模型神经网络是一种模拟人类神经系统的方法,它通过多层神经元之间的连接来进行学习和预测。

11. 遗传算法模型遗传算法是一种通过模拟生物进化过程来求解优化问题的方法。

它通过交叉、变异和选择等操作来生成新的解,并逐步优化。

12. 时间序列模型时间序列模型用于分析和预测随时间变化的数据。

常用的时间序列模型包括自回归移动平均模型(ARMA)、自回归整合移动平均模型(ARIMA)等。

13. 蒙特卡洛模拟模型蒙特卡洛模拟是一种概率方法,用于通过随机模拟来解决复杂的数学问题。

它通常通过重复随机抽样和运算来估计问题的解。

常见数学建模模型

常见数学建模模型

常见数学建模模型一、线性规划模型线性规划是一种常用的数学建模方法,它通过建立线性函数和约束条件,寻找最优解。

线性规划可以应用于各种实际问题,如生产调度、资源分配、运输问题等。

通过确定决策变量、目标函数和约束条件,可以建立数学模型,并利用线性规划算法求解最优解。

二、整数规划模型整数规划是线性规划的一种扩展形式,它要求决策变量为整数。

整数规划模型常用于一些离散决策问题,如旅行商问题、装箱问题等。

通过引入整数变量和相应的约束条件,可以将问题转化为整数规划模型,并利用整数规划算法求解最优解。

三、非线性规划模型非线性规划是一类目标函数或约束条件中存在非线性项的优化问题。

非线性规划模型常见于工程设计、经济优化等领域。

通过建立非线性函数和约束条件,可以将问题转化为非线性规划模型,并利用非线性规划算法求解最优解。

四、动态规划模型动态规划是一种通过将问题分解为子问题并以递归方式求解的数学建模方法。

动态规划常用于求解具有最优子结构性质的问题,如背包问题、最短路径问题等。

通过定义状态变量、状态转移方程和边界条件,可以建立动态规划模型,并利用动态规划算法求解最优解。

五、排队论模型排队论是一种研究队列系统的数学理论,可以用于描述和优化各种排队系统,如交通流、生产线、客户服务等。

排队论模型通常包括到达过程、服务过程、队列长度等要素,并通过概率和统计方法分析系统性能,如平均等待时间、系统利用率等。

六、图论模型图论是一种研究图结构和图算法的数学理论,可以用于描述和优化各种实际问题,如网络优化、路径规划、社交网络等。

图论模型通过定义节点、边和权重,以及相应的约束条件,可以建立图论模型,并利用图算法求解最优解。

七、随机模型随机模型是一种考虑不确定性因素的数学建模方法,常用于风险评估、金融建模等领域。

随机模型通过引入随机变量和概率分布,描述不确定性因素,并利用概率和统计方法分析系统行为和性能。

八、模糊模型模糊模型是一种用于处理模糊信息的数学建模方法,常用于模糊推理、模糊控制等领域。

常用数学建模方法

常用数学建模方法

数学建模常用方法以及常见题型核心提示:数学建模方法一、机理分析法从基本物理定律以及系统的结构数据来推导出模型 1.比例分析法--建立变量之间函数关系的最基本最常用的方法。

2.代数方法--求解离散问题(离散的数据、符号、图形)的主要方法。

3. 逻辑方法--是数学理论研的重要方法,对社会学和经济学等领域的实际问题,在决策,对策等学科中得到广泛应用。

4.常微分方程--解决两个变量之间的变化规律,关键是建立"瞬时变化率"的表达式。

5.偏微分方程--解决因变量与两个以上自数学建模方法一、机理分析法从基本物理定律以及系统的结构数据来推导出模型1.比例分析法--建立变量之间函数关系的最基本最常用的方法。

2.代数方法--求解离散问题(离散的数据、符号、图形)的主要方法。

3. 逻辑方法--是数学理论研的重要方法,对社会学和经济学等领域的实际问题,在决策,对策等学科中得到广泛应用。

4.常微分方程--解决两个变量之间的变化规律,关键是建立"瞬时变化率"的表达式。

5.偏微分方程--解决因变量与两个以上自变量之间的变化规律。

二、数据分析法从大量的观测数据利用统计方法建立数学模型1.回归分析法--用于对函数f(x)的一组观测值(xi,fi)I=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法。

