4-2流体动力学 流体力学
李玉柱流体力学课后题标准答案第四章
第四章 流体动力学基础4-1 设固定平行平板间液体的断面流速分布为1/7max /2/2u B y u B -⎛⎫= ⎪⎝⎭,0y ≥总流的动能修正系数为何值?解:172max max 0127282B A A B y v ud u dy u B A B ⎛⎫- ⎪=== ⎪⎝⎭⎰⎰因为31.0A A u d A v α∆⎛⎫≈+⎪⎝⎭⎰ u u v ∆=-所以 172233821.0 1.01 1.0572B B A A B y u v d dy B A v B α-⎛⎫⎛⎫-- ⎪⎛⎫⎪≈+=+⋅-= ⎪⎪ ⎪⎝⎭ ⎪⎝⎭⎝⎭⎰⎰4-2 如图示一股水流自狭长的缝中水平射出,其厚度00.03m δ=,平均流速V 0=8m/s ,假设此射流受重力作用而向下弯曲,但其水平分速保持不变。
试求(1)在倾斜角45θ=o 处的平均流速V ;(2)该处的水股厚度δ。
解:(1)由题意可知:在45度水流处,其水平分速度仍为8m/s,由勾股定理可得:V=︒45sin 8=11.31m/s (2)水股厚度由流量守恒可得:VD D V δδ=000,由于缝狭长,所以两处厚度近似相等,所以000.0380.02111.31V V δδ⨯===m 。
4-3 如图所示管路,出口接一收缩管嘴,水流射人大气的速度V 2=20m/s ,管径d 1=0.1m ,管嘴出口直径d 2=0.05m ,压力表断面至出口断面高差H =5m ,两断面间的水头损失为210.5(/2)V g 。
试求此时压力表的读数。
解:取压力表处截面为截面1-1,收缩管嘴处截面为截面2-2,选择两截面包围的空间为控制体,由实际流体的恒定总流能量方程得:2211221222wV p V p z z h g g g g ρρ'++=+++, 由连续性方程2211V A V A =可得1-1断面流速s m 51=V ,由上述两个方程可得压力表的读数(相对压强):222112212wV V p p z z h g g ρ⎛⎫-'-=+-+ ⎪⎝⎭, 上式计算结果为:2.48at 。
4工程流体力学 第四章流体动力学基础
Fy F V•n dS = -V0 dS
= =
=
ρ vV n dS ρ vV n dS ρ vV n dS ρ vV n dS
CS
S0
S1
S2
v = -V0 sin
0
0
§4-2 对控制体的流体力学积分方程(续18)
由于V1,V2在y方向上无分量,
忽略粘性摩擦力,控制体所受表面力包括两
端面及流管侧表面所受的压力,沿流线方向总压
力为:
FSl
pS p δpS δS
p
δp 2
δS
Sδ p 1 δpδS 2
流管侧表面所受压力在流 线方向分量,平均压强
§4-2 对控制体的流体力学积分方程(续27z)
控制体所受质量力只有重力,沿流线方向分
Q2
Q0 2
1 cosθ
注意:同一个问题,控制体可以有不同的取法,
合理恰当的选取控制体可以简化解题过程。
§4-2 对控制体的流体力学积分方程(续23)
微元控制体的连续 方程和动量方程
从流场中取一段长度为l 的流管元,因
为流管侧面由流线组成,因此无流体穿过;流 体只能从流管一端流入,从另一端流出。
CS
定义在系统上 的变量N对时 间的变化率
定义在固定控制 体上的变量N对 时间的变化率
N变量流出控制 体的净流率
——雷诺输运定理的数学表达式,它提供了对
于系统的物质导数和定义在控制体上的物理量
变化之间的联系。
§4-2 对控制体的流体力学积分方程 一、连续方程
在流场内取一系统其体积为 ,则系统内
的流体质量为:
根据物质导数的定义,有:
流体力学基础知识
目 录 Contents
一 绪论 二 流体静力学 三 流体运动学 四 流体动力学
第一章: 绪论
1.1 流体力学的研究对象
流体力学是研究流体平衡与运动的规律以及它与固 体之间相互作用规律的科学。
其中流体包括液体和气体,相对于固体,它在力学 上表现出以下特点: 流体不能承受拉力。 流体在宏观平衡状态下不能承受剪切力。 对于牛顿流体(如水、空气等)其切应力与应变的时间 变化率成比例,而对弹性体(固体)来说,其切应力则 与应变成比例。
• 数值方法 计算机数值方法是现代分析手段中发展最快的方法之一
1.4 流体力学的发展史
• 第一阶段(16世纪以前):流体力学形成的萌芽阶段 • 第二阶段(16世纪文艺复兴以后-18世纪中叶)流体力学
成为一门独立学科的基础阶段 • 第三阶段(18世纪中叶-19世纪末)流体力学沿着两个方
向发展——欧拉、伯努利 • 第四阶段(19世纪末以来)流体力学飞跃发展
体静力学的基础
第二阶段(16世纪文艺复兴以后-18世纪中叶) 流体力学成为一门独立学科的基础阶段
• 1586年 斯蒂芬——水静力学原理 • 1650年 帕斯卡——“帕斯卡原理” • 1612年 伽利略——物体沉浮的基本原理 • 1686年 牛顿——牛顿内摩擦定律 • 1738年 伯努利——理想流体的运动方程即伯努利方程 • 1775年 欧拉——理想流体的运动方程即欧拉运动微分方
1.2 连续介质模型
• 连续介质 流体微元——具有流体宏观特性的最小体积的流体团
• 理想流体 不考虑粘性的流体
• 不可压缩性 ρ=c
1.3 流体力学的研究方法
理论分析方法、实验方法、数值方法相互配合,互为补充
流体力学与热工学基础4-2 流体流动的两种形态
❖ 问题设计: 1、什么是显名的雷诺试验,它说明什么问题? 2、如何区别液体的流动是平稳的层流还是紊乱的湍流?
