浙教版2018-2019学年第一学期期中检测卷(含答案)
2018-2019学年八年级数学(浙教版)上册期中测试卷及答案
2018-2019学年八年级(上册)期中数学试卷(时间 90分钟 满分120分)一、选择题(每小题3分,共30分)1.能将三角形面积平分的是三角形的( )A .角平分线B .高C .中线D .外角平分线2.根据下列条件不能唯一画出△ABC 的是( )A .AB =5,BC =6,AC =7 B .AB =5,BC =6,∠B =45°C .AB =5,AC =4,∠C =90°D .AB =5,AC =4,∠C =45°3.下列各图中,正确画出AC 边上的高的是( )4.在下列条件中①∠A =∠C-∠B ,②∠A ∶∠B ∶∠C=1∶1∶2,③∠A=90°-∠B ,④∠A=∠B=21∠C ,⑤C B A ∠=∠=∠3121中,能确定△ABC 是直角三角形的条件有 ( )A .2个;B .3个;C .4个;D .5个5.一副三角板有两个直角三角形,如图叠放在一起,则∠α的度数是( )A .165°B .150°C .135°D .145°6.为了测量河两岸相对点A 、B 的距离,小明先在AB 的垂线BF 上取两点C 、D ,使CD =BC ,再定出BF 的垂线DE ,使A 、C 、E 在同一条直线上(如图所示),可以证明△EDC ≌△ABC ,得ED =AB ,因此测得ED 的长度就是AB 的长,判定△EDC ≌△ABC 的理由是( )A .SASB .ASAC .SSSD .HL 7.如图,点O 是△ABC 内一点,∠A =80°,BO 、CO 分别是∠ABC 和∠ACB 的角平分线,则∠BOC 等于( )A .140°B .120°C .130°D .无法确定8.如图,△ABC 中,∠ABC 、∠ACB 的平分线相交于O ,MN 过点O 且与BC 平行.△ABC 的周长为20,△AMN 的周长为12,则BC 的长为( )A .10B .16C .8D .4 9.在等腰三角形ABC 中,AB=AC ,一边上的中线BD 将这个三角形的周长分为15和12两部分,则这个等腰三角形的底边长为( )A .7B .7或11C .11D .7或1010.如图钢架中,10A ∠=︒,焊上等长的钢条来加固钢架,若112PA PP =,则这样的钢条至多..需要( ) A .5根 B .6根 C .7根 D .8二、填空题(每小题3分,共24分) 11.如图,已知△ABC ≌△ADE ,若∠BAE =120°,∠BAD =40°,则∠DAC = .12.如果一个三角形两边为2cm ,7cm ,且三角形的第三边为奇数,则三角形的周长是 cm .13.若b a >,则a 312- b 312-(填“<”或“>”). 14.在数学活动课上,小明提出这样一个问题:∠B =∠C =90°,E 是BC 的中点,DE 平分∠ADC ,∠CED =35°.如图,则∠EAB 的度数为 .15.在△ABC 中,AB 的垂直平分线分别交AB 、BC 于点D 、E ,AC 的垂直平分线分别交AC 、BC 于点F 、G ,若∠BAC =110°,则∠EAG = °.16.已知直角三角形的周长为,624+ 斜边的中线为2,则它的面积是 .17.用一副三角板可以直接得到30°、45°、60°、90°四种角,利用一副三角板可以拼出另外一些特殊角,如75°、120°等,请你拼一拼,用一副三角板还能拼还能拼出哪些小于平角的角?这些角的度数是: .(写出三个即可)18.如图,直角三角形ABC 中, AC=1,BC =2,P 为斜边AB 上一动点.PE ⊥BC ,PF ⊥CA ,则线段EF 长的最小值为 .三、解答题(共8小题,满分66分)19.(本题6分)如图,已知AB ⊥l 于点B ,CD ⊥l 于点D ,AB=1,BD=CD=3,点P 是线段BD 上的一个动点,试确定点P 的位置,使PA+PC 的值最小,并求出这个最小值.20.(本题8分)如图,四边形ABCD的对角线AC与BD相交于O点,∠1=∠2,∠3=∠4 求证:(1) △ABC≌△ADC;(2) BO=DO.21.(本题8分)如图,已知△ABC与△CDE都是等腰直角三角形,连结AE与BD,试探究线段AE与BD的数量关系和位置关系.22.(本题8分)已知AD为△ABC的高,∠BAD=70°,∠CAD=20°,求∠BAC的度数.23.(本题8分)如图,等边△ABC中,D是BC上一点,以AD为边作等腰△ADE,使AD=AE,∠DAE=80°,DE交AC于点F,∠BAD=15°,求∠FDC的度数.24.(本题8分)如图,在边长为2的正三角形ABC中,已知点P是三角形内任意一点,求点P到三角形的三边的距离之和PD+PE+PF的值.25.(本题10分)如图,已知△ABC中,AB=AC,点D是BC的中点,DE⊥AB于点E,DF⊥AC 于点F,请你用不同的方法证明:DE=DF.(用到相同的知识点即视为同一种方法)26.(本题10分)图甲中D是△ABC的边BC的延长线上一点,∠ABC、∠ACD的平分线交于点P1.(1) 若∠ABC=80°,∠ACB=40°,则∠P1的度数为_________;(2) 若∠A=α,求∠P1的度数(用含α的代数式表示)(写出求解过程);(3) 如图(乙),∠A=α,∠ABC、∠ACD的平分线交于点P1,∠P1BC、∠P1CD的平分线相交于P2,∠P2BC、∠P2CD的平分线相交于P3,依次类推,则P n(n为正整数)的度数为________(用n与α的代数式表示).八年级(上)期中数学试题卷参考答案(时间 90分钟 满分120分)一、选择题(每小题3分,共30分)1.能将三角形面积平分的是三角形的( C )A .角平分线B .高C .中线D .外角平分线2.根据下列条件不能唯一画出△ABC 的是( D )A .AB =5,BC =6,AC =7 B .AB =5,BC =6,∠B =45°C .AB =5,AC =4,∠C =90°D .AB =5,AC =4,∠C =45°3.下列各图中,正确画出AC 边上的高的是( D )4.在下列条件中①∠A =∠C-∠B ,②∠A ∶∠B ∶∠C=1∶1∶2,③∠A=90°-∠B ,④∠A=∠B=21∠C ,⑤C B A ∠=∠=∠3121中,能确定△ABC 是直角三角形的条件有 (D )A .2个;B .3个;C .4个;D .5个5.一副三角板有两个直角三角形,如图叠放在一起,则∠α的度数是( A )A .165°B .150°C .135°D .145°6.为了测量河两岸相对点A 、B 的距离,小明先在AB 的垂线BF 上取两点C 、D ,使CD =BC ,再定出BF 的垂线DE ,使A 、C 、E 在同一条直线上(如图所示),可以证明△EDC ≌△ABC ,得ED =AB ,因此测得ED 的长度就是AB 的长,判定△EDC ≌△ABC 的理由是( B )A .SASB .ASAC .SSSD .HL 7.如图,点O 是△ABC 内一点,∠A =80°,BO 、CO 分别是∠ABC 和∠ACB 的角平分线,则∠BOC 等于( C )A .140°B .120°C .130°D .无法确定8.如图,△ABC 中,∠ABC 、∠ACB 的平分线相交于O ,MN 过点O 且与BC 平行.△ABC 的周长为20,△AMN 的周长为12,则BC 的长为( C )A .10B .16C .8D .4 9.在等腰三角形ABC 中,AB=AC ,一边上的中线BD 将这个三角形的周长分为15和12两部分,则这个等腰三角形的底边长为( B )A .7B .7或11C .11D .7或1010.如图钢架中,10A ∠=︒,焊上等长的钢条来加固钢架,若112PA PP =,则这样的钢条至多..需要( D ) A .5根 B .6根 C .7根 D .8二、填空题(每小题3分,共24分)11.如图,已知△ABC ≌△ADE ,若∠BAE =120°,∠BAD =40°,则∠DAC = ︒40 .13.若b a >,则a 32- < b 32-(填“<”或“>”). 14.在数学活动课上,小明提出这样一个问题:∠B =∠C =90°,E 是BC 的中点,DE 平分∠ADC ,∠CED =35°.如图,则∠EAB 的度数为 ︒35 .15.在△ABC 中,AB 的垂直平分线分别交AB 、BC 于点D 、E ,AC 的垂直平分线分别交AC 、BC 于点F 、G ,若∠BAC =110°,则∠EAG = ︒40 °.16.已知直角三角形的周长为,624+ 斜边的中线为2,则它的面积是 2 .17.用一副三角板可以直接得到30°、45°、60°、90°四种角,利用一副三角板可以拼出另外一些特殊角,如75°、120°等,请你拼一拼,用一副三角板还能拼还能拼出哪些小于平角的角?这些角的度数是: ︒︒︒︒︒165,150,135,105,15 .(写出三个即可)18.如图,直角三角形ABC 中, AC=1,BC =2,P 为斜边AB 上一动点.PE ⊥BC ,PF ⊥CA ,则线段EF三、解答题(共8小题,满分66分)19.(本题6分)如图,已知AB ⊥l 于点B ,CD ⊥l 于点D ,AB=1,BD=CD=3,点P 是线段BD 上的一个动点,试确定点P 的位置,使PA+PC 的值最小,并求出这个最小值.解:作出点A 关于l 的对称点A ’,连A ’C 与l 的交点即为所求作的点P ,最小值为5. (3’+3’)20.(本题8分)如图,四边形ABCD 的对角线AC 与BD 相交于O 点,∠1=∠2,∠3=∠4 求证:(1) △ABC ≌△ADC ;(2) BO =DO .证明:(1)利用ASA 即可证明△ABC ≌△ADC ,(2)可以利用SAS 证明△ABO ≌△ADO,也可以等腰三角形三线合一来证明.(4’+4’)21.(本题8分)如图,已知△ABC 与△CDE 都是等腰直角三角形,连结AE 与BD ,试探究线段AE 与BD 的数量关系和位置关系.解:利用SAS 证明△AEC ≌△BCD ,可以得到AE=BD ,∠EAC=∠DBC ,进而可得:∠EAC+∠BDC=∠DBC+∠BDC=︒90,即AE ⊥BD(5’+3’)22.(本题8分)已知AD 为△ABC 的高,∠BAD =70°,∠CAD =20°,求∠BAC 的度数. 解:无图题,画出图形,三角形的高线可以在形内,也可以在形外,所以有两解, 答案为︒︒5090或(5’+3’)23.(本题8分)如图,等边△ABC 中,D 是BC 上一点, 以AD 为边作等腰△ADE ,使AD =AE ,∠DAE =80°,DE 交AC 于点F ,∠BAD =15°,求∠FDC 的度数.解:答案为︒2524.(本题8分)如图,在边长为2的正三角形ABC 中,已知点P 是三角形内任意一点,求点P 到三角形的三边的距离之和PD+PE+PF 的值.解:利用面积,连PA ,PB ,PC ,则三个小三角形的面积等于大三角形的面积.3221221221221⨯⨯=⨯⨯+⨯⨯+⨯⨯PF PE PD 所以 PD+PE+PF=325.(本题10分)如图,已知△ABC 中,AB=AC ,点D 是BC 的中点,DE ⊥AB 于点E ,DF ⊥AC 于点F ,请你用不同的方法证明:DE=DF .证明:一、证明△BDE ≌△CDF 即可得DE=DF ;二、连AD ,利用等腰三角形的三线合一和角平分线的性质即可证明;三、利用面积关系即可证明结论.(4’+3’+3’)26.(本题10分)图甲中D 是△ABC 的边BC 的延长线上一点,∠ABC 、∠ACD 的平分线交于点P 1.(1) 若∠ABC =80°,∠ACB =40°,则∠P 1的度数为__︒30__;(2) 若∠A =α,求∠P 1的度数(用含α的代数式表示)(写出求解过程);∂=∠21P (3) 如图(乙),∠A =α,∠ABC 、∠ACD 的平分线交于点P 1,∠P 1BC 、∠P 1CD 的平分线相交于P 2,∠P 2BC 、∠P 2CD 的平分线相交于P 3,依次类推,则P n (n 为正整数)的度数为__∂n21______(用n 与α的代数式表示).(3’+4’+3’)。
浙江宁波市2018-2019九年级数学上学期期中试题含答案浙教版