2.时序分析法--处理的是动态的相关数据,又称为过程统计方法。

3.回归分析法--用于对函数f(x)的一组观测值(xi,fi)I=1,2,…,n,确定函数的表达式,于处理的是静态的独立数据,故称为数理统计方法。

4.时序分析法--处理的是动态的相关数据,又称为过程统计方法。

三、仿真和其他方法1.计算机仿真(模拟)--实质上是统计估计方法,等效于抽样试验。

①离散系统仿真--有一组状态变量。

②连续系统仿真--有解析达式或系统结构图。

2.因子试验法--在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构。

数学建模常用的十大算法

数学建模常用的十大算法

数学建模常用的十大算法一、线性回归算法线性回归算法(linear regression)是数学建模中最常用的算法之一,用于研究变量之间的线性关系。

它可以将变量之间的关系建模为一个线性方程,从而找出其中的关键因素,并预测未来的变化趋势。

二、逻辑回归算法逻辑回归算法(logistic regression)是一种用于建立分类模型的线性回归算法。

它可用于分类任务,如肿瘤疾病的预测和信用评级的决定。

逻辑回归利用某个事件的概率来建立分类模型,这个概率是通过一个特定的函数来计算的。

三、决策树算法决策树算法(decision tree)是一种非参数化的分类算法,可用于解决复杂的分类和预测问题。

它使用树状结构来描述不同的决策路径,每个分支表示一个决策,而每个叶子节点表示一个分类结果。

决策树算法的可解释性好,易于理解和解释。

四、k-均值聚类算法k-均值聚类算法(k-means clustering)是无监督学习中最常用的算法之一,可用于将数据集分成若干个簇。

此算法通过迭代过程来不断优化簇的质心,从而找到最佳的簇分类。

k-均值聚类算法简单易用,但对于高维数据集和离群值敏感。

五、支持向量机算法支持向量机算法(support vector machine)是一种强大的分类和回归算法,可用于解决复杂的非线性问题。

该算法基于最大化数据集之间的间隔,找到一个最佳的超平面来将数据分类。

支持向量机算法对于大型数据集的处理效率较高。

六、朴素贝叶斯算法朴素贝叶斯算法(naive bayes)是一种基于贝叶斯定理的分类算法,用于确定不同变量之间的概率关系。

该算法通过使用先验概率来计算各个变量之间的概率,从而预测未来的变化趋势。

朴素贝叶斯算法的处理速度快且适用于高维数据集。

七、随机森林算法随机森林算法(random forest)是一种基于决策树的分类算法,它利用多个决策树来生成随机森林,从而提高预测的准确性。

该算法通过随机化特征选择和子决策树的训练,防止过度拟合,并产生更稳定的预测结果。

常见数学建模模型

常见数学建模模型

常见数学建模模型一、线性规划模型线性规划是一种常见的数学优化方法,广泛应用于工程、经济、管理等领域。

线性规划模型的目标是在给定的约束条件下,求解一个线性目标函数的最优解。

其中,约束条件通常是线性等式或不等式,而目标函数是一个线性函数。

在实际应用中,线性规划模型可以用于生产计划、资源分配、运输问题等。

例如,一个工厂的生产计划中需要确定每种产品的产量,以最大化利润为目标,并且需要满足一定的生产能力和市场需求的约束条件。

二、整数规划模型整数规划是线性规划的一种扩展形式,其目标函数和约束条件仍然是线性的,但变量需要取整数值。

整数规划模型常用于离散决策问题,如项目选择、设备配置等。

例如,一个公司需要决定购买哪些设备以满足生产需求,设备的数量必须是整数,且需要考虑成本和产能的约束。

三、动态规划模型动态规划是一种求解多阶段决策问题的数学方法。

该模型通常包含一个阶段决策序列和一个状态转移方程,通过递推求解最优解。

动态规划模型被广泛应用于资源分配、路径规划、项目管理等领域。

例如,一个工程项目需要确定每个阶段的最佳决策,以最小化总成本或最大化总效益。

在每个阶段,决策的结果会影响到下一个阶段的状态和决策空间,因此需要使用动态规划模型进行求解。

四、图论模型图论是研究图和网络的数学理论。

图论模型常用于解决网络优化、路径规划、最短路径等问题。

例如,一个物流公司需要确定最佳的送货路径,以最小化运输成本或最短时间。

可以将各个地点看作图中的节点,道路或路径看作边,利用图论模型求解最优路径。

五、回归分析模型回归分析是研究变量之间关系的一种统计方法。

回归分析模型通常用于预测和建立变量之间的数学关系。

例如,一个销售公司需要预测未来销售额与广告投入、市场份额等因素的关系。

可以通过回归分析模型建立销售额与这些因素之间的数学关系,并进行预测和决策。

六、排队论模型排队论是研究排队系统的数学理论。

排队论模型常用于优化服务质量、降低排队成本等问题。

数学建模常用方法

数学建模常用方法

数学建模常用方法数学建模是利用数学工具和方法来研究实际问题,并找到解决问题的最佳方法。

常用的数学建模方法包括线性规划、非线性规划、动态规划、整数规划、图论、最优化理论等。

1. 线性规划(Linear Programming, LP): 线性规划是一种在一定约束条件下寻找一组线性目标函数的最佳解的方法。

常见的线性规划问题包括生产调度问题、资源分配问题等。

2. 非线性规划(Nonlinear Programming, NLP): 非线性规划是指当目标函数或约束条件存在非线性关系时的最优化问题。

非线性规划方法包括梯度方法、牛顿法、拟牛顿法等。