4-2 流体流动的两种形态
一、雷诺试验
流体流动的两 种形态
层流: 流速较小时,流
线沿流动方向相 互平行,呈分层 流动状态(无横 向运动)
紊流: 流速较大时,
流线相互混杂, 出现横向运动, 流层发生质量和 能量交换。
临界流速——流体运动状态发生改变的平均流速 上临界流速——层流变紊流的临界流速 下临界流速——紊流变层流的临界流速
二、流态判别准则
一般: vc vc'
对管流:vc , vc' f (d , v) ,写成无量纲形式:
Re c
vc d
——临界雷诺数。
流态判别准则——雷诺准则数Re 对管内流动: Re —Re—'c 紊23流20; Re R—e—c 层23流20;
对非圆形截管道,d取水力半径dH:
dH
4F S
F——过流断面面积;
S——过流断面上流体与固体壁面接触的长度。
对矩形截面管:
dH
4ab 2(a b)
2ab ab
Re的物理意义:
Re
vd
惯性力 粘滞力
流体力学 4-2流体动力学
问题分析:
A断面:zA =0 m pA =1.96×105Pa vA=? B断面:zB =3 m pB =? C断面:zC =3.2m pC =0 水头损失:hwA-C=0.6m vC=?
d A 0.05m
d C 0.02m
vB=? d B 0.05m
hwA-B=0.5m
hwB-C=0.1m
动能修正系数的物理意义:总流有效断面上的实际动能对按 平均流速算出的假想动能的比值。α是由于断面上速度分 布不均匀引起的,不均匀性愈大,α值越大。 在圆管紊流运动中 α=1.05 ~ 1.10 ,在圆管层流运动中, α=2。在工程实际计算中,由于流速水头本身所占的比例 较小,故一般常取α=1。
2 2 p1 u1 p2 u2 ' z1 z2 h w12 g 2g g 2g
上面计算过程中基准面为A断面,压力为相对压力, 当选取C断面为基准面,压力取绝对压力时: A断面:zA =-3.2m pA =2.97×105Pa vA=?
B断面:zB =-0.2m pB=? C断面:zC = 0m vB=? pC = 1.01×105Pa vC=?
解得:
vA vB 2.89m / s vC 18.06m / s pB 262700Pa (绝对压力) pB 161700Pa (相对压力) Q vC AC 5.68L / s
§4-2 实际流体总流的伯努利方程
一、实际流体总流的伯努利方程
对于实际(粘性)流体,流动时存在
① 流体间的摩擦阻力
② 某些局部管件引起的附加阻力
因而导致实际流体流动过程中,其总机械能沿
流动方向不断减小。如果实际流体从截面1流向截
面2,则截面2处的总机械能必定小于截面1处的总
李玉柱流体力学课后题答案-第四章
第四章 流体动力学基础4-1 设固定平行平板间液体的断面流速分布为1/7max /2/2u B y u B -⎛⎫= ⎪⎝⎭,0y ≥总流的动能修正系数为何值?解:172max max 0127282B A A B y v ud u dy u B A B ⎛⎫- ⎪=== ⎪⎝⎭⎰⎰因为31.0A A u d A v α∆⎛⎫≈+⎪⎝⎭⎰ u u v ∆=-所以 172233821.0 1.01 1.0572B B A A B y u v d dy B A v B α-⎛⎫⎛⎫-- ⎪⎛⎫⎪≈+=+⋅-= ⎪⎪ ⎪⎝⎭ ⎪⎝⎭⎝⎭⎰⎰4-2 如图示一股水流自狭长的缝中水平射出,其厚度00.03m δ=,平均流速V 0=8m/s ,假设此射流受重力作用而向下弯曲,但其水平分速保持不变。
试求(1)在倾斜角45θ=o 处的平均流速V ;(2)该处的水股厚度δ。
解:(1)由题意可知:在45度水流处,其水平分速度仍为8m/s,由勾股定理可得:V=︒45sin 8=11.31m/s (2)水股厚度由流量守恒可得:VD D V δδ=000,由于缝狭长,所以两处厚度近似相等,所以000.0380.02111.31V V δδ⨯===m 。
