材料力学_强度理论与组合变形1
材料力学强度理论
材料力学强度理论
材料力学强度理论是材料力学的一个重要分支,它研究材料在外力作用下的强
度和变形特性。
材料的强度是指材料抵抗破坏的能力,而变形特性则是指材料在外力作用下的形变行为。
强度理论的研究对于材料的设计、制备和应用具有重要意义。
首先,强度理论可以帮助我们了解材料的破坏机制。
材料在外力作用下会发生
破坏,而不同的材料在受力时表现出不同的破坏模式,比如拉伸、压缩、剪切等。
强度理论可以通过实验和理论分析,揭示材料在受力时的破坏机制,为材料的设计和选用提供依据。
其次,强度理论可以指导材料的合理使用。
在工程实践中,我们需要根据材料
的强度特性来选择合适的材料,并确定合理的使用条件。
强度理论可以帮助我们评估材料在特定工况下的承载能力,从而保证材料的安全可靠使用。
此外,强度理论还可以为材料的改进和优化提供指导。
通过对材料强度特性的
研究,我们可以发现材料的强度局限性,并提出改进的方案。
比如,可以通过合金化、热处理等手段来提高材料的强度,或者通过结构设计来减小应力集中,提高材料的抗破坏能力。
综上所述,材料力学强度理论是材料科学中的重要内容,它不仅可以帮助我们
了解材料的破坏机制,指导材料的合理使用,还可以为材料的改进和优化提供指导。
在未来的研究和工程实践中,我们需要进一步深入研究强度理论,不断提高材料的强度和可靠性,为社会发展和科技进步做出贡献。
材料力学组合变形
组合变形和叠加原理 拉伸或压缩与弯曲旳组合 扭转与弯曲旳组合
目录
§8-1 组合变形和叠加原理
一、组合变形旳概念
构件在荷载作用下发生两种或两种以上旳基本变形,则构件 旳变形称为组合变形.
l 基本变形 u 拉伸、压缩
u 剪切
u 扭转
u 弯曲
二、处理组合变形问题旳基本措施-叠加法
叠加原理旳成立要求:内力、应力、应变、变形等与外力之 间成线性关系.
M A(F) 0
F 42 kN
H 40 kN, V 12.8 kN
l 内力图 l 危险截面
C 截面
M C 12 kNm, N 40 kN
l 设计截面旳一般环节
u 先根据弯曲正应力选择工字钢型号; u 再按组合变形旳最大正应力校核强度,必要时选择大一号或 大二号旳工字钢; u 若剪力较大时,还需校核剪切强度。
按第四强度理论
Qy My T
r4
1 W
Mz Qz
M 2 0.75T 2 47.4 MPa [ ]
(3) 曲柄旳强度计算
l 危险截面 III-III截面
l 计算内力 u 取下半部分
Qx Qz
N R2 C1 13 kN Mx m H2 d /2
765 Nm
M z R2 (a b / 2) 660 Nm
横截面上任意一点 ( z, y) 处旳正应 力计算公式为
1.拉伸正应力
FN
A
2.弯曲正应力
Mz y
Iz
FN Mz y
A Iz
( z,y)
Mz
z
O
x
FN
y
3.危险截面旳拟定
作内力图
F1
轴力
《材料力学组合变形》课件
拉伸与压缩组合变形的分析方法
01
02
03
弹性分析方法
基于弹性力学的基本原理 ,通过求解弹性方程来分 析杆件内部的应力和应变 分布。
塑性分析方法
在材料进入塑性阶段后, 采用塑性力学的基本理论 来分析杆件的承载能力和 变形行为。
材料力学在组合变形中的应用实例
01
02
03
04
桥梁工程
桥梁的受力分析、桥墩的稳定 性分析等。
建筑结构
高层建筑、大跨度结构的受力 分析、抗震设计等。
机械工程
机械零件的强度、刚度和稳定 性分析,如轴、轴承、齿轮等
。
航空航天
飞机和航天器的结构分析、材 料选择和制造工艺等。
材料力学在组合变形中的发展趋势
特点
剪切与扭转组合变形具有复杂性和多样性,其变形行为受到多种因素的影响,如 材料的性质、杆件的长度和截面尺寸、剪切和扭转的相对大小等。
剪切与扭转组合变形的分析方法
1 2 3
工程近似法
在分析剪切与扭转组合变形时,通常采用工程近 似法,通过简化模型和假设来计算杆件的应力和 变形。
有限元法
有限元法是一种数值分析方法,可以模拟杆件在 剪切与扭转组合变形中的真实行为,提供更精确 的结果。
弯曲组合变形的分析方法
叠加法
刚度矩阵法
叠加法是分析弯曲组合变形的基本方 法之一。该方法基于线性弹性力学理 论,认为各种基本变形的应力、应变 分量可以分别计算,然后按照线性叠 加原理得到最终的应力、应变分布。