3. 动态规划(Dynamic Programming, DP): 动态规划方法是一种通过将复杂的问题分解成多个子问题来求解最优解的方法。

动态规划广泛应用于计划调度、资源配置、路径优化等领域。

4. 整数规划(Integer Programming, IP): 整数规划是一种在线性规划的基础上,将变量限制为整数的最优化方法。

整数规划常用于离散变量的问题,如设备配置、路径优化等。

5. 图论(Graph Theory): 图论方法研究图结构和图运算的数学理论,常用于解决网络优化、路径规划等问题。

常见的图论方法包括最短路径算法、最小生成树算法等。

6. 最优化理论(Optimization Theory): 最优化理论是研究寻找最优解的数学方法和理论,包括凸优化、非凸优化、多目标优化等。

最优化理论在优化问题建模中起到了重要的作用。

7. 离散数学方法(Discrete Mathematics): 离散数学方法包括组合数学、图论、概率论等,常用于解决离散变量或离散状态的问题。

离散数学方法在计算机科学、工程管理等领域应用广泛。

8. 概率统计方法(Probability and Statistics): 概率统计方法通过对已有数据进行分析和建模,提供了一种推断和预测的数学方法。

概率统计方法在决策分析、风险评估等领域起到了重要的作用。

数学建模常用模型及代码

数学建模常用模型及代码

数学建模常用模型及代码
一.规划模型
1.线性规划
线性规划与非线性规划问题一般都是求最大值和最小值,都是利用最小的有限资源来求最大利益等,一般都利用lingo工具进行求解。

点击进入传送门
2.整数规划
求解方式类似于线性规划,但是其决策变量x1,x2等限定都是整数的最优化问题。

传送门
3. 0-1规划
决策变量只能为0或者为1的一类特殊的整数规划。

n个人指派n项工作的问题。

传送门
4.非线性规划
目标函数或者存在约束条件函数是决策变量的非线性函数的最优化问题。

传送门
5.多目标规划
研究多于一个的目标函数在给定区域上的最优化。

把求一个单目标,在此单目标最优的情况下将其作为约束条件再求另外一个目标。

传送门
6.动态规划
运筹学的一个分支。

求解决策过程最优化的过程。

传送门
二. 层次分析法
是一种将定性和定量相结合的,系统化的,层次化的分析方法,主要有机理分析法和统计分析法。

传送门
三.主成分分析
指标之间的相关性比较高,不利于建立指标遵循的独立性原则,指标之间应该互相独立,彼此之间不存在联系。

传送门。

数学建模常用算法模型

数学建模常用算法模型

数学建模常用算法模型数学建模是将实际问题抽象为数学模型,并利用数学方法求解问题的过程。

在数学建模中,算法模型是解决问题的关键。

下面介绍一些常用的数学建模算法模型。

1.线性规划模型:线性规划是一种用于求解线性约束下的最优化问题的数学方法。

线性规划模型的目标函数和约束条件均为线性函数。

线性规划广泛应用于供需平衡、生产调度、资源配置等领域。

2.非线性规划模型:非线性规划是一种用于求解非线性目标函数和约束条件的最优化问题的方法。

非线性规划模型在能源优化调度、金融风险管理、工程设计等方面有广泛应用。

3.整数规划模型:整数规划是一种在决策变量取离散值时求解最优化问题的方法。

整数规划模型在网络设计、物流调度、制造安排等领域有广泛应用。

4.动态规划模型:动态规划是一种通过将问题分解为多个阶段来求解最优化问题的方法。

动态规划模型在资源分配、投资决策、路径规划等方面有广泛应用。

5.随机规划模型:随机规划是一种在目标函数和约束条件存在不确定性时求解最优化问题的方法。

随机规划模型在风险管理、投资决策、资源调度等方面有广泛应用。

6.进化算法模型:进化算法是一种通过模拟生物进化过程来求解最优化问题的方法。

进化算法模型包括遗传算法、粒子群算法、蚁群算法等,被广泛应用于参数优化、数据挖掘、机器学习等领域。

7.神经网络模型:神经网络是一种模仿人脑神经元连接和传递信息过程的数学模型。

神经网络模型在模式识别、数据分类、信号处理等领域有广泛应用。

8.模糊数学模型:模糊数学是一种用于处理不确定性和模糊信息的数学模型。

模糊数学模型在风险评估、决策分析、控制系统等方面有广泛应用。

除了以上常用的数学建模算法模型,还有许多其他的算法模型,如图论模型、动力系统模型、马尔科夫链模型等。

不同的问题需要选择合适的算法模型进行建模和求解。

数学建模算法模型的选择和应用需要根据具体的问题和要求进行。

数学建模常用模型方法总结

数学建模常用模型方法总结

数学建模常用模型方法总结数学建模是指用数学方法对实际问题进行抽象和描述,进而建立数学模型来解决实际问题的方法。

数学建模是现代科学技术的重要手段之一,它在实际应用中起着重要的作用。

下面将介绍一些常用的数学建模方法。

一、线性规划线性规划是在约束条件下求解线性目标函数的问题,广泛应用于经济、工程等领域。

它的数学模型可以表示为:$$\begin{align*}\text{maximize}\quad & \mathbf{C}^T\mathbf{X} \\\text{subject to}\quad & \mathbf{A}\mathbf{X} \leq \mathbf{b} \\& \mathbf{X} \geq \mathbf{0}\end{align*}$$其中,$\mathbf{C}$是一个列向量,$\mathbf{X}$是要优化的目标变量,$\mathbf{A}$是一个矩阵,$\mathbf{b}$是一个列向量。

