二次函数单元测试题2

合集下载

人教版(2024)数学九年级上册第二十二章 二次函数 单元测试(含答案)

人教版(2024)数学九年级上册第二十二章 二次函数 单元测试(含答案)

第二十二章二次函数一、选择题1. 关于二次函数y=x2与y=−x2的图象,下列说法错误的是( )A.对称轴都是y轴B.顶点都是坐标原点C.与x轴都有且只有一个交点D.它们的开口方向相同2. 如图,关于抛物线y=(x−1)2−2,下列说法错误的是( )A.顶点坐标为(1,−2)B.对称轴是直线x=1C.开口方向向上D.当x>1时,y随x的增大而减小3. 将抛物线y=3x2向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A.y=3(x+2)2+3B.y=3(x−2)2+3C.y=3(x+2)2−3D.y=3(x−2)2−34. 如图是二次函数y=−x2+2x+4的图象,使y≤4成立的x的取值范围是( )A . 0≤x ≤2B . x ≤0C . x ≥2D . x ≤0 或 x ≥25. 一抛物线的形状、开口方向与 y =12x 2−2x +3 相同,顶点为 (−2,1),则此抛物线的解析式为 A . y =12(x−2)2+1 B . y =12(x +2)2−1 C . y =12(x +2)2+1D . y =12(x +2)2−16. 心理学家发现:学生对概念的接受能力 y 与提出概念的时间 x (min) 之间是二次函数关系,当提出概念 13 min 时,学生对概念的接受能力最大,为 59.9;当提出概念 30 min 时,学生对概念的接受能力就剩下 31,则 y 与 x 满足的二次函数表达式为 ( )A .y =−(x−13)2+59.9B .y =−0.1x 2+2.6x +31C .y =0.1x 2−2.6x +76.8D .y =−0.1x 2+2.6x +437. 已知点 (−1,y 1),(−312,y 2),(12,y 3) 在函数 y =3x 2+6x +12 的图象上,则 y 1,y 2,y 3 的大小关系为 ( ) A . y 1>y 2>y 3B . y 2>y 1>y 3C . y 2>y 3>y 1D . y 3>y 1>y 28. 在某建筑物上从 10 m 高的窗口 A 用水管向外喷水,喷出的水流呈抛物线状,如图所示,如果抛物线的最高点 M 离墙 1 m ,离地面403 m ,则水流落在点 B 与墙的距离 OB 是 ( )A . 2 mB . 3 mC . 4 mD . 5 m9. 二次函数 y =ax 2+bx +c (a ≠0) 的大致图象如图所示,顶点坐标为 (−2,−9a ),下列结论:① 4a +2b +c >0;② 5a−b +c =0;③若方程a(x+5)(x−1)=−1有两个根x1和x2,且x1<x2,则−5<x1<x2<1;④若方程∣ax2+bx+c∣=1有四个根,则这四个根的和为−4.其中正确的结论有( )A.1个B.2个C.3个D.4个二、填空题10. 如果y=(m2−1)x m2−m是二次函数,则m=.11. 若x=1是方程2ax2+bx=3的根,当x=2时,函数y=ax2+bx的函数值为.12. 若抛物线y=x2−2x+m(m为常数)与x轴没有公共点,则实数m的取值范围为.13. 如图,抛物线y=ax2+bx与直线y=mx+n相交于点A(−3,−6),点B(1,−2),则关于x的不等式ax2+bx<mx+n的解集为.14. 如图,二次函数y=ax2+bx+3的图象经过点A(−1,0),B(3,0),那么一元二次方程ax2+bx=0的根是.15. 已知抛物线:y=ax2+bx+c(a<0)经过A(2,4),B(−1,1)两点,顶点坐标为(ℎ,k),则下列正确结论的序号是.①b>1;②c>2;③ℎ>1;④k≤1.216. 物体自由下落的高度 ℎ(单位:m )与下落时间 t (单位:s )之间的关系是 ℎ=4.9t 2,有一个物体从 44.1m 高的建筑物上自由下落,到达地面需要s .17. 如图,在平面直角坐标系中,抛物线 y =13x 2 经过平移得到抛物线 y =13x 2−2x ,其对称轴与两段抛物线所围成的阴影部分的面积为.三、解答题18. 已知二次函数 y =a (x−1)2+4 的图象经过点 (−1,0).(1) 求这个二次函数的解析式;(2) 判断这个二次函数的开口方向,对称轴和顶点坐标.19. 已知二次函数 y =x 2+4x +3.(1) 用配方法将二次函数的表达式化为 y =a (x−ℎ)2+k 的形式;(2) 在平面直角坐标系 xOy 中,画出这个二次函数的图象;(3) 根据(2)中的图象,写出一条该二次函数的性质.20. 如图,在平面直角坐标系xOy中,抛物线顶点为C(1,2),且与直线y=x交于点B(32,32);点P为抛物线上O,B两点之间一个动点(不与O,B两点重合),过P作PQ∥y轴交线段OB于点Q.(1) 求抛物线的解析式;(2) 当PQ的长度为最大值时,求点Q的坐标;(3) 点M为抛物线上O,B两点之间一个动点(不与O,B两点重合),点N为线段OB上一个动点;当四边形PQNM为平行四边形,且PN⊥OB时,请直接写出Q点坐标.21. 在平面直角坐标系xOy中,抛物线y=ax2−4ax+3a−2(a≠0)与x轴交于A,B两点(点A在点B左侧).(1) 当抛物线过原点时,求实数a的值;(2) ①求抛物线的对称轴;②求抛物线的顶点的纵坐标(用含a的代数式表示);(3) 当AB≤4时,求实数a的取值范围.22. 如图,某广场设计的一建筑物造型的纵截面是抛物线的一部分,抛物线的顶点O落在水平面上,对称轴是水平线OC.点A,B在抛物线造型上,且点A到水平面的距离AC=4米,点B到水平面距离为2米,OC=8米.(1) 请建立适当的直角坐标系,求抛物线的函数解析式;(2) 为了安全美观,现需在水平线OC上找一点P,用质地、规格已确定的圆形钢管制作两根支柱PA,PB对抛物线造型进行支撑加固,那么怎样才能找到两根支柱用料最省(支柱与地面、造型对接方式的用料多少问题暂不考虑)时的点P?(无需证明)(3) 为了施工方便,现需计算出点O,P之间的距离,那么两根支柱用料最省时点O,P之间的距离是多少?(请写出求解过程)23. 某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.(1) 求y与x之间的函数表达式.(2) 当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少元?(3) 若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?24. 如图所示抛物线y=ax2+bx+c过点A(−1,0),点C(0,3),且OB=OC.(1) 求抛物线的解析式及其对称轴.(2) 点D,E在直线x=1上的两个动点,且DE=1,点D在点E的上方,求四边形ACDE的周长最小值.(3) 点P为抛物线上一点,连接CP,直线CP把四边形CBPA的面积分为3:5两部分,求点P的坐标.答案一、选择题1. D2. D3. A4. D5. C6. D7. C8. B9. B二、填空题10. 211. 612. m>113. x<−3或x>114. x1=−1,x2=315. ①②③16. 317. 9三、解答题18.(1) 把(−1,0)代入二次函数解析式得:4a+4=0,即a=−1,则函数解析式为y=−(x−1)2+4.(2) ∵a=−1<0,∴抛物线开口向下,顶点坐标为(1,4),对称轴为直线x=1.19.(1) y=x2+4x+3=x2+4x+22−22+3 =(x+2)2−1.(2) 略(3) 当x<−2时,y随x的增大而减小,当x>−2时,y随x的增大而增大.(答案不唯一)20.(1) ∵抛物线顶点为C(1,2),∴设抛物线的解析式为y=a(x−1)2+2(a≠0).∵点B(32,32)在抛物线上,∴32=a(32−1)2+2,∴a=−2,∴抛物线的解析式为y=−2(x−1)2+2,即y=−2x2+4x.(2) 设点P的坐标为(x,−2x2+4x)(0<x<32),则点Q的坐标为(x,x),∴PQ=−2x2+4x−x=−2x2+3x=−2(x−34)2+98,∵−2<0,∴当x=34时,PQ的长度取最大值,∴当PQ的长度为最大值时,点Q的坐标为(34,34).(3) (12,12)21.(1) ∵点O(0,0)在抛物线上,∴3a−2=0,a=23.(2) ①对称轴为直线x=2;②顶点的纵坐标为−a−2.(3) (i)当a>0时,依题意,{−a−2<0,3a−2≥0.解得a≥23.(ii)当a<0时,依题意,{−a−2>0,3a−2≤0,解得a<−2.综上,a<−2或a≥23.22.(1) 以点O为原点、射线OC为y轴的正半轴建立直角坐标系,设抛物线的函数解析式为y=ax2,由题意知点A的坐标为(4,8).∵点A在抛物线上,∴8=a×42,解得a=12,∴所求抛物线的函数解析式为:y=12x2.(2) 找法:延长AC,交建筑物造型所在抛物线于点D,则点A,D关于OC对称.连接BD交OC于点P,则点P即为所求.(3) 由题意知点B的横坐标为2,∵点B在抛物线上,∴点B的坐标为(2,2),又∵点A的坐标为(4,8),∴点D的坐标为(−4,8),设直线BD的函数解析式为y=kx+b,∴{2k+b=2,−4k+b=8,解得:k=−1,b=4.∴直线BD的函数解析式为y=−x+4,把x=0代入y=−x+4,得点P的坐标为(0,4),两根支柱用料最省时,点O,P之间的距离是4米.23.(1) y=300+30(60−x)=−30x+2100.(2) 设每星期的销售利润为W元,则W=(x−40)(−30x+2100)=−30(x−55)2+6750.所以当x=55时,W取最大值,为6750.所以每件售价定为55元时,每星期的销售利润最大,最大利润是6750元.(3) 由题意得(x−40)(−30x+2100)≥6480,解得52≤x≤58.当x=52时,销售量为300+30×8=540(件);当x=58时,销售量为300+30×2=360(件).所以若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装360件.24.(1) ∵OB=OC,∴点B(3,0),则抛物线的表达式为:y=a(x+1)(x−3)=a(x2−2x−3)=ax2−2ax−3a,故−3a=3,解得a=−1,故抛物线的表达式为:y=−x2+2x+3 ⋯⋯①,对称轴为:直线x=1.(2) ACDE的周长=AC+DE+CD+AE,其中AC=10,DE=1是常数,故CD+AE最小时,周长最小,取点C关于函数对称点Cʹ(2,3),则CD=CʹD,取点Aʹ(−1,1),则AʹD=AE,故:CD+AE=AʹD+DCʹ,则当Aʹ,D,Cʹ三点共线时,CD+AE=AʹD+DCʹ最小,周长也最小,四边形ACDE的周长的最小值=AC+DE+CD+AE=10+1+AʹD+DCʹ=10+1+AʹCʹ=10+1+13.(3) 如图,设直线CP交x轴于点E,直线CP把四边形CBPA的面积分为3:5两部分,又∵S△PCB:S△PCA=12EB×(y C−y P):12AE×(y C−y P)=BE:AE,则BE:AE=3:5或5:3,则AE=52或32,即:点E的坐标为(32,0)或(12,0),将点E,C的坐标代入一次函数表达式:y=kx+3,解得:k=−6或−2,故直线CP的表达式为:y=−2x+3或y=−6x+3 ⋯⋯②,联立①②并解得:x=4或8(不合题意已舍去),故点P的坐标为(4,−5)或(8,−45).。

二次函数单元测试题及答案

二次函数单元测试题及答案

二次函数单元测试题及答案1. 选择题(每题2分)1. 下列函数中,属于二次函数的是:A. y = 3x + 2B. y = x^2 + 3x - 2C. y = √xD. y = |x|答案:B2. 二次函数y = 2x^2 + 3x - 4的图像开口方向是:A. 向上开口B. 向下开口答案:A3. 函数y = -x^2 + 5x + 3的顶点坐标是:A. (3, 8)B. (-3, 2)C. (5, 8)D. (-5, 3)答案:A4. 函数y = x^2 - 4x + 4的轴对称线方程为:A. x = 2B. x = 4C. x = -2D. x = -4答案:A5. 函数y = x^2 + 6x + 9的值域是:A. (-∞, 9)B. [9, +∞)C. (-∞, 0)D. [0, +∞)答案:B2. 填空题(每题3分)1. 二次函数y = -2x^2 + 4x - 1的判别式为_______。

答案:402. 函数y = x^2 + bx + c的顶点坐标是(-2, 1),则b和c的值分别为_______。

答案:b = 4,c = -33. 函数y = 3x^2 - 6x + k的图像与x轴有两个交点,则k的值为_______。

答案:k > 04. 函数y = -x^2 - 4x + m的轴对称线方程为x = 2,则m的值为_______。

答案:m = 35. 函数y = ax^2 + bx + 2的值域是(-∞, 1],则a和b的关系是_______。

答案:a < 0,b > 03. 计算题(每题5分)1. 求二次函数y = -3x^2 + 6x + 9的顶点坐标和对称轴方程。

解答:首先,二次函数的顶点坐标可以通过公式 h = -b/2a 和 k = f(h) 来求得。

其中,h 表示对称轴的横坐标,k 表示顶点的纵坐标。

对于给定的函数 y = -3x^2 + 6x + 9,我们可以得到 a = -3,b = 6,c = 9。

(人教版数学)初中9年级上册-单元检测-22 二次函数 单元检测题3 含答案

(人教版数学)初中9年级上册-单元检测-22 二次函数 单元检测题3 含答案

人教版九年级数学上册第22章《二次函数》单元测试及答案 (2)一.选择题(每小题3分,共30分)1.下列函数关系中,可以看做二次函数y =ax 2 +bx +c (a ≠0)模型的是( ) A .在一定的距离内汽车的行驶速度与行驶时间的关系B .我国人口年自然增长率1%,这样我国人口总数随年份的关系C .竖直向上发射的信号弹,从发射到落回地面,信号弹的高度与时间的关系(不计空气阻力)D .圆的周长与圆的半径之间的关系.2.抛物线y =x 2 –2x –3 的对称轴和顶点坐标分别是( )A .x =1,(1,-4)B .x =1,(1,4)C .x =-1,(-1,4)D .x =-1,(-1,-4)3.对称轴平行于y 轴的抛物线的顶点为点(2,3)且抛物线经过点(3,1),那么抛物线解析式是( )A .y =-2x 2 + 8x +3B .y =-2x -2 –8x +3C .y = -2x 2 + 8x –5D .y =-2x -2 –8x +24.已知二次函数c bx ax y ++=2的图象如图所示,则下列结论正确的是( )A .ab >0,c >0B .ab >0,c <0C .ab <0,c >0D .ab <0,c <05.把二次函数y =213212---x x 的图象向上平移3个单位,再向右平 移4个单位,则两次平移后的图象的解析式是( )A .x y (21-=- 1)2 +7 B .x y (21-=+7)2 +7 C .x y (21-=+3)2 +4 D .x y (21-=-1)2 +16.下列各点中是抛物线3)4(312--=x y 图像与x 轴交点的是( )A . (5,0)B . (6,0)C . (7,0)D . (8,0)7. 在同一直角坐标系中,一次函数y =ax +c 和二次函数y =ax 2+c 的图象大致为( )8. 已知二次函数y =2x 2+8x +7的图象上有有点A 1(2)y -,,B 21(5)3y -,,C 31(1)5y -,,则 y 1、y 2、y 3的大小关系为( )A . y 1 > y 2> y 3B . y 2> y 1> y 3C . y 2> y 3> y 1D . y 3> y 2> y 1 9.二次函数y =ax 2+bx +c的图象如图所示,则点M c b a ⎛⎫⎪⎝⎭,在( )Oyx9题x yO x yO xyOxyOA .第一象限B .第二象限C .第三象限D .第四象限 10.关于二次函数y =ax 2+bx +c 图像有下列命题:(1)当c =0时,函数的图像经过原点;(2)当c >0时,函数的图像开口向下时,方程ax 2 +bx + c =0 必有两个不等实根; (3)当b =0时,函数图像关于原点对称.其中正确的个数有( )A .0个B .1个C .2个D .3个 二.填空题(每题3分,共21分)11.已知抛物线y =ax 2 +bx +c 的对称轴为x =2,且经过点(1,4)和点(5,0),则该抛物线的解析式为_______________.12.函数y =2x 2 – 4x – 1写成y = a (x –h)2 +k 的形式是________,抛物线y =2x 2 – 4x – 1的顶点坐标是_______,对称轴是__________.13.已知函数①y =x 2+1,②y =-2x 2+x .函数____(填序号)有最小值,当x =____时,该函数的最小值是_______.14.当m=_________时,函数y = (m 2 -4))3(42-+--m x m mx + 3是二次函数,其解析式是__________________,图象的对称轴是_______________,顶点是________,当x =______时, y 有最____值_______.15.已知二次函数的图象开口向下,且与y 轴的正半轴相交.请你写出一个满足条件的二次函数的解析式:___________16.抛物线c bx ax y ++=2如右图所示,则它关于y 轴对称的抛物线的解析式是__________.17.有一个二次函数的图象,三位同学分别说出了它的一些特点:甲:对称轴为直线x =4乙:与x 轴两个交点的横坐标都是整数.丙:与y 轴交点的纵坐标也是整数,且以这三个点为顶点的三角形面积为3.请你写出满足上述全部特点的一个二次函数解析式__________________.三.解答题(共52分)18.(6分) (1)如果二次函数y =x 2 - x + c 的图象过点(1,2),求这个二次函数的解析式,并写出该函数图象的对称轴.19.(10分)有一个运算装置,当输入值为x 时,其输出值为y ,且y 是x 的二次函数,已知输入值为2-,0,1时, 相应的输出值分别为5,3-,4-.(1)求此二次函数的解析式;(2)在所给的坐标系中画出这个二次函数的图象,并根据图象写出当输出值y 为正数时输入值x 的取值范围.20.(10分) 某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的日销售量y (件)之间的关系如下表:yO 331 yO xx (元) 15 20 30 … y (件)252010…若日销售量y 是销售价x 的一次函数.(1)求出日销售量y (件)与销售价x (元)的函数关系式;(2)要使每日销售利润最大,每件产品的销售价应定为多少元?此时,每日销售的利润是多少元? 21.(12分) 某生物兴趣小组在四天的实验研究中发现:骆驼的体温会随外部环境温度的变化而变化,而且在这四天中每昼夜的体温变化情况相同.他们将一头骆驼前两昼夜的体温变化情况绘制成下图.请根据图象回答:⑴第一天中,在什么时间范围内这头骆驼的体温是上升的?它的体温从最低上升到最高需要多少时间?⑵第三天12时这头骆驼的体温是多少?⑶兴趣小组又在研究中发现,图中10时到22时的曲线是抛物线,求该抛物线的解析式.22.(12分)在平面直角坐标系中,给定以下五点A (-2,0),B (1,0)C (4,0),D (-2,29),E (0,-6),从这五点中选取三点,使经过这三点的抛物线满足以平行于y 轴的直线为对称轴.我们约定:把经过三点A 、E 、B 的抛物线表示为抛物线AEB (如图所示).(1)问符合条件的抛物线还有哪几条.....不求解析式,请用约定的方法一一表示出来; (2)在(1)中是否存在这样的一条抛物线,它与余下的两点所确定的直线不相交?如果存在,试求出抛物线及直线的解析式;如果不存在,请说明理由.参考答案: 1.C 2.A3.C 点拨:使用待定系数法求解二次函数解析式. 4.C5.A 点拨:此题不仅考查了对平移的理解,同时考查了学生将一般式转化顶点式的能力.(平移含两个方向:一是左右平移,二是上下平移.左右平移时,对应点纵坐标不变;上下平移时,对应点横坐标不变.) 6.C 7.B8.C (本题涉及到比较坐标值大小的问题,可先将一般式y =2x 2+8x +7化成顶点式22(2)1y x =+-便得顶点(-2,-1).因为抛物线开口向上,故当x =-2时,y 1=-1为最小值;又因为115135-> ,由函数图象分布规律,易知对应的y 2>y 3.综上得y 2>y 3>y 1 ) 9.D10.C 11.y =252212++-x x 12.y = 2(x –1)2 –3 , (1,-3), x = 113.①,0,114. 3 , y =5x 2+3 ,y 轴(或x =0) ,(0,3) x =0时y 有最小值3 15.y =-x 2 –2x + 3 (满足条件即可)16. y =x 2+4x +3 点拨:这是一道很容易出错的题目.根据对称点坐标来解.因为点(1,0),(3,0),(0,3)关于y 轴的对称点是(-1,0),(-3,0),(0,3).所以关于y 轴对称的抛物线就经过点(-1,0),(-3,0),(0,3)然后利用待定系数法求解即可. 17.抛物线的解析式为:222218181818113377775555y x x y x x y x x y x x =-+=-+-=-+=-+-或或或(从四个答案中填写一个即可) 点拨:本题是一个开放性题目,主要考查数形结合法,待定系数法以及抛物线与x 轴y 轴的交点坐标等有关性质.根据题意中二次函数图象的特点,用数形结合法画出其示意图,对称轴x =4.可由面积来求.18. (1)y = x 2–x + 2, x = 21;19.解:(1)设所求二次函数的解析式为c bx ax y ++=2,则⎪⎪⎩⎪⎪⎨⎧-=++-=+⋅+⋅=+-+-43005)2()2(22c b a c b a c b a ,即⎪⎩⎪⎨⎧-=+=--=1423b a b a c ,解得⎪⎩⎪⎨⎧-=-==321c b a 故所求的解析式为:322--=x x y . 2)函数图象如图所示.由图象可得,当输出值y 为正数时, 输入值x 的取值范围是1-<x 或3>x . 20.解:一次函数的解析式为 y =k x +b 则y O x15252020k b k b +=⎧⎨+=⎩解的K=-1 b =40 即:一次函数解析式为y =-x +40(2)设每件产品的销售价应定为x 元,所获销售利润为w 元 w=(x -10)(40-x )=-x 2+50x -400=-(x -25)2+225产品的销售价应定为25元,此时每日获得的最大销售利润为225元.21、⑴第一天中,从4时到16时这头骆驼的体温是上升的它的体温从最低上升到最高需要12小时⑵第三天12时这头骆驼的体温是39℃ ⑶()()的取值范围不写不扣分x x x x y 22102421612≤≤++-= 22.解:(1)符合条件的抛物线还有5条,分别如下:①抛物线AEC ;②抛物线CBE ;③抛物线DEB ;④抛物线DEC ;⑤抛物线DBC . (2)在(1)中存在抛物线DBC ,它与直线AE 不相交设抛物线DBC 的解析式为y =ax 2+bx +c ,将D (-2,29),B (1,0),C (4,0)三点坐标分别代入,得:4a -2b +c =29,a +b +c =0,16a +4b +c =0.解这个方程组,得:a =41,b =-45,c =1.∴抛物线DBC 的解析式为y =41x 2-45x +1【另法:设抛物线为y =a (x -1)(x -4),代入D (-2,29),得a =41也可.】 又设直线AE 的解析式为y =m x +n .将A (-2,0),E (0,-6)两点坐标分别代入,得: -2m+n=0,解这个方程组,得m=-3,n=-6. n=-6.∴直线AE 的解析式为y =-3x -6.。

最新人教版初中数学九年级数学上册第二单元《二次函数》测试(含答案解析)(2)

最新人教版初中数学九年级数学上册第二单元《二次函数》测试(含答案解析)(2)