浙江宁波市2018-2019九年级数学上学期期中试题(含答案浙教版)经过旋转变换能得到三角形N,下列四个点能作为旋转中心的是()A.点AB.点BC.点CD.点D11.如图,CD是⊙O的弦,O是圆心,把⊙O的劣弧沿着CD对折,A是对折后劣弧上的一点,∠CAD=100°,则∠B的度数是()A.50°B.60°C.80°D.100°12.如图,动点A在抛物线yx22x30&# 61603;x3上运动,直线l经过点(0,6),且与y轴垂直,过点A作AC⊥l于点C,以AC为对角线作矩形ABCD,则另一对角线BD的取值范围正确的是()A.2BD3B.3BD6C.1BD6D.2BD6二、填空题(每小题4分,共24分)13.已知⊙O的半径为5,若P到圆心O的距离是4,则点P与⊙O的位置关系是.14.盒子里有3支红色笔芯,2支黑色笔芯,每支笔芯除颜色外均相同.从中任意摸出一支笔芯,则摸出黑色笔芯的概率是.15.已知点(-1,y1),(0,y2),(4,y3)都在抛物线yax22ax5(a0)上,则y1,y2,y3的大小关系.(用连接)16.如图,边长相等的正五边形和正六边形拼接在一起,则∠ABC的度数为.第16题图第18题图17.若抛物线y2x2xc与坐标轴有两个交点,则字母c应满足的条件是.18.如图是小明制作的一副弓箭,点A,D分别是弓臂BAC 与弓弦BC的中点,沿AD方向拉弓的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长;当弓箭从自然状态的点D拉到点D1,使其成为以D1为圆心的扇形B1AC1,B1C1垂直平分AD1,AD130cm,则弓臂BAC的长度是.三、解答题(第19题6分,第2021题各8分,第2224题各10分,第25题12分,第26题14分,共78分)19.已知二次函数当x=1时,y有最大值为5,且它的图象经过点(2,3),求这个函数的表达式.20.如图在Rt△ABC中,∠C=90°.(1)请用直尺和圆规在图中画出直角△ABC的外接圆;(不写作法,保留作图痕迹)(2)若AC=5,BC=12,请直接写出该直角三角形的外接圆的面积.ACB21.某市今年中考理、化实验操作考试,采用学生抽签方式决定自己的考试内容.规定:每位考生必须在三个物理实验(用纸签A、B、C表示)和三个化学实验(用纸签D、E、F表示)中各抽取一个进行考试.小刚在看不到纸签的情况下,分别从中各随机抽取一个.(1)用列表法或树状图法表示所有可能出现的结果;(2)求小刚抽到物理实验B和化学实验F的概率.22.如图,点A,B,C,D在⊙O上,连结AB,CD,BD,若AB=CD.求证:∠ABD=∠CDB.23.如图,抛物线yax2c与直线y3相交于点A,B,与y相交于点C(0,-1),其中点A的横坐标为-4.(1)计算a,c的值;(2)求出抛物线yax2c与x轴的交点坐标;24.如图,AB为⊙O的直径,CD是弦,AB⊥CD于点E,OF⊥AC于点F,BE=OF.(1)求证:△AFO≌△CEB;(2)若BE=4,CD83,求:①⊙O的半径;②求图中阴影部分的面积.25.为满足市场需求,某超市购进一种品牌糕点,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现,当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种糕点的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售糕点多少盒?26.定义:有一个角是其对角一半的圆的内接四边形叫做圆美四边形,其中这个角叫做美角.(1)如图1,若四边形ABCD是圆美四边形,求美角∠A 的度数.(2)在(1)的条件下,若⊙O的半径为5.①求BD的长.②如图2,在四边形ABCD中,若CA平分∠BCD,则BC+CD的最大值是.(3)在(1)的条件下,如图3,若AC是⊙O的直径,请用等式表示线段AB,BC,CD之间的数量关系,并说明理由.2018-2019学年第一学期九年级期中测试数学试题卷参考答案及评分建议一、选择题(每小题4分,共48分)题号123456789101112答案ABCDBDCBACCD二、填空题(每小题4分,共24分)13.点P在⊙O内14.2515.y2y1y316.24°17.c1或018.20πcm8三、解答题(第19题6分,第2021题各8分,第2224题各10分,第25题12分,第26题14分,共78分)19.设yax125 1分把(2,3)代入得:3a2125 ∴a=-25分3分∴y2x1ɦ 81;256分20.(1)图略4分(2)1694分421.(1)树状图略4分(2)194分22.证明:∵AB=CD∴ABCD3分∴ABACCDAC5分∴ADBC7分∴∠ABD=∠CDB10分23.(1)设yax211分把(-4,3)代入得:3a421 3分∴a144分∴y1x214∴a1,c=-15分4(2)y1x21047分∴x=±29分∴(-2,0),(2,0)10分24.(1)证明:∵AB为⊙O的直径,AB⊥CD∴BCBD1分∴∠A=∠DCB2分∴OF⊥AC∴∠AFO=∠CEB∵BE=OF∴△AFO≌△CEB3分(2)①∵AB为⊙O的直径,AB⊥CD∴CE1CD424分设OC=r,则OE=r-4,∴r2r42= 483;432∴r=86分②连结OD∵OE41OC2∴∠COB=60°5分∴∠COD=120°7分∴S12082 1501;648分扇形CBD3603∴S△OCD1CDOE1834 16229分SSSS641610分阴弓形CBD扇形CBD△OCD325.(1)y=700-20(x-45)=1600-20x3分(2)P=(x-40)y=(x-40)(1600-20x)=-20x2+2400x-6400(45≤x≤80)6分∵xb2a60在45≤x≤80内,此时p=8000当每盒售价定为60元时,每天销售的利润P(元)最大,最大利润是8000元.8分(3)∵P=-20x2+2400x-6400≥6000∴50≤x≤7010分∵x≤58∴50≤x≤58,y随x的增大而减小,则当x=58时,y最小为440盒.即超市每天至少销售糕点440盒12分26.(1)∵四边形ABCD是圆美四边形∴∠A1∠C,∠A+∠C=180°2分2∴∠A=60°4分(2)①连结BD,OB,OD,作OE⊥BD∴∠BOD=2∠A=120°5分∵OB=OD∴∠BOE1∠BOD60᠑ 6;2∴∠OBE=30°6分∴OE1OB522∴BE3OE5237分∴BD2BE5②1010分8分(3)延长BC,AD交于点E∵四边形ABCD内接于⊙O∴∠BAD+∠BCD=180°∵∠DCE+∠BCD=180°∴∠BAD=∠DCE=60°11分∵AC为⊙O的直径∴∠B=∠ADC=90°=∠CDE∴∠E=30°13分在Rt△CDE和Rt△ABE中CE=2CD,BE3ABBCCE ∴BC2CD3AB14分。
2018-2019学年浙教版八年级上期中考试数学试卷(实验班)(含答案)
2018-2019学年浙教版八年级上期中考试数学试卷(实验班)(含答案)一、选择题二、填空题选择题(本题共10小题,每小题3分,共30分)11. 12. 13.14. 15. 16.三、解答题17、(6分)(1)(2)18、(8分)(1)(2)19、(10分)(1)(2)20(10分)(1)(2)(3)21、(12分)(1)(2) (3)大题共10小题,每小题3分,满分30分)1.在函数131y x =-中,自变量x 的取值范围是【 D 】 A .13x < B .13x > C .13x ≠- D .13x ≠2.若一个圆锥的底面圆的周长是4πcm ,母线长是6cm ,则该圆锥的侧面展开图的圆心角的度数是【 C 】 A .40° B.80° C.120° D .150° 3.若234a b c ==,且0abc ≠,则2a bc b+-的值是【 A 】 A .-2 B .2 C .-3 D .34.如图,点A ,B ,C ,D 的坐标分别是(1,7),(1,1),(4,1),(6,1),以C ,D ,E 为顶点的三角形与△ABC 相似,则点E 的 坐标不可能是【 B 】A .(6,0)B .(6,3)C .(6,5)D .(4,2) 5.二次函数227y x x =+-的函数值是8,那么对应的x 的值是【 D 】A .3B .5C .-3和5D .3和-56.已知两个相似三角形的周长之和为24cm ,一组对应边分别为2.5cm 和3.5cm ,则较大三角形的周长为【 C 】第4题图A .10 cmB .12 cmC .14 cmD .16 cm 7.如图,DC 是⊙O 直径,弦AB ⊥CD 于F ,连接BC ,DB ,则下列结论错误的是【 A 】 A .OF=CF B .AF=BFC .AD BD = D .∠DBC=90°8.下列函数中,当x >0时,y 随x 的增大而增大的是【 B 】A .1y x =-+B .21y x =-C .1y x=D .21y x =-+ 9.平面直角坐标中,已知点O (0,0),A (0,2),B (1,0),点P 是反比例函数1y x=-图象上的一个动点,过点P 作PQ ⊥x 轴,垂足为Q .若以点O 、P 、Q 为顶点的三角形与△OAB 相似,则相应的点P 共有【 D 】 A .1个 B .2个 C .3个 D .4个10.给出定义:设一条直线与一条抛物线只有一个公共点,且这条直线与这条抛物线的对称轴不平行,就称直线与抛物线相切,这条直线是抛物线的切线.有下列命题:① 直线y =0是抛物线214y x =的切线; ② 直线x =-2与抛物线214y x =相切于点(-2,1);③ 直线y =x +b 与抛物线214y x =相切,则相切于点(2,1);④ 若直线y =kx -2与抛物线214y x =相切,则实数k =2 .其中正确命题的是【 B 】A .①②④B .①③C .②③D .①③④ 二、填空题(每小题4分,共24分) 11.已知双曲线1k y x+=经过点(-1,2),那么k 的值等于 -3 。
2018-2019学年浙教版七年级上期中考试数学试卷(实验班)(含答案)
B2018-2019学年浙教版七年级上期中考试数学试卷(实验班)(含答案)一、选择题(共10小题,每小题3分,满分30分)1.“把弯曲的公路改直,就能缩短路程”,其中蕴含的数学道理是( ▲ )A .两点确定一条直线B .两点之间直线最短C .两点之间线段最短D .直线比曲线短2.尽管受到国际金融危机的影响,但我市经济依然保持了平稳增长。
据统计,截止到今年4月底,我市金融机构存款余额约为2018亿元,用科学计数法应记为( ▲ ) A .101.19310⨯元 B. 111.19310⨯元 C .121.19310⨯元 D. 131.19310⨯元 ▲ )A .4B .±4C .2D .±24. 已知35ab x,x ,==则32a b x -=( ▲ )A.2B.910 C.35 D.27255.钟表上2时25分时,时针与分针所成的角是 ( ▲ )A. 77.5 °B. 77 °5′C. 75°D. 76°6. 若关于x ,y 的二元一次方程组⎩⎨⎧=-=+k y x ,k y x 95的解也是二元一次方程632=+y x 的解,则k 的值为 ( ▲ )A.43-B.43C.34D.34- 110132011755331=⨯+⋯+⨯+⨯+⨯xx x x 的解是 =x ( ▲ )A .20132012 B.20122013 C.10062013 D.20138.如图,将三个三角板直角顶点重叠在一起,公共的直角顶点为点B , 若∠ABE=45°,∠GBH=30°,那么∠FBC 的度数为( ▲ )A .12°B .15°C .25°D .30°9.如图,甲、乙两动点分别从正方形ABCD 的顶点A 、C 同时沿正方形的边开 始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的4倍,则它们第2018次相遇在边( ▲ )A .AB 上 B .BC 上 C .CD 上 D .DA 上 10. 如图,直线AB∥CD,∠EFA=30°,∠FGH=90°,∠HMN=30°,∠CNP= 50°,则∠GHM 的大小是( ▲ )A .30°B .40°(第19题)EBC DOC .50°D .60°二、填空题(共8小题,每小题3分,满分24分)11. 若523m x y +与3n x y 的和是单项式,则m n = ▲ .12. 在21,π,311,25,0.201820187…(两个5之间依次多一个7),227-这六个数中,属于无理数的个数有 ▲ 个.13.已知x A 2=-1,B 是多项式,在计算A B +时,小马虎同学把A B +看成了B-A ,结果得x x 212+,则A B += ▲.14.如图所示,数轴上表示2C 、B ,点C 是AB 的中点,则点A 表示的数是____ ▲______.15.将数20180▲___________.16.如图,把一张长方形的纸按图那样折叠后,B 、D 两点落在B ′、D ′点处,若得∠AOB ′=850, 则∠CGO 的度数为 ▲ °.17.已知α、β都是钝角,甲、乙、丙、丁四人计算)(61βα+的结果依次为26°、50°、72°、90°,其中有正确的结果,那么计算正确的人是 ▲ .18.某超市推出如下优惠方案:(1)一次性购物不超过100元不享受优惠;(2)一次性购物超过100元但不超过300元一律九折;(3)一次性购物超过300元一律八折。
(浙教版)2018-2019学年九年级数学上册期中测试题及答案
