颜巴赫燃气内燃机与2级涡轮增压器
颜巴赫公司赚中国“绿”钱
颜巴赫公司:赚中国“绿”钱作者:王莉莉来源:《中国对外贸易》2010年第04期清洁能源投资研究机构皮尤慈善信托基金会发布最新的研究报告显示,2009年中国在清洁能源上总共投资了346亿美元,美国以186亿美元退居第二。
而5年前,中国在这方面的投资仅达25亿美元。
中国已超越美国,成为全球清洁能源投资最多的国家。
国际巨头们明显感受到了来自中国的商机,纷纷推动各自在华的绿色环保能源项目建设。
今年1月,奥地利总统菲舍尔对中国进行为期4天的国事访问。
作为奥地利知名出口企业之一的GE能源集团颜巴赫公司,也毫不意外地出现在此次访华的经贸代表团名单中。
1957年,奥地利颜巴赫公司生产的世界第一台可燃气体内燃机交付给德国使用。
时至今日,颜巴赫的燃气内燃机制造业务已得到国际市场的认可。
正如在中国一奥地利经济论坛代表颜巴赫公司发言的GE颜巴赫燃气内燃机事业部市场总监迈克·瓦格纳(Michael Wagner)所说,尽管目前该公司的燃气内燃机产品在中国的销售额仅占其全球销售额的1%,但中国市场将是他们在未来主要开拓的市场之一。
在华建设亚洲生产基地燃气内燃机并不稀奇,但稀奇的是颜巴赫内燃机的“胃口”极好,不光能“吃”高燃烧值的管道天然气,而且对煤层瓦斯废气、生物质废气、沼气,甚至炼钢废气等等,通通来者不拒,全都能燃烧发电。
正是由于其所有机型高效率、低排放、耐久和高可靠性等特点,颜巴赫燃气内燃机在业内被公认为在高效能源利用方面占据全球领先地位。
目前的颜巴赫公司是GE能源集团的组成部分。
部门总部设于奥地利颜巴赫,在全球范围内共有员工1700人,其中奥地利总部1300余人。
颜巴赫燃气内燃机发电机组共有4大类,10种机型,输出功率范围覆盖0.25-3兆瓦。
颜巴赫燃气内燃机业务在华已有十余年的历史。
2003年,颜巴赫成为通用电气公司的全资子公司。
自加入GE能源后,颜巴赫得以利用GE的广阔平台,拓展在华业务。
2005年10月,长沙黑糜峰垃圾填埋场内两台颜巴赫生产的发电机组正式投入使用,单台的发电功率为1064KW。
颜巴赫燃气发电机组 氮氧化物
颜巴赫燃气发电机组氮氧化物随着能源需求的不断增长,燃气发电机组作为一种高效、清洁的能源利用方式,在现代工业生产和生活中扮演着愈发重要的角色。
然而,随之而来的氮氧化物排放问题也引起了广泛关注。
本文将从颜巴赫燃气发电机组以及氮氧化物的排放问题进行探讨。
一、颜巴赫燃气发电机组的概述颜巴赫燃气发电机组是一种采用燃气作为燃料的发电设备,其特点是高效、环保、经济。
颜巴赫公司拥有先进的燃气发电技术,其燃气发电机组具有动力强劲、噪音低、排放少的特点,受到了广泛的认可和应用。
二、氮氧化物的排放问题1. 氮氧化物的形成氮氧化物是燃烧过程中产生的一种有害气体,它主要来源于燃烧过程中空气中的氮气和氧气在高温条件下发生化学反应而生成。
在燃气发电机组的运行过程中,由于燃烧温度较高,会导致氮氧化物的产生,并通过排放口释放到大气中。
2. 氮氧化物的危害氮氧化物对人体健康和大气环境都具有一定的危害。
在大气中,氮氧化物会和水汽、氧气等物质发生复杂的化学反应,生成硝酸雾,对人体呼吸道和眼睛都具有一定的刺激性。
氮氧化物还是大气中的温室气体之一,对全球气候变化具有一定的影响。
三、颜巴赫燃气发电机组降低氮氧化物排放的技术手段为了解决氮氧化物排放的问题,颜巴赫公司采取了一系列的技术手段,从而使燃气发电机组的氮氧化物排放得到了有效控制。
1. 优化燃烧控制系统颜巴赫燃气发电机组采用先进的燃烧控制系统,通过精确控制燃气的进气量、供氧量和燃烧温度,有效地降低了燃烧过程中的氮氧化物生成量。
2. 安装氮氧化物减排装置颜巴赫燃气发电机组还在排放口处安装了氮氧化物减排装置,通过化学吸附、催化转化等技术手段,将燃气排放中的氮氧化物进行有效净化,从而达到了减排的目的。
3. 优化燃气燃烧配比通过对燃气的燃烧配比进行优化,使得燃气在燃烧过程中充分燃烧,从而减少了未完全燃烧产生的氮氧化物。
四、颜巴赫燃气发电机组降低氮氧化物排放的成效通过以上的技术手段,颜巴赫燃气发电机组成功降低了氮氧化物的排放,取得了显著的成效。
INNIO颜巴赫沼气发电技术_创新驱动,降本增效——新型沼气发电方案助力纸企节能减排
INNIO颜巴赫沼气发电技术创新驱动,降本增效——新型沼气发电方案助力纸企节能减排⊙ 贾大伟IN NIO颜巴赫是一家全球领先的能源解决方案及服务供应商,致力于推动工业和社区实现可持续能源,为发电领域提供创新的解决方案,帮助用户可持续地生产和管理能源,引领传统能源向绿色能源的快速转型。
颜巴赫旗下两大品牌,颜巴赫、瓦克夏全球驰名。
产品输出功率覆盖200k W-10M W,凭借高可靠性、经济性、燃料多样性等特点,广泛应用于社区、工业及基础设施。
1 造纸厂新型沼气发电方案分析1.1碳排放交易市场2023年10月1日欧盟碳关税(C B A M)开始试运行,过渡期至2025年12月31日,2026年1月1日正式起征,并在2034年之前全面实施。
这也意味着,供应链上任何一个环节的高碳排放,都将导致出口产品付出更多的碳管制成本。
目前,欧盟碳排放交易体系(E U E T S)的碳价格为81欧元/t,2023年2月达到100欧元/t的峰值。
根据机构预测分析,由于2030年的脱碳目标为-55%,欧盟的碳排放价格预计将在未来10年末升至160欧元/t。
目前,国内碳排放交易单价在81元/t,结合中国“30/60”碳减排远景,未来国内碳价格上涨压力巨大。
在碳税的巨大影响中,对企业而言,重点要推动节能减排。
通过使用绿电、改造技术工艺和生产流程等更加经济的方式,尽可能降低碳排放,减少碳关税的税基。
1.2造纸厂沼气发电的背景和意义我国造纸业具有广阔发展前景,同时也面临着巨大贾大伟先生,就职于广州市深发机电实业发展有限公司(颜巴赫授权经销商与服务商),I N N I O颜巴赫(中国)销售经理。
硕士学位,工程师,建造师(机电工程)。
从事燃气发电行业十多年,先后从事燃气发电机组产品研发、技术支持、项目建设、销售业务等工作。
对工业污水沼气(含造纸行业)综合利用及新能源解决方案有较多研究和项目经验。
在浙江某纸厂的废水沼气发电技改项目中,产生的沼气量为3,000m 3/h,甲烷浓度在65%左右,硫化氢浓度为10,000 m g/m 3。
内燃机二级增压
优点
1、能够消除涡轮迟滞; 2、可根据工况和海拔的变化精确控制 增压压力。
缺点
1、电机转速不足; 2、增压器轴承剧烈振动; 3、电机受高排温可靠性差; 4、电机变工况加速潜力不足。
基于VGT二级涡轮可调增压系统(R2T)
优点
1、大幅提高低速转矩; 2、有效避免了增压器效率降低、压气 机喘振、涡轮超温和超速等问题。
共同点:两者都需要更大的安装空间或者其他零件
区别: 1、电驱动压气机增压器可以拓宽增压特性图,叶片转动惯量小,而 且机械和热负荷也相对较低; 2、电驱动废气涡轮增压器在可能量回收这一方面较有优势,但此功 能比较复杂,其有效性仍需要验证。
05
技术展望
技术展望
电辅助二级增压系统可以解决涡轮 增压柴油机低速扭矩不足、加速响 应滞后和碳烟排放的问题,在二级 增压系统中应用前景巨大。
国内适用于电动增压器的压气机设 计方法还不成熟;高速电机技术复 杂 、 成本高昂 , 国内高速电机与世 界先进水平还有一定距离。
电辅助二级增压系统应用前景巨大,尽管 存在技术上的障碍 , 但是相信随着研究的进 一步深化, 这些问题终究会得到解决,电辅助 涡轮增压技术会越来越成熟。
谢谢!
敬请老师批评指正
采用二级增压技术可以进一步改善发动机排 放。增大空气供应量,配合合适的供油压力 和规律,使之尽可能完全燃烧,减少CO、 HC、PM 等物质的排放;降低燃烧温度,使 得氮氧化物生成减少。
02
国内外状况
国内研究现状
Domestic Research Situation
01 北京理工大学
A、设计了结构紧凑的二级增 压系统,将调节阀集成在高压 级涡轮壳内部; B、对普通二级增压系统匹配 方法进行了研究,建立了设计 工况点匹配和其他工况点的评 价计算模型; C、对不同海拔下柴油机可调 二级增压系统的经济性调节方 法进行了研究。
GE颜巴赫燃气内燃机技术特点_
世界金属导报/2013年/10月/29日/第B11版节能环保GE颜巴赫燃气内燃机技术特点GE颜巴赫燃气内燃机发电机组代表了当今世界最新式燃气发电机组的设计。
颜巴赫将先进的电子控制系统-发动机技术的最新创新结合在一起,创造了一种完全适合目前需求的高效率、低排放动力源。
·其有几大主要特点:1发电效率高颜巴赫燃气内燃机采用了最新的涡轮增压及Lean-OX稀薄气体燃烧技术,使得燃气燃烧效率达到最大,同时随着负荷的降低,效率并不会迅速衰减,见图1。
在使用低热值煤气的情况下,单循环发电效率可达到40%以上,远高于其他技术的效率,而联合循环发电效率可达48%以上,如采用热电(冷)联供方式可以将整体效率提高至最高80%以上的,实现用户投资回报率的最大化。
2模块化设计——扩展性强、调节灵活颜巴赫燃气内燃机发电机组采用模块化设计,具有良好的扩展性,既可以每个模块独立运行,也可多模块同时运行,并保持整体发电的高效率。
燃气内燃机发电机组也可采用一体式集装箱设计,灵活机动,可根据业主的需求随时更换位置。
单模块可长时间稳定运行于50%负荷以上;多模块运行时,可适应0-100%的变化范围。
在负荷大幅波动的情况下,颜巴赫燃气内燃机组能自动启停模块数量,来维持发电效率始终处于高效状态。
3实现可燃煤气“零放散”颜巴赫燃气内燃机发电机组由多模块组成,维护和检修可以轮换执行,对整体负荷基本没有影响,将有效提高客户的经济效益,真正实现可燃煤气“零放散”。
4并网灵活颜巴赫燃气内燃机发电机组的每个发电模块都配有并网装置,用户可根据实际情况选择并网的方式,可将负荷分配至不同使用区域,可以真正实现并网不上网,负荷全部内部自用,或者并网且上网,向公用电网输送多余电量。