二、非线性规划非线性规划是在约束条件下求解非线性目标函数的问题。

非线性规划模型往往在现实问题中具有更广泛的适用性。

非线性规划的数学模型可以表示为:$$\begin{align*}\text{maximize}\quad & f(\mathbf{X}) \\\text{subject to}\quad & \mathbf{g}(\mathbf{X}) \leq\mathbf{0} \\& \mathbf{h}(\mathbf{X}) = \mathbf{0}\end{align*}$$其中,$f(\mathbf{X})$是一个目标函数,$\mathbf{g}(\mathbf{X})$是不等式约束条件,$\mathbf{h}(\mathbf{X})$是等式约束条件。

三、动态规划动态规划是一种通过将问题分解成子问题的方式来求解复杂问题的方法。

它通常适用于具有最优子结构性质的问题。

数学建模常用算法

数学建模常用算法

数学建模常用算法数学建模是指将实际问题转化为数学模型,并通过数学方法进行求解的过程。

在数学建模中,常用的算法有很多种,下面将介绍一些常见的数学建模算法。

1.最优化算法:-线性规划算法:如单纯形法、内点法等,用于求解线性规划问题。

-非线性规划算法:如最速下降法、牛顿法等,用于求解非线性规划问题。

-整数规划算法:如分支定界法、割平面法等,用于求解整数规划问题。

2.概率统计算法:-蒙特卡洛模拟:通过模拟随机事件的方式,得出问题的概率分布。

-贝叶斯统计:利用先验概率和条件概率,通过数据更新后验概率。

-马尔可夫链蒙特卡洛:用马尔可夫链的方法求解复杂的概率问题。

3.图论算法:-最短路径算法:如迪杰斯特拉算法、弗洛伊德算法等,用于求解两点之间的最短路径。

-最小生成树算法:如普里姆算法、克鲁斯卡尔算法等,用于求解图中的最小生成树。

- 最大流最小割算法: 如Edmonds-Karp算法、Dinic算法等,用于求解网络流问题。

4.插值和拟合算法:-多项式插值:如拉格朗日插值、牛顿插值等,用于通过已知数据点拟合出多项式模型。

-最小二乘法拟合:通过最小化实际数据与拟合模型之间的差异来确定模型参数。

-样条插值:通过使用多段低次多项式逼近实际数据,构造连续的插值函数。

5.遗传算法和模拟退火算法:-遗传算法:通过模拟自然选择、遗传变异和交叉等过程,优化问题的解。

-模拟退火算法:模拟固体退火过程,通过随机策略进行,逐步靠近全局最优解。

6.数据挖掘算法:- 聚类算法: 如K-means算法、DBSCAN算法等,用于将数据分为不同的类别。

-分类算法:如朴素贝叶斯算法、决策树算法等,用于通过已知数据的类别预测新数据的类别。

- 关联分析算法: 如Apriori算法、FP-growth算法等,用于发现数据集中的关联规则。

以上只是数学建模中常用的一些算法,实际上还有很多其他算法也可以应用于数学建模中,具体使用哪种算法取决于问题的性质和要求。

数学建模常用算法模型

数学建模常用算法模型

数学建模常用算法模型在数学建模中,常用的算法模型包括线性规划、整数规划、非线性规划、动态规划、图论算法以及遗传算法等。

下面将对这些算法模型进行详细介绍。

1.线性规划:线性规划是一种用于求解最优化问题的数学模型和解法。

它的目标是找到一组线性约束条件下使目标函数取得最大(小)值的变量取值。

线性规划的常用求解方法有单纯形法、内点法和对偶理论等。

2.整数规划:整数规划是一种求解含有整数变量的优化问题的方法。

在实际问题中,有时变量只能取整数值,例如物流路径问题中的仓库位置、设备配置问题中的设备数量等。

整数规划常用的求解方法有分支界定法和割平面法等。

3.非线性规划:非线性规划是一种求解非线性函数优化问题的方法,它在实际问题中非常常见。

与线性规划不同,非线性规划的目标函数和约束函数可以是非线性的。

非线性规划的求解方法包括牛顿法、拟牛顿法和全局优化方法等。

4.动态规划:动态规划是一种用于解决决策过程的优化方法。

它的特点是将问题划分为一系列阶段,然后依次求解每个阶段的最优决策。

动态规划常用于具有重叠子问题和最优子结构性质的问题,例如背包问题和旅行商问题等。

5.图论算法:图论算法是一类用于解决图相关问题的算法。

图论算法包括最短路径算法、最小生成树算法、网络流算法等。

