导数的应用复习(基础题含答案)
导数应用测试题及参考答案
导数应用测试题一、选择题:(本大题共12小题,每小题5分, 共60分) 1.设函数f(x)在0x 处可导,则xx f x x f x ∆-∆-→∆)()(lim000等于 ( )A .)('0x fB .)('0x f -C .)('0x f --D .)(0x f -- 2.若13)()2(lim000=∆-∆+→∆xx f x x f x ,则)('0x f 等于 ( ) A .32 B .23C .3D .2 3.曲线x x y 33-=上切线平行于x轴的点的坐标是( )A .(-1,2)B .(1,-2)C .(1,2)D .(-1,2)或(1,-2) 4.若函数f(x)的导数为f ′(x)=-sinx ,则函数图像在点(4,f (4))处的切 线的倾斜角为( )A .90°B .0°C .锐角D .钝角5.函数5123223+--=x x x y 在[0,3]上的最大值、最小值分别是 ( )A .5,-15B .5,-4C .-4,-1D .5,-166.一直线运动的物体,从时间t 到t+△t 时,物体的位移为△s ,那么ts t ∆∆→∆0lim 为( )A .从时间t 到t+△t 时,物体的平均速度B .时间t 时该物体的瞬时速度C .当时间为△t 时该物体的速度D .从时间t 到t+△t 时位移的平均变化率7.关于函数762)(23+-=x x x f ,下列说法不正确的是( )A .在区间(∞-,0)内,)(x f 为增函数B .在区间(0,2)内,)(x f 为减函数C .在区间(2,∞+)内,)(x f 为增函数D .在区间(∞-,0)),2(+∞⋃内,)(x f 为增函数8.对任意x ,有34)('x x f =,f(1)=-1,则此函数为 ( ) A .4)(x x f = B .2)(4-=x x f C .1)(4+=x x f D .2)(4+=x x f9.函数y=2x 3-3x 2-12x+5在[0,3]上的最大值与最小值分别是 ( )A.5 , -15B.5 , 4C.-4 , -15D.5 , -1610.抛物线y=x 2到直线x-y-2=0的最短距离为 ( )A .2B 。
导数基础题训练文(含答案)
导数及其应用一、选择题1.若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000()()lim h f x h f x h h→+-- 的值为( )A .'0()f xB .'02()f xC .'02()f x -D .02.一个物体的运动方程为21t t s +-=其中s 的单位是米,t 的单位是秒, 那么物体在3秒末的瞬时速度是( )A .7米/秒B .6米/秒C .5米/秒D .8米/秒3.函数3y x x =+的递增区间是( )A .),0(+∞B .)1,(-∞C .),(+∞-∞D .),1(+∞4.32()32f x ax x =++,若'(1)4f -=,则a 的值等于( )A .319 B .316 C .313 D .310 5.函数)(x f y =在一点的导数值为0是函数)(x f y =在这点取极值的( )A .充分条件B .必要条件C .充要条件D .必要非充分条件6.函数344+-=x x y 在区间[]2,3-上的最小值为( )A .72B .36C .12D .0二、填空题1.若3'0(),()3f x x f x ==,则0x 的值为_________________;2.曲线x x y 43-=在点(1,3)- 处的切线倾斜角为__________;3.函数sin x y x=的导数为_________________; 4.曲线x y ln =在点(,1)M e 处的切线的斜率是_________,切线的方程为_______________;5.函数5523--+=x x x y 的单调递增区间是___________________________。
三、解答题1.求垂直于直线2610x y -+=并且与曲线3235y x x =+-相切的直线方程。
2.求函数()()()y x a x b x c =---的导数。
导数运算法则的应用试题及答案
导数运算法则的应用试题及答案导数运算法则的应用试题1.若函数()f x 在R 上可导,且满足'()()f x xf x < ,则( ) A.2(1)(2)f f < B.2(1)(2)f f > C.2(1)(2)f f = D.(1)(2)f f =2.已知函数()f x 的导函数为 '()f x ,满足 ln '()2()x xf x f x x +=,且1()2f e e=,则()f x 的单调性情况为( )A .先增后减B 单调递增C .单调递减D 先减后增3.定义在(0,)+∞上的单调递减函数()f x ,若()f x 的导函数存在且满足'()()f x x f x >,则下列不等式成立的是( ) A .3(2)2(3)f f < B .3(4)4(3)f f < C .2(3)3(4)f f < D .(2)2(1)f f <4.定义在R 上的函数()f x 满足:()()1,(0)4,f x f x f '+>=则不等式()3x x e f x e >+(其中e为自然对数的底数)的解集为( ) A .()0,+∞ B .()(),03,-∞+∞C .()(),00,-∞+∞D .()3,+∞5.)0)()((),(≠x g x g x f 分别是定义在R 上的奇函数和偶函数,当0x <时,()()()()f x g x f x g x ''<,且0)()(,0)3(<=-x g x f f的解集为( ) A .(-∞,-3)∪(3,+∞) B .(-3,0)∪(0,3) C .(-3,0)∪(3,+∞) D .(-∞,-3)∪(0,3)6.若定义在R 上的函数f(x)的导函数为()f x ',且满足()()f x f x '>,则(2011)f 与2(2009)f e 的大小关系为( ).A 、(2011)f <2(2009)f eB 、(2011)f =2(2009)f eC 、(2011)f >2(2009)f eD 、不能确定7.定义在(0,)2π上的函数()f x ,()f x '是它的导函数,且恒有()()tan f x f x x '<⋅成立,则( ) Aππ()2()43f B .(1)2()sin16πf f C ππ()()64f D ππ()()63f8.定义在(0,)+∞上的单调递减函数()f x ,若()f x 的导函数存在且满足x x f x f >')()(,则下列不等式成立的是( ) A .3(2)2(3)f f < B .3(4)4(3)f f < C .2(3)3(4)f f < D .(2)2(1)f f <9.函数f(x)的定义域是R ,f(0)=2,对任意x ∈R ,f(x)+f′(x)>1,则不等式e x ·f(x)>e x +1的解集为( ) A .{x|x>0} B .{x|x<0}C .{x|x<-1或x>1}D .{x|x<-1或0<x<1}10.设函数在R 上存在导数,对任意的R ,有,且(0,+)时,.若,则实数a 的取值范围为( )(A)[1,+∞) (B)(-∞,1] (C)(-∞,2] (D)[2,+∞)()f x '()f x x ∈2()()f x f x x -+=x ∈∞'()f x x >(2)()22f a f a a --≥-11.设()f x 是定义在R 上的可导函数,且满足()()f x f x '<-,对于任意的正数a ,下面不等式恒成立的是( )A.()()0a f a e f <B.()()0a f a e f >C.()()0a f f a e <D.()()0af f a e>12.已知函数f (x )的定义域为R ,对任意x R ∈,有()3f x '>,且()13f -=,则f (x )<3x +6的解集为( ) A.(-1, 1) B.(-1,+∞) C.(-∞,-1) D.(-∞,+∞)13.已知()f x 为定义在(,)-∞+∞上的可导函数,()()f x f x '>对于x R ∈恒成立,且e 为自然对数的底数,则( ) A .20132014(2014)(2013)e f e f ⋅<⋅ B .20132014(2014)(2013)e f e f ⋅=⋅ C .20132014(2014)(2013)e f e f ⋅>⋅D .2013(2014)e f ⋅与2014(2013)e f ⋅的大小不能确定14.设)(x f 是定义在R 上的奇函数,且0)2(=f ,当0>x 时,有2()()0xf x f x x '-<恒成立,则不等式2()0x f x >的解集是( ) A. (-2,0) ∪(2,+∞) B. (-2,0) ∪(0,2) C. (-∞,-2)∪(2,+∞) D . (-∞,-2)∪(0,2)15.已知定义在R 上的函数)(x f 满足1)1(=f ,且)(x f 的导函数)(x f '在R 上恒有21)(<'x f ,则不等式212)(+<x x f 的解集为( ) A. ),1(+∞ B. )1,(-∞ C. )1,1(- D. )1,(-∞),1(+∞16.已知函数()y f x =是定义在数集R 上的奇函数,且当(,0)x ∈-∞时,()()xf x f x '<-成立,若)3(3f a =,)3(lg )3(lg f b =,)41(log )41(log 22f c =,则,,a b c 的大小关系是( )A. c a b >>B. c b a >>C. a b c >>D. a c b >>17.设函数()f x 的导函数为'()f x ,对任意x R ∈都有'()()f x f x >成立,则( ) A .3(ln 2)2(ln3)f f > B. 3(ln 2)2(ln3)f f =C. 3(ln 2)2(ln3)f f <D. 3(ln 2)f 与2(ln 3)f 的大小不确定导数运算法则的应用试题参考答案1.【答案】A试题分析:设x x f x g )()(=,则2)()()(xx f x f x x g -'=', ∵'()()f x xf x <,∴0)(>'x g ,即g (x )在(0,+∞)上单调递增,∴),2()1(g g <即)2()1(22)2(1)1(f f f f <⇒<,故选:A .2.【答案】C试题分析:由ln '()2()xxf x f x x+=知,22()2()(())ln x f x xf x x f x x ''+==,故2()x f x =ln x x x c -+,所以()f x =2ln 1x c x x x -+,因为1()2f e e =,所以c=2e ,所以()f x =2ln 12x ex x x-+,所以()f x ' =2231ln 1x e x x x -+-=32ln x x x ex --,设()h x =2ln x x x e --,所以()h x '=1ln x -,当0<x <e 时,()h x '>0,当x >e 时,()h x '<0,则()h x 在(0,e )是增函数,在(e ,+∞)上是减函数,所以当x e =时,()h x 取最大值()h e =0,所以当x >0时,()h x ≤0,即()f x '≤0,所以()f x 单调递减,故选C . 3.【答案】A 试题分析:∵()f x 为(0,)上的单调递减函数,∴0fx ,又∵'()()f x x f x ,∴>0⇔<0⇔[]′<0,设h (x )=,则h (x )=为(0,+∞)上的单调递减函数,∵>x >0,f′(x )<0,∴f (x )<0.∵h (x )=为(0,)上的单调递减函数,∴>⇔>0⇔2f (3)﹣3f (2)>0⇔2f (3)>3f (2),故A 正确;由2f (3)>3f (2)>3f (4),可排除C ;同理可判断3f (4)>4f (3),排除B ;1•f(2)>2f (1),排除D ;故选A . 4.【答案】A 试题分析:令()()3--=x x e x f e x g ,由于()()03100=--=f g ,()()()x x x e x f e x f e x g -'+='()()()01>-'+=x f x f e x 所用()x g 在R 上是增函数,()()0,0>∴>∴x g x g5.【答案】C .试题分析:由题意()()f xg x 是奇函数,当0x <时,()()()()f x g x f x g x ''<时,2()()()()()0()()f x f x g x f x g x g x g x '''⎡⎤-=<⎢⎥⎣⎦,则()()f x g x 在(),0-∞上为减函数,在()0,+∞上也为减函数,又有(3)0f -=,则有(3)(3)0,0(3)(3)f f g g -==-,可知()0()f xg x <的解集为()3,0(3,)-⋃+∞.6.【答案】C 试题分析:构造函数x e x f x g )()(=,则x e x f x f x g )()()(''-=,因为()()f x f x '>,所以0)('>x g ;即函数)(x g 在R 上为增函数,则20092011)2009()2011(ef e f >,即2)2009()2011(e f f >. 7.【答案】D 【解析】()()tan f x f x x '<⋅0cos sin )(cos )(0cos sin )()('<'-⇔<⋅-⇔xxx f x x f x x x f x f ,又因为0cos ),2,0(>∴∈x x π,从而有:0sin )(cos )(<'-x x f x x f ;构造函数,sin )()(xx f x F =则)2,0(,0sin cos )(sin )()(2π∈>-'='x xx x f x x f x F ,从而有)(x F 在(0,)2π上是增函数,所以有)3()6(ππF F <即:)3()6(33sin )3(6sin )6(ππππππf f f f <⇒<,故选D.8.【答案】A 试题分析:∵f(x)在(0,)+∞上单调递减,∴'()0f x <,又∵x x f x f >')()(,∴f(x)<'()xf x ,令0)()(')('g ,)()(g 2>-=∴=x x f x xf x x x f x ,∴g(x)在(0,)+∞上单调递增,∴g(2)>g(1),即2)2(f 3)3(f >,即3f(2)<2f(3),A 正确. 9.【答案】A 【解析】构造函数g(x)=e x ·f(x)-e x ,因为g′(x)=e x ·f(x)+e x ·f′(x)-e x =e x [f(x)+f′(x)]-e x >e x -e x =0, 所以g(x)=e x ·f(x)-e x 为R 上的增函数. 