燃气内燃机发电机组采用分散的并网方式,单台发电模块或者负荷单元故障,也不会对电网造成冲击。
5进一步提升发电输出功率颜巴赫燃气内燃机第一次大修后,可以根据客户运行历史记录,利用颜巴赫最新技术进行系统优化,对控制程序、缸头、制动压力、发电机进行升级改造,在原有基础上进一步提升发电输出效率。
GE颜巴赫发电机ppt课件
19 / GE Jenbacher Company Overview/
March 23, 2020
SGEenEpeargryator sheet
不要浪费垃圾, Use this range of background
colors to introduce new sections
将他转化为能源
颜巴赫燃气内燃机对垃圾填埋气的利用
20 / GE Jenbacher Company Overview/
March 23, 2020
市政固体垃圾含有不同程度的可降解生物质
其它3.4% 玻璃 5.3% 塑料 11.3%
金属 8.0%
废纸 35.2%
橡胶/ 皮革/ 纺织物
7.4%
木材5.8% 食物残渣11.7%
草料 12.1%
绿色的区域表明可降解生物质
GE 能源集团
Jenbacher gas engines 颜巴赫燃气内燃机
1/ GE Jenbacher Company Overview/
March 23, 2020
GE概况
GE 产业组合
• 4个产业部门在超过100个国家开展业务, 拥有超过125年的历史 • 全球共有30万名员工 • 2008年营业额达1830亿美元,利润为181亿美元。
31 / GE Jenbacher Company Overview/
March 23, 2020
垃圾填埋气发电厂- 意大利 Cavenago
燃气内燃机型号及数量:
燃料: 发电出力: 热出力:
Natural gas 天然气
NOx 500 mg/m3N
(Dry exhaust gas; based on 5% O2) (干态废气;基于5% 氧气)
GE 颜巴赫J624 型内燃机余热利用措施探究
工作研究— 82 —GE颜巴赫J624型内燃机余热利用措施探究陈世玉(湖北华电创意天地新能源有限公司 湖北省 武汉市 430000)摘 要:内燃机是燃气电厂的主要耗能设备,也是余热再回收的关键设备。
本文结合GE公司的颜巴赫内燃机对实际的运行能量数据进行分析,进而找到余热利用的关键是烟气和高品阶热水的利用,对余热利用的主要方式和途径进行分析说明,有效提升热量的综合利用效率。
关键词:内燃机;余热;GE颜巴赫1 引言我国的能源结构是多煤少油,因此煤炭在我国的利用率较高。
我国的电力资源基本都是依靠煤炭或天然气的燃烧提供,,电力是高输能行业,同样也是高耗能行业。
随着我国不断地升级产业结构,节能降耗的工作不断开展,电力企业的节能降耗工作也正在进行。
内燃机是电厂主要的耗能设备,据相关数据显示,发电机组燃烧燃料的三分之二都被散失或排放到环境中,内燃机的实际热利用效率只有30%左右,造成极大的能量浪费,如果能把内燃机未充分利用的热量充分再利用,则可以有效提升电厂的节能效果,从而提升电厂经济性。
2 工作原理GE颜巴赫型内燃机是目前世界范围内最为先进的燃气发电机组,此类型燃气机组有效结合了先进的电子控制技术和发电机技术,有效实现了一种高效率、低排放的优势。
内燃机是通过能量转化空间实现燃料的化学能转化为热能,然后通过一定结构的设备类型,使得热能转化为机械能,从而推动发电机机组运转,实现发电。
内燃机在运行过程中,首先受空间内燃料燃烧的作用,活塞在气缸内进行往复运动,活塞运动的同时带动连杆运动,从而实现内能向机械能的转化。
GE颜巴赫内燃机运行具体以下优点:(1)模块化设计,扩展性和灵活调节性好。
(2)并网灵活,发电模块自配置并网装置。
(3)安全性、可靠性高,机械强度高寿命长。
内燃机运转过程中,需要借助外界冷却系统带走额外的热量、通过尾气带走热量。
因此,可以对余热进行设计利用,从而提升能量的利用效率。
3 内燃机余热特点内燃机运行中的余热主要包括尾气、冷却水(缸套冷却水、润滑系统冷却水、中冷器冷却水),结合某电厂的实际运行数据,进行了能量计算,具体数据见表1所示。
颜巴赫燃气发电机组
高效
维修间隙长,便于维护的内燃机设计和低燃料消耗确保了效率的最大化。 颜巴赫燃气发电机组
耐久
即使使用混有杂质的燃气,如垃圾填埋气时,内燃机的零部件仍能保持较长的使用寿命。 颜巴赫燃气发电机组
可靠
优化设计和完美的监控系统使得设备具有良好的预防性维护性能,并达到最高的运行安全性和可用性。 颜巴赫燃气发电机组 三、GE-颜巴赫Janbarche燃气发电机组技术参数 1、电功率输出根据ISO标准。输出功率和标准参考条件根据ISO 3046/I-1991以及PF=1.0根据VDE 0530 REM,误差见相关标准。 2、总的热能输出误差+/-8%,废气排放温度120℃,生物沼气废气排放温度180℃。 3、特殊型号设备可提供更高的压缩比。 所有的数据在设备满负荷时得出,而且会随技术的发展而变化和改进。
在超过50年的时间里,GE在奥地利为基地的燃气内燃机业务已被公认为在使用燃气驱动内燃机获得高效热能、 电能的研发和生产领域中占据全球领先地位。
颜巴赫0.25至4兆瓦发电功率范围内燃气内燃机被设计为固定式、具有连续运行能力的发电设备,并且具备 高效率、低排放、耐久性和高可靠性等特点。
产品特点
01
机械强发电机
01 简介
03 分类
目录
02 产品特点
基本信息
颜巴赫燃气发电机组是一款装有电子点火系统的发电机。
简介
简介
GE是全球领先的反复式燃气发动机、成套发电机组及热电双联供等发电设备制造商。
GE颜巴赫的燃气发动机以其高效、低运行成本和高度可靠性闻名于世。
其燃气发动机有机结合了高输出效能、低排放和低建设成本等优点。
奥地利总部工厂
GE颜巴赫燃气发电机组是颜巴赫(Jenbacher)燃气内燃机组,它的功率输出范围为0.25至9.5兆瓦,可依靠 天然气或各种特种燃气运行,包括火炬气及煤层气及其它替代燃料如生物质气、垃圾填埋气、木质气、污水气体 和工业废气等。荣获专利的燃烧系统,加上先进的发动机和设备管理系统,帮助客户能够达到严格的国际排放标 准,同时为客户提供高效率、耐久性和可靠性。
延恩巴赫公司展示新一代高效率设计发动机
延恩巴赫公司展示新一代高效率设计发动机
佚名
【期刊名称】《机电产品开发与创新》
【年(卷),期】2001(000)002
【摘要】本报告是根据2000年汉拿威(Han-nover)博览会上由G.R.Herdin博士、F.Gruber、W.hendel和M.wagner几位专家所作出的一份报告而写成的,该报告描述了新一代延思巴赫公司火花点火燃气发动机,称为高效率设计(HEC)的情况。
首个发动机型号是20缸型,预期2002年开始投产。
“高效率设计(HEC)的燃气发动机将可使其机械效率达到44%,该数值可与现代柴油机相媲美,但却有很低的NOx排放水平。
”在此次博览会期间,奥地利延巴赫公司(JenbcherAG)的总工程师G.R.Herdin博士在一次会议上说,“采用了这种设计,即使用低发热值的燃气也可达致高效率燃烧。
”
【总页数】2页(P41-42)
【正文语种】中文
【中图分类】TK05
【相关文献】
1.延恩巴赫公司展示新一代高效率设计发动机 [J],
2.延恩巴赫公司首台高效率J420 GS型燃气发动机正式投入运行 [J],
3.阿富汗驻华大使萨特恩·阿赫曼·巴赫恩:阿富汗市场的大门永远向中国打开 [J], 索伦
4.迪芬巴赫公司新一代连续压机CPS+设计理念及其技术特征 [J], 张林俊;刘守华;盖诺特·冯·哈斯
5.恩智浦推出新一代高效率低VCEsat晶体管 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。
2011年颜巴赫产品介绍
颜巴赫燃气发电机组各种模式的应用
全球趋势 …
人口
消费
能源安全
环境
…… 已造成很大的挑战
2 GE Power & Water - Jenbacher gas engines
14.02.2011
GE以全面的解决方案 …… 应对大挑战 地热 水电 天然气
6 MW 3 MW 6 MW
51 MW 32 MW 30 MW
5 MW
18 GE Power & Water - Jenbacher gas engines
14.02.2011
电力基础投资和成本
投资成本 – 以欧洲数据为依据:
生物质原料准备, 沼气池, 贮气柜……
75%
25%
集装箱热电厂
1000 千瓦沼气发电站 –每千瓦投资约 3,500– 4,000 欧元
9 GE Power & Water - Jenbacher gas engines
14.02.2011
LEANOX系统 – 对各种积垢的影响
避免了高温尾气阀后大面积的氧化
避免火花塞积垢 (沼气/垃圾填埋气)
无传感器处于高热和敏感区域
传感器不存在隐患风险
传感器无老化
GE 颜巴赫所使用的火花塞
• 高效率 & 可靠点燃 • 低排放 (NOx) • 能看到的益处
混合 容器
Raw Sludge
沼气池
后浓缩
箱式压滤机 污泥
污水沼气的利用简图:
污水沼气的产气过程:
• 大约 16.5 [升/(人口当量; 天)] 一般污水处理工艺
• 可达 20 - 25 [升/(人口当量; 天)] 强化污水处理工艺
颜巴赫介绍完整版
7 GE 能源和水工业 颜巴赫燃气发动机介绍
营销网络
欣讷鲁普, 丹麦 曼海姆, 德国
Ablasserdam, 荷兰
达拉斯, 美国
马德里,西班牙 布索伦戈,意大利
公司总部 生产基地 分公司/GE办公司 分销商或服务商
米德兰,南非
颜巴赫 ,奥地利 主要生产基地 企业总部
Veresegyház,匈牙利 集装箱生产基地
“ 我们专注于创新产品和解决方案,以确保我们客 户和我们公司未来的成功。”
普拉蒂 扬基
产品范围
