Conformation transition and molecular mobility of isolated
聚合物链状分子的构象统计——推荐一个高分子实验
大学化学Univ. Chem. 2022,37 (7), 2110015 (1 of 6)•化学实验• doi: 10.3866/PKU.DXHX202110015 聚合物链状分子的构象统计——推荐一个高分子实验陈彦涛1,*,胡惠媛1,杨波1,石玉磊2,*1深圳大学化学与环境工程学院,广东深圳 5180712深圳浦华系统技术有限公司,广东深圳 518129摘要:介绍了利用分子模拟对链状分子进行构象统计的实验设计。
选取常见且结构简单的聚乙烯作为研究对象,利用软件Materials Studio对聚乙烯进行建模,模拟其运动过程,在微观层面重现了链状分子构象,验证了构象尺寸的标度理论,有利于学生对链构象建立形象化认知。
该实验设计便于学生在个人电脑上操作,满足有限的实验课时要求。
关键词:高分子实验;聚合物链;构象统计;分子模拟中图分类号:G64;O6Conformation Statistics of Polymer Chain: A Recommended Polymer ExperimentYantao Chen 1,*, Huiyuan Hu 1, Bo Yang 1, Yulei Shi 2,*1 School of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518071, Guangdong Province, China.2 Shenzhen Puhua System Tech Co., LTD, Shenzhen 518071, Guangdong Province, China.Abstract:An experimental design on conformation statistics and analysis of polymer chains by means of molecular simulation is introduced in this paper. Polyethylene, which is commonly used and has a simple structure, was selected as the research object, and the “Materials Studio” software was used to construct the polyethylene chain, simulate its thermal relaxation, and verify the scaling theory of conformation size in combination with statistical methods. In this experiment, the latest molecular simulation software was used to reproduce the microscopic images of polymer chains at the microscopic level, which is helpful for students to achieve visual understanding of the concept of “random coils” and deepen their understanding of polymers. In addition, conditions such as vacuum and high temperature were chosen, which considerably accelerate the simulation process and help students quickly obtain reliable experimental results on personal computers and meet the time requirements of the experimental courses.Key Words: Polymer experiment; Polymer chain; Conformation statistics; Molecular simulation高分子拥有数目巨大的构象,这是与小分子的重要区别,也是学习高分子课程过程中的重点与难点。
有机化学英语专业词汇
表面张力 surface tension
表面质量作用定律 surface mass action
law 波义尔定律 波义尔温度
Boyle law Boyle temperature
波义尔点 Boyle point 玻尔兹曼常数 Boltzmann constant
玻尔兹曼分布 Boltzmann distribution 玻尔兹曼公式 Boltzmann formula
coefficient of electromotive force 电动电势 zeta potential 电功 electric work 电化学 electrochemistry 电化学极化 electrochemical polarization 电极电势 electrode potential 电极反应 reactions on the electrode 电极种类 type of electrodes 电解池 electrolytic cell 电量计 coulometer 电流效率 current efficiency 电迁移 electro migration 电迁移率 electromobility 电渗 electroosmosis 电渗析 electrodialysis 电泳 electrophoresis
nucleophilic reaction 亲核反应
物理化学英语词汇
19203137 发表于: 2008-5-08 22:31 来源: 化 学吧 - 化学论坛 - 学术论坛
BET 公式 BET formula
DLVO 理论 DLVO theory HLB 法 hydrophile-lipophile balance
有机化学英语专业词汇 organic compounds 有机化合物
有机化学中的异头效应
区分它们. 同年 Tzou 等[13]利用 MAS 13C NMR 和 MAS 15N NMR 对氨基葡萄糖类化合物进行了研究, 得出了相 同的结论. 2004 年 Galván 等[14]对木糖在水溶液中的异 构体平衡进行了研究, 发现其 α-体由于异头效应而稳 定. 2005 年 Nyerges 等[15]利用密度函数对葡萄糖酸进行 计算, 认为 α-体由于异头效应而稳定的原因是分子内的 氢键作用.
Abstract The anomalous axial preference of electronegative substituents at the anomeric center C(1) of the pyranose ring was first noted by Edward in 1955 and was clearly defined as the anomeric effect by Lemieux and Chü, which plays a defining role in molecular conformation and reactivity, and is now recognized as one of the most important stereo-electronic effect in organic chemistry. The anomeric effect is recognized in an Lp-X-A-Y moiety as a preference for an antiperiplanar arrangement of the lone pair (Lp) and the A—Y bond, where X is a heteroatom, A is an element with intermediate electronegativity, and Y is a group with higher electronegativity (such as oxygen, nitrogen, fluorine, etc.). In this paper, the anomeric effect, generalized anomeric effect, reverse anomeric effect, endo-anomeric effect and exo-anomeric effect are described. The potential application of the anomeric effect is supplied. Keywards anomeric effect; generalized anomeric effect; reverse anomeric effect; hydrogen bond
有机化学英文词汇
常见有机化学词汇Angular methyl group角甲基Alkylidene group亚烷基Allyl group烯丙基Allylic烯丙型[的]Aryl group芳基Activating group活化基团Auxochrome助色团Acyl cation酰[基]正离子Arenirm ion芳[基]正离子Aci form酸式Asymmetric atom不对称原子Asymmetric carbon不对称碳Absolute configuration绝对构型Achiral非手性[的]Anomer端基[差向]异构体Anti conformation反式构象Anti periplanar conformation反叠构象Atropismer阻转异构体Axial bond直[立]键Aromaticity芳香性Aromatic sexter芳香六隅Antiaromaticity反芳香性Alternant hydrocarbon交替烃Antarafacial reaction异面反应Ambident两可[的]Acid-base catalyxed reaction酸性溶剂Acid-base catalyzed reaction酸碱催化反应Anomeric effect端基异构效应Aromatic nucleophilic substitu-tion芳香亲核取代Anti-Markovnikov addition反马氏加成Addition-elimination mechanism加成消除机理Apofacial reaction反面反应Aryl action芳正离子Anti-Zaitsev orientation反札依采夫定向Anionic cleavage负离子裂解Alkylation烷基化Arylation芳基化Acylation酰化Amination氨基化acyloxyation酰氧基化Allylic halogenation烯丙型卤化Additive dimerization加成二聚Alkylolysis,alkyl cleavage烷基裂解Acylolysis,acyl cleavage酰基裂解Alcoholysis醇解Aminomethylation氨甲基化Aldol condensation羟醛缩合Acyloin condensation偶姻缩合Annulation,annelation增环反应Autoxidation自氧化Allylic hydroperoxylation烯丙型氢过氧化Aromatization芳构化Abstraction夺取[反应] Aminomercuration氨汞化Allylic migration烯丙型重排Allylic migration烯丙型迁移Acyl rearrangement酰基重排Anionotropy负离子转移Anionotropic rearrangement负离子转移重排Aliphatic compound脂肪族化合物Alkane烷Alkene烯Alkyen炔Acetylide炔化物Active hydrogen compounds活泼氢化合物Allene丙二烯Alkyl halide卤代烷Alcohol醇Amine胺Amine oxide氧化胺Aldehyde醛Aldehyde hydrate醛水合物Acetal缩醛Aminal缩醛胺Aldimine醛亚胺Aldimine醛肟Azine嗪Acyl halide酰卤Acyl fluoride酰氟Acyl chloride酰氯Acyl rtomide酰溴Acyl iodide酰碘Acyl tosylate酰基对甲苯磺酸酐Acyl peroxide酰基过氧化物Amide酰胺Acyl azide酰叠氮Amidine脒Acyl cyanide酰腈Allophanate脲基甲酸酯Amino acid氨基酸Aldol羟醛Acyloin偶姻Aldose醛糖Aglycon苷元Alditol糖醇Alicyclic compound脂环化合物Aromatic compound稠环化合物Arene芳香化合物Alkylbenzene芳烃Aiaryl联苄Acene并苯Aryne芳炔Annulene烨烯Azulene?Alkaloid生物碱Azoxy compound氧化偶氮化合物Azlactone二氢?唑酮Azepine氮杂?Arsine胂Arsenic ylide砷叶立德Azo cimpound偶氮化物Benzyl group苄基Benzylic苄型[的]Bridged-ring system桥环体系Benzylic cation苄[基]正离子Bisecting conformation等分构象Boat conformation船型构象Banana bond香蕉键Basic solvent碱性溶剂B strain后张力Bimolecular nucleophilic sub-stitution双分子亲核取代Bimolecular nucleophilic substi-tution(with allylic rearrange-ment)双分子亲核取代(含烯丙型重排)Bimolecular electrophilic substi-tution双分子亲电取代Bimolecular elimination through the conjugate base双分子共轭碱消除Bimolecular elimination双分子消除Bimolecular elimination with for-mation of a carbonyl group双分子羰基形成消除Bimolecular base-catalyzed acyl-oxygen cleavage双分子碱催化酰氧断裂Bimllecular base-catalyzed al-kyl-oxygen cleavage双分子碱催化烷氧断裂Borderline mechanism边理机理Backside attack背面进攻Briddgehead displacement桥头取代Benzyne苯炔Bredt rule布雷特规则Bisamination双氨基化Bimolecular reduction双分子还原Benzilic rearrangement二苯乙醇酸重排Betaine甜菜碱Bibenzyl烷基苯Biphenyl联芳Biphenyl联苯Benzvalene盆苯Barrelene桶烯Benzoin苯偶姻Benzil偶苯酰Chromophore生色团Common ring普通环Conjugation共轭Conjugated-system共轭体系Configuration构型Chirality手性Chiral手性[的]Chiral center手性中心Chiral molecule手性分子Cahn-Ingold-Prelon sequence顺序规则Cis-trans isomerism顺反异构Conformation构象Conformational构象分析Conformational inversion构象反转Chair conformation椅型构象Cisoid conformation顺向构象Conformer构象异构体Conformational effect构象效应Cram’s rube克拉姆规则Conformational transmission构象传递Cross conjugation交叉共轭Conrotatory顺旋Cycloaddition环加成Coordinate-covalent bond配位共价键Conjugate base共轭酸Conjugate base共轭碱Counrer[gegen]ion反荷离子Carbocation碳正离子Carbanion碳负离子Carbenoid卡宾体Carbene卡宾Carbine碳炔C-alkylation C-烷基化Carbalkoxylation烷氧羰基化Carboamidation氨羰基化Carboxylation羧基化Cine substitution移位取代Chlorosulfonation氯磺酰化Chlorosulfenation氯亚磺酰化Coupling reaction偶联反应Cross-coupling reaction交叉偶联反应Conjugate addition共轭加成carbonylation羧基化Cyanoethylation氰乙基化Chiletropic reaction螯键反应Chelation螯环化Cyanomethylation氰甲基化Cholromethylation氯甲基化Condensation缩合Cross aldol condensation交叉羟醛缩合Cyclization环化Catalytic hydrogenation催化氢化Catalytic dehydrogenation催化脱氢Cationotropic rearrangement正离子转移重排Carbon acid碳氢酸Ccumulene累积多烯Cellosolve溶纤剂Crown ether冠醚Cyanohydrin羟腈Carboxylic acid羧酸Carbobenzoxy chloride苄氧甲酰氯Carbon suboxide二氧化三碳Carbammic acid氨基甲酸Carbamate氨基甲酸酯Cyanamide氨腈Carbodiimide碳二亚胺Carbohydrate碳水化合物Cycloalkene环烷Cage compound螺烷Catenane轮烷cyclophane环芳Chalcone查耳酮Chloroborane氯硼烷carotene胡萝卜素Charge-transfer spectrum电荷转移光谱Chemical shift reagent化学位移试剂Circularly polarized light圆偏振光Cotton effect卡滕效应Chiron,chiral building block手性子Chiral induction手性诱导Chiral reagent手性试剂Chiral catalyst手性催化剂Chiral solvent手性溶剂Chiral auxiliary[reagent]手性助剂Convergent synthesis汇集合成Diastereotopic非对映异位[的]D-L system of nomenclatureD-L命名体系Diastereomer非对映[异构]体Delocalezed bond离域键Diamagnetic ring cruuent抗磁环电流Disroatatory对旋Dielectric constant介电常数Diaxial addition双直键加成Deactivating group钝化基团Demethylation脱甲基化Decarboxylative nitration脱羧卤化Dehalogenation脱卤Decarboxylative nitration脱羧硝化Nitrosation亚硝化Desulfonation脱磺酸基Diazotization重氮化Diazo transfer重氮基转移Diazonium coupling重氮偶联Dimerization二聚Decarbonylation脱羰Decyanoethylation脱氰乙基Diene synthesis双烯合成Dienophile亲双烯体Diels-Alder reaction第尔斯-尔德反应Dipolar addition偶极加成Dehydrohalogenation脱卤化氢Deamination脱氨基Decarboxylation脱羧Decarboxamidation脱酰胺Decyanation脱氰基Dissolving metal reduction溶解金属还原Deoxygenation脱氧Desulfurization脱硫Deselenization脱硒Double bond migration双键移位Diene双烯Diyne二炔Diazoalkane重氮烷Detone酮Dithiane二噻烷Dewar benzene杜瓦苯Diazo compound重氮化合物Diazohydroxide重氮氢氧化物Diketopiperazine哌嗪二酮Diazine二嗪Diterpene二萜Diasteromeric excess,de非对映体过量Enantiotopic对映异位[的]Enantiomer对映[异构]体Epimer差向异构体Erythro configuration赤型构型Erythro isomer赤型异构体E isomerE异构体Endo isomer内型异构体Exo isomer外型异构体Eclipsed conformation重叠构象Envelope conformation信封[型]构象Equatorial bond平[伏]键Electrocyclic rearrangement电环[化]重排Electrical effect电场效应Electron donof-acceptor complex,EDAcomplex电子给[体]受体络合物Eclipsing effect重叠效应Eclipsing strain重叠张力Electrophilic addition亲电加成Electrophile亲电体Electrophilic aromatic substitu-tion亲电芳香取代Electron transfer电子转移Electron-donating group给电子基团Electron-Withdrawing group吸电子基团Electrofuge离电体Exhaustive methylation彻底甲基化Ethylation乙基化Endo addition内型加成Exo addition外型加成Ene synthesis单烯合成elimination消除Elimination-addition消除-加成Esterification酯化Ethanolysis乙醇解Enolization烯醇化Epoxidation环氧化Electrochemical oxidation电化学氧化Electrochemical reduction电化学还原Electrophilic rearrangement亲电重排Enyne烯炔Ether醚Epoxide环氧化物Enol烯醇Enol ether烯醇醚Enol ester烯醇酯Ester酯Enantiomeric excess,ee对映体过量Fluxional structure循变结构Fischer projection费歇尔投影式Field effect场效应F strain前张力Flash pyrolysis闪热裂Fragmentation碎裂Forbidden transition禁阻跃迁Fluorene芴fulvene富烯Furan呋喃Flavone黄酮Ferocene二铁Formal synthesis中继合成Gauche conformation,skew con-formation邻位交叉构象Guest客体Glycidic acid环氧丙酸Glycol二醇Glycoside糖苷Glucoside葡[萄]糖苷Grignard reagent格氏试剂Helical molecule螺旋型分子Homotopic等位[的]Heterotopic异位[的]Half-chair conformation半椅型构象Homolog同系物Hyperconjugation超共轭Huckel’rule休克尔规则Homoaromaticity同芳香性Host主体Hammond postulate哈蒙德假说Homochiral纯手性[的]Homolysis均裂Heterolysis异裂Heterolytic michanism异裂机理Hofmann’s rule霍夫曼规则Hydroxylation羟基化Hydroboration硼氢化Hydroformylation加氢甲酰基化Hydroacylation加氢酰化Hydrocarboxylation氢羧基化Homologization同系化Hydroxymethylation羟甲基化Hydroxyalkylation羟烷基化Haloalkylation卤烷基化Haloform reaction卤仿反应Heterogeneous hydrogenation多相氢化Homogeneous hydrogenation均相氢化Hydrogenolysis氢解Hydrometallation氢金属化Homosigmatropic rearrangement同迁移重排Hpdrocarbon碳氢化合物Homoallylic alcohol高烯丙醇Hydrazone腙Hydrazide酰肼Hydantion乙内酰脲Helicene螺旋烃Hydrazo compound氢化偶氮化物Hydroquinone氢醌Heterocyclic compound杂环化合物Isomerism异构[现象]Ipso position本位Isovalent hyperconjugation等价超共轭Inductive effect诱导效应Imine-enamine atutomerism亚胺-烯胺互变异构Inverse isotope effect逆同位素效应Intermediate中间体I strain内张力Isoinversion等反转Isoracemization等消旋Internal nucleophilic substiru-tion分子内亲核取代Ion pair离子对Internal return内返Inversion反转Insertion插入imine亚胺Isonitrile异腈Imide二酰亚胺Indene茚Imidazole咪唑Isoquinoline异喹啉Isoflavone异黄酮Large ring大环Laevo isomer左旋异构体Leois structure路易斯结构Linear free energy线性自由能Large angle strain大角张力Leaving group离去基团Lithiation锂化Lactone内酯Lactol内半缩醛Lactam内酰胺Lipid类脂Linear synthesis线性合成Magnetically anisotropic group磁各向异性基团Medium rimg中环Mirror symmetry镜面对称Meso compound内消旋化合物Meta position间位Para position对位Molecular orbiral method分子轨道法Mesomeric effect中介效应Mobius system默比乌斯体系Mechanism机理Masked carbanion掩蔽碳负离子Markovnikov’s rube马尔科夫尼科规则Michael addition迈克尔加成Meta directing group间位定位基Mitallation金属化Mercuration汞化Migratory aptitude迁移倾向Migration迁移Mercaptan硫醇Macrolide大环内酯Monoterpene单萜Neoman projection纽曼投影式No-bond resonance无键共振Non-alternant hydrocarbon非交替烷Non-bonded