一、选择题1.抛物线y =ax 2+bx +c (a ≠0)的图象大致如图所示,下列说法: ①2a +b =0;②当﹣1<x <3时,y <0;③若(x 1,y 1)(x 2,y 2)在函数图象上,当x 1<x 2时,y 1<y 2; ④9a +3b +c =0, 其中正确的是( )A .①②④B .①④C .①②③D .③④2.将抛物线2yx 先向上平移2个单位长度,再向左平移1个单位长度,则得到新抛物线的解析式为( ) A .()212y x =-+ B .()212y x =-- C .()212y x =++D .()=+-2y x 123.某同学在利用描点法画二次函数y =ax2+bx+c (a≠0)的图象时,先取自变量x 的一些值,计算出相应的函数值y ,如下表所示: x … 0 1 2 3 4 … y…﹣3﹣13…)A .03x y =⎧⎨=-⎩B .21x y =⎧⎨=-⎩C .30x y =⎧⎨=⎩D .43x y =⎧⎨=⎩4.如图等边ABC 的边长为4cm ,点P ,点Q 同时从点A 出发点,Q 沿AC 以1cm/s的速度向点C 运动,点P 沿A B C --以2cm/s 的速度也向点C 运动,直到到达点C 时停止运动,若APQ 的面积为()2cm S ,点Q 的运动时间为()s t ,则下列最能反映S 与t 之间大致图象是( ).A .B .C .D .5.若飞机着陆后滑行的距离()s m 与滑行的时间()t s 之间的关系式为s=60t-1.5t 2,则函数图象大致为( )A .B .C .D .6.二次函数2y x bx =+的图象如图,对称轴为直线1x =.若关于x 的一元二次方程20x bx t +-=(t 为实数)在23x -<<的范围内有解,则t 的取值范围是( )A .1t ≥-B .13t -≤<C .18t -≤<D .38t <<7.如图,一抛物线型拱桥,当拱顶到水面的距离为2米时,水面宽度为4米;那么当水位下降1米后,水面的宽度为( )A .26B .23C .6D .428.如图1,是某次排球比赛中运动员垫球时的动作,垫球后排球的运动路线可近似地看作抛物线,在图2所示的平面直角坐标系中,运动员垫球时(图2中点A )离球网的水平距离为5米,排球与地面的垂直距离为0.5米,排球在球网上端0.26米处(图2中点B )越过球网(女子排球赛中球网上端距地面的高度为2.24米),落地时(图2中点C )距球网的水平距离为2.5米,则排球运动路线的函数表达式为( ).A .2148575152y x x =--+ B .2148575152y x x =-++ C .2148575152y x x =-+ D .2148575152y x x =++ 9.下列各图象中有可能是函数()20y ax a a =+≠的图象( )A .B .C .D .10.如图所示,一段抛物线:()233044y x x x =-+≤≤记为1C ,它与x 轴交于两点O ,1A ;将1C 绕1A 旋转180°得到2C ,交x 轴于2A ;将2C 绕2A 旋转180°得到3C ,交x 轴于3A ;⋅⋅⋅如此进行下去,直至得到506C ,则抛物线506C 的顶点坐标是( )A .()2020,3B .()2020,3-C .()2022,3D .()2022,3-11.据省统计局公布的数据,安徽省2019年第二季度GDP 总值约为7.9千亿元人民币,若我省第四季度GDP 总 值为y 千亿元人民币,平均每个季度GDP 增长的百分率为x ,则y 关于x 的函数表达式是( )A .7.9(12)y x =+B .27.9(1)y x =-C .27.9(1)y x =+D .27.97.9(1)7.9(1)y x x =++++12.在平面直角坐标系中,将函数22y x =-的图象先向右平移1个单位长度,再向上平移5个单位长度,得到图象的函数解析式是( ) A .22(1)5y x =-++ B .22(1)5y x =--+ C .22(1)5y x =-+-D .22(1)5y x =---第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案二、填空题13.如图,直线y =x +4与x 、y 轴分别交于A 、B 两点,点O 为坐标原点,点C 是点A 关于y 轴的对称点,动点D 在线段AC 上,连接BD ,作以BD 为直角边的等腰Rt △BDE ,则线段OE 的最小值为_________.14.已知二次函数y=x 2+x+m ,当x 取任意实数时,都有y >0,则m 的取值范围是________.15.抛物线2(3)y a x m =-+与x 轴的一个交点为(1,0),则关于x 的一元二次方程2(3)0a x m -+=的根为__________.16.如图,在喷水池的中心A 处竖直安装一个水管AB ,水管的顶端B 处有一个喷水孔,喷出的抛物线形水柱在与池中心A 的水平距离为1m 处达到最高点C ,高度为3m ,水柱落地点D 离池中心A 处3m ,则水管AB 的长为_____m .17.已知二次函数2(0)y ax bx c a =++≠,其函数y 与自变量x 之间的部分对应值如下表所示,则42a b c ++=___________. x3- 1-0 1 3y55215272 72 31218.若123(4,),(1,),(1,)A y B y C y --为二次函数245y x x =-+的图象上的三点,则123,,y y y 的大小关系为__________.19.在平面直角坐标系xOy 中,函数y=x 2的图象经过点M (x 1,y 1),N (x 2,y 2)两点,若﹣4<x 1<﹣2,0<x 2<2,则y 1 ______y 2 .(用“<”,“=”或“>”号连接) 20.抛物线y =x²-x 的顶点坐标是________三、解答题21.如图,在平面直角坐标系中,抛物线(部分)刻画了某果园年初以来累积利润y (万元)与销售时间x (月)之间的关系(即当年前x 个月的利润总和为y ,y 和x 之间的关系).根据图象提供的信息,请解答下列问题: (1)求y 与x 的函数关系式;(2)求第8个月该果园所获利润是多少万元? (3)求到哪个月末时,该果园累积利润可达到30万元?22.某水果店批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售将减少20千克.(1)现要保证每天盈利5520元,同时又要让顾客得到实惠,那么每千克应涨价多少元? (2)要使每天获利不少于6000元,求涨价x 的范围.23.已知:直线2l y x =+:与过点(0,2)-且平行于x 轴的直线交于点A ,点A 关于直线1x =- 的对称点为点B . (1)求A B 、两点的坐标;(2)若抛物线2y x bx c =-++的顶点(,)m n 在直线l 上移动.①当抛物线2y x bx c =-++与坐标轴仅有两个公共点,求抛物线解析式;②若抛物线2y x bx c =-++与线段AB 有交点,当抛物线的顶点(,)m n 向上运动时,抛物线与y 轴的交点也向上运动,求m 的取值范围.24.如图,在平面直角坐标系中,边长为2的正方形ABCD 的顶点A 与原点重合,顶点B 在x 轴的正半轴上,点D 在y 轴的正半轴上.抛物线2y x bx c =-++经过点B 与点D .(1)求这个二次函数的表达式;(2)将正方形ABCD 向左平移m 个单位(0m >),边AD 与BC 分别与(1)中的二次函数图像交于P 、Q ,若点Q 纵坐标是点P 纵坐标的2倍,求m 的值.25.如图,Rt ABC △中,90C ∠=︒,6cm AC =,8cm BC =,点P 由A 出发向点C 移动,点Q 由C 出发向点B 移动,两点同时出发,速度均为1cm/s ,运动时间为t 秒.(1)几秒时PCQ △的面积为4?(2)是否存在t 的值,使PCQ △的面积为5?若存在,求这个t 值,若不存在,说明理由.(3)几秒时PCQ △的面积最大,最大面积是多少?26.如图,二次函数2y x bx c =-++与x 轴交于点B 和点()1,0A -,与y 轴交于点()0,4C ,与一次函数y x a =+交于点A 和点D .(1)求出a 、b 、c 的值;(2)若直线AD 上方的抛物线存在点E ,可使得EAD 面积最大,求点E 的坐标; (3)点F 为线段AD 上的一个动点,点F 到(2)中的点E 的距离与到y 轴的距离之和记为d ,求d 的最小值及此时点F 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断. 【详解】①由图示知,对称轴是直线x =3122ba-=-,则2a+b =0,故说法正确; ②由图示知,当﹣1<x <3时,y <0,故说法正确;③若(x 1,y 1)(x 2,y 2)在函数图象上,当1<x 1<x 2时,y 1<y 2,故说法错误;④由图示知,当x =3时,y =0,即9a+3b+c =0,故说法正确. 综上所述,正确的说法是①②④. 故选:A . 【点睛】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.2.C解析:C 【分析】根据二次函数图象左加右减,上加下减的平移规律进行解答即可. 【详解】 解:将抛物线2yx 先向上平移2个单位长度,再向左平移1个单位长度,就得到抛物线:2(1)2y x =++. 故答案为:C . 【点睛】本题考查二次函数的图象与性质,图象平移规律“左加右减,上加下减”是解题关键.3.A解析:A 【分析】根据二次函数的对称性知:抛物线的对称轴为直线x =2,且抛物线的开口向上,由此确定答案. 【详解】∵x =1和x =3时,y =0; ∴抛物线的对称轴为直线x =2, ∴顶点坐标为(2,﹣1), ∴抛物线的开口向上,∴x =0和x =4的函数值相等且大于0, ∴x =0,y =﹣3错误. 故选:A . 【点睛】此题考查抛物线的对称性,抛物线的性质,读懂表格掌握二次函数的对称性解决问题是解题的关键.4.D解析:D 【分析】当点P 在AB 边运动时,S=12AQ×APsinA ,图象为开口向上的抛物线,当点P 在BC 边运动时,如下图,S=12×AQ×PCsinC ,即可求解. 【详解】解:当点P 在AB 边运动时,211sin 22222S AQ AP A t t =⨯=⨯⨯⨯=, 图象为开口向上的抛物线,当点P 在BC 边运动时,如下图,1133sin 2(6)(6)2222S AQ PC C t t t t =⨯⨯=⨯⨯-⨯=-,图象为开口向下的抛物线, 故选:D . 【点睛】本题是运动型综合题,解题关键是深刻理解动点的函数图象,了解图象中关键点所代表的实际意义,理解动点的完整运动过程.5.C解析:C 【分析】根据关系式可得图象的开口方向,可求出函数的顶点坐标,根据s 从0开始到最大值时停止,可得t 的取值范围,即可得答案. 【详解】∵滑行的距离()s m 与滑行的时间()t s 之间的关系式为s=60t-1.5t 2,-1.5<0, ∴图象的开口向下,∵s=60t-1.5t 2=-1.5(t-20)2+600, ∴顶点坐标为(20,600), ∵s 从0开始到最大值时停止, ∴0≤t≤20, ∴C 选项符合题意, 故选:C . 【点睛】本题考查二次函数的应用,熟练掌握二次函数的图象与性质是解题关键.6.C解析:C 【分析】根据对称轴求出b 的值,从而得到23x -<<时的函数值的取值范围,再根据一元二次方程x 2+bx-t=0(t 为实数)在-1<x <4的范围内有解相当于y=x 2+bx 与y=t 在x 的范围内有交点解答. 【详解】解:对称轴为直线x=-21b⨯=1,解得b=-2,所以二次函数解析式为y=x 2-2x , y=(x-1)2-1, x=1时,y=-1,x=-2时,y=4-2×(-2)=8,∵x 2+bx-t=0的解相当于y=x 2+bx 与直线y=t 的交点的横坐标, ∴当-1≤t <8时,在-1<x <4的范围内有解. 故选:C . 【点睛】本题考查了二次函数与不等式,把方程的解转化为两个函数图象的交点的问题求解是解题的关键.7.A解析:A 【分析】结合已知条件先建立适当的坐标系,然后设出解析式,利用点的坐标求得解析式,再将3y =-代入解析式求得相应的x 的值,进而求得答案.【详解】解:以拱顶为坐标原点建立坐标系,如图:∴设抛物线解析式为:2y ax = ∵观察图形可知抛物线经过点()2,2B - ∴222a -=⋅ ∴12a =-∴抛物线解析式为:212y x =-∴当水位下降1米后,即当213y =--=-时,有2132x -=- ∴16x =26x =- ∴水面的宽度为:6m . 故选:A【点睛】本题考查了二次函数的应用,根据已知条件建立坐标系从而求得二次函数解析式是解决问题的关键.8.A解析:A【分析】根据题意结合函数的图象,得出图中A 、B 、C 的坐标,再利用待定系数法求出函数关系式即可.【详解】 解:50.26 2.24 2.52+==(米) 根据题意和所建立的坐标系可知,A (-5,12),B (0,52),C (52,0), 设排球运动路线的函数关系式为y=ax 2+bx+c ,将A 、B 、C 的坐标代入得:125252255042a b c c a b c ⎧-+=⎪⎪⎪=⎨⎪⎪++=⎪⎩, 解得,1485,,75152a b c =-=-=, ∴排球运动路线的函数关系式为2148575152y x x =--+, 故选:A .【点睛】 本题考查待定系数法求二次函数的关系式,根据题意得出图象所过点的坐标是正确解答的关键.9.B解析:B【分析】从0a >和0a <两种情况进行分析图象的开口方向和顶点坐标,选出正确的答案.【详解】解:当0a >时,开口向上,顶点在y 轴的正半轴;当0a <时,开口向下,顶点在y 轴的负半轴,故选:B .【点睛】本题考查的是二次函数系数与图象的关系,熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标与系数的关系是解题的关键.解析:D【分析】 解方程2334x x -+=0得A 1(4,0),再利用旋转的性质得A 2(4×2,0),A 3(4×3,0),依此规律得到A 505(4×505,0),A 506(4×506,0),且抛物线C 506的开口向上,利用交点式,设抛物线C 506的解析式为y =34(x−2020)(x−2024),然后确定此抛物线顶点坐标即可.【详解】当y =0时,2334x x -+=0,解得x 1=0,x 2=4, ∴A 1(4,0), ∵将C 1绕A 1旋转180°得到C 2,交x 轴于A 2,将C 2绕A 2旋转180得到C 3,∴A 2(4×2,0),A 3(4×3,0),∴A 505(4×505,0),A 506(4×506,0),即A 505(2020,0),A 506(2024,0), ∵抛物线C 506的开口向上,∴抛物线C 506的解析式为y =34(x−2020)(x−2024), ∵抛物线的对称轴为直线x =2022, 当x =2022时,y =34(2022−2020)(2022−2024)=−3, ∴抛物线C 506的顶点坐标是(2022,−3).故选:D .【点睛】 本题考查了抛物线与x 轴的交点:把求二次函数y =ax 2+bx +c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的几何变换和二次函数的性质.11.C解析:C【分析】根据平均每个季度GDP 增长的百分率为x ,第三季度季度GDP 总值约为7.9(1+x )元,第四季度GDP 总值为7.9(1+x )2元,则函数解析式即可求得.【详解】解:设平均每个季度GDP 增长的百分率为x ,则y 关于x 的函数表达式是:y=7.9(1+x )2.故选:C .【点睛】此题主要考查了根据实际问题列二次函数关系式,正确理解增长率问题是解题关键.解析:B【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】解:由“左加右减”的原则可知,抛物线y=2x 2的图象向右平移1个单位所得函数图象的关系式是:y=-2(x-1)2; 由“上加下减”的原则可知,抛物线y=-2(x-1)2的图象向上平移5个单位长度所得函数图象的关系式是:y=-2(x-1)2+5.故选:B .【点睛】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.二、填空题13.【分析】作交x 轴于点F 证明△DBO ≌△EDF 得设设D (t0)则根据勾股定理得进一步可得结论【详解】解:∵△BDE 是以BD 为直角边的等腰直角三角形∴作交x 轴于点F 如图∴∠EFO=∠DOB=90°又∠∴ 解析:22【分析】作EF AC ⊥交x 轴于点F ,证明△DBO ≌△EDF 得FE OD FD BO ==,,设设D (t ,0),则(4,)E t t +,根据勾股定理得222(2)8OE t =++,进一步可得结论.【详解】解:∵△BDE 是以BD 为直角边的等腰直角三角形,∴BD DE =作EF AC ⊥交x 轴于点F ,如图,∴∠EFO=∠DOB=90°又∠90OBD BDO BDO FDE +∠=∠+∠=︒∴∠DBD FDE =∠在△DBO 和△EDF 中DBO EDF DOB EFD DB DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△DBO ≌△EDF∴FE OD FD BO ==,对于y=x+4,当x=0,则y=4,当y=0,则x=-4,∴()40A -,,4(0)B ,, ∵点C 是点A 关于y 轴的对称点,∴0(4)C ,设D (t ,0),则(4,)E t t +∴22224)2((2)8OE t t t =++=++∴当t=-2时,取最小值,即OE ==,故OE的最小值为故答案为:【点睛】此题主要考查了全等三角形的判定与性质以及勾股定理等知识,运用勾股定理得出22224)2((2)8OE t t t =++=++是解答此题的关键.14.>【分析】二次函数开口向上当x 取任意实数时都有y >0则−4ac <0据此即可列不等式求解【详解】解:−4ac =1−4m <0解得:m >故答案为:>【点睛】本题考查了抛物线与x 轴交点个数个数由−4ac 的符解析:m >14 【分析】二次函数开口向上,当x 取任意实数时,都有y >0,则2b −4ac <0,据此即可列不等式求解.【详解】解:2b −4ac =1−4m <0,解得:m >14. 故答案为:m >14. 【点睛】本题考查了抛物线与x 轴交点个数,个数由2b −4ac 的符号确定,当△=2b −4ac >0时,抛物线与x 轴有2个交点;△=2b −4ac =0时,抛物线与x 轴有1个交点;△=2b −4ac <0时,抛物线与x 轴没有交点.15.【分析】先根据二次函数的对称性求出抛物线与x 轴的另一个交点坐标再根据二次函数与一元二次方程的联系即可得【详解】抛物线的对称轴为此抛物线与x 轴的一个交点为它与x 轴的另一个交点为即则关于x 的一元二次方程 解析:121,5x x ==【分析】先根据二次函数的对称性求出抛物线与x 轴的另一个交点坐标,再根据二次函数与一元二次方程的联系即可得.【详解】抛物线2(3)y a x m =-+的对称轴为3x =,此抛物线与x 轴的一个交点为(1,0), ∴它与x 轴的另一个交点为(231,0)⨯-,即(5,0),则关于x 的一元二次方程2(3)0a x m -+=的根为121,5x x ==,故答案为:121,5x x ==.【点睛】本题考查了二次函数与x 轴的交点问题、二次函数与一元二次方程的联系,熟练掌握二次函数的图象和性质是解题关键.16.【分析】以喷水池中心A 为原点竖直安装的水管AB 所在直线为y 轴与水管垂直的AD 所在直线为x 轴建立直角坐标系设抛物线的解析式为y =a (x ﹣1)2+3(0≤x≤3)将(30)代入求得a 值则x =0时得的y 值 解析:94【分析】以喷水池中心A 为原点,竖直安装的水管AB 所在直线为y 轴,与水管垂直的AD 所在直线为x 轴建立直角坐标系,设抛物线的解析式为y =a (x ﹣1)2+3(0≤x≤3),将(3,0)代入求得a 值,则x =0时得的y 值即为水管的长.【详解】以喷水池中心A 为原点,竖直安装的水管AB 所在直线为y 轴,与水管垂直的AD 所在直线为x 轴建立直角坐标系,由于喷出的抛物线形水柱在与池中心A 的水平距离为1m 处达到最高点C ,高度为3m , 所以设抛物线的解析式为:y =a (x ﹣1)2+3(0≤x≤3),代入(3,0),得:0=a (3-1)2+3,解得:a =34-. 将a 值代入得到抛物线的解析式为:y =34-(x ﹣1)2+3(0≤x≤3),令x =0,则y =94. 即水管AB 的长为94m , 故答案为:94.【点睛】本题考查了二次函数在实际生活中的运用,重点是二次函数解析式的求法,利用顶点式求出解析式是解题关键.17.【分析】先根据和的函数值相同可得二次函数的对称轴为从而可得再根据时的函数值可得从而可得由此即可得【详解】和的函数值相同此二次函数的对称轴为即当时则故答案为:【点睛】本题考查了二次函数的性质正确求出二 解析:152【分析】先根据0x =和1x =的函数值相同可得二次函数的对称轴为12x =,从而可得=-b a ,再根据1x =-时的函数值可得152a b c ,从而可得1522a c ,由此即可得. 【详解】 0x =和1x =的函数值相同,∴此二次函数的对称轴为12x =, 122b a ∴-=,即=-b a , 当1x =-时,152ya b c , 1522a c , 则4242abc a a c ,2a c ,152=, 故答案为:152. 【点睛】本题考查了二次函数的性质,正确求出二次函数的对称轴是解题关键.18.【分析】先将二次函数的解析式化成顶点式再根据二次函数的增减性即可得【详解】二次函数化成顶点式为由二次函数的性质可知当时y 随x 的增大而减小点在此二次函数的图象上且故答案为:【点睛】本题考查二次函数的顶 解析:123y y y >>【分析】先将二次函数的解析式化成顶点式,再根据二次函数的增减性即可得.【详解】二次函数245y x x =-+化成顶点式为22()1y x =-+,由二次函数的性质可知,当2x ≤时,y 随x 的增大而减小,点123(4,),(1,),(1,)A y B y C y --在此二次函数的图象上,且4112-<-<<, 123y y y ∴>>,故答案为:123y y y >>.【点睛】本题考查二次函数的顶点式和增减性,熟练掌握二次函数的性质是解题关键. 19.>【分析】根据二次函数的性质即可求解【详解】解:由y=x2可知∵a=1>0∴抛物线的开口向上∵抛物线的对称轴为y 轴∴当x >0时y 随x 的增大而增大∵-4<x1<-20<x2<2∴2<-x1<4∴y1>解析:>【分析】根据二次函数的性质即可求解.【详解】解:由y=x 2可知,∵a=1>0,∴抛物线的开口向上,∵抛物线的对称轴为y 轴,∴当x >0时,y 随x 的增大而增大,∵-4<x 1<-2,0<x 2<2,∴2<-x 1<4,∴y 1>y 2.故答案为:>.【点睛】本题考查了二次函数图象上的点的坐标特征及二次函数的性质.当a >0时,开口向上,在对称轴的左侧y 随x 的增大而减小,在对称轴的右侧,y 随x 的增大而增大;当a <0,开口向下,在对称轴的左侧y 随x 的增大而增大,在对称轴的右侧,y 随x 的增大而减小; 20.【分析】先把函数解析式配成顶点式得到然后根据顶点式即可得到顶点坐标【详解】解:所以抛物线的顶点坐标为故答案为:【点睛】本题考查了二次函数的性质解题的关键是熟练掌握将二次函数的一般形式化为顶点式 解析:11,24⎛⎫- ⎪⎝⎭【分析】 先把函数解析式配成顶点式得到21124()y x =--,然后根据顶点式即可得到顶点坐标. 【详解】 解:2211()24y x x x =-=--, 所以抛物线的顶点坐标为11,24⎛⎫- ⎪⎝⎭, 故答案为:11,24⎛⎫- ⎪⎝⎭. 【点睛】本题考查了二次函数的性质,解题的关键是熟练掌握将二次函数的一般形式化为顶点式.三、解答题21.(1)2122y x x =-;(2)第8个月该果园所获利是5.5万元;(3)截止到第10月末该果园累积利润可达30万元.【分析】 (1)通过构建函数模型解答销售利润的问题,应根据图象以及题目中所给的信息来列出y 与x 之间的函数关系式;(2)分别把x =7,x =8,代入函数解析式2122y x x =-,再把总利润相减就可得出; (3)把y =30代入2122y x x =-的函数关系式里,求得月份. 【详解】解:(1)由图象可知其顶点坐标为(2,-2),故可设其函数关系式为:2(2)2ya x ∵所求函数关系式的图象过(0,0), 于是得:20(02)2=--a ,解得12a =, ∴所求函数关系式为:21(2)22y x =--,即2122y x x =-. (2)把7x =代入2122y x x =-, 得1492710.52y =⨯-⨯=, 把8x =代入2122y x x =-, 得16428162y =⨯-⨯=, 第8个月该果园所获利润是:16﹣10.5=5.5万元,答:第8个月该果园所获利是5.5万元.(3)把30y =代入2122y x x =-, 化简得 24600x x --=,解得12106x x ==-,(舍去).答:截止到第10月末该果园累积利润可达30万元.【点睛】此题主要考查了二次函数的性质在实际生活中的应用,读懂题目意思,确定变量,建立函数模型,尤其是注意本题图象中所给的信息是解决问题的关键.22.(1)每千克水果应涨价2元;(2)510x ≤≤【分析】(1)设每千克应涨价x 元,由题意列出方程,解方程即可求解;(2)根据题意表示出每天的利润,然后利用每天的获利等于6000元,解出两个x 的值,然后根据二次函数的性质即可得出答案.【详解】(1)设每千克应涨价x 元,由题意列方程得:(10+x )(500﹣20x )=5520,解得:x =2或x =13,为了使顾客得到实惠,那么每千克应涨价2元;答:每千克水果应涨价2元.(2)根据题意得,每天的获利为()()21050020203005000w x x x x =+-=-++ 令6000w =,即22030050006000x x -++=,解得125,10x x ==,20a =-<,∴要使每天获利不少于6000元,涨价x 的范围为510x ≤≤,答:每千克水果涨价x 的范围是510x ≤≤.【点睛】本题主要考查一元二次方程及二次函数的应用,根据题意列出方程及二次函数是解题的关键.23.(1)()4,2A --;()2,2B -;(2)①244y x x =---;②43m -≤≤-或0<5m ≤【分析】(1)根据已知直线和对称点的性质即可求出A 、B .(2)①根据抛物线的顶点为直线2l y x =+:与x 轴的交点()2,0-求解即可;②根据已知条件判断出二次函数顶点的位置,计算即可;【详解】(1)直线2l y x =+:与2y =-的交点为A ,则可得到:22x -=+,∴4x =-,∴点A 的坐标是()4,2--, 设(),2Bb -,点A 与点B 关于1x =-对称,则()()141b ---=--, ∴2b =,∴()2,2B -;(2)①当抛物线2y x bx c =-++与坐标轴仅有两个公共点,此时抛物线的顶点为直线2l y x =+:与x 轴的交点()2,0-, 则222b b x a =-==-, ∴4b =-,代入顶点可得4c =-, ∴抛物线的解析式为244y x x =---;②抛物线2y x bx c =-++与线段AB 有交点,∴顶点坐标为(),2m m +,∴抛物线的解析式可化为()22y x m m =--++, 把点()4,2A --代入解析式可得,()2242m m -=---++,13m =-,24m =-,∴43m -≤≤-,把点()2.2B -代入解析式得, ()2222m m ---++=-, 30m =,45m =,∴0<5m ≤;综上所述:43m -≤≤-或0<5m ≤.【点睛】本题主要考查了二次函数与一次函数的综合,准确分析计算是解题的关键.24.(1)22y x x =-++;(2)52-+ 【分析】(1)由题意可知点B 、D 的坐标分别为(2,0),(0,2),利用待定系数法即可求得二次函数关系式;(2)先分别表示出点P 、Q 的横坐标,进而可表示出它们的纵坐标,再根据题意列出方程求解即可.【详解】解:(1)由题意可知点B 、D 的坐标分别为(2,0),(0,2),将(2,0),(0,2)代入2y x bx c =-++,得 4202b c c -++=⎧⎨=⎩解得12b c =⎧⎨=⎩∴二次函数的表达式为22y x x =-++;(2)∵正方形ABCD 向左平移m 个单位(0m >),边AD 与BC 分别与(1)中的二次函数图像交于P 、Q ,∴点P 的横坐标为-m ,点Q 的横坐标为2-m ,当x=-m 时,22y m m =--+,当x=2-m 时,2(2)22y m m +=---+ 23m m =-∵点Q 纵坐标是点P 纵坐标的2倍,∴2232(2)m m m m -=--+解得1m =,2m =(舍去)∴m 的值为52-+. 【点睛】本题考查了用待定系数法求二次函数关系式,正方形的性质等相关知识,熟练掌握待定系数法求二次函数关系式是解决本题的关键.25.(1)2s 或4s ;(2)不存在,证明见解析;(3)3秒,92【分析】(1)根据题意,利用t 表示个线段长度,根据面积为4可列出方程求解.(2)利用第一问中PCQ △的面积的表示方法,使其等于5,根据判别式判断方程是否有解.(3)利用求得的PCQ △的面积的表示的二次函数解析式,求出二次函数的最大值,符合题意即为所求最大面积.【详解】解:(1)由题意得:AP CQ t ==,6PC AC AP t ∴=-=-, 11(6)422PCQ S PC CQ t t ∴=⋅=-⋅=, 2680t t ∴-+=,(2)(4)0t t --=,12t =,24t =,∴2s 或4s 后PCQ △的面积为4.(2)1(6)52PCQ S t t =-=,26100t t -+=, 2(6)41040∆=--⨯=-<,方程无解,故PCQ △的面积不能为5.(3)1(6)2PCQ St t =-()216992t t =--+-219(3)22t =--+,, ∴当3t =时,max 92PCQ S =. 【点睛】 本题考查的是一元二次方程以及二次函数的应用,三角形的面积公式的求法和一元二次方程的解的情况.26.(1)1a =,3b =,4c =;(2)()1,6;(3)最小值为5,F 点的坐标为()1,2【分析】(1)将()1,0A -与()0,4C分别代入二次函数2y x bx c =-++和一次函数y x a =+求解即可;(2)过点E 作x 轴的垂线1,交x 轴于点G ,交AD 于点H ,过点D 作l 的垂线,垂足为T ,由(1)可设点()2,34E m m m -++,则点H 的坐标为(),1m m +,然后根据割补法进行求解面积即可;(3)过A 作y 轴的平行线AS ,过F 作FG y ⊥轴交AS 于点M ,过F 作FN x ⊥轴于N ,由题意易得45DAB ∠=︒,则可证FM FN =,进而可得当N 、F 、E 所在直线与x 轴垂直时,1d FE FN =+-最小,然后问题可求解.【详解】(1)解:将()1,0A -与()0,4C分别代入二次函数2y x bx c =-++,得()2104b c c ⎧---+=⎪⎨=⎪⎩ , 解得34b c =⎧⎨=⎩; 将点()1,0A -代入一次函数y x a =+,得10a -+=,解得1a =,∴1a =,3b =,4c =;(2)解:由(1)所求的a ,b ,c 的值可得一次函数的解析式为:1y x =+,抛物线的解析式为:234y x x =-++,联立1y x =+与234y x x =-++得2134y x y x x =+⎧⎨=-++⎩,解得34x y =⎧⎨=⎩ ∴点D 的坐标为:()3,4,设点()2,34E m m m -++, 过点E 作x 轴的垂线1,交x 轴于点G ,交AD 于点H ,则点H 的坐标为(),1m m +,过点D 作l 的垂线,垂足为T ;∴223EH m m =-++,4=AD , ∴()11112222AED AEH HED S S S EH AG EH DT EH AG DT =+=⨯+⨯=+=△△△ ()()223414218m m m m -++--⨯=--+,当1m =时,最大值为8,此时点E 的坐标为()1,6;(3)解:过A 作y 轴的平行线AS ,过F 作FP y ⊥轴交AS 于点M ,过F 作FN x ⊥轴于N ,∵点D 的坐标为()3,4,点A 坐标为()1,0-∴45DAB ∠=︒,∴AD 平分SAB ∠,∴FM FN =,∴11d FE FM FE FN =+-=+-显然,当N 、F 、E 所在直线与x 轴垂直时,1d FE FN =+-最小,最小值为615-=.此时点F 的横坐标为1,代入1y x =+得F 点的坐标为()1,2.【点睛】本题主要考查二次函数的综合,熟练掌握二次函数的性质是解题关键.。