又因为g(0)=e 0·f(0)-e 0=1, 所以原不等式转化为g(x)>g(0), 解得x>0.故选A.10.【答案】B 【解析】()221)(x x f x g -=,()()0>-'='x x f x g ,()()()()02=--+=-+x x f x f x g x g ,所以()x g 既是增函数又是奇函数,()()()()()()22221,2221222122a a f a g a a a f a a f a g -=-+--=---=-,由已知,得()()⇔≥-a g a g 21222≤⇒≥⇒≥-a a a a ,故选B.11.【答案】C 【解析】试题分析:构造函数()()x g x e f x =,则''()()()x x g x e f x e f x =+0<,∴()g x 在R 内单调递减,所以(a)g(0)g <,即:()(0)a e f a f <,∴()()0af f a e<. 12.【答案】C 试题分析:构造函数()()36g x f x x =--,则()()30g x f x ''=->,所以函数()g x 是增函数,又()()1130g f -=--=,所以()0g x <的解集是(),1-∞-,即()36f x x <+的解集是(),1-∞-.13.【答案】A 试题分析:函数()f x 为定义在(,)-∞+∞上的可导函数,满足()()f x f x '>,则函数为指数函数,可设函数()()xf xg x e=,则导函数'''22()()(()())()x x x x xf x e f x e f x f x eg x e e --==,因为()()f x f x '>,所以'()0g x <,()g x 在(,)-∞+∞上为减函数,(2013)(2014)g g >,即20132014(2013)(2014)f f e e>,从而得20132014(2014)(2013)e f e f ⋅<⋅.(2)()22f a f a a --≥-14.【答案】D 试题分析:根据2()()0xf x f x x '-<和构造的函数()()f x g x x=在(0,+∞)上单调递减,又)(x f 是定义在R 上的奇函数,故)(x f 是定义在R 上单调递减. 因为f (2)=0,所以在(0,2)内恒有f (x )>0;在(2,+∞)内恒有f (x )<0.又因为f (x )是定义在R 上的奇函数,所以在(-∞,-2)内恒有f (x )>0;在(-2,0)内恒有f (x )<0.又不等式x 2f (x )>0的解集,即不等式f (x )>0的解集.所以答案为(-∞,-2)∪(0,2).15.【答案】A 试题分析:212)(+<x x f 可化为0212)(<--x x f ,令212)()(--=x x f x g ,则21)()(-'='x f x g ,因为21)(<'x f ,所以0)(<'x g 0,所以)(x g 在R 上单调递减,当1>x 时,02121)1()1()(=--=<f g x g ,即212)(+<x x f .所以不等式212)(+<x x f 的解集为),1(+∞.故选A .16.【答案】12试题分析:因为(,0)x ∈-∞时,()()xf x f x '<-,所以当(,0)x ∈-∞时,()()0xf x f x '--<,又因为函数()y f x =是定义在R 上的奇函数,所以当(,0)x ∈-∞时,()()0xf x f x '+<,构造函数()()g x xf x =,则()()()0,(,0)g x xf x f x x ''=+<∈-∞,所以()g x 在(,0)-∞上是减函数,又()()g x g x -=,所以()g x 是R 上的偶函数,所以()g x 在(0,)+∞上是增函数,因2lg 30>>>,所以(2)(lg 3)g g g >>,而21(2)(2)(log )4g g g =->,所以有c a b >>,选A.17.【答案】C 试题分析:令()()x f x g x e=,则'''2()()()()()x x x xf x e f x e f x f xg x e e --==,因为对任意x R ∈都有'()()0f x f x ->,所以'()0g x >,即()g x 在R 上单调递增,又ln 2ln3<,所以(ln 2)(ln3)g g <,即ln 2ln3(ln 2)(ln 3)f f e e <,所以(ln 2)(ln 3)23f f <,即3(ln 2)2(ln3)f f <,故选C .。
导数在研究函数中的应用练习题(基础、经典、好用)
导数在研究函数中的应用一、选择题1.设函数f(x)=2x+ln x,则()A.x=12为f(x)的极大值点B.x=12为f(x)的极小值点C.x=2为f(x)的极大值点D.x=2为f(x)的极小值点2.函数f(x)=x2-2ax+a在区间(-∞,1)上有最小值,则函数g(x)=f(x)x在区间(1,+∞)上一定()A.有最小值B.有最大值C.是减函数D.是增函数3.若函数f(x)=x3-6bx+3b在(0,1)内有极小值,则实数b的取值范围是() A.(0,1) B.(-∞,1)C.(0,+∞) D.(0,1 2)4.对于在R上可导的任意函数f(x),若满足(x-a)f′(x)≥0,则必有() A.f(x)≥f(a) B.f(x)≤f(a)C.f(x)>f(a) D.f(x)<f(a)5.若函数f(x)=xx2+a(a>0)在[1,+∞)上的最大值为33,则a的值为()A.33 B. 3 C.3+1 D.3-1二、填空题6.函数f(x)=xln x的单调递减区间是________.7.已知函数f(x)=x3+3mx2+nx+m2在x=-1时有极值0,则m+n=________.8.已知函数f(x)=-12x2+4x-3ln x在[t,t+1]上不单调,则t的取值范围是________.三、解答题9.(2013·肇庆调研)已知函数f(x)=ax2+b ln x在x=1处有极值1 2.(1)求a,b的值;(2)判断函数y=f(x)的单调性并求出单调区间.10.设函数f(x)=x+ax2+b ln x,曲线y=f(x)过P(1,0),且在P点处的切线斜率为2.(1)求a,b的值;(2)令g(x)=f(x)-2x+2,求g(x)在定义域上的最值.11.(2013·惠州模拟)已知函数f(x)=x2+2a ln x.(1)若函数f(x)的图象在(2,f(2))处的切线斜率为1,求实数a的值;(2)求函数f(x)的单调区间;(3)若函数g(x)=2x+f(x)在[1,2]上是减函数,求实数a的取值范围.导数在研究函数中的应用解析及答案一、选择题1.【解析】∵f(x)=2x+ln x(x>0),∴f′(x)=-2x2+1x.由f′(x)=0解得x=2.当x∈(0,2)时,f′(x)<0,f(x)为减函数;当x∈(2,+∞)时,f′(x)>0,f(x)为增函数.∴x=2为f(x)的极小值点.【答案】 D2.【解析】由函数f(x)=x2-2ax+a在区间(-∞,1)上有最小值,可得a的取值范围为a<1,又g(x)=f(x)x=x+ax-2a,则g′(x)=1-ax2,易知在x∈(1,+∞)上g′(x)>0,所以g(x)为增函数.【答案】 D3.【解析】f′(x)=3x2-6b,令f′(x)=0得x2=2b,由题意知0<2b<1,∴0<b<12,故选D.【答案】 D4.【解析】 由(x -a )f ′(x )≥0知, 当x >a 时,f ′(x )≥0;当x <a 时,f ′(x )≤0. ∴当x =a 时,函数f (x )取得最小值,则f (x )≥f (a ). 【答案】 A5.【解析】 f ′(x )=x 2+a -2x 2(x 2+a )2=a -x 2(x 2+a )2.令f ′(x )=0,得x =a 或x =-a (舍),①若a ≤1时,即0<a ≤1时,在[1,+∞)上f ′(x )<0,f (x )max =f (1)=11+a=33. 解得a =3-1,符合题意. ②若a >1,在[1,a ]上f ′(x )>0; 在[a ,+∞)上f ′(x )<0. ∴f (x )max =f (a )=a 2a =33,解得a =34<1,不符合题意, 综上知,a =3-1. 【答案】 D 二、填空题6.【解析】 f ′(x )=ln x -1ln 2x ,令f ′(x )<0得 ln x -1<0,且ln x ≠0. ∴0<x <1或1<x <e ,故函数的单调递减区间是(0,1)和(1,e). 【答案】 (0,1),(1,e)7.【解析】 ∵f ′(x )=3x 2+6mx +n ,且f (x )在x =-1处的极值为0. ∴⎩⎨⎧f (-1)=(-1)3+3m (-1)2+n (-1)+m 2=0,f ′(-1)=3×(-1)2+6m (-1)+n =0, ∴⎩⎨⎧m =1,n =3或⎩⎨⎧m =2,n =9,当⎩⎨⎧m =1,n =3时,f ′(x )=3x 2+6x +3=3(x +1)2≥0恒成立与x =-1是极值点矛盾, 当⎩⎨⎧m =2n =9时,f ′(x )=3x 2+12x +9=3(x +1)(x +3), 显然x =-1是极值点,符合题意, ∴m +n =11. 【答案】 118.【解析】 由题意知f ′(x )=-x +4-3x =-(x -1)(x -3)x ,由f ′(x )=0得函数f (x )的两个极值点为1,3,则只要这两个极值点有一个在区间(t ,t +1)内,函数f (x )在区间[t ,t +1]上就不单调, 由t <1<t +1或t <3<t +1, 得0<t <1或2<t <3. 【答案】 (0,1)∪(2,3) 三、解答题9.【解】 (1)f ′(x )=2ax +b x ,又f (x )在x =1处有极值12. ∴⎩⎪⎨⎪⎧f (1)=12,f ′(1)=0,即⎩⎪⎨⎪⎧a =12,2a +b =0.解之得a =12且b =-1. (2)由(1)可知f (x )=12x 2-ln x , 其定义域是(0,+∞),且f ′(x )=x -1x =(x +1)(x -1)x .当x 变化时,f ′(x )、f (x )的变化情况如下表:x (0,1) 1 (1,+∞)f ′(x ) -0 +f (x )极小值所以函数y =f (x )的单调减区间是(0,1),单调增区间是(1,+∞). 10.【解】 (1)f ′(x )=1+2ax +bx (x >0),又f (x )过点P (1,0),且在点P 处的切线斜率为2,∴⎩⎨⎧f (1)=0,f ′(1)=2,即⎩⎨⎧1+a =0,1+2a +b =2. 解之得a =-1,b =3.(2)由(1)知,f (x )=x -x 2+3ln x ,定义域为(0,+∞), ∴g (x )=2-x -x 2+3ln x ,x >0,则g ′(x )=-1-2x +3x =-(x -1)(2x +3)x .当0<x <1时,g ′(x )>0;当x >1时,g ′(x )<0.所以g (x )在(0,1)内单调递增,在(1,+∞)内单调递减. ∴g (x )的最大值为g (1)=0,g (x )没有最小值. 11.【解】 (1)f ′(x )=2x +2a x =2x 2+2ax , 由已知f ′(2)=1, 解得a =-3.(2)函数f (x )的定义域为(0,+∞).①当a ≥0时,f ′(x )>0,f (x )的单调递增区间为(0,+∞); ②当a <0时,f ′(x )=2(x +-a )(x --a )x .当x 变化时,f ′(x ),f (x )的变化情况如下:x (0,-a )-a (-a ,+∞)f ′(x ) -0 +f (x )极小值由上表可知,函数f (x )的单调递减区间是(0,-a ); 单调递增区间是(-a ,+∞).(3)由g (x )=2x +x 2+2a ln x 得g ′(x )=-2x 2+2x +2ax , 由已知函数g (x )为[1,2]上的单调减函数, 则-2x 2+2x +2ax ≤0在[1,2]上恒成立.即a≤1x-x2在[1,2]上恒成立.令h(x)=1x-x2,h′(x)=-1x2-2x=-(1x2+2x)<0,所以h(x)在[1,2]上为减函数,h(x)min=h(2)=-7 2,所以a≤-7 2.。
导数及其应用测试题(有详细答案)
《导数及其应用》一、选择题1。
0()0f x '=是函数()f x 在点0x 处取极值的:A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件 2、设曲线21y x =+在点))(,(x f x 处的切线的斜率为()g x ,则函数()cos y g x x =的部分图象可以为A 。
B. C 。
D.3.设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是( )4.若曲线y =x 2+ax +b在点(0,b )处的切线方程是x -y +1=0,则( )A .a =1,b =1B .a =-1,b =1C .a =1,b =-1D .a =-1,b =-1 5.函数f (x )=x 3+ax 2+3x -9,已知f (x )在x =-3时取得极值,则a 等于( )A .2B .3C .4D .56。
设函数()f x 的导函数为()f x ',且()()221f x x x f '=+⋅,则()0f '等于 ( )A 、0B 、4-C 、2-D 、27。
直线y x =是曲线ln y a x =+的一条切线,则实数a 的值为( )A .1-B .eC .ln 2D .18。
若函数)1,1(12)(3+--=k k x x x f 在区间上不是单调函数,则实数k 的取值范围( ) A .3113≥≤≤--≤k k k 或或 B .3113<<-<<-k k 或C .22<<-kD .不存在这样的实数k9.函数()f x 的定义域为(),a b ,导函数()f x '在(),a b 内的图像如图所示, 则函数()f x 在(),a b 内有极小值点 ( )A .1个B .2个C .3个D .4个 10.已知二次函数2()f x ax bx c =++的导数为'()f x ,'(0)0f >,对于任意实数x 都有()0f x ≥,则(1)'(0)f f 的最小值为( ) A .3 B .52 C .2 D .32二、填空题(本大题共4个小题,每小题5分,共20分) 11。
导数复习题(含答案)
因为 ,所以 ,即 ,
所以 化为 ,
当 时,不等式 等价于 ,即 ,解得 ;
当 时,不等式 等价于 ,即 ,解得 ;
综上,不等式 的解集为 .