为您的企业寻找最佳解决方案
• 功率范围从0.25MW至4MW • 4个系列,11种产品 • 三种不同的配置方案: 发电机组,热电联产系统,集装箱解决方案: • 精密燃气清洁系统,发动机和工厂管理远程控制服务产品
GE是道琼斯工业指数榜自1896年设立以来惟一至今仍在榜上的公司。
2009年,在艰难的经济大环境之下,GE的持续运营利润仍旧达到了112亿 美元。09年运营活动产生的现金流持续强劲,超过166亿美元。
3 GE 能源和水工业 颜巴赫燃气发动机介绍
GE 产品和服务
GE 能源
GE 基础设施
GE 金融
NBC 环球
1.500
(Dry exhaust gas; based on 5% O2)
2674
2007
2604
1492 1952
1.000 500
1416
731
988 835
1190
1064
897 845
1195 1127
361 625
0
329
JMS 208
JMS 312 JMS 316 JMS 320
颜巴赫介绍
GE 能源颜巴赫燃气发动机公司介绍产品范围为您的企业寻找最佳解决方案•功率范围从0.25MW至4MW•4个系列,11种产品•三种不同的配置方案:发电机组,热电联产系统,集装箱解决方案:•精密燃气清洁系统,发动机和工厂管理远程控制服务产品15GE 能源和水工业颜巴赫燃气发动机介绍2 3 46颜巴赫发动机的四个系列Type Type Type Type电力输出500 —1100KWV12 V16 V201500 rpm (50Hz)使用超过5000台自1988年问世电力输出1.5—4MWV12、V16、V20及V241500 rpm (50Hz)使用超过2200台自1989年问世电力输出250 —330KW8 缸直列1,500 rpm (50Hz)使用超过850台自1976年问世电力输出800—1,500KWV12 V16 V201500rpm(50Hz)使用超过750台自2002年问世16GE 能源和水工业颜巴赫燃气发动机介绍Type 6J612J616J620J624 Type 4J412 J416 J420Type 3J312J316J320Type 2J208电力输出热能输出GE 能源和水工业颜巴赫燃气发动机介绍3293611416149240293865200719522674260433493238106411908359886257318458971127119504.5004.0003.5003.0002.500电力输出[kW]热能输出(70°C/90°C) [kW]天然气NOx 500 mg/m 3N(Dry exhaust gas; based on 5% O 2)2.0001.5001.000500JMS 208 JMS 312 JMS 316 JMS 320 JMS 412 JMS 416 JMS 420 JMS 612 JMS 616 JMS 620 JMS 624GS-N.L GS-N.L GS-N.L GS-N.L GS-N.L GS-N.L GS-N.L GS-N.L GS-N.L GS-N.L GS-N.LGE 能源和水工业颜巴赫燃气发动机介绍Type 6Type 410 x J42012 x J624 8 x J320Type 3Electrical Output Thermal Output 多台发动机配置的优点:•发电效率高:发动机经常运行在额定负载和效率•可用性强和可靠性高:能提供稳定的电力输出三个基本产品配置——可按客户的需求定制•发电机组可靠的现场需求发电能源独立•热电联产系统既能发电又可供热最小排放和最高的能量利用率•集装箱方案最大的灵活性设计和功能齐全的集装箱装置特点:紧凑设计、面向服务无障碍20GE 能源和水工颜巴赫燃气发动机介绍•减少CO2排放•替代化石燃料•填埋气体,沼气(例如,有机废物,农业废物,废水),•为偏远地区可靠的能源供应•支持当地电力需求•避免运输和分配损失•高达85%以上的综合利用率•减少化石燃料的使用和温室气体排放的排放水平*in the dry exhaust)25 GE 能源和水工颜巴赫燃气发动机介绍Remote Monitoring,生命周期管理——为您的颜巴赫发动机(在适当的时候提供适当的服务)升级,维修和大修调试备品配件合同服务协议上门服务培训28GE 能源和水工颜巴赫燃气发动机介绍远程检测诊断和维护全面产品组合的诸多好处•较低的维护费用和成本控制•最高的可靠运行率•专业技术支持,在全球60多个国家备有原厂配件•高质量配件•发动机始终保持最高的质量标准29GE 能源和水工颜巴赫燃气发动机介绍发动机大修——实现发动机更高性能的捷径给您的发动机第二次生命修理方案•标准:基本发动机维修•扩展:供应范围维修•升级:对系统进行维修升级客户利益•预付发动机交付节省了客户等待时间•发动机60000小时的二次生命•发动机可修改为最新的版本•发动机修复测试后交付32GE 能源和水工业颜巴赫燃气发动机介绍。
颜巴赫介绍完整版
7 GE 能源和水工业 颜巴赫燃气发动机介绍
营销网络
欣讷鲁普, 丹麦 曼海姆, 德国
Ablasserdam, 荷兰
达拉斯, 美国
马德里,西班牙 布索伦戈,意大利
公司总部 生产基地 分公司/GE办公司 分销商或服务商
米德兰,南非
颜巴赫 ,奥地利 主要生产基地 企业总部
Veresegyház,匈牙利 集装箱生产基地
水工业
燃气轮机 航空燃气涡轮机 发电机 蒸汽涡轮机 热电联产系统
颜巴赫燃气发动机 风力涡轮机 太阳能光伏 生物质气 核电
污水处理 水净化 水资源再利用 膜、设备 解决方案
5 GE 能源和水工业 颜巴赫燃气发动机介绍
关于颜巴赫燃气发动机
“我们的目标是为客户提供受益的 解决方案。”
普拉蒂 扬基 GE颜巴赫燃气发动机事业部CEO
17 GE 能源和水工业 颜巴赫燃气发动机介绍
颜巴赫燃气发动机额定输出功率
2009 产品系列 (50Hz)
4.500
4.000 3.500 3.000
电力输出 [kW] 热能输出 (70°C/90°C) [kW]
天然气 NOx 500 mg/m3N
4029
3349
3865
3238
2.500 2.000
21 GE 能源和水工 颜巴赫燃气发动机介绍
燃料的灵活性—— 量身定制解决方案
填埋气 煤矿瓦斯
孤岛模式
污水
石油 伴生气
热电联供 (天然气)
温室应用
特殊气体
沼气
22 GE 能源和水工 颜巴赫燃气发动机介绍
为我们的客户创造价值
燃料灵活多样
• 天然气 • 可再生气体 • 污水沼气和填埋气
颜巴赫内燃机系列
41.4
87 50 1500 天然气 V60° 24 190 220 500
41.9 86.6 60 1500 天然气 V60° 12 190 220 500
41.7
87 60 1500 天然气 V60° 16 190 220 500
41.4 86.9 60 1500 天然气 V60° 20 190 220 500
J320GS 1059 39 1269
46.7 85.7 60 1800 生物沼气 V70° 20 135 170 500
J412GS
634 41.3 679
44.2 85.6 60 1200 天然气 V70° 12 145 185 500
J416GS
850 41.5 905
44.2 85.8 60 1200 天然气 V70° 16 145 185 500
87 50 1500 天然气 V60° 16 190 220 500
J620GS 3352 45.6 3048
41.4
87 50 1500 天然气 V60° 20 190 220 500
J624GS J612GS J616GS J620GS J624GS J612GS J616GS J620GS J612GS J616GS J620GS
J316GS 2.43 38.9 6.8 5200*1800*2300 8800 5300*2300*2300 9900 12200*2500*2600 22100 23200
J320GS 2.43 48.7 6.8 5700*1700*2300 10500 5700*1900*2300 11000 12200*2500*2600 26000 26500
J420GS 1063 41.6 1135
颜巴赫6系列燃气内燃机
tot (%) 86.1 86.0 85.6 85.9 85.5 84.9
tot (%) 84.7 84.6 84.6 83.3 83.3 83.2
GE Energy Jenbacher gas engines Austria (Headquarters) 6200 Jenbach T +43 5244 600-0 F +43 5244 600-527 @
技术参数
构造 缸径 (mm) 冲程 (mm) 排量 / 缸 (l) 转速 (rpm)
活塞平均速度 (m/s) 供货范围 可用燃气
内燃机型号 气缸数量 总排量 (l)
V 60°
190
220
6.24
1,500 (50 Hz) 通过变速箱 1,500 (60 Hz)
11 (1,500 rpm)
发电机组, 热电联供系统
天然气, 伴生气, 生物沼气, 垃圾填埋气, 污水沼气, 特殊燃气 (如煤层气, 焦炉煤气, 木制气, 高温裂解气等)
J612 GS 12
74.9
J616 GS 16
99.8
J620 GS 20
124.8
尺寸 长×宽×高 (mm) 1
发电机组
热电联供系统
空置重量 (kg) 1
发电机组 热电联供系统
1) 尺寸和重量对 50 Hz 发电机有效。
el (%) 43.3 43.4 43.0 42.6 42.9 42.3
Pth (kW)3 1,792 2,399 3,020 1,843 2,420 3,070
th (%) 42.7 42.8 42.7 43.2 42.7 42.7
颜巴赫沼气发电机组介绍