第一章 二次函数单元测试卷(二)及答案

第一章 二次函数单元测试卷(二)及答案

第一章 二次函数单元测试卷(二)(本试卷共三大题,26个小题 试卷分值:150分 考试时间:120分钟) 姓名: 班级: 得分:一、填空题(本题有10个小题,每小题4分,共40分) 1.抛物线2(1)3y x =-+的对称轴是( ) A .直线1x =B .直线3x =C .直线1x =-D .直线3x =-2.用配方法将2611y x x =-+化成2()y a x h k =-+的形式为 ( ) A .2(3)2y x =++ B .2(3)2y x =-- C .2(6)2y x =-- D .2(3)2y x =-+3.若二次函数c x x y ++=22配方后为7)(2++=h x y ,则c 、h 的值分别为( ) A .8、-1 B .8、1 C .6、-1 D .6、1 4.二次函数y=2(x -1)2+3的图像的顶点坐标是( )A .(1,3)B .(-1,3)C .(1,-3)D .(-1,-3)5.已知二次函数2y 3=-+x x m (m 为常数)的图象与x 轴的一个交点为(1,0),则关于x 的一元二次方程230-+=x x m 的两实数根是( )A .x1=1,x2=-2B .x1=1,x2=2C .x1=1,x2=0D .x1=1,x2=3 6.二次函数2(1)2y x =-+的最小值是( ) A .2-B .2C .1-D .17.抛物线24y x x =-的对称轴是 ( ) A .x =-2B .x =4C .x =2D .x =-48.已知二次函数y =2(x -3)2+1.下列说法:①其图象的开口向下;②其图象的对称轴为直线x =-3;③其图象顶点坐标为(3,-1);④当x<3,y 随x 的增大而减小.则其中说法正确的有( )A .1个B .2个C .3个D .4个⑤a+b >m (am+b )(m ≠1),其中结论正确的有( )A . ③④B . ③⑤C . ③④⑤D . ②③④⑤ 10.已知二次函数y =ax2+bx +c(a ≠0)的图象如图所示,则正比例函数y =(b +c)x 的图象与反比例函数的图象在同一坐标系中大致是( )二、认真填一填 (本题有8个小题, 每小题4分, 共32分) 11.抛物线22(1)2y x =-++的顶点的坐标是12.进价为30元/件的商品,当售价为40元/件时,每天可销售40件,售价每涨1元,每天少销售1件,当售价为 元时每天销售该商品获得利润最大,最大利润是 ___________元.13.教练对小明推铅球的录像进行技术分析,发现铅球行进高度y(m)与水平距离x(m)之间的关系为y =-112(x -4)2+3,由此可知铅球推出的距离是________m.14.请你写出一个抛物线的表达式,此抛物线满足对称轴是y 轴,且在y 轴的左侧部分是上升的,那么这个抛物线表达式可以是 .15.将抛物线y=(x+2)2-3的图像向上平移5个单位,得到函数解析式为 . 16.若函数y=a(x -h)2+k 的图象经过原点,最小值为8,且形状与抛物线y=-2x2-2x+317.周长为16cm 的矩形的最大面积为____,此时矩形边长为____,实际上此时矩形是 18.如图,抛物线y=ax2+1与双曲线y=xm的交点A 的横坐标是2,则关于x 的不等式xm+ax2+1<0的解集是 .三、解答题(本题有8个小题,共78分.解答应写出文字说明,证明过程或推演步骤.) 19.(6分)已知抛物线c bx x y ++=2经过点(1,-4)和(-1,2).求抛物线解析式.20.(8分)如图,抛物线y=21x2+bx -2与x 轴交于A 、B 两点,与y 轴交于C 点,且A (一1,0).(1)求抛物线的解析式及顶点D 的坐标; (2)若将上述抛物线先向下平移3个单位,再向右平移2个单位,请直接写出平移后的抛物线的解析式.21.(8分)某商店如果将进货价为8元的商品按每件10元售出,每天可销售200件,现在采用提高售价,减少进货量的方法增加利润,已知这种商品每涨价1元,其销量就减少20件。

第26章《二次函数》单元测试(2)

第26章《二次函数》单元测试(2)

第26章《二次函数》单元测试一、选择题(每题3分,共30分)1.若直线y =3x +m 经过第一、三、四象限,则抛物线y =(x -m )2+1的顶点必在( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限2.抛物线的顶点为(1,9),它与x 轴交于A (-2,0),B 两点,则B 点坐标为( )(A )(1,0) (B )(2,0) (C )(3,0) (D )(4,0)3.抛物线y =2(x +3) (x -1)的对称轴是( )(A )x =1 (B )x =-1 (C )x =12(D )x =-2 4.函数y =(m -n ) x 2+mx +n 是二次函数的条件是( )(A) m 、n 是常数,且m ≠0 (B) m 、n 是常数,且m ≠n(C) m 、n 是常数,且n ≠0 (D) m 、n 可以为任意实数5.直线y =mx +1与抛物线y =2x 2-8x +k +8相交于点(3,4),则m 、k 值为( )(A) ⎩⎨⎧m =1k =3 (B)⎩⎨⎧m =-1k =2 (C) ⎩⎨⎧m =1k =2 (D) ⎩⎨⎧m =2k =16.抛物线y =2x 2如何平移可得到抛物线y =2(x -4)2-1( )(A )向左平移4个单位,再向上平移1个单位(B )向左平移4个单位,再向下平移1个单位(C )向右平移4个单位,再向上平移1个单位(D )向右平移4个单位,再向下平移1个单位7.烟花厂为扬州三月经贸旅游节特别设计制作一种新型礼炮,这种礼炮的升空高度h (m )与飞行时间t (s )的关系式是h =-52t 2+20x +1,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为( ) (A )3s (B )4s (C )5s (D )6s8.如图所示是二次函数y =-12x 2+2的图象在x 轴上方的一部分,对于这段图象与x 轴所围成的阴影部分的面积,你认为与其最.接近的值是( ) (A )4 (B )163(C )2π (D )8 9.如图,某厂有许多形状为直角梯形的铁皮边角料,为节约资源,现要按图中所示的方法从这些边角料上截取矩形(阴影部分)铁皮备用,当截取的矩形面积最大时,矩形两边长x ,y 应分别为( ) (A )x =10,y =14 (B )x =14,y =10 (C )x =12,y =15 (D )x =15,y =1210.若A (-134,y 1),B (-54,y 2),C (14,y 3)为二次函数y =x 2+4x -5的图象上的三点,则y 1,y 2,y 3的大小关系是( )(A )y 1<y 2<y 3 (B )y 2<y 1<y 3 (C )y 3<y 1<y 2 (D )y 1<y 3<y 2(第18题)(第19题)二、填空题(每题3分,共30分)1.若抛物线y =x 2+(m -1)x +(m +3)的顶点在y 轴上,则m = .2.不论x 取何值y =-x 2+6x +c 的函数值总为负数,•则c 的取值范围为 .3.抛物线y =x 2-4x +3•的顶点及它与x 轴的交点三点连线所围成的三角形面积是 .4.已知二次函数y =x 2-4x -3,若-1≤x ≤6,则y 的取值范围为_______.5.行驶中的汽车刹车后,由于惯性的作用,还会继续向前滑行一段距离,这段距离称为“刹车距离”.某车的刹车距离S (m )与车速x (km/h )•之间有下述的函数关系式:S =0.01x +0.002x 2,现该车在限速140km/h 的高速公路上出了交通事故,事后测得刹车距离为46.5m ,请推测:刹车时,汽车 超速(填“是”或“否”)6.已知二次函数y =x 2-2x -3与x 轴交于A 、B 两点,在x 轴上方的抛物线上有一点C ,且△ABC 的面积等于10,则C 点坐标为 .7.直线y =2x +2与抛物线y =x 2+3x 的交点坐标为________. 8.已知二次函数y =ax 2+bx +c (a ≠0)的顶点坐标(-1,-3.2)及部分图象,由图象可知关于x 的一元二次方程ax 2+bx +c =0的两个根分别是x 1=1.3和x 2= . 9.如图,半圆A 和半圆B 均与y 轴相切于点O ,其直径CD 、EF 均和x 轴垂直,以O 为顶点的两条抛物线分别经过点C 、E 和点D 、F ,则图中阴影部分的面积是 .10.老师给出一个二次函数,甲、乙、丙三位同学各指出这个函数的一个性质:甲:函数的图象经过第一、二、四象限; 乙:当x <2时,y 随x 的增大而减小;丙:函数的图象与坐标轴...只有两个交点. 已知这三位同学叙述都正确,请构造出满足上述所有性质的一个函数__________________.三、解答题(共60分)1.已知一抛物线与x 轴的交点是A(-2,0)、B (1,0),且经过点C (2,8)。

(必考题)初中数学九年级数学下册第二单元《二次函数》测试卷(有答案解析)(2)

(必考题)初中数学九年级数学下册第二单元《二次函数》测试卷(有答案解析)(2)