interaction非键相互作用Nonclassical carbocation非经典碳正离子Nitrene氮宾Nucleophilic reaction亲核反应Nucleophilicity亲核体Nucleofuge离核体Neighboring group participation邻基基参与Neighboring proup assistance,anchimeric assistance邻助作用Neighboring group effect邻基效应N-alkylationN-烷基化Nitration硝化Netro compound硝基化合物Nitrile腈Nitrile oxide氧化腈N-bromo compound N-溴化物Nitrogen ylide氮叶立德Octahedral compound八面体化合物Optical activity光学活性Quasi recemate准外消旋体Ortho position邻位Orinentation取向Ortho-para directing group邻对位定位基Ortho effect邻位效应O-alkylation O-烷基化Oxyamination羟氨基化Oxo process羰基合成Oxonolysis臭氧解Oxidative decarboxylation氧化脱羧Oxymercuration羟汞化Oxime肟Oxime亚硝基化合物orthoester原酸酯Oligosaccharide寡糖Osazone脎Oxazine嗪Organometallic有机金属化合物Optical purity光学纯度Optical induction光学诱导Spiroannulation螺增环Prototropic rearrangement质了转移重排Pinacol rearrangement频哪醇重排Prototropy质子转移Photosensitization光敏化photooxidation光氧化Photoisomerization光异构化Photochemical rearrangement光化学重排Paraffin wax石蜡Peracid过酸Perester过酸酯Peptide肽Pyranose吡喃糖Polysaccharide多糖Propellane笼型化合物Pyrrole吡咯Pyrazole吡唑Porphyrin卟啉Pyridene吡啶Piperidine哌啶Phosphine膦Phosphonium salt膦盐Phosphorus ylide磷叶立德Phospholipid磷脂Pheromone信息素Phytohormone植物激素Polarized light偏振光Partial synthesis部分合成Protecting group保护基Phenyl group苯基Quinhydrone醌Quinhydrone醌氢醌Quinoline喹啉Radical ion自由基离子Radical cation自由基正离子Radical anion自由基负离子R-S syytem of nomenclatureR-S命名体系Racemic mixture外消旋混合物Racemic compound外消旋化合物Racemic solid solution外消旋固体溶液Rotamer旋转异构体Retention of configuration构型保持Regioselectivity区域选择性Regiospecificity区域专一性Resonance共振Resonance effect共振效应Reactive intermediate活泼中间体Restricted rotation阻碍旋转Racemization外消旋化Ring clsure环合Retro Diels-Alder reaction逆第尔斯-阿尔德反应Retrograde aldol condensation逆羟醛缩合Reductive alkylation还原烷基化Reductive acylation还原酰化Reductive dimerization还原二聚Rearrangement重排Ring contraction环缩小[反应]Ring expansion,ring enlargement扩环[反应]Rotazane螺桨烷Rused ring索烃Retrosynthesis逆合成Relay synthesis接替合成Spiro compound螺环化合物Stereochemistry立体化学Stereoisomerism立体异构[现象] Symmetry factor对称因素Si faceSi面Synperiplanar conformation顺叠构象Synclinal conformation反错构象Synclinal conformation顺错构象Staggered conformation对位交叉构象Steric effect空间效应Steric hindrance位阻Skew boat conformation扭船型构象Stereocelectivity立体选择性Stereospecificty立体专一性Stereochemical orientation立体[化学]取向Symmetry forbidden-reaction对称禁阻反应Synfacial reaction同面反应Solvent effect溶剂效应Solvated electron溶剂化电子Secondary isotope effect二级同位数效应Substrate底物Small-angle strain小角张力Substitution取代Silylation硅烷[基]化Seco alkylation断裂烷基化Sulfonation磺化Sulfenylation亚磺酰化Sulfonylation磺酰化sulfurization硫化Selenylation硒化Saponification皂化Single electron transfer单电子转移Semipinacol rearrangement半频哪醇重排Sigmatropic rearrangement-迁移重排Super acid超酸Sulfonic acid磺酸Sulfoxide亚砜Sulfone砜Semicarbazone缩氯基脲Saccharide糖类Spirane环烯Sydnone悉尼酮Sulfur ylide硫叶立德Sesquiterpene倍半萜Steroid甾族化合物Sex hormone性激素Specific rotation比旋光Synthesis合成Synthon合成子Tetrahedral configuration四面体构型Threo configuration苏型构型Threo isomer苏型异构体Trigonal carbon三角型碳Torsion angle扭转角Twist conformation扭型构象Transoid conformation反向构象Trigonal hybridization三角杂化Tautomerization互变异构化tautomerism互变异构Thermodynamic control热力学控制Therm odynamic acidity热力学酸度Torsional effect扭转效应Transannular interaction跨环相互作用Transannular strain跨环张力Transamination氨基交换Trimefization三聚Transesterification酯交换Transacetalation缩醛交换Transfer hydrogenation转移氢化Transannular insertion跨环插入Transannular rearrangement跨环重排Triene三烯Thioester硫代酸酯Thiol acid硫羰酸Triazole三唑Triazine三嗪Thiazole噻唑Terpene萜Triterpene三萜Tandem reaction sequence连续反应过程Topochemistry拓扑化学Unimolecular nucleophilic单分子亲核取代Unimolecular electrophilic sub-stitution单分子亲电取代Unimolecular elimination单分子消除Unimolecular elimination through the conjugate base单分子共轭碱消除Unimolecular acid-catalyzed acyl-oxygen cleavage单分子酸催化酰氧断裂Unimolecular acid-catalyzed alkyl-oxygen cleavage单分子酸催化烷氧断裂Umbrella effect伞效应Umpolung极反转Valence bond method价键法Vinylog插烯物Valence tautomerism价互变异构Walden inversion瓦尔登反转Wax蜡Ylide叶立德Ynamin炔胺Z isomer Z异构体Zaitsev rule札依采夫规则Zwitterions两性离子。
核磁共振英文
核磁共振英文Nuclear Magnetic Resonance (NMR) is a powerful analytical technique that is commonly used in chemistry, biochemistry, and materials science. NMR can provide detailed information about the molecular structure and dynamics of a wide range of compounds, including small molecules, proteins, and polymers. In this review, we will provide an overview of the principles and applications of NMR spectroscopy.Principles of NMR SpectroscopyNMR works by exploiting the magnetic properties of certain atomic nuclei, most commonly the hydrogen nuclei (protons) in organic molecules. When a sample is placed in a strong magnetic field, the protons align themselves with the applied field. The energy required to flip the proton spin from one direction to the other can be measured by applying a radiofrequency pulse at the resonant frequency of the proton. This frequency is determined by the magnetic field strength and the local electronic environment of the proton.The NMR spectrum is recorded by measuring the absorbed and emitted frequencies of the protons as they relax back to their equilibrium state. The frequency difference between the applied pulse and the emitted signal is called the chemical shift, which is measured in parts per million (ppm) relative to a standard reference such as tetramethylsilane (TMS). The chemical shift indicates the electron density around the proton, which is influenced by nearby atoms and functional groups. The number of peaks in the spectrum corresponds to the number of unique environments in the molecule, while the relative intensities of the peaks reflect the number of protons in each environment.In addition to chemical shift, NMR provides information about spin-spin coupling, which arises from the magnetic interactions between pairs of protons that are close together in the molecule. The coupling can give rise to splitting of the NMR peaks, which allows the identification of neighboring protons and the determination of their relative positions in the molecule.Applications of NMR SpectroscopyNMR is widely used for the structural and functional characterization of organic molecules. It can be used to identify unknown compounds or confirm the identity of synthesized compounds. By measuring the chemical shift and coupling patterns, NMR can provide information about the functional groups, stereochemistry, and conformation of the molecule.NMR is also used in biochemistry and biophysics to study the structures and interactions of proteins and nucleic acids. In these applications, NMR provides information about the three-dimensional structure of the molecule, as well as the dynamics of the molecule on various timescales. For example, NMR can be used to study the folding of proteins, the binding of ligands to proteins, and the interactions between nucleic acids and proteins.NMR is also an important tool in materials science, where it is used to study the properties and structures of polymers, nanoparticles, and materials. In these applications, NMR can provide information about the composition, chain length, branching, and end groups of polymers, as well as the size, shape, and surface properties of nanoparticles.ConclusionNMR spectroscopy is a powerful and versatile analytical technique that has broad applications in chemistry, biochemistry, and materials science. NMR provides detailed information about the molecular structure, dynamics, andinteractions of compounds, making it essential for a wide range of research and industrial applications. With ongoing advancements in NMR instrumentation and methodology, the range of applications and the level of detail that can be obtained are expanding rapidly, making NMR an increasingly important tool for chemical and biological research.。
作者姓名:卢滇楠
附件6作者姓名:卢滇楠论文题目:温敏型高分子辅助蛋白质体外折叠的实验和分子模拟研究作者简介:卢滇楠,男,1978年4月出生, 2000年9月师从清华大学化工系生物化工研究所刘铮教授,从事蛋白质体外折叠的分子模拟和实验研究,于2006年1月获博士学位。
博士论文成果以系列论文形式集中发表在相关研究领域的权威刊物上。
截至2007年发表与博士论文相关学术论文21篇,其中第一作者SCI论文9篇(有4篇IF>3),累计他引20次(SCI检索),EI收录论文14篇(含双收),国内专利1项。
中文摘要引言蛋白质体外折叠是重组蛋白质药物生产的关键技术,也是现代生物化工学科的前沿领域之一,大肠杆菌是重要的重组蛋白质宿主体系,截止2005年FDA批准的64种重组蛋白药物中有26种采用大肠杆菌作为宿主体系,目前正在研发中的4000多种蛋白质药物中有90%采用大肠杆菌为宿主表达体系。
但由于大肠杆菌表达系统缺乏后修饰体系使得其生产的目标蛋白质多以无生物学活性的聚集体——包涵体的形式存在,在后续生产过程中需要对其进行溶解,此时蛋白质呈无规伸展链状结构,然后通过调整溶液组成诱导蛋白质发生折叠形成具有预期生物学活性的高级结构,这个过程就称之为蛋白质折叠或者复性,由于该过程是在细胞外进行的,又称之为蛋白质体外折叠技术。
蛋白质体外折叠技术要解决的关键问题是避免蛋白质的错误折叠以及形成蛋白质聚集体。
目前本领域的研究以具体技术和产品折叠工艺居多,折叠过程研究方面则多依赖宏观的结构和性质分析如各类光谱学和生物活性测定等,在研究方法上存在折叠理论、分子模拟与实验研究结合不够的问题,这些都不利于折叠技术的发展和应用。
本研究以发展蛋白质新型体外折叠技术为目标,借鉴蛋白质体内折叠的分子伴侣机制,提出以智能高分子作为人工分子伴侣促进蛋白质折叠的新思路,即通过调控高分子与蛋白质分子的相互作用,1)诱导伸展态的变性蛋白质塌缩形成疏水核心以抑制蛋白质分子间疏水作用所导致的聚集,2)与折叠中间态形成多种可逆解离复合物,丰富蛋白质折叠的途径以提高折叠收率。
高分子物理名词解释
高分子物理名词解释Θ溶剂(Θ solvent):链段-溶剂相互吸引刚好抵消链段间空间排斥的溶剂,形成高分子溶液时观察不到远程作用,该溶剂中的高分子链的行为同无扰链2.7Θ温度(Θ temperature):溶剂表现出Θ溶剂性质的温度2.7Argon理论(Argon theory):一种银纹扩展过程的模型,描述了分子链被伸展将聚合物材料空化的过程5.3Avrami方程(Avrami equation):描述物质结晶转化率与时间关系的方程:--α,α为转化率,K与n称Avrami常数(Avrami constants) 4.8 =Kt1n)ex p(Bingham流体(Bingham liquid):此类流体具有一个屈服应力σy,应力低于σy时不产生形变,当应力大于σy时才发生流动,应力高于σy的部分与应变速率呈线性关系3.13 Boltzmann叠加原理(Blotzmann superposition principle):Boltzmann提出的粘弹性原理:认为样品在不同时刻对应力或应变的响应各自独立并可线性叠加 3.8Bravais晶格(Bravais lattice):结构单元在空间的排列方式4.1Burger's模型(Burger's model):由一个Maxwell模型和一个Kelvin模型串联构成的粘弹性模型3.7Cauchy应变(Cauchy strain):拉伸引起的相对于样品初始长度的形变分数,又称工程应变3.16Charpy冲击测试(Charpy impact test):样品以简支梁形式放置的冲击强度测试,测量样品单位截面积的冲击能5.4Considère构图(Considère construction):以真应力对工程应作图以判定细颈稳定性的方法5.2Eyring模型(Eyring model):一种描述材料形变过程的分子模型,认为形变是结构单元越过能垒的跳跃式运动5.2Flory-Huggins参数(Flory-Huggins interaction parameter):描述聚合物链段与溶剂分子间相互作用的参数,常用χ表示,物理意义为一个溶质分子被放入溶剂中作用能变化与动能之比2.11.2Flory构图(Flory construction):保持固定拉伸比所需的力f对实验温度作图得到,由截距确定内能对拉伸力的贡献,由斜率确定熵对拉伸力的贡献2.16.2Flory特征比(characteristic ratio):无扰链均方末端距与自由连接链均方末端距的比值2.4 Griffith理论(Griffith theory):一种描述材料断裂机理的理论,认为断裂是吸收外界能量产生新表面的过程5.4Hencky应变(Hencky strain):拉伸引起的相对于样品形变分数积分,又称真应变3.16 Hermans取向因子(Hermans orientation factor):描述结构单元取向程度的参数,是结构单元与参考方向夹角余弦均方值的函数4.8, 4.10Hoffman-Weeks作图法(Hoffman-Weeks plot):一种确定平衡熔点的方法。
分子与细胞生物学常用英语词汇
分子与细胞生物学常用英语词汇分子与细胞生物学常用英语词汇分子与细胞生物学常用英语词汇acetyl coa / 乙酰辅酶a 一种小分子的水溶性代谢产物,由与辅酶a 相连的乙酰基组成,产生于丙酮酸、脂肪酸及氨基酸的氧化过程;其乙酰基在柠檬酸循环中被转移到柠檬酸。
actin / 肌动蛋白,肌纤蛋白富含于真核细胞中的结构蛋白,与许多其他蛋白相互作用。
其球形单体( g2肌动蛋白) 聚合形成肌动蛋白纤丝( f2肌动蛋白) 。
在肌肉细胞收缩时f2肌动蛋白与肌球蛋白相互作用。
activation energy / 活化能(克服障碍以) 启动化学反应所需的能量投入。
降低活化能,可增加酶的反应速率。
active site / 活性中心,活性部位酶分子上与底物结合及进行催化反应的区域。
active transport / 主动转运离子或小分子逆浓度梯度或电化学梯度的耗能跨膜运动。
由atp 耦联水解或另一分子顺其电化学梯度的转运提供能量。
adenylyl cyclase / 酰苷酸环化酶催化由atp 生成环化腺苷酸(camp) 的膜附着酶。
特定配体与细胞表面的相应受体结合引发该酶的激活并使胞内的camp 升高。
allele / 等位基因位于同源染色体上对应部位的基因的两种或多种可能形式之一。
allosteric transition / 变构转换小分子与蛋白质上特定调节部位相结合所引起的蛋白质之三级及(或) 四级结构的改变,其活性随之发生变化。
多亚单位酶的变构调节很普遍。
alpha(α) helix /α螺旋常见的蛋白质二级结构,其氨基酸线性序列叠为右旋螺旋,借助主链上的羧基与酰胺基间的氢键维持稳定。
aminoacyl2trna / 氨酰转移核糖核酸用于蛋白合成的氨基酸的激活形式,含有借高能酯键与trna 分子上3’2羟基相结合的氨基酸。
amphipathic / 两亲的,兼性的指既有亲水性部分又有疏水性部分的分子或结构。
大学有机化学双语教学辅助材料 —单词对照