2018-2019学年第一学期期中测试九年级数学试卷一、选择题(每小题4分,共48分,每小题只有一项符合题目要求)1. 若(a—1)2+|b—2|=0,则(a—b)2015的值是()A . 1 B. -1 C. -2015 D . 201522. 下列各点在反比例函数y= 一一的图象上的是()xA. (—1,—2)B. (—1, 2) C . (—2, —1)D . (2, 1)(3. 下列图形中,是轴对称图形的是()2 17.已知:a -3a ^0,则a 2的值为()aA. 5 1B. 1 C . —1 D. —58.如图,F是正方形ABCD的边CD上的一个动点,BF的垂直平分线交对角线AC于点E ,连接BE , FE ,则/ EBF的度数是()A. 45 °B. 50 ° C . 60 ° D .不确定9.连接一个几何图形上任意两点间的线段中,最长的线段称为这个几何图形的直径,根据此定义,图(扇形、菱形、直角梯形、红十字图标)中直径”最小的是()24. 一个袋子中装有 6个黑球3个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条 件下,随机地从这个袋子中摸出一个球,摸到白球的概率为() 111 2A .B .C .D .-932 35. 如图所示,欢欢首先将一张正方形的纸片按( 2)、(3)、( 4)的顺序三次折叠,然后沿第三次折痕剪下一个四边形,这个四边形- —定是r 曰C .菱形B .矩形 A .平行四边形 6.从下列直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是( D .正方形10.已知0w x w1,那么函数目二-2x 28x -6的最大值是()A10.5 B . 2 C 2.5 D 611.如图菱形 ABCD 中,AB=AC ,点 E,F 在 AB,BC 上,AE=BF ,AF,CE 交于G , GD 和AC 交于H ,则下列结论中成立的 有 ___________ 个。
2018-2019学年九年级数学(浙教版)第一学期期中试题及答案
2018-2019学年第一学期期中联考九年级数学试卷考生须知:1.本试卷满分120分,考试时间100分钟。
2. 答题前,在答题纸上写姓名和准考证号。
3. 必须在答题纸的对应答题位置上答题,写在其他地方无效。
答题方式详见答题纸上的说 明。
4. 考试结束后,试题卷和答题纸一并上交。
一.仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中 ,只有一个是正确的。
注意可以用多种不同的方法来选 取正确答案。
1.下列函数中属于二次函数的是(A.y =2x -1C . y =2(x -1)2 -2x 224.已知二次函数 y 二ax bx c (a = 0)的最大值为0,则(▲)5. 下列命题中,假命题的个数为(▲)2 .B . y = ax -13.在a 2口 4a □ 4空格□中,任意填上 概率是(▲)1A . 1B .2 能构成完全平方式的1D .42A . a 0 , b - 4ac 二 02B. a 0, b -4ac :: 0C. a : 0, b 2 -4ac 二 0D.a :0,b -4ac 0(▲)“+'或“一”,在所得到的所有代数式中,(1) “ a 是任意实数,a -5 0 ”是必然事件;(2)抛物线y = (2x ・1)2的对称轴是直线 x=-1;1(3)若某运动员投篮 2次,投中1次,则该运动员投 1次篮,投中的概率为;(4)某件事情2发生的概率是1,则它一定发生;(5)某彩票的中奖率为 10%,则买100张彩票一定有1张会中 奖;(6)函数y - -9(x - 2014)2亠一.2015与x 轴必有两个交点.8 .用列表法画二次函数 y = x 2 + bx + c 的图象时先列一个表,当表中对自变量 x 的值以相等间隔的值增加时,函数 y 所对应的值依次为: 20、56、110、182、274、380、506、650,其中有一个值 不正确,这个不正确的值是( ▲) A . 506B . 380C . 274D . 1829.已知二次函数 y =x 2 -X ,a ( a >0),当自变量x 取m 时,其相应的函数值小于 0,那么当 自变量x 取m-1时,下列结论中正确的是(▲)10.关于x 的方程2x 2 ax ^0有两个不相等的实数根,且较小的根为 2,则下列结论:①2a b :: 0 :②ab ::: 0 ;③关于x 的方程2x 2 ax b0有两个不相等的实数根;④抛物线y =2x 2 • ax • b -2的顶点在第四象限。
浙教版2018--2019学年度第一学期七年级期中考试数学试卷
绝密★启用前 浙教版2018--2019学年度第一学期 七年级期中考试数学试卷 望你做题时,不要慌张,要平心静气,把字写得工整些,让自己和老师都看1.“丝绸之路”经济带首个实体平台——中哈物流合作基地在我市投入使用,其最大装卸能力达410 000标箱,其中“410 000”用科学计数法表示为 A . 0.41×106 B . 4.1×105 C . 41×104 D . 4.1×104 2.在数轴上,两点M ,N 分别表示数m ,n ,那么M ,N 两点之间的距离等于( ) A . m +n B . m -n C . |m +n| D . |m -n| 3.在下列各数中是无理数的有( ) -0.333…, 4, ,-π,2.0101001…(相邻两个1之间增加1个0) A . 3个 B . 4个 C . 5个 D . 2个 4.希望工程义演出售两种票,成人票每张10元,儿童票每张6元,共卖出1000张票,如果成人票卖了x 张,出售儿童票共收入的钱数为( ) A . (1000-x )元 B . 6(1000-x )元 C . 6x 元 D . 10(1000-x )元 5.下列四个数中,最小的数是( ) A . |﹣6| B . ﹣2 C . 0 D . 6.下列说法中,错误的有( ) ①﹣247是负分数;②1.5不是整数;③非负有理数不包括0;④正整数、负整数统称为有理数; ⑤0是最小的有理数;⑥3.14不是有理数. A . 1个 B . 2个 C . 3个 D . 4个 7.下列各组两项中,是同类项的是( )○……A . 2233x y xy 与 B .1155abc ac 与 C . 23xy ab --与 D . xy xy -与 8.实数﹣的倒数是( ) A . ﹣2018 B . ﹣ C . 1 D . 20189 )A .1<2B .2<3C .3<4D .4<5 10.下面关于“0 ”的说法正确的有 ( )①0 是正数与负数的分界;②0C 是一个确定的温度;③0 为正数;④0 是自然数;⑤不存在既不是正数也不是负数的数.A . 2 个B . 3 个C . 4 个D . 5 个二、填空题(计32分)11.天宫二号在太空绕地球一周大约飞行42500千米,将42500用科学记数法表示为______.12.数轴上A , B 两点, A 1, B 表示的数是3的平方根,则A ,B 两点之间的距离为( ).A . 1B . 1或2C . 1或2D . 1或113.观察下列单项式:﹣x ,3x 2,﹣5x 3,7x 4,…﹣37x 19,39x 20的特点,写出第n 个单项式.为了解决这个问题,特提供下面的解题思路:(1)先观察这组单项式系数的符号及绝对值的规律;(2)再看这组单项式次数的规律.请根据你的经验,猜想第n 个单项式可表示为_____.(用含n 的式子表示)14.若5是 的算术平方根,则 a =______.________. 16.单项式32y x -的系数是__________. 17.已知a b 、为两个连续的整数,且a b <,则a b + = ______ . 18.已知23A =3×2=6,35A =5×4×3=60,25A =5×4×3×2=120,36A =6×5×4×3=360,依此规律47A = . 三、解答题(计58分) 19.计算: (1) (2) . 20.20.计算:已知|x|=23,|y|=12,且x <y <0,求6÷(x ﹣y )的值. 21.求下列各式的值: (1, (2), (3) ,(4. 22.计算:(1)( )2﹣ + , (2)(﹣2)3× +(﹣1)2013﹣ . 23.先化简,再求值: (1)()2246242x y xy xy x y +---,其中12x =-, 1y =. (2)()22223323x x x x x x ⎛⎫++--- ⎪⎝⎭,其中12x =-. 24.2016年的高考当天,为了考生出行的方便,出租车司机小王在东西方向的公路上免费接送考生。
浙教版)2018-2019学年第一学期九年级期中测试含答案
2018-2019 学年第一学期九年级期中测试数 学 试 题 卷一、单选题(共 10 题,共 30 分)1. 有五张背面完全相同的卡片,正面分别写有数字 1,2,3,4,5,把这些卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是偶数的概率为( )A. 4 5B. 3 5C. 2 5D. 152. ⊙O 以原点为圆心,5 为半径,点 P 的坐标为(4,2),则点 P 与⊙O 的位置关系是( )A .点 P 在⊙O 内B .点 P 在⊙O 上C .点 P 在⊙O 外D .点 P 在⊙O 上或⊙O 外3. 某小组做“用频率估计概率”的试验时,绘出的某一结果出现的频率折线图,则符合这一结果的试验可能是()A. 抛一枚硬币,出现正面朝上B. 掷一个正六面体的骰子,出现 3 点朝上C. 一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃D. 从一个装有 2 个红球 1 个黑球的袋子中任取一球,取到的是黑球4. 将抛物线 y = x 2 - 2x + 3 向上平移 2 个单位长度,再向右平移 3 个单位长度后,得到的抛物线的解析式为( )A . y = ( x -1)2+ 4 C . y = ( x + 2)2 + 6B . y = ( x - 4)2+ 4 D . y = ( x - 4)2 + 65. 如图,若二次函数 y =ax 2+bx +c (a ≠0)图象的对称轴为 x =1, 与 y 轴交于点 C ,与 x 轴交于点 A 、点 B (﹣1,0),则①二次函数的最大值为 a +b +c ; ②a ﹣b +c <0; ③b 2﹣4ac <0;④当 y >0 时,﹣1<x <3. 其中正确的个数是( )A .1B .2C.3 D.43 26. 如图,⊙A 过点 O (0,0),C ( ,0),D (0,1),点 B 是 x 轴下方⊙A 上的一点,连接BO ,BD ,则∠OBD 的度数是( )A .15°B .30°C .45°D .60°第 6 题图 第 7 题图 第 8 题图7. 如图,已知四边形 ABCD 内接于⊙O ,连结 BD ,∠BAD =105°,∠DBC =75°.若⊙O 的半径为 3,则 BC 的长是()A . πB .πC . 5πD . 3π2 4 28. 如图,△ ABC 中,∠C =Rt ∠,AC =6,BC =8,以点 C 为圆心,CA 为半径的圆与 AB 、BC分别交于点 E 、D ,则 BE 的长为( ) A. 14 5 B. 16 3 C. 18 5 D. 3659. 四位同学在研究函数 y =x 2+bx +c (b ,c 是常数)时,甲发现当 x =1 时,函数有最小值;乙发现﹣1 是方程 x 2+bx +c =0 的一个根;丙发现函数的最小值为 3;丁发现当 x =2 时, y =4,已知这四位同学中只有一位发现的结论是错误的,则该同学是( ) A .甲B .乙C .丙D .丁10. 如图,在平面直角坐标系中,将正方形 OABC 绕点 O 逆时针旋转 45°后得到正方形OA 1B 1C 1,依此方式,绕点 O 连续旋转 2018 次得到正方形 OA 2018B 2018C 2018,如果点 A的坐标为(1,0),那么点 B 2018 的坐标为()A .(1,1)B .(0, )C .(﹣1,1)D .( - 2 ,0)11. 如图所示,有一电路 AB 是由图示的开关控制,闭合 a ,b ,c ,d ,e 五个开关中的任意两个开关,使电路形成通路,则使电路形成通路的概率是 .12. 飞机着陆后滑行的距离 y (单位:m )关于滑行时间 t (单位:s )的函数解析式是y = 60t - 3t 2 .在飞机着陆滑行中,最后 4 s 滑行的距离是 m .213. 如图,AB 是⊙O 的直轻,点 C 是半径 OA 的中点,过点 C 作 DE ⊥AB ,交⊙O 于 D ,E两点,过点 D 作直径 DF ,连结 AF ,则∠DFA = .第 13 题图 第 14 题图14. 如图,在平行四边形 ABCD 中,AB <AD ,∠D =30°,CD =4,以 AB 为直径的⊙O 交 BC 于点 E ,则阴影部分的面积为 .15. 如图,以 G (0,1)为圆心,半径为 2 的圆与 x 轴交于 A 、B 两点,与 y 轴交于 C ,D 两点,点 E 为⊙O 上一动点,CF ⊥AE 于 F ,则弦 AB 的长度为 ;点 E 在运动过程中,线段 FG 的长度的最小值为 .第 15 题图 第 16 题图16. 