刚度矩阵法是通过建立物体内任意一 点的应力、应变与外力之间的关系, 来求解复杂变形问题的一种方法。对 于弯曲组合变形,可以通过构建系统 的刚度矩阵来求解。
工程力学-材料力学部分总结
5. 梁弯曲变形计算
(1)积分法
EIz EIz M dx C
EIz Mdx dx Cx D
(2)叠加法
边界条件确定
约束条件 光滑连续条件
作图规律
无外力段 外
力
q=0
均布载荷段
q>0
q<0
集中力 集中力偶
P
m
c
c
水平直线
Q Q>0 图Q 特
Q<0
Q
上升直线
下降直线
自左向右, 突变与P同
2
( 3
Q
Q
Q Q1
征
X
X
X
X
X
c
Q2
Q1-Q2=P
M 上升直线 下降直线 开口向上曲线 开口向下曲线 M 转折
图M
M
M
M
M
特
征
X
X
X
X
cX
无变化
Q
X
c
自左向右, 突变与M同
M M1
cX
M2 M1-M2=m
6 静不定问题 (1)静不定问题的求解步骤
判断系统静不定的次数
建立变形协调方程 力与变形间的物理关系
EIz
y My EIz
max
max
M max
Wz
FS max
S
z
Izb
w w max
max
1. 一些基本概念
(1)变形固体的四个基本假设及其作用
(2)应力、应变的概念
应力 正应力σ 切应力τ
应变
线应变ε 切应变γ
(3)内力分析的截面法及其求解步骤
2. 一些基本定理
45
材料力学10组合变形
材料力学10组合变形组合变形是指当结构受到外力作用时,由于各个零件的不同材料及尺寸性质的差异,导致各个零件产生不同的变形现象,从而使整个结构发生整体的变形。
组合变形是结构力学的重要内容,对于工程结构的设计、安全性评估和结构稳定性分析都至关重要。
本文将介绍组合变形的概念、分析方法和影响因素。
组合变形的概念:组合变形是指由于结构中不同零件的尺寸和材料性质的不一致,而导致结构在受力时产生的整体变形。
组合变形分为两类:一是刚体体变形,即结构在受力作用下整体平移、旋转或缩放;二是构件本身变形,即结构中各零件由于尺寸和材料的不一致而产生的内部变形。
组合变形的分析方法:组合变形的分析方法主要有两种:力法和位移法。
力法是指根据梁的变形方程和杨氏模量的定义,通过计算各零件在各个截面上的张力或弯矩,从而得到整体的变形情况。
位移法是指根据构件的位移和应变关系,通过求解位移方程组,从而得到整体的变形情况。
力法和位移法都是基于弹性理论,适用于较小变形和线性弹性材料的情况。
组合变形的影响因素:组合变形的大小与结构的几何形状、零件尺寸和材料性质有关。
影响组合变形的因素主要有以下几个方面:1.结构的几何形状:结构的几何形状对组合变形有重要影响。
例如,在长梁的弯曲变形中,梁的长度和曲率半径都会影响变形的大小。
2.零件的尺寸:零件的尺寸对组合变形有重要影响。
例如,在梁的弯曲变形中,梁的截面积和转动惯量会影响变形的大小。
3.零件的材料性质:零件的材料性质对组合变形有重要影响。
例如,在梁的弯曲变形中,梁的弹性模量和截面剪切模量会影响变形的大小。
4.外力的作用方式:外力的作用方式对组合变形有重要影响。
例如,在梁的弯曲变形中,集中力和均布力对变形的影响是不同的。
除了以上几个因素外,结构的边界条件和连接方式也会影响组合变形的大小。
此外,在实际工程中,结构中可能存在的缝隙、温度变化、材料老化等因素也会对组合变形产生影响。
对于设计工程结构来说,合理控制组合变形是非常重要的。
14-1组合变形-材料力学
Fz F sin
五、自由端的变形
z
A
y
y
FL3 cos
3EI z
z
B y
x
B z
FL3 sin
3EI y
B
z
y
查表7-1(3)
在 Fz B点的位移 z :
例题14.1 图所示屋架结构。已知屋面坡度为1:2, 两屋架之间的距离为4m,木檩条梁的间距为1.5m, 屋面重(包括檩条)为1.4kN/m2。若木檩条梁采
"
Iy
Iy
'
M z y M y z
Iz
Iy
cos sin
M ( y z)
Iz
Iy
四、斜弯曲时的强度条件
1、中性轴的位置
M (
Iz
yo
sin
Iy
zo )
0
tan yo Iz tan
zo