沼气发电可再生能源的未来可再生能源——沼气吃进去的是草,挤出来的是奶,还能供给人类源源不断的电力能源沼气发电可再生能源• 沼气发电工艺• 沼气发电案例• 投资回报分析生物质的潜在能量1 活体单位(LSU) = 500 kg 体重1 LSU = 0.6 -1.2 奶牛每天每LSU可产生1.3m³沼气低热值大约为6.0 kWh/Nm³1 LSU =2 -6 猪每天每LSU可产生1.5m³沼气低热值大约为6.0 kWh/Nm³1 LSU = 250 -320 鸡每天每LSU可产生2m³沼气低热值大约为6.5kWh/Nm³P 厌氧发酵的条件› 温度–中温发酵(30 -38°C)–高温发酵(45 -55°C)Futtermittel-anbauHof LoickGülleKälte› 反应滞留时间–至少15天–极限: 20 -50 天–常见: 25 -30 天Anbau nach-wachsender RohstoffeGär-rückstandorganischeReststoffe BiomasseBiogasCCM-TrocknungBHKWReserve-kesselThermischeKältemaschineWärmeVNRProduktions-abfälleÖkoAnbau nach-wachsenderRohstoffeack › 干物质含量–干法发酵: 20 -30%–湿法发酵: 10 -15%沼气产量燃气量m³ / t 干物质m³ / t 湿物质发电量kWh / t 湿物质肥料牛粪鸡粪210340251050140植物草苜蓿玉米植株50042065011090250220180500马铃薯叶子甜菜叶子39050090110180220青贮青贮玉米青贮草450590190200380400干草大麦干草燕麦干草240280220250440500小麦干草(未加工)小麦干草(已加工)155300135260270520废物生物废料食品肥料250480130110260220屠宰废弃物500320770不同原料的沼气产量对比图小麦废料面包废料油料作物下脚料谷物碎料玉米青贮牧草青贮食物废料城市有机垃圾土豆茎甜菜杂草土豆下脚料猪粪牛粪0100200300400500600700Std. m³ biogas / ton厌氧消化的优点对于农民›改善土地肥料性质:减少刺激性气味,消除废物酸性成分,降低土壤粘度,有机氮化土壤,杀死致病性细菌,消除杂草种子等;› 获得额外的电能和热能;› 投资节省,无须昂贵的污水处理设备费用就可实现废水处理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
GE’s new Jenbacher Gas Engines with 2-stage TurbochargingGE EnergyKlaus Payrhuberklaus.payrhuber@GE Power & WaterJenbacher Gas EnginesAchenseestrasse 1-36200 Jenbach, AustriaChristian Trappchristian.trapp@GE Power & WaterJenbacher Gas EnginesAchenseestrasse 1-36200 Jenbach, AustriaAbstractFor years gas engines have been gaining importance within the global energy mix. One reason for that is the comparatively good, long term availability of natural gas combined with achieving a high level of electrical and thermal efficiency. A total efficiency of 90% and above can be achieved using the new advanced 2-stage turbocharging technology GE’s Jenbacher gas engine business introduced in 2010. In addition to that GE’s Jenbacher gas engines meet the most stringent emission standards, for example the German Technische Anleitung Luft (TA Luft). This makes large gas engines a comparable cleaner technology for supplying electricity and heat around the globe as part of a decentralized structure.The J624 (type 6) design concept is based on a pre-chamber ignition system, favorable combustion geometry, reasonable piston speed with about 11 m/s, separation of the cool mixture intake section from the hot exhaust gas flow (cross flow cylinder head) and a four-valve cylinder head design. This concept allowed continuous performance improvements on the type 6 engine over time. The electrical efficiency could be increased from 38% in 1994 to 46.5% in 2010.The J920 design is also based on pre-chamber ignition system, favorable combustion geometry, reasonable piston speed with about 11 m/s, but compared to the type 6 engine the J920 is designed with a port injection system. The J920 is designed to achieve an electrical efficiency of 48.7%.With the new 2-stage turbocharging technology, both engines can achieve optimized combustion and best in class electrical efficiency. Now, both the J624 and the J920, are more suitable for operations in hot and humid environments, as well as high-altitude regions without output and efficiency derating. And for combined heat and power applications, a total efficiency of 90% and more can be achieved. That is about 3-4% pts more compared to standard single stage turbocharging.Key WordsGE, Jenbacher, Gas Engines, 2-stage turbocharging, J624, J920IntroductionGE’s Jenbacher gas engine business recently expanded their gas engine portfolio by adding a larger gas engine with 9.5 MW – the J920 – with a top of it’s class efficiency of 48.7%. Earlier in 2010, GE’s Jenbacher gas engine business introduced the new J624 with improved output of 4.4 MW and advanced efficiency of 46.5%. Both engines achieve high electrical efficiency due to the new 2-stage turbocharging system.Decentralized power generation plays an important role in providing reliable and sustainable power solutions in remote areas as well as in developed regions. Ideally decentralized power provides additional benefits when combining heat and power solutions, trigeneration with air conditioning or greenhouse applications. In developed regions, decentralized power has an additional role