一、选择题1.已知y 是x 的二次函数,y 与x 的部分对应值如表所示,若该二次函数图象向左平移后通过原点,则应平移( ) x … 1-0 1 2 … y…343…A .1个单位B .2个单位C .3个单位D .4个单位2.在二次函数2y ax bx c =++中,函数值y 与自变量x 的部分对应值如下表 则m 的值为( ). x -2 -1 0 1 2 3 4 y72-1-2m27A .1B .-1C .2D .-23.关于二次函数2241=-+y x x ,下列说法正确的是( ) A .图象的对称轴在y 轴左侧 B .图象的顶点在x 轴下方 C .当0x >时,y 随x 的增大而增大D .y 有最小值是14.如图,二次函数()20y ax bx c a =++≠图象的顶点为D ,其图像与x 轴的交点A 、B 的横坐标分别为-1,3,与y 轴负半轴交于点C .在下面四个结论中:①0a b c ++<; ②13a c =-;③只有当12a =时,ABD △是等腰直角三角形; ④使ACB △为等腰三角形的a 值可以有两个.其中正确的结论有A .1个B .2个C .3个D .4个5.抛物线221y x =--的顶点坐标是( ) A .(2,1)--B .(2,1)C .(0,1)-D .(0,1)6.如图,现要在抛物线y =x (﹣x +2)上找点P (m ,n ),针对n 的不同取值,所找点P 的个数,四人的说法如下,甲:若n =﹣1,则点P 的个数为2;乙:若n =0,则点P 的个数为1;丙:若n =1,则点P 的个数为1;丁:若n =2,则点P 的个数为0.其中说法正确的有( )A .0个B .1个C .2个D .3个7.下列函数中,当0x >时,y 随x 增大而增大的是( ) A .2y x=B .22y x =+C . 1y x =-+D .22 y x =--8.如图,抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =1,与x 轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①a >0;②b >0; ③方程ax 2+bx +c =0的两个根是x 1=﹣1,x 2=3;④当y >0时,x 的取值范围是﹣1<x <3;其中结论正确的个数是( )A .4个B .3个C .2个D .1个9.如图,抛物线y =ax 2+bx +c 的对称轴是x =1,下列结论:①abc >0;②b 2﹣4ac >0; ③8a +c <0; ④5a +b +2c >0,正确的是( )A .①②③B .②③④C .①②④D .②③10.已知二次函数223y x x =--+,下列叙述中正确的是( ) A .图象的开口向上B .图象的对称轴为直线1x =C .函数有最小值D .当1x >-时,函数值y 随自变量x 的增大而减小11.将抛物线()2214y x =--+向右平移3个单位,再向下平移2个单位,得到抛物线的解析式为( ) A .()2241y x =-++ B .()2221y x =--+ C .()2246y x =--+D .()2242y x =--+12.在平面直角坐标系中,下列二次函数的图象开口向上的是( ) A .22y x =B .221y x x =-++C .22y x x =-+D .20.5y x x =-+二、填空题13.将二次函数()2y a x m k =++(0a ≠)的图象先向右平移3个单位长度,再向下平移2个单位长度,所得图象的表达式是()214y x =-+,则原函数的表达式是________. 14.如图,已知在边长为6的正方形FCDE 中,A 为EF 的中点,点B 在边FC 上,且2BF =,连接AB ,P 是AB 上的一动点,过点P 作PM DE ⊥,PN DC ⊥,垂足分别为M ,N ,则矩形PNDM 面积的最大值是______.15.如图,二次函数2y ax bx c =++与反比例函数ky x=的图象相交于点()()()1231,1,3,A y B y C y -、、三个点,则不等式2k ax bx c x++>的解是____.16.已知二次函数y =a (x ﹣2)2+c (a >0),当自变量x 分别取﹣1、4、6时,对应的函数值分别为y 1,y 2,y 3,则y 1,y 2,y 3的大小关系是_____(用“<”号连接). 17.二次函数y =x 2+2x ﹣4的图象的对称轴是_____,顶点坐标是_____.18.计算机可以帮助我们又快又准地画出函数的图像.用“几何画板”软件画出的函数2(3)y x x =-和3y x =-的图像如图所示.若m ,n 分别满足方程2(3)1x x -=和31x -=根据图像可知m ,n 的大小关系是___________.19.将抛物线2610y x x =-+先向左平移2个单位长度,再向下平移1个单位长度,得到的抛物线与x 轴的交点坐标是______.20.已知点()4,A m -,()2,B m ,()6,C n 均在抛物线2y x bx c =++上,则m ,n 的大小关系是m __________n .三、解答题21.如图,在平面直角坐标系中,抛物线216y x bx c =++经过原点O ,与x 轴交于点()5,0A ,y 轴上有一点()0,10B .(1)求抛物线的函数表达式及它的对称轴;(2)在抛物线的对称轴上,是否存在点M ,使以,,A B M 为顶点的三角形是等腰三角形?若存在,求出点M 的坐标;若不存在,请说明理由.22.已知关于x 的二次函数2(1)1y kx k x =+--(k 为常数且0k ≠).(1)无论k 取何值,此函数图象一定经过y 轴上一点,该点的坐标为___________; (2)试说明:无论k 取何值,此函数图象一定经过点(1,0)-;(3)原函数是否存在最小值1-?若存在,请求出此时k 的值;若不存在,请说明理由. 23.如图,抛物线2y x bx c =+-与x 轴交于A (-1,0),B (3,0)两点,直线l 与抛物线交于A 、C 两点,其中C 点的横坐标为2. (1)求抛物线及直线AC 的函数表达式;(2)点M 是线段AC 上的点(不与A ,C 重合)过M 作MF //y 轴交抛物线于F ,若点M 的横坐标为m ,请用含m 的代数式表示MF 的长.24.在二次函数y =ax 2+bx +c (a≠0)中,函数y 与自变量x 的部分对应值如表: x … 0 1 23 4…y … 3 0 ﹣1 0 m …m 的值;并利用所给的坐标网格,画出该函数图象; (2)将这个二次函数向左平移2个单位,再向上平移1个单位,求平移后的函数解析式.25.如图,抛物线与x 轴相交于点A (﹣3,0)点B (1,0),与y 轴交于点C (0,3);(1)求这条抛物线的解析式;(2)点P 为抛物线一点,若S △PAB =10,求出此时点P 的坐标; (3)求∠ACB 的正切值.26.如图,已知抛物线212y x bx c =++与x 轴交于A 、B 两点,与y 轴交于点C 且AB =6,抛物线的对称轴为直线x =1(1)抛物线的解析式;(2)x 轴上A 点的左侧有一点E ,满足S △ECO =4S △ACO ,求直线EC 的解析式.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由表格可得点()0,3与点()2,3是关于二次函数对称轴对称的,则有二次函数的对称轴为直线0212x +==,进而可得点()1,4是二次函数的顶点,故设二次函数解析式为()214y a x =-+,然后代入点()1,0-可得二次函数解析式,最后问题可求解.【详解】解:由表格可得点()0,3与点()2,3是关于二次函数对称轴对称的,则有二次函数的对称轴为直线0212x +==, ∴点()1,4是二次函数的顶点,设二次函数解析式为()214y a x =-+,代入点()1,0-可得:1a =-,∴二次函数解析式为()214y x =--+,∵该二次函数图象向左平移后通过原点, ∴设平移后的解析式为()214y x b =--++,代入原点可得:()2014b =--++,解得:123,1b b ==-(舍去), ∴该二次函数的图象向左平移3个单位长度; 故选C . 【点睛】本题主要考查二次函数的图象与性质及平移,熟练掌握二次函数的图象与性质及平移是解题的关键.2.B解析:B 【分析】根据二次函数的性质,结合题意,将0x =、1y =-代入到2y ax bx c =++,得c 的值;将1x =-、2y =和1x =、2y =-代入到21y ax bx =+-,通过求解二元一次方程,即可得到a 、b 的值,从而得到二次函数解析式,经计算即可得到答案. 【详解】根据题意,将0x =、1y =-代入到2y ax bx c =++,得1c =- ∴21y ax bx =+-将1x =-、2y =和1x =、2y =-代入到21y ax bx =+-,得1212a b a b --=⎧⎨+-=-⎩∴1a =,2b =- ∴221y x x =--当2x =时,222211m =-⨯-=- 故选:B . 【点睛】本题考查了二次函数、二元一次方程组的知识;解题的关键是熟练掌握二次函数、二元一次方程组的性质,从而完成求解.3.B解析:B 【分析】首先把一般式写成顶点式y=2(x-1)2-1,从而可得对称轴x=1,顶点坐标为(1,-1),再利用二次函数的性质进行分析即可. 【详解】解:y=2x 2-4x+1=2(x 2-2x )+1=2(x 2-2x+1)-1=2(x-1)2-1, A 、图象的对称轴为x=1,在y 轴的右侧,故说法错误; B 、顶点点坐标为(1,-1),顶点在x 轴下方,故说法正确; C 、当x >1时,y 的值随x 值的增大而增大,故说法错误; D 、y 的最小值为-1,故说法错误; 故选:B . 【点睛】此题主要考查了二次函数的性质,关键是掌握配方法把二次函数解析式写成顶点式,掌握二次函数性质.4.D解析:D 【分析】先根据图象与x 轴的交点A ,B 的横坐标分别为﹣1,3确定出AB 的长及对称轴,再由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断. 【详解】解:①由抛物线的开口方向向上可推出a >0, ∵图像与x 轴的交点A 、B 的横坐标分别为-1,3, ∴对称轴x =1, ∴当x =1时,y <0, ∴a +b +c <0; 故①正确;②∵点A 的坐标为(﹣1,0),∴a ﹣b +c =0, 又∵b =﹣2a , ∴a ﹣(﹣2a )+c =0, ∴c =﹣3a , ∴13a c =- ∴结论②正确.③如图1,连接AD ,BD ,作DE ⊥x 轴于点E ,,要使△ABD 是等腰直角三角形, 则AD =BD ,∠ADB =90°, ∵DE ⊥x 轴, ∴点E 是AB 的中点, ∴DE =BE ,即|244ac b a-|()312--==2,又∵b =﹣2a ,c =﹣3a , ∴|()()24324a a a a⨯---|=2,a >0,解得a 12=, ∴只有当a 12=时,△ABD 是等腰直角三角形, 结论③正确④要使△ACB 为等腰三角形,则AB =BC =4,AB =AC =4,或AC =BC , Ⅰ、当AB =BC =4时, 在Rt △OBC 中, ∵OB =3,BC =4,∴OC 2=BC 2﹣OB 2=42﹣32=16﹣9=7, 即c 2=7,∵抛物线与y 轴负半轴交于点C ,∴c <0,c=,∴a 33c =-=. Ⅱ、当AB =AC =4时, 在Rt △OAC 中, ∵OA =1,AC =4,∴OC 2=AC 2﹣OA 2=42﹣12=16﹣1=15, 即c 2=15,∵抛物线与y 轴负半轴交于点C , ∴c <0,c=,∴a 3c =-=Ⅲ、当AC =BC 时, ∵OC ⊥AB , ∴点O 是AB 的中点, ∴AO =BO ,这与AO =1,BO =3矛盾, ∴AC =BC 不成立.∴使△ACB 为等腰三角形的a . 结论④正确. 故答案选:D 【点睛】二次函数y =ax 2+bx +c 系数符号的确定:(1)a 由抛物线开口方向确定:开口方向向上,则a >0;否则a <0;(2)b 由对称轴和a 的符号确定:由对称轴公式x 2ba=-判断符,(3)c 由抛物线与y 轴的交点确定:交点在y 轴正半轴,则c >0;否则c <0;(4)b 2﹣4ac 由抛物线与x 轴交点的个数确定:①2个交点,b 2﹣4ac >0;②1个交点,b 2﹣4ac =0;③没有交点,b 2﹣4ac <0.5.C解析:C 【分析】根据题目中的函数解析式可以直接写出该抛物线的顶点坐标. 【详解】 解:∵y=-2x 2-1,∴该抛物线的顶点坐标为(0,-1), 故选:C . 【点睛】本题考查了二次函数的性质,解答本题的关键是明确题意,利用二次和函数的性质解答. 6.D解析:D【分析】把P 点的坐标代入函数的解析式,再根据根的判别式或解方程逐个判断即可.【详解】解:甲:当n =﹣1时,m (﹣m +2)=﹣1,整理得:m 2﹣2m ﹣1=0,△=(﹣2)2﹣4×1×(﹣1)=8>0,方程有两个不相等的实数根,即此时点P 的个数为2,故甲的说法正确;乙:当n =0时,m (﹣m +2)=0,解得:m =0或2,即此时点P 的个数为2,故乙的说法错误;丙:当n =1时,m (﹣m +2)=1,整理得:m 2﹣2m +1=0,△=(﹣2)2﹣4×1×1=0,方程有两个相等的实数根,即此时点P 的个数为1,故丙的说法正确;丁:当n =2时,m (﹣m +2)=2,整理得:m 2﹣2m +2=0,△=(﹣2)2﹣4×1×2=﹣4<0,方程没有实数根,即此时点P 的个数为0,故丁的说法正确;所以正确的个数是3个,故选:D .【点睛】本题考查了二次函数的图象上点的坐标特征和一元二次方程的根的判别式、解一元二次方程,能熟记根的判别式的内容是解此题的关键.7.B解析:B【分析】根据二次函数、一次函数、反比例函数的增减性,结合自变量的取值范围,逐一判断.【详解】解:A 、2y x=,反比例函数,k=2>0,分别在一、三象限,在每一象限内,y 随x 的增大而减小,不符合题意; B 、22y x =+,a=1>0,开口向上,对称轴为y 轴,故当图象在对称轴右侧,y 随着x 的增大而增大,符合题意;C 、1y x =-+,一次函数,k=-1<0,故y 随着x 增大而减小,不符合题意;D 、22y x =--,a=-1<0,开口向下,对称轴为y 轴,故当图象在对称轴右侧,y 随着x 的增大而减小,不符合题意.故选:B .【点睛】本题考查一次函数,二次函数及反比例函数的增减性,掌握函数图像性质利用数形结合思想解题是本题的解题关键.8.B解析:B【分析】根据抛物线与系数的关系判断即可.【详解】解:抛物线开口向下,a<0,故①错误;对称轴在y 轴右侧,a 、b 异号,b >0,故②正确;抛物线与x 轴交点为(﹣1,0),对称轴为直线x =1,根据对称性,另一个交点为(3,0),故③正确;根据图象可知,x 的取值范围是﹣1<x <3时;抛物线在x 轴上方,故④正确; 故选:B .【点睛】本题考查二次函数图象与系数的关系,解题的关键是熟练正确理解二次函数图象与系数的关系,本题属于中等题型.9.B解析:B【分析】由函数图像与对称轴的方程结合可判断①,由抛物线与x 轴有两个交点,可判断②,由抛物线的对称轴为:1,2b x a=-= 可得2,b a =-结合图像可得当2x =-时,42y a b c =-+<0, 可判断③,由图像可得当2x =时,4+2y a b c =+>0,当1x =-时,y a b c =-+>0,两式相加可得:52a b c ++>0,可判断④,从而可得答案.【详解】 解: 图像开口向下,a ∴<0,12b x a==->0, b ∴>0, 函数图像与y 轴交于正半轴,c ∴>0,abc ∴<0,故①不符合题意;抛物线与x 轴有两个交点,24b ac ∴->0, 故②符合题意;抛物线的对称轴为:1,2b x a=-= 2,b a ∴=-当2x =-时,42y a b c =-+<0,()422a a c ∴-⨯-+<0,8a c ∴+<0,故③符合题意;当2x =时,4+2y a b c =+>0,当1x =-时,y a b c =-+>0,两式相加可得:52a b c ++>0,故④符合题意;故选:.B【点睛】本题考查的是抛物线的图像与系数之间的关系,二次函数的性质,掌握以上知识是解题的关键.10.D解析:D【分析】将函数图形变成顶点式,依照二次函数的性质对比四个选项即可得出结论.【详解】解:A. 2223=(1)4y x x x =--+-++∵a=-1<0,∴图象的开口向下,故选项A 错误;B.2223=(1)4y x x x =--+-++∴图象的对称轴为直线1x =-,故选项B 错误;C.2223=(1)4y x x x =--+-++∵a=-1<0,∴图象的开口向下,函数有最大值,故选项C 错误;D. 2223=(1)4y x x x =--+-++∴当1x >-时,函数值y 随自变量x 的增大而减小,故选项D 正确;故选:D .【点睛】本题考查二次函数的性质,解题的关键是将二次函数关系式变为顶点式,联立二次函数性质对比四个选项即可.11.D解析:D【分析】根据“左加右减、上加下减”的原则进行解答即可.【详解】解:将抛物线y=-2(x-1)2+4向右平移3个单位,再向下平移2个单位长度后得到抛物线的解析式为:y=-2(x-1-3)2+4-2,即y=-2(x-4)2+2;故选:D .【点睛】此题主要考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.12.A解析:A【分析】二次函数y =ax 2+bx +c (a ≠0),①当a >0时,抛物线y =ax 2+bx +c (a ≠0)的开口向上;②当a <0时,抛物线y =ax 2+bx +c (a ≠0)的开口向下,据此判断即可.【详解】解:A 、∵a >0, ∴2y =的图象开口向上,故本选项符合题意;B 、∵a =﹣1<0,∴y =﹣x 2+2x +1的图象开口向下,故本选项不符合题意;C 、∵a =﹣2<0,∴y =﹣2x 2+x 的图象开口向下,故本选项不符合题意;D 、∵a =﹣0.5<0,∴y =﹣0.5x 2+x 的图象开口向下,故本选项不符合题意;故选:A .【点睛】本题考查二次函数的图象和性质,解答本题的关键是明确题意,利用二次函数的性质解答.二、填空题13.【分析】根据二次函数表达式是易得新抛物线的顶点然后得到经过平移后的原抛物线的顶点根据平移不改变二次项的系数可得原抛物线解析式【详解】解:∵平移后抛物线的解析式是∴此抛物线的顶点为(14)∵向左平移3 解析:()226y x =++【分析】根据二次函数表达式是()214y x =-+易得新抛物线的顶点,然后得到经过平移后的原抛物线的顶点,根据平移不改变二次项的系数可得原抛物线解析式.【详解】解:∵平移后抛物线的解析式是()214y x =-+,∴此抛物线的顶点为(1,4),∵向左平移3个单位,再向上平移2个单位可得原抛物线顶点,∴原抛物线顶点为(-2,6),∴原抛物线的解析式是()226y x =++. 故答案为:()226y x =++.【点睛】本题考查了二次函数图象与性质,掌握二次函数图象的平移与坐标的变化规律是解题的关键. 14.24【分析】以FE 为x 轴以FC 为y 轴先建立平面直角坐标系求出AB 的解析式为设P (a )用含a 的式子表示出PMPN 根据矩形面积公式列式根据二次函数的性质即可求解【详解】解:以FE 为x 轴以FC 为y 轴建立平解析:24【分析】以FE 为x 轴,以FC 为y 轴,先建立平面直角坐标系,求出A B 的解析式为223AB y x =--,设P (a ,223a --),用含a 的式子表示出PM ,PN ,根据矩形面积公式列式,根据二次函数的性质即可求解.【详解】解:以FE 为x 轴,以FC 为y 轴,建立平面直角坐标系,∵边长为6的正方形FCDE 中,A 为EF 的中点,2BF =,∴A (-3,0),B (0,-2),C (0,-6),E (-6,0),设A B 的解析式为AB y kx b =+,则032k b b =-+⎧⎨=-⎩,解得232k b ⎧=-⎪⎨⎪=-⎩, ∴223AB y x =--(30x -≤≤), 设P (a ,223a --)(30a -≤≤),则PM=6+a ,PN=()2226433a a ----=-,∴()2PNDM 22=642433S a a a ⎛⎫+-=-+ ⎪⎝⎭矩形, ∴当a =0时,矩形PNDM 面积的最大值是24.故答案为:24.【点睛】本题考查了二次函数的应用问题,用待定系数法求一次函数的解析式,矩形的面积,正方形的性质等知识点,能灵活运用知识点是解此题的关键.15.或【分析】不等式的解集对应图象上面为二次函数图象比反比例函数图象高的部分找出x 的范围即可【详解】解:不等式的解对应图象上面为二次函数图象比反比例函数图象高的部分∴不等式的解为或故答案为:或【点睛】本 解析:10x -<<或13x <<【分析】不等式的解集对应图象上面为二次函数图象比反比例函数图象高的部分,找出x 的范围即可.【详解】 解:不等式2k ax bx c x++>的解对应图象上面为二次函数图象比反比例函数图象高的部分,∴不等式2k ax bx c x++>的解为10x -<<或13x <<, 故答案为:10x -<<或13x <<.【点睛】本题考查利用函数图象解不等式,即比较图象的高低.16.y2<y1<y3【分析】利用二次函数图象上点的坐标特征可分别求出y1y2y3的值结合a >0即可得出4a+c <9a+c <16a+c 即y2<y1<y3【详解】解:当x =﹣1时y1=a (﹣1﹣2)2+c =解析:y 2<y 1<y 3.【分析】利用二次函数图象上点的坐标特征可分别求出y 1,y 2,y 3的值,结合a >0,即可得出4a+c <9a+c <16a+c ,即y 2<y 1<y 3.【详解】解:当x =﹣1时,y 1=a (﹣1﹣2)2+c =9a +c ;当x =4时,y 2=a (4﹣2)2+c =4a +c ;当x =6时,y 3=a (6﹣2)2+c =16a +c .∵a >0,∴4a +c <9a +c <16a +c ,∴y 2<y 1<y 3.故答案为:y 2<y 1<y 3.本题考查了二次函数图象上点的坐标特征,利用二次函数图象上点的坐标特征,分别求出y 1,y 2,y 3的值是解题的关键.17.直线x =﹣1(﹣1﹣5)【分析】把一般式化为顶点式计算即可;【详解】∵y =x2+2x ﹣4=(x+1)2﹣5∴该函数图象的对称轴是直线x =﹣1顶点坐标为(﹣1﹣5)故答案为:直线x =﹣1(﹣1﹣5)【解析:直线x =﹣1 (﹣1,﹣5)【分析】把一般式化为顶点式计算即可;【详解】∵y =x 2+2x ﹣4=(x +1)2﹣5,∴该函数图象的对称轴是直线x =﹣1,顶点坐标为(﹣1,﹣5),故答案为:直线x =﹣1,(﹣1,﹣5).【点睛】本题主要考查了二次函数对称轴和顶点坐标的求解,准确计算是解题的关键.18.【分析】利用函数图象通过确定函数和的图象与直线的交点位置可得到m 与n 的大小【详解】解:方程的解为函数的图象与直线的交点的横坐标的解为一次函数与直线的交点的横坐标如图由图象得故答案为:【点睛】本题考查 解析:m n <【分析】利用函数图象,通过确定函数2(3)y x x =-和3y x =-的图象与直线1y =的交点位置可得到m 与n 的大小.【详解】解:方程2(3)1x x -=的解为函数2(3)y x x =-的图象与直线1y =的交点的横坐标,31x -=的解为一次函数3y x =-与直线1y =的交点的横坐标,如图,由图象得m n <.故答案为:m n <.本题考查了函数图象的应用,会利用图象的交点的坐标表示方程或方程组的解是解题的关键.19.【分析】先把抛物线解析式整理出顶点式形式再根据规律求出平移后的抛物线再求出抛物线与轴的交点坐标即可【详解】解:∵∴抛物线向左平移2个单位长度再向下平移个单位长度得:∴平移后的抛物线顶点坐标为(10) 解析:()1,0【分析】先把抛物线解析式整理出顶点式形式,再根据规律求出平移后的抛物线,再求出抛物线与x 轴的交点坐标即可.【详解】解:∵22610=(3)1y x x x =-+-+,∴抛物线2610y x x =-+向左平移2个单位长度,再向下平移1个单位长度,得: 222610=(3+2)11(1)y x x x x =-+-+-=-∴平移后的抛物线顶点坐标为(1,0),即所得到的抛物线与x 轴的交点坐标为(1,0).故答案为:(1,0).【点睛】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式,本题巧妙之处在于抛物线顶点坐标在x 轴上.20.【分析】由点AB 的坐标利用二次函数的对称性可求出b 的值利用二次函数图象上点的坐标特征可找出m 和n 的大小关系【详解】解:∵二次函数y=x2+bx+c 的图象经过点A (-4m )B (2m )∴∴b=2∵点A(解析:m n <【分析】由点A 、B 的坐标利用二次函数的对称性可求出b 的值,利用二次函数图象上点的坐标特征可找出m 和n 的大小关系.【详解】解:∵二次函数y=x 2+bx+c 的图象经过点A (-4,m )、B (2,m ), ∴42122b -+-==-, ∴b=2, ∵点A(-4,m),C (6,n )在二次函数y=x 2+bx+c 的图象上,∴m=16-8+c=8+c ;n=36+12+c=48+c ,∴m <n ,故答案为:<.【点睛】本题考查了二次函数图象上点的坐标特征以及二次函数的性质,利用二次函数图象上点的坐标特征得到m ,n 的大小是解题的关键.三、解答题21.(1)抛物线解析式为:21566y x x =-,抛物线的对称轴为:x=52;(2)使以,,A B M 为顶点的三角形是等腰三角形点M 的坐标为;M15102⎛ ⎝⎭,,M2510+22⎛ ⎝⎭, ,M 3522⎛ ⎝⎭,,M4522⎛⎫ ⎪ ⎪⎝⎭,-. 【分析】(1)抛物线经过原点O ,与x 轴交于点()5,0A ,代入抛物线得0125506c b =⎧⎪⎨⨯+=⎪⎩解方程组即可;(2)OA=5,对称轴与x 轴交点为OA 中点, AB 中点在对称轴上,AB 只能作等腰三角形的腰,分两种情况①当AB=BM ,②AB=AM ,求出AB =M (5,2m ),【详解】解:(1)抛物线216y x bx c =++经过原点O ,与x 轴交于点()5,0A , 把O (0,0),()5,0A 代入抛物线得0125506c b =⎧⎪⎨⨯+=⎪⎩, 解得:056c b =⎧⎪⎨=-⎪⎩, 抛物线解析式为:21566y x x =-, 抛物线的对称轴为:x=55612226b a --=-=⨯;(2)∵OA=5,对称轴x 52=,对称轴与x 轴交点为OA 中点,对称轴平行y 轴,AB 中点在对称轴上, ∴AB 只能作等腰三角形的腰, 分两种情况: ①AB=BM ,AB=222210555OA OB +=+=,设M (5,2m ),BM=()225+102m ⎛⎫- ⎪⎝⎭, ∴()225+10=552m ⎛⎫- ⎪⎝⎭, ()247510=4m -, 51910=m -±, 1251951910,1022m m =-=+, M 155191022⎛⎫- ⎪ ⎪⎝⎭,,M 2551910+22⎛⎫ ⎪ ⎪⎝⎭,,②AM=AB ,M (5,2m ),22552m ⎛⎫-+ ⎪⎝⎭ ∴2255=552m ⎛⎫-+ ⎪⎝⎭ 2475=4m , 519=m ±,M 355192⎛⎫ ⎪ ⎪⎝⎭,,M 455192⎛⎫ ⎪ ⎪⎝⎭,-,使以,,A B M 为顶点的三角形是等腰三角形点M 的坐标为;M 155191022⎛- ⎝⎭,,M 255192⎛ ⎝⎭, ,M 355192⎛ ⎝⎭,,M 455192⎛ ⎝⎭,. 【点睛】本题考查抛物线的解析式与对称轴,等腰三角形的性质,勾股定理,掌握待定系数法求抛物线解析式的方法与对称轴公式,等腰三角形的性质,勾股定理,关键是分类考虑①当AB=BM ,②AB=AM ()225+10=552m ⎛⎫- ⎪⎝⎭2255=552m ⎛⎫-+ ⎪⎝⎭ 22.(1)(0,1)-;(2)见解析;(3)当1k =时,函数存在最小值1-.【分析】(1)()21y k x x x +=--,由20x x +=,可得1=0x x =-,,当x=0,求得y=-1即可;(2)当x=-1,将1x =-代入,得2(1)(1)(1)10y k k =-+-⋅--=即可; (3),(1),1a k b k c ==-=-,由最值公式2244(1)144ac b k k a k----==-,整理得2(1)k =0,解得:121k k ==即可.【详解】解:(1)()21y k x x x +=--,∴20x x +=,∴()10x x +=,所以1=00x x +=,,当x=0,y=-1, 恒过(0,1)-,当10x +=,x=-1,y=0,恒过(-1,0);(2)将1x =-代入,得2(1)(1)(1)10y k k =-+-⋅--=,故不论k 取何值,此函数图象一定经过点(1,0)-;(3)2(1)1y kx k x =+--,,(1),1a k b k c ==-=-,2244(1)144ac b k k a k----==-, 整理得2(1)k =0,解得:121k k ==,0k >,开口向上,符合题意.∴当1k =时,函数存在最小值1-.【点睛】本题考查抛物线的性质,抛物线过定点,抛物线最小值,掌握抛物线的性质,求抛物线过定点的方法,以及最值得求法是解题关键.23.(1)223y x x =--,1y x =--;(2)22MF m m =-++【分析】(1)把点A 和点B 的坐标代入抛物线解析式求出b 和c 的值即可求出抛物线解析式;再把点C 的横坐标代入已求出的抛物线解析式可求出其纵坐标,进而可求出直线AC 的表达式;(2)已知点M 的横坐标为m ,点M 又在直线AB 上,所以可求出其纵坐标,而点F 在抛物线上,所以可求出其纵坐标,进而可用m 的代数式表示MF 的长.【详解】解:(1)把A (-1,0)、B (3,0)代入y=x 2+bx-c 得:01093b c b c --⎧⎨+-⎩==, 解得:23b c =-⎧⎨=⎩, ∴解析式为:y=x 2-2x-3,把x=2代入y=x 2-2x-3得y=-3,∴C (2,-3),设直线AC 的解析式为y=kx+n ,把A (-1,0)、C (2,-3)代入得023k n k n -+=⎧⎨+=-⎩, 解得:11k n =-⎧⎨=-⎩, ∴直线AC 的解析式为1y x =--;(2)∵点M 在直线AC 上,∴M 的坐标为(m ,-m-1);∵点F在抛物线y=x2-2x-3上,∴F点的坐标为(m,m2-2m-3),∴MF=(-m-1)-( m2-2m-3)=-m2+m+2.【点睛】本题考查了待定系数法求二次函数的解析式、待定系数法求一次函数的解析式、二次函数图象上点的坐标特征.在(1)中注意待定系数法的应用步骤,在(2)中用m表示出点M、F的坐标是解题的关键.24.(1)y=x2﹣4x+3,m的值为3,见解析;(2)y=x2【分析】(1)由二次函数图象经过点(1,0),(3,0),设出交点式,利用待定系数法求函数解析式,进一步代入点得出m的值;然后利用表中的点描点,画出函数图象即可;(2)将抛物线解析式化为顶点式,再根据“上加下减、左加右减”的原则进行解答即可.【详解】解:(1)抛物线y=ax2+bx+c(a≠0)过点(1,0),(3,0),可设抛物线解析式为y =a(x﹣1)(x﹣3)∵过点(0,3),∴3=3a,解得a=1,∴y=(x﹣1)(x﹣3)=x2﹣4x+3,当x=4时,y=16﹣16+3=3,∴抛物线的解析式为y=x2﹣4x+3,m的值为3,函数图象如下:(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴将函数y=x2﹣4x+3向左平移2个单位,再向上平移1个单位,得y=(x﹣2+2)2﹣1+1,即y=x2,所以平移后的函数解析式为y=x2.【点睛】本题考查了待定系数法、抛物线的平移和画函数图象,解题关键是熟练运用待定系数法,掌握抛物线平移规律.25.(1)y=-x 2-2x+3;(2)点P 的坐标为(2,-5)或(-4,-5);(3)∠ACB 的正切值为2.【分析】(1)设抛物线解析式()()31y a x x =+-,由抛物线与y 轴交于点C (0,3),-3=3,a a =-1即可;(2)设P 点的纵坐标为h ,由S △PAB =10,可得5h =,当h=5时,点P 为抛物线一点,2+220x x +=,=4-80∆<无解,当h=-5时, 2+280x x -=,=4+32=360∆>,解方程可求点P 的坐标为(2,-5)或(-4,-5);(3)过B 作BD ⊥AC 于D ,在Rt △BOC 中OB=1,OC=3,由勾股定理,AC=S △ABC =11AB OC=AC BD 22⋅⋅即1143=22⨯⨯⨯,可求tan ∠ACB=BD =CD 计算即可. 【详解】解:(1)∵抛物线与x 轴相交于点A (﹣3,0)、点B (1,0),设抛物线解析式为()()31y a x x =+-,∵抛物线与y 轴交于点C (0,3),∴-3=3,a a =-1,∴y=-x 2-2x+3;(2)设P 点的纵坐标为h ,∵AB=1+3=4, S △PAB =10, ∵ABP 1S =AB 2102h h ∆⋅==, ∴5h =,当h=5时,点P 为抛物线一点,∴2235x x --+=,∴2+220x x +=,=4-80∆<无解,当h=-5时,∴2235x x --+=-,∵2+280x x -=,=4+32=360∆>,∴()()240x x -+=,∴122,4x x ==-,∴点P 的坐标为(2,-5)或(-4,-5);(3)过B 作BD ⊥AC 于D ,在Rt △BOC 中OB=1,OC=3,∴22OB +OC =1+9=10在Rt △AOC 中,AO=3,∴22OA +OC =9+9=32∵S △ABC =11AB OC=AC BD 22⋅⋅即1143=32BD 22⨯⨯⨯, ∴BD=22在Rt △BDC 中,由勾股定理22DC=BC BD =2-∴由正切定义tan ∠ACB=BD 22=CD 2, ∴∠ACB 的正切值为2.【点睛】本题考查抛物线的解析式,三角形面积求法,三角函数等知识,掌握抛物线的解析式,三角形面积求法,三角函数等知识是解题关键.26.(1)2142y x x =-++;(2)142y x =+. 【分析】(1)已知了抛物线的对称轴以及AB 的长,即可得到A 、B 的坐标,代入抛物线的解析式中求得待定系数的值,即可得出抛物线的解析式;(2)由于△ECO 和△ACO 的高都为OC ,根据等高三角形的面积比等于底边比可知:OE :OA =4:1,据此可求出E 点坐标,然后根据E 、C 坐标可用待定系数法求出直线EC 的解析式.【详解】解:(1)∵抛物线的对称轴为直线x =1,12a =-, ∴12b a-=, ∴1b =,∵AB =6,∴A (−2,0),B (4,0),将B (4,0),1b =代入解析式212y x bx c =-++得4c =, ∴抛物线的解析式为:2142y x x =-++; (2)S △ECO =12EO•OC ,S △ACO =12AO•OC , ∵S △ECO =4S △ACO ,且OA=2,∴EO =4AO =8,∵点E 在A 点的左侧,∴E (−8,0),由抛物线的解析式得:C (0,4),设直线EC 的解析式为:y =kx +b ,将E (−8,0),C (0,4),代入得:804k b b -+=⎧⎨=⎩, 解得124k b ⎧=⎪⎨⎪=⎩,∴直线EC 的解析式为142y x =+. 【点睛】本题综合考查了二次函数的图象与性质、待定系数法求函数解析式等知识,熟练掌握二次函数的图象与性质并能准确利用待定系数法求函数解析式是解题的关键.。