和扭矩图如图c、d
危险截面在杆的根部(固定端)
(3)应力分析
B
M W
T
T Wp
在杆的根部取一单元体分析
y 0, x B , xy T
计算主应力
1
3
B
2
( B
2
)2
2 T
2 0
(4)强度分析
选择第三、第四强度理论
r3
入偏心拉伸的强度条
4
32
件校核
32.4106 32.4MPa 35MPa
满足强度条件,最后选用立柱直 d = 12.5cm
材料力学四大强度理论
材料力学四大强度理论材料力学是研究材料在外力作用下的力学性能和变形规律的学科,其中强度理论是材料力学中的重要内容之一。
材料的强度是指材料在外力作用下抵抗破坏的能力,而强度理论则是用来描述和预测材料在不同应力状态下的破坏规律和强度值的理论体系。
在材料力学中,有四大经典的强度理论,分别是极限强度理论、绝对最大剪应力理论、莫尔-库伊特理论和最大应变能理论。
首先,极限强度理论是最早被提出的强度理论之一,它是根据材料的屈服条件来描述材料的破坏规律。
极限强度理论认为材料在受到外力作用时,只要应力达到了材料的屈服强度,材料就会发生破坏。
这种理论简单直观,易于应用,但在实际工程中往往存在一定的局限性,因为它忽略了材料在屈服之前的变形过程。
其次,绝对最大剪应力理论是基于材料的最大剪应力来描述材料的破坏规律。
这种理论认为,材料在受到外力作用时,只要材料中的最大剪应力达到了材料的抗剪强度,材料就会发生破坏。
这种理论在一些特定情况下具有较好的适用性,但在一些复杂应力状态下往往难以准确描述材料的破坏规律。
接下来,莫尔-库伊特理论是基于材料的主应力来描述材料的破坏规律。
这种理论认为,材料在受到外力作用时,只要材料中的任意一个主应力达到了材料的抗拉强度或抗压强度,材料就会发生破坏。
莫尔-库伊特理论相对于前两种理论来说,更加全面和准确,因为它考虑了材料在不同应力状态下的破坏规律。
最后,最大应变能理论是基于材料的应变能来描述材料的破坏规律。
这种理论认为,材料在受到外力作用时,只要材料中的应变能达到了材料的抗拉强度或抗压强度,材料就会发生破坏。
最大应变能理论在描述材料的破坏规律时考虑了材料的变形能量,因此在一些复杂应力状态下具有较好的适用性。
综上所述,材料力学中的强度理论是描述和预测材料在外力作用下的破坏规律和强度值的重要理论体系。
四大强度理论分别是极限强度理论、绝对最大剪应力理论、莫尔-库伊特理论和最大应变能理论,它们各自具有一定的适用范围和局限性,工程应用中需要根据具体情况进行选择和应用。
材料力学第七章组合变形
P2=406N
外力向形心简化并分解 弯扭组合变形
每个外力分量对应 的内力方程和内力图
M (x)
M
2 y
(
x)M
2 z
(
x)
解续
MMZz ((NNmm)) 71.25
40.6
MMyy ((NNmm)) MT n ((NNmm))
7.05 120 Mn
+
MM ((NNmm)) Mmax=71.3
41.2
核心边界上的一个角点;
截面角点边界
核心边界上的一条直线;
截面曲线边界
核心边界上的一条曲线。
例:
求右图示矩形截面的截面核心。
解:取截面切线 l1作为中性轴,其截距:
b
az
b 2
ay
4
3
a
并注意到: iz2 Iz / A h2 /12 iy2 I y / A b2 /12
故
h
5 21 z
34
ay
iz2 yP
az
iy2 zP
当偏心外力作用在截面 形心周围一个小区域内, 而对应的中性轴与截面周 边相切或位于截面之外时, 整个横截面上就只有压应 力而无拉应力。
2.截面核心的性质及其确定
(1)性质:是截面的一种几何特征,它只与截面的形状、尺
寸有关,而与外力无关。
(2)确定:根据中性轴方程知,截面上中性轴上的点的坐标
cmax
B
Fp A
MB Wz
Fp 6M B 13.4MPa bh bh2
在 B 截面右边缘处
3、最大拉应力
t
max
Fp A
MB Wz
3.4MPa
4、最大剪应力
(完整版)材料力学必备知识点
材料力学必备知识点1、 材料力学的任务:满足强度、刚度和稳定性要求的前提下,为设计既经济又安全的构件,提供必要的理论基础和计算方法。
2、 变形固体的基本假设:连续性假设、均匀性假设、各向同性假设。
3、 杆件变形的基本形式:拉伸或压缩、剪切、扭转、弯曲。