for grid stabilization and providing flexible power to support the growing renewable portfolio on the grid.For more than 50 years GE’s Jenbacher gas engine division has been developing solutions for the never-ending list of new technological challenges to stationary gas engines and is thus driving technology forward. In 2007, GE’s Jenbacher business introduced the world’s first 24-cylinder gas engine for commercial operation. The 24-cylinder engine builds on almost 20 years of experience with the type 6 engine family, which now has an installed fleet of more than 2,000 units.Figure 1: J624, 2-stage turbocharged Figure 2: J920, 2-stage turbochargedIn 2010 the new J624 with 10% more power output and about 1% point higher electrical efficiency was introduced and is the largest gas engine in our product program today. Due to 2-stage turbocharging this engine achieves a total efficiency of 90% and more. This is about 3 to 4 % pts more than a gas engine with state of the art single stage turbocharging. The first pilot engine of the new J624 is in commercial operation in the Netherlands since September 2010. Three more engines have been shipped to customer sites in Europe and Asia in 2010 – figure 1.In 2010 GE’s Jenbacher gas engine business also introduced the new J920 larger gas engine with a design based on GE’s long experience with high-speed gas engines having high power density. The J920 is designed with the same 2-stage turbocharging system as the J624 and can also achieve a total efficiency of 90% and more. The innovative three-module concept, offers a high quality, standardized generator-set comprised of the engine itself, a generator and an auxiliary module – figure 2.Technology TrendsThe GE Jenbacher type6 engine provides a perfect trend history of how highly efficient gas engines developed. By increasing the mean effective pressure (PME) in combination with a continuous improvement of combustion and optimization of the charging as well as the charge exchange process, the electrical efficiency of the generator set could be increased from an original 38% in 1994 (at 12 bar PME) to 45.6% in 2009 (at 22 bar PME) while always meeting TA Luft. The new J624 with 2-stage turbocharging, has an electrical efficiency of 46.5% and produces 4.4 MW (at 24 bar PME). It follows the same general path of development. However, new technology blocks are combined to push the limits of previous production level engines. The road to far advanced Miller valve control times and the optimized lean-burn combustion process, enabling high efficiency levels and low NO x emissions, was paved by 2-stage turbo charging - figure 3. Combined with the optimized MORIS high energy ignition system along with refined control strategies and algorithms, these technology blocks facilitate a sufficiently wide operating band between the knock and misfire limits. In particular they make operation possible at high altitudes and under tropical conditions without compromising efficiency.Figure 3: Principle design of the 2-stage turbocharging and intercoolingENGINE AND CHARGINGThe new J624 is based on a modular build consisting of base engine, turbocharger auxiliary module, and the generator. Like all GE’s previous Jenbacher gensets, the new engine runs at 1,500 rpm to generate a grid frequency of 50 Hz. The J624 version of the type 6, which had gone into customer operation in 2008, provided the basis for development work. Up to that point it was GE’s Jenbacher engine with highest electrical output of 4 MW. Type 6 engines work with exterior mixture preparation, which is done in a gas mixer located before the compressor, and with Miller valve timing plus a lean-burn combustion process with a gas-enriched pre-chamber.Far advanced Miller valve timing reduces the knock tendency, however, it also increases the required charge pressure beyond the level needed for the increased λ. Using single stage charging the required compression ratio of considerably >6 would have been just about achievable with special turbocharger technology. But even so the turbocharger efficiency would have dropped dramatically to a value of under <60 % which would have offered no buffer for future