Learning Supplementsin Organic Chemistry有机化学双语教学辅助材料(常见中英文专业单词对照)有机化学常见概念中英对照中文名称英文名β-酮酸酯β-ketone esterDL规则DL conventionD-异构体D-isomerE-异构体E isomerL-异构体L-isomern+1规则n+1 ruleπ键pi bondR/S构型命名法Cahn–Ingold–Prelog (CIP) R/S convention R基R groups-反式构象s-trans conformationα,β-不饱和酮α,β-unsaturated ketoneσ键sigma bond氨、氨水ammonia(NH3)氨基amino group氨基酸amino acid氨络物ammine铵根离子ammonium ion(NH4+) ammonium. 胺amine螯合物chelate八隅规则octet rule半缩醛半缩酮hemiketal饱和脂肪族烃saturated aliphatic hydrocarbon 苯benzene苯环phenyl ring苯基phenyl group苯炔; 脱氢苯benzyne苄基;苯甲基benzyl group变性denaturation变旋Mutarotation氢离子活度的pH值pH丙二烯丙烷propane薄层色谱thin layer chromatography(TLC) 不饱和烃unsaturated hydrocarbon不规则的Atactic不完全八隅体incomplete octet布朗斯特碱Br.sted base布朗斯特酸Br.sted acid部分消旋的Scalemic差向异构化作用Epimerization差向异构体Epimers拆分; 分辨率; 分离度Resolution超共轭; 超共轭效应Hyperconjugation稠环芳烃Condensed aromatics船式构象Conformation (boat)纯手性; 纯手性的Homochiral醇Alcohol(ROH)醇酸Alcoholic acid醇盐Alkoxide(RO- M+) alkoxide ion. 醋酸盐Acetate单分子亲核取代反应SN1 reaction单分子消除反应E1 elimination reaction单配位基Monodentate蛋白质Protein等时的;同步的Isochronous等位; 等位的; Homotopic狄尔斯-阿尔德反应Diels-Alder reaction电负性Electronegativity电环化反应、π-键环化反应Electrocyclic reactions电价键; 离子键Ionic bond电偶极矩Electric dipole moment(μ) 电偶极子Electric dipole淀粉Starch动理学; 动力学Kinetics动力学拆分Kinetic resolution动力学产物Kinetic product对Para对称面Plane of symmetry对甲基苯磺酸盐Ots,Tosylate (toluene-4-sulfonate, 4-mec6h4so3)对溴苯磺酸盐Obs,Brosylate (4-bromobenzenesulfonate, 4-brc6h4so3), 对旋Disrotatory对映体Enantiomers对映体过量百分数Enantiomeric excess; enantiomeric ratio对映体过量的Enantiomerically enriched 对映异位的Enantiotopic非质子溶剂Aprotic solvent多步合成Multistep synthesis多配位基的Polydentate多原子分子Polyatomic molecule多原子离子Polyatomic ion惰性电子对Inert pair二环的Bicyclic二硫化物Disulfide二氯甲烷Dichloromethane(CH2Cl2) 二元化合物Binary compound反错构象Anti clinal反芳香性的Anti-aromatic反键轨道Antibonding orbital反平面Anti periplanar反式Trans反式的Anti反式构象Anti conformation反式加成Anti addition范德华力Van der Waals’ radius芳环; 芳族环Aromatic ring(Ar)芳基Aryl group芳烃Aromatic hydrocarbon芳香烃Arene芳族化合物; 芳香族化合物Aromatic compound非苯芳烃Nonbenzenoid aromatic hydrocarbon 非等时同步Anisochronous非对映异构的Diastereotopic非对映异构体Diastereoisomers非手性、非手性的Achiral肥皂Soap费歇尔投影式Fischer projection分馏Fractional distillation分歧、不同Allo-分子单元Formula unit分子轨道理论Molecular orbital theory 分子几何; 分子几何结构Molecular geometry分子离子Molecular ion分子量Molecular weight分子模型Molecular model分子筛Molecular sieve分子式Molecular formula酚Phenol酚酸Phenolic acid酚酞Phenolphthalein风化的Efflorescent砜Sulfone干馏Dry distillation甘油Glycerol甘油, 丙三醇Glycerol(HOCH2CH(OH)CH2OH) 甘油三酸酯Triglyceride高分子化合物Polymer隔离双键Isolated double bonds共扼二烯烃Conjugated diene共轭碱Conjugate base共轭双键Conjugated double bonds 共轭酸Conjugate acid共价键Covalent bond共振结构Resonance structures共振结构式Canonical forms共振效应Resonance effect构象Conformation构象异构体Conformers构型Configuration构造异构体Constitutional isomers固体石蜡Paraffin wax官能团Functional group冠醚Crown ether光学纯Enantiomerically pure (optically pure) 光学纯的Optically pure轨道Orbital国际纯粹与应用化学联合会Iupac过渡态Transition state过氧化物离子Superoxide ion合成材料Synthetic material合成纤维Synthetic fiber合成橡胶Synthetic rubber核磁共振Nmr核间距离,键长Bond length核酸外切酶Exo红外光谱IR spectroscopy,infrared spectroscopy 胡萝卜素Carotene互变体; 互变异构体Tautomer互变异构现象Tautomerism化学计量学; 化学计量法Stoichiometry化学键Chemical bond化学式量; 分子量Formula weight化学位移Chemical shift环化加成反应Cycloaddition reaction环氧化合物Epoxide缓冲溶液Bufferph buffer; buffer solution. 磺化反应Sulfonation reaction磺基Sulpho group磺酸Sulfonic acid混酸甘油酯Mixed glyceride活性亚甲基Active methylene group 基(后缀)-Yl极性分子Polar molecule极性键Polar bond几何异构体Geometric isomer加成反应Addition reaction加成化合物Addition compound加聚反应Addition polymerization 甲基Methyl(-CH3)甲烷Methane价电子Valence electron价键Valence bond假旋转Pseudorotation间位定位Meta-directing碱; 基极Base碱的、碱性的Alkaline碱水解常数Base hydrolysis constant 碱土金属Alkaline earth键焓Bond enthalpy键级Bond order键能Bond energy交叉式构象Conformation (staggered) 交叉式构象Staggered conformation 结构式Structural formula腈Nitrile肼、联氨Hydrazine(NH2NH2)锯架投影式Sawhorse projection聚合反应Po1ymerization均裂Homolytic bond cleavage 卡宾、碳烯Carbene R2C:.醌Quinone蜡Wax离去基团Leaving group离子电离; 离子电离作用Ionic dissociationionize; ionization. 离子盐Ionic compound salt立体化学Stereochemistry立体特异性的,立体专一性的Stereospecific立体选择性的,立体有择性的Stereoselective立体异构体Stereoisomers两性的Amphoteric两性离子Zwitterion两性溶剂Amphiprotic solvent 裂化Cracking裂解Pyrolysis邻Orthogonal邻近的Vicinal硫醇Thiol硫酚Thiophenol硫化物Sulfide卤代烃Halohydrocarbon卤离子Halide ion路易斯碱Lewis base路易斯结构Lewis structure路易斯酸Lewis acid螺环化合物Spiro compound螺旋度; 螺旋性Helicity马尔科夫尼科夫规则Markovniknov’s rule 麦芽糖Maltose煤Coal酶Enzyme醚Ether命名法; 命名原则Nomenclature内Endo内酰胺Lactam内消旋化合物Meso compounds内酯Lactone扭曲式构象Conformation (skewed) 扭转位阻Torsion barrier纽曼投影式Newman projection偶氮Azo偶极矩Dipole moment配体; 配基Ligand配位数Coordination number平键; 平伏键Equatorial bond平均键焓Average bond enthalpy 平面偏振光Plane polarized light葡萄糖Glucose前手性Prochiral强酸Strong acid羟基Hydroxy group羟基酸Hydroxy acid桥环化合物Bridged ring compound 桥头碳原子Bridgehead carbon亲电体; 亲电子试剂Electrophile亲核试剂Nucleophile亲核性Nucleophilicity亲双烯体Dienophile氢键Hydrogen bond氢氧化物Hydroxide氢氧化物、水合物Hydrate氰基Cyano group巯基Mercapto巯基Sulfhydryl group区域选择性Regioselective取代反应Substitution reaction取代基Substituent取代酸Substituted acid全规的;全同立构的Isotactic醛Aldehyde(RCHO)醛的后缀-Al炔烃Alkyne热力学Thermodynamics热力学产物Thermodynamic product 弱酸Weak acid叁键Triple bond石蜡Paraffin石蕊试纸Litmus paper石油Petroleum实验式; 经验式;Empirical formula手性; 手性的Chiral手性分子Chiral molecule手性中心Chiral center手性中心、不对称中心Stereogenic centre (Chiral centre, Asymmetric centre) 双分子亲核取代反应SN2 reaction双分子消除反应E2 elimination reaction双峰; 双重谱线Doublet双键Double bond双烯; 二烯烃Diene双原子分子Diatomic molecule水合氢离子Hydronium ion(H3O+)水解反应Hydrolysis reaction水煤气,蓝煤气;合成气Water gas;blue gas; synthesis gas 顺错构象Syn clinal顺式Cis顺式;同;共;Syn顺式共平面Syn periplanar顺式加成Syn addition顺旋Conrotatory赤式Erythro塑料Plastic塑料的老化Plastic ageing酸、酸的Acid酸电离常数Acid dissociation constant. 酸酐Acid anhydride酸碱指示剂Acid-base indicator羧基Carboxyl group羧酸Carboxylic acid缩氨脲Semicarbazone缩酮Ketal碳水化合物、糖类Carbohydrate碳正离子Carbocation羰基Carbonyl group糖Sugar天然产物Natural product铁离子Ferric ion.烃、碳氢化合物Hydrocarbon烃的衍生物Derivative of hydrocarbon 烃基Hydrocarbonyl同侧的Suprafacial同分异构体Isomer同系物Homo1og同系物; 同系化合物Homolog铜离子Cupric. (cu2+) cupric ion 酮Ketone酮Ketone(R-CO-R')酮酸Keto acid脱氢酶Dehydrogenases歪扭构象; 偏转构象Gauche conformation外消旋化作用Racemization外消旋混合物Racemic mixture烷基Alkyl group烷基Alkyl(-cnh2n+1) alkyl group. 烷烃Alkane paraffin.烷氧基Alkoxyl group王水Aqua regia未共用电子对Lone pair位阻Steric hindrance位阻异构体Atropisomers肟Oxime无机化合物Inorganic compound 无机化学Inorganic chemistry 无水的Anhydrous西佛碱Shiff's base吸湿的Hygroscopic吸湿性; 吸水性Hygroscopicity烯丙基Allyl group烯丙基正离子Allylic carbon烯烃Alkene洗涤剂Detergent洗脱; 洗脱法;洗剂Elution纤维素Cellulose酰胺Amide酰基Acyl group酰卤Acid halide消去反应Elimination reaction消旋体Racemate硝化反应Nitratlon reaction硝基Nitro group硝酸,王水Nitric acid. (hno3) aqua fortis 协定的, 一致的;协同的Concerted偕的Geminal辛烷Octane休克尔规则Hückel's rule溴的四氯化碳溶液Solution of bromine in carbon tetrachloride 溴水Bromine water旋光计Polarimeter旋光性Optical activity亚氨基Imino group亚砜Sulfoxide亚磺酸Sulfinic acid亚铁离子Ferrous ion亚铜离子Cuprous. (cu+) cuprous ion亚硝基Nitroso group 盐析Salting-out阳离子Cation乙醇Ethanol乙二胺四乙酸Edta乙醛Ethana1乙炔Ethyne乙酸Acetic acid乙酸Ethanoic acid 乙酸乙酯Ethyl acetate乙缩醛二乙醇Acetal乙烯Ethene乙酰乙酸乙酯Ethyl acetoacetate椅式构象Conformation (chair) 椅型构象; 椅式构象Chair conformation 异头物Anomers异位的Syndiotactic阴离子Anion阴碳离子; 负碳离子Carbanion银镜反应Silver mirror reaction 硬脂酸、十八酸Stearic acid油脂Oils and fats有机化合物Organic compound有旋光活性的Optically active右旋的Dextrorotatory (d)诱导效应Inductive effect原子化热Enthalpy of atomization. ( hat) 杂化; 杂交Hybridization杂化轨道Hybrid orbitals杂环的, 不同环式的Heterocyclic皂化作用Saponification蔗糖Sucrose正交Ortho脂肪酸Fatty acid脂肪族的Aliphatic脂环烃Alicyclic hydrocarbon 直角的;正交的Ortho-para director直立键Axial bonds指纹区Fingerprint region酯Ester酯化反应Esterification质谱法Mass spectrometry质子Proton质子给体; 质子给予体Proton donor质子溶剂Protic solvent中和反应Neutralization reaction 中间体Intermediate中介效应Mesomeric effect中性的Neutral轴手性;轴不对称性Axial chirality自由基,根,原子团Radical自由基; 游离基Free radical腙Hydrozone左旋的Laevorotatory (l)重氮化; 重氮化作用Diazotization重氮盐Diazonium salt重叠式构象Conformation (eclipsed) 重叠式构象Eclipsed conformation 重键; 多重键Multiple bond周环反应Pericyclic reactions。
高分子材料专业英语
[二]茂金属催化剂|metallocene catalyst1,1-亚乙烯基单体|vinylidene monomer1,2-polybutadiene|1,2-聚丁二烯1,2-polyisoprene|1,2-聚异戊二烯1,2-二取代乙烯单体|vinylene monomer1,2-聚丁二烯|1,2-polybutadiene 1,2-聚异戊二烯|1,2-polyisoprene 1,2-亚乙烯基单体|vinylene monomer 1,4-polybutadiene|1,4-聚丁二烯1,4-聚丁二烯|1,4-polybutadiene 2,2'-azobisisobutyronitrile|2,2′偶氮二异丁腈, AIBN2,2′偶氮二异丁腈|2,2'- azobisisobutyronitrile, AIBN3,4-polyisoprene|3,4-聚异戊二烯3,4-聚异戊二烯|3,4-polyisoprene abhesive|阻黏剂ablative polymer|烧蚀橡胶ablator|烧蚀剂accelerated ageing|加速老化accelerated sulfur vulcanization|促进硫化acetal resin|缩醛树脂acetylenic polymer|乙炔类橡胶acrolein polymer|丙烯醛类橡胶acrylate rubber|丙烯酸酯橡胶acrylic fiber|聚丙烯腈纤维,腈纶acrylic polymer|丙烯酸[酯]类橡胶acrylic resin|丙烯酸[酯]类树脂acrylonitrile styrene resin|丙烯腈-苯乙烯树脂, ASacrylonitrile-butadiene-styrene resin|丙烯腈-丁二烯-苯乙烯树脂, 简称“ABS树脂”activated monomer|活化单体activated polycondensation|活化缩聚activating accelerator|活化促进剂activation grafting|活化接枝activator|活化剂active carbon fiber|活性碳纤维active center|活性中心activity of initiator|引发剂活性addition fragmentation chain transfer|加成断裂链转移addition polymer|加[成]聚[合]物addition polymerization|加聚additive|添加剂adhesion|粘合adhesive|粘合剂,又称“胶粘剂”adjacent re-entry model|相邻再入模型adsorption polymerization|吸附聚合after-treating agent|后处理剂agar-agar|琼脂agglomerating agent|附聚剂aggregate|聚集体aggregation|聚集albumin|白蛋白aldehyde polymer|醛类橡胶alfin initiator|烯醇钠引发剂aliphatic epoxy resin|脂肪族环氧树脂aliphatic polyester|脂肪族聚酯alkyd resin|醇酸树脂alkyllithium initiator|烷基锂引发剂allene polymer|丙二烯橡胶allyl resin|烯丙基树脂allylic polymerization|烯丙基聚合alternating copolymer|交替共聚物alternating copolymerization|交替共聚合aluminate coupling agent|铝酸酯偶联剂amine cellulose|胺纤维素amino resin|氨基树脂Aminotriazine resin|三聚氰胺树脂amorphous orientation|非晶取向amorphous phase|非晶相,无定形相amorphous region|非晶区amorphous state|非晶态amphiphilic block copolymer|两亲嵌段共聚物amphiphilic polymer|两亲橡胶amylopectin|支链淀粉amylose|直链淀粉amylum|淀粉anaerobic adhesive|厌氧黏合剂analysis of end group|端基分析anion exchange resin|负离子交换树脂anion radical initiator|负离子自由基引发剂anionic cyclopolymerization|负离子环化聚合anionic electrochemical polymerization|负离子电化学聚合anionic exchange membrane|负离子交换膜anionic isomerization polymerization|负离子异构化聚合anionic polymerization|负离子聚合,阴离子聚合anisotropic membrane|各向异性膜anti-aging agent|防老剂anti-corrosion agent|防蚀剂anticracking agent|抗龟裂剂antidegradant|抗降解剂anti-fatigue agent|抗疲劳剂antifoaming agent|消泡剂antioxidant|抗氧剂antiozonant|防臭氧剂anti-reversion agent|抗硫化返原剂antiseptic|防霉剂anti-skinning agent|防结皮剂antistatic additive|抗静电添加剂antistatic agent|抗静电剂apparent molar mass|表观摩尔质量apparent molecular weight|表观分子量apparent shear viscosity|表观剪切黏度aramid fiber|聚芳酰胺纤维,芳纶,芳香尼龙aromatic polyamide|聚芳酰胺aromatic polyester|芳香族聚酯aromatic polysulfonamide|聚芳砜酰胺artificial ageing|人工老化as-formed fiber|初生纤维association polymer|缔合橡胶asymmetric induction polymerization|不对称诱导聚合asymmetric selective polymerization|不对称选择性聚合asymmetric stereoselective polymerization|不对称立体选择性聚合atactic block|无规立构嵌段atactic polymer|无规立构橡胶atacticity|无规度,无规立构度atom transfer radical polymerization|原子转移自由基聚合, ATRPautoacceleration effect|自动加速效应autocatalytic polycondensation|自催化缩聚auto-vulcanization|常温硫化auxiticity|拉胀性average degree of polymerization|平均聚合度average functionality|平均官能度Avrami equation|阿夫拉米方程axialite|轴晶azeotropic copolymer|恒[组]分共聚物azeotropic copolymerization|恒组分共聚合azo polymer|偶氮类橡胶azo type initiator|偶氮[类]引发剂backbitting transfer|尾咬转移bacterial degradation|细菌降解bag molding|袋模塑ball viscometer|落球黏度计ball viscosity|落球黏度ball-spring [chain] model|球-簧链模型banded texture|条带织构barrier polymer|阻透橡胶batch polymerization|分批聚合,间歇聚合bead polymerization|珠状聚合bead-rod model|珠-棒模型bending modulus|弯曲模量bending strain|弯曲应变bending strength|弯曲强度bending stress|弯曲应力benzoyl peroxide|过氧化苯甲酰, BPObiaxial drawing|双轴拉伸biaxial orientation|双轴取向bicomponent catalyst|双组分催化剂bifunctional initiator,difunctional initiator|双官能引发剂bifunctional monomer|双官能[基]单体bimetallic catalyst|双金属催化剂bimetallic μ-oxo alkoxides catalyst|μ氧桥双金属烷氧化物催化剂bimodal decomposition|亚稳相分离bimolecular termination|双分子终止bin cure|自硫[化]binary copolymer|二元共聚物binary copolymerization|二元共聚合Bingham fluid|宾汉姆流体bioactive polymer|生物活性高分子biocide|抗微生物剂biocompatibility|生物相容性biodegradable polymer|生物降解高分子biodegradation|生物降解bioelastomer|生物弹性体bioerodable polymer|生物可蚀性高分子biomedical polymer|生物医用高分子biomimetic polymer|仿生高分子biopolymer|生物高分子biorientation|双轴取向bisphenol A epoxy resin|双酚A环氧树脂bisphenol A polycarbonate|双酚A 聚碳酸酯blend|共混blended spinning|共混纺丝block|嵌段block copolymer|嵌段共聚物block copolymerization|嵌段共聚合block poly(ester ether)|嵌段聚醚酯block polymer|嵌段橡胶block polymerization|嵌段聚合blood compatibility|血液相容性blow molding|吹塑blown extrusion|吹胀挤塑Boltzmann superpositionprinciple|玻耳兹曼叠加原理boron carbide fiber|碳化硼纤维boundary phase|界面相branch chain|支链branched polymer|支化橡胶branching density|支化密度branching index|支化系数breaking strength|断裂强度bridged metallocene|桥基茂金属Brinell hardness|布氏硬度brittle cracking|脆性开裂brittle ductile transition|脆-韧转变brittle fracture|脆性断裂brittleness(brittle) temperature|脆化温度brush polymer|刷状橡胶bulk modulus|本体模量bulk polymerization|本体聚合bulk viscosity|本体黏度butadiene-acrylonitrile rubber|丁腈橡胶butyl rubber|丁基橡胶butyral resin|缩丁醛树脂calenderability|压延性calendering|压延,又称“轧光”capillary viscometer|毛细管黏度计carbamide resin|聚脲树脂,又叫“碳酰胺树脂”carbanionic polymerization|碳负离子聚合carbenium ion polymerization|碳正离子聚合carbocationic polymerization|碳正离子聚合carbocyclic ladder polymer|碳环梯形橡胶carbon chain polymer|碳链橡胶carbon fiber|碳纤维carbon nano-tube|碳纳米管carboxy terminated nitrile rubber|羧基丁腈橡胶carboxymethyl cellulose|羧甲基纤维素cast|铸塑cast molding|铸塑成型cast polymerization|铸塑聚合,浇铸聚合cation exchange membrane|正离子交换膜cation exchange resin|正离子交换树脂cationic catalyst|正离子催化剂cationic initiator|正离子引发剂cationic polymerization|正离子聚合,阳离子聚合cauliflower polymer|花菜状橡胶ceilling temperature of polymerization|聚合最高温度cellulose|纤维素cellulose