4、 低碳钢:含碳量在0.3%以下的碳素钢。
5、 低碳钢拉伸时的力学性能:弹性阶段、屈服阶段、强化阶段、局部变形阶段 极限:比例极限、弹性极限、屈服极限、强化极限6、 名义(条件)屈服极限:将产生0.2%塑性应变时的应力作为屈服指标7、 延伸率δ是衡量材料的塑性指标塑性材料 随外力解除而消失的变形叫弹性变形;外力解除后不能消失的变形叫塑性变形。
>5%的材料称为塑性材料: <5%的材料称为脆性材料8、 失效:断裂和出现塑性变形统称为失效9、 应变能:弹性固体在外力作用下,因变形而储存的能量10、应力集中:因杆件外形突然变化而引起的局部应力急剧增大的现象11、扭转变形:在杆件的两端各作用一个力偶,其力偶矩大小相等、转向相反且作用平面垂直于杆件轴线,致使杆件的任意两个横截面都发生绕轴线的相对转动。
12、翘曲:变形后杆的横截面已不再保持为平面;自由扭转:等直杆两端受扭转力偶作用且翘曲不受任何限制;约束扭转:横截面上除切应力外还有正应力13、三种形式的梁:简支梁、外伸梁、悬臂梁14、组合变形:由两种或两种以上基本变形组合的变形15、截面核心:对每一个截面,环绕形心都有一个封闭区域,当压力作用于这一封闭区域内时,截面上只有压应力。
16、根据强度条件 可以进行(强度校核、设计截面、确定许可载荷)三方面的强度计算。
17、低碳钢材料由于冷作硬化,会使(比例极限)提高,而使(塑性)降低。
18、积分法求梁的挠曲线方程时,通常用到边界条件和连续性条件;因杆件外形突然变化引起的局部应力急剧增大的现象称为应力集中;轴向受压直杆丧失其直线平衡形态的现象称为失稳19、圆杆扭转时,根据(切应力互等定理),其纵向截面上也存在切应力。
材料力学组合变形
材料力学组合变形材料力学是研究材料在外力作用下的力学性能和变形行为的学科。
组合变形是指将不同的材料组合在一起,并在外力作用下共同发生变形。
本文将探讨材料力学中的组合变形及其应用。
材料的组合变形主要有两种形式,即均匀变形和非均匀变形。
均匀变形是指组合材料中各个组分材料的变形均匀一致,不发生相对滑动或相对滑动微小。
在均匀变形中,组合材料的整体变形主要由各个组分材料的线弹性或体弹性共同引起。
例如,当钢筋混凝土受到拉力作用时,钢筋和混凝土发生均匀的拉伸变形。
非均匀变形是指组合材料中各个组分材料的变形不一致,发生相对滑动或相对滑动巨大。
在非均匀变形中,组合材料的整体变形主要由各个组分材料的弹性、塑性和断裂等共同引起。
例如,当金属板与橡胶层组合时,金属板可以发生弯曲变形,而橡胶层则可以发生弹性变形和形变。
组合变形在实际应用中有着广泛的应用。
首先,组合变形可以通过调节组分材料的比例和形状来实现特定的力学性能。
例如,通过调节纤维增强复合材料中纤维的方向和分布,可以显著改变其强度和刚度。
此外,通过组合不同的材料,还可以实现热膨胀系数匹配、界面应力分散等功能,从而降低材料的应力集中和断裂风险。
其次,组合变形还可以实现材料的远程感应和控制。
例如,利用形状记忆合金和橡胶组合的智能材料,在外力作用下可以实现形状变化和应变分布的调控。
这种材料可以应用于自适应结构、智能传感器等领域。
此外,通过组合不同的材料,还可以实现流变性能的调控,进而应用于动态振动控制等领域。
最后,组合变形还可以实现材料的多功能性和复合性能。
通过组合不同材料的优势,可以实现多功能材料的设计和制备。
例如,通过合理选择纳米材料和纤维增强复合材料等,可以实现具备高强度、低密度、耐热和导电等多种特性的复合材料。
此外,通过组合不同材料的力学性能,还可以实现弹性材料、减振材料和防护材料的设计与制备。
综上所述,材料力学中的组合变形是一种重要的力学现象,具有广泛的应用前景。
材料力学强度理论
材料力学强度理论
材料力学强度理论是材料力学的重要分支,它研究材料在外力作用下的变形和破坏规律,对于工程结构的设计和材料的选用具有重要的指导意义。
材料力学强度理论主要包括极限强度理论、能量强度理论和应变强度理论等。
首先,极限强度理论是最早形成的材料力学强度理论之一。
它认为材料的破坏取决于材料内部的最大应力达到其抗拉强度或抗压强度时所对应的应变状态。
极限强度理论的优点是简单易行,适用范围广,但其缺点是只考虑了材料的强度,忽略了材料的变形性能,因此在工程实践中应用受到了一定的限制。