improvements.Therefore the decision was made to develop a 2-stage turbocharging which offers a potential charging pressure of up to 10 bar at a charging efficiency of >73 %. The newly developed charger module consists of a low-pressure compressor with subsequent mixture inter cooling, a high-pressure compressor with mixture cooling and the corresponding high- and low-pressure turbocharger turbines on the exhaust side - figure 4. Power control of the engine is done via a compressor by-pass. All three possible by-pass options – by-passing both compressors, high-pressure compressor by-pass, and low-pressure compressor by-pass – were analyzed during the early development phase together with the optimum design of turbine and compressor wheels.Figure 4: The turbochargers in the auxiliaries module (arrows indicate the flow)2-stage turbocharging is also used for the J920, GE’s larger Jenbacher gas engine with 9.5 MW output. Therefore this engine also benefits from all the advantages of this technology and this has a significant contribution to achieve the advanced efficiency of 48.7 %.The optimum realization of the two stage turbocharging not only provides the required pressure level in the intake pipe to facilitate far advanced Miller valve timing but it also provides the necessary pressure differential of 1,000 mbar between inlet and outlet side. To avoid scavenging losses caused by mixture charging (HC emissions and loss of efficiency) the valve timing was further optimized, particularly during the overlap phase, to find a trade-off between flushing (residual gas level) and HC-slip.Closing the inlet valves very early leads to a charge expansion and re-compression in the cylinder; this considerably brings down the temperature in the end gas zones and thus the knock tendency. The valve timing of the new J624 is defined to avoid knock during the entire engine lifetime despite a maximum permissible mixture temperature after the intercooler of above 70°C, a 24 bar PME, and a varying methane count.This high temperature level in the intake system avoids mixture condensation even under tropical conditions and thus permits harvesting the full efficiency and power at ambient temperatures of over 40°C, given a suitable dimension of the turbochargers. In addition the heat from the mixture cooler can be dissipated by much smaller horizontal air coolers under the above mentioned tropical conditions and without the need for a cooling tower. In a combined heat and power installation all this heat can be fed into the heat circuit and can help to increase the overall plant efficiency to more than 90%.The new J624 combustion process is based on burning a lean mix in combination with a gas-enriched pre-chamber. The very lean mixture (λ > 2) in the main combustion chamber is ignited by the flame jets emerging from the pre-chamber, which ensures a complete combustion. Within the pre-chamber the lean mixture, which is enriched by additional gas, is ignited by a special spark plug that ensures ignition even at 60 bar firing pressure. This combustion process, in particular the tuning of flame orifice channel shape, charge movement, piston and pre-chamber design had to be newly developed to warrant an optimum combustion timing and a complete combustion even under very lean conditions - figure 5. The J624 development was completed by more sophisticated and improved control strategies and algorithms which mostly serve tocontrol power, knock and emissions, but which are still based on the LEANOX® concept’s patented approach.Figure 5: Flame progress of the combustion and level of burn-outDEVELOPMENT METHODOLOGYIt takes a lot to keep up or even exceed the high level of quality during a new development while pushing previous limits at the same time: On top of more than 50 years of experience a powerful and reliable development methodology is needed - figure 6. It integrates the various tools and methodologies, such as databases, simulation processes and tests, in a simultaneous engineering process.The beginning of any development is formed by analyzing requirements in detail, which in turn is based on a profound understanding of customer requirements and legal standards around