4-3 如图所示管路,出口接一收缩管嘴,水流射人大气的速度V 2=20m/s ,管径d 1=0.1m ,管嘴出口直径d 2=0.05m ,压力表断面至出口断面高差H =5m ,两断面间的水头损失为210.5(/2)V g 。
试求此时压力表的读数。
解:取压力表处截面为截面1-1,收缩管嘴处截面为截面2-2,选择两截面包围的空间为控制体,由实际流体的恒定总流能量方程得:2211221222wV p V p z z h g g g g ρρ'++=+++, 由连续性方程2211V A V A =可得1-1断面流速s m 51=V ,由上述两个方程可得压力表的读数(相对压强):222112212w V V p p z z h g g ρ⎛⎫-'-=+-+ ⎪⎝⎭,上式计算结果为:2.48at 。
工程流体力学知识点总结
工程流体力学知识点总结一、工程流体力学的内容1.流体力学的基本概念工程流体力学是一门重要的工程学科,它是研究运动的流体分布特性、流动过程的动力学特征、流体受力的控制机理以及提供理论支持的工程应用理论。
它综合了物理学、数学、材料学和力学等知识,它包括流体动力学、传热传质、流体力学和流体机械等方面的研究内容。
2.流体动力学流体动力学是流体运动的力学理论,它研究的是流体中的物理量,如流速、压力、密度等的变化和流体运动的规律。
它是流体物理学的基本内容,是工程流体力学的基础理论。
它的研究内容主要包括流体的静力学、流体的流变力学、流体的流动特性、流体的热力学性质、流体的动力学和流体的流动特性等。
3.传热传质传热传质是研究流体在传热和传质的过程中热量和物质的传递机理的一门学科。
它包括流体的热传导、热对流和热辐射、物质的传质、物质输运等方面的内容。
4.流体力学流体力学是一门综合学科,是研究流体的能量、动量和位置变化的动力学特性及其应用的学科。
流体力学研究的内容包括流体的流量和压力、流体的质量和动量、流体的流速、流体的流动特性等。
它主要研究的是流体受力的特性和运动特性,是工程流体力学中最重要的学科之一。
5.流体机械的理论流体机械是研究利用流体动力驱动转子的机械装置的科学,包括机械装置的流体的传动特性、涡轮机械和泵的流量控制、流体中的变频调速以及比热容与流场等。
它是工程流体力学中的重要内容,也是工程设计的重要基础。
二、工程流体力学的应用工程流体力学的基本理论可以应用于各种工程中,如机械制造、空气动力学、海洋技术、热能技术、新能源技术、能源储存和节能技术、化工反应技术等。
它在社会经济建设中发挥着重要作用,可以为社会生产提供良好的环境保护技术手段,也可以为工程设计和技术开发提供依据。
流体力学的基本原理
流体力学的基本原理流体力学是研究流体静力学和流体动力学的学科,旨在了解和分析流体的行为和特征。
它的研究对象包括气体和液体,在工程学、物理学和地球科学等领域都有着广泛的应用。
本文将探讨流体力学的基本原理,以期帮助读者全面了解这一领域的知识。
一、流体力学的基本概念流体力学研究的是流体的运动,而流体的运动可以分为两种情况:一种是静态流体,即流体处于静止状态;另一种是动态流体,即流体具有速度场分布的运动状态。
流体力学通过数学方法和实验研究对流体的运动行为进行预测和描述。
二、连续介质假设在进行流体力学的研究中,我们通常采用连续介质假设。
连续介质假设认为流体是由无数微观粒子组成的,这些粒子之间的相互作用力可以忽略不计。
基于这个假设,我们可以应用微分方程和积分方程进行流体的运动描述和分析。
三、质量守恒定律质量守恒定律是流体力学中的基本原理之一。
根据这一定律,一个封闭系统内的质量总是不变的。
换句话说,对于一个流体流动系统来说,流入系统的质量必须等于流出系统的质量。
这个原理被广泛应用于流体力学中的流量分析和控制。
四、动量守恒定律动量守恒定律是另一个重要的流体力学基本原理。
它描述了流体中动量的守恒关系。
根据动量守恒定律,流体在受到外力作用时会产生加速度,并且流体内各点之间的压力差会引起流体的运动。