其次,能量强度理论是在极限强度理论的基础上发展起来的。
它认为材料的破坏取决于单位体积内的应变能达到一定数值时所对应的应变状态。
能量强度理论考虑了材料的变形性能,能够更准确地描述材料的破坏过程,因此在工程实践中得到了广泛的应用。
最后,应变强度理论是在能量强度理论的基础上进一步发展起来的。
它认为材料的破坏取决于应变状态达到一定数值时所对应的应力状态。
应变强度理论综合考虑了材料的强度和变形性能,能够更全面地描述材料的破坏规律,因此在工程实践中得到了广泛的应用。
总的来说,材料力学强度理论对于工程结构的设计和材料的选用具有重要的指导意义。
不同的强度理论各有其优缺点,工程师需要根据具体的工程要求和材料性能选择合适的强度理论进行分析和计算。
在今后的研究和工程实践中,我们还需要进一步深入理解材料的力学性能,不断完善和发展材料力学强度理论,为工程结构的安全可靠提供更加科学的依据。
材料力学第10章 组合变形
5
第二节 斜弯曲 在第6章讨论过平面弯曲,例如,如图10.2(a) 所示的矩形截面梁,外力F1,F2作用于同一纵向 平面内,作用线通过截面的弯心,且与形心主惯性 轴之一平行,梁弯曲后,梁的挠曲线位于外力所在 的形心主惯性平面内,这类弯曲为平面弯曲。如图 10.2(b)所示的矩形截面梁,外力F的作用线虽然通 过截面的弯心,但它与截面的形心主惯性轴斜交, 此时,梁弯曲后的挠曲线不再位于外力F所在的纵 向平面内,这类弯曲则称为斜弯曲(oblique bendin g)。
13
图10.4
图10.5
14
在梁的斜弯曲问题中,一般不考虑切应力的影 响,直接对危险截面上的危险点进行正应力强度计 算,其强度条件为
对于矩形、工字形及槽形截面梁,则可写成
15
五、斜弯曲梁的变形计算 梁在斜弯曲情况下的变形,仍可根据叠加原理 求解。如图10.3所示悬臂梁在自由端的挠度就等于 力F的分量Fy,Fz在各自弯曲平面内的挠度的矢量 和。因为
第10章
第一节 概述 一、组合变形的概念 前面有关章节分别讨论了杆件在各基本变形情 况下的强度计算和刚度计算。在实际工程中,许多 常用杆件往往并不处于单一的基本变形,而可能同 时存在着几种基本变形,它们的每一种变形所对应 的应力或变形属同一量级,在杆件设计计算时都必 须考虑。
1
图10.1
2
二、组合变形的求解方法 在小变形、线弹性材料的前提下,杆件同时存 在的几种基本变形,它们的每一种基本变形都是彼 此独立的,即在组合变形中的任一种基本变形都不 会改变另外一种基本变形相应的应力和变形。这样, 对于组合变形问题就能够用叠加原理来进行计算。
3
具体的方法及步骤是: ①荷载标准化。找出构成组合变形的所有基本 变形,将荷载化简为只引起这些基本变形的相当力 系。 ②基本变形计算。按构件原始形状和尺寸,计 算每一组基本变形的应力和变形。
材料力学-第八章组合变形
M z y M y sin
Iz
Iz
x
M y z M z cos
Iy
Iy
x
y
z
y
z
M
y sin
z
cos
对于圆形截面
因为过形心的任意轴均为截面的对称轴,所以当横 截面上同时作用两个弯矩时,可以将弯矩用矢量表示, 然后求二者的矢量和。于是,斜弯曲圆截面上的应力计 算公式为:
A
C
B
D
2 kN 5 kN
300 500
2 kN (a)
500
解:
1.5 kN Am
7 kN
C
1.5 kN m
B
D
(1)分析载荷 如图b所示
5 kN
12 kN (b)
T 1.5 kN m
(2)作内力图 x
如图c、d、e、f 所示
(c)
MC MD
1.5 kN Am
7 kN
C
1.5 kN m
B
FN A
F (2a)2
1 4
F a2
(2)开槽后的正应力
My
FN F
My
Fa 2
FN
2
max
FN A
My Wy
F 2a2
Fa / 2 2a2 a2 /
6
2
F a2
2a
2a
z
a
所以:
2
1
8
y
§8.3 斜弯曲
F1
材料力学 强度理论与组合变形
第八章强度理论与组合变形§8-1 强度理论的概念1.不同材料在同一环境及加载条件下对“破坏”(或称为失效)具有不同的抵抗能力(抗力)。
例1常温、静载条件下,低碳钢的拉伸破坏表现为塑性屈服失效,具有屈服极限σ,s铸铁破坏表现为脆性断裂失效,具有抗拉强度σ。