点睛:本题考查了与函数有关的不等式的求解问题,其中解答中涉及到利用条件构造新函数和利用导数研究函数的单调性,以及根据单调性和奇偶性的关系对不等式进行转化,解答中一定要注意函数值为零是自变量的取值,这是题目的一个易错点,试题综合性强,属于中档试题.
A. B. C. D.
【答案】A
【解析】由题意得 ,令
,选A.
点睛:对于求不等式成立时的参数范围问题,在可能的情况下把参数分离出来,使不等式一端是含有参数的不等式,另一端是一个区间上具体的函数,这样就把问题转化为一端是函数,另一端是参数的不等式,便于问题的解决.但要注意分离参数法不是万能的,如果分离参数后,得出的函数解析式较为复杂,性质很难研究,就不要使用分离参数法.
故答案为B。
11.已知函数 有两个零点,则 的取值范围是()
A. B. C. D.
【答案】D
【解析】函数 的定义域为 ,因为 ,当 时, ,则函数 在 上单调递增,不满足条件;当 时,令 ,得 ,所以 在 上单调递减,在 上单调递增,所以 为极小值点,要使 有两个零点,即要 ,即 ,则 的取值范围是 ,故选D.
6.函数 的图象是()
A. B.
C. D.
【答案】A
【解析】由函数 ,则 ,所以函数 为奇函数,
图象关于原点对称,
又 时, ,
所以当 时, 单调递增,当 时, 单调递减,
综上,函数的图象大致为选项A,故选A.
7.已知函数 是函数 的导函数, ,对任意实数都有 ,设 则不等式 的解集为()
导数及其应用试题及详细解答(基础)
当 x 1时, f x 0 ,即 f x 1 ln x 单调递减,
x
又函数 f x 1 ln x 在区间 a, a 2 上不是单调函数,
x
a 0 所以有 a 1 ,解得 0 a 1 .故选 C.
a 2 1
8.【答案】B
(2)求曲线 y = f (x) 过原点 O 的切线方程.
20.(12 分)已知函数 (1)当 时,求曲线 (2)求 的单调区间.
. 在点
处的切线方程;
18.(12 分)设函数 f (x) a ln x bx2 ,若函数 f (x) 的图象在点 (1, f (1)) 处与直线 y 1 x 相切. 2
可得切线斜率 k 3m2 3 ,
由点斜式方程可得切线方程为 y﹣m3+3m=(3m2-3)(x﹣m),
代入点 P(2, 6) ,可得﹣6﹣m3+3m=(3m2-3)(2﹣m),解得 m=0 或 m=3,
当 m=0 时,切线方程为 3x y 0 ; 当 m=3 时,切线方程为 24x y 54 0 ,故选 A.
x
x
若函数 f x 有两个不同的极值点,则 g x x2 2x a 在(0,+∞)由 2 个不同的实数根,
Δ 4 4a 0
故
x1
2
4
4a
,解得 0 0
a
1 ,故选
D.
2
6.【答案】A
【解析】设切点为(m,m3-3m), f (x) x3 3x 的导数为 f (x) 3x2 3 ,
,即
1 3 5 2a 8 12 5 3a 27 27 5 4a
导数基础题训练文(含答案)
导数基础题训练文(含答案)本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March导数及其应用一、选择题1.若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000()()lim h f x h f x h h→+-- 的值为( )A .'0()f xB .'02()f xC .'02()f x -D .02.一个物体的运动方程为21t t s +-=其中s 的单位是米,t 的单位是秒, 那么物体在3秒末的瞬时速度是( )A .7米/秒B .6米/秒C .5米/秒D .8米/秒3.函数3y x x 的递增区间是( )A .),0(+∞B .)1,(-∞C .),(+∞-∞D .),1(+∞4.32()32f x ax x =++,若'(1)4f -=,则a 的值等于( )A .319 B .316 C .313 D .310 5.函数)(x f y =在一点的导数值为0是函数)(x f y =在这点取极值的( )A .充分条件B .必要条件C .充要条件D .必要非充分条件6.函数344+-=x x y 在区间[]2,3-上的最小值为( )A .72B .36C .12D .0二、填空题1.若3'0(),()3f x x f x ==,则0x 的值为_________________;2.曲线x x y 43-=在点(1,3)- 处的切线倾斜角为__________;3.函数sin x y x=的导数为_________________; 4.曲线x y ln =在点(,1)M e 处的切线的斜率是_________,切线的方程为_______________;5.函数5523--+=x x x y 的单调递增区间是___________________________。
导数的应用(二)
-hx,且 f(x)∈Ω1,f(x)∉Ω2,则实数 h 的取值范围是( )
A.(0,+∞)
B.[0,+∞)
C.(-∞,0) 答案 C
D.(-∞,0]
解析 因为 f(x)∈Ω1 且 f(x)∉Ω2,即 g(x)=fxx=x2-2hx-h 在(0,+∞) 上是增函数,所以 h≤0,而 h(x)=fxx2=x-hx-2h 在(0,+∞)上不是增函 数,因为 h′(x)=1+xh2,所以当 h(x)在(0,+∞)上是增函数时,有 h≥0, 当 h(x)在(0,+∞)上不是增函数时,有 h<0.综上所述,实数 h 的取值范围 是(-∞,0),故选 C.
A.f(0)>f(log32)>f(-log23) B.f(log32)>f(0)>f(-log23) C.f(-log23)>f(log32)>f(0) D.f(-log23)>f(0)>f(log32) 答案 C
解析 因为 f′(x)是奇函数,所以 f(x)是偶函数.所以 f(-log23)= f(log23),而 log23>log22=1,0<log32<1,所以 0<log32<log23.又当 x>0 时, f′(x)>0,所以 f(x)在(0,+∞)上是增函数,所以 f(0)<f(log32)<f(log23),所 以 f(0)<f(log32)<f(-log23).
∴当 a≥1 时,f(x)min=f(1)=1>0 恒成立, 当 a<1 时,f(x)min=f(a)=2a-a2≥0,∴0≤a<1. 综上,a≥0. 当 x>1 时,f(x)=x-aln x≥0 恒成立, 即 a≤lnxx恒成立.
导数考试题型及答案详解
导数考试题型及答案详解一、选择题1. 函数f(x) = x^2 + 3x + 2的导数是:A. 2x + 3B. x^2 + 2C. 2x + 6D. 3x + 2答案:A2. 若f(x) = sin(x),则f'(π/4)的值是:A. 1B. √2/2C. -1D. -√2/2答案:B二、填空题1. 求函数g(x) = x^3 - 2x^2 + x的导数,g'(x) = __________。
答案:3x^2 - 4x + 12. 若h(x) = cos(x),求h'(x) = __________。
答案:-sin(x)三、解答题1. 求函数f(x) = x^3 - 6x^2 + 9x + 2的导数,并求f'(2)的值。
解:首先求导数f'(x) = 3x^2 - 12x + 9。
然后将x = 2代入得到f'(2) = 3 * 2^2 - 12 * 2 + 9 = 12 - 24 + 9 = -3。
2. 已知函数y = ln(x),求y'。
解:根据对数函数的导数公式,y' = 1/x。
四、证明题1. 证明:若函数f(x) = x^n,其中n为常数,则f'(x) = nx^(n-1)。
证明:根据幂函数的导数公式,对于任意实数n,有f'(x) = n * x^(n-1)。
五、应用题1. 某物体的位移函数为s(t) = t^3 - 6t^2 + 9t + 5,求该物体在t = 3时的瞬时速度。
解:首先求位移函数的导数s'(t) = 3t^2 - 12t + 9。
然后将t = 3代入得到s'(3) = 3 * 3^2 - 12 * 3 + 9 = 27 - 36 + 9 = 0。
因此,该物体在t = 3时的瞬时速度为0。
六、综合题1. 已知函数f(x) = x^4 - 4x^3 + 6x^2 - 4x + 5,求f'(x),并求曲线y = f(x)在点(1, f(1))处的切线斜率。
导数及其应用复习完整版
《导数及其应用》复习导学案一、知识梳理二、典例剖析题型一、导数的概念及运算1.在求平均变化率时,自变量的增量为( )A .0x ∆>B .0x ∆<C .0x ∆=D . 0x ∆≠ 【答案】D2.函数f (x )=2x 2-1在区间[1,1+Δx ]上的平均变化率ΔyΔx等于( )A .4B .4+2ΔxC .4+2(Δx )2D .4x 变式.已知f (x )=-x 2+10,则f (x )在x =32处的瞬时变化率是__________.3. 下列求导正确的是 ( ) 【答案】BA.(x+x 1)′=1+21x B. (log2x)′=ln21x C. (3x)′=3xlog3xD. (x2cosx)′=-2xsinx4.下列说法正确的是( )A .若)(0x f '不存在,则曲线)(x f y =在点()00,()x f x 处就没有切线;B .若曲线)(x f y =在点()00,()x f x 有切线,则)(0x f '必存在;C .若)(0x f '不存在,则曲线)(x f y =在点()00,()x f x 处的切线斜率不存在;D .若曲线)(x f y =在点()00,()x f x 处的切线斜率不存在,则曲线在该点处没有切线。
【答案】C5.设,M m 分别是()f x 在区间[],a b 上的最大值和最小值,则()()()bam b a f x dx M b a -≤≤-⎰,由上述估值定理,估计定积分2212x dx --⎰的取值范围是 .【解析】:因为当12x -≤≤ 时,204x ≤≤ ,所以,212116x -≤≤所以由估值定理得:()()221121212116x dx --⨯--≤≤⨯--⎡⎤⎡⎤⎣⎦⎣⎦⎰, 即22132316x dx --≤≤⎰,所以答案应填:3,316⎡⎤⎢⎥⎣⎦. 6.211dx x +=⎰⎰.【答案】ln 24π+ 题型二、导数的几何意义7.已知曲线y =2x 2上一点A (2,8),则曲线在点A 处的切线斜率为( )A .4B .16C .8D .2 8.求过点P (-1,2)且与曲线y =3x 2-4x +2在点M (1,1)处的切线平行的直线.变式1.已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________.变式2.已知函数f (x )=-13x 3+2x 2+2x ,若存在满足0≤x 0≤3的实数x 0,使得曲线y =f (x )在点(x 0,f (x 0))处的切线与直线x +my -10=0垂直,则实数m 的取值范围是( )A .[6,+∞)B .(-∞,2]C .[2,6]D .[5,6] 变式 3.已知曲线2()xf x x e m =+-在0x =处的切线与坐标轴围成的三角形的面积为16,则实数m 的值为 .9.已知抛物线y =x 2,直线l :x -y -2=0,则抛物线上的点到直线l 的最短距离是 . 变式.点P 是曲线2ln y x x =-,则点P 到直线40x y --=的距离的最小值是 .题型三、导数的综合应用 类型1:导数的运算性质10.设()f x ,()g x 分别是定义在R 上的奇函数和偶函数,当0x <时,'()()()'()0f x g x f x g x +>,且(3)0f -=,则不等式()()0f x g x <的解集是( )A .(3,0)(3,)-+∞ B .(3,0)(0,3)- C .(,3)(3,)-∞-+∞ D .(,3)(0,3)-∞-变式1.函数f (x )在定义域R 内可导,若f (x )=f (2-x )且当x ∈(-∞,1)时,(x -1)f ′(x )<0.设a =f (0),b =f ⎝⎛⎭⎫12,c =f (3),则a ,b ,c 的大小关系是______ .变式2.设函数F (x )=f (x )e x 是定义在R 上的函数,其中f (x )的导函数f ′(x )满足f ′(x )<f (x )对于x ∈R 恒成立,则( )A .f (2)>e 2f (0),f (2 016)>e 2 016f (0)B .f (2)<e 2f (0),f (2 016)>e 2 016f (0)C .f (2)<e 2f (0),f (2 016)<e 2 016f (0)D .f (2)>e 2f (0),f (2 016)<e 2 016f (0)变式3.已知函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为____________. 变式4.定义在R 上的偶函数f x 的导函数为()f x ',若对任意的实数x ,都有()()22f x xf x '+<恒成立,则使()()2211x f x f x -<-成立的实数x 的集合为( )A .{}1x x ≠±B .()(),11,-∞-+∞C .()1,1-D .()()1,00,1-【解析】:当0x >时,由()()220f x xf x +'-<可知:两边同乘以x 得: ()()2220xf x x f x x -'-< 设:()()22g x x f x x =-,则()()()2220g x xf x x f x x '=+'-<,恒成立:∴()g x 在(0)+∞,单调递减,由()()2211x f x f x -<-∴()()2211x f x x f -<-,即()()1g x g <,即1x >;当0x <时,函数是偶函数,同理得:1x <-;综上可知:实数x 的取值范围为()()11-∞-⋃+∞,,,故选:B变式5.函数()f x 的定义域是R ,(0)3f =,对任意,()()1x R f x f x ∈+>/,则不等式()2x xe f x e ⋅>+的解集为( )A .{|0}x x <B .{|0}x x >C .{|1,}x x x <->或1D .{|1,1}x x x <-<<或0 【解析】∵()()1f x f x +>/,∴()()0xxxe f x e f x e +>>/,∴[()1]()0xxe f x e f x -+>/,即{[()1]}0x e f x '->,∴函数()[()1]x F x e f x =-在R 上单调递增,且0(0)[(0)1]2F e f =-=∴ ()2[()1]2x x x e f x e e f x ⋅>+⇔->,∴x>0,故选B类型2:单调性问题11.函数()()3x f x x e =-的单调递增区间是( )DA .(-∞,2)B .(0,3)C .(1,4)D .(2,+∞) 变式1.已知()21ln 2f x x a x =-在区间()0,2上不单调,实数a 的取值范围是( ) A .()()2,00,2- B .