最短路径算法主要用于求解两点之间的最短路径,常用的算法有Dijkstra算法和Floyd-Warshall算法。

最小生成树算法用于求解一张图中连接所有节点的最小代价树,常用的算法有Prim算法和Kruskal算法。

网络流算法主要用于流量分配和问题匹配,例如最大流算法和最小费用最大流算法。

6.遗传算法:遗传算法是一种借鉴生物进化原理的优化算法。

它通过模拟生物的遗传、变异和选择过程,不断优化问题的解空间。

遗传算法适用于对问题解空间有一定了解但难以确定最优解的情况,常用于求解复杂的组合优化问题。

总结起来,数学建模中常用的算法模型包括线性规划、整数规划、非线性规划、动态规划、图论算法以及遗传算法等。

数学建模方法及其应用

数学建模方法及其应用

数学建模方法及其应用
数学建模是一种通过建立数学模型来解决现实问题的方法。

它可以应用于各种领域,包括物理学、工程学、经济学、环境科学、生物学等。

以下是一些常用的数学建模方法及其应用:
1.微分方程模型:用于描述动态系统的变化规律,包括传热、传质、机械运动等。

应用领域包括物理学、化学工程、生态学等。

2.优化模型:用于最大化或最小化某个目标函数,如生产成本最小化、资源利用最大化等。

应用领域包括供应链管理、金融风险管理、交通规划等。

3.图论模型:用于描述图形结构和网络连接关系,包括最短路径、最小生成树、网络流等。

应用领域包括电力系统优化、社交网络分析、交通路线规划等。

4.概率统计模型:用于描述随机事件和概率分布,包括回归分析、假设检验、时间序列分析等。

应用领域包括经济预测、医学统计、风险评估等。

5.离散事件模型:用于描述离散事件的发生和演化过程,包括排队论、蒙特卡洛模拟等。

应用领域包括交通流量预测、物流调度、金融风险评估等。

这只是数学建模的一小部分方法和应用,实际上还有很多其他方法和领域。

数学建模可以帮助解决实际问题,优化决策,提高效率和效果。

数学建模常用模型

数学建模常用模型

1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现)4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab 进行处理)。

数学建模系列-常用模型

数学建模系列-常用模型

性能,并根据评估结果进行模型优化或调整。
03
CATALOGUE
支持向量机模型
模型定义
线性分类器
支持向量机是一种线性分类器,通过找到一个超平面来分隔两个类 别的数据点。
核函数
支持向量机使用核函数将输入空间映射到一个高维特征空间,使得 线性分类器在高维空间中更容易找到分隔超平面。
间隔最大化
支持向量机旨在最大化间隔,即最小化分类错误的距离,以提高分类 器的泛化能力。
模型建立
数据预处理
对数据进行标准化或归一化处理,以确保不同特征的尺度不会影 响模型的性能。
核函数选择
选择合适的核函数,如线性核、多项式核、径向基函数等,以适 应不同的数据分布和问题类型。
参数调整
调整模型参数,如惩罚系数和核函数的参数,以获得最佳的分类 效果。
模型应用
二分类问题
支持向量机适用于解决二分类问题,如垃圾邮件分类、人脸识别 等。
05
CATALOGUE
主成分分析模型
模型定义
主成分分析(PCA)是一种常用的多 元统计分析方法,它通过线性变换将 多个相关变量转化为少数几个不相关 的变量,这些不相关的变量称为主成 分。
主成分分析旨在减少数据集的维度同 时保留数据集中的主要变化模式,以 便更好地理解数据的结构和关系。
模型建立
确定数据集
模型应用
总结词
K-均值聚类模型广泛应用于数据挖掘、模式识别、图 像处理等领域,可以用于市场细分、异常检测、分类 问题等。
详细描述
K-均值聚类模型的应用非常广泛,例如在市场细分中 ,可以将消费者按照购买行为、偏好等特征进行分类 ,帮助企业更好地理解客户需求和市场趋势。在异常 检测中,可以通过观察聚类结果中的离群点,发现数 据中的异常值。在图像处理中,可以将图像分割成不 同的区域,对每个区域进行特征提取和分析。此外, K-均值聚类模型还可以用于分类问题中,将数据点划 分为不同的类别。

数学建模的建模方法

数学建模的建模方法

数学建模的建模方法
数学建模的建模方法有以下几种常用的方法:
1. 数学优化模型:通过建立一个目标函数和一系列约束条件来描述问题,并利用数学优化方法寻找使目标函数最优的解。