《第22章 二次函数》单元检测试卷及答案(共6套)

《第22章 二次函数》单元检测试卷及答案(共6套)

《第22章二次函数》单元检测试卷(一)一、选择题:1.若(2,5),(4,5)是抛物线y=ax2+bx+c上的两个点,则它的对称轴是( )A.x=1B.x=2C.x=3D.x=42.抛物线y=2(x+3)2+1的顶点坐标是()A.(3,1)B.(3,﹣1)C.(﹣3,1)D.(﹣3,﹣1)3.下列函数中,是二次函数的有( )①y=1-x2;②y=;③y=x(1-x);④y=(1-2x)(1+2x).A.1个B.2个C.3个D.4个4.二次函数y=a(x+k)2+k(a≠0),无论k取何值,其图象的顶点都在( )A.直线y=x上B.直线y=-x上C.x轴上D.y轴上5.把抛物线y=(x+1)2向下平移2个单位,再向右平移1个单位,所得到抛物线是( )A.y=(x+2)2+2B.y=(x+2)2-2C.y=x2+2D.y=x2-26.在一定条件下,若物体运动的路程s(米)与时间t(秒)的关系式为s=5t2+2t,则当t=4时,该物体所经过的路程为( )A.88米B.68米C.48米D.28米7.二次函数y=x2+2x-3的开口方向、顶点坐标分别是()A.开口向上,顶点坐标为(-1,-4)B.开口向下,顶点坐标为(1,4)C.开口向上,顶点坐标为(1,4)D.开口向下,顶点坐标为(-1,﹣4)8.在同一坐标系中,一次函数y=ax+b与二次函数y=ax2﹣b的图象可能是()9.将进货单价为40元的商品按50元出售时,就能卖出500个.已知这种商品每个涨价1元,其销售量就减少10个,为了赚得8000元的利润,商品售价应为()A.60元B.80元C.60元或80元D.30元10.如图是一个横断面为抛物线形状的拱桥,当水面宽4m时,拱顶(拱桥洞的最高点)离水面2m,当水面下降1m时,水面的宽度为()A.3 B.2 C.3 D.211.向空中发射一枚炮弹,经x秒后的高度为y米,且时间与高度的关系为y=ax2+bx+c(a≠0).若此炮弹在第7秒与第14秒时的高度相等,则在下列时间中炮弹所在高度最高的是()A.第8秒B.第10秒C.第12秒D.第15秒12.已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A.当a=1时,函数图象过点(﹣1,1)B.当a=﹣2时,函数图象与x轴没有交点C.若a>0,则当x≥1时,y随x的增大而减小D.若a<0,则当x≤1时,y随x的增大而增大二、填空题:13若把二次函数y=x2+6x+2化为y=(x-h)2+k的形式,其中h,k为常数,则h+k= .14.抛物线y=(x-1)2+2的顶点坐标是 .15.已知点A(x1,y1)、B(x2,y2)都在二次函数y=﹣2(x﹣2)2+1的图象上,且x1<x2<2,则1,y1、y2的大小关系是.16a、b、c是实数,点A(a+1、b)、B(a+2,c)在二次函数y=x2﹣2ax+3的图象上,则b、c的大小关系是b c(用“>”或“<”号填空)17.将抛物线y=3(x﹣4)2+2向右平移1个单位长度,再向下平移3个单位长度,平移后抛物线的解析式是.18.二次函数y=x2的图象如图,点O为坐标原点,点A在y轴的正半轴上,点B、C在二次函数y=x2的图象上,四边形OBAC为菱形,且∠OBA=120°,则菱形OBAC的面积为.19.如图,在平面直角坐标系中,二次函数y=ax2+c(a≠0)的图象过正方形ABOC的三个顶点A、B、C,则ac的值是_______.三、解答题:20.已知抛物线y=ax2+bx+3的对称轴是直线x=1.(1)求证:2a+b=0;(2)若关于x的方程ax2+bx﹣8=0的一个根为4,求方程的另一个根.21.已知二次函数y=x 2+bx+c 的图象经过点(0,2)和(1,﹣1),求图象的顶点坐标和对称轴.22. 如图,一次函数y 1=kx +1与二次函数y 2=ax 2+bx -2交于A ,B 两点,且A(1,0),抛物线的对称轴是x =-32.(1)求k 和a ,b 的值;(2)求不等式kx +1>ax 2+bx -2的解集.23.在平面直角坐标系xOy 中,抛物线y =ax 2+bx +2过B(-2,6),C(2,2)两点.(1)试求抛物线的解析式;(2)记抛物线顶点为D ,求∠BCD 的面积;(3)若直线y =-12x 向上平移b 个单位所得的直线与抛物线BDC(包括端点B ,C)部分有两个交点,求b 的取值范围.24.杂技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B 处,其身体(看成一点)的路线是抛物线的一部分,如图。

二次函数单元测试题及答案

二次函数单元测试题及答案

二次函数单元测试题及答案一、选择题1. 二次函数y = ax^2 + bx + c中,当a的值变为原来的2倍时,函数图像如何变化?A. 向上平移B. 向下平移C. 向左平移D. 向右平移答案:B2. 下列哪个选项是二次函数的标准形式?A. y = x^2 + 2x + 1B. y = 2x^2 - 3x + 4C. y = 3x + 4D. y = x - 2答案:B3. 若二次函数y = -2x^2 + 3x + 1的顶点坐标为(1, 2),则下列哪个选项是正确的?A. a = -2, b = 3, c = 1B. a = 2, b = -3, c = -1C. a = -2, b = -3, c = -1D. a = 2, b = 3, c = 1答案:A4. 二次函数y = 3x^2 - 6x + 9的最小值是多少?A. 0B. 3C. 9D. 无法确定答案:C5. 如果二次函数y = x^2 + 4x + 4的图像与x轴相交于两点A和B,那么线段AB的长度是多少?A. 2B. 4C. 6D. 8答案:C二、填空题6. 已知二次函数y = 2x^2 - 5x + 3,其顶点坐标为__________。

答案:(1, -1)7. 函数y = -x^2 + 4x - 3的最大值是__________。

答案:18. 若二次函数y = 3x^2 - 2x - 5的图像关于y轴对称,则新的函数表达式为y = __________。

答案:y = 3x^2 + 2x - 5三、解答题9. 已知二次函数y = -2x^2 + 6x + 3,求该函数在x = -1时的函数值。

答案:当x = -1时,y = -2*(-1)^2 + 6*(-1) + 3 = -2 - 6 + 3 =-5。

10. 给定二次函数y = x^2 - 6x + 9,求该函数的对称轴方程。

答案:对称轴为x = -b/(2a) = -(-6)/(2*1) = 3。

二次函数单元测试卷(含答案)

二次函数单元测试卷(含答案)

二次函数单元测试卷一、选择题(每小题3分,共30分)1. 当-2≤ x ≦1,二次函数y=-(x-m )2+ m 2+1有最大值4,则实数m 值为( )A.-47B. 3或-3C.2或-3D. 2或3或-47 2. 函数22y mx x m =+-(m 是常数)的图像与x 轴的交点个数为()A. 0个 B .1个 C .2个 D .1个或2个3. 关于二次函数2y ax bx c =++的图像有下列命题:①当0c =时,函数的图像经过原点;②当0c >,且函数的图像开口向下时,方程20ax bx c ++=必有两个不相等的实根;③函数图像最高点的纵坐标是244ac b a -;④当0b =时,函数的图像关于y 轴对称.其中正确命题的个数是()A. 1个B .2个C .3个D .4个4. 关于x 的二次函数22(81)8y mx m x m =+++的图像与x 轴有交点,则m 的范围是( )A .116m <-B .116m -≥且0m ≠C .116m =-D .116m >-且0m ≠5. 下列二次函数中有一个函数的图像与x 轴有两个不同的交点,这个函数是( ) A .2y x =B .24y x =+C .2325y x x =-+D .2351y x x =+-6. 若二次函数2y ax c =+,当x 取1x 、2x (12x x ≠)时,函数值相等,则当x 取12x x +时,函数值为( )A .a c +B .a c -C .c -D .c7. 下列二次函数中有一个函数的图像与坐标轴有一个交点,这个函数是( ) A .1x y 2—=B .24y x =+ C .1x 2x y 2+=— D .2351y x x =+-8. 抛物线2321y x x =-+-的图象与坐标轴交点的个数是( )A .没有交点B .只有一个交点C .有且只有两个交点D .有且只有三个交点9. 函数2y ax bx c =++的图象如图所示,那么关于x 的一元二次方程230ax bx c ++-=的根的情况是()A .有两个不相等的实数根B .有两个异号的实数根C .有两个相等的实数根D .没有实数根10..若把函数y=x 的图象用E (x ,x )记,函数y=2x+1的图象用E (x ,2x+1)记,……则 E (x ,122+-x x )可以由E (x ,2x )怎样平移得到?A .向上平移1个单位B .向下平移1个单位C .向左平移1个单位D .向右平移1个单位 二、填空题(每小题3分,共24分) 11. 抛物线2283y x x =--与x 轴有个交点,因为其判别式24b ac -=0,相应二次方程23280x x -+=的根的个数为.12. 关于x 的方程25mx mx m ++=有两个相等的实数根,则相应二次函数25y mx mx m =++-与x 轴必然相交于点,此时m =.13. 抛物线2(21)6y x m x m =---与x 轴交于两点1(0)x ,和2(0)x ,,若121249x x x x =++,要使抛物线经过原点,应将它向右平移个单位.14.如图所示,函数2(2)(5)y k x k =-+-的图像与x 轴只有一个交点,则交点的横坐标0x =.15. 已知二次函数212y x bx c =-++,关于x 的一元二次方程2102x bx c -++=的两个实 根是1-和5-,则这个二次函数的解析式为16. 若函数y=(m ﹣1)x 2﹣4x+2m 的图象与x 轴有且只有一个交点,则m 的值为 17.y =x2-k 2与抛物线y =x 2+2x +2-2k 的交点在第 象限.18. 将二次三项式x 2+16x+100化成(x+p )2+q 的形式应为 三、解答题(本大题共7小题,共66分)19..(7分)已知一个二次函数的图象经过点(0,0),(1,﹣3),(2,﹣8),求函数解析式。

第二章《二次函数》2018-2019学年单元测试(含答案)

第二章《二次函数》2018-2019学年单元测试(含答案)

单元测试(二) 二次函数(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1.抛物线y =-2x 2+1的对称轴是(C )A .直线x =12B .直线x =-12C .y 轴D .直线x =2 2.将二次函数y =x 2-2x +3化为y =(x -h )2+k 的形式,结果为(D )A .y =(x +1)2+4B .y =(x +1)2+2C .y =(x -1)2+4D .y =(x -1)2+2 3.若函数y =axa 2-2a -6是二次函数且图象开口向上,则a =(B )A .-2B .4C .4或-2D .4或34.在平面直角坐标系中,二次函数y =a (x -h )2(a ≠0)的图象可能是(D )A. B.C. D.5.二次函数y =(x -2)2+3是由二次函数y =x 2怎样平移得到的(A ) A .向右平移2个单位长度,向上平移3个单位长度 B .向左平移2个单位长度,向上平移3个单位长度 C .向右平移3个单位长度,向上平移2个单位长度 D .向右平移2个单位长度,向下平移3个单位长度6.若二次函数y =ax 2+bx +c (a <0)的图象经过点(2,0),且其对称轴为直线x =-1,则使函数值y >0成立的x 的取值范围是(B )A .x <-4或x >2B .-4<x <2C .x ≤-4或x ≥2D .-4≤x ≤27.如图所示的桥拱是抛物线形,其函数的表达式为y =-14x 2,当水位线在AB 位置时,水面宽12 m ,这时水面离桥顶的高度为(C )A .3 mB .2 6 mC .9 mD .4 3 m8.如图,二次函数y =ax 2+bx +c (a >0)图象的顶点为D ,其图象与x 轴的交点A ,B 的横坐标分别为-1和3,则下列结论正确的是(D )A .2a -b =0B .a +b +c >0C .3a -c =0D .当a =12时,△ABD 是等腰直角三角形9.若二次函数y =ax 2+1的图象经过点(-2,0),则关于x 的方程a (x -2)2+1=0的实数根为(A )A .x 1=0,x 2=4B .x 1=-2,x 2=6C .x 1=32,x 2=52D .x 1=-4,x 2=010.如图,垂直于x 轴的直线AB 分别与抛物线C 1:y =x 2(x ≥0)和抛物线C 2:y =x 24(x ≥0)交于A ,B 两点,过点A 作CD ∥x 轴,分别与y 轴和抛物线C 2交于点C ,D ,过点B 作EF ∥x 轴,分别与y 轴和抛物线C 1交于点E ,F ,则S △OFBS △EAD的值为(C )A.26B.24C.16D.14二、填空题(每小题3分,共15分)11.如果点A (-2,y 1)和点B (2,y 2)是抛物线y =(x +3)2上的两点,那么 y 1<y 2.(填“>”“=”或“<”)12.已知函数y =ax 2+bx +c ,当x =3时,函数取最大值4,当x =0时,y =-14,则函数表达式为y =-2(x -3)2+4.13.平时我们在跳绳时,绳子甩到最高处的形状可近似看作抛物线,如图,建立平面直角坐标系,抛物线的函数表达式为y =-16x 2+13x +32(单位:m ),绳子甩到最高处时刚好通过站在x =2点处跳绳的学生小明的头顶,则小明的身高为1.5__m .14.如图,抛物线y =ax 2+bx +c 与x 轴相交于点A ,B (m +2,0)与y 轴相交于点C ,点D 在该抛物线上,坐标为(m ,c ),则点A 的坐标是(-2,0).15.老师出示了小黑板上的题后(如图),小华说:过点(3,0);小彬说:过点(4,3);小明说:a =1;小颖说:抛物线被x 轴截得的线段长为2.你认为四人的说法中,正确的有小华、小彬、小明.(填写姓名即可)三、解答题(本大题共8个小题,满分75分)16.(8分)已知二次函数y =ax 2+bx +c 中,函数值y 与自变量x 的部分对应值如下表:(1)求该二次函数的表达式;(2)当x 为何值时,y 有最小值,最小值是多少? 解:(1)y =(x -2)2+1. (2)当x =2时,y 有最小值1.17.(9分)如图,抛物线y =ax 2+bx +c 与x 轴交于点A (2,0),B (4,0),且过点C (0,4). (1)求出抛物线的表达式和顶点坐标;(2)请你求出抛物线向左平移3个单位长度,再向上平移1.5个单位长度后抛物线的表达式.解:(1)根据题意得:⎩⎪⎨⎪⎧4a +2b +c =0,16a +4b +c =0,c =4.解得⎩⎪⎨⎪⎧a =12,b =-3,c =4.∴抛物线的表达式为y = 12x 2-3x +4.∵y =12x 2-3x +4=12(x -3)2-12,∴顶点坐标为(3,-12).(2)抛物线向左平移3个单位长度,再向上平移1.5个单位长度后抛物线的表达式为y =12x 2+1.18.(9分)如图,以直线x =1为对称轴的抛物线y =ax 2+bx +c (a ,b ,c 为常数)经过A (4,0)和B (0,4)两点,其顶点为C.(1)求该抛物线的表达式及其顶点C 的坐标;(2)若点M 是抛物线上的一个动点,且位于第一象限内. ①设△ABM 的面积为S ,试求S 的最大值; ②若S 为整数,则这样的M 点有3个.解:(1)∵对称轴为直线x =1,∴x =-b2a =1.∵抛物线经过点A (4,0)和B (0,4), ∴⎩⎪⎨⎪⎧0=16a +4b +c ,4=c ,-b 2a =1.解得⎩⎪⎨⎪⎧a =-12,b =1,c =4.∴抛物线的表达式为y =-12x 2+x +4.当x =1时,y =-12×1+1+4=92.∴顶点坐标为(1,92).(2)过点M 作MN ∥y 轴交AB 于点N . 设M (x ,-12x 2+x +4)(0<x <4),∵A (4,0),B (0,4)∴直线AB 的表达式为y =-x +4. ∴N (x ,-x +4).∴MN =-12x 2+2x .∵S △ABM =S △AMN +S △BMN =12(-12x 2+2x )(4-x )+12(-12x 2+2x )·x =12(-12x 2+2x )·4=2(-12x 2+2x )=-x 2+4x =-(x -2)2+4.∵0<x <4,∴当x =2时,S △ABM 的最大值为4.19.(9分)某企业投资100万元引进一条产品加工生产线,若不计维修、保养费用,预计投产后每年可创利33万元.该生产线投产后,从第1年到第x 年的维修、保养费用累计为y 万元,且y =ax 2+bx ,若第1年的维修、保养费用为2万元,第2年为4万元. (1)求y 的函数表达式;(2)投产后,这个企业在第几年就能收回投资?解:(1)由题意,x =1时,y =2;x =2时,y =2+4=6,分别代入y =ax 2+bx ,得⎩⎪⎨⎪⎧a +b =2,4a +2b =6.解得⎩⎪⎨⎪⎧a =1,b =1.∴y =x 2+x .(2)设第1年到第x 年利润为g 万元,则g =33x -100-x 2-x =-x 2+32x -100=-(x -16)2+156.当g =0时,x 1=16+239,x 2=16-239≈3.5,故当x =4时,即第4年可收回投资. 答:投产后,这个企业在第4年就能收回投资.20.(9分)如图,矩形ABCD 的两边长AB =18 cm ,AD =4 cm ,点P ,Q 分别从A ,B 同时出发,P 在边AB 上沿AB 方向以每秒2 cm 的速度匀速运动,Q 在边BC 上沿BC 方向以每秒1 cm 的速度匀速运动.设运动时间为x 秒,△PBQ 的面积为y (cm 2). (1)求y 关于x 的函数表达式,并写出x 的取值范围; (2)求△PBQ 的面积的最大值.解:(1)∵S △PBQ =12PB ·BQ ,PB =AB -AP =18-2x ,BQ =x ,∴y =12x (18-2x ),即y =-x 2+9x (0<x ≤4).(2)由(1)知y =-x 2+9x ,∴y =-(x -92)2+814.∵当0<x ≤92时,y 随x 的增大而增大,而0<x ≤4,∴当x =4时,y 最大=20,即△PBQ 的最大面积是20 cm 2.21.(10分)九年级七班“数学兴趣小组”对函数的对称变换进行探究,以下是探究发现运用过程,请补充完整. (1)操作发现在作函数y =|x |的图象时,采用了分段函数的办法,该函数转化为y =⎩⎪⎨⎪⎧x (x≥0),-x (x<0).请在如图1所示的平面直角坐标系中作出函数的图象; (2)类比探究作函数y =|x -1|的图象,可以转化为分段函数y =⎩⎪⎨⎪⎧x -1(x≥1)-x +1(x<1),然后分别作出两段函数的图象.聪明的小昕利用坐标平面上的轴对称知识,把函数y =x -1在x 轴下面部分,沿x 轴进行翻折,与x 轴上及上面部分组成了函数y =|x -1|的图象,如图2所示; (3)拓展提高如图3是函数y =x 2-2x -3的图象,请在原平面直角坐标系作函数y =|x 2-2x -3|的图象; (4)实际运用①函数y =|x 2-2x -3|的图象与x 轴有2个交点,对应方程|x 2-2x -3|=0有2个实根; ②函数y =|x 2-2x -3|的图象与直线y =5有2个交点,对应方程|x 2-2x -3|=5有2个实根; ③函数y =|x 2-2x -3|的图象与直线y =4有3个交点,对应方程|x 2-2x -3|=4有3个实根; ④关于x 的方程|x 2-2x -3|=a 有4个实根时,a 的取值范围是0<a <4.解:(1)如图所示. (3)如图所示.22.(10分)某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y (本)与每本纪念册的售价x (元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本. (1)请直接写出y 与x 的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元? (3)设该文具店每周销售这种纪念册所获得的利润为w 元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少? 解:(1)y =-2x +80(20≤x ≤28).(2)设当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是x 元,根据题意,得(x -20)y =150,即(x -20)(-2x +80)=150.解得x 1=25,x 2=35(舍去). 答:每本纪念册的销售单价是25元.(3)由题意,得w =(x -20)(-2x +80)=-2(x -30)2+200. 当x =30时,w 最大.又∵售价不低于20元且不高于28元,-2<0,∴x <30时,y 随x 的增大而增大,即当x =28时,w 最大=-2×(28-30)2+200=192(元). 答:该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润最大,最大利润是192元.23.(11分)如图,直线y =x +2与抛物线y =ax 2+bx +6相交于A (12,52)和B (4,m ),点P 是线段AB 上异于A ,B 的动点,过点P 作PC ⊥x 轴,交抛物线于点C. (1)求抛物线的表达式;(2)是否存在这样的点P ,使线段PC 的长有最大值?若存在,求出这个最大值,若不存在,请说明理由;(3)当△P AC 为直角三角形时,求点P 的坐标.解:(1)∵B (4,m )在直线y =x +2上,∴m =6.∴B (4,6). ∵A (12,52),B (4,6)在抛物线y =ax 2+bx +6上,∴⎩⎪⎨⎪⎧14a +12b +6=52,16a +4b +6=6.解得⎩⎪⎨⎪⎧a =2,b =-8.∴抛物线的表达式为y =2x 2-8x +6.(2)设动点P 的坐标为(n ,n +2),则点C 的坐标为(n ,2n 2-8n +6). ∴PC =(n +2)-(2n 2-8n +6)=-2n 2+9n -4=-2(n -94)2+498.∵a =-2<0,∴当n =94时,线段PC 取得最大值498,此时,P (94,174).∴存在符合条件的点P (94,174),使线段PC 的长有最大值498.(3)显然,∠APC ≠90°,如图1,当∠P AC =90°时,设直线AB 与y 轴交于E 点,与x 轴交于F 点, ∴E (0,2),F (-2,0).∴△EFO 为等腰直角三角形,∠PFO =45°.又∵PC ⊥x 轴,∴∠FPC =45°.∴△P AC 为等腰直角三角形. 过A 作AM ⊥P C.∴PM =M C.设P (x ,x +2).∴M (x ,52),C (x ,2x 2-8x +6).∵PM =MC ,∴x +2-52=52-(2x 2-8x +6).即2x 2-7x +3=0,解得x 1=3,x 2=12(舍去).当x =3时,x +2=3+2=5.此时,点P 的坐标为(3,5). 如图2,当∠PCA =90°时,由A (12,52)知,点C 的纵坐标为52.令2x 2-8x +6=52,解得x 1=12(舍去),x 2=72.当x =72时,x +2=72+2=112.此时,点P 的坐标为(72,112).综上可知,点P 的坐标为(3,5)或(72,112).。