()()4,00,4- C .()0,2 D .()0,4【答案】D变式2.已知函数()f x 的导函数图象如图所示,若ABC ∆为锐角三角形,则下列结论一定成立的是( )A .()()sin cos f A fB > B .()()sin cos f A f B <C .()()sin sin f A f B >D .()()cos cos f A f B < 12.(全国Ⅱ卷)若函数f (x )=kx -ln x 在区间(1,+∞)内单调递增,则k 的取值范围是( )A .(-∞,-2]B .(-∞,-1]C .[2,+∞)D .[1,+∞)变式1.若f (x )=-12x 2+b ln(x +2)在(-1,+∞)上是减函数,则b 的取值范围是_____________.变式2.已知a ≥0,函数f (x )=(x 2-2ax )e x .设f (x )在区间[-1,1]上是单调函数,求a 的取值范围.变式3.函数32y x ax bx =++在(,1)-∞-上单调递增,在()1,2-上单调递减,在()2,+∞上递增,则,a b 的值为( ) AA 、3,62a b =-=-B 、36,2a b =-=- C 、3,2a b == D 、3,6a b =-=-变式4.若函数y =a (x 3-x )的单调减区间为⎝⎛⎭⎫-33, 33,则a 的取值范围是( )A .(0,+∞)B .(-1,0)C .(1,+∞)D .(0,1)13.已知f(x)=e x -ax-1.(1)求f(x)的单调增区间; (2)若f(x )在定义域R 内单调递增,求a 的取值范围;(3)是否存在a,使f(x)在(-∞,0]上单调递减,在[0,+∞)上单调递增?若存在,求出a 的值;若不存在,说明理由.【答案】解 : f ′(x)= e x -a.(1)若a ≤0,f ′(x)= e x -a ≥0恒成立,即f(x)在R 上递增. 若a >0, e x -a ≥0,∴e x ≥a,x ≥lna. ∴f(x)的递增区间为(lna ,+∞).(2)∵f (x )在R 内单调递增,∴f ′(x)≥0在R 上恒成立. ∴e x -a ≥0,即a ≤e x 在R 上恒成立.∴a ≤(e x )min ,又∵e x >0,∴a ≤0.[来源:Z §xx §] (3)由题意知e x -a ≤0在(-∞,0]上恒成立. ∴a ≥e x 在(-∞,0]上恒成立. ∵e x 在(-∞,0]上为增函数. ∴x=0时,e x 最大为1.∴a ≥1.同理可知e x -a ≥0在[0,+∞)上恒成立. ∴a ≤e x 在[0,+∞)上恒成立. ∴a≤1,∴a=1.14.设函数2e (),1axf x a x R =∈+. (Ⅰ)当1a =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)求函数)(x f 单调区间. 【答案】解:因为2e (),1ax f x x =+所以222e (2)()(1)ax ax x a f x x -+'=+.(Ⅰ)当1a =时, 2e ()1xf x x =+,222e (21)()(1)x x x f x x -+'=+,所以(0)1,f = (0)1f '=.所以曲线()y f x =在点(0,(0))f 处的切线方程为10x y -+=. ……………4分(Ⅱ)因为222222e (2)e ()(2)(1)(1)ax axax x a f x ax x a x x -+'==-+++, ……………5分 (1)当0a =时,由()0f x '>得0x <;由()0f x '<得0x >.[所以函数()f x 在区间(,0)-∞单调递增, 在区间(0,)+∞单调递减. ……………6分 (2)当0a ≠时, 设2()2g x ax x a =-+,方程2()20g x ax x a =-+=的判别式2444(1)(1),a a a ∆=-=-+ ……………7分①当01a <<时,此时0∆>.由()0f x '>得211a x a --<,或211a x a +->;由()0f x '<得221111a a x a a--+-<<. 所以函数()f x 单调递增区间是211(,)a a ---∞和211(,)a a +-+∞, 单调递减区间221111(,)a a a a--+-. ……………9分 ②当1a ≥时,此时0∆≤.所以()0f x '≥,所以函数()f x 单调递增区间是(,)-∞+∞. ……………10分 ③当10a -<<时,此时0∆>.由()0f x '>得221111a a x a a +---<<; 由()0f x '<得211a x a +-<,或211a x a-->.所以当10a -<<时,函数()f x 单调递减区间是211(,)a a +--∞和211(,)a a --+∞, 单调递增区间221111(,)a a a a+---. ……………12分 ④当1a ≤-时, 此时0∆≤,()0f x '≤,所以函数()f x 单调递减区间是(,)-∞+∞.类型3:图像问题15.如右图所示是某一容器的三视图,现向容器中匀速注水,容器中水面的高度h 随时间t 变化的可能图象是( )A .B .C . D.【解析】:由三视图可知该几何体是圆锥,顶点朝下,底面圆的上面,随之时间的推移,注水量的增加高度在增加,所以函数是增函数,刚开始时截面面积较小,高度变化较快,随着注水量的增加,高度变化量减慢,综上可知B 正确16.函数()f x 的导函数()'f x 在区间(,)a b 内的图象如图所示, 则 ()f x 在(,)a b 内的极大值点有( )BA. 1个B. 2个C. 3个D. 4个变式1.如果函数()y f x =的图象如图,那么导函数()y f x '=的图象可能( )O thh t O h t O O t h变式2.设f ′(x )是函数f (x )的导函数,y =f ′(x )的图象如图所示,则y =f (x )的图象最有可能的是( )类型4:极值(最值)问题17.已知函数()313f x x ax b =-+在y 轴上的截距为1,且曲线上一点02, 2p y ⎛⎫⎪ ⎪⎝⎭处的切线斜率为13. (1)曲线在P 点处的切线方程; (2)求函数()f x 的极大值和极小值【答案】解:(1)因为函数()313f x x ax b=-+在y 轴上的截距为1,所以1b = 又'2y x a =-,所以2211 236a a ⎛⎫-=∴= ⎪ ⎪⎝⎭()311 136f x x x ∴=-+ 所以0212y f ⎛⎫== ⎪ ⎪⎝⎭,故点2,12P ⎛⎫ ⎪ ⎪⎝⎭,所以切线方程为12132y x ⎛⎫-=- ⎪ ⎪⎝⎭ 即26620x y -+-=(2)由题意可得,令()'2106f x x =-=得66x =±列表如下:x6,6⎛⎫-∞- ⎪ ⎪⎝⎭66- 66,66⎛⎫- ⎪ ⎪⎝⎭666,6⎛⎫+∞ ⎪ ⎪⎝⎭()'f x+- 0 + ()f x增区间极大 减区间极小增区间所以函数的极大值为661f ⎛=+ ⎝⎭, 极小值为661f =⎝⎭18.已知函数c bx x ax x f -+=44ln )()0(>x 在1=x 处取得极值c --3,其中c b a ,,为常数.(1)求b a ,的值; (2)求函数)(x f 的单调区间;(3)若对任意0>x ,不等式02)(2≥+c x f 恒成立,求c 的取值范围.解:(1))4ln 4()(3/b a x a x x f ++=,0)1(='f ,∴04=+b a ,又c f --=3)1(,∴3,12-==b a ; 经检验合题意;………4分(2)x x x f ln 48)(3/=()0>x ∴由0)(/=x f 得1=x ,当0)(/<x f 时,10<<x ,)(x f 单调递减;当0)(/>x f 时,1>x ,)(x f 单调递增;∴)(x f 单调递减区间为)1,0(,单调递增区间为),1(+∞ ……8分 (3)由(2)可知,1=x 时,)(x f 取极小值也是最小值c f --=3)1(,列表略 依题意,只需0232≥+--c c ,解得23≥c 或1-≤c ………………12分 19.已知函数()()xf x x k e =-. (1)求()f x 的单调区间; (2)求()f x 在区间]2,1[上的最小值;(3)设)(')()(x f x f x g +=,当2523≤≤k 时,对任意]1,0[∈x ,都有λ≥)(x g 成立,求实数λ的范围。
第四章导数及其应用(含答案)
第四章导数及其应用(含答案)第四章导数及其应用基础训练题用时:成绩: 1. 曲线323y x x =-+在点(1,2)处的切线方程为( A ).(A )31y x =- (B )35y x =-+(C )35y x =+(D )2y x =2. 曲线2e 1x y -=+在点(0,2)处的切线与直线0y =和y x =围成的三角形的面积为( A ).(A )13 (B )12 (C )23(D )1 3. 由直线,,033x x y ππ=-==与曲线cos y x =所围成的封闭图形的面积为( D ).(A )12(B )1 (C(D4. 若()224ln f x x x x =--,则()f x '>0的解集为( C ).(A)()0,+∞ (B)()()1,02,-+∞∪(C)()2,+∞ (D)()1,0-5. 函数()3231f x x x =-+在x =___2______处取得极小值. 6.10?(e x+2x )d x 等于( C )(A )1 (B )e-1(C )e (D )e+17. 设2lg ,0,()3d ,0,ax x f x x t t x >??=?+≤若((1))1f f =,则a = 1 . 8. 函数3()12f x x x =-在区间[33]-,上的最小值是 -16 . 9. 已知直线1y x =+与曲线ln()y x a =+相切,则a 的值为( B )A .1B .2C .1-D .2-10. 设曲线1()n y xn +=∈*N 在点(1,1)处的切线与x 轴的交点的横坐标为n x ,令lg n n a x =,则1299a a a +++ 的值为 -2 .11. 曲线y =2xx -在点(1,-1)处的切线方程为(D ) A .2y x =- B .32y x =-+ C .23y x =- D .21y x =-+12. 函数32()15336f x x x x =--+的单调减区间为.(111)-,13. 设曲线ax y e =在点(01),处的切线与直线210x y ++=垂直,则a = 2 . 14. 设直线12y x b =+是曲线ln y x =的一条切线,则实数b = .ln 21- 15. 设a ∈R ,若函数3ax y e x =+,x ∈R 有大于零的极值点,则( B )A .3a >-B .3a <-C .13a >-D .13a <-16. 设函数2()(0)f x ax c a =+≠,若100()()f x d x f x =?,001x ≤≤,则0x 的值为3. 17. 已知点P 在曲线y =4e 1x +上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是( D )(A )π[0)4,(B )ππ[)42,(C )π3π(]24,(D )3π[π)4,18. 设P 为曲线C :223y x x =++上的点,且曲线C 在点P 处切线倾斜角的取值范围为04π??,,则点P 横坐标的取值范围为( A ) A .112??--, B .[]10-,C .[]01,D .112??, 19. 设()f x 是偶函数,若曲线()y f x =在点(1(1))f ,处的切线的斜率为1,则该曲线在点(1(1))f --,处的切线的斜率为____-1_____.20. 设()ln f x x x =,若0()2f x '=,则0x =( B )A .2eB .eC .ln 22D .ln 221. 设函数()f x 是R 上以5为周期的可导偶函数,则曲线()y f x =在5x =处的切线的斜率为( B )A.15-B.0C.15D.522. 设()f x x ax bx 32=+++1的导数'()f x 满足'(),'()f a f b 1=22=-,其中常数,R a b ∈.(1)求曲线()y f x =在点(,())f 11处的切线方程;(2)设()'()e x g x f x -=,求函数()g x 的极值.解:(1)因为32()1,f x x ax bx =+++故2()32.f x x ax b '=++令1,x =得(1)32,f a b '=++由已知(1)2,f a '=因此322a b a ++=,解得3b =-. 又令2,x =得(2)124,f a b '=++由已知(2),f b '=-因此124,a b b ++=-解得3.2a =-因此323()31,2f x x x x =--+从而5(1)2f =-. 又因为3(1)2()3,2f '=-=-故曲线()y f x =在点(1,(1)f 处的切线方程为5()3(1),2y x --=--即6210.x y +-=(2)由(1)知2()(333)e x g x x x -=--,从而有2()(39)e .x g x x x -'=-+令()0,g x '=得2390,xx -+=解得120, 3.x x ==当(,0)x ∈-∞时()0,g x '<故()g x 在(,0)-∞上为减函数;当(0,3)x ∈时,()0,g x '>故()g x 在(0,3)上为增函数;当(3,)x ∈+∞时,()0,g x '<故()g x 在(3,)+∞上为减函数;从而函数()g x 在1 0x =处取得极小值(0)3,g =-在23x =处取得极大值3(3)15e .g -=23. 设2e ()1xf x ax=+,其中a 为正实数. (1)当a 43=时,求()f x 的极值点;(2)若()f x 为R 上的单调函数,求a 的取值范围。
导数应用精选50题(含有答案)
C.2
D. 3
2
13.对于三次函数 f (x) ax3 bx2 cx d ( a 0 ),定义:设 f (x) 是函数 y f (x) 的
导数,若方程 f (x) 0 有实数解 x0,则称点(x0,(f x0))为函数 y f (x) 的“拐点”.有
同学发现:“任何一个三次函数都有‘拐点’;任何一个三次函数都有对称中心;且‘拐点’
)
99
A. a b c
B. c > b > a
C. c > a > b
D. a > c > b
10. f (x)是函数f (x)的导函数, 将y f (x)和y f (x) 的图象画在同一直角坐标系中,不
可能正确的是
()
11.已知函数 y xf (x) 的图象如图 3 所示(其中 f (x) 是函数 f (x) 的导函数).下面四个图 象中, y f (x) 的图象大致是( )
常数 为方程 f (x) = x 的实数根。 (1) 求证:当 x > 时,总有 x > f (x) 成立; (2) 对任意 x1、x2 若满足| x1- | < 1,| x2- | < 1,求证:| f (x1)-f (x2)| < 2.