如图,将抛物线 y 1 = 2x 向右平移 2 个单位,得到抛物线 y 2 的图象.P 是抛物线 y 2 对称 2轴上的一个动点,直线 x =t 平行于 y 轴,分别与直线 y =x 、抛物线 y 2 交于点 A 、B .若 △ ABP 是以点 A 或点 B 为直角顶点的等腰直角三角形,请求出满足条件的 t 的值,则 t = .17.(6 分)如图,在圆内接四边形ABCD 中,O 为圆心,∠BOD=160°,求∠BCD 的度数.18.(6 分)某同学报名参加校运会,有以下5 个项目可供选择:径赛项目:100 m,200 m,400 m(分别用A1,A2,A3表示);田赛项目:跳远,跳高(分别用B1,B2表示)(1)该同学从5 个项目中任选一个,恰好是田赛项目的概率是多少?(2)该同学从 5 个项目中任选两个,利用树状图或表格列举出所有可能出现的结果,并求出恰好是1 个田赛项目和 1 个径赛项目的概率.19.(6 分)已知:如图,AB 为半圆O 的直径,C、D 是半圆O 上的两点,若直径AB 的长为4,且BC=2,∠DAC=15°.(1)求∠DAB 的度数;(2)求图中阴影部分的面积(结果保留π).20.(8 分)如图,已知在以点O 为圆心的两个同心圆中,大圆的弦AB 交小圆于C,D.(1)求证:AC=BD;(2)若大圆的半径R=10,小圆半径r=8,且圆心O 到直线AB 的距离为6,求AC 的长.21.(8 分)某商店销售一款进价为每件40 元的护肤品,调查发现,销售单价不低于40 元且不高于80 元时,该商品的日销售量y(件)与销售单价x(元)之间存在一次函数关系,当销售单价为44 元时,日销售量为72 件;当销售单价为48 元时,日销售量为64 件.(1)求y 与x 之间的函数关系式;(2)设该护肤品的日销售利润为w(元),当销售单价x 为多少时,日销售利润w 最大,最大日销售利润是多少?22.(10 分)我们定义两个不相交的函数图象在竖直方向上的最短距离为这两个函数的“和谐值”.(1)求抛物线y=x2﹣2x+2 与x 轴的“和谐值”;(2)求抛物线y=x2﹣2x+2 与直线y=x﹣1 的“和谐值”;(3)求抛物线y=x2﹣2x+2 在抛物线y =1x2 +c 的上方,且两条抛物线的“和谐值”为22,求c 的值.23.(10 分)已知△ ABC 中,AB=AC,以AB 为直径的⊙O 交BC 于点D,交AC 于点E.(1)当∠BAC 为锐角时,如图①,求证:∠CBE =1∠BAC ;2(2)当∠BAC 为钝角时,如图②,CA 的延长线与⊙O 相交于点E,(1)中的结论是否仍然成立?并说明理由.图①图②24.(12 分)对于二次函数y =x2 - 3x + 2 和一次函数y =-2x + 4 ,把y=t(x2-3x+2)+(1-t)(-2x+4)称为这两个函数的“再生二次函数”,其中t 是不为零的实数,其图象记作抛物线L.现有点A(2,0)和抛物线L 上的点B(-1,n),请完成下列任务:【尝试】(1)当t=2 时,抛物线y=t(x2-3x+2)+(1-t)(-2x+4)的顶点坐标为;(2)判断点A 是否在抛物线L 上;(3)求n 的值.【发现】通过(2)和(3)的演算可知,对于t 取任何不为零的实数,抛物线L 总过定点,坐标为.【应用】二次函数y =-3 x2 +5 x +2是二次函数y =x2 -3x + 2 和一次函数y =-2x + 4 的一个“再生二次函数”吗?如果是,求出t 的值;如果不是,说明理由.2018-2019 学年第一学期九年级期中测试数学试题卷参考答案及评分建议一、单选题(共 10 题,共 30 分) 1.C 2.A 3.D 4.B 5.B 6.B 7.B 8.A 9.B 10.C二、填空题(共 6 题,共 24 分)11. 3512.24 13.【解答】解:∵点 C 是半径 OA 的中点,∴ O C = 1OD ,2∵DE ⊥AB ,∴∠CDO =30°, ∴∠DOA =60°, ∴∠DFA =30°, 故答案为:30°14.4π- 315. 2 , 3-116.1 或 3 或 5 +25 或 5 - 52 3 3三、解答题(共 8 题,共 66 分) 17.(6 分)解:∵∠BOD =160°,∴∠BAD = 1∠BOD = 80︒ ,2∵A 、B 、C 、D 四点共圆,∴∠BCD +∠BAD =180°, ∴∠BCD =100°.18.(6 分) (1) 25(2)表格略;概率为 3519.(6 分)解:(1)∵AB 是直径,∴∠ACB =90°,又∵BC =2,AB =4,∴ BC = 1AB ,2∴∠BAC =30°,∴∠DAB =∠DAC +∠BAC =15°+30°=45° ; (2)连接 OD ,∵直径 AB =4,∴半径 OD =OA =2, ∵OA =OD ,∠DAB =45°, ∴∠ADO =∠DAB =45°, ∴∠AOD =90°,∴阴影部分的面积 S =S ﹣S 90 ⨯π ⨯ 22 1 . 20.(8 分)扇形 AOD △AOD = - ⨯ 2 ⨯ 2 = π - 2 360 2(1) 过点 O 作 OE ⊥AB 于 E ,∴AE =BE ,CE =DE , ∴AE -CE =BE -DE , ∴AC =BD(2)由(1)知 OE =6,OA =10,∴AE =8,∵OE =6,OC =8,∴ CE = 228 721.(8 分)解:(1)设 y 与 x 的函数关系式为:y =kx +b (k ≠0),⎧44k + b = 72由题意得: ⎨48k + b = 64 ,解得:k =﹣2,b =160,所以 y 与 x 之间的函数关系式是 y =﹣2x +160(40≤x ≤80); (2) 由题意得,w 与 x 的函数关系式为:w =(x ﹣40)(﹣2x +160)=﹣2x 2+240x ﹣6400=﹣2(x ﹣60)2+800, 当 x =60 元时,最大利润 w 是 800 元,所以当销售单价 x 为 60 元时,日销售利润 w 最大,最大日销售利润是 800 元.22.(10 分)解:(1)∵y =(x ﹣1)2+1,∴抛物线上的点到 x 轴的最短距离为 1,∴抛物线 y =x 2﹣2x +2 与 x 轴的“和谐值”为 1;(2) 如图,P 点为抛物线 y =x 2﹣2x +2 任意一点,作 PQ ∥y 轴交直线 y =x ﹣1 于 Q , 设 P (t ,t 2﹣2t +2),则 Q (t ,t ﹣1),∴ PQ = t 2- 2t + 2 - (t -1) = t 2- 3t + 3 = ⎛ t - ⎝ 当t = 3 时,PQ 有最小值,最小值为 3 ,3 ⎫23⎪ + ,⎭ 424∴抛物线 y =x 2﹣2x +3 与直线 y =x ﹣1 的“和谐值”为 3,4(3) M 点为抛物线 y =x 2﹣2x +2 任意一点,作 MN ∥y 轴交抛物线 y = 1x 2+ c 于 N ,2设 M (t ,t 2﹣2t +2),则 N (t , 1t 2 + c ),2∴ MN = t 2 - 2t + 2 - ⎛ 1 t 2 + c ⎫ = 1 t 2 - 2t + 2 - c = 1 (t - 2)2 - c ,2 ⎪ 2 2⎝⎭当 t =2 时,MN 有最小值,最小值为﹣c ,∴抛物线 y =x 2﹣2x +2 与抛物线 y = 1x 2 + c 的“和谐值”为﹣c ,2∴﹣c =2, ∴c =﹣2.⎩223.(10 分)(1)证明如图① 连结AD∵AB 是⊙O 的直径∴AD⊥BC∵AB=AC∴∠CAD =1∠BAC2又∵BE⊥AC∴∠CAD=∠CBE∴∠CBE =1∠BAC2(2)成立,理由如下:如图②连结AD,∵AB 是⊙O 的直径∴AD⊥BC∵AB=AC∴∠CAD =1∠BAC2∵∠CAD+∠EAD=180°,∠CBE+∠EAD=180°∠CAD=∠CBE∴∠CBE =1∠BAC224.(12 分)解:【尝试】(1)顶点坐标为(1,-2)(2)当x=2 时,y=t(4-6+2)+(1-t)( -4+4)=0∴点(2,0)在抛物线上(3)当x=1 时,y=t(1+3+2)+(1-t)(2+4)=6即n=6【发现】坐标:(2,0),(-1,6)【应用】当x=-1 时,y =-3x2 + 5x + 2 =-6 ≠ 6此时,二次函数y =-3x2 + 5x + 2 不过定点∴不是再生二次函数。
浙江湖州市2018-2019七年级数学上册期中试题带答案浙教版
浙江湖州市2018-2019七年级数学上册期中试题(带答案浙教版)2018-2019学年第一学期七年级期中测试数学试题卷一、单选题(共10题,共30分)1.在0,-3,3,3中,最小的数是()A.-3B.0C.32.4的平方根是()A.16B.2C.2D.3D.23.下列四个数:-3,3,-π,-1,其中最小的数是()A.-πB.-3C.-1D.34.如图,在数轴上表示实数13的点可能是()A.点PB.点QC.点MD.点N5.关于的叙述正确的是()A.在数轴上不存在表示的点B.C.2D.与最接近的整数是36.1313()A.1B.3C.2D.237.下列结论正确的是()A.6B.32916216C.16D.25258.已知x20,则x+y的值为()A.10B.不能确定C.-6D.-109.某商品四天内每天每斤的进价与售价信息如图所示,则售出这种商品每斤利润最大的是()A.第一天B.第二天C.第三天D.第四天10.已知a是173的整数部分,b是173的小数部分,那么a3b᠄ 3;42的平方根是()A.4B.±2C.±8D.±4二、填空题(共6题,共24分)11.计算:.12.已知在两个整数a与a+1之间,则a=.13.实数a在数轴上的位置如图,则a=.a0114.2017年某市实现GDP约10500亿元,成为全国第11个经济总量超过万亿的城市,将10500亿用科学计数法表示为a10n的形式,则a 的值为.15.已知整数a、b、c、d满足abcd=25,且abcd,则|a+b|+|c+d|=.16.任何一个正整数n都可以进行这样的分解:n=st(s,t是正整数,且s≤t),如果pq在n的所有这种分解中两因数之差的绝对值最小,我们就称pq是最佳分解,并规定Fnp.例如:18,可以分解成118,29,36,这时就有F1831.现在q62给出下列说法:①F33;②F123;③F273;④若n是一个完全平方4数,则Fn1.其中正确的说法有.三、解答题(共8题,共66分)17.(6分)计算:3221ɦ 80;4;18.(6分)在数轴上表示下列各数,再用号把它们连接起来.-3,1,24,0,|-4|,.19.(6分)计算:22103;2220.(8分)已知x=1-a,y=2a-5.(1)已知x的算术平方根为3,求a的值;(2)如果x,y都是同一个数的平方根,求这个数.21.(8分)请在方格内画△ABC,使它的顶点都在格点上,且三边长分别为2,2,4.(1)求△ABC的面积.(2)求出最长边上的高.22.(10分)某天早上,一辆交通巡逻车从A地出发,在东西走向的公路上巡视,中午到达B地,如果规定向东行驶为正,向西行驶为负,行驶纪录如下(单位:km):第一次第二次第三次第四次第五次第六次第七次+15-8+6+12-4-4-10(1)B地在A地的哪个方向,与A地相距多少千米?(2)巡逻车在巡逻过程中,离开A地最远是多少千米?(3)若每千米耗油0.1L,问:共耗油多少升?23.(10分)在一条不完整的数轴上从左到右有点A,B,C,其中AB=2,BC=1,如图所示,设点A,B,C所对应的数的和是p.(1)若以B为原点,写出点A,C所对应的数,并计算p 的值;若以C为原点,p又是多少?(2)若原点O在图中数轴上点C的右边,且CO=28,求p.24.(12分)如图,纸上有五个边长为1的小正方形组成的图形纸,我们可以把它剪开拼成一个正方形.(1)拼成的正方形的面积与边长分别是多少?(2)如图所示,以数轴的单位长度的线段为边作一个直角三角形,以数轴的-1点为圆心,直角三角形的最大边为半径画弧,交数轴正半轴于点A,那么点A表示的数是多少?点A表示的数的相反数是多少?(3)你能把十个小正方形组成的图形纸,剪开并拼成正方形吗?若能,请画出示意图,并写出它的边长.2018-2019学年第一学期七年级期中测试数学试题卷参考答案及评分建议一、单选题(共10题,共30分)1-5.ACACD6-10.DACBD二、填空题(共6题,共24分)11.13.a12.314.1.0515.1216.②④三、解答题(共8题,共66分)17.【解析】原式=3+2=518.30 ;14,数轴表示略219.103解析:原式5242221532220.(1)∵x的算术平方根是3,∴1﹣a=9,即a=﹣8;(2)x,y都是同一个数的平方根,∴1﹣a=2a﹣5,或1﹣a+(2a﹣5)=0解得a=2,或a=4,(1﹣a)=(1﹣2)2=1,(1﹣a)=(1﹣4)2=9.答:这个数是1或921.【解析】画图如图所示.(1)S△ABC=2.(2)最长边上的高为25.522.【解析】(1)+15-8+6+12-4-4-10=7(km).答:B地在A地东面,与A地相距7km.(2)∵+15-8=7(km),+15-8+6=13(km),+15-8+6+12=25(km),+15-8+6+12-4=21(km),+15-8+6+12-4-4=17(km),+15-8+6+12-4-4-10=7(km),∴巡逻车在巡逻过程中,离开A地最远是25km.(3)|+15|+|-8|+|+6|+|+12|+|-4|+|-4|+|-10|=15+8+6+12+4+4+10=59(km),590.1=5.9(L).答:共耗油5.9L.23.【解析】(1)若以B为原点,则A所对应的数为-2,C所对应的数为1此时,p=-2+0+1=-1若以C为原点,则A所对应的数为-3,B所对应的数为-1此时,p=-3+(-1)+0=-4(2)若原点O在图中数轴上点C的右边,且CO=28,则C所对应的数为-28,A所对应的数为-29,B所对应的数为-31此时,p=-28+(-29)+(-31)=-8824.(1)5;5(2)1;1(3)能;。