这个原理在研究流体力学中的压力分布、速度场和流体流动方向等方面起着重要作用。
五、能量守恒定律能量守恒定律是流体力学的另一个基本原理。
根据这一定律,流体在运动过程中能量总是守恒的。
能量守恒定律可以用来描述流体在不同状态中的能量变化和转化。
例如,在研究流体的产热和传热过程中,我们可以利用能量守恒定律来分析和计算。
六、流体力学的应用流体力学的研究不仅仅是理论分析,还有着广泛的应用价值。
在建筑工程中,流体力学可以用于分析和设计水力结构,例如水坝和水渠。
在航空航天工程中,流体力学可以用于研究和改进飞机和火箭的气动性能。
在地球科学中,流体力学可以用来模拟大气和海洋的环流系统,以及地球内部的岩浆运动。
流体力学复习内容
dFn v v pnn pn dA
特征一: 流体静压强的方向沿作用面的内法向方向。 特征二: 静止流体中任一点上不论来自何方的静压 强均相等。
3.2 流体平衡的微分方程式
一,平衡方程:由微元受力平衡(表面力和质量力) 得出静止流体平衡的微分方程。
1、压强差公式:
dp f x dx f y dy f z dz
表明:静止液体中,流体静压强的增量dp随坐标增量 的变化决定于质量力。
3.6 静止液体作用在平面上的总压力
§2.2 流体受力平衡微分方程
压强全微分方程: 等压面方程:
dp f x dx f y dy f z dz
分子组成的,宏观尺度非常小,而微观尺度又
足够大的物理实体。
§2.2 连续介质假设
流体质点选取必须具备的两个基本条件:
宏观尺度非常小:
才能把流体视为占据整个空间的一种连续介质, 且其所有的物理量都是空间坐标和时间的连续函 数的一种假设模型。 有了这样的模型,就可以把数学上的微积分手 段加以应用了。
微观尺度又足够大的物理实体:
使得流体质点中包含足够多的分子,使各物理 量的统计平均值有意义(如密度,速度,压强,温 度,粘度,热力学能等宏观属性)。而无需研究所 有单个分子的瞬时状态。
§2.5 流体的可压缩性
流体体积随着压力和温度的改变而发生变化的 性质。
二、流体的第二个重要特性——可压缩性
单一参数影响规律
x x(a,b,c,t )
特征:追踪观察,如将不易扩散的染料滴一滴到水流
中,染了色的流体质点的运动轨迹。
用欧拉方法求流体质点物理量时间变化率的一 般公式为:
流体力学ppt课件-流体动力学
g
g
2g
水头
,
z
p
g
v2
2g
总水头, hw 水头损失
第二节 热力学第一定律——能量方程
水头线的绘制
总水头线
hw
对于理想流体,总水
1
v12 2g
2
v22 2g
头线是沿程不变的,
测压管水头线
p2
为一水平直线,对于
g
实际流体,总水头沿 程降低,但测压管水
p1 g
头线沿程有可能降低、
z2
不变或者升高。
z1
v2 A2 e2
u22 2
gz2
p2
v1A1 e1
u12 2
gz1
p1
微元流管即为流线,如果不 可压缩理想流体与外界无热 交换,热力学能为常数,则
u2 gz p 常数
2
这个方程是伯努利于1738年首先提出来的,命名为伯努利 方程。伯努利方程的物理意义是沿流线机械能守恒。
第二节 热力学第一定律——能量方程
皮托在1773年用一根弯成直角的玻璃管,测量了法国塞纳河 的流速。原理如图所示,在液体管道某截面装一个测压管和 一个两端开口弯成直角的玻璃管(皮托管),皮托管一端正 对来流,一端垂直向上,此时皮托管内液柱比测压管内液柱 高h,这是因为流体流到皮托管入口A点受到阻滞,速度降为 零,流体的动能变化为压强势能,形成驻点A,A处的压强称 为总压,与A位于同一流线且在A上游的B点未受测压管的影 响,其压强与A点测压管测得的压强相等,称为静压。
第四章 流体动力学
基本内容
• 雷诺输运公式 • 能量方程 • 动量方程 • 流体力学方程应用
第一节 雷诺输运方程
• 前面解决了流体运动的表示方法,但要在流 体上应用物理定律还有困难.