2. 方程模型:将问题转化为一组方程或不等式,利用数学方法求解得到结果。

3. 统计模型:基于一定的统计原理和假设,利用统计方法来分析和预测数据、进行参数估计和假设检验等。

4. 动态模型:将问题看作是一个动态的过程,并建立一套描述系统演化过程的方程组,以预测未来状态和行为。

5. 分段模型:将系统划分为多个不同的阶段或状态,并对每个阶段或状态建立适当的模型,再通过合并各个模型的结果来得到整体的解析。

6. 离散模型:将问题中的连续变量离散化为一组有限的状态或取值,并用状态转移矩阵或概率分布描述变量之间的关系和演化规律。

7. 系统动力学模型:基于对系统结构和行为的理解,建立一系列动态方程来描述系统各种因素之间的相互作用和演化过程。

8. 随机过程模型:用概率论和随机过程理论来描述系统的不确定性和随机性,并对系统的平均行为和波动性进行分析和预测。

以上仅是一些常用的数学建模方法,实际建模过程中可以根据具体问题的特点选择合适的建模方法,或者结合多种方法进行综合建模。

常用数学建模方法及实例

常用数学建模方法及实例

常用数学建模方法及实例数学建模是将实际问题转化为数学模型,通过数学方法进行求解和分析的过程。

常用的数学建模方法包括线性规划、整数规划、非线性规划、图论、动态规划等。

一、线性规划线性规划是一种用于求解线性约束下目标函数的最优值的方法。

它常用于资源分配、生产计划、供应链管理等领域。

例1:公司有两个工厂生产产品A和产品B,两种产品的生产过程需要使用原材料X和Y。

产品A和产品B的利润分别为10和8、工厂1每小时生产产品A需要1个单位的X和2个单位的Y,每小时生产产品B需要2个单位的X和1个单位的Y。

工厂2每小时生产产品A需要2个单位的X和1个单位的Y,每小时生产产品B需要1个单位的X和3个单位的Y。

公司给定了每种原材料的供应量,求使公司利润最大化的生产计划。

二、整数规划整数规划是线性规划的一种扩展,要求变量的取值为整数。

整数规划常用于离散决策问题。

例2:公司有5个项目需要投资,每个项目的投资金额和预期回报率如下表所示。

公司有100万元的投资资金,为了最大化总回报率,应该选择哪几个项目进行投资?项目投资金额(万元)预期回报率1207%2306%3409%4104%5508%三、非线性规划非线性规划是一种求解非线性目标函数下约束条件的最优值的方法。

它广泛应用于经济、金融和工程等领域。

例3:公司通过降低售价和增加广告费用来提高销售额。

已知当售价为p时,销量为q=5000-20p,广告费用为a时,销售额为s=p*q-2000a。

已知售价的范围为0≤p≤100,广告费用的范围为0≤a≤200,公司希望最大化销售额,求最优的售价和广告费用。

四、图论图论是一种用于研究图(由节点和边组成)之间关系和性质的数学方法,常用于网络分析、路径优化、社交网络等领域。

例4:求解最短路径问题。

已知一个有向图,图中每个节点表示一个城市,每条边表示两个城市之间的道路,边上的权重表示两个城市之间的距离。

求从起始城市到目标城市的最短路径。

五、动态规划动态规划是一种通过将问题划分为子问题进行求解的方法,常用于求解最优化问题。

数学建模30种经典模型matlab

数学建模30种经典模型matlab

一、概述数学建模是数学与实际问题相结合的产物,通过建立数学模型来解决现实生活中的复杂问题。

Matlab作为一个强大的数学计算工具,在数学建模中具有重要的应用价值。

本文将介绍30种经典的数学建模模型,以及如何利用Matlab对这些模型进行建模和求解。

二、线性规划模型1. 线性规划是数学建模中常用的一种模型,用于寻找最优化的解决方案。

在Matlab中,可以使用linprog函数对线性规划模型进行建模和求解。

2. 举例:假设有一家工厂生产两种产品,分别为A和B,要求最大化利润。

产品A的利润为$5,产品B的利润为$8,而生产每单位产品A 和B分别需要8个单位的原料X和10个单位的原料Y。

此时,可以建立线性规划模型,使用Matlab求解最大化利润。

三、非线性规划模型3. 非线性规划是一类更加复杂的规划问题,其中目标函数或约束条件存在非线性关系。

在Matlab中,可以使用fmincon函数对非线性规划模型进行建模和求解。

4. 举例:考虑一个有约束条件的目标函数,可以使用fmincon函数在Matlab中进行建模和求解。

四、整数规划模型5. 整数规划是一种特殊的线性规划问题,其中决策变量被限制为整数。

在Matlab中,可以使用intlinprog函数对整数规划模型进行建模和求解。

6. 举例:假设有一家工厂需要决定购物哪种机器设备,以最大化利润。

设备的成本、维护费用和每台设备能生产的产品数量均为已知条件。

可以使用Matlab的intlinprog函数对该整数规划模型进行建模和求解。

五、动态规划模型7. 动态规划是一种数学优化方法,常用于多阶段决策问题。

在Matlab 中,可以使用dynamic programming toolbox对动态规划模型进行建模和求解。

8. 举例:考虑一个多阶段生产问题,在每个阶段都需要做出决策以最大化总利润。

可以使用Matlab的dynamic programming toolbox对该动态规划模型进行建模和求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章常用数学模型及建模方法本章介绍几类常见的数学模型:轮廓模型、拟合模型、机理模型、层次分析模型、优化模型和系统仿真模型。

通过介绍引入数学建模的基本思想和方法,使得我们在面对实际问题时有欲望、有信心、有能力运用自己学过的数学去尝试地解决问题。

本章用到的数学知识都比较粗浅,目的是降低初学数学应用的难度,一方面使我们马上看到数学是如何被应用于如此广泛的自然科学和社会科学领域,另一方面将激发我们学习数学研究数学的意识。