浙教版2018-2019学年初二数学第一学期期中试卷及答案
2018-2019学年八年级上册期中数学测试卷(考试时间:90分钟,总分:120分)特别提醒:请同学们认真审题,看清要求,仔细答题.把答案按要求填写在试卷规定区域内!一、选择题:(本大题共10小题;每小题3分,共30分.) 1. 下列“QQ 表情”中,属于轴对称图形的是 ( )2.已知三角形两边的长分别是4和10,则此三角形第三边的长可能是( ) A .5 B .6 C .12 D .163.如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是( )A .B .C .D .4.下列不等式变形正确的是( )A .由a >b 得ac >bcB .由a >b 得﹣2a >﹣2bC .由a >b 得﹣a <﹣bD .由a >b 得a ﹣2<b ﹣25.小冬不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1,2,3,4的四块),你认为将其中的哪一块带去,能配一块与原来一样大小的三角形?应该带( )A. 第1块B. 第2块C. 第3块D. 第4块 6.如图,在△ABC 中,BC =8cm ,AB 的垂直平分线交AB 于点D ,交边AC 点E ,AC 的长为12cm ,则△BCE 的周长等于( ) A.16cm B.20cm C.24cm D.26cm7.如图,AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 交AC 于点F .ABC S =7,DE=2,AB=4,则AC 长是( )A .4B .6C .3D .5第5题第10题第6题 第7题8.如图,在△ABC 中,AB =20cm ,AC =12cm 3cm/s 的速度向点A 运动,点Q 从点A 同时出发以2cm/s 的速度向点C 运动,其中一个动点到达端点时,另一个动点也随之停止运动,当△APQ 是以PQ 为底的等腰三角形时,运动的时间是( ) A .2.5秒B .3秒C .3.5秒D .4秒9.如图所示的2×4的正方形网格中,△ABC 的顶点都在小正方形的格点上,这样的三角形称为格点三角形,在网格中与△ABC 成轴对称的格点三角形一共有 ( ) A 、 2个B 、 3个C 、 4个D 、 5个10.如图,四边形ABCD 中,∠BAD=110°,∠B=∠D=90°,在BC 、CD 上分别找一点M 、N ,使△AMN 周长最小,此时∠MAN 的度数为( )A 、 30°B 、40°C 、50°D 、 45°二.填空题:(本大题共6小题;每小题4分,共24分.)11、一个三角形的三边为2、5、x ,另一个三角形的三边为y 、2、6,若这两个三角形全等,则x +y = . 12、若不等式x <a 只有5个正整数解,则a 的取值范围 .13.若等腰三角形的一个角为80°,则顶角为 . 14.命题“全等三角形的面积相等”的逆命题是 . 15.如图,在△ABC 中,中线AD 、BE 交于O ,若S △BOD =5,则S △BOA = . 16. 如图:已知在ABC Rt ∆中,∠ACB=90°,∠BAC=36°,在直线AC 上找点P ,使ABP ∆是等腰三角形,则APB ∠的度数为 .第9题 BA C第16题第15题三、解答题:(本大题共7小题,解答时应写出文字说或演算步骤) 17. (本题满分6分)已知△ABC ,利用直尺和圆规,根据下列要求作图(保留作图痕迹,不要求写作法).(1)作∠ABC 的平分线BD 交AC 于点D ;(2)作线段BD 的垂直平分线交AB 于点E ,交BC 于点F .18. (本题满分8分)计算 (1)、解不等式:5(x ﹣2)﹣2(x+1)>3. (2)解不等式≤,并求出它的非负整数解。
2018-2019学年最新浙教版八年级数学上学期期中考试达标测试题及答案解析-精品试题
八年级(上)期中数学试卷一、选择题(每小题3分,共30分)1.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个2.下面各组线段中,能组成三角形的是()A.5,11,6 B.8,8,16 C.10,5,4 D.6,9,143.)下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有()A.①②③B.①②④C.①③D.①②③④4.等腰三角形一腰上的高与另一腰所成的角为40度,则顶角的度数为()A.40° 或65°B.50°或65°C.50°或130°D.40°或130°5 下列不等式的变形正确的是()A.由a<b,得ac<bc B.由a<b,且m≠0,得﹣>﹣C.由a<b,得az2<bz2D.由az2>bz2,得a>b6.平面直角坐标系中,已知A(2,2),在x轴上确定一点P,使△AOP为等腰三角形,则符合条件的点P有()A.2个B.3个C.4个D.5个7 如图,从下列四个条件:①BC=B′C,②AC=A′C,③∠A′CB′=∠ACB,④AB=A′B′中,任取三个为条件,余下的一个为结论,则最多可以构成正确结论的个数是()A.1个B.2个C.3个D.4个8.关于x的不等式组有四个整数解,则a的取值范围是()A.﹣<a≤﹣B.﹣≤a<﹣ C.﹣≤a≤﹣D.﹣<a<﹣9.折叠矩形纸片ABCD的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,折痕AE的长()A.5cm B.5cm C.12cm D.13cm10.如图,已知每个小方格的边长为1,A,B,C三点都在小方格的顶点上,则点C到AB所在直线的距离等于()A.B.C.D.二、填空题(每小题4分,共24分)11.如图:在△ABC和△FED中,AD=FC,AB=FE,当添加条件时,就可得到△ABC≌△FED.(只需填写一个即可)12.不等式﹣x+3≤2(2x﹣m)的解是x≥2,则m= .13.如图,G是△AFE两外角平分线的交点,P是△ABC的两外角平分线的交点,F,C在AN上,又B,E在AM上;如果∠FGE=66°,那么∠P=度.14.命题“同角的补角相等”的题设是,结论是.15.如图,已知△ADC中,∠ADC=90°,AD=DC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为2,l2,l3之间的距离为3,则AC的长是.16.如图,已知OM⊥ON,正三角形ABC的边长为2,点A、B分别在射线OM,ON上滑动,在滑动过程中,连结OC,则OC的长的最大值是.三、解答题(共66分)17 尺规作图:(画出图形,保留作图痕迹,不写作法,写出结论)已知:∠α,线段a、b.求作:△ABC,使∠B=∠α,AB=b,BC=a.18.解下列不等式(组),并在数轴上表示不等式(组)的解集.(1)3x﹣7>2x﹣6(2).19.已知:如图,AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=DC.(1)BE与DF是否相等?请说明理由.(2)若DF=1,AD=3,求AB的长.20.如图,已知AE与BD相交于点C,AB=AC,DE=DC,M、N、P分别是BC、CE、AD的中点.求证:(1)AD=2PM;(2)PM=PN.21.如图,△ABC和△ADE都是等腰三角形,AB=AC,AD=AE,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.则线段BD与CE有什么关系?请说明理由.22.某中学计划购买A型和B型课桌凳共200套.经招标,购买一套A型课桌凳比购买一套B型课桌凳少用40元,且购买4套A型和5套B型课桌凳共需1820元.(1)求购买一套A型课桌凳和一套B型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A型课桌凳的数量不能超过B型课桌凳数量的,求该校本次购买A型和B型课桌凳共有几种方案?哪种方案的总费用最低?23.如图,△ABC中,∠C=Rt∠,AC=8cm,BC=6cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒2cm,设运动的时间为t秒.(1)当t为何值时,CP把△ABC的周长分成相等的两部分.(2)当t为何值时,CP把△ABC的面积分成相等的两部分,并求出此时CP 的长;(3)当t为何值时,△BCP为等腰三角形?参考答案与试题解析一、选择题(每小题3分,共30分)1.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个考点:轴对称图形.版权所有分析:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.解答:解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选C.点评:本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.下面各组线段中,能组成三角形的是()A.5,11,6 B.8,8,16 C.10,5,4 D.6,9,14考点:三角形三边关系.版权所有分析:根据三角形的任意两边之和大于第三边对各选项分析判断后利用排除法求解.解答:解:A、∵5+6<11,∴不能组成三角形,故A选项错误;B、∵8+8=16,∴不能组成三角形,故B选项错误;C、∵5+4<10,∴不能组成三角形,故C选项错误;D、∵6+9>14,∴能组成三角形,故D选项正确.故选:D.点评:本题考查了三角形的三边关系,是基础题,熟记三边关系是解题的关键.3.下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有()A.①②③B.①②④C.①③D.①②③④考点:等边三角形的判定.版权所有分析:根据等边三角形的判定判断.解答:解:①两个角为60度,则第三个角也是60度,则其是等边三角形,故正确;②这是等边三角形的判定2,故正确;③三个外角相等则三个内角相等,则其是等边三角形,故正确;④根据等边三角形三线合一性质,故正确.所以都正确.故选D.点评:此题主要考查学生对等边三角形的判定的掌握情况.4.等腰三角形一腰上的高与另一腰所成的角为40度,则顶角的度数为()A.40° 或65°B.50°或65°C.50°或130°D.40°或130°考点:等腰三角形的性质.版权所有专题:分类讨论.分析:分这个三角形为锐角三角形和钝角三角形,再利用三角形内角和定理和可求得顶角的度数.解答:解:①当为锐角三角形时可以画图,如图①,高与右边腰成40°夹角,由三角形内角和为180°可得,顶角为50°;②当为钝角三角形时可画图为如图②,此时垂足落到三角形外面,因为三角形内角和为180°,由图可以看出等腰三角形的顶角的补角为50°,所以三角形的顶角为130°,所以该等腰三角形的顶角为50°或130°,故选C.点评:本题主要考查等腰三角形的性质,掌握等腰三角形的两底角相等是解题的关键.5.下列不等式的变形正确的是()A.由a<b,得ac<bc B.由a<b,且m≠0,得﹣>﹣C.由a<b,得az2<bz2D.由az2>bz2,得a>b考点:不等式的性质.版权所有分析:根据不等式的性质2、3,可得答案.解答:解;A、c≤0时,不等式不成立,故A错误;B、m>0时,不等式不成立,故B错误;C、z=0时,不等式不成立,故C错误;D、不等式的两边都除以同一个正数,不等号的方向不变,故D正确.故选:D.点评:本题考查了不等式的性质,不等式的两边都乘以或除以同一个负数,不等号的方向改变.6.在平面直角坐标系中,已知A(2,2),在x轴上确定一点P,使△AOP 为等腰三角形,则符合条件的点P有()A.2个B.3个C.4个D.5个考点:等腰三角形的判定;坐标与图形性质.版权所有分析:此题应该分情况讨论.以OA为腰或底分别讨论,进而得出答案.