acetate|乙酸纤维素,醋酸纤维素cellulose nitrate|硝酸纤维素,硝化纤维素chain axis|链轴chain backbone|主链,链骨架chain branching|链支化chain breaking|链断裂chain conformation|链构象chain end|链末端chain entanglement|链缠结chain extender|扩链剂,链增长剂chain flexibility|链柔性chain folding|链折叠chain growth|链增长chain initiation|链引发chain orientational disorder|链取向无序chain polymer|链型橡胶chain polymerization|链[式]聚合chain propagation|链增长chain repeating distance|链重复距离chain rigidity|链刚性chain scission degradation|断链降解chain segment|链段chain terminating agent|链终止剂chain termination|链终止chain transfer|链转移chain transfer agent|链转移剂chain transfer constant|链转移常数charge transfer complex|电荷转移复合物, CTCcharge transfer initiation|电荷转移引发charge transfer polymerization|电荷转移聚合chelate polymer|螯合橡胶chelating ion-exchanger|螯合型离子交换剂chelating resin|螯合型树脂chemical crosslinking|化学交联chemical degradation|化学降解chemical fiber|化学纤维chemical foam|化学发泡chemical foaming agent|化学发泡剂chiral polymer|手性高分子chitin|甲壳质chlorinated polyethylene (CPE)|氯化聚乙烯chloroprene rubber|氯丁橡胶chlorosulfonated polyethylene|氯磺化聚乙烯chromatographic fractionation|色谱分级cis-1,4-polybutadiene|顺[式]-1,4-聚丁二烯cis-1,4-polybutadiene rubber|顺丁橡胶cis-1,4-polyisoprene|顺[式]-1,4-聚异戊二烯cistactic polymer|顺式有规橡胶coalescence|聚集,凝聚coating|涂料coaxial extrusion|同轴挤塑coextrusion|共挤出coextrusion blow molding|共挤吹塑coherent elastic scattering of radiation|辐射的相干弹性散射cohesional entanglement|凝聚缠结coiled conformation|卷曲构象coil-globule transition|线团-球粒转换coiling type polymer|线团状橡胶coinitiator|共引发剂coinjection molding|共注塑cold drawing|冷拉伸cold flow|冷流cold rolling|冷轧cold stretching|冷拉伸collagen|骨胶原colorant|色料,着色剂column fractionation|柱分级comb polymer|梳形橡胶commodity polymer|通用高分子comonomer|共聚单体compatibility|相容性compatibilizer|增容剂compatiibilization|增容作用complex compliance|复数柔量complex dielectric permittivity|复数介电常数complex initiation system|复合引发体系complex modulus|复数模量complex viscosity|复数黏度composite|复合材料composite molding|复合成型compositional heterogenity|组成非均一性compression forming|压缩成型compression molding|模压成型compression set|压缩永久变形compressive deformation|压缩变形compressive strength|压缩强度computer simulation|计算机模拟concentration quenching|浓度猝灭condensation polymerization,polycondensation|缩聚反应condensed phase|凝聚相condensed state|凝聚态condensing process|凝聚过程conducting polymer|导电橡胶configurational disorder|构型无序configurational unit|构型单元confined chain|受限链confined state|受限态conformational disorder|构象无序conformational repeating unit|构象重复单元conjugate fiber|组合纤维conjugate spinning|复合纺丝conjugated monomer|共轭单体conjugated polymer|共轭橡胶constitution controller|结构控制剂constitutional heterogenity|组成非均一性constitutional repeating unit|重复结构单元constitutional unit|结构单元constrained geometry metallocene catalyst|限定几何构型茂金属催化剂continuous polymerization|连续聚合continuous vulcanization|连续硫化contour length|伸直长度controlled radical polymerization|控制自由基聚合,可控自由基聚合, CRPcoordinated anionic polymerization|配位负离子聚合coordinated cationic polymerization|配位正离子聚合coordinated ionic polymerization|配位离子聚合coordination polymer|配位橡胶coordination polymerization|配位聚合coplasticizer|辅增塑剂copolycondensation|共缩聚copolyester|共聚酯copolyether|共聚醚copolymer|共聚物copolymerization|共聚合copolymerization equation|共聚合方程copolyoxymethylene|共聚甲醛core shell copolymer|核-壳共聚物core shell latex polymer|核-壳胶乳橡胶cospinning|共纺coumarone-indene resin|苯并呋喃-茚树脂coupling agent|偶联剂coupling polymerization|偶联聚合coupling termination|偶合终止crack|裂缝crack (俗称)|龟裂craze|银纹creep|蠕变creep compliance|蠕变柔量critical aggregation concentration|临界聚集浓度critical micelle concentration,CMC|临界胶束浓度critical molecular weight|临界分子量cross propagation|交叉增长cross termination|交叉终止crosslinked polymer|交联橡胶crosslinking|交联crosslinking density|交联密度crosslinking index|交联指数crude rubber|生橡胶crystalline fold period|晶体折叠周期crystalline polymer|结晶橡胶crystallinity|结晶度cure|固化curing|固化curing agent|固化剂cyclic monomer|环状单体cycloaddition polymerization|环加成聚合cycloalkene polymerization|环烯聚合cyclopolymerization|环化聚合cyclosiloxane polymerization|环硅氧烷聚合dead end polymerization|无活性端聚合,死端聚合dead milled|过炼deflection|挠曲deformation|形变,变形deformation set|永久变形degradable polymer|降解性高分子degradation|降解,退化degradation (degradative) chain transfer|退化链转移degree of branching|支化度degree of crosslinking|交联度degree of crystallinity|结晶度degree of orientation|取向度degree of polymerization|聚合度degree of swelling|溶胀度demulsifier|破乳剂dendrimer|树状高分子dendrite|树枝[状]晶体dendritic polymer|树状高分子denier|旦, 纤度单位, 9000米纤维重1克为1旦deoxyribonucleic acid|脱氧核糖核酸, DNAdepolarization|解偏振作用depolymerase|解聚酶depolymerization|解聚dextran|葡聚糖,又称“右旋糖酐”dextrin|糊精diacetylene polymer|二乙炔橡胶diad|二单元组diallyl polymer|二烯丙基橡胶diblock copolymer|二嵌段共聚物dielectric dissipation factor|介电损耗因子dielectric loss constant|介电损耗常数dielectric relaxation time|介电弛豫时间diene monomer|双烯单体,二烯单体diene polymer|双烯橡胶diene polymerization|双烯[类]聚合differential fiber|改性纤维,俗称“差别纤维”diffusion controlled termination|扩散控制终止dimer|二聚体dimethyl silicone rubber|二甲基硅橡胶discotic phase|盘状相disorientation|解取向dispersant agent|分散剂dispersion polymerization|分散聚合disproportionation termination|歧化终止dissymmetry of scattering|散射的非对称性double stranded helix|双[股]螺旋double-strand polymer|双股橡胶drag reducer|减阻剂drape molding|包模成型draw ratio|拉伸比drier|催干剂dry jet wet spinning|干喷湿法纺丝dry spinning|干纺dry wet spinning|干湿法纺丝ductile fracture|延性破裂dye sensitized phtoinitiation|染料敏化光引发dynamic light scattering|动态光散射dynamic mechanical behavior|动态力学行为dynamic transition|动态转变dynamic viscoelasticity|动态黏弹性dynamic viscosity|动态黏度dynamic vulcanization|动态硫化dystectic polymer|高熔橡胶e value|e值ebonite|硬质胶efficiency of grafting|接枝效率elastic deformation|弹性形变elastic hysteresis|弹性滞后elastic recovery|弹性回复elasticity|弹性elastomer|高弹体,弹性体elastomeric state|高弹态electroactive polymer|电活性橡胶electrochromic polymer|电致变色橡胶electroluminescent polymer|电致发光橡胶electrolytic polymerization|电解聚合electrorheological fluid|电流变液electrostatic spinning|静电纺丝element polymer|元素高分子elimination polymerization|消除聚合elongation|伸长态elongation at break|断裂伸长eluant|洗脱剂elution fractionation|洗脱分级,淋洗分级elution volume|洗脱体积embedding|埋置,又称“包埋”emulsifier free emulsion polymerization|无乳化剂乳液聚合emulsion flash spinning process|乳液闪蒸纺丝法emulsion polymerization|乳液聚合emulsion polymerized butadiene styrene rubber|乳聚丁苯橡胶, ESBR emulsion spinning|乳液纺丝enantioasymmetric polymerization|对映[体]不对称聚合enantiosymmetric polymerization|对映[体]对称聚合end capping|封端end-to-end distance|末端距end-to-end vector|末端间矢量engineering plastic|工程塑料enzymatic polymerization|酶聚合作用enzyme like polymer|类酶高分子epichloro-hydrin rubber|氯醚橡胶epitaxial crystallization|外延结晶,附生结晶epitaxial growth|外延晶体生长,附生晶体生长epoxy resin|环氧树脂equilibrium melting point|平衡熔点equilibrium polymerization|平衡聚合equilibrium swelling|平衡溶胀equitactic polymer|全同间同等量橡胶equivalent chain|等效链erythro-diisotactic polymer|赤型双全同立构橡胶erythro-disyndiotactic polymer|赤型双间同立构橡胶ester exchange polycondensation|酯交换型聚合ethylene propylene diene monomer|三元乙丙橡胶,又称“乙丙三元橡胶”ethylene propylene monomer|二元乙丙橡胶,又称“乙丙二元橡胶”ethylene propylene rubber|二元乙丙橡胶,又称“乙丙二元橡胶”ethylene propylene terpolymer|三元乙丙橡胶,又称“乙丙三元橡胶”ethylene propylenecopolymer|二元乙丙橡胶,又称“乙丙二元橡胶”ethylene vinyl acetate copolymer (EVA)|乙烯-乙酸乙烯酯共聚物Eucommea rubber|杜仲胶excess Rayleigh ratio|超瑞利比excimer fluorescence|激基缔合物荧光exciplex fluorescence|激基复合物荧光excluded volume|排除体积expanding foam|发泡expansion factor|溶胀因子extended-chain crystal|伸展链晶体extension ratio|拉伸比extensional viscosity|拉伸黏度external plasticization|外增塑作用external releasing agent|外脱模剂extraction fractionation|萃取分级extrusion|挤出,又称“压出”extrusion blow molding|挤出吹塑extrusion draw blow molding|挤拉吹塑成型e值|e valuefatigue resistance|疲劳强度fatigue strength|疲劳强度ferroelectric polymer|铁电橡胶ferromagnetic polymer|铁磁橡胶fiber|纤维fiber forming|成纤fiber reinforced plastic|纤维增强塑料fibril|原纤fibrous crystal|纤维晶fine polymer|精细高分子fire retardant|防火剂flame retardant|阻燃剂flash polymerization|闪发聚合,暴聚flexible chain|柔性链flexible chain polymer|柔性链橡胶flexomer|挠性橡胶flexural strength|弯曲强度Flory-Huggins theory|弗洛里-哈金斯理论flow birefringence|流动双折射fluorinated triazine rubber|三嗪氟橡胶fluorocarbon resin|氟碳树脂fluoroelastomer|氟橡胶fluoroether rubber|氟醚橡胶fluoroethylene resin|氟树脂fluororubber|氟橡胶fluorosilicone rubber|氟硅橡胶foam molding|泡沫塑料成型foaming agent|发泡剂fold domain|折叠微区fold plane|折叠面fold surface|折叠表面folded chain|折叠链folded-chain crystal|折叠链晶体formalized PVA fiber|聚乙烯醇缩甲醛纤维,维尼纶four center polymerization|四中心聚合fractionation|分级fracture mechanics|断裂力学fracture toughness|断裂韧性free radical chain degradation|自由基链降解free radical isomerization polymerization|自由基异构化聚合free radical lifetime|自由基寿命free radical polymerization|自由基聚合,游离基聚合freely-jointed chain|自由连接链freely-rotating chain|自由旋转链frictional coefficient|摩擦系数fringed-micelle model|缨状微束模型fully oriented yarn|全取向丝functional coating|功能涂料functional fiber|功能纤维functional monomer|官能单体functional polymer|功能高分子functionality|官能度furan resin|呋喃树脂furfural phenol resin|糠醛苯酚树脂furfural resin|糠醛树脂fusion casting|熔铸gas aided injection molding|气辅注塑gas phase polymerization|气相聚合gaseous polymerization|气相聚合Gaussian chain|高斯链gel|凝胶gel chromatography|凝胶色谱法gel effect|凝胶效应gel point|凝胶点gel spinning|凝胶纺[丝]gelatin|明胶geometrical equivalence|几何等效glass transition|玻璃化转变glass-transition temperature|玻璃化转变温度glassy state|玻璃态global chain orientation|[分子]链大尺度取向globular-chain crystal|球状链晶体good solvent|良溶剂gradient copolymer|梯度共聚物graft copolymer|接枝共聚物graft copolymerization|接枝共聚合graft polymer|接枝橡胶graft polymerization|接枝聚合grafting degree|接枝度grafting site|接枝点group transfer polymerization,GTP|基团转移聚合gum|树胶Gutta percha|古塔波胶halogenated butyl rubber|卤化丁基橡胶hardening agent|增硬剂head-to-head polymer|头-头橡胶head-to-tail polymer|头-尾橡胶heat curing|热硫化heat distortion temperature|热畸变温度heat of polymerization|聚合热heat stabilizer|热稳定剂helical polymer|螺旋形橡胶helix chain|螺旋链heterochain polymer|杂链橡胶heterocyclic polymer|杂环高分子heterofiber|异质复合纤维heterogeneous polymerization|非均相聚合heterogeneous vulcanization|不均匀硫化heteropolymer|杂聚物heterotactic polymer|杂同立构橡胶,异规橡胶Hevea|三叶橡胶H-film|H-膜high density polyethylene|高密度聚乙烯, HDPEhigh elastic deformation|高弹形变high impact polystyrene|高抗冲聚苯乙烯, HIPShigh modulus polymer|高模量橡胶high performance polymer|高性能高分子high polymer|高聚物high-pressure spinning|高压纺丝hollocellulose|全纤维素hollow fiber|中空纤维homofiber|单组分纤维homogeneous metallocene catalyst|均相茂金属催化剂homogeneous polymerization|均相聚合homopolycondensation|均相缩聚homopolymer|均聚物homopolymerization|均聚反应homopropagation|同种增长Huggins coefficient|哈金斯系数Huggins equation|哈金斯公式hybrid composite|混杂复合材料hydrocarbon resin|烃类树脂hydrodynamic volume|流体力学体积hydrodynamically equivalent sphere|流体力学等效球hydrogen transfer polymerization|氢转移聚合hydrogenatedbutadiene-acrylonitrile rubber|氢化丁腈橡胶hydrogenated rubber|氢化橡胶hydrolytic degradation|水解降解hydrophilic polymer|亲水橡胶hydrophobic polymer|疏水橡胶hydroxyethyl cellulose|羟乙基纤维素hyperbranched polymer|超支化橡胶H-膜|H-filmideal copolymerization|理想共聚合identity period|等同周期imbedding|镶铸immiscibility|不混容性immortal polymerization|不死的聚合impact modifier|抗冲改性剂impact molding|冲压成型impact moulding|冲压模塑impact strength|冲击强度impregnation|浸渍impression molding|触压成型in situ composite|原位复合材料in situ polymerization|原位聚合incompatibility|不相容性indene resin|茚树脂indentation hardness|压痕硬度induced decomposition|诱导分解induction period|诱导期inert filler|惰性填料inflation|充气吹胀inherent viscosity|比浓对数黏度inhibition|阻聚作用inhibitor|阻聚剂inifer|引发-转移剂iniferter|引发-转移-终止剂initiator|引发剂initiator efficiency|引发剂效率initiator transfer agent|引发-转移剂initiator transfer agent terminator|引发-转移-终止剂injection compression molding|注塑压缩成型injection molding|注射成型injection welding|注塑焊接inorganic organic polymer|无机-有机高分子inorganic polymer|无机高分子insertion polymerization|插入聚合integrated rubber|集成橡胶intelligent polymer|智能橡胶intercalation polymerization|插层聚合interchain interaction|链间相互作用interchain spacing|链间距intercondensation polymer|共缩聚物interfacial polycondensation|界面缩聚interfacial polymerization|界面聚合intermiscibility|相溶性internal plasticization|内增塑作用internal releasing agent|内脱模剂interpenetrating polymer networks|互穿聚合物网络, IPN intrinsic viscosity|特性黏数inverse dispersion polymerization|反相分散聚合inverse emulsion polymerization|反相乳液聚合ion exchange polymer|离子交换橡胶ion exchange resin|离子交换树脂ion pair polymerization|离子对聚合ionic copolymerization|离子共聚合ionic polymer|离子橡胶ionic polymerization|离子聚合ionioic initiator|负离子引发剂ionomer|离子交联橡胶irrecoverable deformation|不可回复形变irregular block|非规整嵌段irregular polymer|非规整橡胶isomerization polymerization|异构化聚合isoprene rubber|异戊橡胶isospecific polymerization|全同立构聚合isotactic block|有规立构嵌段isotactic polymer|全同立构橡胶,等规橡胶isotactic polypropylene|全同立构聚丙烯,等规聚丙烯, iPP