图9-1a,bb2.同一材料在不同环境及加载条件下也表现出对失效的不同抗力。
例2常温静载条件下,带有环形深切槽的圆柱形低碳钢试件受拉时,不再出现塑性变形,而沿切槽根部发生脆断,切槽导致的应力集中使根部附近出现两向和三向拉伸型应力状态。
图(9-2a,b)例3 常温静载条件下,圆柱形铸铁试件受压时,不再出现脆性断口,而出现塑性变形,此时材料处于压缩型应力状态。
图(9-3a )例4 常温静载条件下,圆柱形大理石试件在轴向压力和围压作用下发生明显的塑性变形,此时材料处于三向压缩应力状态下。
图9-3b3.根据常温静力拉伸和压缩试验,已建立起单向应力状态下的弹性失效准则,考虑安全系数后,其强度条件为 []σσ≤ ,根据薄壁圆筒扭转实验,可建立起纯剪应力状态下的弹性失效准则,考虑安全系数后,强度条件为 []ττ≤ 。
建立常温静载一般复杂应力状态下的弹性失效准则——强度理论的基本思想是: 1)确认引起材料失效存在共同的力学原因,提出关于这一共同力学原因的假设; 2)根据实验室中标准试件在简单受力情况下的破坏实验(如拉伸),建立起材料在复杂应力状态下共同遵循的弹性失效准则和强度条件。
3)实际上,当前工程上常用的经典强度理论都按脆性断裂和塑性屈服两类失效形式,分别提出共同力学原因的假设。
§8-2四个强度理论1.最大拉应力准则(第一强度理论)基本观点:材料中的最大拉应力到达材料的正断抗力时,即产生脆性断裂。
表达式:u σσ=+max复杂应力状态321σσσ≥≥, 当01>σ, 1m a xσσ=+简单拉伸破坏试验中材料的正断抗力b u σσσ==1,032==σσ 最大拉应力脆断准则: b σσ=1(9-1a)相应的强度条件:[]bb n σσσ=≤1(9-1b)适用范围:虽然只突出 1σ 而未考虑 32,σσ 的影响,它与铸铁,工具钢,工业陶瓷等多数脆性材料的实验结果较符合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章强度理论与组合变形§8-1 强度理论的概念1.不同材料在同一环境及加载条件下对“破坏”(或称为失效)具有不同的抵抗能力(抗力)。
例1常温、静载条件下,低碳钢的拉伸破坏表现为塑性屈服失效,具有屈服极限σ,s铸铁破坏表现为脆性断裂失效,具有抗拉强度σ。
图9-1a,bb2.同一材料在不同环境及加载条件下也表现出对失效的不同抗力。
例2常温静载条件下,带有环形深切槽的圆柱形低碳钢试件受拉时,不再出现塑性变形,而沿切槽根部发生脆断,切槽导致的应力集中使根部附近出现两向和三向拉伸型应力状态。
图(9-2a,b)例3 常温静载条件下,圆柱形铸铁试件受压时,不再出现脆性断口,而出现塑性变形,此时材料处于压缩型应力状态。
图(9-3a )例4 常温静载条件下,圆柱形大理石试件在轴向压力和围压作用下发生明显的塑性变形,此时材料处于三向压缩应力状态下。
图9-3b3.根据常温静力拉伸和压缩试验,已建立起单向应力状态下的弹性失效准则,考虑安全系数后,其强度条件为 []σσ≤ ,根据薄壁圆筒扭转实验,可建立起纯剪应力状态下的弹性失效准则,考虑安全系数后,强度条件为 []ττ≤ 。
建立常温静载一般复杂应力状态下的弹性失效准则——强度理论的基本思想是: 1)确认引起材料失效存在共同的力学原因,提出关于这一共同力学原因的假设; 2)根据实验室中标准试件在简单受力情况下的破坏实验(如拉伸),建立起材料在复杂应力状态下共同遵循的弹性失效准则和强度条件。
3)实际上,当前工程上常用的经典强度理论都按脆性断裂和塑性屈服两类失效形式,分别提出共同力学原因的假设。
§8-2四个强度理论1.最大拉应力准则(第一强度理论)基本观点:材料中的最大拉应力到达材料的正断抗力时,即产生脆性断裂。
表达式:u σσ=+max复杂应力状态321σσσ≥≥, 当01>σ, 1m a xσσ=+简单拉伸破坏试验中材料的正断抗力b u σσσ==1,032==σσ 最大拉应力脆断准则: b σσ=1(9-1a)相应的强度条件:[]bb n σσσ=≤1(9-1b)适用范围:虽然只突出 1σ 而未考虑 32,σσ 的影响,它与铸铁,工具钢,工业陶瓷等多数脆性材料的实验结果较符合。