解答:解:(1)若AO作为腰时,有两种情况,①当A是顶角顶点时,P是以A为圆心,以OA为半径的圆与x轴的交点,共有1个,若OA是底边时,P是OA的中垂线与x轴的交点,有1个,②当O是顶角顶点时,P是以O为圆心,以OA为半径的圆与x轴的交点,有2个;(2)若OA是底边时,P是OA的中垂线与x轴的交点,有1个,以上4个交点没有重合的.故符合条件的点有4个.故选:C.点评:此题主要考查了坐标与图形的性质及等腰三角形的判定;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.7.如图,从下列四个条件:①BC=B′C,②AC=A′C,③∠A′CB′=∠ACB,④AB=A′B′中,任取三个为条件,余下的一个为结论,则最多可以构成正确结论的个数是()A.1个B.2个C.3个D.4个考点:全等三角形的判定与性质.版权所有分析:本题考查的是全等三角形的判定,可根据全等三角形的判定定理和性质进行求解.解答:解:①②③为条件,根据SAS,可判定△BCA≌△B′CA′;可得结论④;①②④为条件,根据SSS,可判定△BCA≌△B′CA′;可得结论③;①③④为条件,SSA不能证明△BCA≌△B′CA′.②③④为条件,SSA不能证明△BCA≌△B′CA′.最多可以构成正确结论2个.故选B.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8 关于x的不等式组有四个整数解,则a的取值范围是()A.﹣<a≤﹣B.﹣≤a<﹣ C.﹣≤a≤﹣D.﹣<a<﹣考点:一元一次不等式组的整数解.版权所有专题:计算题;压轴题.分析:先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求a 的取值范围即可.解答:解:由(1)得x>8;由(2)得x<2﹣4a;其解集为8<x<2﹣4a,因不等式组有四个整数解,为9,10,11,12,则,解得﹣≤a<﹣.故选B.点评:考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.9.折叠矩形纸片ABCD的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,折痕AE的长()A.5cm B.5cm C.12cm D.13cm考点:翻折变换(折叠问题).版权所有分析:首先根据勾股定理求出BF的长度,进而求出CF的长度;再根据勾股定理求出EF的长度问题即可解决.解答:解:由题意得:AF=AD,EF=DE(设为x),∵四边形ABCD为矩形,∴AF=AD=BC=10,DC=AB=8;∠ABF=90°;由勾股定理得:BF2=102﹣82=36,∴BF=6,CF=10﹣6=4;在直角三角形EFC中,由勾股定理得:x2=42+(8﹣x)2,解得:x=5,∴AE2=102+52=125,∴AE=(cm).故选A.点评:该命题以矩形为载体,以图形的翻折为方法,以考查翻折变换的性质及其应用为核心构造而成;对综合的分析问题解决问题的能力提出了较高的要求.10.如图,已知每个小方格的边长为1,A,B,C三点都在小方格的顶点上,则点C到AB所在直线的距离等于()A.B.C.D.考点:勾股定理;点到直线的距离.版权所有专题:计算题.分析:连接AB,BC,AC可得△ABC为等腰三角形,根据等腰三角形面积计算方法计算C到AB的距离(过C作AB边上的高).解答:解:连接AB,BC,AC.找到AC中点D,连接BD.设C到AB的距离为h,小方格边长为1,∴AD=,AB=BC=,∴△ABC为等腰三角形,∴BD⊥AC,且BD=△ABC的面积为S=AC•BD=4.又∵△ABC面积=×AB×h=4,∴h==.故选B.点评:本题考查了勾股定理的运用,考查了等腰三角形面积的计算,根据面积法求C到AB边的距离h是解题的关键.二、填空题(每小题4分,共24分)11.如图:在△ABC和△FED中,AD=FC,AB=FE,当添加条件BC=ED或∠A=∠F或AB∥EF时,就可得到△ABC≌△FED.(只需填写一个即可)考点:全等三角形的判定.版权所有专题:证明题.分析:要得到△ABC≌△FED,现有条件为两边分别对应相等,找到全等已经具备的条件,根据全等的判定方法选择另一条件即可得等答案.解答:解:AD=FC⇒AC=FD,又AB=EF,加BC=DE就可以用SSS判定△ABC≌△FED;加∠A=∠F或AB∥EF就可以用SAS判定△ABC≌△FED.故答案为:BC=ED或∠A=∠F或AB∥EF.点评:本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.12.不等式﹣x+3≤2(2x﹣m)的解是x≥2,则m= 3.5 .考点:解一元一次不等式.版权所有分析:先求出不等式﹣x+3≤2(2x﹣m)的解集,再根据不等式﹣x+3≤2(2x ﹣m)的解是x≥2,列出方程,即可求出m的值.解答:解:﹣x+3≤2(2x﹣m),﹣x+3≤4x﹣2m,﹣x﹣4x≤﹣3﹣2m,﹣5x≤﹣3﹣2m,∴x≥,∵不等式﹣x+3≤2(2x﹣m)的解是x≥2,∴=2∴m=3.5.故填:3.5点评:此题考查了解一元一次不等式;关键是根据不等式的解列出关于m的方程.13.如图,G是△AFE两外角平分线的交点,P是△ABC的两外角平分线的交点,F,C在AN上,又B,E在AM上;如果∠FGE=66°,那么∠P=66度.考点:多边形内角与外角;三角形内角和定理.版权所有分析:利用角平分线的定义和三角形、四边形的内角和可求得:∠G=180°﹣×[360°﹣(180°﹣∠A)]=90°﹣∠A,∠P=180°﹣×[360°﹣(180°﹣∠A)]=90°﹣∠A,所以∠P=∠FGE=66°.解答:解:因为G是△AFE两外角平分线的交点,所以∠FGE=180°﹣×[360°﹣(180°﹣∠A)]=90°﹣∠A;因为P是△ABC两外角平分线的交点,所以∠P=180°﹣×[360°﹣(180°﹣∠A)]=90°﹣∠A;所以∠P=∠FGE=66°.点评:通过此题,得到一个结论:有公共角的两个三角形的另两边的外角平分线的夹角相等.14.命题“同角的补角相等”的题设是如果几个角是同一个角的补角,结论是那么这几个角相等.考点:命题与定理.版权所有分析:把“同角的补角相等”写成如果…那么…的形式.解答:解:“同角的补角相等”的题设为如果几个角是同一个角的补角;结论为那么这几个角相等.故答案为如果几个角是同一个角的补角;那么这几个角相等.点评:本题考查了命题:判断事物的语句叫命题;正确的命题称为真命题;错误的命题称为假命题.15.如图,已知△ADC中,∠ADC=90°,AD=DC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为2,l2,l3之间的距离为3,则AC的长是2.考点:勾股定理.版权所有分析:过A、C分别作l3的垂线,可以证得所得两个三角形全等,再根据全等三角形的性质得出边长的关系,利用勾股定理求解即可.解答:解:如下图所示:过点C作CE⊥l3于E,过点A作AF⊥l3于F,则:CE=5,AF=3.∵在△ADC中,∠ADC=90°,∴∠ADF+∠CDE=90°,∵∠ADF+∠DAF=90°,∴∠CDE=∠DAF,在△ADF和△DCE中,,∴△ADF≌△DCE(AAS),∴DE=AF=3,∵CD2=CE2+DE2,∴CD=,∵AC2=AD2+CD2,AD=CD=∴AC=2.故答案为:2.点评:本题考查了勾股定理的运用,解决此类问题一般都要结合三角形的全等问题,是比较基本的知识点,要求熟练掌握.16.如图,已知OM⊥ON,正三角形ABC的边长为2,点A、B分别在射线OM,ON上滑动,在滑动过程中,连结OC,则OC的长的最大值是1+.考点:等边三角形的性质;直角三角形斜边上的中线.版权所有分析:取AB的中点D,连接OD及DC,根据三角形的边角关系得到OC小于等于OD+DC,只有当O、D及C共线时,OC取得最大值,最大值为OD+CD,由等边三角形的边长为2,根据D为AB中点,得到BD为1,根据三线合一得到CD垂直于AB,在直角三角形BCD中,根据勾股定理求出CD的长,在直角三角形AOB中,OD为斜边AB上的中线,根据直角三角形斜边上的中线等于斜边的一半可得OD等于AB的一半,由AB的长求出OD的长,进而求出DC+OD,即为OC的最大值.解答:解:取AB中点D,连OD,DC,OC,有OC≤OD+D C,当O、D、C共线时,OC有最大值,最大值是OD+CD,∵△ABC为等边三角形,D为中点,∴BD=1,BC=2,根据勾股定理得:CD=,又∵△AOB为直角三角形,D为斜边AB的中点,∴OD AB=1,∴OD+CD=1+,即OC的最大值为1+.故答案为:1+.点评:此题考查了等边三角形的性质,直角三角形斜边上的中线等于斜边的一半,以及勾股定理,其中找出OC最大时的长为CD+OD是解本题的关键.三、解答题(共66分)17.尺规作图:(画出图形,保留作图痕迹,不写作法,写出结论)已知:∠α,线段a、b.求作:△ABC,使∠B=∠α,AB=b,BC=a.考点:作图—基本作图.版权所有分析:作∠B=∠α,在∠B的一边上截取BA=b,BC=a,连接AC即可得到所求的△ABC.解答:解:点评:利用边角边画三角形时,应先画出所给的角,再在角的两边上分别截取其余两边.18.解下列不等式(组),并在数轴上表示不等式(组)的解集.(1)3x﹣7>2x﹣6(2).考点:解一元一次不等式组;在数轴上表示不等式的解集;解一元一次不等式.版权所有分析:(1)首先移项,然后合并同类项,即可求解;(2)分别求出不等式组中两个一元一次不等式的解集,表示在数轴上,找出两解集的公共部分,即可得到原不等式组的解集.解答:解:(1)移项,得:3x﹣2x>7﹣6,合并同类项,得:x>1.在数轴上表示为:;(2),由①解得:x≤,由②解得:x<4,把两解集画在数轴上,如图所示:则原不等式的解集为:x≤.点评:本题主要考查了一元一次不等式(组)解集的求法,注意利用不等式的基本性质3时,不等号的方向要改变.19.已知:如图,AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=DC.(1)BE与DF是否相等?请说明理由.(2)若DF=1,AD=3,求AB的长.考点:角平分线的性质;全等三角形的判定与性质.版权所有分析:(1)根据角平分线的性质就可以得出CE=CF,再由HL证明△CEB≌△CFD就可以得出结论.(2)证明Rt△CAF≌Rt△CAE可得AE=AF,再根据△CEB≌△CFD可得BE=DF=1,进而可得答案.解答:解:(1)相等,理由:∵AC平分∠BAD,CE⊥AB于E CF⊥AD于F,∴∠F=∠CEB=90°,CE=CF.在Rt△CEB和Rt△CFD中,,∴△CEB≌△CFD(HL),∴BE=DF.(2)∵DF=1,∴BE=1,在Rt△CAF和Rt△CAE中,,∴Rt△CAF≌Rt△CAE(HL),∴AE=AF=3+1=4,∴AB=4+1=5.点评:此题主要考查了全等三角形的判定与性质,以及角平分线的性质,关键是掌握角的平分线上的点到角的两边的距离相等.20.如图,已知AE与BD相交于点C,AB=AC,DE=DC,M、N、P分别是BC、CE、AD的中点.求证:(1)AD=2PM;(2)PM=PN.考点:全等三角形的判定与性质.版权所有专题:证明题.分析:(1)根据等腰三角形底边三线合一性质可证△AMD是RT△,根据直角三角形斜边中线等于斜边长一半即可解题;(2)找到AC中点H,连接HP,HM,找到CD中点G,连接GP,GN,可证△PHM≌△NGP,即可解题.解答:解:(1)∵AB=AC,∴△ABC是等腰三角形,∵M是BC中点,∴AM⊥BC,∵P是RT△AMD斜边上中点,∴AD=2PM;(2)找到AC中点H,连接HP,HM,找到CD中点G,连接GP,GN,则MH是AB边中位线,HP是CD边中位线,PG是AC边上中位线,GN是DE边上中位线,∴MH=AB,HP=CD,PG=AC,GN=DE,MH∥AB,HP∥CD,PG∥AC,GN∥DE,∵AB=AC,DC=DE,∴HM=PG,HP=NG,∴∠CHM=∠BAC,∠PHC=∠DCE,∠NGC=∠CDE,∠PGC=∠ACB,∵AB=AC,DC=DE,∠ACB=∠DCE,∴∠BAC=∠CDE,∠ABC=∠ACB=∠DCE=∠DEC,∴∠PHM=∠NGP,在△PHM和△NGP中,,∴△PHM≌△NGP(SAS),∴PM=PN.点评:本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中构建△PHM和△NGP并证明其全等是解题的关键.21 如图,△ABC和△ADE都是等腰三角形,AB=AC,AD=AE,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.则线段BD与CE有什么关系?请说明理由.考点:全等三角形的判定与性质;等腰直角三角形.版权所有分析:易证∠CAE=∠BAD,可得△BAD≌△CAE,根据全等三角形对应边相等的性质可得BD=CE.解答:解:BD=CE,证明:∵∠BAC=∠DAE=90°,∴∠CAE=∠BAD=90°+∠CAD,在△BAD和△CAE中,,∴△BAD≌△CAE,(SAS),∴BD=CE.