二次函数单元测试题及答案

二次函数单元测试题及答案

二次函数单元测试题及答案一、选择题(每题2分,共10分)1. 下列哪个选项不是二次函数的一般形式?A. y = ax^2 + bx + cB. y = (x - h)^2 + kC. y = ax^2 + bx + c + dD. y = ax^2 + bx答案:C2. 若二次函数y = ax^2 + bx + c的图像开口向上,则a的值是:A. 正数B. 负数C. 零D. 任意实数答案:A3. 二次函数y = ax^2 + bx + c的顶点坐标是:A. (-b, c)B. (-b/2a, c)C. (-b/a, c)D. (-b/2a, 4ac - b^2 / 4a)答案:D4. 二次函数y = ax^2 + bx + c的对称轴是:A. x = -bB. x = -b/2aC. x = b/2aD. x = b/a答案:B5. 若二次函数y = ax^2 + bx + c与x轴有两个交点,则判别式Δ的值是:A. Δ > 0B. Δ < 0C. Δ = 0D. Δ ≤ 0答案:A二、填空题(每题2分,共10分)6. 二次函数y = 2x^2 - 4x + 3的顶点坐标是________。

答案:(1, 1)7. 若二次函数y = ax^2 + bx + c的图像与y轴交于(0, k),则k等于________。

答案:c8. 当a > 0时,二次函数y = ax^2 + bx + c的图像开口________。

答案:向上9. 二次函数y = -3x^2 + 6x + 5的对称轴方程是________。

答案:x = 110. 若二次函数y = ax^2 + bx + c与x轴相交于两点,则判别式Δ必须________。

答案:大于0三、解答题(每题5分,共20分)11. 已知二次函数y = ax^2 + bx + c的图像经过点(1, 2)和(-1, 0),求a和b的值。

解答:将点(1, 2)代入函数得:a + b + c = 2将点(-1, 0)代入函数得:a - b + c = 0两式相减得:2b = 2,即b = 1将b代入任一式得:a + c = 1由于题目条件不足,无法唯一确定a和c的值。

《二次函数》全章测试及答案

《二次函数》全章测试及答案

二次函数单元测试题班级___________姓名___________学号____________一、 选择题(每题4分,共36分)1、二次函数y=x 2-2x +3图象的顶点坐标是( )A .(1,-4) B. (-1,2) C. (1,2) D. (0,3)2、将抛物线y =5x 2向左平移2个单位,再向下平移3个单位,得到的抛物线是( ) A .25(2)3y x =++ B.25(2)3y x =+- C.25(2)3y x =-+ D.25(2)3y x =--3、已知抛物线2y ax bx c =++(a <0)过A (2-,0)、O (0,0)、B (3-,1y )、C (3,2y )四点,则1y 与2y 的大小关系是( )A .1y >2yB .1y 2y =C .1y <2yD .不能确定4、下列关于二次函数的说法错误的是( )A .抛物线y =-2x 2+3x +1的对称轴是直线x =34; B .点A (3,0)不在抛物线y =x 2-2x -3的图象上; C .二次函数y =(x +2)2-2的顶点坐标是(-2,-2); D .函数y=2x 2+4x -3的图象的最低点在(-1,-5)5、已知二次函数22(21)1y m x m x =+++ 的图像与x 轴有两个交点,则m 的取值范围是 ( ) A .m >-14 B .m 41-≥ C .m >-14且m≠0 D .m 41-≥且m ≠0 6、在同一直角坐标系中,函数y =mx +m 和函数y =-mx 2+2x +2(m 是常数,且m ≠0)的图象可.能.是( ).7、二次函数c bx ax y ++=2的图象如图所示,则abc ,ac b 42-,b a +2,c b a ++这四个式子中,值为正数的有((A )4个 (B )3个 (C )2个(D )1个8、如图,四边形ABCD 中,∠BAD=∠ACB =90°,AB =AD ,AC =4BC ,设CD 的长为x ,四边形ABCD 的面积为y ,则y 与x 之间的函数关系式是( )A . 2425y x =B .225y x = C .2225y x= D .245y x =二、填空题(每题4分,共24分)9、已知函数()x x m y m 3112+-=+,当m = 时,它是二次函数. 10、若把二次函数532+-=x x y 化为的形式,其中,m k 为常数,则m k +=.11、开口向下的抛物线y m x mx =-++()22221的对称轴经过点(-1,3),则m =12、已知c b a ,,满足b c a =+,b c a 24=+,则关于x 的二次函数c bx ax y ++=2(0)a ≠ 的图像与x 轴的交点坐标为 .13、已知抛物线y =ax 2+bx +c 的部分图象如图所示,若y >0,则x 的取值范围是________. 14、 如图,抛物线y =-x 2+2x +m (m <0)与x 轴相交于点A (x 1,0)、B (x 2,0),点A 在点B 的左侧.当x =x 2-2时,y_______0(填“>”,“=”或“<”号).(第14题图)(第8题)ABCD (第13题图)15、如图,已知抛物线y =x 2+bx +c 经过点(0,-3),请你确定一个b 的值, 使该抛物线与x 轴的一个交点在(1,0)和(3,0)之间.你所确定的 b 的值是 (写出一个值即可).三、解答题:(每题8分,共40分) 16、已知二次函数的顶点坐标为(1,4),且其图象经过点(-2,-5),求此二次函数的解析式.17、已知二次函数y = 2x 2 -4x -6.(1)用配方法将y = 2x 2 -4x -6化成y = a (x - h ) 2 + k 的形式; (2(3)当x 取何值时,y 随x 的增大而减少? (4)当x 取何值是,y <0? 解:-331O yx18、我市某工艺品厂生产一款工艺品.已知这款工艺品的生产成本为每件60元,每件工艺品的利润率不得超过25%。

第2章《二次函数》单元测试题

第2章《二次函数》单元测试题

第2章《二次函数》单元测试题一.选择题(每小题3分,共12小题)1.下列y关于x的函数中,属于二次函数的是()A.y=x﹣1B.y=C.y=(x﹣1)2﹣x2D.y=﹣2x2+12.已知函数y=2mx2+(1﹣4m)x+2m﹣1,下列结论错误的是()B.当m=时,函数图象的顶点坐标是(,﹣)D.无论m取何值,函数图象都经过同一个点①抛物线的开口向下;②对称轴为直线x=1:③顶点坐标为(﹣1,3);④x>1时,y随x的增大而减小.其中正确结论的个数为()A.1B.2C.3D.44.比较抛物线y=x2、y=2x2﹣1、y=0.5(x﹣1)2的共同点,其中说法正确的是()A.顶点都是原点B.对称轴都是y轴C.开口方向都向上D.开口大小相同5.将二次函数y=x2的图象向下平移3个单位长度所得的图象解析式为()A.y=(x﹣3)2B.y=(x+3)2C.y=x2﹣3D.y=x2+36.若二次函数y=x2﹣6x+c的图象过A(﹣1,a),B(2,b),C(5,c),则下列正确的是()A.a>b>c B.a>c>b C.b>a>c D.c>a>b7.已知一元二次方程1﹣(x﹣3)(x+2)=0,有两个实数根x1和x2,(x1<x2),则下列判断正确的是()A.﹣2<x1<x2<3B.x1<﹣2<3<x2C.﹣2<x1<3<x2D.x1<﹣2<x2<38.已知A(﹣1,y1)、B(2,y2)、C(﹣3,y3)在函数y=﹣5(x+1)2+3的图象上,则y1、y2、y3的大小关系是()A.y1<y2<y3B.y1<y3<y2C.y2<y3<y1D.y3<y2<y19.如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0),下列结论:①ab<0,②b2>4,③0<a+b+c <2,④0<b<1,⑤当x>﹣1时,y>0.其中正确结论的个数是()A.2个B.3个C.4个D.5个10.如图,边长为1的正方形ABCD顶点A(0,1),B(1,1);一抛物线y=ax2+bx+c过点M(﹣1,0)且顶点在正方形ABCD内部(包括在正方形的边上),则a的取值范围是()A.﹣2≤a≤﹣1B.﹣2≤a≤﹣C.﹣1≤a≤﹣D.﹣1≤a≤﹣11.如图,函数y=ax2﹣2x+1和y=ax﹣a(a是常数,且a≠0)在同一平面直角坐标系的图象可能是()A.B.C.D.12.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则以下结论同时成立的是()A.B.C.D.二.填空题(每小题3分,共6小题)13.二次函数y=x(x﹣6)的图象与x轴交点的横坐标是.14.函数y=﹣3(x+2)2的开口,对称轴是,顶点坐标为.15.已知二次函数y=x2﹣2mx(m为常数),当﹣1≤x≤2时,函数值y的最小值为﹣2,则m的值是.16.如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加m.17.某企业因生产转型,二月份产值比一月份下降20%,转型成功后生产呈现良好上升势头,三、四月份稳步增长,月平均增长率为x,设该企业一月份产值为a,则该企业四月份的产值y关于x的函数关系式为18.已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=﹣1,经过点(0,1)有以下结论:①a+b+c<0;②b2﹣4ac>0;③abc>0;④4a﹣2b+c<0;⑤c﹣a>1,其中所有正确结论的序号是.三.解答题(共7小题)19.已知:抛物线y=﹣x2﹣6x+21.求:(1)直接写出抛物线y=﹣x2﹣6x+21的顶点坐标;(2)当x>2时,求y的取值范围.20.如图,抛物线y=ax2+bx(a≠0)交x轴正半轴于点A,直线y=2x经过抛物线的顶点M.已知该抛物线的对称轴为直线x=2,交x轴于点B.(1)求a,b的值.(2)P是第一象限内抛物线上的一点,且在对称轴的右侧,连接OP,BP.设点P的横坐标为m,△OBP的面积为S,记K=.求K关于m的函数表达式及K的范围.21.安徽某水产养殖户去年利用“稻虾混养”使每千克小龙虾养殖成本降为6元,在整个销售旺季的80天里,销售单价P(元/千克)与时间第t(天)之间的函数关系为:P=,日销售量y(千克)与时间第t(天)之间的函数关系如图所示.(1)求日销售y与时间t的函数关系式?(2)设日销售利润为W(元),求W与t之间的函数表达式;(3)日销售利润W哪一天最大?最大利润是多少?22.某商家销售一款商品,进价每件80元,售价每件145元,每天销售40件,每销售一件需支付给商场管理费5元,未来一个月(按30天计算),这款商品将开展“每天降价1元”的促销活动,即从第一天开始每天的单价均比前一天降低1元,通过市场调查发现,该商品单价每降1元,每天销售量增加2件,设第x天(1≤x≤30且x为整数)的销售量为y件.(1)直接写出y与x的函数关系式;(2)设第x天的利润为w元,试求出w与x之间的函数关系式,并求出哪一天的利润最大?最大利润是多少元?23.已知抛物线y=mx2+(2﹣2m)x+m﹣2(m是常数).(1)无论m取何值,该抛物线都经过定点 D.直接写出点D的坐标.(2)当m取不同的值时,该抛物线的顶点均在某个函数的图象上,求出这个函数的表达式.(3)若在0≤x≤1的范围内,至少存在一个x的值,使y>0,求m的取值范围.24.如图,以D为顶点的抛物线y=﹣x2+bx+c交x轴于A、B两点,交y轴于点C,直线BC的表达式为y=﹣x+3.(1)求抛物线的表达式;(2)在直线BC上有一点P,使PO+PA的值最小,求点P的坐标;(3)在x轴上是否存在一点Q,使得以A、C、Q为顶点的三角形与△BCD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.25.如图,抛物线与x轴交于A(x1,0)、B(x2,0)两点,且x1<x2,与y轴交于点C(0,﹣4),其中x1,x2是方程x2﹣4x﹣12=0的两个根.(1)求A、B两点坐标;(2)求抛物线的解析式;(3)点M是线段AB上的一个动点(不与A、B两点重合),过点M作MN∥BC,交AC于点N,连接CM,在M点运动时,△CMN的面积是否存在最大值?若存在,求出△CMN面积最大时点M的坐标;若不存在,请说明理由.参考答案与试题解析一.选择题(共12小题)1.【解答】解:A、该函数中自变量x的次数是1,属于一次函数,故本选项错误;B、该函数是反比例函数,故本选项错误;C、由已知函数关系式得到:y=﹣2x+1,属于一次函数,故本选项错误;D、该函数符合二次函数定义,故本选项正确.故选:D.2.【解答】解:当m=0时,y=x﹣1,则y随x的增大而增大,故选项A正确,当m=时,y=x2﹣x=(x﹣)2﹣,则函数图象的顶点坐标是(,﹣),故选项B正确,当m=﹣1时,y=﹣2x2+5x﹣3=﹣2(x﹣)2,则当x<,则y随x的增大而增大,故选项C错误,∵y=2mx2+(1﹣4m)x+2m﹣1=2mx2+x﹣4mx+2m﹣1=(2mx2﹣4mx+2m)+(x﹣1)=2m(x﹣1)2+(x﹣1)=(x﹣1)[2m(x﹣1)+1],∴函数y=2mx2+(1﹣4m)x+2m﹣1,无论m取何值,函数图象都经过同一个点(1,0),故选项D正确,故选:C.3.【解答】解:①∵a=﹣2<0,∴抛物线的开口向下,正确;②对称轴为直线x=﹣1,故本小题错误;③顶点坐标为(﹣1,3),正确;④∵x>﹣1时,y随x的增大而减小,∴x>1时,y随x的增大而减小一定正确;综上所述,结论正确的个数是①③④共3个.故选:C.4.【解答】解:y=x2的顶点坐标为原点,对称轴是y轴,开口向上;y=2x2﹣1的顶点坐标为(0,﹣1),对称轴是y轴,开口向上;y=0.5(x﹣1)2的顶点坐标为(1,0),对称轴是x=1,开口向上;综合判断开口方向都向上,故选:C.5.【解答】解:将二次函数y=x2的图象向下平移3个单位,所得图象的解析式为y=x2﹣3,故选:C.6.【解答】解:∵二次函数y=x2﹣6x+c,∴该二次函数的抛物线开口向上,且对称轴为:x=3.∵点A(﹣1,a),B(2,b),C(5,c)都在二次函数y=x2﹣6x+c的图象上,而三点横坐标离对称轴x=3的距离按由远到近为:(﹣1,a)、(5,c)、(2,b),∴a>c>b,故选:B.7.【解答】解:令y=(x﹣3)(x+2),当y=0时,(x﹣3)(x+2)=0,则x=3或x=﹣2,所以该抛物线与x轴的交点为(﹣2,0)和(3,0),∵一元二次方程1﹣(x﹣3)(x+2)=0,∴(x﹣3)(x+2)=1,所以方程1﹣(x﹣3)(x+2)=0的两根可看做抛物线y=(x﹣3)(x+2)与直线y=1交点的横坐标,其函数图象如下:由函数图象可知,x1<﹣2<3<x2,故选:B.8.【解答】解:∵抛物线y=﹣5(x+1)2+3的开口向下,对称轴为直线x=﹣1,而B(2,y2)离直线x=﹣1的距离最远,A(﹣1,y1)点离直线x=﹣1最近,∴y2<y3<y1.故选:C.9.【解答】解:∵由抛物线开口向下,∴a<0,∵对称轴在y轴的右侧,∴b>0,∴ab<0,所以①正确;∵点(0,1)和(﹣1,0)都在抛物线y=ax2+bx+c上,∴c=1,a﹣b+c=0,∴b=a+c=a+1,而a<0,∴0<b<1,所以②错误,④正确;∵a+b+c=a+a+1+1=2a+2,而a<0,∴2a+2<2,即a+b+c<2,∵抛物线与x轴的一个交点坐标为(﹣1,0),而抛物线的对称轴在y轴右侧,在直线x=1的左侧,∴抛物线与x轴的另一个交点在(1,0)和(2,0)之间,∴x=1时,y>0,即a+b+c>0,∴0<a+b+c<2,所以③正确;∵x>﹣1时,抛物线有部分在x轴上方,有部分在x轴下方,∴y>0或y=0或y<0,所以⑤错误.故选:B.10.【解答】解:解:∵顶点是矩形ABCD上(包括边界和内部)的一个动点,∴当顶点与A点重合,顶点坐标为(0,1),则抛物线解析式y=ax2+1,∵抛物线过M(﹣1,0),∴0=a+1,解得a=﹣1,当顶点与C点重合,顶点坐标为(1,2),则抛物线解析式y=a(x﹣1)2+2,∵抛物线过M(﹣1,0),∴0=4a+2,解得a=﹣∵顶点可以在矩形内部,∴﹣1≤a≤﹣.故选:C.11.【解答】解:A、由一次函数y=ax﹣a的图象可得:a<0,此时二次函数y=ax2﹣2x+1的图象应该开口向下,故选项错误;B、由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,对称轴x=﹣>0,故选项正确;C 、由一次函数y=ax ﹣a 的图象可得:a >0,此时二次函数y=ax 2﹣2x+1的图象应该开口向上,对称轴x=﹣>0,和x 轴的正半轴相交,故选项错误;D 、由一次函数y=ax ﹣a 的图象可得:a >0,此时二次函数y=ax 2﹣2x+1的图象应该开口向上,故选项错误. 故选:B .12.【解答】解:∵抛物线开口向上, ∴a >0,∵抛物线的对称轴在直线x=1的右侧,∴x=﹣>1,∴b <0,b <﹣2a ,即b+2a <0, ∵抛物线与y 轴交点在x 轴下方, ∴c <0, ∴abc >0,∵抛物线与x 轴有2个交点, ∴△=b 2﹣4ac >0, ∵x=1时,y <0, ∴a+b+c <0. 故选:C .二.填空题(共6小题)13.【解答】解:当y=0时,有x (x ﹣6)=0, 解得:x 1=0,x 2=6,∴二次函数y=x (x ﹣6)的图象与x 轴交点的横坐标是0或6. 故答案为:0或6.14.【解答】解:函数y=﹣3(x+2)2的开口向下,对称轴是直线x=﹣2,顶点坐标是(﹣2,0), 故答案为:向下,直线x=﹣2,(﹣2,0).15.【解答】解:由二次函数y=x 2﹣2mx (m 为常数),得到对称轴为直线x=m ,抛物线开口向上,当m ≥2时,由题意得:当x=2时,y 最小值为﹣2,代入得:4﹣4m=﹣2,即m=1.5<2,不合题意,舍去;当﹣1≤m ≤2时,由题意得:当x=m 时,y 最小值为﹣2,代入得:﹣m 2=﹣2,即m=或m=﹣(舍去);当m <﹣1时,由题意得:当x=﹣1时,y 最小值为﹣2,代入得:1+2m=﹣2,即m=﹣1.5,综上,m 的值是﹣1.5或,故答案为:﹣1.5或16.【解答】解:建立平面直角坐标系,设横轴x 通过AB ,纵轴y 通过AB 中点O 且通过C 点,则通过画图可得知O 为原点,抛物线以y 轴为对称轴,且经过A ,B 两点,OA 和OB 可求出为AB 的一半2米,抛物线顶点C 坐标为(0,2), 通过以上条件可设顶点式y=ax 2+2,其中a 可通过代入A 点坐标(﹣2,0), 到抛物线解析式得出:a=﹣0.5,所以抛物线解析式为y=﹣0. 5x 2+2, 当水面下降2米,通过抛物线在图上的观察可转化为:当y=﹣2时,对应的抛物线上两点之间的距离,也就是直线y=﹣2与抛物线相交的两点之间的距离, 可以通过把y=﹣2代入抛物线解析式得出: ﹣2=﹣0.5x 2+2,解得:x=±2,所以水面宽度增加到4米,比原先的宽度当然是增加了(4﹣4)米,故答案为:4﹣4.17.【解答】解:设该企业一月份产值为a,则该企业四月份的产值y关于x的函数关系式为:y=a(1﹣20%)(1+x)2.故答案为:y=a(1﹣20%)(1+x)2.18.【解答】解:①由图象可知:x=1时,y<0,∴y=a+b+c<0,故①正确;②由图象可知:△>0,∴b2﹣4ac>0,故②正确;③由图象可知:<0,∴ab>0,又∵c=1,∴abc>0,故③正确;④由图象可知:(0,0)关于x=﹣1对称点为(﹣2,0)∴令x=﹣2,y>0,∴4a﹣2b+c>0,故④错误;⑤由图象可知:a<0,c=1,∴c﹣a=1﹣a>1,故⑤正确;故答案为:①②③⑤三.解答题(共7小题)19.【解答】解:(1)∵抛物线y=﹣x2﹣6x+21=﹣(x+3)2+30,∴该抛物线的顶点坐标是(﹣3,30);(2))∵抛物线y=﹣x2﹣6x+21=﹣(x+3)2+30,∴当x>﹣3时,y随x的增大而减小,∴当x>2时,y的取值范围是y<﹣(2+3)2+30=5,即当x>2时,y的取值范围是y<5.20.【解答】解:(1)将x=2代入y=2x,得:y=4,∴点M(2,4),由题意,得:,∴;(2)如图,过点P作PH⊥x轴于点H,∵点P的横坐标为m,抛物线的解析式为y=﹣x2+4x,∴PH=﹣m2+4m,∵B(2,0),∴OB=2,∴S=OB•PH=×2×(﹣m2+4m)=﹣m2+4m,∴K==﹣m+4,由题意得A(4,0),∵M(2,4),∴2<m<4,∵K随着m的增大而减小,∴0<K<2.21.【解答】解:(1)设解析式为y=kt+b,将(1,198)、(80,40)代入,得:,解得:,∴y=﹣2t+200(1≤t≤80,t为整数);(2)设日销售利润为w,则w=(p﹣6)y,①当1≤t≤40时,w=(t+16﹣6)(﹣2t+200)=﹣(t﹣30)2+2450.②当41≤t≤80时,w=26(﹣2t+200)=﹣52t+5200(3)①当1≤t≤40时,w=﹣(t﹣30)2+2450.=2450;∴当t=30时,w最大②当41≤t≤80时,w=﹣52t+5200=3068,∴当t=41时,w最大∵3068>2450,∴第41天的日销售利润最大,最大利润为3068元.22.【解答】解:(1)由题意可知y=2x+40;(2)根据题意可得:w=(145﹣x﹣80﹣5)(2x+40),=﹣2x2+80x+2400,=﹣2(x﹣20)2+3200,∵a=﹣2<0,∴函数有最大值,∴当x=20时,w有最大值为3200元,∴第20天的利润最大,最大利润是3200元.23.【解答】解:(1)∵抛物线抛物线y=mx2+(2﹣2m)x+m﹣2=m(x﹣1)2+2(x﹣1)∴当x﹣1=0时,无论m为何值,抛物线经过定点 D,∴x=1,y=0,∴定点D(1,0);(2)∵﹣=﹣=1﹣,==﹣,∴顶点为(1﹣,﹣),∴顶点在函数y=x﹣1上;(3)由(1)、(2)可得,该抛物线与x轴的一个交点为(1,0),对称轴为直线x=1﹣.①当m>0时,抛物线开口方向向上,且1﹣<1,由图象可知,要满足条件,只要x=0式,y=m﹣2>0,∴m>2;②当m<0时,抛物线开口方向向下,且1﹣>1,由图象可知,不符合题意;综上所述,m的取值范围是:m>2.24.【解答】解:(1)把x=0代入y=﹣x+3,得:y=3,∴C(0,3).把y=0代入y=﹣x+3得:x=3,∴B(3,0),A(﹣1,0)将C(0,3)、B(3,0)代入y=﹣x2+bx+c得:,解得b=2,c=3.∴抛物线的解析式为y=﹣x2+2x+3.(2)如图所示:作点O关于BC的对称点O′,则O′(3,3).∵O′与O关于BC对称,∴PO=PO′.∴OP+AP=O′P+AP≤AO′.∴当A、P、O′在一条直线上时,OP+AP有最小值.设AP的解析式为y=kx+b,则,解得:k=,b=.∴AP的解析式为y=x+.将y=x+与y=﹣x+3联立,解得:y=,x=,∴点P的坐标为(,).(3)y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4).又∵C(0,3,B(3,0),∴CD=,BC=3,DB=2.∴CD2+CB2=BD2,∴∠DCB=90°.∵A(﹣1,0),C(0,3),∴OA=1,CO=3.∴==.又∵∠AOC=DCB=90°,∴△AOC∽△DCB.∴当Q的坐标为(0,0)时,△AQC∽△DCB.如图所示:连接AC,过点C作CQ⊥AC,交x轴与点Q.∵△ACQ为直角三角形,CO⊥AQ,∴△ACQ∽△AOC.又∵△AOC∽△DCB,∴△ACQ∽△DCB.∴=,即=,解得:AQ=10.∴Q(9,0).综上所述,当Q的坐标为(0,0)或(9,0)时,以A、C、Q为顶点的三角形与△BCD相似.25.【解答】解:(1)∵x2﹣4x﹣12=0,∴x1=﹣2,x2=6.即:A(﹣2,0),B(6,0).(2)∵抛物线过点A、B、C,∴设抛物线的解析式为y=a(x+2)(x﹣6),将点C的坐标代入,得:﹣4=a(0+2)(0﹣6),解得a=.∴抛物线的解析式为y=x2﹣x﹣4.(3)存在.设点M的坐标为(m,0),过点N作NH⊥x轴于点H∵点A的坐标为(﹣2,0),点B的坐标为(6,0),∴AB=8,AM=m+2.∵MN∥BC,∴△AMN∽△ABC.∴=,∴=,∴NH=∴S△CMN=S△ACM ﹣S△AMN=•AM•CO﹣•AM•NH=(m+2)(4﹣)=﹣m2+m+3=﹣(m﹣2)2+4.有最大值4.∴当m=2时,S△CMN此时,点M的坐标为(2,0).。