3.1 量纲分析与轮廓模型在生活中,人们常常需要对自己未知的、不熟悉的事务做判断,根据已有经验做估计。

例如,人的身高增加5%,做衣服的用料将增加多少?商品由大包装变为小包装,成本将增加多少?等等诸如此类的问题。

在回答这些问题时,人们都有意或无意地使用了轮廓模型。

本节从物理学中量纲分析开始接触轮廓模型。

一. 量与量纲1. 量及其度量10. 模型所涉及的主要是量不是数20. 量(物理量)可以分为:基本量:基础的,独立的量: 长度、质量、时间、…导出量:由基本量通过自然规律导出的量: 速度、加速度、力、…30. 量的度量体系—单位制:基本量及其度量单位国际单位(SI)制基本量名称单位符号长度 L 米 m 质量 M 千克 kg时间 T 秒 s 电流强度 I 安培 A温度θ开尔文 K 光强 J 坎德拉 cd物质的量 N 摩尔 mol导出量名称单位符号力牛顿 N(kgms-2)能量焦耳 J(kgm2s-2)功率瓦特 W(kgm2s-3)频率赫兹 Hz(s-1)压强帕斯卡 Pa(kgm-1s-2)2. 量纲:10. 量纲:一个物理量Q一般都可以表示为基本量乘幂之积。

称这个乘幂之积的表达式[Q]=Lα MβTγ Iηθδ J ξ Nζ为该物理量对选定的这组基本量的量纲积或量纲表达式。

αβγηδξζ称为量纲指数。

例. [长度]=L、[质量]=M、[时间]=T、[面积]=L2 [体积]=L3、 [速度]=LT-1,[加速度]=LT-2、[力]=MLT-2, [能量]=ML2T-2.注 1. 物理量的量纲只依赖于基本量的选择,独立于单位的确定。

2. 对于某个物理量Q, 如果 [Q]=Lα MβTγ Iηθδ J ξ Nζ,有α=β=γ=η=δ=ξ=ζ=0,则称之为无量纲量,记为[Q]=1 。

它将不依赖于选定的基本量。

3. 无量纲量不一定是无单位的量。

20. 量纲齐次法则一个物理规律的数学表达式中每一个加项的量纲必须是一致的,或者都是无量纲量。

例如, 牛顿第二定律 F=ma, [F]=MLT-2, [ma]=MLT-2满足量纲齐次法则的物理规律与这个规律所涉及的物理量的量纲单位的选择无关。

二. 量纲分析量纲分析是在物理领域中建立数学模型的方法,利用物理量的量纲提供的信息,根据量纲齐次法则确定物理量之间的关系。

例1 建模描述单摆运动的周期问题:质量为m 的小球系在长度为 l 的线的一端, 铅垂悬挂。

小球稍稍偏离平衡位置后将在重力的作用下做往复的周期运动。

分析小球摆动周期的规律。

假设:1. 平面运动,忽略地球自转; 2.忽略可能的磨擦力;3. 忽略空气阻力; 4.忽略摆线的质量和变形.分析建模10. 列出有关的物理量运动周期 t ,摆线长 l ,摆球质量 m ,重力加速度 g ,振幅 x. 20. 写出量纲: [t]=T ,[l]=L ,[m]=M ,[g]=LT -2,[x]=1. 30. 形式上写出规律: F(t, l, m, g, x)= 0.40. 写出规律中加项 π 的形式: π=t y1 l y2 m y3 g y4 x y550. 计算 π 的量纲: [π] = T y1 L y2 M y3 (LT -2)y4= T y1-2y4 L y2 + y4 M y360. 应用量纲齐次原理: 由[π] = 1,可得关于y i (i =1, 2, …, 5)的方程组 y 1 – 2y 4 = 0 y 2 + y 4 = 0 y 3 = 0 y 5 任意70. 解方程组: 解空间的维数是二维。

对自由变量(y 4,y 5)选取基底(1,0)和(0,1)。

关于y 1, y 2, y 3 求解方程组可得基础解系{(2, -1, 0, 1, 0)T , (0, 0, 0, 0, 1)T } 80. 求π: 将方程的解代入加项 π 的表达式,可得 π1 = t 2 l -1g , π2 = x .90. 建模: 单摆运动的规律应为 f (π1, π2) = 0,解出 π1 可得 π1 = k 1(π2),即有 g l x k t /)(=.100. 检验: ① 周期与 质量 m 无关m=390g m=237gl = 276cm 3.327s 3.350s l = 226cm 3.058s 3.044s② 周期与振幅 x (l=276cm, m=390g)x (度) 8.34 13.18 18.17 23.31 28.71 33.92 39.99 46.62k (x) 6.346 6.346 6.354 6.354 6.388 6.388 6.471 6.524可见: 当 x < 150 时, k( x ) ≈ 2 π。

当 x ≥ 150 时,k(x) 与 x 有关。

注1:上面推导过程一般化,进一步得到如下著名的物理定理。

Buckingham π 定理: 物理量的函数关系 F(x 1, ⋯,x k ) = 0 是量纲齐次的, 当且仅当它可以表示成形式 f(π1, ⋯, πm ) = 0, 其中 ijj k j i x απ1=∏=,i=1,2,…,m < k,为 x j 的无量纲乘积, 即 [πi ] = 1.注2:在《常微分方程》—(丁同仁、李承治编)书中,通过建立单摆方程 0sin 22=+x lgdt x d讨论单摆运动规律,得到在初始条件: x (t 0)= x 0, dx/dt(t 0)=0 下,单摆振动周期 T=T(x 0)满足规律, 当 x 0→0 时,T(x 0)→ 2π(l/g)1/2 当 x 0→π 时,T(x 0 ) → ∞。