the world. These are driven down from the product level to functions, systems, and sub-systems, right to the individual component. During this the engine base design is defined, a process that draws on databases, experience with similar types, competition analyses, working-process calculation as well as 1D flow simulation.Figure 6: Schematic view of the development methodologyAs early as in the first concept stage the most important target parameters of the engine, such as power, efficiency, emissions, but also cost, have to be modeled with sufficient precision to be able and evaluate the influence of operating conditions, gas quality, plus engine and systems concepts. During the next step the concepts are described in more details via more powerful simulation, such as 3D in-cylinder flow and combustion, FEA analyses, single cylinder engine testing and component testing. Along with the progress more and more test results either confirm or replace the simulation data. Within the detail design phase the final engine construction is defined and the individual component design is simulated with a focus on service-life considerations.Full engine testing, which serves to optimize systems and components, forms the transition from the development phase to validation. It is now, that the engines have to demonstrate their readiness for production on the test beds. Finally, pilot customers together with the development teams carry out the ultimately decisive field testing. It is only after this phase that a new product such as the J624 with 2-stage turbocharging gets approval for full production.ApplicationsThe trend to de-centralized power generation with smaller units and multiple units installations is in favour for gas engines. Because gas engines offer high simple cycle efficiency, most of the installations are in simple cycle mode and that reduces investment costs. Due to the availability of low grade heat, gas engines are best suitable for CHP applications and offer very attractive solutions.Combined Heat and Power:As explained in the previous paragraph, 2-stage turbocharging enables 90% total efficiency – about 3 to 4 %pts higher than a gas engine with single stage turbocharging. Figure 7 shows how all the heat from the engine and engine exhaust can be utilized in a combined heat and power plant. A water return temperature of up to 70°C is allowed and cold enough for cooling all the heat exchangers on the engine.Gas engine power plants for CHP are running with constant high electrical efficiency, independent if heat is extracted or not. Only one additional gas/water heat exchanger is needed at the gas engine exhaust, all other heat exchangers are available on the engine frame. Together with the use of simple water circuits and straight forward power plant designs make gas engines very attractive for combined heat and power solutions.Figure 7: CHP Concept with 2-stage turbocharging (J624 / J920)If we compare the previous version of the J624 with single stage turbocharging and the new J624 with 2-stage turbocharging, the difference in the example below in total efficiency is 3.4% - Table 1. The electrical efficiency is set at 45.5% without a difference between the 2 versions of engines. If we assume 5,000 operating hours per heating season, there is a potential for substantial revenue increase. These additional revenues can be achieved without additional specific fuel consumption or significant additional specific investment costs.Table 1: CHP comparison between the previous and new J624•Power Output……….4 MWe •Total Efficiency……..86.6%•El. Efficiency…………..45.5%•Power Output.……..4.4 MWe•Total Efficiency…….90.0%•El. Efficiency………….45.5%3.4%pt higher totalefficiency for CHPGreenhouse Concepts:The greenhouse concept based on Jenbacher gas engines is a very attractive concept providing power, heat and CO2 as fertilizer for greenhouse crop production. Using the CO2 from the exhaust of the gas engine the CO2 concentration inside the greenhouse can be increased from around 350 ppm to approx. 