点评:本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△BAD≌△CAE是解题的关键.22.某中学计划购买A型和B型课桌凳共200套.经招标,购买一套A型课桌凳比购买一套B型课桌凳少用40元,且购买4套A型和5套B型课桌凳共需1820元.(1)求购买一套A型课桌凳和一套B型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A型课桌凳的数量不能超过B型课桌凳数量的,求该校本次购买A型和B型课桌凳共有几种方案?哪种方案的总费用最低?考点:一次函数的应用;一元一次方程的应用;一元一次不等式组的应用.版权所有分析:(1)根据购买一套A型课桌凳比购买一套B型课桌凳少用40元,以及购买4套A型和5套B型课桌凳共需1820元,得出等式方程求出即可;(2)利用要求购买这两种课桌凳总费用不能超过40880元,并且购买A型课桌凳的数量不能超过B型课桌凳数量的,得出不等式组,求出a的值即可,再利用一次函数的增减性得出答案即可.解答:解:(1)设A型每套x元,则B型每套(x+40)元.由题意得:4x+5(x+40)=1820.解得:x=180,x+40=220.即购买一套A型课桌凳和一套B型课桌凳各需180元、220元;(2)设购买A型课桌凳a套,则购买B型课桌凳(200﹣a)套.由题意得:,解得:78≤a≤80.∵a为整数,∴a=78、79、80.∴共有3种方案,设购买课桌凳总费用为y元,则y=180a+220(200﹣a)=﹣40a+44000.∵﹣40<0,y随a的增大而减小,∴当a=80时,总费用最低,此时200﹣a=120,即总费用最低的方案是:购买A型80套,购买B型120套.点评:此题主要考查了一元一次方程的应用和不等式组的应用以及一次函数的增减性,根据已知得出不等式组,求出a的值是解题关键.23.如图,△ABC中,∠C=Rt∠,AC=8cm,BC=6cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒2cm,设运动的时间为t秒.(1)当t为何值时,CP把△ABC的周长分成相等的两部分.(2)当t为何值时,CP把△ABC的面积分成相等的两部分,并求出此时CP 的长;(3)当t为何值时,△BCP为等腰三角形?考点:等腰三角形的判定;三角形的面积.版权所有专题:动点型.分析:(1)先由勾股定理求出△ABC的斜边AB=10cm,则△ABC的周长为24cm,所以当CP把△ABC的周长分成相等的两部分时,点P在AB上,此时CA+AP=BP+BC=12cm,再根据时间=路程÷速度即可求解;(2)根据中线的性质可知,点P在AB中点时,CP把△ABC的面积分成相等的两部分,进而求解即可;(3)△BCP为等腰三角形时,分三种情况进行讨论:①CP=CB;②BC=BP;③PB=PC.解答:解:(1)△ABC中,∵∠C=Rt∠,AC=8cm,BC=6cm,∴AB=10cm,∴△ABC的周长=8+6+10=24cm,∴当CP把△ABC的周长分成相等的两部分时,点P在AB上,此时CA+AP=BP+BC=12cm,∴t=12÷2=6(秒);(2)当点P在AB中点时,CP把△ABC的面积分成相等的两部分,此时CA+AP=8+5=13(cm),∴t=13÷2=6.5(秒);(3)△BCP为等腰三角形时,分三种情况:①如果CP=CB,那么点P在AC上,CP=6cm,此时t=6÷2=3(秒);如果CP=CB,那么点P在AB上,CP=6cm,此时t=5.4(秒)(点P还可以在AB上,此时,作AB边上的高CD,利用等面积法求得CD=4.8,再利用勾股定理求得DP=3.6,所以BP=7.2,AP=2.8,所以t=(8+2.8)÷2=5.4(秒))②如果BC=BP,那么点P在AB上,BP=6cm,CA+AP=8+10﹣6=12(cm),此时t=12÷2=6(秒);③如果PB=PC,那么点P在BC的垂直平分线与AB的交点处,即在AB的中点,此时CA+AP=8+5=13(cm),t=13÷2=6.5(秒);综上可知,当t=3秒或5.4秒或6秒或6.5秒时,△BCP为等腰三角形.点评:本题考查了勾股定理,等腰三角形的判定,三角形的周长与面积,三角形的中线,难度适中.利用分类讨论的思想是解(3)题的关键.。
最新浙教版2018-2019学年七年级数学(上册)期中试题及答案
2018-2019学年七年级(上)期中数学试卷一、选择题(本大题共有10个小题,每小题3分,共30分.在每小题给出的四个选项中只有一项是符合题目要求的)1.若|x|=2016,则x等于()A.﹣2016 B.2016 C.D.±20162.比较﹣3,2,﹣2的大小,正确的是()A.﹣3<2<﹣2 B.﹣2<﹣3<2 C.2<﹣2<﹣3 D.﹣3<﹣2<23.从国家旅游局获悉,今年国庆期间全国共接待游客5.93亿人次,将5.93亿用科学记数法表示正确的是()A.5.93×107B.5.93×108C.5.93×109D.5.93×10104.有理数m、n在数轴上所对应的点的位置如图所示,则m+n的值()A.大于0 B.小于0 C.等于0 D.大于n5.某洗衣机厂原来库存洗衣机m台,现每天又生产n台存入库内,x天后该厂库存洗衣机的台数是()A.(m+nx)台B.(mx+n)台C.x(m+n)台D.(mn+x)台6.单项式﹣xy2的系数是()A.﹣1 B.3 C.D.﹣7.下列各组中是同类项的是()A.x与y B.3ab与3abc C.2mn与﹣2mn D.4x2y与4xy28.计算2x2﹣3x2的结果是()A.5x2B.﹣5x2C.x2D.﹣x29.下列方程中是一元一次方程的是()A.xy=2 B.2x2﹣x﹣1=0 C.x﹣2y=4 D.3(2x﹣7)=4(x﹣5)10.下列方程的变形中,正确的是()A.若y﹣4=8,则y=8﹣4B.若2(2x﹣3)=2,则4x﹣6=2C.若﹣x=4,则x=﹣2D.若﹣=1,则去分母得2﹣3(t﹣1)=1二.填空题(本大题共有8个小题,每小题3分,共24分)11.﹣的相反数是.12.计算:(﹣6)÷(﹣)= .13.按如图所示的程序计算.若输入x的值为3,则输出的值为.14.多项式5x4﹣3x3y2+2x2y+1的次数是.15.若x=﹣2是关于x的方程2x﹣5=3m的解,则m的值为.16.某种篮球打7折后每个篮球售价为140元,若设该篮球每个原价为x元,则可建立方程模型为.17.已知a2﹣2a=﹣1,则2016﹣3a2+6a= .18.一组数:2,1,3,x,7,y,23,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b”,例如这组数中的第三个数“3”是由“2×2﹣1”得到的,那么这组数中y表示的数为.三、解答题(本大题共有7个小题,19、20、21题每小题8分,22、23、24题每小题8分,25题12分,共66分)19.计算:(﹣2)3+×[1﹣(﹣3)2].20.先化简,再求值:5xy﹣(2x2﹣xy)+2(x2+3),其中x=1,y=﹣2.21.解方程:.22.已知多项式A,B,其中A=x2﹣2x+1,小马在计算A+B时,由于粗心把A+B看成了A﹣B,求得结果为x2﹣4x,请你帮助小马算出A+B的正确结果.23.兴旺肉联厂的冷藏库能使冷藏食品每小时降温3℃,每开库一次,库内温度上升4℃,现有12℃的肉放入冷藏库,2小时后开了一次库,再过3小时后又开了一次库,再关上库门4小时后,肉的温度是多少摄氏度?24.当x=2时,代数式x 2+(t ﹣1)x ﹣3t 的值是1,求当x=﹣2时,该代数式的值.四、探究题(本大题共12分)25.已知x 1,x 2,x 3,…x 2016都是不等于0的有理数,若y 1=,求y 1的值.当x 1>0时,y 1===1;当x 1<0时,y 1===﹣1,所以y 1=±1(1)若y 2=+,求y 2的值(2)若y 3=++,则y 3的值为 ;(3)由以上探究猜想,y 2016=+++…+共有 个不同的值,在y 2016这些不同的值中,最大的值和最小的值的差等于 .参考答案与试题解析一、选择题(本大题共有10个小题,每小题3分,共30分.在每小题给出的四个选项中只有一项是符合题目要求的)1.若|x|=2016,则x等于()A.﹣2016 B.2016 C.D.±2016【考点】绝对值.【分析】根据绝对值的性质可得结果.【解答】解:∵|x|=2016,∴x=±2016,故选D.【点评】本题主要考查了绝对值的定义及性质,熟记数轴上某个数与原点的距离叫做这个数的绝对值;互为相反数的两个数绝对值相等是解答此题的关键.2.比较﹣3,2,﹣2的大小,正确的是()A.﹣3<2<﹣2 B.﹣2<﹣3<2 C.2<﹣2<﹣3 D.﹣3<﹣2<2【考点】有理数大小比较.【分析】若是两个负数,先比较绝对值,再比较原数的大小;若是两个正数,绝对值大的数就大;一个正数一个负数,正数大于一切负数.【解答】解:比较﹣3,2,﹣2的大小为:﹣3<﹣2<2,故选D【点评】本题考查有理数的大小比较,有理数的比较方法为:两个负数,绝对值大的反而小;正数大于一切负数;两个正数,绝对值大的数就大.3.从国家旅游局获悉,今年国庆期间全国共接待游客5.93亿人次,将5.93亿用科学记数法表示正确的是()A.5.93×107B.5.93×108C.5.93×109D.5.93×1010【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:5.93亿=5 9300 0000=5.93×108,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.有理数m、n在数轴上所对应的点的位置如图所示,则m+n的值()A.大于0 B.小于0 C.等于0 D.大于n【考点】数轴.【专题】计算题;实数.【分析】根据数轴上点的位置,利用有理数的加法法则判断即可.【解答】解:根据题意得:﹣1<m<0<1<n,则m+n的值大于0,故选A【点评】此题考查了数轴,熟练掌握数轴上点的特点是解本题的关键.5.某洗衣机厂原来库存洗衣机m台,现每天又生产n台存入库内,x天后该厂库存洗衣机的台数是()A.(m+nx)台B.(mx+n)台C.x(m+n)台D.(mn+x)台【考点】列代数式.【分析】先求出x天后生产的台数,再加上原先的台数,从而得出答案.【解答】解:∵每天生产n台存入库内,∴x天后生产nx台存入库内,∵原来库存洗衣机m台,∴x天后该厂库存洗衣机的台数是(m+nx)台.故选A.【点评】此题考查了列代数式,关键是读懂题意,求出x天后生产的台数.6.单项式﹣xy2的系数是()A.﹣1 B.3 C.D.﹣【考点】单项式.【分析】根据单项式的定义进行选择即可.【解答】解:单项式﹣xy2的系数是﹣,故选D.【点评】本题考查了单项式的定义,掌握单项式的系数、次数是解题的关键.7.下列各组中是同类项的是()A.x与y B.3ab与3abc C.2mn与﹣2mn D.4x2y与4xy2【考点】同类项.【分析】根据同类项的定义:所含字母相同,相同字母的次数相同,依据定义即可判断.【解答】解:A、所含字母不同,不是同类项,选项错误;B、所含字母不同,不是同类项,选项错误;C、是同类项,选项正确;D、所含字母不同,不是同类项,选项错误.故选C.【点评】本题考查了同类项的定义,所含字母相同,相同字母的次数相同,正确理解定义是关键.8.计算2x2﹣3x2的结果是()A.5x2B.﹣5x2C.x2D.﹣x2【考点】合并同类项.【分析】依据合并同类项法则求解即可.【解答】解:2x2﹣3x2=(2﹣3)x2=﹣x2.故选:D.【点评】本题主要考查的是合并同类项,掌握合并同类项法则是解题的关键.9.下列方程中是一元一次方程的是()A.xy=2 B.2x2﹣x﹣1=0 C.x﹣2y=4 D.3(2x﹣7)=4(x﹣5)【考点】一元一次方程的定义.【专题】计算题;一次方程(组)及应用.【分析】利用一元一次方程的定义判断即可.【解答】解:是一元一次方程的是3(2x﹣7)=4(x﹣5),故选D【点评】此题考查了一元一次方程的定义,熟练掌握一元一次方程的定义是解本题的关键.10.下列方程的变形中,正确的是()A.若y﹣4=8,则y=8﹣4B.若2(2x﹣3)=2,则4x﹣6=2C.若﹣x=4,则x=﹣2D.若﹣=1,则去分母得2﹣3(t﹣1)=1【考点】解一元一次方程;等式的性质.【专题】计算题;一次方程(组)及应用.【分析】各项中方程变形得到结果,即可作出判断.【解答】解:A、若y﹣4=8,则y=8+4,错误;B、若2(2x﹣3)=2,则4x﹣6=2,正确;C、若﹣x=4,则x=﹣8,错误;D、若﹣=1,则去分母得:2﹣3(t﹣1)=6,错误,故选B【点评】此题考查了解一元一次方程,以及等式的性质,熟练掌握运算法则是解本题的关键.二.填空题(本大题共有8个小题,每小题3分,共24分)11.﹣的相反数是.【考点】相反数.【分析】求一个数的相反数就是在这个数前面添上“﹣”号.