这个讨论比较复杂,最后得到的单摆振动周期规律与上面利用量纲齐次法则得到的规律基本一致。

三. 量的比例关系与轮廓模型1. 量的比例关系. 因为模型表达了不同量纲的量之间的转换规律,又由量纲分析原理可知:不同量纲的量的乘幂之间一定存在比例关系。

所以在同一模型中,若量 x 1和 x 2的量纲分别为 [x 1] = X α 和 [x 2] = X β ,则一定有 x 1=k x 2 α/ β举例例 1. 正立方体:棱长 l 0=a ,底面周长 l 1 = 4a ,底面对角线长a l 22=,对角线长a l 33=;表面积 S 1 = 6a 2,底面面积 S 2 = a 2, 对角面面积 222a S =;体积 V 1 = a 3, 结论:在简单的几何体中,相应部位的面积与相应部位长度的平方呈正比;S i ∝ L j 2 即有S i = k 1 L j 2相应部位的体积与相应部位长度的立方呈正比;V i ∝ L j 3 即有V i = k 2L j 3相应部位的体积与相应部位面积的3/2次方呈正比;V i ∝ S j 3/2 即有V i = k 3S j 3/2。

例2.长方体:棱长 (a, b, c),总棱长L 1=4(a+b+c), 底面周长 L 2=2(a+b),对角线长2223c b a l ++=表面积 S 1=2(ab+bc+ca), 底面面积 S 2= ab, 体积 V 1=abc, 四棱锥体积 V 2=1/3 abc.若长方体 II 有棱长(a*, b*, c*), 且a*/a = b*/b = c*/c = m.则有L 1*= mL 1, L 2*=mL 2, L 3*= mL 3; S 1*= m 2S 1, S 2*= m 2S 2; V 1*= m 3V 1, V 2*= m 3V 2.于是可得S i */L k *2=S i /L k 2; V i */L k *3=V i / L k 3; V i */S k *3/2=V i /S k 3/2.即得 S=k 1L 2, V=k 2L 3,V=k 3S 3/2. 结论:在相似的几何体中,相应部位的面积与相应部位长度的平方呈正比; S i ∝ L j 2, 相应部位的体积与相应部位长度的立方呈正比; V i ∝ L j 3相应部位的体积与相应部位面积的3/2次方呈正比;V i ∝ S j 3/2。

同样的结论对抽象几何体一般也成立例3. 生活中的长度、面积和体积。

10. 纽约黑鲈的体重W 和体长LW(ozs) 17 16 17 23 26 27 41 49 L(in) 12.50 12.63 12.63 14.13 14.50 14.50 17.25 17.75 L 3 1953 2015 2015 2821 3049 3049 5133 5592W/L 3 .0087 .0079 .0084 .008 .0085 .0089 .008 .008820. 人的体重W 和身高LW(kg) 12 17 22 35 48 54 66 75 L(cm) 86 108 116 135 155 167 178 185 L 3(103cm 3) 636 1260 1560 2460 3724 4657 5640 6332 W/L 3 .0189 .0135 .0141 .0142 .0129 .0116 .0117 .0118 30 蜥蜴的体长与体重小蜥蜴体长15cm,体重为15g, 当它长到20cm 长时体重为多少? (20g, 25g, 35g, 40g)以上的例子表明,不少的动物的体重w 与体长l 的立方呈正比, 即 w ∝ l 3. 注意自然界中还存在其它情况。

40 老虎的身长(不含头尾)与体重 注意到老虎身体的躯干明显下垂。

视老虎的躯干为长度为l ,直径为d ,截面面积为s 的圆柱体。

设老虎体重为 w 。

由弹性力学的研究结果知,动物在自身体重w 作用下躯干的最大下垂度 b ∝ wl 3/(sd 2)。

因为 w ∝ sl, 所以 b/l ∝ l 3/d 2. 称 b/l 为躯干的相对下垂度,它应视为与动物尺寸无关的常数。

于是 d 2 ∝ l 3, 再考虑到 w ∝ sl, s ∝ d 2, 结果得到 w ∝ l 4,即老虎的体重w 与体长l 的4次方呈正比。

2. 轮廓模型直接利用不同量纲的量之间的比例关系所得到的模型称之为轮廓模型。

上面已经介绍了若干个最简单的轮廓模型。

下面进一步应用轮廓模型解决实际问题。

例4. 商品的包装与成本商 品 价格 含量 单价 价格 含量 单价高露洁牙膏 15.7元 190g 8.3元/100g 5.8元 60g 9.7元/100g 诗芬洗发液 35.9元 400ml 9元/100ml 23.1元 200ml 11.5元/100ml富丽饼干 8.8元 450g 1.9元/100g 3.0元 150g 2元/100g奇宝饼 5.9元 250g 2.3元/100g 4.3元 150g 2.87元/100g建模分析为什么小包装的商品比大包装的要贵一些?假设:10.包装只计装包工时和包装材料。

相关文档
最新文档