isotacticity|等规度,全同立构[规整]度jet molding|射流注塑jet spinning|喷射纺丝Kelvin model|开尔文模型kinetic chain length|动力学链长kneading|捏和ladder polymer|梯形橡胶lamella|片晶lamellar crystal|片晶laminate|层压材料Langmuir Blodgett film|LB膜(LB film)laser confocal fluorescence microscopy|激光共聚焦荧光显微镜laser fiber|激光光纤late transition metal catalyst|后过渡金属催化剂latent curing agent|潜固化剂latex|胶乳LB膜|Langmuir Blodgett film (LB film)light initiated polymerization|光引发聚合light screener|光屏蔽剂light stabilizer|光稳定剂lignin|木素limiting viscosity number|特性黏数linear low density polyethylene|线型低密度聚乙烯, LLDPElinear polymer|线型橡胶linear viscoelasticity|线性黏弹性liquid crystal polymer|液晶高分子liquid crystal spinning|液晶纺丝liquid crystal state|液晶态liquid rubber|液体橡胶living anionic polymerization|活性负离子聚合living cationic polymerization|活性正离子聚合living polymer|活性高分子living polymerization|活性聚合living radical polymerization|活性自由基聚合living ring opening polymerization|活性开环聚合logarithmic normal distribution|对数正态分布,又称“对数正则分布”logarithmic viscosity number|比浓对数黏度long chain branched polyethylene|长支链聚乙烯long period|长周期long range order|长程有序long-chain branch|长支链long-range intramolecular interaction|远程分子内相互作用long-range structure|远程结构loss modulus|损耗模量low angle laser light scattering|小角激光光散射low density polyethylene|低密度聚乙烯, LDPElower critical solution temperature|最低临界共溶温度, LCSTlubricant|润滑剂lyotopic liquid crystal|溶致性液晶lyotropic liquid crystalline polymer|溶致液晶高分子macrocyclic polymer|大环橡胶macroinitiator|大分子引发剂macroion|高分子离子macromer, macromonomer|大分子单体macromolecular isomorphism|高分子[异质]同晶现象macromolecule|高分子macroporous polymer|大孔橡胶macroreticular resin|大网络树脂magnetic polymer|磁性橡胶main chain liquid crystalline polymer|主链型液晶橡胶mass distribution function|质量分布函数mass polymerization|本体聚合masterbatch|母胶mastication|素炼matrix|基体matrix polymerization|模板聚合Maxwell model|麦克斯韦模型mean square end to end distance|均方末端距mean square radius of gyration|均方旋转半径mechanical failure|力学破坏mechanochemical degradation|力化学降解medical polymer|医用高分子melamine resin|三聚氰胺-甲醛树脂melamine-formaldehyde resin|三聚氰胺-甲醛树脂melt [flow] index|熔体流动指数melt adhesive|热熔胶melt phase polycondensation|熔融缩聚melt spinning|熔纺metal complex catalyst|金属络合物催化剂metallocene catalyst|[二]茂金属催化剂metastable state|亚稳态metathesis polymerization|易位聚合methyl cellulose|甲基纤维素methylal resin|缩甲醛树脂methylaluminoxane|甲基铝氧烷, MAO methylvinyl silicone rubber|甲基乙烯基硅橡胶micro emulsion polymerization|微乳液聚合micro wave curing|微波硫化microgel|微凝胶microphase|微相milling|混炼miscibility|混容性mixing|混炼modulus of elasticity|弹性模量moisture proof agent|防潮剂molar mass average|摩尔质量平均molar mass exclusion limit|摩尔质量排除极限molding|模塑,又称“模压”molecular assembly|分子组装,分子组合molecular composite|分子复合材料molecular dynamics simulation|分子动力学模拟molecular nucleation|分子成核作用molecular weight distribution,MWD|分子量分布molecular weight exclusion limit|分子量排除极限monodisperse polymer|单分散橡胶monodispersity|单分散性monofil|单丝monofilament|单丝monomer|单体monomer casting|单体浇铸monomeric unit|单体单元Monte Carlo simulation|蒙特卡洛模拟Mooney index|门尼粘度morphology of polymer|聚合物形态学most probable distribution|最概然分布,曾用名“最可几分布”moulding curing|模压硫化multiaxial drawing|多轴拉伸multicomponent copolymer|多组分共聚物multifilament|复丝multi-layer blow molding|多层吹塑multilayer copolymer|多层共聚物multi-layer extrusion|多层挤塑multiphase polymer|多相橡胶multipolymer|多元橡胶multi-strand polymer|多股橡胶nanocomposite|纳米复合材料nano-fiber|纳米纤维natural fiber|天然纤维natural polymer|天然高分子natural resin|天然树脂natural rubber|天然橡胶natural silk|蚕丝necking \t又称“细颈现象”|颈缩现象nematic phase|向列相nerviness|回缩性,弹性复原network|网络network density|网络密度network polymer|网络橡胶Newtonian fluid|牛顿流体Newtonian shear viscosity|牛顿剪切黏度nitrile rubber|丁腈橡胶nitrosofluoro rubber|亚硝基氟橡胶nitroxide mediated polymerization|氮氧[自由基]调控聚合non conjugated monomer|非共轭单体non polar monomer|非极性单体non-linear viscoelasticity|非线性黏弹性non-Newtonian fluid|非牛顿流体non-polar polymer|非极性橡胶non-pressure cure|无压硫化non-shrink|防缩non-uniform polymer|多分散性橡胶non-woven fabrics|无纺布normal stress|法向应力nucleation|成核作用number distribution function|数量分布函数number-average molar mass|数均分子量number-average molecular weight|数均分子量oil-extended rubber|充油橡胶olefine copolymer (OCP)|烯烃共聚物oligomer|低聚物,齐聚物oligomerization|低聚反应oligomerization(曾用名)|齐聚反应open vulcanization|无模硫化optical active polymer|光活性橡胶optical bleaching agent|荧光增白剂organic inorganic hybrid material|有机-无机杂化材料organic polymer|有机高分子organometallic polymer|金属有机橡胶over cure|过硫oxetane polymer|氧杂环丁烷橡胶oxidative coupling polymerization|氧化偶联聚合oxidative polymer|氧化性橡胶oxidative polymerization|氧化聚合paint|油漆paraformaldehyde\t又称“多聚甲醛”|低聚甲醛parallel-chain crystal|平行链晶体partial ladder polymer|部分梯形橡胶particle scattering factor|粒子散射因子particle scattering function|粒子散射函数paste molding|糊塑pearl polymerization|珠状聚合peeling strength|剥离强度pentad|五单元组penultimate effect|前末端基效应peptizer|塑解剂,胶溶剂periodic copolymer|周期共聚物peroxide crosslinking|过氧化物交联persistence length|相关长度persistent radical|持续自由基persulphate initiator|过硫酸盐引发剂perturbed dimension|扰动尺寸petroleum resin|石油树脂phase inversion polymerization|相转化聚合phase separation|相分离phenol ether resin|苯酚醚树脂phenol-formaldehyde resin|酚醛树脂phenolic resin|酚醛树脂photo oxidative degradation|光氧化降解photo polymerization|光[致]聚合photoageing|光老化photoconductive fiber|光导纤维photoconductive polymer|光[电]导橡胶photocrosslinkable polymer|光交联橡胶photocrosslinking|光交联photo-cure|光固化photocureable polymer|光固化橡胶photodegradable polymer|光降解橡胶photodegradation|光降解photoelastic polymer|光弹性橡胶photoiniferter|光引发转移终止剂photoinitiator|光敏引发剂photoluminescence polymer|光致发光橡胶photopolymer|感光橡胶photoresist|光致抗蚀剂,光刻胶photoresponsive polymer|光响应高分子photosensitive polymer|光敏橡胶photosensitized polymerization|光敏聚合photostabilizer|光稳定剂physical ageing|物理老化physical crosslinking|物理交联physical entanglement|物理缠结physical foam|物理发泡physical foaming agent|物理发泡剂piezoelectric polymer|压电高分子pilling effect|起球现象plasma polymerization|等离子体聚合plasma processing|等离子体加工plastic|塑料plastic alloy|塑料合金plastic deformation|塑性形变plastic flow|塑性流动plastication|塑炼plasticization|增塑作用plasticizer|增塑剂plasticizer extender|增塑增容剂plasticizing|塑化plastisol|增塑溶胶plastomer|塑性体Poisson's ratio|泊松比polar monomer|极性单体polar polymer|极性橡胶poly (aryl ether)|芳香族聚醚poly(1-butene)|聚1-丁烯poly(1-octene)|聚(1-辛烯)poly(4-methyl-1-pentene)|聚4-甲基-1-戊烯poly(8 amino caprylic acid)|聚(8-氨基辛酸),尼龙8,聚酰胺8poly(acrylic acid)|聚丙烯酸poly(aryl sulfone)(PAS)|聚芳砜poly(butylene terephthalate)|聚对苯二甲酸丁二酯poly(chlorotrifluoroethylene)|聚三氟氯乙烯, PCTFEpoly(diphenyl ether sulfone)|聚二苯醚砜poly(ether amide)|聚醚酰胺poly(ether sulfone)|聚醚砜poly(ether-ether-ketone)|聚醚醚酮, PEEKpoly(ether-ketone)|聚醚酮, PEK poly(ether-ketone-ketone)|聚醚酮酮, PEKKpoly(ether-urethane)|聚醚氨酯poly(ethylene oxide)\t又称“聚氧化乙烯(polyoxyethylene)”|聚环氧乙烷poly(ethylene terephthalate)|聚对苯二甲酸乙二酯poly(glutamic acid)|聚谷氨酸,聚2-氨基戊二酸poly(hexamethylene adipamide)|聚己二酰己二胺poly(lactic acid)|聚乳酸poly(methyl methacrylate)|聚甲基丙烯酸甲酯poly(oxyethylene glycol)|聚乙二醇poly(perfluoropropene)|聚全氟丙烯poly(p-phenylene sulfide)|聚对亚苯硫醚,俗称"聚苯硫醚"poly(p-phenylene terephthalate)|聚对苯二甲酸对苯二酯poly(p-phenylene)|聚对亚苯poly(propylene oxide)\t又称“聚氧化丙烯(polyoxytrimethyl-ene)”|聚环氧丙烷poly(pyromellitimido-1,4-phenyle ne)|聚均苯四酰亚胺-1,4-亚苯poly(tetrafluoroethylene)|聚四氟乙烯poly(tetramethylene terephthalate)|聚对苯二甲酸丁二酯poly(vinyl acetate)|聚乙酸乙烯酯,聚醋酸乙烯酯poly(vinyl alcohol)|聚乙烯醇poly(vinyl butyral)|聚乙烯醇缩丁醛poly(vinyl chloride)|聚氯乙烯poly(vinyl fluoride)|聚氟乙烯poly(vinyl formal)|聚乙烯醇缩甲醛poly(vinylene chloride)|聚1,2-二氯亚乙烯poly(vinylidene chloride)|聚偏二氯乙烯,聚偏[二]氯乙烯poly(vinylidene fluoride)|聚偏二氟乙烯,聚偏[二]氟乙烯poly(βalanine)|聚(β-氨基丙酸),尼龙3,聚酰胺3poly(ωamino caproic acid)|聚(ω-氨基己酸),尼龙6,聚酰胺6 polyacetylene|聚乙炔polyacrylate|聚丙烯酸盐,聚丙烯酸酯polyacrylonitrile|聚丙烯腈polyaddition|聚加成反应polyaddition (曾用名)|逐步加成聚合polyalkenamer|开环聚环烯烃polyallomer|异质同晶橡胶polyamide|聚酰胺polyamide fiber|聚酰胺纤维,锦纶,尼龙polyampholyte|两性聚电解质polyamphoteric electrolyte|两性聚电解质polyaniline|聚苯胺polyaramide|聚芳酰胺polybenzimidazole|聚苯并咪唑polybenzothiazole|聚苯并噻唑polyblend|高分子共混物polybutadiene|聚丁二烯polycaprolactam|聚己内酰胺polycarbonate|聚碳酸酯polycarboxylate|聚羧酸酯polychloroprene|聚氯丁二烯,对于环烯烃的聚合产物,由于聚合机理的不同,一种是开环聚合,一种是保留环打开双键的聚合polycondensate|缩聚物polycrystalline polymer|多晶形橡胶polycyclopentadiene|聚环戊二烯polycysteine|聚胱氨酸polydisperse polymer|多分散性橡胶polydispersity index|多分散性指数, PID polyelectrolyte|聚电解质polyepichlorohydrin|聚环氧氯丙烷polyester|聚酯polyester fiber|聚酯纤维,涤纶polyester resin|聚酯类树脂polyether|聚醚polyethylene|聚乙烯polyformaldehyde|聚甲醛polyglycine|聚甘氨酸polyimide|聚酰亚胺polyisobutylene|聚异丁烯polyisoprene|聚异戊二烯polylactide|聚乳酸polymer|橡胶polymer blend|高分子共混物polymer catalyst|高分子催化剂polymer colloid|高分子胶体polymer crystal|高分子晶体polymer crystallite|高分子微晶polymer drug|高分子药物polymer electret|聚合物驻极体polymer elec-trolyte|高分子电解质polymer reactant|高分子试剂polymer reagent|高分子试剂polymer solution|聚合物溶液polymer solvent|聚合物溶剂polymer support|高分子载体polymeric additive|高分子添加剂polymeric adsorbent|吸附树脂polymeric carrier|高分子载体polymeric flocculant|高分子絮凝剂polymeric membrane|高分子膜polymeric surfactant|聚合物表面活性剂polymerization|聚合polymerization accelerator|聚合加速剂polymerization catalyst|聚合催化剂polymerization kinetics|聚合动力学polymerization thermodynamics|聚合热力学。
高分子材料工程专业英语第二版(曹同玉)课后单词电子教案
⾼分⼦材料⼯程专业英语第⼆版(曹同⽟)课后单词电⼦教案⾼分⼦材料⼯程专业英语第⼆版(曹同⽟)课后单词专业英语accordion ⼿风琴activation 活化(作⽤)addition polymer 加成聚合物,加聚物aggravate 加重,恶化agitation 搅拌agrochemical 农药,化肥Alfin catalyst 醇(碱⾦属)烯催化剂align 排列成⾏aliphatic 脂肪(族)的alkali metal 碱⾦属allyl 烯丙基aluminum alkyl 烷基铝amidation 酰胺化(作⽤)amino 氨基,氨基的amorphous ⽆定型的,⾮晶体的anionic 阴(负)离⼦的antioxidant 抗氧剂antistatic agent 抗静电剂aromatic 芳⾹(族)的arrangement (空间)排布,排列atactic ⽆规⽴构的attraction 引⼒,吸引backbone 主链,⾻⼲behavior 性能,⾏为biological ⽣物(学)的biomedical ⽣物医学的bond dissociation energy 键断裂能boundary 界限,范围brittle 脆的,易碎的butadiene 丁⼆烯butyllithium 丁基锂calendering 压延成型calendering 压延carboxyl 羧基category 种类,类型cation 正[阳]离⼦cationic 阳(正)离⼦的centrifuge 离⼼chain reaction 连锁反应chain termination 链终⽌char 炭characterize 表征成为…的特征chilled water 冷冻⽔chlorine 氯(⽓)coating 涂覆cocatalyst 助催化剂coil 线团coiling 线团状的colligative 依数性colloid 胶体commence 开始,着⼿common salt ⾷盐complex 络合物compliance 柔量condensation polymer 缩合聚合物,缩聚物conductive material 导电材料conformation 构象consistency 稠度,粘稠度contaminant 污物contour 外形,轮廓controlled release 控制释放controversy 争论,争议conversion 转化率conversion 转化copolymer 共聚物copolymerization 共聚(合)corrosion inhibitor 缓释剂countercurrent 逆流crosslinking 交联crystal 基体,结晶crystalline 晶体,晶态,结晶的,晶态的crystalline 结晶的crystallinity 结晶性,结晶度crystallite 微晶decomposition 分解deformation 变形degree of polymerization 聚合度dehydrogenate 使脱氢density 密度depolymerization 解聚deposit 堆积物,沉积depropagation 降解dewater 脱⽔diacid ⼆(元)酸diamine ⼆(元)胺dibasic ⼆元的dieforming ⼝模成型diffraction 衍射diffuse 扩散dimension 尺⼨dimensional stability 尺⼨稳定性dimer ⼆聚物(体)diol ⼆(元)醇diolefin ⼆烯烃disintegrate 分解,分散,分离dislocation 错位,位错dispersant 分散剂dissociate 离解dissolution 溶解dissolve 使…溶解distort 使…变形,扭曲double bond 双键dough (⽣)⾯团,揉好的⾯drug 药品,药物elastic modulus 弹性模量elastomer 弹性体eliminate 消除,打开,除去elongation 伸长率,延伸率entanglement 缠结,纠缠entropy 熵equilibrium 平衡esterification 酯化(作⽤)evacuate 撤出fiber 纤维flame retardant 阻燃剂flexible 柔软的flocculating agent 絮凝剂folded-chain lamella theory 折叠链⽚晶理论formulation 配⽅fractionation 分级fragment 碎屑,碎⽚fringed-micelle theory 缨状微束理论functional group 官能团functional polymer 功能聚合物functionalized polymer 功能聚合物gel 凝胶glass transition temperature 玻璃化温度glassy 玻璃(态)的glassy 玻璃态的glassy state 玻璃态globule ⼩球,液滴,颗粒growing chain ⽣长链,活性链gyration 旋转,回旋hardness 硬度heat transfer 热传递heterogeneous 不均匀的,⾮均匀的hydocy acid 羧基酸hydrogen 氢(⽓)hydrogen bonding 氢键hydrostatic 流体静⼒学hydroxyl 烃基hypothetical 假定的,理想的,有前提的ideal 理想的,概念的imagine 想象,推测improve 增进,改善impurity 杂质indispensable 不了或缺的infrared spectroscopy 红外光谱法ingredient 成分initiation (链)引发initiator 引发剂inorganic polymer ⽆机聚合物interaction 相互作⽤interchain 链间的interlink 把…相互连接起来连接intermittent 间歇式的intermolecular (作⽤于)分⼦间的intrinsic 固有的ion 离⼦ion exchange resin 离⼦交换树脂ionic 离⼦的ionic polymerization 离⼦型聚合irradiation 照射,辐射irregularity 不规则性,不均匀的isobutylene 异丁烯isocyanate 异氰酸酯isopropylate 异丙醇⾦属,异丙氧化⾦属isotactic 等规⽴构的isotropic 各项同性的kinetic chain length 动⼒学链长kinetics 动⼒学latent 潜在的light scattering 光散射line 衬⾥,贴⾯liquid crystal 液晶macromelecule ⼤分⼦,⾼分⼦均⽅末端距mechanical property ⼒学性能,机械性能mechanism 机理medium 介质中等的,中间的minimise 最⼩化minimum 最⼩值,最⼩的mo(u)lding 模型mobility 流动性mobilize 运动,流动model 模型modify 改性molecular weight 分⼦量molecular weight distribution 分⼦量分布molten 熔化的monofunctional 单官能度的monomer 单体morphology 形态(学)moulding 模塑成型neutral 中性的nonelastic ⾮弹性的nuclear magnetic resonance 核磁共振nuclear track detector 核径迹探测器number average molecular weight数均分⼦量occluded 