25.(本小题满分 12 分)
已知函数 f (x) ax3 bx2 ,当 x 1 时,有极大值 3 ;
f
( ) , f 3
(x ) 为 f(x)的导函数,令 a=
12,b=log32,则下列关系
正确的是( )
A.f(a)>f(b) B.f(a)<f(b)
C.f(a)=f(b)
D.f(|a|)<f(b)
16.设在函数 y x sin x cos x 的图象上的点 x0, y0 处的切线斜率为 k,若 k g x0 ,则
(完整版)导数知识点与基础习题(含答案),推荐文档
A.6 B.18 C.54 D.81
4、曲线 y 1 在点 (1 , 2) 处的切线斜率为_________,切线方程为 x2
__________________.
5、已知函数 f (x) ax2 2 ,若 f (1) 1 ,则 a __________.
6、计算:
(1) f (x) 5x 7 ,求 f (3) ;(2) f (x) 2 x2 2 ,求 f ( 1) ;
x) x
f
(x0 )
2. 导数的几何意义: 当点 Pn 趋近于 P 时,函数 y f (x) 在 x x0 处的导数就是切线 PT
的斜率 k,即
k
lim
x0
f
(xn ) f (x0 ) xn x0
f
(x0 )
3. 导函数 二.导数的计算 1. 基本初等函数的导数公式 2. 导数的运算法则 3. 复合函数求导
9、已知 y 1 sin 2x sin x ,那么 y 是( ) 2
A.仅有最小值的奇函数 B.既有最大值又有最小值的偶函数 C.仅有最大值的偶函数 D.非奇非偶函数
1
10、曲线 y e2 x 在点 (4, e2 ) 处的切线与坐标轴所围三角形的面积为( )
A. 9 e2 B. 4e2 2
4、(2009 全国卷Ⅱ理)曲线 y x 在点 (1,1) 处的切线方程为____________________. 2x 1
5、曲线 y x3 在点 (1,1) 处的切线与 x 轴、直线 x 2 所围成的三角形面积为__________.
6、求下列函数的导数:
(1)
y
(1)x 3
log3
x
;(2)
1
x3
B.
导数函数综合应用(含答案)
导数函数综合应用一.选择题(共6小题)1.定义在R上的函数y=f(x),满足f(4﹣x)=f(x),(x﹣2)f′(x)<0,若x1<x2,且x1+x2>4,则有()A.f(x1)<f(x2)B.f(x1)>f(x2)C.f(x1)=f(x2)D.不确定2.定义在(1,+∞)上的函数f(x)满足下列两个条件:(1)对任意的x∈(1,+∞)恒有f(2x)=2f(x)成立;(2)当x∈(1,2]时,f(x)=2﹣x;记函数g(x)=f(x)﹣k(x﹣1),若函数g(x)恰有两个零点,则实数k的取值范围是()A.[1,2)B.C.D.3.设函数f(x)是定义在实数集上的奇函数,在区间[﹣1,0)上是增函数,且f(x+2)=﹣f(x),则有()A.B.C.D.4.已知函数f(x)=,若函数y=f(x)+|x﹣1|﹣kx在定义域内有且只有三个零点,则实数k的取值范围是()A.[)B.[]C.[﹣)D.[﹣]5.设函数f(x)=,若对任意给定的y∈(2,+∞),都存在唯一的x∈R,满足f(f(x))=2a2y2+ay,则正实数a的最小值是()A.2B.C.D.46.已知函数f(x)=2mx2﹣2(4﹣m)x+1,g(x)=mx,若对于任一实数x,f(x)与g(x)至少有一个为正数,则实数m的取值范围是()A.(0,2)B.(0,8)C.(2,8)D.(﹣∞,0)二.填空题(共1小题)7.已知函数f(x)=,若关于x的方程f(x)=3恰有两个互异的实数解,则实数a的取值范围是.三.解答题(共19小题)8.已知函数f(x)=﹣alnx(a∈R).(1)讨论f(x)的单调性;(2)若存在实数x0=[1,e],使得f(x0)<0,求正实数a的取值范围.9.已知函数f(x)=x2﹣(a+)x+lnx,其中a>0.(Ⅰ)当a=2时,求曲线y=f(x)在点(1,f(1))处切线的方程;(Ⅱ)当a≠1时,求函数f(x)的单调区间;(Ⅲ)若a∈(0,),证明对任意x1,x2∈[,1](x1≠x2),<恒成立.10.已知函数f(x)=lnx﹣ax2+(2﹣a)x.(1)若f′(1)=﹣6,求函数f(x)在(1,f(1))处的切线;(2)设a>0,证明:当0<x<时,f(+x)>f(﹣x);(3)若函数f(x)的图象与x轴交于A,B两点,线段AB中点的横坐标为x0,证明:f′(x0)<0.11.已知a≠0,函数f(x)=|e x﹣e|+e x+ax(1)讨论f(x)的单调性(2)若对∀x∈(﹣,+∞),不等式f(x)≥恒成立,求a的取值范围(3)已知当a<﹣e时,函数f(x)有两个零点x1,x2(x1<x2),求证:f(x1x2)>a+e12.已知函数f(x)=a(x﹣1)e x(a>0),g(x)=﹣cos x.(1)求函数f(x)的单调区间;(2)若对于任意的实数x1,x2∈[0,],(其中x1≠x2),都有|f(x1)﹣f(x2)|>|g(x1)﹣g(x2)|恒成立求实数a的取值范围.13.已知函数f(x)=a+2lnx﹣ax(a>0),(1)求f(x)的最大值φ(a);(2)若f(x)≤0恒成立,求a的值;(3)在(2)的条件下,设g(x)=在(a,+∞)上的最小值为m,求证:﹣11<f(m)<﹣1014.已知函数f(x)=(x2﹣mx)e x(e为自然对数的底数).(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若m=2,2n+1≥0,证明:关于x的不等式nf(x)+1≥e x在(﹣∞,0]上恒成立.15.已知函数f(x)=(其中e是自然对数的底数),g(x)=1﹣ax2(a∈R).(Ⅰ)求函数f(x)的极值;(Ⅱ)设h(x)=f(x)﹣g(x),若a满足0<a<且ln2a+1>0,试判断方程h(x)=0的实数根个数,并说明理由.16.已知函数f(x)=ax2﹣lnx.(1)求函数f(x)的单调区间;(2)若函数f(x)有两个零点x1,x2,求a的取值范围,并证明:x1•x2>1.17.己知p:实数m使得函数f(x)=lnx(m﹣2)x2﹣x在定义域内为增函数:q:实数m使得函数g(x)=mx2+(m+1)x﹣5在R上存在两个零点x1,x2,且x1<1<x2(1)分别求出条件p,q中的实数m的取值范围;(2)甲同学认为“p是q的充分条件”,乙同学认为“p是q的必要条件”,请判断两位同学的说法是否正确,并说明理由.18.已知函数f(x)=In+cos x﹣|x|.(Ⅰ)求证:函数f(x)在[0,+∞)上单调递减;(Ⅱ)若f(2x﹣3)+π+1+ln(2+3π2)<0,求x的取值范围.19.已知函数f(x)=lnx﹣sin(x﹣1),f′(x)为f(x)的导函数.证明:(1)f′(x)在区间(0,2)存在唯一极小值点;(2)f(x)有且仅有2个零点.20.已知函数f(x)=te2x+(t+2)e x﹣1,t∈R.(Ⅰ)当t=﹣1时,求f(x)的单调区间与极值;(Ⅱ)当t>0时,若函数g(x)=f(x)﹣4e x﹣x+1在R上有唯一零点,求t的值.21.已知函数f(x)=e x﹣x2﹣ax+b(e为自然对数的底数).(Ⅰ)若a≥1,判断f(x)极值点个数;(Ⅱ)若f(x)≥f′(x)在x∈[﹣1,1]上恒成立,求a+b的取值范围.22.设函数f(x)=lnx﹣a2x+2a(a∈R)(1)若函数f(x)在上递增,在上递减,求实数a的值.(2)讨论f(x)在(1,+∞)上的单调性;(3)若方程x﹣lnx﹣m=0有两个不等实数根x1,x2,求实数m的取值范围,并证明x1x2<1.23.已知函数f(x)=2x3﹣3(a﹣1)x2﹣6ax+a2+1.(Ⅰ)设﹣1≤a≤1,曲线y=f(x)在点(1,f(1))处的切线在y轴上的截距为b,求b的最小值;(Ⅱ)若f(x)只有一个零点x0,且x0<0,求a的取值范围.24.设函数f(x)=x﹣﹣alnx(a∈R,a>0).(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)有两个极值点x1和x2,记过A(x1,f(x1)),B(x2,f(x2))的直线的斜率为k.问:是否存在a,使k=2﹣a?若存在,求出a的值;若不存在,请说明理由.25.已知.(1)讨论函数f(x)的单调区间;(2)若f(x)存在极值且f(x)≥0,求实数a的取值范围;(3)求证:当x>1时,.26.已知函数f(x)=(ax+1)e x,a∈R(1)当a=1时,求函数f(x)的最小值.(2)当a=时,对于两个不相等的实数x1,x2,有f(x1)=f(x2),求证:x1+x2<2.导数函数综合应用参考答案与试题解析一.选择题(共6小题)1.定义在R上的函数y=f(x),满足f(4﹣x)=f(x),(x﹣2)f′(x)<0,若x1<x2,且x1+x2>4,则有(B)A.f(x1)<f(x2)B.f(x1)>f(x2)C.f(x1)=f(x2)D.不确定【解答】解:由题意f(4﹣x)=f(x),可得出函数关于x=2对称,又(x﹣2)f′(x)<0,得x>2时,导数为负,x<2时导数为正,即函数在(﹣∞,2)上是增函数,在(2,+∞)上是减函数又x1<x2,且x1+x2>4,下进行讨论若2<x1<x2,显然有f(x1)>f(x2)若x1<2<x2,有x1+x2>4可得x1>4﹣x2,故有f(x1)>f(4﹣x2)=f(x2)综上讨论知,在所给的题设条件下总有f(x1)>f(x2)2.定义在(1,+∞)上的函数f(x)满足下列两个条件:(1)对任意的x∈(1,+∞)恒有f(2x)=2f(x)成立;(2)当x∈(1,2]时,f(x)=2﹣x;记函数g(x)=f(x)﹣k(x﹣1),若函数g(x)恰有两个零点,则实数k的取值范围是(C)A.[1,2)B.C.D.【解答】解:因为对任意的x∈(1,+∞)恒有f(2x)=2f(x)成立,且当x∈(1,2]时,f(x)=2﹣x 所以f(x)=﹣x+2b,x∈(b,2b].由题意得f(x)=k(x﹣1)的函数图象是过定点(1,0)的直线,如图所示红色的直线与线段AB相交即可(可以与B点重合但不能与A点重合)所以可得k的范围为3.设函数f(x)是定义在实数集上的奇函数,在区间[﹣1,0)上是增函数,且f(x+2)=﹣f(x),则有(A)A.B.C.D.【解答】解:根据题意,函数f(x)满足f(x+2)=﹣f(x),当x=﹣时,有f()=﹣f(﹣)=f(),函数f(x)是定义在实数集上的奇函数,在区间[﹣1,0)上是增函数,则f(x)在区间(0,1]上是增函数,则有f()<f()<f(1),则有f()<f()<f(1),4.已知函数f(x)=,若函数y=f(x)+|x﹣1|﹣kx在定义域内有且只有三个零点,则实数k的取值范围是(A)A.[)B.[]C.[﹣)D.[﹣]【解答】解:函数y=f(x)+|x﹣1|﹣kx在定义域内有且只有三个零点,即为方程f(x)+|x﹣1|=kx在[﹣3,+∞)内有3个不等实根,可令g(x)=f(x)+|x﹣1|=,作出g(x)的图象(如右),直线y=kx,当k=0时,y=g(x)和y=0显然有3个交点,符合题意;当直线y=kx与y=x2+3x+1相切,可得x2+(3﹣k)x+1=0,△=(3﹣k)2﹣4=0,解得k=1(k=5舍去),由k=1时,y=g(x)和y=x有两个交点,可得0≤k<1时,符合题意;当k<0时,且直线y=kx经过点(﹣3,1)时,直线y=kx与y=g(x)有3个交点,此时k=﹣,由y=kx绕着原点旋转,可得﹣≤k<0,综上可得,k的范围是[﹣,1).5.