李玉柱流体力学课后题解答-第四章
第四章 流体动力学基础4-1 设固定平行平板间液体的断面流速分布为1/7max/2/2u B y u B -⎛⎫= ⎪⎝⎭,0y ≥总流的动能修正系数为何值?解:172max max 0127282B A A B y v ud u dy u B A B ⎛⎫- ⎪=== ⎪⎝⎭⎰⎰因为31.0A A u d A v α∆⎛⎫≈+⎪⎝⎭⎰ u u v ∆=-所以 172233821.0 1.01 1.0572B B A AB y u v d dy B A v B α-⎛⎫⎛⎫-- ⎪⎛⎫⎪≈+=+⋅-= ⎪ ⎪ ⎪⎝⎭ ⎪⎝⎭⎝⎭⎰⎰4-2 如图示一股水流自狭长的缝中水平射出,其厚度00.03m δ=,平均流速V 0=8m/s ,假设此射流受重力作用而向下弯曲,但其水平分速保持不变。
试求(1)在倾斜角45θ=处的平均流速V ;(2)该处的水股厚度δ。
解:〔1〕由题意可知:在45度水流处,其水平分速度仍为8m/s,由勾股定理可得:V=︒45sin 8=11.31m/s 〔2〕水股厚度由流量守恒可得:VD D V δδ=000,由于缝狭长,所以两处厚度近似相等,所以000.0380.02111.31V V δδ⨯===m 。
4-3 如下图管路,出口接一收缩管嘴,水流射人大气的速度V 2=20m/s ,管径d 1=0.1m ,管嘴出口直径d 2=0.05m ,压力表断面至出口断面高差H =5m ,两断面间的水头损失为210.5(/2)V g 。
试求此时压力表的读数。
解:取压力表处截面为截面1-1,收缩管嘴处截面为截面2-2,选择两截面包围的空间为控制体,由实际流体的恒定总流能量方程得:2211221222wV p V p z z h g g g g ρρ'++=+++, 由连续性方程2211V A V A =可得1-1断面流速m 51=V ,由上述两个方程可得压力表的读数〔相对压强〕:222112212wV V p p z z h g g ρ⎛⎫-'-=+-+ ⎪⎝⎭, 上式计算结果为:2.48at 。
流体力学 4-2流体动力学讲解
将上述方程联立,代入已知数据,解得:
vA vB 2.89m / s vC 18.06m / s pB 161700Pa Q vC AC 5.68L / s
上面计算过程中基准面为A断面,压力为相对压力, 当选取C断面为基准面,压力取绝对压力时:
4
g
(2)文丘利管
1
2
图4-8 文丘利流量计
收敛部
分类 喉部
扩散部
思考
1.文丘利流量计应该如何安 装? 2.测压管测量的是哪两点的 压差?
1
2
对截面1、2列总流伯努利方程
p1
12
p2
2 2
g 2g g 2g
由连续性方程可得 1 A1 2 A2
联立上面二式可得
图4-8 文丘利流量计
A
C
H
液箱
图4-10 喷射泵
解:取A、C 断面列伯努利方程
zA
+
pA
g
+
v
2 A
2g
=
zC
+
pC
g
+
vC2 2g
+
hwA-C
由已知条件得 Q 0.002m3 / s
AA
4
d
2 A
4
(0.025)2
0.49 103m 2
vA
Q AA
0.002 0.49 103
4.1m2
图4-8 皮托管
vB
2g pA pB
g
2gh
事实上,A点上测得的总压与未受扰动的B点的总压相 同,因此,只要我们测得某点的总压和静压,就可得到该 点的流速。
流体力学中的流体动力学方程
流体力学中的流体动力学方程流体力学是研究流体运动规律和性质的学科,它在能源、环境、航空航天等领域有着广泛的应用。
流体动力学方程是流体力学的基础,它描述了流体在运动过程中的物理现象和力学特性。
本文将介绍流体动力学方程的基本原理和常见的流体动力学方程。
一、连续性方程连续性方程是描述流体质点质量守恒的基本方程。
它表明流体在运动过程中,质量的流入等于流出。
连续性方程可以用数学形式表示为:∂ρ/∂t + ∇·(ρv) = 0其中,ρ是流体的密度,t是时间,v是流体的速度矢量,∇·表示散度运算符。
二、动量守恒方程动量守恒方程描述了流体质点在运动过程中动量的变化。
根据牛顿第二定律,动量守恒方程可以表示为:∂(ρv)/∂t + ∇·(ρvv) = -∇p + ∇·τ + ρg其中,p是流体的压力,τ是动态粘性应力张量,g是重力加速度。
三、能量守恒方程能量守恒方程是描述流体内能和外界能量转化的方程。
根据热力学第一定律,能量守恒方程可以表示为:∂(ρE)/∂t + ∇·(ρEv) = -∇·(pv) + ∇·(k∇T) + q其中,E是单位质量的总能量,v是流体的速度矢量,k是热传导率,T是温度,q是单位质量的内部热源。
四、状态方程流体力学中的状态方程描述了流体在热力学过程中的状态特性。
流体的状态方程通常表示为:p = ρRT其中,p是流体的压力,ρ是流体的密度,R是特定流体的气体常数,T是温度。
综上所述,流体动力学方程包括连续性方程、动量守恒方程、能量守恒方程和状态方程。
这些方程是建立在质点假设和牛顿力学基础上的,可以描述流体在运动过程中的物理现象和运动规律。
通过求解这些方程,可以得到流体的运动速度、压力分布等信息,为解决实际问题提供了重要的理论基础。
在实际应用中,为了解决流体动力学方程的复杂性,常常采用数值模拟等方法进行求解。
数值模拟可以通过离散化方程、引入数值格式和数值算法,得到流体在离散网格上的解。
流体力学(流体动力学)
Xρdxdydz
(2)表面力:沿x轴方向 六面体左面上的压力为