特别适用于拉伸型应力状态(如0321=>≥σσσ),混合型应力状态中拉应力占优者( ,0,031<>σσ但31σσ> )。
2.最大伸长线应变准则(第二强度理论)基本观点:材料中最大伸长线应变到达材料的脆断伸长线应变 u ε时,即产生脆性断裂。
表达式:u εε=+max复杂应力状态321εεε≥≥,当01>ε, [])(13211max σσνσεε+-==+E简单拉伸破坏试验中材料的脆断伸长线应变b σσ=1,032==σσ,Ebb u σεε==最大伸长线应变准则:b σσσνσ=+-)(321(9-2a )相应的强度条件:[]bb n σσσσνσ=≤+-)(321 (9-2b )适用范围:虽然考虑了2σ,3σ的影响,它只与石料、混凝土等少数脆性材料的实验结果较符合(如图9-4所示),铸铁在混合型压应力占优应力状态下(01>σ313,0,σσσ<<)的实验结果也较符合,但上述材料的脆断实验不支持本理论描写的2σ,3σ对材料强度的影响规律。
3.最大剪应力准则(第三强度理论)基本观点:材料中的最大剪应力到达该材料的剪切抗力u τ时,即产生塑性屈服。
表达式:u ττ=max复杂应力状态简单拉伸屈服试验中的剪切抗力s σσ=1 ,032==σσ,2ss u σττ==最大剪应力屈服准则:s σσσ=-31(9-3a )相应的强度条件:[]ssn σσσσ=≤-31 (9-3b )321σσσ≥≥,23113σσττ-==maax适用范围:虽然只考虑了最大主剪应力13τ ,而未考虑其它两个主剪应力 12τ ,32τ 的影响,但与低碳钢、铜、软铝等塑性较好材料的屈服试验结果符合较好;并可用于像硬铝那样塑性变形较小,无颈缩材料的剪切破坏,此准则也称特雷斯卡(Tresca )屈服准则。
3.形状改变比能准则(第四强度理论)基本观点:材料中形状改变比能到达该材料的临界值 u f u )( 时,即产生塑性屈服。
表达式:u f f u u )(= 复杂应力状态321σσσ≥≥,[]213232221)()()(61σσσσσσ-+-+-+=Ev uf简单拉伸屈服试验中的相应临界值s σσ=1,032==σσ, 2261)(s u f Ev u σ⋅+=形状改变比能准则:[]sσσσσσσσ=-+-+-213232221)()()(21 (9-4a )相应的强度条件:[][]ssn σσσσσσσσ=≤-+-+-213232221)()()(21 (9-4b )适用范围:它既突出了最大主剪应力对塑性屈服的作用,又适当考虑了其它两个主剪应力的影响,它与塑性较好材料的试验结果比第三强度理论符合得更好。
此准则也称为米泽斯(Mises )屈服准则,由于机械、动力行业遇到的载荷往往较不稳定,因而较多地采用偏于安全的第三强度理论;土建行业的载荷往往较为稳定,因而较多地采用第四强度理论。
*附:泰勒——奎尼(Taylor —Quinney )薄壁圆筒屈服试验(1931)。
米泽斯与特雷斯卡屈服准则的试验验证。
薄壁圆筒承受拉伸与扭转组合作用时,应力状态如图9-5a 。
主应力:223,14212τσσσ+±=,02=σ代入第三强度理论:2224s στσ=+ 或 1422=⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛s s στσσ (a ) 代入第四强度理论:2223s στσ=+ 或 1322=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛s sστσσ (b )(a ),(b )式在以sσσ—sστ为坐标轴的平面内为两条具有不同短轴的理论椭圆曲线(图9-5b )。
结果:试验点基本上落于两条理论曲线之间,大多数试验点更接近于第四强度理论曲线。
莫尔强度理论1.不同于四个经典强度理论,莫尔理论不致力于寻找(假设)引起材料失效的共同力学原因,而致力于尽可能地多占有不同应力状态下材料失效的试验资料,用宏观唯象的处理方法力图建立对该材料普遍适用(不同应力状态)的失效条件。
2.自相似应力圆与材料的极限包络线自相似应力圆:如果一点应力状态中所有应力分量随各个外载荷增加成同一比例同步增加,则表现为最大应力圆自相似地扩大。