设函数f(x)=,若对任意给定的y∈(2,+∞),都存在唯一的x∈R,满足f(f(x))=2a2y2+ay,则正实数a的最小值是(C)A.2B.C.D.4【解答】解:函数f(x)=的值域为R.∵f(x)=2x,(x≤0)的值域为(0,1];f(x)=log2x,(x>0)的值域为R.∴f(x)的值域为(0,1]上有两个解,要想f(f(x))=2a2y2+ay在y∈(2,+∞)上只有唯一的x∈R满足,必有f(f(x))>1 (2a2y2+ay>0).∴f(x)>2,即log2x>2,解得:x>4.当x>4时,x与f(f(x))存在一一对应的关系.∴问题转化为2a2y2+ay>1,y∈(2,+∞),且a>0.∴(2ay﹣1)(ay+1)>0,解得:y>或者y<﹣(舍去).∴≤2,得a.6.已知函数f(x)=2mx2﹣2(4﹣m)x+1,g(x)=mx,若对于任一实数x,f(x)与g(x)至少有一个为正数,则实数m的取值范围是(B)A.(0,2)B.(0,8)C.(2,8)D.(﹣∞,0)【解答】解:当m≤0时,当x接近+∞时,函数f(x)=2mx2﹣2(4﹣m)x+1与g(x)=mx均为负值,显然不成立当x=0时,因f(0)=1>0当m>0时,若,即0<m≤4时结论显然成立;若,时只要△=4(4﹣m)2﹣8m=4(m﹣8)(m﹣2)<0即可,即4<m<8则0<m<8二.填空题(共1小题)7.已知函数f(x)=,若关于x的方程f(x)=3恰有两个互异的实数解,则实数a的取值范围是(﹣∞,6).【解答】解:函数f(x)=,当x≥1时,方程f(x)=3,可得lnx+1=3,解得x=e2,函数有一个零点;x<1时,函数只有一个零点,即x2﹣4x+a=3,在x<1时只有一个解,因为y=x2﹣4x+a ﹣3开口向上,对称轴为x=2,x<1时,函数是减函数,所以f(1)<3,可得﹣3+a<3,解得a<6.三.解答题(共19小题)8.已知函数f(x)=﹣alnx(a∈R).(1)讨论f(x)的单调性;(2)若存在实数x0=[1,e],使得f(x0)<0,求正实数a的取值范围.【解答】解:(1)由f(x)=﹣alnx(a∈R),得f′(x)=x﹣=(x>0).当a≤0时,f′(x)>0,f(x)在(0,+∞)上单调递增;当a>0时,由f′(x)>0,得x>,由f′(x)<0,得0<x<.∴f(x)在(0,)上单调递减,在(,+∞)上单调递增;(2)由(1)知,当a>0时,f(x)在(0,)上单调递减,在(,+∞)上单调递增.①当,即0<a≤1时,f(x)在[1,e]上单调递增,>0,不合题意;②当1<<e,即1<a<e2时,f(x)在[1,]上单调递减,在[,e]上单调递增,由<0,解得e<a<e2;③当≥e,即a≥e2时,f(x)在[1,e]上单调递减,由<0,解得a≥e2.综上所述,a的取值范围为(e,+∞).9.已知函数f(x)=x2﹣(a+)x+lnx,其中a>0.(Ⅰ)当a=2时,求曲线y=f(x)在点(1,f(1))处切线的方程;(Ⅱ)当a≠1时,求函数f(x)的单调区间;(Ⅲ)若a∈(0,),证明对任意x1,x2∈[,1](x1≠x2),<恒成立.【解答】(Ⅰ)解:当a=2时,f(x)=,f′(x)=,∴f′(1)=,∵f(1)=.∴切线方程为:y+2=(x﹣1),整理得:x+2y+3=0;(Ⅱ)f′(x)x﹣=(x>0),令f′(x)=0,解得:x=a或x=.①若0<a<1,,当x变化时,f′(x),f(x)的变化情况如表:∴f(x)在区间(0,a)和()内是增函数,在(a,)内是减函数;②若a>1,,当x变化时,f′(x),f(x)的变化情况如表:∴f(x)在区间(0,)和(a,+∞)内是增函数,在(,+∞)内是减函数;(Ⅲ)∵0<a<,∴f(x)在[,1]内是减函数,又x1≠x2,不妨设0<x1<x2,则f(x1)>f(x2),.于是等价于,即.令(x>0),∵g′(x)=在[,1]内是减函数,故g′(x)≤g′()=2﹣(a+).从而g(x)在[,1]内是减函数,∴对任意,有g(x1)>g(x2),即,∴当,对任意,恒成立.10.已知函数f(x)=lnx﹣ax2+(2﹣a)x.(1)若f′(1)=﹣6,求函数f(x)在(1,f(1))处的切线;(2)设a>0,证明:当0<x<时,f(+x)>f(﹣x);(3)若函数f(x)的图象与x轴交于A,B两点,线段AB中点的横坐标为x0,证明:f′(x0)<0.【解答】解:(1)函数f(x)的定义域为(0,+∞),∵f(x)=lnx﹣ax2+(2﹣a)x,∴f'(x)=﹣2ax+2﹣a==﹣.f′(﹣1)=a+1=﹣6,解得a=﹣7,则函数f(x)在(1,f(1))处的切线斜率为k=﹣6,切点为(1,16),则所求切线的方程为y﹣16=﹣6(x ﹣1),即为6x+y﹣22=0;(2)证明:设函数g(x)=f(+x)﹣f(﹣x),则g(x)=ln(1+ax)﹣ln(1﹣ax)﹣2ax,g′(x)=+﹣2a=,当x∈(0,)时,g′(x)>0,g(x)递增,而g(0)=0,即有g(x)>0,故当0<x<时,f(+x)>f(﹣x).(3)证明:当a≤0时,f′(x)>0恒成立,因此f(x)在(0,+∞)单调递增,即有函数y=f(x)的图象与x轴至多有一个交点,故a>0,从而f(x)的最大值为f(),且f()>0,不妨设A(x1,0),B(x2,0),0<x1<x2,则0<x1<<x2,由(2)得,f(﹣x1)=f(+﹣x1)>f(x1)=f(x2)=0,又f(x)在(,+∞)单调递减,∴﹣x1<x2,于是x0=,当x∈(,+∞)(a>0)时,f′(x)<0,则f′(x0)<0成立.11.已知a≠0,函数f(x)=|e x﹣e|+e x+ax(1)讨论f(x)的单调性(2)若对∀x∈(﹣,+∞),不等式f(x)≥恒成立,求a的取值范围(3)已知当a<﹣e时,函数f(x)有两个零点x1,x2(x1<x2),求证:f(x1x2)>a+e【解答】解:(1)函数f(x)=|e x﹣e|+e x+ax=,∴f′(x)=,当a>0时,f(x)在R上是增函数;当a<0时,x≥1时,令f′(x)>0,⇒e x>﹣⇒x>ln(﹣),①ln(﹣)≤1,即﹣2e≤a<0,f(x)在(﹣∞,1)是减函数;在(1,+∞)是增函数;②ln(﹣)>1,即a<﹣2e,f(x)在(﹣∞,ln(﹣))是减函数;在(ln(﹣),+∞)是增函数;(2)函数f(x)=|e x﹣e|+e x+ax=,若x∈(﹣,1),ax+e.∴可得﹣,当x∈[1,+∞)时,,即2a,设g(x)=,g′(x)=,所以g(x)在[1,+∞)上是减函数,所以g(x)max=g(1)=﹣e,所以a.综上.(3)证明:∵f(1)=a+e,∴不等式f(x1x2)>a+e转化为f(x1x2)>f(1),∵a<﹣e,∴f(1)=a+e<0,∴f(x)的两个零点x1<1<x2,∴,∴,∴x1x2=,令h(x)=,h′(x)=,令t(x)=e x﹣xe x﹣e,t′(x)=(1﹣x)e x<0,∴t(x)在(1,+∞)上是减函数,t(x)<t(1)=0,即h′(x)<0,h(x)在(1,+∞)是减函数,h(x)<h(1)=1,即x1x2<1,∵a<﹣e时,f(x)在(﹣∞,1)是减函数,∴f(x1x2)>a+e.12.已知函数f(x)=a(x﹣1)e x(a>0),g(x)=﹣cos x.(1)求函数f(x)的单调区间;(2)若对于任意的实数x1,x2∈[0,],(其中x1≠x2),都有|f(x1)﹣f(x2)|>|g(x1)﹣g(x2)|恒成立求实数a的取值范围.【解答】解:(1)函数f(x)的定义域为(﹣∞,+∞),f′(x)=a[e x+(x﹣1)e x]=ax•e x.当x=0时,f′(x)=0;当x<0时,f′(x)<0;当x>0时,f′(x)>0,所以函数f(x)的单调减区间为(﹣∞,0),单调增区间为(0,+∞).(2)不妨设x1<x2,因为g(x)在[0,]上是增函数,所以g(x1)<g(x2),即g(x1)﹣g(x2)<0,由(1)得f(x)在[0,]上是增函数,所以f(x1)<f(x2),即f(x1)﹣f(x2)<0.由题意,得f(x2)﹣f(x1)>g(x2)﹣g(x1),即f(x2)﹣g(x2)>f(x1)﹣g(x1).令h(x)=f(x)﹣g(x)=a(x﹣1)e x+cos x在[0,]上是增函数,则h′(x)=axe x﹣sin x≥0对任意的x恒成立.设F(x)=(0),则F(x)≤0恒成立,.令,则,从而G(x)在[0,]上是减函数,所以,即.当a≥1时,F(x)≤0′,当且仅当a=1,x=0时取等号,所以F(x)在上是减函数,所以当x时,F(x)≤F(0)=0,故a≥1满足题意.当0<a<1时,F′(0)=1﹣a>0,F.由零点存在定理,存在,使得F′(x0)=0.因为G(x)在(0,)上是减函数,所以F′(x)=G(x)﹣a在(0,)上是减函数,所以0<x<x0时,F′(x)>F′(x0)=0,所以F(x)在(0,x0)上是增函数,所以当x∈(0,x0)(这里(0,x0)⊊)时,F(x)>F(0)=0.所以0<a<1不满足题意,综上,实数a的取值范围是[1,+∞).13.已知函数f(x)=a+2lnx﹣ax(a>0),(1)求f(x)的最大值φ(a);(2)若f(x)≤0恒成立,求a的值;(3)在(2)的条件下,设g(x)=在(a,+∞)上的最小值为m,求证:﹣11<f(m)<﹣10【解答】解:(1)∵f(x)=a+2lnx﹣ax(a>0),∴f′(x)=(a>0),由f′(x)>0得0<x<;f′(x)<0得x>;所以f(x)在(0,)上单调递增,在(,+∞)上单调递减.故f(x)max=f()=a﹣2﹣2lna+2ln2即φ(a)=a﹣2﹣2lna+2ln2(a>0)(2)要使f(x)≤0 成立必须φ(a)=a﹣2﹣2lna+2ln2≤0.因为φ′(a)=,所以当0<a<2 时,φ′(a)<0;当a>2 时,φ′(a)>0.所以φ(a)在(0,2)上单调递减,在(2,+∞)上单调递增.∴φ(a)min=φ(2)=0,所以满足条件的a只有2,即a=2.(3)由(2)知g(x)=,∴g′(x)=令u(x)=x-2lnx﹣4,则u′(x)=>0,u(x)是(2,+∞)上的增函数;又u(8)<0,u(9)>0,所以存在x0∈(8,9)满足u(x0)=0,即2lnx0=x0﹣4,且当x∈(2,x0)时,u(x)<0,g′(x)<0;当x∈(x0,+∞)时,u(x)>0,g′(x)>0;所以g(x)在(2,x0)上单调递减;在(x0,+∞)上单调递增.所以g(x)min=g(x0)===x0,即m=x0.所以f(m)=f(x0)=2+2lnx0﹣2x0=x0﹣2∈(﹣11,﹣10),即﹣11<f(m)<﹣10.14.已知函数f(x)=(x2﹣mx)e x(e为自然对数的底数).(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若m=2,2n+1≥0,证明:关于x的不等式nf(x)+1≥e x在(﹣∞,0]上恒成立.