1 p (p dx)dydz 2 x
右面上的压力为
1 p (p dx)dydz 2 x
根据牛顿第二定律
F
x
ma x ,有:
dux 1 p 1 p (p dx)dydz ( p dx)dydz Xdxdydz dxdydz 2 x 2 x dt
u2 U 1 p x x x 2
即
2(u z y u y z )
p u2 U 2(u z y u y z ) x 2 p u2 U 2(u x z u z x ) y 2 2 p u U 2(u y x u x y ) z 2
p g
为单位重力流体的压能。
p 是单位重力流体的势能,即重力势能与压强势能之和。 g
z
u2 2g
为单位重力流体的动能。
p u2 z g 2 g 称为单位重力流体的机械能。
2、几何意义
理想流体伯诺里方程的各项表示某种高度,具有长度的量纲。
z是微小流束过流断面上某点的位置高度(相对于某基准面O-O) ,称为位置水头。 p g 称为测压管高度。
u x u 2 1 p X 2(u z y u y z ) x t x 2 u y u 2 1 p Y 2(u x z u z x ) y t y 2 2 1 p u z u Z 2(u y x u x y ) z t z 2
流体力学-第四章 流体动力学基础
Dt t CV
CS
单位质量流体的能量 e (u V 2 gz) 流体系统的总能量
2
DE ed eV ndS
Dt t CV
CS
E ed
初始时刻系统与控制体重合
Q WSYS Q WCV
ed eV ndS Q W
t CV
CS
§4.2 对控制体的流体力学积分方程
§4.1 系统和控制体,雷诺输运定理
雷诺输运定理:
举例:动量定理运用于流体系统
F Dk Dt
F 是外界作用系统的合力,K 是系统的动量,
k Vd
由于系统不断改变位置、形状大小,组成系统的流体质点的密度和速度随
时间也是变化的,所以系统的动量也是变化的,求其对时间的变化率,即
求该流体系统体积分的物质导数。
取 N M 单位体积的质量
DM 0 Dt
d V ndS 0
t CV
CS
d V ndS 0
t CV
CS
积分形式的连续性方程
§4.2 对控制体的流体力学积分方程
非定常流动情况下:
d V ndS 0
t CV
CS
即单位时间内控制体内流体质量的增加或减少等于同时间内通过控制面流入 或流出的净流体质量。如果控制体内的流体质量不变,则必然同一时间内流 入与流出控制体的流体质量相等。
左端第一项——是控制体内流体动量随时间变化而产生的力,它反映流体运动的非定常性
左端第二项——是单位时间内流体流入和流出控制体的动量之差,它表示流入动量与流出动量
不等所产生的力。
§4.2 对控制体的流体力学积分方程
定常流动条件:
F
FB FS
VV ndS
CS
VV ndS
流体力学资料复习整理
流体复习整理资料第一章 流体及其物理性质1.流体的特征——流动性:在任意微小的剪切力作用下能产生连续剪切变形的物体称为流体。
也可以说能够流动的物质即为流体。
流体在静止时不能承受剪切力,不能抵抗剪切变形。
流体只有在运动状态下,当流体质点之间有相对运动时,才能抵抗剪切变形。
只要有剪切力的作用,流体就不会静止下来,将会发生连续变形而流动。
运动流体抵抗剪切变形的能力(产生剪切应力的大小)体现在变形的速率上,而不是变形的大小(与弹性体的不同之处)。
2.流体的重度:单位体积的流体所的受的重力,用γ表示。
g 一般计算中取9.8m /s 23.密度:=1000kg/,=1.2kg/,=13.6,常压常温下,空气的密度大约是水的1/8003. 当流体的压缩性对所研究的流动影响不大,可忽略不计时,这种流体称为不可压缩流体,反之称为可压缩流体。
通常液体和低速流动的气体(U<70m /s )可作为不可压缩流体处理。
4.压缩系数:弹性模数:21d /d pp E N m ρβρ==膨胀系数:)(K /1d d 1d /d TVV T V V t ==β5.流体的粘性:运动流体内存在内摩擦力的特性(有抵抗剪切变形的能力),这就是粘滞性。
流体的粘性就是阻止发生剪切变形的一种特性,而内摩擦力则是粘性的动力表现。
温度升高时,液体的粘性降低,气体粘性增加。
6.牛顿内摩擦定律: 单位面积上的摩擦力为:3/g N m γρ=p V V p V V p d d 1d /d -=-=β21d 1d /d d p V m NV p pρβρ=-=h U μτ=内摩擦力为: 此式即为牛顿内摩擦定律公式。
其中:μ为动力粘度,表征流体抵抗变形的能力,它和密度的比值称为流体的运动粘度ν τ值既能反映大小,又可表示方向,必须规定:公式中的τ是靠近坐标原点一侧(即t -t 线以下)的流体所受的内摩擦应力,其大小为μ du/dy ,方向由du/dy 的符号决定,为正时τ与u 同向,为负时τ与u 反向,显然,对下图所示的流动,τ>0, 即t —t 线以下的流体Ⅰ受上部流体Ⅱ拖动,而Ⅱ受Ⅰ的阻滞。
流体力学课程
流体力学课程一、引言流体力学是研究流体的运动规律和宏观性质的学科,广泛应用于航空航天、海洋工程、化工、能源等领域。
本文将介绍流体力学课程的内容和教学方法。
二、课程内容1. 流体静力学流体静力学研究静止的液体或气体。
本部分主要涉及压强、密度、浮力等基本概念,以及流体静压力定理、大气压强等内容。
2. 流体动力学基础流体动力学研究运动的液体或气体。