夹杂(带)的olefinic 烯烃的optimum 最佳的,最佳值[点,状态] orient 定向,取向orientation 定向oxonium 氧鎓⽺packing 堆砌pattern 花纹,图样式样peculiarity 特性pendant group 侧基performance 性能,特征permeability 渗透性pharmaceutical 药品,药物,药物的,医药的phenyl sodium 苯基钠phenyllithium 苯基锂phosgene 光⽓,碳酰氯photosensitizer 光敏剂plastics 塑料platelet ⽚晶polyamide 聚酰胺polybutene 聚丁烯polycondensation 缩(合)聚(合)polydisperse 多分散的polydispersity 多分散性polyesterification 聚酯化(作⽤)polyethylene 聚⼄烯polyfunctional 多官能度的polymer 聚合物【体】,⾼聚物polymeric 聚合(物)的polypropylene 聚苯烯polystyrene 聚苯⼄烯polyvinyl alcohol 聚⼄烯醇polyvinylchloride 聚氯⼄烯porosity 多孔性,孔隙率positive 正的,阳(性)的powdery 粉状的processing 加⼯,成型radical ⾃由基radical polymerization ⾃由基聚合radius 半径random coil ⽆规线团random decomposition ⽆规降解reactent 反应物,试剂reactive 反应性的,活性的reactivity 反应性,活性reactivity ratio 竞聚率real 真是的release 解除,松开repeating unit 重复单元retract 收缩rubber 橡胶rubbery 橡胶态的rupture 断裂saturation 饱和scalp 筛⼦,筛分seal 密封secondary shaping operation ⼆次成型sedimentation 沉降(法)segment 链段segment 链段semicrystalline 半晶settle 沉淀,澄清shaping 成型side reaction 副作⽤simultaneously 同时,同步single bond 单键slastic parameter 弹性指数slurry 淤浆solar energy 太阳能solubility 溶解度sprinkle 喷洒squeeze 挤压srereoregularity ⽴构规整性【度】stability 稳定性stabilizer 稳定剂statistical 统计的step-growth polymerization 逐步聚合stereoregular 有规⽴构的,⽴构规整性的stoichiometric 当量的,化学计算量的strength 强度stretch 拉直,拉长stripping tower 脱单塔subdivide 细分区分substitution 取代,代替surfactant 表⾯活性剂swell 溶胀swollen 溶胀的synthesis 合成synthesize 合成synthetic 合成的tacky (表⾯)发粘的 ,粘连性tanker 油轮,槽车tensile strength 抗张强度terminate (链)终⽌tertiary 三元的,叔(特)的tetrahydrofuran 四氢呋喃texture 结构,组织thermoforming 热成型thermondynamically 热⼒学地thermoplastic 热塑性的thermoset 热固性的three-dimensionally ordered 三维有序的titanium tetrachloride 四氯化钛transfer (链)转移,(热)传递triethyloxonium-borofluoride 三⼄基硼氟酸⽺trimer 三聚物(体)triphenylenthyl potassium 三苯甲基钾ultracentrifugation 超速离⼼(分离)ultrasonic 超声波uncross-linked ⾮交联的uniaxial 单轴的unsaturated 不饱和的unzippering 开链urethane 氨基甲酸酯variation 变化,改变vinyl ⼄烯基(的)vinyl chloride 氯⼄烯vinyl ether ⼄烯基醚viscoelastic 黏弹性的viscoelastic state 黏弹态viscofluid state 黏流态viscosity 黏度viscosity average molecular weight黏均分⼦量viscous 粘稠的vulcanization 硫化weight average molecular weight重均分⼦量X-ray x射线 x光yield 产率Young's modulus 杨⽒模量。
有机化学术语(中英文对照)
1.有机化合物的官能团和重要的基团官能团 functional group双键 double bond三键 triple bond烃基 hydroxyl group琉基 mercapto硫轻基 sulfhydryl group羰基 carbonyl group氨基 amino group亚氨基 imino group硝基 nitro group亚硝基 nitroso group氰基 cyano group羧基 carboxyl group磺基 sulpho group烷基 alkyl group苯基 phenyl group卡基 benzyl group芳基 aryl group烯基 allyl group烷氧基 alkoxyl group酰基 acyl group活性亚甲基 active methylene group2.有机化合物的类型烃 hydrocarbon石蜡 paraffin脂肪烃 aliphatic hydrocarbon烷烃 alkane烯烃 alkene炔烃 alkyne共扼二烯烃 conjugated diene脂环烃 alicyclic hydrocarbon螺环化合物 spiro compound桥环化合物 bridged ring compound芳烃 aromatic hydrocarbon非苯芳烃 nonbenzenoid aromatic hydrocarbon 稠环芳烃 condensed aromatics卤代烃 halohydrocarbon醇 alcohol酚 phenol醚 ether环氧化合物 epoxide冠醚 crown ether硫醇 thiol硫酚 thiophenol硫醚 sulfide二硫化物 disulfide亚磺酸 sulfinic acid磺酸 sulfonic acid亚砜 sulfoxide砜 sulfone醛 aldehyde酮 ketone半缩醛 hemiacetaI半缩酮 hemiketal缩醛 acetal缩酮 ketal西佛碱 shiff's base肟 oxime腙 hydrozone缩氨脲 semicarbazoneα,β-不饱和酮α,β--unsaturated ketone 醌 quinone羧酸 carboxylic acid酰卤 acid halide酸酐 acid anhydride酯 ester酰胺 amide內酯 lactone内酰胺 lactam月青 nitrile取代酸 substituted acid羟基酸 hydroxy acid醇酸 alcoholic acid酚酸 phenolic acid酮酸 keto acidB-酮酸酯 B-ketone ester乙酰乙酸乙醋 ethyl acetoacetate亚硝基化合物 nitroso compound硝基化合物 njtro compound亚胺 imine胺 amine伯胺 primary amine仲胺 secondary amine叔胺 tertiary amine季铵盐 quaternary ammonium salt季铵碱 quaternary ammonium hydroxide 重氮盐 diazonium salt偶氮化合物 azo compound胍 guanidine氨基酸 amino acid磷 phosphine磷酸酯 phosphate亚磷酸酯 phosphite膦酸酯 phosphonate膦酸 phosphonic acid3.杂环化合物吡咯 pyrrol呋喃 furane噻吩 thiophone吲哚 indole卟吩 porphine咪唑 imidazole噻唑 thioazole吡啶 pyridine喹啉 quinoline异喹啉 isoquinoline吡喃鎓盐 pyrylium salts 黄酮 flavone嘧啶 pirimidine嘌呤 purine4.有机天然产物肽 peptide多肽 polypeptide核酸 nucleic acid核苷 nucleoside核苷酸 nucleotide生物碱 alkaloid碳水化合物 carbohydrate单糖 monosaccharide醛糖 aldoses酮糖 ketosesD-核糖 ribose D-2-脱氧核糖 deoxyribose 葡萄糖 glucose果糖 fructose糖脎 osazone糖苷 glucoside低聚糖 oligosaccharide 麦芽糖 maltose蔗糖 sucrose纤维二糖 cellobiose环糊精 cyclodextrin多糖 polysaccharide淀粉 starch纤维素 cellulose类脂 lipid萜类化合物 terpenoid甾族化合物 steroid脂肪 fat油 oil脂肪酸 fatty acid甘油三羧酸酯 triglyceride磷脂 phospholipid磷脂酸 phosphalidic acid蜡 wax5.有机化合物的结构理论价键理论 valence-bond theory分子轨道理论 molecular orbital theory 共振论 resonance theory凯库勒式 Kekule formula路易斯式 Lewis formulaσ键σ bondπ键π bond键能 bond energy键角 bond angle键长 bond Iength成键轨道 bonding orbital反键轨道 antibonding orbital最高已占轨道 HOMO highest occupied molecular orbital最低末占轨道 LUMO lowest unoccupied molecular orbital诱导效应 inductive effect共轭效应 conjugated effectπ,π-共轭π,π- conjugationp,π-共轭p,π- conjugation超共轭作用 hyperconjugation离域能 delocalization energy共振能 resonance energy给电子基团 electron donating group吸电子基团 electron withdrawing group芳性 aromaticity休克尔规律 Huckel's rule两性离子 Zwitterion6.有机化学中的同分异构异构体 isomer构造 constitution构型 configuration构象 conformation构造异构 constitutional isomerism 立体异构 stereo isomerism 构型异构 configurational isomerism 顺反异构 cis-trans isomerism 次序规则 sequence ruIe同侧 Zugammen Z异侧 Entgegen E顺式 cis反式 trans对映异构 enantiomerism = 光学异构旋光异构 optical isomerism旋光性 optical activity旋光度 optical rotation比旋光度 specific rotation对称面 plane of symmetry对称中心 center of symmetry对称轴 axis of symmetry手性 chirality手性分子 chiral molecules对映异构体,对映体 enantiomer非对映体 diastereomer外消旋体 raceme左旋体 leveisomer右旋体 dextroisomer内消旋体 mesomer费歇尔投影式 Fischer projection相对构型 relative configuration绝对构型 absolute configurationR -构型 R -configurationS -构型 S -configuration赤式 erythro苏式 threo外消旋化 racemization拆分 resolution光学纯度 Optical Purity对映体过量百分数 enantiomeric excess立体专一性反应 stereospecific reaction 立体选择性反应 stereoselective reaction 不对称合成 asymmetric synthesis构象异构 conformational isomerism构象分析 conformational analysis锯架式 perspective formula 纽曼投影式 Newman projection formula 椅式 chair form船式 boat form直立键 a键 axial bond平伏键 e键 equatorial bond互变异构 tautomerism酮式 keto-form烯醇式 enol-form差向异构化 epimerization变旋现象 mutamerism哈武斯式 Haworth form7.有机反应的名称取代反应 substitution reaction加成反应 addition reaction马尔科夫尼可夫规律 Markovnikov rule共轭加成 conjugate addition消去反应 elemination reaction查依采夫规律 Saytzeff rule霍夫曼规律 Hofmann rule硼氢化反应 hydroboration催化加氢 catalytic hydrogenation聚合反应 polymerization单体 monomer聚合物 polymer硝化反应 nitration卤化反应 halogenation磺化反应 sulfonation烷基化反应 alkylation酰基化反应 acylation酯化反应 esterification酯交换反应 transesterification脱羧反应 decarboxylation氯甲基化反应 chloromethylation傅列德尔-克拉夫茨反应 Friedel-Crafts reaction 格利雅反应 Grignard reaction格利雅试剂 (格氏试剂) Grignard reagent赖默-梯曼反应 Reimer-Tiemann reaction卤仿反应 haloform reaction水解反应 hydrolysis reaction醇解反应 alcoholysis reaction氨解反应 ammonolysisi reaction皂化 saponification插烯作用 vinylogy缩合 condensation克莱森缩合 Claisen condensation安息香缩合 benzoin condensation羟醛缩合 aldol condensation列弗尔马茨基反应 Reformatsky reaction迈克尔反应 Michael reaction诺文格尔反应 Knoevenagel reaction加布里反应 Gabriel reaction乙酰乙酸乙酯合成法 acetoacetic ester synthesis 丙二酸酯合成法 malonic ester synthesis 威廉逊合成法 William Son synthesis 海森堡试验 Hinsberg test重氮化反应 diazotization reaction偶联反应 coupling reaction脱氨基反应 deamination reaction维悌希反应 Wittig reaction氧化反应 oxidation reaction还原反应 reduction reaction周环反应 pericyclic reaction环加成反应 cycloaddition reaction电环化反应 electrocyclic reaction坎尼扎罗反应 Cannizzaro reaction齐齐巴宾反应 Chichibabin reaction狄尔斯-阿德尔反应 Diels-alder reaction斐林试剂 Fehling reagent托伦试剂 Tollens reagent沃克还原 Wolff-Kishner reduction罗森蒙德还原 Rosenmund reduction克莱门森还原 Clemmenson reduction考普重排 Cope rearrangement霍夫曼重排 Hofmann rearrangement嚬哪醇重排 pinacol rearrangement弗里茨重排 Fries rearrangement克莱森重排 Claisen rearrangement二烯体 diene亲二烯体 dienophile分子轨道对称守恒原理 conversation of orbital symmetry8.有机反应机理均裂 homolytic异裂 heterolytic活性中间体 active intermediate碳正离子 carbocation碳负离子 carbanion烯醇负离子 enolate anion自由基,游离基 free radical卡宾,碳烯 carbene氮烯 nitrene速度决定步骤 rate-determining step哈蒙特假定 Hammond postulate能线图 energy profile过渡状态 transition state邻基参及 neighboring group participation动力学控制 kinetic control热力学控制 thermodynamic control离去基团 leaving group底物 substrate亲电试剂 electrofphile亲核试剂 nucleophile亲电加成反应 electrophilic addition亲电取代反应 electrophilic substitution定位规律 orientation rule亲核取代反应 nucleophilic substitutionSN2 反应机理 SN2 reaction mechanism SN1 反应机理 SN1 reaction mechanism 瓦尔登转化 Walden inversion亲核加成反应 nucleophilic addition 亲核加成-消去反应 nucleophilicaddition-elimination reaction消去反应机理 elimination reaction mechanismE1 反应机理 E1 reaction mechanism E2 反应机理 E2 reaction mechanism 反式消去 anti elimination重排反应机理 rearrangement reaction mechanism自由基反应 free radical reaction链引发 chain initation链增长 chain propagation链终止 chain termination9.有机化合物的光谱红外光谱 IR Infrared spectra傅立叶变换 Fourier Transform指纹区 finger print region吸收频率 absorption frequency紫外光谱 UV Ultraviolet spectra电子跃迁 elctronic transition吸光度 absorbance摩尔消光系数 molar extinction coefficient发色团 chromophore助色团 auxochrome核磁共振 NMR Nuclear Magnetic Resonance 1HNMR 谱 1HNMR spectra13CNMR 谱 13CNMR spectra屏蔽效应 shielding effect化学位移 chemical shift自旋偶合 spin-spin coupling自旋裂分 spin-spin splitting偶合常数 coupling constant质子去偶 proton spin decoupling 质子偏共振去偶 proton off-resonance decoupling 质谱 Mass Spectra(MS)电子流轰击 election impact (EI)快原子轰击 fast atom bombarment (FAB)分子离子峰 molecular ion peak同位素峰 isotopic peak基峰 base peak质荷比(m/z) mass-to-charge ratio10.分子间作用力氢键 hydrogen bond色散力 dispersion force 范德华力 Van Der Waals force 偶极-偶极作用力 dipole-dipole interraction force 11.物理性质熔点 melting point沸点 boiling point密度 density溶解度 solubility偶极矩 dipole moment12.有机化合物的酸碱性酸性 acidity碱性 basicity<HTML>本站材料仅为本院教师及学生教学所用,请勿它用!</HTML>。
有机化学中常见名词中英文对照
有机化学中常见名词中英文对照英中对照abietic acid (松香酸)acetal(缩醛)acid anhydride(酸酐)A.Couper(古柏尔)acridine(吖啶)acronycine (山油柑碱)acidylating reaction(酰化反应)acyl group(酰基)acyl halide (酰卤)adenine(腺嘌呤)adrenal cortex hormone (肾上腺皮质激素)A.Kekule(开库勒)alanine(丙氨酸)alcoholysis(醇解)aldehyde(醛)alicyclic hydrocarbon(脂环烃)alizarin(茜草素)alizarin—type(茜素型)alkane(烷烃)alkene(烯烃)alkylation(傅—克烷基化反应)alkyne(炔烃)aloeemodin (芦荟大黄素)amines(胺类)amide(酰胺)amidino(脒基)amino acid(氨基酸)β-aminobutyric acid(β—氨基丁酸)ammonolysis(氨解)andiron formula(锯架式)andrographolide (穿心莲内酯)anisodine (樟柳碱)annulene(轮烯)anomer(异头物)anomeric effect(异头效应)anthocyanidin (花色素)anthraquinone (蒽醌)anthrol (蒽酚)anthrone (蒽酮)anthracene(蒽)antiaromaticity or antiaromatic compound(反芳香性化合物)apigenin (芹菜素)apple polyphenols (苹果多酚) aromatic compound(芳香性化合物)aromatic hydrocarbon(芳香烃)aromaticity(芳香性)aromatization(芳构化)arecoline (槟榔碱)arginine(精氨酸)aspartic acid(天冬氨酸)asymmetric carbon atom (手性碳原子)atomic orbital(原子轨道)A。
生物化学重要术语中英语对照