二次函数单元测试题

二次函数单元测试题

九年级数学《二次函数》单元测试题(一) 一.填空题:(每空2分共30分)1.二次函数y=-x2+6x+3的图象顶点为_______ __对称轴为_______ __.2.抛物线y=x2-3x-4与x轴的交点坐标是______ __.3.由y=2x2和y=2x2+4x-5的顶点坐标和二次项系数能够得出y=2x2+4x-5的图象可由y=2x2的图象向__________平移________个单位,再向_______平移______个单位得到.4、已知抛物线y=ax2+bx+c的图象如下,则:a+b+c_______0,a-b+c__________0.2a+b________05.一个二次函数的图象顶点坐标为(2,1),形状与抛物线y=-2x2相同,这个函数解析式为______ _ _____.6.二次函数y=2x2-x ,当x____ ___时y随x增大而增大,当x ____ _____时,y随x 增大而减小.7.抛物线y=ax2+bx+c的顶点在y轴上,则a.b.c中一定有__ _=0.8.已知抛物线y=ax2+bx,当a>0,b<0时,它的图象经过象限.二.解答题:(70分)9.(12分)根据以下条件求关于x的二次函数的解析式(1)当x=3时,y最小值=-1,且图象过(0,7).(2)与x轴交点的横坐标分别是x1=-3,x2=1时,且与y轴交点为(0,-2).10.(18分)某旅社有100张床位,每床每晚收费10元时,客床可全部租出.若每床每晚收费每提升2元,则减少10张床位租出,为了投资少而获利大,每床每晚应收费多少元?11.(20分)二次函数y=ax2+bx+c的图象过点(1,0)(0,3),对称轴x=-1.①求函数解析式;②若图象与x轴交于A.B(A在B左)与y轴交于C,顶点D,求四边形ABCD的面积.12.(20分)如图抛物线与直线都经过坐标轴的正半轴上A(4,0),B两点,该抛物线的对称轴x=—1,与x轴交于点C,且∠ABC=90°,求:(1)直线AB的解析式;(2)抛物线的解析式。

《二次函数》单元测试卷 (含答案)

《二次函数》单元测试卷 (含答案)

《二次函数》单元测试卷 (含答案)考生姓名:______________ 考号:______________时间限制:90分钟一、选择题(每小题2分,共30分)(每小题2分,共30分)1. 下列函数中,是二次函数的是()A. y = x + 2B. y = 2x^2 + 3x + 1C. y = 1/xD. y = √x2. 设二次函数 f(x) = 2x^2 + 5x - 3,那么它的判别式为()A. -13B. 17C. 29D. -393. 若二次函数的图象与x轴有两个交点,则该二次函数的判别式必须为()A. 大于0B. 等于0C. 小于0D. 无法确定4. 已知二次函数 f(x) = 3x^2 + 4x + 2,那么它的对称轴为()A. x = -2/3B. x = -4/3C. x = 4/3D. x = 2/35. 设函数 f(x) = ax^2 + bx + c,若a > 0,则函数图象开口向()A. 上B. 下C. 左D. 右...二、填空题(每小题3分,共30分)(每小题3分,共30分)1. 设二次函数 f(x) = 2x^2 - 5x + 3,那么它的顶点坐标为()答案:(5/4, 37/8)2. 若二次函数 y = ax^2 + bx + c 的顶点坐标为 (2, -3),则 a + b+ c 的值为()答案:-53. 设二次函数 f(x) = -x^2 + 4x + 5,那么它的对称轴的方程为()答案:x = 24. 若二次函数的图象与y轴相交于点 (0, 6),则该二次函数必定为()答案:f(x) = 2x^2 + 35. 设二次函数 f(x) = ax^2 + bx + c,若a > 0,则函数的值域为()答案:( -∞, f(c) ]...三、解答题(共40分)(共40分)1. 解方程 3x^2 - 2x - 1 = 0解答:首先,我们可以求出这个二次方程的判别式:Δ = b^2 - 4ac = (-2)^2 - 4*3*(-1) = 4 + 12 = 16因为判别式大于0,所以方程有两个不相等的实根。

人教版九年级上册数学第二十二章二次函数(单元测试)(含答案)

人教版九年级上册数学第二十二章二次函数(单元测试)(含答案)

人教版九年级上册数学第二十二章二次函数(单元测试)一、单选题1.二次函数222=++y x x 的图象的对称轴是( )A .=1x -B .2x =-C .1x =D .2x =2.关于二次函数22(4)6y x =-+的最大值或最小值,下列说法正确的是( )A .有最大值4B .有最小值4C .有最大值6D .有最小值63.已知抛物线22()1y x =-+,下列结论错误的是( )A .抛物线开口向上B .抛物线的对称轴为直线2x =C .抛物线的顶点坐标为(2,1)D .当2x <时,y 随x 的增大而增大4.已知实数a ,b 满足1b a -=,则代数式2267a b a +-+的最小值等于( )A .5B .4C .3D .2 5.已知抛物线22y x kx k =+-的对称轴在y 轴右侧,现将该抛物线先向右平移3个单位长度,再向上平移1个单位长度后,得到的抛物线正好经过坐标原点,则k 的值是( )A .5-或2B .5-C .2D .2-6.向空中发射一枚炮弹,经x 秒后的高度为y 米,且时间与高度的函数表达式为()20y ax bx c a =++≠,若此炮弹在第6秒与第13秒时的高度相等,则下列时间中炮弹所在高度最高的是( )A .第7秒B .第9秒C .第11秒D .第13秒7.已知二次函数()20y ax bx c a =+-≠,其中0b >、0c >,则该函数的图象可能为( )A .B .C .D .8.王刚在练习投篮,篮球脱手后的运动轨迹近似为如图所示的抛物线20.2 2.25y x x =-++,已知篮圈高3.05米,王刚投篮时出手高度OB 为2.25米,若要使篮球刚好投进篮圈C ,则投篮时王刚离篮圈中心的水平距离为( )A .2米B .3米C .4米D .5米二、填空题 9.已知函数221y mx mx =++在32x -上有最大值4,则常数m 的值为 __.10.已知抛物线(1)(5)y x x =--与x 轴的公共点坐标是12(,0),(,0)A x B x ,则12x x +=_______.11.如图,王先生在一次高尔夫球的练习中,在O 处击球,其飞行路线满足抛物线211655y x x =-+,其中()m y 是球的飞行高度,()m x 是球飞出的水平距离,结果球离球洞的水平距离还有4m .(1)球飞行的最大水平距离为_____________m ;(2)若王先生再一次从O 处击球,要想让球飞行的最大高度不变且球刚好进洞,则球的飞行路线满足的抛物线解析式为_____________.12.如图是二次函数2y x bx c =++的图像,该函数的最小值是__________.13.如图,抛物线y =ax 2与直线y =bx +c 的两个交点坐标分别为A (﹣3,6),B (1,3),则方程ax 2﹣bx ﹣c =0的解是_________.三、解答题(1)求抛物线的解析式;(2)抛物线上是否存在点P,使PBC的面积是BCD△面积的4倍,若存在,请直接写出点P的坐标:若不存在,请说明理由.15.如图,抛物线y=a(x﹣2)2+3(a为常数且a≠0)与y轴交于点A(0,53).(1)求该抛物线的解析式;(2)若直线y=kx23(k≠0)与抛物线有两个交点,交点的横坐标分别为x1,x2,当x12+x22=10时,求k的值;(3)当﹣4<x≤m时,y有最大值43m,求m的值.16.某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件,如果售价超过80元后,若再涨价,则每涨1元每月少卖3件.设每件商品的售价x元(x为整数),每个月的销售量为y件.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)设每月的销售利润为W,请直接写出W与x的函数关系式.17.戴口罩是阻断呼吸道病毒传播的重要措施之一,某商家对一款成本价为每盒50元的医用口罩进行销售,如果按每盒70元销售,每天可卖出20盒.通过市场调查发现,每盒口罩售价每降低1元,则日销售量增加2盒(1)若每盒售价降低x元,则日销量可表示为_______盒,每盒口罩的利润为______元.(2)若日利润保持不变,商家想尽快销售完该款口罩,每盒售价应定为多少元?(3)当每盒售价定为多少元时,商家可以获得最大日利润?并求出最大日利润.18.某公司电商平台,在2021年五一长假期间,举行了商品打折促销活动,经市场调查发现,某种商品的周销售量y(件)是关于售价x(元/件)的一次函数,下表仅列出了该商品的售价x,周销售量y,周销售利润W(元)的(1)求y关于x的函数解析式(不要求写出自变量的取值范围);(2)若该商品进价a(元/件),售价x为多少时,周销售利润W最大?并求出此时的最大利润;m>),公司为回馈消费者,规定该商品售价x不得超过55(元(3)因疫情期间,该商品进价提高了m(元/件)(0/件),且该商品在今后的销售中,周销售量与售价仍满足(1)中的函数关系,若周销售最大利润是4050元,求m 的值.19.如图,在平面直角坐标系中,抛物线2y ax x m=++(a≠0)的图象与x轴交于A、C两点,与y轴交于点B,其中点B坐标为(0,-4),点C坐标为(2,0).(1)求此抛物线的函数解析式.(2)点D是直线AB下方抛物线上一个动点,连接AD、BD,探究是否存在点D,使得△ABD的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由.(3)点P为该抛物线对称轴上的动点,使得△P AB为直角三角形,请求出点P的坐标.参考答案:1.A2.D3.D4.A5.B6.B7.C8.C9.38或3-10.611. 16 2166412525y x x =-+ 12.4-13.x 1=﹣3,x 2=114.(1)2=23y x x --(2)存在,()115,1P ,()215,1P15.(1)()21233y x =--+;(2)1222,,3k k ==;(3)95.4m =-或 16.(1)260(5080)4203(80140)x x y x x -<⎧=⎨-<⎩;(2)2230010400(5080)354016800(80140)x x x W x x x ⎧-+-<=⎨-+-<⎩17.(1)(20+2x )盒,(20-x ) 元(2)每盒售价应定为60元(3)每盒售价应定为65元时,最大日利润是450元18.(1)3300y x =-+;(2)售价60元时,周销售利润最大为4800元;(3)5m = 19.(1)2142y x x =+- (2)(-2,-4)(3)P 点坐标为:(-1,3),(-1,-5),(127--,,(127--,。

最新人教版初中数学九年级数学上册第二单元《二次函数》测试题(有答案解析)(2)

最新人教版初中数学九年级数学上册第二单元《二次函数》测试题(有答案解析)(2)