本部分主要包括质量守恒定律、动量守恒定律和能量守恒定律,以及伯努利方程等内容。
3. 流场描述与运动描述流场描述是指通过数学模型来描述流场中各点的物理量变化情况;运动描述则是指通过实验或计算来描述流场中各点物理量随时间变化的规律。
本部分主要介绍欧拉法和拉格朗日法两种不同的描述方法。
4. 动量方程与应用动量方程是研究流场中物质运动规律的基本方程。
本部分主要介绍动量方程的推导和应用,包括流量计算、管道流动、水力跳跃等内容。
5. 粘性流体力学粘性流体力学是研究粘性流体的运动规律和宏观性质的学科。
本部分主要介绍牛顿黏度定律、雷诺数等基本概念,以及涡度、湍流等内容。
6. 边界层理论边界层是指在固体表面附近,由于粘性效应而形成的一层薄膜。
边界层理论研究边界层中的物理量变化规律。
本部分主要介绍边界层概念、边界层厚度计算方法等内容。
三、教学方法1. 理论讲解通过课堂讲解,向学生传授基础知识和理论知识,帮助学生建立起完整的知识框架。
2. 实验教学通过实验教学,让学生亲身感受流体力学现象,并加深对理论知识的理解和记忆。
3. 计算机模拟通过计算机模拟,让学生了解流体力学的数值计算方法,提高学生的计算机应用能力。
4. 课程设计通过课程设计,让学生在实践中掌握流体力学的基本理论和方法,提高学生的创新能力和实际操作能力。
四、总结流体力学是一门重要的工程科学,对于航空航天、海洋工程、化工、能源等领域具有重要意义。
通过本文的介绍,我们可以了解到流体力学课程的内容和教学方法,希望对广大读者有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
u x dy u y dx = 0
u y u x = y x
ψ ψ , uy = ux = y x
dψ = u x dy u y dx
ψ ψ dψ = dx + dy x y
流函数的极坐标表达式
dψ = ur rdθ uθ dr
ψ 1 ψ , uθ = ur = r θ r
特征1
平面无旋流的流函数也满足拉普拉斯方程
(2) 源环流与汇环流 将强度为q的源流和强度为Г 的环流都放置在坐标原点上, 使流体既作圆周运动,又作径 向运动,称为源环流. 水在离心式水泵压水室(蜗 壳)叶轮内的流动,空气在 风机内的流动,均可看作源 环流. 源环流 水在水力涡轮机中的流动为 汇环流.
(3)等强度源流和汇流的叠加——偶极流
Γ ur = 0 , uθ = 2πr
Γ ψ = ln r 2π Γ = θ 2π 环流是圆周运动,但却不是有旋运动.
(4) 直角内的流动 设无旋运动的速度势为 若设 = a (x2 - y2 ) 则有 ψ = 2axy
此流动的流线是双曲线族.当ψ>0 时,x,y的符号相同,流线在I,III 象限内;ψ<0时,x,y的符号相 反,流线在II,IV象限内.当ψ = 0 时,x=0或y=0,说明流线是坐标轴, 称为零流线.原点处速度为零,称为 驻点. 若把零流线x,y轴的正值部分用固体壁面来代替,就得到 直角内的流动;若把x轴用固体壁面代替,则表示垂直流 向固体壁面的流动.
q , uθ = 0 ur = 2πr
q q q dr = lnr = ln x 2 + y 2 = ∫ u r dr + uθ rdθ = ∫ 2πr 2π 2π
q q q y arctan ψ = ∫ u r rdθ uθ dr = ∫ rdθ = θ= 2πr 2π 2π x
流体从四周沿径向均匀流入一点(汇点)的流动称为汇流 流入汇点的单位厚度流量称为 汇流强度-q.
上式是使表达式uxdx+uydy+uzdz能成为某一函数(x,y,z) 的全微分的必要和充分条件
u x dx + u y dy + uz dz = d = dx + dy + dz x y z
特征1
= ux , = u y , = uz y x z
= us s
函数(x,y,z)称为速度势(函数),即无旋流的速 度矢量是有势的.因此无旋运动(无涡流)又称 为有势流动. 上述关系式代入不可压缩流体连续性微分方程
四,流网及其特征 流网(Flow Net):不可压缩流体平面无旋流动中, 流线簇与等势线簇构成的正交网格. 1,流网的特征 特征1 等势线与等流函数线处处正交 证 明:
等势线簇:(x,y)=C
d = u x dx + u y dy = 0
等流线簇:ψ(x,y)=C
ux dy m2 = = dx uy
�
dψ = u y dx + u x dy = 0
ux m1 m2 = ( )( ) = 1 ux uy uy
dy u y m1 = = dx u x
特征2 等势线簇的势函数值沿流线方向增加,而流 线簇的流函数值则沿流线方向逆时针旋转90 后所指 的方向增加.——儒科夫斯基法则. 特征3 流网中每一网格的相邻边长维持一定的比例
u y y y
连续性方程
u x x
+
Hale Waihona Puke u y y= 0二,无旋流动的速度势(函数)
1 u z u y ωx = y z = 0 2 1 u x u z ωy = =0 x 2 z 1 u y u x ωz = x y = 0 2 或 或 或 u z u y = y z u x u z = z x u y u x = x y
第五节
一,基本方程组
恒定平面势流 (平面无旋流动)
不可压缩恒定平面势流:
1,平面无旋,即
ωz = 0
;
u y u x = = 0; 2,恒定流,即 t t
3,不可压缩流体,即ρ=Const
.