供学生使用的《生物化学》重要术语中英语对照碳水化合物(carbohydrate)单糖(monosaccharide)寡糖(oligosaccharide)多糖(polysaccharide)醛糖(aldose)酮糖(ketose)蔗糖(sucrose)乳糖(lactose)麦芽糖(maltose)纤维二糖(cellobiose)多糖(polysaccharides)淀粉(starch)直链淀粉(amylose)支链淀粉(amylopectin)纤维素(cellulose)半纤维素(hemicellulose)糖原(glycogen)几丁质(chitin)糖胺聚糖(glycosaminolgycan)脂类(lipids)脂肪酸(fatty acid)甘油三酯(glycerol triester)亲水脂类(amphipathic lipids)蜡(wax)磷酸甘油脂(phosphoglyceride)甘油磷脂(glycerophospholipid)磷脂酰胆碱(phosphatidylcholine)磷脂酰乙醇胺(phosphatidylethanolamine)磷脂酰丝氨酸(phoshatidylserine)磷脂酰肌醇(phosphatidylinositol, PI)肌醇三磷酸(inositol-1,4,5-trisphosphate,IP3)二脂酰甘油(diacylglycerol,DAG)磷脂酸(phosphatidic acid,PA)磷脂酶A2(phospholipase A2,PLA2)磷脂酶C(phospholipase C,PLC)磷脂酶D(phospholipase D,PLD)溶血磷脂(1ysophospholipid)鞘磷脂(sphingomyelin)神经酰胺(ceramide)类固醇(steroids)萜类(terpenes)胆固醇(cholesterol)麦角固醇(ergosterol)蛋白质protein简单蛋白质simple protein氨基酸amino acid结合蛋白质conjugated protein多肽polypeptide肽peptide肽键peptide bond介电常数dielectric constant范德华力van der waals force层析法chromatography吸附层析法adsorption chromatography分配系数partition or distribution confficient活性肽active peptide二硫键disulfide bond兼性离子zwitterion一级结构primary structure疏水效应hydrophobic effectSDS-聚丙烯酰胺凝胶电泳SDS-PAGE毛细管电泳(capillary eletrophoresis, CE)离子交换层析ion exchange chromatography 同源蛋白homologous protein构象conformation构象角conformatiomal angle糖脂(glycolipid)糖基甘油酯(glycosylglyceride)鞘糖脂(glycosphingolipid)脑苷脂(cerebroside)N-乙酰神经氨酸(N-acetylneuraminic acid)神经节苷脂(ganglioside)硫酸脑苷脂(cerebroside sulfate)糖蛋白(glycoproteins)蛋白聚糖(proteoglycans)生物膜(biomembrane)膜脂(membrane lipids)膜蛋白(membrane proteins)脂质双层分子(lipid bilayers)外周蛋白(peripheral protein)外源性(extrinsic protein)内在蛋白(integral protein)内源性蛋白(intrinsic protein)跨膜蛋白(transmembrane proteins)流动镶嵌模型(fluid mosaic model)简单扩散(simple diffusion)协助扩散(facilitated diffusion)被动运输(passive transport)主动运输(active transport)介导性运输(mediated transport)非介导性运输(nonmediated transport)载体蛋白(carrier protein)通道蛋白(channel protein)离子通道(ionic channel)离子载体(ionophore)内吞作用(endocytosis)胞饮作用”(pinocytosis)外排作用(exocytosis)基团转移(group translocation)脂蛋白(lipoprotein)染色体(chromosome)染色质(chromatin)组蛋白(histone)核小体(nucleosome)病毒(virus)噬菌体(bacteriophage或简称phage)变性denaturation沉降系数(S)Svedberg(S)抗体antibody亲和层析法affinity chromatography盐溶salting in盐析salting out二级结构secondary structure三级结构tertiary structureα-螺旋α-helix超二级结构super-secondaery structure 结构域structure domain氢键hydrogen bond疏水相互作用hydrophoblic interaction 肌红蛋白myoglobin寡聚蛋白质oligomeric protein无规则卷曲randon coil复性renaturation镰刀状细胞贫血病sickle-cell anermia 酶(enzyme)酶的专一性(specificity)单体酶(monomeric enzyme)寡聚酶(oligomeric enzyme)多酶复合体系(multienzyme system)酶活性中心(active center of enzyme)催化基团(catalytic site)酶原(zymogen or proenzyme)诱导契合(induced-fit theory)抗体酶(abzyme)酸碱催化(acid-base catalysis)共价催化(covalent catalysis)激活剂(activator)抑制剂(inhibitor)可逆抑制(reversible inhibition)竞争性抑制作用(competitive inhibition)非竞争性抑制作用(noncompetitive inhibition)调节酶(modulator)别构酶(allosteric enzyme)同配位效应(isosteric effect)变构效应(allosteric effect)变构激活(allosteric activation )正协同效应(positive cooperative effect)负协同效应(negative cooperative effect)效应物(effector)维生素(vitamin)维生素缺少症(avitaminosis)调节中心(regulatory center)催化亚基(catalytic subunit)调节亚基(regulatory subunit)诱导酶(induced enzyme)结构酶(structural enzyme)核酶(ribozyme)辅酶(coenzyme)比活力(specific activity)脱氧核酶(deoxyribozyme)酶工程(enzyme engineering)酶纯度(purity of enzyme)酶活力(enzyme activity)α-淀粉酶(α-amylase)β-淀粉酶(β-amylase)脱支酶(debranching enzyme)淀粉的磷酸化酶(amylophosphorylase)糖酵解(glycolysis)三羧酸循环(tricarboxylic acid cycle,TCA)磷酸戊糖途径(pentose phosphate pathway,PPP)生物氧化(biological oxidation)烟酰胺脱氢酶类(nicotinamide dehydrogenase)黄素脱氢酶类(flavin dehydrogenase)铁硫蛋白类(iron-sulfur protein)泛醌(ubiquinone)细胞色素类(cytochromes)细胞色素氧化酶(cytochromeoxidase)鱼藤酮(rotenone)安密妥(amytal)杀粉蝶菌素(piericidine)抗霉素A(antimycin A)底物水平磷酸化(substrate-level phosphorylation)氧化磷酸化(oxidative phosphorylation)化学渗透假说(chemiosmotic coupling hypothesis)化学偶联假说(chemical coupling hypothesis)构象偶联假说(conformational coupling hypothesis)甘油-磷酸穿梭途径(glycerophosphate shuttle)苹果酸-天冬氨酸穿梭途径(malate- aspartate shuttle)异柠檬酸穿梭途径(isocitrate shuttle)能荷(energy charge)肉碱(肉毒碱,carnitine)乙醛酸体(乙醛酸循环体,glyoxysome)乙醛酸循环(glyoxylate cycle)酮体(ketone bodies)饱和脂肪酸的从头合成(de novo synthesis)谷氨酸脱氢酶(glutamate dehydrogenase, GDH)转氨基作用(transamination)转氨酶(transaminase)磷酸吡哆醛(pyridoxal phosphate,PLP)谷丙转氨酶(glutamic pyruvic transaminase,GPT或alanine transaminase,ALT)谷草转氨酶(glutamic oxaloacetic transaminase,GOT或aspartate transaminase,AST)γ-谷氨酰-半胱氨酸合成酶(γ-glutamyl systeine synthetase,γ-ECS)谷胱甘肽(glutathione)谷胱甘肽合成酶(glutathione synthetase)生物固氮(biological nitrogen fixation)固氮酶(nitrogenase)自身固氮微生物(diazatrophs)共生固氮微生物(symbiotic microorganism)硝酸还原酶(nitrate reductase,NR)亚硝酸还原酶(nitrite reductase,NiR)谷氨酸合酶(glutamate: oxo-glutarate aminotransferase,GOGA T)谷氨酰胺合成酶(glutamine synthetase,GS)腺苷-5'-磷酸硫酸酐(adenosine-5'-phosphosulfate,APS)3'-磷酸腺酐-5'-磷酰硫酸(3'-phosphoadenosine-5'-phosphosulfate,PAPS)5-磷酸核糖焦磷酸(phosphoribosyl pyrophosphaet,PRPP)天冬氨酸转氨甲酰酶(aspartate trsnscarbamoy lase)腺嘌呤磷酸核糖转移酶(adenine phosphoribosyl fransferase,APRT)黄嘌呤-鸟嘌呤磷酸核糖转移酶(hypoxanthineguanine phosphoribosyl transferase,HGPRT)谷胱甘肽还原酶(glutathione reductase,GR)谷氧还蛋白(glutaredoxin)谷氧还蛋白还原酶(glutaredoxin reductase)胸腺嘧啶核苷酸合酶(thymidylate synthase)DNA复制(DNA replication)中心法则(central dogma)冈崎片段(Okazaki fragement)前导链(leading strand)滞后链(lagging strand)引物(primer)复制叉(replication fork)半保留式复制(semiconservative replication)模板(template)反转录(reverse transcription)转换(transition)颠换(transversion)错配修复(mismatch repair)核苷酸切除修复(nucleotide excision repair)碱基切除修复(base excision repair)同源重组(homologous recombination)特异性重组(site-specific recombination)转座子(transposon)启动子(promoter)限制性内切酶(restriction endonuclease )修饰(modification)单链结合蛋白(single stranded binding proteins, SSB)遗传密码(genetic code)读码框架(reading frame)移码突变(frame-shift mutation)简并性(degeneracy)同义密码子(synonymous codon)起始密码子(initiatlon codon)终止密码子(termination codon)摆动假说(wobble hypothesis)同功受体tRNA(isoaccepting tRNA)反密码子(anticodon)多核糖体(polyribisome)氨酰-tRNA合成酶(aminoacyl-tRNA synthetase)Shine –Dalgarno序列(Shine –Dalgarno sequence)起始因子(initiation factor)延伸因子(elongation factor)释放因子(release factor)转肽(transpeptidation)移位(translocation)分子伴侣(molecular chapeones)共翻译转移(co-translational translocation)翻译后转移(post-translational translocation)信号肽(signal sequence)信号识别颗粒(signal recognition particle SPR)代谢(metabolism)代谢调节(metabolic regulation)共价修饰(covalent modification)反馈抑制(feedback inhibition)操纵子模型(operon model)衰减作用(attenuation)级联放大作用(amplification cascade)变(别)构效应(allosteric effect)诱导和阻遏(induction and repression)蛋白激酶C (protein kinase C,PKC)第二信使(second messenger)受体(receptor)G 蛋白(guanosine triphosphate-binding protein)信号转导(signal transduction)钙调素(calmodulin,CaM)磷酯酶(phospholipase C,PLC)。
分子链结构
III
Tg
Tf
Temperature (oC)
在区域 I,温度低,链段运动被冻结,只有侧基、链节、链长、键角等的 局部运动,因此聚合物在外力作用下的形变小,具有虎克弹性行为:形变在瞬 间完成,当外力除去后,形变又立即恢复,表现为质硬而脆,这种力学状态与 无机玻璃相似,称为玻璃态。 玻璃态向高弹态发生突变的区域叫玻璃化转变区,玻璃态开始向高弹态转
主链结构的影响 当主链中含非共轭双键时,虽然双键本身不会内旋转,但却使相邻单键的非键 合原子间距增大,从而使内旋转较容易,柔顺性好。
---CH2−CH2−CH2--Polyethylene <
---CH2−CH=CH−CH2--Polybutadiene
当主链中由共轭双键组成时,由于共轭双键因p电子云重叠不能内旋转,因 而柔顺性差,是刚性链。如聚乙炔、聚苯: Polyacetylene Poly(para-phenylene) 因此,在主链中引入不能内旋转的芳环、芳杂环等环状结构,可提高分子 链的刚性。
Introduction to Polymer Science
第三讲 高分子结构与性能
Structure and properties of polymers
四川大学 化学学院
Introduction to Polymer Science
Structure and property
diamond
coal
聚 合 物 的 结 构
Chain structure
Structure of aggregation state
Introduction to Polymer Science
Chain structure
Constitution and Configuration of polymer chain Constitution and Configuration refers to the organization of the atoms along chain. Configurational isomerism involves the different arrangements of the atoms and substituents in a chain, which can be interconverted only by the breakage and reformation of primary chemical bonds. Configurational isomerism 化学组成 连接顺序 聚合物链结构 立体构型 支化与交联
轮胎英语词汇
Radial ply tyre子午线轮胎air valve气阀Diameter直径regular tyre合格胎Perimeter周长curing press硫化压力Formulation配方recipe finished product成品Curative硫化剂semi—finished product 半成品Cure rate硫化速率aspect defect外观缺陷Cure state硫化程度undulation鼓包Autoclave硫化罐folding折叠Blister气泡pallet托盘Chafer cracking子口裂口spray喷雾器Rubber shortage缺胶stir搅拌Sidewall print胎侧缺胶groove开槽Spew大边radius半径Over curing过硫pump泵Under curing欠硫eccentric偏离的Foreign body杂质puncture穿刺X-ray X光zip拉链Visual外观stitch缝合Exposed cord帘线外露tensile拉伸Cord stretch/elongation帘线拉伸viscosity粘度Valve气阀viscometer粘度计Conveyor belt传送带pressure roller压力辊Inflation充气automatism自动化Deflation缩小manual手动Pipeline管道volume体积Width宽度area面积Length长度distance长度Thickness厚度weight重量Penetrate渗透density密度Multiple复合scrap废品Isolation rubber隔离剂extension拉伸Multimeter万用表scale尺度/比例Defect缺陷medium中型Heavy重型classification分类/分级Negative失衡strip胶片Quality inspector质检员judge判断Vagrant cords帘线弯曲fraying织物碎屑Joint接头parallel并行Absent没有tear硬伤Deform变形separation分离Misplaced放错位置steps阶梯Open cords钢丝辟缝under liner过渡层Liner气密层rubberized compound挂胶Tread cap胎面上机胶tread base胎面下机胶Drum鼓curing program硫化周期End curing strip包边胶片external strip外胶片Internal strip手贴胶片strip over carcass胎体附胶片Strip at edge of carcass 胎体边缘胶片UBF/under belt filler 胎肩垫胶Soft filler软三角hard filler硬三角Bead filler strip胶片seting定位Gasoline汽油application应用,申请stock blend 翻料区Open miller 密炼机Device装置pallet抓盘Punch刺puncher锥子Entry进入select选择Panel 面板,仪表板circumference圆周Align排列,成行1avoid避免,消除Pocking贴合voltage电压Beneath在…之下clamper夹持器Clutch抓住,离合器identify确定,鉴别Laster耐久性beam梁;电波Coincide一致,符合pedal踏板Brush刷子wearable耐磨的Compress压缩efficiency效率,功效Flex伸缩,弯曲tear撕裂Destroy破坏fluid流动性Capability性能cost成本Process工艺deform变形Holland荷兰suitable适用Transfer ring传递环components部件Corresponding相应的crame填充Microcrack微裂纹faliture strength破坏强度Stiffness硬度crystallize结晶Fatigue resistance耐疲劳性filler填充料Plasticizer可塑性extrusion挤出Orientation定向DP聚合度elastomer合成橡胶magic triangle魔鬼三角vulcanization硫化thermolysis热分解dome锅stacking累计friction摩擦力longitudinal纵向的hydrophilic亲水的homogeneity均一性crack裂纹toughness韧性slastic弹性binder粘合剂reinforced增强segment段;分割extract炸出data数据tolerance公差item一条,一则plant生产线comments注释,说明bladder胶囊centralizing ring no定位盘号copper铜instrument设备meters表,仪表cabinet橱柜cavity洞穴,腔traceability追溯register登记,注册aging老化scar疤痕mechanism机械手batch批量grasp抓running转动plate盘experiment实验text试验ozone臭氧compositoin成分olefin石蜡scorch焦烧expend膨胀accelerant促进剂system体系mesh work网状结构endure承受reduce减少roller辊complex复合mixing混合gelation凝胶catalyst催化剂modulus模量optimization最优化feedstock原料viscous粘性的ductile柔软的life cycle生命周期molecular weight分子量distribution分布coalesce接合sag松弛stress应力strain应变band成键brittle脆的impurity杂质trademark商标reverse反status状态original有机的,原始的sipe刀槽花纹- 2 -polythene塑料overlap重叠acceptable可接受的inspection检测purpose目的applicable适用sample抽样increase增长brush刷子petrol汽油equipment设备dimension尺寸shrink收缩trolley百叶车horizontally水平的pre—load of arm合模力parallel belt 并行generic一般的variation变化的absent没有soft filler软三角hard filler硬三角setting定位pre—conformation预定型variable变化,变量U.B.F胎肩垫胶thin薄shortage缺胶visible cords露帘线seperation分离misplaced放错位置open cords钢丝匹缝under liner过渡层liner内衬层rubberized compound挂胶fabric for bead wrap胎圈包布tread base胎面下基胶tread cap胎面上基胶drum鼓curing cycle硫化周期missing缺失puncture刺穿zip拉链stitch缝合tensile张力viscosity粘度viscometer粘度计pressure roller压力辊automatism自动化的manual手动volume体积area面积distance长度weight重量density密度regular合格defect缺陷scrap废品extension拉伸scale比例/尺度medium中型heavy重型finished product成品classification分类/级negative消极的/失衡strip胶片Q insperctor质检员judge判断Undulation波动vagrant cords帘线弯曲Fold重叠fraying织物碎屑Joint接头big大边Spew飞边,胶边over curing过硫Under curing欠硫foreign bodies杂质X-rayX光visual外观Exposed cords露钢丝cord stretch帘线拉伸Valve气阀conveyor belt传送带Inflation充气deflation放气Pipe line管道width宽度Length长度thickness厚度Penetrate渗透multiple复合Curing press硫化机semi-finished product半成品Spray喷雾器stir搅拌Groove沟槽/开槽radius半径/范围Pump泵eccentric偏离的Humidity湿气air bag气囊Radial tyre子午线轮胎mould模具Loader机械手release agent隔离剂Rubber paste胶浆radial ply tyre子午线轮胎Diameter直径perimeter周长Formutation配方curative硫化剂Cure rate硫化速率autoclave硫化罐- 3 -Blistet气泡chafer cracking子口裂口S。
生化英语单词
protein蛋白质peptide bond 肽键conformation 空间构象motif 模体peptide unit 肽单元zinc finger 锌指domain 结构域molecular chaperon 分子伴侣denaturation 变性complementary base pairs 碱基互补配对anneal 退火phosphodiester bond 磷酸二酯键enzyme 酶proenzyme 酶原ribozyme 核酶hybridization 核酸分子杂交hyperchromic effect 增色效应nucleosome 核小体ribosome 核糖体melting temperature,Tm 解链温度isoenzyme同工酶restriction endonuclease 限制性核酸内切酶allosteric regulation 变构调节covalent modification 共价修饰vitamin 维生素glycolysis 糖酵解reversible inhibition 可逆性抑制作用aerobic oxidation 有氧氧化competitive inhibition 竞争性抑制TCA cycle 三羧酸循环gluconeogenesis 糖异生substrate-level phosphorylation 底物水平磷酸化glucagon 胰高血糖素glycogen synthase 糖原合酶glycoprotein糖蛋白apolipoprotein 载脂蛋白fat mobilization 脂肪动员essential fatty acid必需脂肪酸phospholipid磷脂ketone bodies 酮体LPL 脂蛋白脂肪酶lipoprotein脂蛋白reverse cholesterol transport,RCT 胆固醇逆向转运biological oxidation 生物氧化oxidative respiratory chain氧化呼吸oxidative phosphorylation 氧化磷酸化nitrogen balance 氮平衡putrefaction 腐败作用SAM S-腺苷甲硫氨酸urea cycle 尿素循环one carbon unit 一碳单位de novo synthesis 从头合成途径uric acid 尿酸biotransformation 生物转化bile pigment 胆色素semi-conservative replication 半保留复制replication fork 复制叉Okazaki fragment 冈崎片段telomere 端粒reverse transcription 逆转录transcription 转录template strand 模板链split gene 断裂基因exon 外显子intron 内含子promoter 启动子splicing 剪接translation 翻译open reading frame 开放阅读框signal peptide 信号肽codon 密码子frameshift mutation 框移突变operon 操纵子housekeeping gene 管家基因enhancer 增强子genome 基因组recombinant DNA 重组DNA expression vector 表达载体plasmid 质粒polymerase chain reaction,PCR 聚合酶链反应autophosphorylation 自我磷酸化receptor 受体second messenger 第二信使adenylate cyclase,AC 腺苷酸环化酶protein tyrosine kinase,PTK 蛋白酪氨酸激酶oncogene 癌基因。
蛋白质与小分子间相互作用研究方法的进展
pharmacy and so on. Using different experimental methods and techniques, the binding constant, the number of binding sites and the interaction force type can be calculated in the interaction between proteins and small molecule, and the thermodynamics information of the reaction system and the influence of small molecule ligands on proteins' conformation and function can be got. The progress and applications of Isothermal Titration Calorimetry, Circular Dichroism, Nuclear Magnetic Resonance, Atomic Force Microscope and Molecular Docking Method in the interactions between proteins and small molecule are reviewed.