【解答】解:(Ⅰ)依题意x∈R,f′(x)=(x2﹣mx+2x﹣m)e x=[x2+(2﹣m)x﹣m]e x令y=x2+(2﹣m)x﹣m,则△=(2﹣m)2+4m=4+m2>0令f′(x)=0,则x2+(2﹣m)x﹣m=0解得x=结合二次函数图象可知:∴f(x)的单调递增区间为(﹣∞,)和(,+∞)单调递减区间为(,)(Ⅱ)令g(x)=nf(x)+1﹣e x=n(x2﹣2x)e x﹣e x+1当x∈(﹣∞,0]时,x2﹣2x≥0而2n+1≥0⇔n≥﹣故n(x2﹣2x)e x≥﹣(x2﹣2x)e x∴g(x)≥﹣(x2﹣2x)e x﹣e x+1令h(x)=﹣(x2﹣2x)e x﹣e x+1,x∈(﹣∞,0]∴h′(x)=﹣x2e x≤0故函数h(x)在(﹣∞,0]上单调递减,则h(x)≥h(0)=0则任意的x∈(﹣∞,0],g(x)≥h(x)≥0∴关于x的不等式nf(x)+1≥e x在(﹣∞,0]上恒成立.15.已知函数f(x)=(其中e是自然对数的底数),g(x)=1﹣ax2(a∈R).(Ⅰ)求函数f(x)的极值;(Ⅱ)设h(x)=f(x)﹣g(x),若a满足0<a<且ln2a+1>0,试判断方程h(x)=0的实数根个数,并说明理由.【解答】解:(Ⅰ)易知,当x<0时,f′(x)>0,此时f(x)单调递增;当x>0时,f′(x)<0,此时f(x)单调递减,所以f(x)极大值=f(0)=1,但无极小值.(Ⅱ)因为,所以.导数因为,所以,于是,令h′(x)=0,此时,当x<0时,f′(x)<0,此时f(x)单调递减;当时,f′(x)>0,此时f(x)单调递增;所以.因为,所以,,又函数h(x)在R上连续,故h(x)有一个零点0,且在上也有一个零点;综上,方程h(x)=0有2个实数根.16.已知函数f(x)=ax2﹣lnx.(1)求函数f(x)的单调区间;(2)若函数f(x)有两个零点x1,x2,求a的取值范围,并证明:x1•x2>1.【解答】解:(1)∵函数f(x)=ax2﹣lnx.定义域为(0,+∞)∴f′(x)=2ax﹣=①当a≤0时,f′(x)=<0恒成立,∴f(x)在(0,+∞)上为减函数.②当a>0时,令f′(x)=<0,解得0<x<令f′(x)=>0,解得x>∴f(x)=ax2﹣lnx在(0,)上为减函数,在(,+∞)上为增函数综上a≤0时f(x)的单调减区间为(0,+∞)a>0时f(x)的单调减区间为(0,),增区间是(,+∞).(2)∵函数f(x)有两个零点x1,x2,由(1)知x=是f(x)的最小值点,∴f(x)在(0,+∞)上的最小值f()=a•()2﹣ln<0时,f(x)有两个零点x1,x2∴解得0<a<要证x1•x2>1⇔要证lnx1•x2>ln1⇔要证lnx1+lnx2>0∵函数f(x)有两个零点x1,x2,不防设0<x1<<x2则f(x1)=ax12﹣lnx1=0 ①f(x2)=ax22﹣lnx2=0 ②①+②得:lnx1+lnx2=a(x12+x22),而a(x12+x22)>0,∴lnx1+lnx2>0即x1•x2>1得证.17.己知p:实数m使得函数f(x)=lnx(m﹣2)x2﹣x在定义域内为增函数:q:实数m使得函数g(x)=mx2+(m+1)x﹣5在R上存在两个零点x1,x2,且x1<1<x2(1)分别求出条件p,q中的实数m的取值范围;(2)甲同学认为“p是q的充分条件”,乙同学认为“p是q的必要条件”,请判断两位同学的说法是否正确,并说明理由.【解答】解:(1)p:实数m使得函数f(x)=lnx(m﹣2)x2﹣x在定义域内为增函数:则有在R上恒成立.∴m﹣2=()2﹣∴m.q:实数m使得函数g(x)=mx2+(m+1)x﹣5在R上存在两个零点x1,x2,且x1<1<x2则有m•f(1)<0⇒m(m﹣2)<0⇒0<m<2.(2)由(1)可得p:∴m.,q:0<m<2.∵{m|m}⊈{|0<m<2}{m|m}⊉{|0<m<2}∴p是q的既不充分也不必要条件.故两位同学都错.18.已知函数f(x)=In+cos x﹣|x|.(Ⅰ)求证:函数f(x)在[0,+∞)上单调递减;(Ⅱ)若f(2x﹣3)+π+1+ln(2+3π2)<0,求x的取值范围.【解答】(1)证明:∵函数f(x)=In+cos x﹣|x|.∴x∈[0,+∞)时f(x)=﹣ln(2+3x2)+cos x﹣x ∴f′(x)=﹣sin x﹣1,∴x∈[0,+∞)时f′(x)=﹣sin x﹣1<0,∴函数f(x)在[0,+∞)上单调递减;(2)∵函数f(x)=In+cos x﹣|x|.定义域为R∴f(﹣x)=)=﹣ln(2+3x2)+cos(﹣x)﹣|﹣x|=﹣ln(2+3x2)+cos x﹣x=f(x)∴f(x)是偶函数.由(1)知f(x)在[0,+∞)上单调递减;∴f(x)在(﹣∞,0]上单调递增;又f(2x﹣3)+π+1+ln(2+3π2)<0⇔f(2x﹣3)<f(π)∴|2x﹣3|>π⇔2x﹣3>π或2x﹣3<﹣π解得x>或x<∴x的取值范围为:(﹣∞,)∪(,+∞)19.已知函数f(x)=lnx﹣sin(x﹣1),f′(x)为f(x)的导函数.证明:(1)f′(x)在区间(0,2)存在唯一极小值点;(2)f(x)有且仅有2个零点.【解答】解:(1)令g(x)=f′(x)=,,当x∈(0,1)时,g′(x)<0恒成立,当x∈(1,2)时,>0.∴g′(x)在(1,2)递增,.故存在a∈(1,2)使得,x∈(1,a)时g′(x)<0,x∈(a,2)时,g′(x)>0.综上,f′(x)在区间(0,2)存在唯一极小值点x=a.(2)由(1)可得x∈(0,a)时,g′(x)<0,g(x)单调递减,x∈(a,2)时,g′(x)<0,g(x)单调递增.且g(1)=0,g(2)=.故g(x)的大致图象如下:当x∈(2,3)时,sin(x﹣1)∈(sin1,sin2),sin(x﹣1)>sin30°∴此时g′(x)>0,g(x)单调递增,而g(3)=﹣cos2>0.故存在∈(2,3),使得g(m)=0故在x∈(0,3)上,g(x)的图象如下:综上,x∈(0,1)时,g(x)<0,x∈(1,m)时,g(x)<0,x∈(m,3)时,g(x)>0.∴f(x)在(0,1)递增,在(1,m)递减,在(m,3)递增,而f(1)=0,f(3)=ln3﹣sin2>0,又当x>3时,lnx>1,f(x)>0恒成立.故在(0,+∞)上f(x)的图象如下:∴f(x)有且仅有2个零点.20.已知函数f(x)=te2x+(t+2)e x﹣1,t∈R.(Ⅰ)当t=﹣1时,求f(x)的单调区间与极值;(Ⅱ)当t>0时,若函数g(x)=f(x)﹣4e x﹣x+1在R上有唯一零点,求t的值.【解答】解:(Ⅰ)当t=﹣1时,f(x)=﹣e2x+e x﹣1,则f′(x)=﹣2e2x+e x=e x(1﹣2e x)令f′(x)=0,解得x=﹣ln2∴f(x)的单调递增区间是(﹣∞,﹣ln2),单调递减区间是(﹣ln2,+∞)∴f(x)的极大值是f(﹣ln2)=﹣,无极小值.(Ⅱ)当t>0时,g(x)=f(x)﹣4e x﹣x+1=te2x+(t﹣2)e x﹣x∴g′(x)=2te2x+(t﹣2)e x﹣1=(te x﹣1)(2e x+1)=0,解得x=﹣lnt∴g(x)的单调递减区间是(﹣∞,﹣lnt),单调递增区间是(﹣lnt,+∞)∴g(x)的极小值是g(﹣lnt)∴g(﹣lnt)=0,即lnt﹣+1=0时,能满足题意.令F(t)=lnt﹣+1,则F′(t)=+>0∴F(t)=lnt﹣+1在(0,+∞)上单调递增,唯有t=1时,F(1)=0∴t=121.已知函数f(x)=e x﹣x2﹣ax+b(e为自然对数的底数).(Ⅰ)若a≥1,判断f(x)极值点个数;(Ⅱ)若f(x)≥f′(x)在x∈[﹣1,1]上恒成立,求a+b的取值范围.【解答】解:(Ⅰ)∵f′(x)=e x﹣x﹣a,x∈R,f″(x)=e x﹣1可得函数f′(x)在(﹣∞,0)上单调递减;在(0,+∞)单调递增,f′(x)min=f′(0)=1﹣a当a>1时,1﹣a<0,且f′(﹣a)=e﹣a>0,取b>0,使得b>ln(b+a),∴f′(b)=e b﹣(b+a)>b+a﹣(b+a)=0即函数f′(x)的图象与x轴有两个交点,此时f(x)极值点个数为2,;当a=1时,f′(x)≥0,此时f(x)极值点个数为0;(Ⅱ)f(x)≥f′(x)在x∈[﹣1,1]上恒成立⇔e x﹣x2﹣ax+b≥e x﹣x﹣a在x∈[﹣1,1]上恒成立⇔a+b≥在x∈[﹣1,1]上恒成立.令h(x)=①当1﹣a≥0时,h(x).∴a+b②当1﹣a<0时,h(x)max=h(1)=a﹣综上得,a+b22.设函数f(x)=lnx﹣a2x+2a(a∈R)(1)若函数f(x)在上递增,在上递减,求实数a的值.(2)讨论f(x)在(1,+∞)上的单调性;(3)若方程x﹣lnx﹣m=0有两个不等实数根x1,x2,求实数m的取值范围,并证明x1x2<1.【解答】解:(1)由于函数函数f(x)在上递增,在上递减,由单调性知,是函数的极大值点,无极小值点.所以∵故,经验证成立.(2)∵f(x)=lnx﹣a2x+2a,∴,①当a=0时,在(1,+∞)上单调递增.②当a2≥1,即a≤﹣1或a≥1时,f'(x)<0,∴f(x)在(1,+∞)上单调递减.③当﹣1<a<1且a≠0时,由f'(x)=0得.令f'(x)>0得;令f'(x)<0得.∴f(x)在上单调递增,在上单调递减.综上,当a=0时,f(x)在(1,+∞)上递增;当a≤﹣1或a≥1时,f(x)在(1,+∞)上递减;当﹣1<a<1且a≠0时,f(x)在上递增,在上递减.(3)令h(x)=x﹣lnx(x>0),g(x)=m,当x∈(0,1)时,,h(x)=x﹣lnx(x>0)单调递减;当x∈(1,+∞)时,,h(x)=x﹣lnx(x>0)单调递增;故h(x)在x=1处取得最小值,h(1)=1又当x→0,h(x)→+∞;x→+∞,h(x)→1,∴m∈(1,+∞)不妨设x1<x2,则有0<x1<1<x2,,要证x1x2<1⇔即证⇔即证h(x1)>h()∵h(x1)=h(x2)=m,∴=令,∴p(x)在(1,+∞)上单调递增,故p(x)>p(1)=0即>0,∴∴x1x2<1 得证23.已知函数f(x)=2x3﹣3(a﹣1)x2﹣6ax+a2+1.(Ⅰ)设﹣1≤a≤1,曲线y=f(x)在点(1,f(1))处的切线在y轴上的截距为b,求b的最小值;(Ⅱ)若f(x)只有一个零点x0,且x0<0,求a的取值范围.【解答】解:(Ⅰ)f(x)=2x3﹣3(a﹣1)x2﹣6ax+a2+1的导数为f′(x)=6x2﹣6(a﹣1)x﹣6a,f(x)在点(1,f(1))处的切线斜率为6﹣6(a﹣1)﹣6a=12﹣12a,切点为(1,6﹣9a+a2),可得切线方程为y﹣(6﹣9a+a2)=(12﹣12a)(x﹣1),由x=0,可得b=a2+3a﹣6=(a+)2﹣,由﹣1≤a≤1,可得b在[﹣1,1]上递增,可得b的最小值为﹣8;(Ⅱ)若f(x)只有一个零点x0,且x0<0,可得f(0)>0,f′(x)=6x2﹣6(a﹣1)x﹣6a,由f′(x)=0,可得x=﹣1或x=a,由f(﹣1)<0,且f(a)<0,即为a2+3a+2<0,且a3+2a2﹣1>0,解得<a<﹣1.24.设函数f(x)=x﹣﹣alnx(a∈R,a>0).