一、选择题1.对于二次函数()()2140y ax a x a =+->,下列说法正确的是( )①抛物线与x 轴总有两个不同的交点;②对于任何满足条件的a ,该二次函数的图象都经过点()4,4和()0,0两点; ③若该函数图象的对称轴为直线0x x =,则必有012x <<; ④当2x ≥时,y 随x 的增大而增大,则102a <≤ A .①② B .②③C .①④D .③④2.已知函数221y x x =--,下列结论正确的是( )A .函数图象过点()1,1-B .函数图象与x 轴无交点C .当1≥x 时, y 随x 的增大而减小D .当1x ≤时, y 随x 的增大而减小3.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论:①ac <0;②b <0;③4ac ﹣b 2<0;④当x >﹣1时,y 随x 的增大而减小.其中正确的有( )A .4个B .3个C .2个D .1个4.将抛物线22y x =平移,得到抛物线22(4)1y x =-+,下列平移方法正确的是( ) A .先向左平移4个单位,在向上平移1个单位 B .先向左平移4个单位,在向下平移1个单位 C .先向右平移4个单位,在向上平移1个单位 D .先向右平移4个单位,在向下平移1个单位5.已知2(0)y ax bx c a =++≠的图象如图所示,则点(,)A ac bc 在( )A .第一象限B .第二象限C .第三象限D .第四象限 6.抛物线2(2)3y x =-+的对称轴是( )A .直线2x =-B .直线3x =C .直线1x =D .直线2x =7.二次函数2y ax bx c =++()0a ≠的图象如图所示,观察得出了下面4条信息:①0abc >;②0a b c -+>;③230a b -=;④240b ac ->.你认为其中正确的结论有( )A .1B .2C .3D .48.如图为二次函数()20y ax bx c a =++≠的图象,与x 轴交点为()()3,0,1,0-,则下列说法正确的有( )①a >0 ②20a b +=③a b c ++>0 ④当1-<x <3时,y >0A .1B .2C .3D .49.函数()20y ax a a =-≠与()0y ax a a =-≠在同一平面直角坐标系中的图象可能是( )A .B .C .D .10.若二次的数2y ax bx c =++的x 与y 的部分对应值如下表: x 7-6- 5- 4-3-2-y27- 13-3-353A .5B .3-C .13-D .27-11.已知一次函数y ax c =+与2y ax bx c =++,它们在同一坐标系内的大致图象是( )A .B .C .D .12.对于二次函数2(2)7y x =---,下列说法正确的是( ) A .图象开口向上B .对称轴是直线2x =-C .当2x >时,y 随x 的增大而减小D .当2x <时,y 随x 的增大而减小二、填空题13.已知抛物线2y x bx c =++的部分图象如图所示,当0y <时,x 的取值范围是______.14.如图,正方形OABC 的边长为2,OA 与x 负半轴的夹角为15°,点B 在抛物线()20y ax a =<的图象上,则a 的值为_.15.若二次函数26y x x c =-+的图象经过()11,A y -,()22,By ,()332,C y +三点,则关于1y ,2y ,3y 大小关系正确的是_______.(用“<”连接)16.如图,是一座拱形桥的竖直截面图,水面与截面交于AB 两点,拱顶C 到AB 的距离为4m ,AB=12m ,DE 为拱桥底部的两点,且DE ∥AB ,点E 到AB 的距离为5cm ,则DE 的长度为______________ m .17.已知二次函数()232y x m x m =-+-+的顶点在y 轴上,则其顶点坐标为___________.18.将抛物线y =2(x ﹣1)2+3绕着点A (2,0)旋转180°,则旋转后的抛物线的解析式为_____.19.已知二次函数()210y ax bx a =++≠的图象与x 轴只有一个交点.请写出 一组满足条件的,a b 的值:a =__________,b =_________________20.过点()0,2,()2,2,()2,1--的二次函数图象开口向_______(填“上”或“下”)三、解答题21.如图,在平面直角坐标系中,抛物线(部分)刻画了某果园年初以来累积利润y (万元)与销售时间x (月)之间的关系(即当年前x 个月的利润总和为y ,y 和x 之间的关系).根据图象提供的信息,请解答下列问题: (1)求y 与x 的函数关系式;(2)求第8个月该果园所获利润是多少万元? (3)求到哪个月末时,该果园累积利润可达到30万元?22.已知抛物线的解析式为y =﹣3x 2+6x+9. (1)求它的对称轴;(2)求它与x 轴,y 轴的交点坐标.23.(1)若抛物线23y x x a =++与x 轴只有一个交点,求实数a 的值; (2)已知点()3,0在抛物线()233y x k x k =-++-上,求此抛物线的对称轴.24.随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李林从文化宫站出发,先乘坐地铁,准备在离家较近的A ,B ,C ,D ,E 中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x (单位:千米),乘坐地铁的时间1y (单位:分钟)是关于x 的一次函数,其关系如下表: 地铁站ABCDEx (千米) 8 9 10 11.5 13 1y (分钟)1820222528(1)求1关于的函数表达式.(2)李林骑单车的时间2y (单位:分钟)也受x 的影响,其关系可以用22121178y x x -+=来描述,请问:李林应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间. 25.如图,在平面直角坐标系中,二次函数2y x bx c =++的图象与x 轴交于A ,B 两点,与y 轴交于点C ()0,3-,A 点的坐标为(-1,0).(1)求二次函数的解析式;(2)若点P 是抛物线在第四象限上的一个动点,当四边形ABPC 的面积最大时,求点P 的坐标,并求出四边形ABPC 的最大面积;(3)若Q 为抛物线对称轴上一动点,当Q 在什么位置时QA+QC 最小,求出Q 点的坐标,并求出此时△QAC 的周长.26.已知关于x 的方程(k-1)x 2+(2k-1)x+2=0. (1)求证:无论k 取任何实数时,方程总有实数根;(2)当抛物线y =(k-1)x 2+(2k-1)x+2图象与x 轴两个交点的横坐标均为整数,且k 为正整数时,若P (a ,y 1),Q (1,y 2)是此抛物线上的两点,且y 1>y 2,请结合函数图象确定实数a 的取值范围.(3)已知抛物线y =(k-1)x 2+(2k-1)x+2恒过定点,求出定点坐标【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】①由y=0,一元二次方程()214=0ax a x +-,判别式()2=14a ∆-=0即可判断①;②抛物线中c=0,恒过原点,当x=4,函数值为4即可判断②;③抛物线对称轴为:122x a =-当11222a<-<时,解得102a <<,求出12a >即可判断③;④0a >,对称轴为:1222x a=-<,由抛物线开口向上,在对称轴的右侧,y 随着x 的增大而增大即可判断④. 【详解】①由y=0,()214=0ax a x +-,()2=14a ∆-,当1=04a >时,()2=14=0a ∆-有一个交点,为此抛物线与x 轴总有两个不同的交点不正确;②由()()2140y ax a x a =+->中c=0,抛物线恒过原点(0,0),当x=4,()4=1166144416y a a a a ⨯-=++=-,抛物线恒过(4,4),为此对于任何满足条件的a ,该二次函数的图象都经过点()4,4和()0,0两点正确; ③()()2140y ax a x a =+->对称轴为:1441122222b a a x a a a a--=-=-==-, 当11222a<-<时,解得102a <<,∴12a >, 为此当12a >,若该函数图象的对称轴为直线0x x =,则必有012x <<正确; ④()()2140y ax a x a =+->对称轴为:122x a=-, ∵0a >,抛物线开口向上,在对称轴的右侧,y 随着x 的增大而增大, 由此1222x a=-≤,解得10a>即0a >, 为此当2x ≥时,y 随x 的增大而增大,则102a <≤不正确. 故选择:B . 【点睛】本题考查抛物线与一元二次方程的关系,抛物线过定点,抛物线的对称轴,抛物线的增减性等问题,掌握抛物线的性质以及一元二次方程根的判别式是解题关键.2.D解析:D 【分析】根据二次函数的性质进行判断即可. 【详解】解:A 、当x=-1时,221y x x =--=1+2﹣1=2,函数图象过点(-1,2),此选项错误;B 、∵△=(﹣2)2﹣4×1×(﹣1)=8>0, ∴函数图象与x 轴有两个交点, 故此选项错误;C 、∵221y x x =--=(x ﹣1)2﹣2,且1>0,∴当x≥1时,y 随x 的增大而增大, 故此选项错误;D 、当x≤1,时,y 随x 的增大而减小,此选项正确, 故选:D . 【点睛】本题考查二次函数的性质、抛物线与x 轴的交点问题,熟练掌握二次函数的性质是解答的关键.3.B解析:B 【分析】由抛物线的开口方向判定a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 交点情况进行推理,进而对所得结论进行判断. 【详解】解:①∵由二次函数的图象可知:抛物线的开口向上, ∴a >0;又∵二次函数的图象与y 轴的交点在负半轴, ∴c <0;∴ac <0,即①正确; ②由图象知,对称轴x =2ba-=1,则b =﹣2a <0.故②正确;③由图象知,抛物线与x 轴有2个交点,则b 2﹣4ac >0,故③正确; ④由图象可知当x >1时,y 随x 的增大而增大;故④错误. 综上所述,正确的结论是:①②③. 故选:B . 【点睛】此题考查学生掌握二次函数的图像与性质,考查了数形结合的数学思想,解本题的关键是根据图像找出抛物线的对称轴.4.C解析:C 【分析】先利用顶点式得到两抛物线的顶点式,然后通过点平移的规律得到抛物线平移的情况. 【详解】解:抛物线y=2x 2的顶点坐标为(0,0),抛物线y=2(x-4)2+1的顶点坐标为(4,1),而点(0,0)先向右平移4个单位,再向上平移1个单位可得到点(4,1),所以抛物线y=2x 2先向右平移4个单位,再向上平移1个单位得到抛物线y=2(x+4)2+1. 故选:C . 【点睛】本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.5.C解析:C 【分析】根据图像判断二次函数的系数a 、b 、c 的正负性,即可求得. 【详解】∵二次函数图像开口向下 ∴a <0又∵二次函数图形与y 轴交点在y 正半轴上 ∴c >0∵对称轴在y 轴左侧∴02ba -< ∴b <0∴ac <0,bc <0∴点(,)A ac bc 在第三象限 故选C 【点睛】本题考查二次函数的图像与性质,掌握二次函数图像与系数的关系是解题关键.6.D【分析】直接利用二次函数对称轴求法得出答案. 【详解】解:抛物线y=(x-2)2+3的对称轴是:直线x=2. 故选:D . 【点睛】此题主要考查了二次函数的性质,正确掌握对称轴确定方法是解题关键.7.C解析:C 【分析】由抛物线的开口方向判断a 的符号,由抛物线与y 轴的交点判断c 的符号,然后根据对称轴及抛物线与x 轴交点情况进行分析,进而对所得结论进行判断. 【详解】①由二次函数2y ax bx c =++的图象开口向上可知a >0,图象与y 轴交点在负半轴,c <0,对称轴b 1x=-=2a 3,2b=-a 3<0,因此0abc >,故正确; ②由图象可知x =−1时,y =a−b +c >0,故正确;③对称轴b 1x=-=2a 3,2+30a b =,故错误; ④由图象与x 轴有两个交点,可知240b ac ->,故正确. 所以①②④三项正确, 故选:C . 【点睛】本题考查了二次函数与系数的关系,解答本题关键是掌握二次函数y =ax 2+bx +c 系数符号的确定.8.C解析:C 【分析】由开口方向可判断①;由对称轴为直线x=1可判断②;由x=1时y >0可判断③;由1-<x <3时,函数图像位于x 轴上方可判断④. 【详解】解:∵抛物线的开口向下 ∴a <0,故①错误; ∵抛物线的对称轴x=2b a-=1 ∴b=-2a ,即2a+b=0,故②正确;由图像可知x=1时,y=a+b+c >0,故③正确;由图像可知,当1-<x <3时,函数图像位于x 轴上方,即y >0,故④正确;【点睛】本题主要考查图像与二次函数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.9.C解析:C 【分析】分a >0与a <0两种情况考虑两函数图象的特点,再对照四个选项中图形即可得出结论. 【详解】解:①当a >0时,二次函数y=ax 2-a 的图象开口向上、对称轴为y 轴、顶点在y 轴负半轴,一次函数y=ax-a(a≠0)的图象经过第一、三、四象限,且两个函数的图象交于y 轴同一点;②当a <0时,二次函数y=ax 2-a 的图象开口向下、对称轴为y 轴、顶点在y 轴正半轴,一次函数y=ax-a(a≠0)的图象经过第一、二、四象限,且两个函数的图象交于y 轴同一点. 对照四个选项可知C 正确. 故选:C . 【点睛】本题考查了一次函数的图象以及二次函数图象与系数的关系,根据二次函数及一次函数系数找出其大概图象是解题的关键.10.D解析:D 【分析】首先观察表格可得二次函数2y ax bx c =++过点(4,3)-与(2,3)-,则可求得此抛物线的对称轴,然后由对称性求得答案. 【详解】 解:二次函数2y ax bx c =++过点(4,3)-与(2,3)-,∴此抛物线的对称轴为:直线4(2)32x -+-==-, ∴横坐标为1x =的点的对称点的横坐标为7x =-, ∴当1x =时,27y =-.故选:D . 【点睛】此题考查了二次函数的对称性,根据表格中的数据找到对称轴是解题的关键.11.D解析:D 【分析】先根据各项中一次函数与二次函数的图象判断a 、c 的正负,二者一致的即为正确答案. 【详解】解:A 、由一次函数图象可得:a >0,c <0,由二次函数图象可得a <0,c >0,矛盾,故本选项不符合题意;B 、由一次函数图象可得:a >0,c >0,由二次函数图象可得a >0,c <0,矛盾,故本选项不符合题意;C 、由一次函数图象可得:a <0,c >0,由二次函数图象可得a >0,c >0,矛盾,故本选项不符合题意;D 、由一次函数图象可得:a <0,c >0,由二次函数图象可得a <0,c >0,故本选项符合题意;故选:D .【点睛】本题考查了一次函数与二次函数的图象与性质,属于常考题型,熟练掌握二者的图象是解题的关键.12.C解析:C【分析】由抛物线解析式可求得开口方向、对称轴、顶点坐标,可求得答案.【详解】解:∵2(2)7y x =---,∵a <0,∴抛物线开口向下,对称轴为x=2,顶点坐标为(2,-7),当2x >时,y 随x 的增大而减小,当2x <时,y 随x 的增大而增大,∴A 、B 、D 都不正确,C 正确,故选:C .【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a (x-h )2+k 中,对称轴为x=h ,顶点坐标为(h ,k ).二、填空题13.【分析】先根据二次函数的对称性求出其与x 轴的另一个交点坐标再根据图象法即可得【详解】由图象可知抛物线的对称轴为与x 轴的一个交点坐标为则其与x 轴的另一个交点坐标为结合图象得:当时故答案为:【点睛】本题 解析:13x【分析】先根据二次函数的对称性求出其与x 轴的另一个交点坐标,再根据图象法即可得.【详解】由图象可知,抛物线的对称轴为1x =,与x 轴的一个交点坐标为(1,0)-,则其与x 轴的另一个交点坐标为(3,0),结合图象得:当0y <时,13x ,故答案为:13x.【点睛】 本题考查了二次函数的对称性、二次函数与不等式,熟练掌握二次函数的对称性是解题关键.14.【分析】连接OB 过点B 作BD ⊥x 轴于D 根据正方形的性质求得∠BOA=45°OB=根据三角函数和勾股定理可得点B 的坐标为()代入抛物线即可求解【详解】如图连接OB 过点B 作BD ⊥x 轴于D ∵四边形OABC解析:6-【分析】连接OB ,过点B 作BD ⊥x 轴于D ,根据正方形的性质求得∠BOA=45°,OB=,根据三角函数和勾股定理可得点B 的坐标为(),代入抛物线()20y axa =<即可求解.【详解】如图,连接OB ,过点B 作BD ⊥x 轴于D ,∵四边形OABC 是边长为2的正方形,∴∠BOA=45°,OB=∵AC 与x 轴负半轴的夹角为15°,∴∠AOD=45°﹣15°=30°,∴BD= 12,, ∴点B 的坐标为(), ∵点B 在抛物线()20y axa =<的图象上,则:(2a =解得:6a =,故答案为6a =-故答案为:6-.【点睛】本题主要考查根据坐标求解析式,涉及到正方形的性质、勾股定理、三角函数值,解题的关键是熟练掌握所学知识求得点B 的坐标.15.【分析】根据函数解析式的特点其对称轴为x=3图象开口向上;利用y 随x 的增大而减小可判断根据二次函数图象的对称性可判断于是【详解】根据二次函数图象的对称性可知中在对称轴的左侧y 随x 的增大而减小因为于是 解析:231y y y <<【分析】根据函数解析式的特点,其对称轴为x=3,图象开口向上;利用y 随x 的增大而减小,可判断21y y <,根据二次函数图象的对称性可判断23y y >,于是231y y y <<. 【详解】 根据二次函数图象的对称性可知,332(),C y 中,|323||32|1+>-=,1(1,)A y -、2(2,)B y 在对称轴的左侧,y 随x 的增大而减小,因为112-<<,于是231y y y <<.故答案为231y y y <<.【点睛】本题考查了函数图象上的点的坐标与函数解析式的关系,同时考查了函数的对称性及增减性.16.18【分析】先建立平面直角坐标系以直线DE 为x 轴y 轴为经过点C 且垂直于AB 的直线设AB 与y 轴交于H 求出OC 的长然后设该抛物线的解析式为:根据条件求出解析式再令y=0求出x 的值即可得到DE 的长度【详解解析:18【分析】先建立平面直角坐标系,以直线DE 为x 轴,y 轴为经过点C 且垂直于AB 的直线,设AB 与y 轴交于H ,求出OC 的长,然后设该抛物线的解析式为:2y ax k =+,根据条件求出解析式,再令y =0,求出x 的值,即可得到DE 的长度.【详解】解:如图所示,建立平面直角坐标系,以直线DE 为x 轴,y 轴为经过点C 且垂直于AB 的直线,设AB 与y 轴交于点H ,∵AB=12,∴AH=BH=6,由题可知:OH=5,CH=4,∴OC=5+4=9,∴B (6,5),C (0,9)设该抛物线的解析式为:2y ax k =+,∵顶点C (0,9),∴抛物线29y ax =+,代入B (6,5)得5=36a +9,解得19a =-, ∴抛物线解析式为2199y x =-+, 当y=0时,21099x =-+, 解得x =±9, ∴E (9,0),D (-9,0),∴OE=OD=9,∴DE=OD+OE=9+9=18,故答案为:18.【点睛】本题主要考查二次函数的综合应用问题,解答本题的关键是正确地建立平面直角坐标系,是一道非常典型的试题.17.【分析】先根据二次函数的顶点在y 轴上可得其对称轴为y 轴从而求出m 的值再根据二次函数的解析式即可得出答案【详解】二次函数的顶点在y 轴上此二次函数的对称轴为y 轴即解得二次函数的解析式为其顶点坐标为故答案 解析:()0,2【分析】先根据二次函数的顶点在y 轴上可得其对称轴为y 轴,从而求出m 的值,再根据二次函数的解析式即可得出答案.二次函数()232y x m x m =-+-+的顶点在y 轴上, ∴此二次函数的对称轴为y 轴,即()2023m x -=-=⨯-, 解得2m =,∴二次函数的解析式为232y x =-+,∴其顶点坐标为()0,2,故答案为:()0,2.【点睛】本题考查了二次函数的顶点坐标和对称轴,熟练掌握二次函数的对称性是解题关键. 18.y =﹣2(x ﹣3)2﹣3【分析】由题意根据抛物线的顶点变换规律得到新抛物线解析式的顶点坐标进而由此写出旋转后的抛物线所对应的函数表达式即可【详解】解:抛物线y =2(x ﹣1)2+3的顶点为(13)设绕解析:y =﹣2(x ﹣3)2﹣3【分析】由题意根据抛物线的顶点变换规律得到新抛物线解析式的顶点坐标,进而由此写出旋转后的抛物线所对应的函数表达式即可.【详解】解:抛物线y =2(x ﹣1)2+3的顶点为(1,3),设绕着点A (2,0)旋转180°得到(x ,y ), ∴12x +=2,32y +=0, 解得x =3,y =﹣3,∴绕着点A (2,0)旋转180°得到(3,﹣3),故旋转后的抛物线解析式是y =﹣2(x ﹣3)2﹣3.故答案为:y =﹣2(x ﹣3)2﹣3.【点睛】本题考查二次函数图象与几何变换,由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式. 19.【分析】根据判别式的意义得到△=b2-4a=0然后a 取一个不为0的实数再确定对应的b 的值【详解】解:∵二次函数y=ax2+bx+1(a≠0)的图象与x 轴只有一个交点∴△=b2-4a=0若a=1则b 可解析:12【分析】根据判别式的意义得到△=b 2-4a=0,然后a 取一个不为0的实数,再确定对应的b 的值.解:∵二次函数y=ax 2+bx+1(a≠0)的图象与x 轴只有一个交点,∴△=b 2-4a=0,若a=1,则b 可取2.故答案为1,2(答案不唯一).【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.20.下【分析】先用待定系数法确定二次函数的解析式然后根据二次项系数即可解答【详解】解:设一般式y=ax2+bx+c 由题意得:解得由<0则该函数图像开口向下故答案为:下【点睛】本题考查了二次函数图像的性质解析:下【分析】先用待定系数法确定二次函数的解析式,然后根据二次项系数即可解答.【详解】解:设一般式y=ax 2+bx+c ,由题意得:2=c 2=42142a b c a b c ⎧⎪++⎨⎪-=-+⎩解得3=-83=42a b c ⎧⎪⎪⎪⎨⎪=⎪⎪⎩由3=-8a <0,则该函数图像开口向下. 故答案为:下.【点睛】 本题考查了二次函数图像的性质,根据题意确定二次函数的解析式是解答本题的关键.三、解答题21.(1)2122y x x =-;(2)第8个月该果园所获利是5.5万元;(3)截止到第10月末该果园累积利润可达30万元.【分析】 (1)通过构建函数模型解答销售利润的问题,应根据图象以及题目中所给的信息来列出y 与x 之间的函数关系式;(2)分别把x =7,x =8,代入函数解析式2122y x x =-,再把总利润相减就可得出; (3)把y =30代入2122y x x =-的函数关系式里,求得月份. 【详解】 解:(1)由图象可知其顶点坐标为(2,-2),故可设其函数关系式为:2(2)2ya x ∵所求函数关系式的图象过(0,0), 于是得:20(02)2=--a ,解得12a =, ∴所求函数关系式为:21(2)22y x =--,即2122y x x =-. (2)把7x =代入2122y x x =-, 得1492710.52y =⨯-⨯=, 把8x =代入2122y x x =-, 得16428162y =⨯-⨯=, 第8个月该果园所获利润是:16﹣10.5=5.5万元,答:第8个月该果园所获利是5.5万元.(3)把30y =代入2122y x x =-, 化简得 24600x x --=,解得12106x x ==-,(舍去).答:截止到第10月末该果园累积利润可达30万元.【点睛】此题主要考查了二次函数的性质在实际生活中的应用,读懂题目意思,确定变量,建立函数模型,尤其是注意本题图象中所给的信息是解决问题的关键.22.(1)x =1;(2)与x 轴的交点坐标为(﹣1,0),(3,0),与y 轴的交点坐标为(0,9)【分析】(1)根据对称轴公式,可以求得该抛物线的对称轴;(2)令x=0求出相应的y 值,再令y=0,求出相应的x 的值,即可得到该抛物线与x 轴,y 轴的交点坐标.【详解】解:(1)∵抛物线的解析式为y =﹣3x 2+6x+9,∴该抛物线的对称轴为直线x =﹣2b a =﹣62(3)⨯-=1, 即该抛物线的对称轴为直线x =1;(2)∵抛物线的解析式为y =﹣3x 2+6x+9,∴当x =0时,y =9,当y =0时,x =﹣1或x =3,即该抛物线与x 轴的交点坐标为(﹣1,0),(3,0),与y 轴的交点坐标为(0,9)【点睛】本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答. 23.(1)94a =;(2)2x = 【分析】(1)由根的判别式进行计算,即可求出答案;(2)先求出k 的值,然后代入计算,即可求出对称轴.【详解】解:(1)抛物线23y x x a =++与x 轴只有一个交点, 0∴∆=,即940a -=, ∴94a =. (2)点()3,0在抛物线()233y x k x k =-++-上, ()203333k k ∴=-⨯++-,9k ∴=,∴抛物线的解析式为:23129y x x =-+-,∴对称轴为:1222(3)x =-=⨯-. 【点睛】 本题考查了一元二次方程根的判别式,二次函数的性质,解题的关键是掌握所学的知识,正确的求出参数的值.24.(1)122y x =+;(2)应在B 站出地铁,时间最短,为79min 2.【分析】(1)根据数据表,运用待定系数法解答即可;(2)设李华从文化宫回到家所需的时间为y ,则y=12y y +列出y 与x 的二次函数解析式,最后运用二次函数求最值解答即可.【详解】解:(1)设1y kx b =+,将(8,18),(9,20)代入得:188209k b k b =+⎧⎨=+⎩,解得22k b =⎧⎨=⎩, 所以122y x =+;(2)设李华从文化宫回到家所需的时间为y ,则22121122117898022y y x x x x x +=++-+=-+2179(9)22x =-+ 则当9x =时,12y y +取最小值792, 则应在B 站出地铁,时间最短,为79min 2. 【点睛】 本题主要考查了运用待定系数法求一次函数的解析式、二次函数的应用等知识点,根据题意,确定二次函数的解析式是解答本题的关键.25.(1)二次函数的解析式为223y x x =--;(2)375(,)28P ,四边形ABPC 的面积的最大值为758;(3)Q(1,-2),三角形QAC + 【分析】(1)根据待定系数法把A 、C 两点坐标代入2y x bx c =++可求得二次函数的解析式;(2)由抛物线解析式可求得B 点坐标,由B 、C 坐标可求得直线BC 解析式,可设出P 点坐标,用P 点坐标表示出四边形ABPC 的面积,根据二次函数的性质可求得其面积的最大值及P 点坐标;(3)求出点A 关于直线x=1对称点B ,再求直线BC 与对称轴交点Q ,将AQ+CQ 转化为BC ,在RtΔAOC 中求AC ,在R tΔBOC 中求BC 即可.【详解】(1)()()1,0,0,3A C --在曲线上, ∴103b c c -+=⎧⎨=-⎩, 解得:23b c =-⎧⎨=-⎩, ∴二次函数的解析式为223y x x =--;(2)在223y x x =--中,令y=0,得x=3或x=-1,∴B(3,0),且C(0,-3),设BC 的直线为y=kx+b , 330b k b =-⎧⎨+=⎩, 解得31b k =-⎧⎨=⎩, ∴经过点B ,C 的直线为y=x-3,设点P 的坐标为()2,23x x x --,如图,过点P 作PD x ⊥轴,垂足为D ,与直线BC 交于点E ,则(),3E x x -,∵23375(x )228ABC BCP ABPC S S S ∆∆=+=--+四边形, ∴当32x =时,四边形ABPC 的面积的最大值为758; (3) ∵点A 关于直线x=1对称点B (3,0),∴直线BC 与对称轴的交点为Q ,则Q 为QA+QC 最小时位置,有(2)BC 的直线为y=x-3,当x=1,y=1-3=-2,∴Q(1,-2), ()221310AC =+-=2232AQ CQ CB OC OB +==+=∴三角形QAC 1032【点睛】本题考查了待定系数法、三角形的面积、二次函数的性质、勾股定理,掌握这些知识与方法,会用它们解决问题是关键.26.(1)证明见解析;(2)a>1或a<﹣4;(3)(0,2)、(﹣2,0).【分析】(1)分类讨论:该方程是一元一次方程和一元二次方程两种情况.当该方程为一元二次方程时,根的判别式△≥0,方程总有实数根;(2)通过解(k-1)x2+(2k-1)x+2=0得到k=2,由此得到该抛物线解析式为y=x2+3x+2,结合图象回答问题.(3)根据题意得到(k-1)x2+(2k-1)x+2﹣y=0恒成立,由此列出关于x、y的方程组,通过解方程组求得该定点坐标.【详解】(1)证明:①当k=1时,方程为x+2=0,所以x=﹣2,方程有实数根,②当k≠1时,∵△=(2k-1)2﹣4x(k-1)×2=4k2-12k+9=(2k-3)2≥0,即△≥0,∴无论k取任何实数时,方程总有实数根(2)解:令y=0,则(k-1)x2+(2k-1)x+2=0,(x-2)[(k-1)x+1]=0解关于x的一元二次方程,得x1=﹣2,x2=11-k,∵二次函数的图象与x轴两个交点的横坐标均为整数,且k为正整数,∴1-k=-1,k=2.∴该抛物线解析式为y=x2+3x+2,由图象得到:当y1>y2时,a>1或a<﹣4.(3)依题意得(k-1)x2+(2k-1)x+2﹣y=0恒成立,即k(x2+2x)-x2-x﹣y+2=0恒成立,得:x2+2x=0;x1=0,y1=2;x2=-2,y2=0所以该抛物线恒过定点(0,2)、(﹣2,0).【点睛】本题考查了抛物线与x轴的交点与判别式的关系及二次函数图象上点的坐标特征,解答(1)题时要注意分类讨论.。

二次函数单元测试题及答案

二次函数单元测试题及答案

二次函数单元测试题及答案一、选择题1. 已知二次函数\( y = ax^2 + bx + c \),当\( a < 0 \)时,抛物线的开口方向是:A. 向上B. 向下C. 向左D. 向右答案:B2. 对于二次函数\( y = -2x^2 + 3x + 1 \),其顶点的横坐标是:A. \( -\frac{1}{2} \)B. \( -\frac{3}{2} \)C. \( \frac{3}{4} \)D. \( \frac{1}{4} \)答案:C3. 若二次函数\( y = x^2 + 2x + 1 \)与x轴有交点,则交点的个数是:A. 0B. 1C. 2D. 3答案:B二、填空题4. 二次函数\( y = 3x^2 - 6x + 5 \)的对称轴方程是\_\_\_\_\_\_\_\_\_\_\_\_。

答案:\( x = 1 \)5. 当\( x = 2 \)时,二次函数\( y = x^2 - 4x + 3 \)的值为\_\_\_\_\_\_\_\_\_\_\_\_。

答案:-1三、解答题6. 已知二次函数\( y = -x^2 + 2x + 3 \),求其与x轴的交点坐标。

解:令\( y = 0 \),得\( -x^2 + 2x + 3 = 0 \)。

解此方程,我们可以使用求根公式:\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]代入\( a = -1, b = 2, c = 3 \),得:\[ x = \frac{-2 \pm \sqrt{4 + 12}}{-2} = \frac{-2 \pm\sqrt{16}}{-2} = 1 \pm 2 \]因此,与x轴的交点坐标为\( (-1, 0) \)和\( (3, 0) \)。

7. 已知抛物线\( y = 2x^2 - 4x + 1 \),求其顶点坐标。

解:顶点的横坐标可以通过公式\( x = -\frac{b}{2a} \)求得,代入\( a = 2, b = -4 \),得:\[ x = -\frac{-4}{2 \times 2} = 1 \]将\( x = 1 \)代入原方程求得\( y \)值:\[ y = 2(1)^2 - 4(1) + 1 = 2 - 4 + 1 = -1 \]因此,顶点坐标为\( (1, -1) \)。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数单元测试题
一、选择题:(本大题共7小题,每小题3分,共21分)
1、与抛物线y=-1
2
x2+3x-5的形状、开口方向都相同,只
有位置不同的抛物线是()(A) y = -x2+3x (B) y=
-1
2
x2-5 (C) y =
1
2
x2+3x-5 (D) y=
1
2
x2
2、圆的面积S与其半径r的函数关系用图象表示大致是()
3、把函数
y=-3x2的图象沿x轴向右平移5
个单位,得到的
图象的解析式为(
)。

Ay=-3x2
+5 B、y=-3x2-5 C、y=-3(x+5)2 D、y=
-3(x-5)2 4、已知二次函数y=ax2+
bx+c(a≠0)的图象
如图所示,给出以下结论:①a>0.
②该函数的图象关于直线1
x
=对称.
③当13
x x
=-=
或时,函数y的值都等于0.
其中正确结论的个数是( )
A.3 B.2 C.1 D.0
5、已知0

a,在同一直角坐标系中,函数ax
y=与2
ax
y=的图象有可能是()
(
O
(A) (B) (C) (D) A.
6、已知772--=x kx y 的图象和x 轴有交点,则k 的取值范
围是( )A 4
7->k B k ≥47-且0≠k C k ≥47- D 4
7->k 且0≠k 7若二次函数y=x 2-4x+2c 2的图象的顶点在x 轴上,则c 的
值为( ) A .2 B .-2 C D .8.二次函数y=ax 2+x+a 2-1的图象可能是( )
二、填空题:(本大题共7小题,每小题4分,共28分)
9、下列函数:(1)2
12-=x y ;(2)y=()52--x x x ;(3)y=2-52x (3)()()322
1-+=x x y 中,二次函数有_______个。

10、函数232++=m m
mx y 是关于x 的二次函数,则m 的值为_____。

11、抛物线()353
12+--=x y 开口向____对称轴是直线_____, 顶点坐标是_________。

12、二次函数y =(m +1)x 2+m 2-2m -3过原点,m =______。

13、二次函数的图象开口向上,且顶点在y 轴的负半轴上,
写出一个满足条件的二次函数表达式: 。

14、若A (413-
,1y ),B (45-,2y ),C (41,3y )为二次
函数542-+=x x y 的图象上的三点,则1y ,2y ,3y 的大小关系是_______________。

15、汽车刹车距离s(m)与速度V (km/h )的函数关系s=100
1V 2,在一辆车速为100km/h 的汽车前方80m 处,现停放一辆故障车,此时刹车 有危险(填“会”或“不会”)。

三、解答题:(本题共7小题,共71分)
16、(8分)把函数y=-3x 2-6x+10化成y=a(x-h)2+k 的形式,
然后指出它的图象开口方向,对称轴,顶点坐标和最值
17、(8分)已知抛物线()m x m x y ---=32
求证:无论m 为何值,它与x 轴总有两个不同的交点;
18、(10分)函数y =ax 2(a≠0)与直线y =2x -3交于点A(1,b),求:(1)求a 和b 的值; (2)求抛物线y =ax 2的顶点和对称轴; (3)x 取何值时,二次函数y =ax 2中的y 随x 的增大而增大。

19、(10分)如图,矩形的长是4cm ,宽是3cm ,如果将长和宽都增加xcm ,那么面积增加ycm 2,
(1)求y 与x 的函数表达式;(2
)求当边长增加多少时,面积增加8cm 2。

20、(11分)一座隧道的截面由抛物线和长方形构成,长方形的长为8m ,宽为2m ,隧道最高点P 位于AB 的中央且距地面6m ,建立如下图所示的坐标系。

(1)求抛物线的表达式;
(2)一辆货车高4m ,宽2m ,能否从该隧道内通过,为什么?
21、(12分)如图,抛物线y=ax 2+bx+c (
a≠0
)与x 轴交于A 、B 两点,其中A •点坐标为(-1,0),点C (0,5),D (1,
8)在抛物线上,M 为抛物线的顶点。

(1)求抛物线的解析式;(2)求△MCB 的面积。

22、(12分)某商店按进货价每件6元购进一批货,零售价为8元时,可以卖出100件,如果零售价高于8元,那么一件也卖不出去,零售价从8元每降低0.1元,可以多卖出10件。

设零售价定为x 元(6≤x ≤8)。

(1)这时所获利润y (元)与零售价x (元)的关系式怎样?
(2)为零售价定为多少时,所获利润最大?最大利润是多少?
23如图,有一座抛物线形拱桥,在正常水位时水面AB 的宽为20米,如果水位上升3米,则水面CD 的宽是10米.
(1)建立如图所示的直角坐标系,求此抛物线的解析式;
(2)当水位在正常水位时,有一艘宽为6米的货船经过这里,船舱上有高出水面3.6米的长方体货物(货物与货船同宽).问:此船能否顺利通过这座拱桥?。

相关文档
最新文档