材料的极限包络线:随着外载荷成比例增加,应力圆自相似地扩大,到达该材料出现塑性屈服或脆性断裂时的极限应力圆。
只要试验技术许可,务求得到尽可能多的对应不同应力状态的极限应力圆,这些应力圆的包络线即该材料的极限(状态)包络线。
图9-6a 所示即包含拉伸、圆轴扭转、压缩三种应力状态的极限包络线。
3.对拉伸与压缩极限应力圆所作的公切线是相应材料实际包络线的良好近似(图9-6b )。
实际载荷作用下的应力圆落在此公切线之内,则材料不会失效,到达此公切线即失效。
由图示几何关系可推得莫尔强度失效准则。
对于抗压屈服极限sc σ大于抗拉屈服极限s σ的材料(即s sc σσ>)s scs σσσσσ=-31(9-5a )对于抗压强度极限bc σ大于抗拉强度极限b σ的材料(即b bc σσ>)b bcb σσσσσ=-31(9-5b )强度条件具有同一形式:[]σσσ≤-31k 或 [][]σσσσσ≤-31ct(9-5c )相应于式(9-5a ),scs k σσ=,[]ssn σσ=;相应于式(9-5b ),bcb k σσ=, []bb n σσ=对铸铁 4.0~2.0=k ,陶瓷材料 2.0~1.0=k ,对大多数金属,s sc σσ= ,此时莫尔强度条件退化为最大剪应力强度条件。
4.适用范围:1)适用于从拉伸型到压缩型应力状态的广阔范围,可以描述从脆性断裂向塑性屈服失效形式过渡(或反之)的多种失效形态,例如“脆性材料”在压缩型或压应力占优的混合型应力状态下呈剪切破坏的失效形式。
2)特别适用于抗拉与抗压强度不等的材料。
3)在新材料(如新型复合材料)不断涌现的今天,莫尔理论从宏观角度归纳大量失效数据与资料的唯象处理方法仍具有广阔应用前景。
§11-1 组合变形的概念1.构件的受力情况分为基本受力(或基本变形)形式(如中心受拉或受压,扭转,平面弯曲,剪切)和组合受力(或组合变形)形式。
组合变形由两种以上基本变形形式组成。
2.处理组合变形构件的内力、应力和变形(位移)问题时,可以运用基于叠加原理的叠加法。
叠加原理:如果内力、应力、变形等与外力成线性关系,则在小变形条件下,复杂受力情况下组合变形构件的内力,应力,变形等力学响应可以分成几个基本变形单独受力情况下相应力学响应的叠加,且与各单独受力的加载次序无关。
说明:①保证上述线性关系的条件是线弹性材料,加载在弹性范围内,即服从胡克定律; ②必须是小变形,保证能按构件初始形状或尺寸进行分解与叠加计算,且能保证与加载次序无关。
如10-1a 图所示纵横弯曲问题,横截面上内力(图10-1b )为N=P ,M (x )=)(222x p x q x ql υ+-。
可见当挠度(变形)较大时,弯矩中与挠度有关的附加弯矩不能略去。
虽然梁是线弹性的,弯矩、挠度与P 的关系却仍为非线性的,因而不能用叠加法。
除非梁的刚度较大,挠度很小,轴力引起的附加弯矩可略去。
§8-3斜弯曲图10-2(a)所示构件具有两个对称面(y ,z 为对称轴),横向载荷P 通过截面形心与y 轴成 α 夹角,现按叠加法写出求解梁内最大弯曲正应力的解法与步骤:⑴根据圣维南原理,将载荷按基本变形加载条件进行静力等效处理,现将P 沿横截面对称轴分解为P y 、P z ,则有αcos P P y =,αsin P P z =(图a )⑵得到相应的几种基本变形形式,分别计算可能危险点上的应力。
现分别按两个平面弯曲(图b ,c )计算。
P y ,P z 在危险面(固定端)处分别有弯矩: )sin (αP M y =,)cos (αP M z =(图d )。
M y 作用下产生以y 轴为中性轴的平面弯曲,bd 与ac 边上分别产生最大拉应力与最大压应力hb Pl Myy2'maxsin 6W ασ±=±= (a)M z 作用下产生以z 轴为中性轴的平面弯曲,ab 与cd 边上分别产生最大拉应力与最大压应力2''max cos 6bhPl Mzzασ±=±=W (b)⑶由叠加法得组合变形情况下,亦即原载荷作用下危险点的应力。
现可求得P y ,P z 共同作用下危险点(b 、c 点)弯曲正应力(同一点同一微面上的正应力代数相加))cos sin (622maxαασb h hb Pl MMzzyy+=+=W W (10-1)上述横向载荷P 构成的弯曲区别于平面弯曲,称斜弯曲。