【解答】解:﹣的相反数是﹣(﹣)=.故答案为:.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.学生易把相反数的意义与倒数的意义混淆.12.计算:(﹣6)÷(﹣)= 18 .【考点】有理数的除法.【分析】有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数,依此即可求解.【解答】解:(﹣6)÷(﹣)=18.故答案为:18.【点评】此题考查了有理数的除法,有理数的除法要分情况灵活选择法则,若是整数与整数相除一般采用“同号得正,异号得负,并把绝对值相除”.如果有了分数,则采用“除以一个不等于0的数,等于乘这个数的倒数”,再约分.乘除混合运算时一定注意两个原则:①变除为乘,②从左到右.13.按如图所示的程序计算.若输入x的值为3,则输出的值为﹣9 .【考点】代数式求值.【分析】先依据3为奇数,选择所输入的代数式,然后进行计算即可.【解答】解:∵3为奇数,∴输出=﹣32=﹣9.故答案为:﹣9.【点评】本题主要考查的是求代数式的值,选择适当的计算程序是解题的关键.14.多项式5x4﹣3x3y2+2x2y+1的次数是 5 .【考点】多项式.【分析】根据多项式的次数进行填空即可.【解答】解:∵多项式5x4﹣3x3y2+2x2y+1的最高此项是﹣3x3y2,∴多项式5x4﹣3x3y2+2x2y+1的次数是5,故答案为5.【点评】本题考查了多项式,掌握多项式的次数是解题的关键.15.若x=﹣2是关于x的方程2x﹣5=3m的解,则m的值为﹣3 .【考点】一元一次方程的解.【分析】把x=﹣2代入方程,即可得出一个关于m的方程,求出方程的解即可.【解答】解:∵x=﹣2是关于x的方程2x﹣5=3m的解,∴﹣4﹣5=3m,解得:m=﹣3,故答案为:﹣3.【点评】本题考查了一元一次方程的解的应用,能得出一个关于m的方程是解此题的关键.16.某种篮球打7折后每个篮球售价为140元,若设该篮球每个原价为x元,则可建立方程模型为0.7x=140 .【考点】由实际问题抽象出一元一次方程.【分析】直接利用原价×=售价,进而得出答案.【解答】解:设该篮球每个原价为x元,则可建立方程模型为:0.7x=140.故答案为:0.7x=140.【点评】此题主要考查了由实际问题抽象出一元一次方程,正确表示出售价是解题关键.17.已知a2﹣2a=﹣1,则2016﹣3a2+6a= 2019 .【考点】代数式求值.【分析】等式a2﹣2a=﹣1的两边同时乘以﹣3可求得﹣3a2+6a的值,然后整体代入即可.【解答】解:∵a2﹣2a=﹣1,∴﹣3a2+6a=3.∴原式=2016+3=2019.故答案为:2019.【点评】本题主要考查的是求代数式的值,整体代入是解题的关键.18.一组数:2,1,3,x,7,y,23,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b”,例如这组数中的第三个数“3”是由“2×2﹣1”得到的,那么这组数中y表示的数为﹣9 .【考点】规律型:数字的变化类.【分析】根据“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b”,首先建立方程2×3﹣x=7,求得x,进一步利用此规定求得y即可.【解答】解:解法一:常规解法∵从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b∴2×3﹣x=7∴x=﹣1则2×(﹣1)﹣7=y解得y=﹣9.解法二:技巧型∵从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b∴7×2﹣y=23∴y=﹣9故答案为:﹣9.【点评】此题考查数字的变化规律,注意利用定义新运算方法列方程解决问题.三、解答题(本大题共有7个小题,19、20、21题每小题8分,22、23、24题每小题8分,25题12分,共66分)19.计算:(﹣2)3+×[1﹣(﹣3)2].【考点】有理数的混合运算.【专题】计算题.【分析】根据有理数的混合运算的运算方法,求出算式的值是多少即可.【解答】解:(﹣2)3+×[1﹣(﹣3)2]=(﹣8)+×[﹣8]=(﹣8)+(﹣2)=﹣10【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.20.先化简,再求值:5xy﹣(2x2﹣xy)+2(x2+3),其中x=1,y=﹣2.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=5xy﹣2x2+xy+2x2+6=6xy+6,当x=1,y=﹣2时,原式=﹣12+6=﹣6.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.21.解方程:.【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母,得3x﹣2(2x﹣1)=4,去括号,得3x﹣4x+2=4,移项,得3x﹣4x=4﹣2,合并同类项,得﹣x=2,两边除以﹣1,得x=﹣2.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.22.已知多项式A,B,其中A=x2﹣2x+1,小马在计算A+B时,由于粗心把A+B看成了A﹣B,求得结果为x2﹣4x,请你帮助小马算出A+B的正确结果.【考点】整式的加减.【分析】根据题意可求出多项式B,然后代入A+B即可求出答案.【解答】解:由题意可知:A﹣B=x2﹣4x,∴B=A﹣(x2﹣4x)=x2﹣2x+1﹣(x2﹣4x)=2x+1,∴A+B=x2﹣2x+1+2x+1=x2+2.【点评】本题考查多项式的加减运算,要注意加减法是互逆运算.23.兴旺肉联厂的冷藏库能使冷藏食品每小时降温3℃,每开库一次,库内温度上升4℃,现有12℃的肉放入冷藏库,2小时后开了一次库,再过3小时后又开了一次库,再关上库门4小时后,肉的温度是多少摄氏度?【考点】有理数的混合运算.【专题】计算题.【分析】根据题意列出算式计算即可得到结果.【解答】解:根据题意,得:12﹣3×(2+3+4)+4×2=12﹣3×9+8=12﹣27+8=﹣7(℃)答:肉的温度是﹣7摄氏度.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.24.当x=2时,代数式x2+(t﹣1)x﹣3t的值是1,求当x=﹣2时,该代数式的值.【考点】代数式求值.【分析】把x=2代入代数式,得到关于t的一元一次方程,求出t的值,然后把t的值代入代数式,再把x=﹣2代入求出代数式的值.【解答】解:把x=2代入代数式得:4+(t﹣1)×2﹣3t=1,解得:t=1,把t=1代入得:x2﹣3.把x=﹣2代入得:(﹣2)2﹣3=1.∴当x=﹣2时,代数式的值为1.【点评】本题考查的是代数式求值,先把x=2代入代数式,求出字母系数t 的值,然后把x=﹣2和t 的值代入代数式可以求出代数式的值.四、探究题(本大题共12分)25.已知x 1,x 2,x 3,…x 2016都是不等于0的有理数,若y 1=,求y 1的值.当x 1>0时,y 1===1;当x 1<0时,y 1===﹣1,所以y 1=±1(1)若y 2=+,求y 2的值(2)若y 3=++,则y 3的值为 ±1或±3 ;(3)由以上探究猜想,y 2016=+++…+共有 2017 个不同的值,在y 2016这些不同的值中,最大的值和最小的值的差等于 4032 .【考点】规律型:数字的变化类;绝对值.【分析】(1)根据=±1, =±1,讨论计算即可.(2)方法同上.(3)探究规律后,利用规律解决问题即可.【解答】解:(1)∵=±1, =±1,∴y 2=+=±2或0.(2)∵=±1=±1, =±1,∴y 3=++=±1或±3.故答案为±1或±3,(3)由(1)(2)可知,y 1有两个值,y 2有三个值,y 3有四个值,…,由此规律可知,y 2016有2017个值,最大值为2016,最小值为﹣2016,最大值与最小值的差为4032.故答案分别为2017,4032.【点评】本题考查规律题、绝对值等知识,解题的关键是学会分类讨论的思想思考问题,属于中考常考题型.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙教版2018-2019学年第一学期
数学期中质量检测卷
【总分100+10分 时间90分】
姓名:___________________ 成绩:____________________
一、精心选一选。
(30分)
1、小风上完暑期班,决定和同学一起从乐清站乘G168次动车去杭州西湖游玩,其中自然数168起的作用是( )
A .计算
B .测量
C .标号
D .测量
2、-3的相反数是( )
A .3
B .-3
C .-13
D .13
3、下列说法不正确的是( )
A. 0小于所有正数
B. 0大于所有负数
C. 0既不是正数也不是负数
D. 0没有绝对值
4、在-6,+2.5,0,-5
3,12中,正数有( ) A. 0个 B.1个 C. 2个 D. 3个
5、已知代数式x +2y 的值是3,则代数式2x +4y +1的值是 ( )
A .1
B .4
C .7
D .不能确定
6、在-4,2,-1,3这四个数中,比-2小的数是( )
A .-4
B .2
C .-1
D .3
7、在数轴上,如果点A 在原点的右边,那么下列各数中,有可能是点A 所表示的数的相反数的是( )
A .-8
B .1
C .0
D .5
8、 一个潜水员从水面潜入水下60米,然后又上升32米。
此时潜水员的位置是( )
A 、水下92米
B 、水下32米
C 、水下60米
D 、水下28米
9、大于-2.5而小于3.5的整数共有( )
A .6个
B .5个
C .4个
D .3个
10、现定义两种运算“⊕” “*”,对于任意两个整数,1a b a b ⊕=+-,1a b a b *=⨯-,则6⊕[8*
(3⊕5)]的结果是( )
A. 60
B. 70
C. 112
D. 69
二、认真看,仔细填。
(16分)
11、计算:2-4-= ________________ 。
12、用代数式表示:比χ的2倍小3的数是________________ 。
13、用科学记数法表 示13040000,应记作________________。
14、如果一个数的倒数等于它本身,则这个数是________________。
15、比较大小:+(-65)___________ -7
6- 16、甲、乙两数和为-20,乙数为-5,则甲数为_______________。
17、已知x =-2,y 是绝对值最小的有理数,则代数式22224y xy x +-=____________。
18、已知某数的平方根是
52,则它的另一个平方根是_______________。
三、计算题。
(共18分)
19、计算下列各式。
(1)(-43)+(+18) (2)3-[(-3)-10]
(3)(-
54)×(-1.25)×(+311) (4)(-4120)÷59×9
5
(5)12
3)74()2(2--÷-+- (6) (-21-31 + 51 )×(-30)
四、解答题。
(共36分)
20、已知|χ-3|与|y +7|互为相反数,求χ+y 的值。
(5分)
21、已知,a b 互为相反数,,c d 互为倒数,求代数式212()20032003
cd a b -+-
+的值。
(5分)
22、检修组乘汽车,沿公路检修线路,约定向东为正,向西为负,某天自A 地 出发,到收工时,行走记录为(单位:千米):
+8, -9, +4, +7, -2, -10, +18, -3, +7, +5
回答下列问题:(6分)
(1)请求出收工时在A 地的哪边?距A 地多少千米?
(2)若每千米耗油0.3升,问从A 地出发到收工时,共耗油多少升?
23、计算:(-
301)÷(32-101+61-5
2)
解:方法一:原式 =(-301)÷ [(32+61)-(101+5
2)] =(-301)÷(65-2
1) =-30
1×3 =-101
请阅读上述材料,选择合适的方法计算:(5分)
(421 )÷(61-143+32-7
2)
24、
25、定义运算:对于任意两个有理数a ,b ,有a * b=ab+1。
(9分)
(1)求3 * 4的值。
(2)求(2 * 4)* (-2)的值。
(3)探索a * (b+c )+1与a * b+a *c 的关系,并用等式把它们表达出来。
五、附加题。
(10分)
26、(1)已知327=3,32700=30,3027
.0=0.3,则327000000= ;(2)已知364=4,36400=40,3064
.0=0.4,则3000064
.= ;
27、
参考答案:
一、C、A、A、C、C、A、A、D、A、A
2
二、11、2 12、2χ-3 13、1.034×7
10 14、1 15、> 16、-15 17、16 18、-
5。