1,000 ppm. With this higher CO2 concentration the productivity of the crops can be increased by 20-30%. This kind of CO2 fertilization is used to grow vegetables like peppers, tomatoes or cucumber. Today most of our greenhouse applications can be found in the Netherlands where GE’s Jenbacher team has installed more than 1.5 GW, representing about 5% of the installed capacity on the Dutch grid.The greenhouse application goes together with Ultra-low emissions on NO x, CO, C2H4. Before the exhaust gas is used in the greenhouse, a special exhaust cleaning system is reducing NO x emissions to less than 25 ppm (based on 5% O2) and reducing CO emissions by more than 99%.With a simultaneous supply of heat, electricity and CO2 a very high fuel efficiency of up to 95% is achieved. Due to the use of heat storage tanks the application allows more independent power and heat production, which makes the greenhouse concept even more attractive when operating in a liberalized energy market.Figure 8: Greenhouse ConceptMultiple gas engine power plants:Either for combined heat and power or power generation only, multiple gas engines offer several customer advantages. Due to multiple installed generating units, higher plant availability is achieved and plant output is reduced only by the incremental output - depending on the number of engines installed – in case one engine is down for maintenance. Starting from a pre-heated engine, both the J624 and the J920 offer a 5 minutes start-up time from initial to start to full load. Multiple engines can be started in parallel. The short start-up time makes gas engine power plants a preferable solution for frequent start stop operations and offers great load following capability. Figure 9 shows a J920 multiple gas engine power plant from inside.One other big advantage of multiple gas engine power plants is the high plant part load efficiency. Starting from a high simple cycle gas engine efficiency, the efficiency stays high in part load operation due to incremental engine shut-down. Only the number of engines are online and running that are required to meet the target plant output, and those engines are running at full load, hence at maximum efficiency - figure 10.Constant high plant efficiencyFigure 9: J920 Multiple gas engines plant Figure 10: Multiple gas engines efficiencySummary2-stage turbocharging is the enabling technology for higher efficiency and higher heat output of gas engine power plants. The new J624 and the J920 underline this with advanced electrical efficiencies while meeting TA Luft emission requirements. 2-stage turbocharging implemented in the new engines makes it the starting point of a new generation of GE gas engines. Testing the engine at a factory test stand and the staged field introduction of the above-mentioned improvements allows a reliable field validation of single features and minimizing customer risk.An intelligent combination of innovative technology blocks with two-stage turbocharging at their very core makes it possible to push previous limits even further: Higher brake mean effective pressures, higher levels of efficiency and wider operating areas. However, only by simultaneously optimizing, charge exchange, valve timing, combustion process and control strategy, these potentials can be utilized.Multiple engines offer a big advantage because of redundancy and if the plant needs to go to part load operation. Combined with a 5 minute start-up time, gas engines offer very attractive solutions for peak shaving and flexible power generation.References[1] Christian Trapp, Stefan Laiminger, Dieter Chvatal GE Jenbacher, Prof. A. Wimmer, E. Schneßl, G. Pirker Technische Universität Graz, Die neue Gasmotorengeneration von GEJenbacher - mit zweistufiger Aufladung zu höchsten Wirkungsgraden, 32. Internationales Wiener Motorensymposium 2011[2] Payrhuber K., Schneider M., Advancements on GE’s Jenbacher Type 6 Engines, PowerGen Europe 2010[3] Payrhuber K., Trapp Ch., Zweistufig Aufgeladener Gasmotor, Energie 2.0-Kompendium 2011[4] Payrhuber K., Dick Kramp, The new Jenbacher J624 gas engine with 2-stage turbocharging, Russia Power 2011[5] Trapp Ch., Klausner J., Lang J., J624 – der weltweit erste Gasmotor mit zweistufiger Aufladung, MTZ 2011[6] Trapp Ch., Klausner J., Schaumberger H., Lang J., Haidn M., GE Jenbacher Gas Engines, CIMAC 2010。