(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)有两个极值点x1和x2,记过A(x1,f(x1)),B(x2,f(x2))的直线的斜率为k.问:是否存在a,使k=2﹣a?若存在,求出a的值;若不存在,请说明理由.【解答】解:(1)显然定义域为(0,+∞),∴f′(x)=1+﹣=,(a∈R,a>0).令g(x)=x2﹣ax+2,其判别式△=a2﹣8,①当0<a时,△≤0,f′(x)≥0,f(x)在(0,+∞)上单调递增,②当a时,△>0,令f′(x)=0,得x1=,x2=,∵在(0,x1)上f′(x)>0,在(x1,x2)上f′(x)<0,在(x2,+∞)上f′(x)>0,∴f(x)在(0,x1),(x2,+∞)上为增函数,在(x1,x2)上为减函数.(2)由(1)知,a,∴f(x1)﹣f(x2)=(x1﹣x2)+﹣a(lnx1﹣lnx2),∴k==1+﹣a,∵x1x2=2,∴k=2﹣a,假设存在a,使k=2﹣a,则2﹣a=2﹣a,∴=1,∴lnx1﹣lnx2=x1﹣x2,即x2﹣﹣2lnx2=0(•),其中x2>1,令h(t)=t﹣﹣2lnt,∴h′(t)=1+﹣==>0,∴h(t)在(1,+∞)上是增函数,∴h(t)>h(1)=0,与(•)矛盾.故不存在a使k=2﹣a成立.25.已知.(1)讨论函数f(x)的单调区间;(2)若f(x)存在极值且f(x)≥0,求实数a的取值范围;(3)求证:当x>1时,.【解答】解:(1)显然定义域为(0,+∞),∵f′(x)=x﹣=,①当a≤0时,f′(x)>0,函数f(x)在(0,+∞)上是单调递增函数,②当a>0时,令f′(x)=0,得x=,∵在(0,)上f′(x)<0,∴f(x)是单调递减函数;∵在(,+∞)上f′(x)>0,∴f(x)是单调递增函数.(2)∵f(x)存在极值且f(x)≥0,∴a>0,∴只需f(x)min≥0,由上知f(x)min=f()=a﹣alna=a(1﹣lna)≥0,∴a∈(0,e](3)设F(x)=,∴F′(x)=2x2﹣x﹣=,∵x>1,∴F′(x)>0,即F(x)在(1,+∞)上为增函数,∴F(x)>F(1)=>0,∴F(x)>0在(1,+∞)上恒成立,故当x>1时,.26.已知函数f(x)=(ax+1)e x,a∈R(1)当a=1时,求函数f(x)的最小值.(2)当a=时,对于两个不相等的实数x1,x2,有f(x1)=f(x2),求证:x1+x2<2.【解答】解:(1)当a=1,f(x)=(x+1)e x,∴f′(x)=(x+2)e x,∴f(x)在(﹣∞,﹣2)上单调递减,在(﹣2,+∞)上单调递增,∴f(x)min=f(﹣2)=﹣.(2)当a=时,f(x)=(﹣x+1)e x,对于两个不相等的实数x1,x2,有f(x1)=f(x2),∵f′(x)=(1﹣x)e x,∴f(x)在(﹣∞,1)上单调递增,在(1,+∞)上单调递减,不妨设x1<1<x2,令g(x)=f(x)﹣f(2﹣x),(x<1)∴g′(x)=(1﹣x)(e x﹣e2﹣x),当x<1时,1﹣x>0,x<2﹣x,e x﹣e2﹣x<0,∴g′(x)<0,∴g(x)在(﹣∞,1)单调递减,∴g(x)>g(1)=f(1)﹣f(1)=0,即f(x)﹣f(2﹣x)>0,不妨设x1<1<x2,则2﹣x1>1,由以上可知f(x1)>f(2﹣x1),∵f(x)在(﹣∞,1)上单调递增,在(1,+∞)上单调递减,∵f(x1)=f(x2),∴f(x2)>f(2﹣x1),∵x2>1,2﹣x1>1,∵f(x)在(1,+∞)上单调递减,∴x2<2﹣x1,∴x1+x2<2。
导数的练习题及答案
导数的练习题及答案导数是微积分中的一个重要概念,它描述了函数在某一点上的变化率。
掌握导数的概念对于解决各种数学和物理问题至关重要。
在这篇文章中,我们将给出一些关于导数的练习题及其答案,帮助读者更好地理解和应用导数。
练习题一:求函数 $f(x) = 2x^3 - 5x^2 + 3x - 1$ 在 $x = 2$ 处的导数。
解答一:根据导数的定义,我们知道导数可以通过函数的极限来求解。
在这个例子中,我们可以使用直接求导的方法来计算导数。
首先,我们对每一项使用求导法则。
对于 $2x^3$,它的导数是$6x^2$;对于 $-5x^2$,它的导数是 $-10x$;对于 $3x$,它的导数是$3$;对于常数项 $-1$,它的导数是 $0$。
然后,将这些导数相加,得到函数 $f(x)$ 的导数 $f'(x)$。
所以,$f'(x) = 6x^2 - 10x + 3$。
接下来,我们求函数 $f(x)$ 在 $x = 2$ 处的导数。
将 $x$ 替换为 $2$,得到 $f'(2) = 6(2)^2 - 10(2) + 3 = 28$。
所以,函数 $f(x) = 2x^3 - 5x^2 + 3x - 1$ 在 $x = 2$ 处的导数为 $f'(2) = 28$。
练习题二:求函数 $y = e^x \sin(x)$ 的导数。
解答二:这个问题涉及到两个函数的乘积,所以我们需要使用乘积规则来求解。
首先,我们将函数 $y = e^x \sin(x)$ 分解为两个函数的乘积:$y =u(x) v(x)$,其中 $u(x) = e^x$,$v(x) = \sin(x)$。
然后,我们求出每个函数的导数。
对于 $u(x) = e^x$,它的导数仍然是 $e^x$;对于 $v(x) = \sin(x)$,它的导数是 $\cos(x)$。
根据乘积规则,函数 $y$ 的导数为 $y' = u'v + uv'$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数及其应用复习(基础篇.含解析)
1. f(x)=x 3
, 0'()f x =6,则x 0= ( ) A.2 B.-2 C.±
2 D.±1 2.函数f(x)=2x 2+1,图象上P(1,3)及邻近上点Q(1+Δx,3+Δy), 则x
y ∆∆=( ) A. 4 B. 4Δx C. 4+2Δx D. 2Δx
3.若()()()k
x f k x f x f k 2lim ,20000--='→则的值为( ) A .-2 B. 2 C.-1 D. 1
4.曲线y=x 3+x-2在点P 0处的切线平行于直线y=4x ,则点P 0的坐标是( )
A .(0,1) B.(1,0) C.(-1,-4)或(1,0) D.(-1,-4)
5.函数y=2x 3-3x 2-12x+5在[0,3]上的最大值与最小值分别是( )
A .5 , -15 B.5 , 4 C.-4 , -15 D.5 , -16
6.设曲线11x y x +=
-在点(3,2)处的切线与直线10ax y ++=垂直,则a =( ) A .2 B . 2- C . 12- D. 12
7.设y=x-lnx ,则此函数在区间(0,1)内为( )
A .单调递增,
B 、有增有减
C 、单调递减,
D 、不确定
8. 已知f(x)=3x ·sinx ,则f’(1)=( )
A .
31+cos1 B. 31sin1+cos1 C. 31sin1-cos1 D.sin1+cos1
9. 抛物线y =(1-2x)2在点x =32
处的切线方程为( ) A. y =0 B .8x -y -8=0 C . x =1 D . y =0或者8x -y -8=0
10.函数()13
++=x ax x f 有极值的充要条件是( ) A.0≥a
B.a >0
C.0≤a
D.a <0
11. 定义在R 上的函数3)(2
3+++=cx bx ax x f 同时满足以下条件:
① )(x f 在()0,1上是减函数,在()1,+∞上是增函数; ② /()f x 是偶函数; ③ )(x f 在0=x 处的切线与直线2y x =+垂直. 求函数)(x f y =的解析式;
12.已知函数2()ln .f x x a x =+
(1)当2a e =-时,求函数()f x 的单调区间;
(2)若函数()()2g x f x x =-在[1,4]上是减函数,求实数a 的取值范围。
13.设f(x)=x 3+
3x ,求函数f(x)的单调区间及其极值。
14.已知直线l 与函数
x x f ln )(=的图象相切于点(1,0),且l 与函数)0(2721)(2<++=m mx x x g 的图象也相切。
(1)求直线l 的方程及m 的值;
(2)若)()1()
(x g x f x h '-+=,求函数)(x h 的最大值.
答案:1.B 2.C 3.B 4.B 5.D 6.C 7.C 8.B 9.C 10.C
11. 解:(Ⅰ)c bx ax x f ++='23)(2
∵ )(x f 在()0,1上是减函数,在()1,+∞上是增函数, ∴/(1)320f a b c =++= ……①
由/()f x 是偶函数得:0b = ②
又)(x f 在0=x 处的切线与直线2y x =+垂直,(0)1f c '==- ③ 由①②③得:1,0,31-===c b a ,即33
1)(3+-=x x x f 12.解:(1)函数)(x f 的定义域为(0,+∞)。
…………………………1分
当e a 2-=时,x e x e x x e x x f ))((222)(+-=-=' ……………3分 当x 变化时,)(),(x f x f '的变化情况如下:
x
),0(e e ),(+∞e )(x f '
- 0 + )(x f
极小值 ……………………………………………………5分
)(x f ∴的单调递减区间是),0(e 单调递增区间是),(+∞e 。
……………6分
(2)由x x a x x g 2ln )(2-+=,得22)(-+
='x a x x g ………………7分
又函数x x a x x g 2ln )(2-+=为[1,4]上的单调减函数。
则0)(≤'x g
在[1,4]上恒成立,所以不等式022≤-+x a x 在[1,4]上恒成立,………9分
即222x x a -≤在[1,4]上恒成立。
……………………………10分
设222)(x x x -=ϕ,显然)(x ϕ在[1,4]上为减函数,
所以)(x ϕ的最小值为24)4(-=ϕ………………………………11分
a ∴的取值范围是24-≤a ………………………………………12分
13.增区间为(0,+∞),(-∞,-1) ,减区间为(-1,0),(0,1)
极大值为f(-1)=-4, 极小值为f(1)=4
14. 解:(1)x x f l x
x f ln )(,1)(=='是函数直线 的图象在点(1,0)处的切线。
,1)1(='=∴f k 其斜率为1-=∴x y l 的方程为直线
又因为直线)(x g l 与的图象相切,
分
舍去不题意得6).,4(209)1(,029)1(2127211222 =-=⇒=--=∆=+-+⇒⎪⎩
⎪⎨⎧++=-=∴m m m x m x mx x y x y (2)由(1)知,2
7221)(2+-=x x x g ),1(2)1ln()()1()(->+-+='-+=∴x x x x g x f x h
).1(1
111)(->+-=-+='∴x x x x x h 当.0)(,0;0)(,01<'>>'<<-x h x x h x 时当时
于是,),0(,)0,1()(+∞-在上单调递增在x h 上单调递减。
所以,当.2)0()(,0==h x h x 取得最大值时 …………12分。