运动方程
X Y
1 p ρ x 1 p ρ y
=u =u
u x x x
+u +u
u x y y
u y x x
六,势流叠加 势流叠加原理: 流速势可以进行叠加.当几个势 流叠加后,其流动仍为势流.
= 1+ 2
1 2 = u x1 + u x 2 = + ux = x x x 1 2 = + uy = = u y1 + u y 2 y y y
同理可证,叠加后的流函数等于原流动流函数的代数和
ψ = ψ 1 +ψ 2
+ 2 =0 2 x y
2 2
= ux , = u y x y
速度势的极坐标表达式
d = ur dr + uθ rdθ
1 ur = , uθ = r r θ
三,流函数 存在条件:不可压缩流体平面流动ψ (x,y) . 平面流动 流线方程
dx dy = ux u y
u x u y + =0 x y
五,几种简单的平面势流 (1) 等速均匀流
流场中各点的速度矢量皆相互平行,且 大小相等的流动
ψ = ux y u y x
= ux x + u y y
若等速均匀流流速平行于x轴
ψ = uy
= ux
若等速均匀流流速平行于y轴
ψ = -ux
= uy
(2) 源流和汇流
流体从水平的无限平面内的一点O (即源点)流出,均匀地沿径向直 线流向四周的流动称为源流 q为由源点沿z轴方向上,单位厚度 所流出的流量,称为源流强度
强度皆为q的源流和汇流,其源点 和汇点分别置于(-a,0)和(a,0) 两点上.
在上述流动中,如果源点和汇点相互 接近,即2a → 0时(2aq=常数),所 得到的就是偶极流.
实际上,偶极流本身并无太大意义,但它与某些 基本势流叠加,就可以得到有重大实际意义的流 动的解.如偶极流与等速均匀流叠加可得到无环 量圆柱绕流,偶极流与等速均匀流和势涡流的叠 加可得到有环量的圆柱绕流等.
δ δs = δψ δn
若取δ = δψ,则δs=δn,此时流网网格 为曲边正方形
2, 流网的绘制 1)固体边界本身就是流线之一,等势线与边界正交. 2)自由液面必是流线. 3)根据流动的大致方向,按照事先选定的网格比例绘 制出流线簇和等势线簇. 3, 流网的应用 广泛用于理想不可压缩流体平面无旋流动中的速度 场,压强场求解
u x u y u z + + =0 x y z
特征2
+ 2 + 2 =0 2 x y z
2 2 2
凡满足拉普拉斯方 程的函数是调和函 数,所以速度势是 调和函数
平面无旋流动或平面势流 ∵平面流动的旋转角速度只有分量ωz
∴ωz为零
u y u x = x y
d = ux dx + u y dy
q , uθ = 0 ur = 2πr
q q y ψ = θ = arctan 2π 2π x q q = lnr = ln x 2 + y 2 2π 2π
(3) 环流(或势涡流)
各流体质点皆绕某一固定点O做匀速圆周运动,且速 度与圆周半径成反比的流动称为环流
如图
环流强度 Г ,是不随圆周半径而变的 常数,具有方向性.Г>0时,为逆时 针旋转;Г <0时,为顺时针旋转.
意义:在工程实际中,常利用势流叠加原理解决一 些较为复杂的势流问题
(1) 等速均匀流与源流的叠加
Y
A
r O
θ X
将与x轴正方向一致的等 速均匀流和位于坐标原点 的源流叠加
q 2πu0
(c)
等速均匀流与源流的叠加结果就相当于等速均 匀来流绕半无限体的流动 .这种方法的推 广,是采用很多不同强度的源流,沿x轴排 列,使它和匀速直线流叠加,形成和实际物体 轮廓线完全一致或较为吻合的边界流线.这样 无需进行费用巨大的实验,就能准确估计物体 上游端(如桥墩,闸墩的前半部)的速度和压 强分布.
u y u x = x y
2ψ 2ψ + 2 =0 2 x y
ωz为零
平面势流中,速度势函数和流函数均为调和函数 特征2 流函数的等值线是流线
dψ = u x dy u y dx = 0
ψ ( x, y ) = const
特征3 任意两条流线间的流函数差值(ψ1 –ψ2 ), 等于通过两条流线间的单宽流量q.