生物化学名词英汉互译
碳水化合物(carbohydrate)单糖(monosaccharide)寡糖(oligosaccharide)多糖(polysaccharide)醛糖(aldose)酮糖(ketose)蔗糖(sucrose)乳糖(lactose)麦芽糖(maltose)纤维二糖(cellobiose)多糖(polysaccharides)淀粉(starch)直链淀粉(amylose)支链淀粉(amylopectin)纤维素(cellulose)半纤维素(hemicellulose)糖原(glycogen)几丁质(chitin)糖胺聚糖(glycosaminolgycan)脂类(lipids)脂肪酸(fatty acid)甘油三酯(glycerol triester)亲水脂类(amphipathic lipids)蜡(wax)磷酸甘油脂(phosphoglyceride)甘油磷脂(glycerophospholipid)磷脂酰胆碱(phosphatidylcholine)磷脂酰乙醇胺(phosphatidylethanolamine)磷脂酰丝氨酸(phoshatidylserine)磷脂酰肌醇(phosphatidylinositol, PI)肌醇三磷酸(inositol-1,4,5-trisphosphate,IP3)二脂酰甘油(diacylglycerol,DAG)磷脂酸(phosphatidic acid,PA)磷脂酶A2(phospholipase A2,PLA2)磷脂酶C(phospholipase C,PLC)磷脂酶D(phospholipaseD,PLD)溶血磷脂(1ysophospholipid)鞘磷脂(sphingomyelin)神经酰胺(ceramide)类固醇(steroids)萜类(terpenes)胆固醇(cholesterol)麦角固醇(ergosterol)蛋白质 protein简单蛋白质 simple protein氨基酸 amino acid结合蛋白质conjugated protein多肽 polypeptide肽 peptide肽键 peptide bond介电常数dielectric constant范德华力 van der waals force层析法 chromatography 吸附层析法 adsorption chromatography分配系数 partition or distribution confficient活性肽 active peptide二硫键 disulfide bond兼性离子zwitterion一级结构 primary structure疏水效应 hydrophobic effectSDS-聚丙烯酰胺凝胶电泳 SDS-PAGE毛细管电泳(capillary eletrophoresis, CE)离子交换层析 ion exchange chromatography同源蛋白 homologous protein构象 conformation构象角 conformatiomal angle糖脂(glycolipid)糖基甘油酯(glycosylglyceride)鞘糖脂(glycosphingolipid)脑苷脂(cerebroside)N-乙酰神经氨酸(N-acetylneuraminic acid)神经节苷脂(ganglioside)硫酸脑苷脂(cerebroside sulfate)糖蛋白(glycoproteins)蛋白聚糖(proteoglycans)生物膜(biomembrane)膜脂(membrane lipids)膜蛋白(membrane proteins)脂质双层分子(lipid bilayers)外周蛋白(peripheral protein)外源性(extrinsic protein)内在蛋白(integral protein)内源性蛋白(intrinsic protein)跨膜蛋白(transmembrane proteins)流动镶嵌模型(fluid mosaic model)简单扩散(simple diffusion)协助扩散(facilitated diffusion)被动运输(passive transport)主动运输(active transport)介导性运输(mediated transport)非介导性运输(nonmediated transport)载体蛋白(carrier protein)通道蛋白(channel protein)离子通道(ionic channel)离子载体(ionophore)内吞作用(endocytosis)胞饮作用”(pinocytosis)外排作用(exocytosis)基团转移(group translocation)脂蛋白(lipoprotein)染色体(chromosome)染色质(chromatin)组蛋白(histone)核小体(nucleosome)病毒(virus)噬菌体(bacteriophage或简称phage)变性 denaturation沉降系数(S)Svedberg(S)抗体 antibody亲和层析法 affinity chromatography盐溶 salting in盐析 salting out二级结构 secondary structure三级结构 tertiary structureα-螺旋α-helix超二级结构 super-secondaery structure结构域 structure domain氢键 hydrogen bend疏水相互作用 hydrophoblic interaction肌红蛋白 myoglobin寡聚蛋白质 oligomeric protein无规则卷曲 randon coil复性 renaturation镰刀状细胞贫血病 sickle-cell anermia酶(enzyme)酶的专一性(specificity)单体酶(monomeric enzyme)寡聚酶(oligomeric enzyme)多酶复合体系(multienzyme system)酶活性中心(active center of enzyme)催化基团(catalytic site)酶原(zymogen or proenzyme)诱导契合(induced-fit theory)抗体酶(abzyme)酸碱催化(acid-base catalysis)共价催化(covalent catalysis)激活剂(activator)抑制剂(inhibitor)可逆抑制(reversible inhibition)竞争性抑制作用(competitive inhibition)非竞争性抑制作用(noncompetitive inhibition)调节酶(modulator)别构酶(allosteric enzyme)同配位效应(isosteric effect)变构效应(allosteric effect)变构激活(allosteric activation )正协同效应(positive cooperative effect)负协同效应(negative cooperative effect)效应物(effector)维生素(vitamin)维生素缺少症(avitaminosis)调节中心(regulatory center)催化亚基(catalytic subunit)调节亚基(regulatory subunit)诱导酶(induced enzyme)结构酶(structural enzyme)核酶(ribozyme)辅酶(coenzyme)比活力(specific activity)脱氧核酶(deoxyribozyme)酶工程(enzyme engineering)酶纯度(purity of enzyme)酶活力(enzyme activity)α-淀粉酶(α-amylase)β-淀粉酶(β-amylase)脱支酶(debranching enzyme)淀粉的磷酸化酶(amylophosphorylase)糖酵解(glycolysis)三羧酸循环(tricarboxylic acid cycle,TCA)磷酸戊糖途径(pentose phosphate pathway,PPP)生物氧化(biological oxidation)烟酰胺脱氢酶类(nicotinamide dehydrogenase)黄素脱氢酶类(flavin dehydrogenase)铁硫蛋白类(iron-sulfur protein)泛醌(ubiquinone)细胞色素类(cytochromes)细胞色素氧化酶(cytochromeoxidase)鱼藤酮(rotenone)安密妥(amytal)杀粉蝶菌素(piericidine)抗霉素A(antimycin A)底物水平磷酸化(substrate-level phosphorylation)氧化磷酸化(oxidative phosphorylation)化学渗透假说(chemiosmotic coupling hypothesis)化学偶联假说(chemical coupling hypothesis)构象偶联假说(conformational coupling hypothesis)甘油-磷酸穿梭途径(glycerophosphate shuttle)苹果酸-天冬氨酸穿梭途径(malate- aspartate shuttle)异柠檬酸穿梭途径(isocitrate shuttle)能荷(energy charge)肉碱(肉毒碱,carnitine)乙醛酸体(乙醛酸循环体,glyoxysome)乙醛酸循环(glyoxylate cycle)酮体(ketone bodies)饱和脂肪酸的从头合成(de novo synthesis)谷氨酸脱氢酶(glutamate dehydrogenase, GDH)转氨基作用(transamination)转氨酶(transaminase)磷酸吡哆醛(pyridoxal phosphate,PLP)谷丙转氨酶(glutamic pyruvic transaminase,GPT或 alanine transaminase,ALT)谷草转氨酶(glutamic oxaloacetic transaminase,GOT或 aspartate transaminase,AST)γ-谷氨酰-半胱氨酸合成酶(γ-glutamyl systeine synthetase,γ-ECS)谷胱甘肽(glutathione)谷胱甘肽合成酶(glutathione synthetase)生物固氮(biological nitrogen fixation)固氮酶(nitrogenase)自身固氮微生物(diazatrophs)共生固氮微生物(symbiotic microorganism)硝酸还原酶(nitrate reductase,NR)亚硝酸还原酶(nitrite reductase,NiR)谷氨酸合酶(glutamate: oxo-glutarate aminotransferase,GOGAT)谷氨酰胺合成酶(glutamine synthetase,GS)腺苷-5'-磷酸硫酸酐(adenosine-5'-phosphosulfate,APS)3'-磷酸腺酐-5'-磷酰硫酸(3'-phosphoadenosine-5'-phosphosulfate,PAPS)5-磷酸核糖焦磷酸(phosphoribosyl pyrophosphaet,PRPP)天冬氨酸转氨甲酰酶(aspartate trsnscarbamoy lase)腺嘌呤磷酸核糖转移酶(adenine phosphoribosyl fransferase,APRT)黄嘌呤-鸟嘌呤磷酸核糖转移酶(hypoxanthineguanine phosphoribosyl transferase,HGPRT)谷胱甘肽还原酶(glutathione reductase,GR)谷氧还蛋白(glutaredoxin)谷氧还蛋白还原酶(glutaredoxin reductase)胸腺嘧啶核苷酸合酶(thymidylate synthase)DNA复制(DNA replication)中心法则(central dogma)冈崎片段(Okazaki fragement)前导链(leading strand)滞后链(lagging strand)引物(primer)复制叉(replication fork)半保留式复制(semiconservative replication)模板(template)反转录(reverse transcription)转换(transition)颠换(transversion)错配修复(mismatch repair)核苷酸切除修复(nucleotide excision repair)碱基切除修复(base excision repair)同源重组(homologous recombination)特异性重组(site-specific recombination)转座子(transposon)启动子(promoter)限制性内切酶(restriction endonuclease )修饰(modification)单链结合蛋白(single stranded binding proteins, SSB)遗传密码(genetic code)读码框架(reading frame)移码突变(frame-shift mutation)简并性(degeneracy)同义密码子(synonymous codon)起始密码子(initiatlon codon)终止密码子(termination codon)摆动假说(wobble hypothesis)同功受体tRNA(isoaccepting tRNA)反密码子(anticodon)多核糖体(polyribisome)氨酰-tRNA合成酶(aminoacyl-tRNA synthetase)Shine –Dalgarno序列(Shine –Dalgarno sequence)起始因子(initiation factor)延伸因子(elongation factor)释放因子(release factor)转肽(transpeptidation)移位(translocation)分子伴侣(molecular chapeones)共翻译转移(co-translational translocation)翻译后转移(post-translational translocation)信号肽(signal sequence)信号识别颗粒(signal recognition particle SPR)代谢(metabolism)代谢调节(metabolic regulation)共价修饰(covalent modification)反馈抑制(feedback inhibition)操纵子模型(operon model)衰减作用(attenuation)级联放大作用(amplification cascade)变(别)构效应(allosteric effect)诱导和阻遏(induction and repression)蛋白激酶 C (protein kinase C,PKC)第二信使(second messenger)受体(receptor)G 蛋白(guanosine triphosphate-binding protein)信号转导(signal transduction学习好资料欢迎下载钙调素(calmodulin,CaM)磷酯酶(phospholipase C,PLC)。
Separation, structure characterization, conformation and immunomodulating effect of a hyperbranched
Carbohydrate Polymers 87 (2012) 667–675Contents lists available at SciVerse ScienceDirectCarbohydratePolymersj o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /c a r b p olSeparation,structure characterization,conformation and immunomodulating effect of a hyperbranched heteroglycan from Radix AstragaliJun-Yi Yin a ,b ,1,Ben Chung-Lap Chan a ,1,Hua Yu a ,Iris Yuen-Kam Lau a ,Xiao-Qiang Han a ,Sau-Wan Cheng a ,Chun-Kwok Wong a ,d ,Clara Bik-San Lau a ,Ming-Yong Xie b ,∗∗,Kwok-Pui Fung a ,Ping-Chung Leung a ,Quan-Bin Han a ,c ,∗aState Key Laboratory of Phytochemistry and Plant Resources in West China (CUHK),Institute of Chinese Medicine,The Chinese University of Hong Kong,Shatin,NT,Hong Kong,China bState Key Laboratory of Food Science and Technology,Nanchang University,Nanchang 330047,China cSchool of Chinese Medicine,Hong Kong Baptist University,Hong Kong,China dDepartment of Chemical Pathology,The Chinese University of Hong Kong,Prince of Wales Hospital,Shatin,NT,Hong Kong,Chinaa r t i c l ei n f oArticle history:Received 30June 2011Received in revised form 3August 2011Accepted 17August 2011Available online 24 August 2011Keywords:Radix Astragali PolysaccharideStructure character Morphology featureImmunomodulating effecta b s t r a c tA water soluble polysaccharide (RAP)was isolated and purified from Radix Astragali and its structure was elucidated by monosaccharide composition,partial acid hydrolysis and methylation analysis,and further supported by FT-IR,GC–MS and 1H and 13C NMR spectra,SEM and AFM microscopy.Its aver-age molecular weight was 1334kDa.It was composed of Rha,Ara,Glc,Gal and GalA in a molar ratio of 0.03:1.00:0.27:0.36:0.30.The backbone consisted of 1,2,4-linked Rha p ,␣-1,4-linked Glc p ,␣-1,4-linked GalA p 6Me,-1,3,6-linked Gal p ,with branched at O -4of the 1,2,4-linked Rha p and O -3or O -4of -1,3,6-linked Gal p .The side chains mainly consisted of ␣-T-Ara f and ␣-1,5-linked Ara f with O -3as branching points,having trace Glc and Gal.The terminal residues were T-linked Ara f ,T-linked Glc p and T-linked Gal p .Morphology analysis showed that RAP took random coil feature.RAP exhibited significant immunomodu-lating effects by stimulating the proliferation of human peripheral blood mononuclear cells and enhancing its interleukin production.© 2011 Elsevier Ltd. All rights reserved.1.IntroductionRadix Astragali (Astragalus )is the dried root of Astragalus membranaceus (Fisch.)Bunge and Astragalus mongholicus Bunge (Fabaceae).It has been used in the treatment of various renal dis-eases in Traditional Chinese Medicine for over 2000years.Modern researches showed that Radix Astragali possesses a variety of activ-ities,including immunomodulating (Bedir,Pugh,Calis,Pasco,&Khan,2000),anti-hyperglycemic (Chan,Lam,Leung,Che,&Fung,2009),anti-inflammation (Choi et al.,2007),anti-oxidation (Yu,Bao,Wei,&An,2005),antiviral activities (Zhu et al.,2009),etc.Besides saponins and isoflavonoids,polysaccharides are believed as the principle active constituents of Radix Astragali (Chu,Qi,Li,Gao,&Li,2010),which could activate the proliferation and cytokine production of mouse B cells and macrophages (Shao et al.,2004),and showed immunomodulating effects on Peyer’s patch∗Corresponding author.Tel.:+852********.∗∗Corresponding author.Tel.:+8679183969009.E-mail addresses:myxie@ (M.-Y.Xie),simonhan@.hk (Q.-B.Han).1Equal contribution.immunocompetent cells (Kiyohara et al.,2010).The crude polysac-charide could stimulate macrophages to express iNOS gene through the activation of NF-B/Rel (Lee &Jeon,2005).It could also amelio-rate the digestive and absorptive function and regulate amino acid metabolism to beneficially increase the entry of dietary amino acid into the systemic circulation (Yin et al.,2009).An acid polysaccha-ride from Radix Astragali showed significant reticuloendothelial system-potentiating activity (Shimizu,Tomoda,Kanari,&Gonda,1991).Scientists made efforts in the structure characterization of the polysaccharides isolated from Radix Astragali (Kiyohara et al.,2010;Shao et al.,2004;Wang,Shan,Wang,&Hu,2006)and only sev-eral glucans (Fang &Wagner,1988;Li &Zhang,2009)were well characterized.As for heteroglycans,nothing but monosaccharide composition and molecular weight was reported (Yan et al.,2010;Zhang et al.,2011).Therefore,their structures deserve further study.Herein we report the isolation and purification of a water-soluble hyperbranched heteroglycan (coded RAP)from Radix Astragali.Its structure was characterized by a combination of chem-ical and instrumental analysis of monosaccharide compositions,methylation,partial acid hydrolysis,FT-IR,ESI-MS,GC–MS and0144-8617/$–see front matter © 2011 Elsevier Ltd. All rights reserved.doi:10.1016/j.carbpol.2011.08.045668J.-Y.Yin et al./Carbohydrate Polymers87 (2012) 667–675NMR.Its morphology feature was further analyzed by scanning electron microscopy(SEM)and atomic force microscopy(AFM). RAP exhibited immunomodulating effects on human peripheral blood mononuclear cells.2.Materials and methods2.1.MaterialThe roots of A.membranaceus were purchased from herbal store in Hong Kong and identified by Dr.Chun-Feng Qiao.The voucher specimens are deposited at the Institute of Chinese Medicine,the Chinese University of Hong Kong,with voucher specimen number 2010-3268.Hiload26/60Superdex-200prep grad was purchased from Pharmacia Co.(Uppsala,Sweden).The dextran standards(T-2000,T-270,T-80,T-50,T-25and T-12with molecular masses of2,000,000,270,000,80,000,50,000and12,000respectively) and monosaccharide standards of d-mannose(Man),l-rhamnose (Rha),d-galactose(Gal),d-arabinose(Ara),and d-glucose(Glc) were obtained from Merck Co.(Darmstadt,Germany).Ultra-pure water was produced by a Milli-Q water purification system(Milli-pore,Bedford,MA,USA).Lipopolysaccharide(LPS)was purchased from Sigma(St.Louis,USA).All chemical reagents were of analytical grade.2.2.Extraction and purification of polysaccharideThe air-dried Radix Astragali(100g)was cut into pieces and extracted twice with boiling water(2×1.2L)for1h.The solution wasfiltered and concentrated under reduced pressure.The solu-tion was precipitated with four volumes of absolute ethanol for 12h.The precipitate was resolved again in water and deproteined using Sevag method(Staub,1965)forfive times.Then the solution was dialyzed against distilled water for72h.Finally,the retentate was lyophilized with Virtis Freeze Dryer(The VirTis Company,New York,USA)to yield crude polysaccharide(RACP,1.67g).RACP was dissolved in distilled water(4mg/mL),filtered through a0.45m membrane and separated by the Buchi Puri-fier system(BUCHI Labortechnik AG,Switzerland)coupled with a Hiload26/60Superdex-200(2.6cm×60cm)column,eluted with water at aflow rate of2mL/min.Fractions were collected every 3min and checked using phenol-sulfuric acid under UV detection at490nm.Gel permeation chromatography(GPC)was used to test the homogeneity of the purified polysaccharide.Total carbohydrate was determined using the phenol-sulfuric acid colorimetric method(Dubois,Gilles,Hamilton,Rebers,& Smith,1956).Uronic acid contents were determined accord-ing to Blumenkrantz and Asboe-Hansen’s method(Blumenkr& Asboehan,1973).Protein was estimated by photometric assay using bovine serum albumin as the standard(Bradford,1976). Specific rotation was recorded with a Perkin-Elmer241M digital polarimeter.2.3.Homogeneity and molecular weightThe homogeneity and molecular weight of the purified polysac-charide was determined by GPC.It was analyzed on a Waters UPLC system(Waters,Milford,MA)equipped with a Waters Ultrahydrogel TM1000column(7.8mm×300mm),a Waters ELS Detector,controlled with a Binary Solvent Manager system.The ELS Detector conditions were as follows:drift tube temperature (75◦C),nebulizer temperature(48◦C),gain(300◦C),gas pressure (45Psi).Dextran standards with different molecular weight were used to calibrate the column and establish a standard curve.2.4.Monosaccharide composition analysisRAP was hydrolyzed with2M trifluoroacetic acid(TFA)at120◦C for2h in a sealed test tube.The acid was removed under reduced pressure by repeated evaporation with methanol,and then the hydrolysate was converted into alditol acetates(Chen,Xie,Nie,Li,& Wang,2008;Jones&Albersheim,1972).Shimadzu GC/MS-QP2010 equipment(Nishinokyo Kuwabaracho,Kyoto,Japan)was used for the identification and quantification of monosaccharides.2.5.Methylation and GC–MS analysis2.5.1.Reduction of polysaccharideThe reduction of the uronic acid was conducted following a pro-cedure as described in the literature(Taylor&Conrad,1972)with slight modifications.RAP(20mg)was added into water and treated with1-cyclohexyl-3-(2-morpholinoethyl)-carbodimide methyl-p-toluenesulfonate(CMC)forfive times,until the reduction of uronic acid completed.The polysaccharide after reduction(RAP-R)was subjected to monosaccharide composition and methylation analy-sis.2.5.2.Methylation and GC–MS analysisMethylation analysis of polysaccharide(RAP and RAP-R)was conducted according to the reported methods(Ciucanu&Kerek, 1984;Guo,Cui,Wang,&Christopher Young,2008)with some mod-ifications.The dried polysaccharide was dissolved in anhydrous dimethyl sulphoxide.Dry sodium hydroxide(30mg)was added, and the mixture was stirred for3h at room temperature.Methyl iodide was added into the mixture.The reaction was stopped by adding water.The methylated polysaccharides were then extracted with chloroform followed by washing with distilled water for three times.They were acetylated with acetic anhydride to obtain par-tially methylated alditol acetates(PMAA).GC/MS analysis of PMAA was performed on a DB-5ms capillary column(0.25m×0.25m×30m)using a temperature program-ming of140◦C(3min)to250◦C(40min)at2◦C/min.Helium was used as the carrier gas.The components were identified by a combi-nation of the main fragments in their mass spectra and relative GC retention times,comparing with the literature(Wang,He,&Huang, 2007).2.6.Partial acid hydrolysisRAP(50.5mg)was treated with0.05M TFA(10mL)at100◦C for1h.The product was concentrated by evaporation of TFA with methanol,and then dialyzed against distilled water(5×500mL, molecular weight3500Da cut off).The solution outside of the dial-ysis bag(RAP-P-L)was collected for monosaccharide analysis and ESI-MS.The solution in the dialysis bag(RAP-P-H)was concen-trated and lyophilized.RAP-P-H’s homogeneity was confirmed by GPC.It was further applied to monosaccharide compositions and methylation analysis.2.7.FT-IR analysisInfrared spectra were recorded with a Thermo Nicolet5700 infrared spectrometer(Madison,WI,USA),using KBr disks method.2.8.NMR spectroscopyRAP was treated with deuterium by lyophilizing with D2O for three times.The deuterium-exchanged RAP(25mg)was put in a5-mm NMR tube and dissolved in0.5mL of99.9%D2O.NMR-spectra were recorded with a Brucker AM-600NMR(Karlsrhue,Germany).J.-Y.Yin et al./Carbohydrate Polymers87 (2012) 667–6756692.9.Molecular morphology analysisPolysaccharide powder was placed on the sample stage,and coated with a thin layer of gold in a MODEL IB-3ion coater(Eiko Corp.,Mito City,Japan).Then it was examined in a QUANTA200F scanning electron microscope(FEI Company,Holland).The sample was viewed at an accelerating voltage of30kV.The atomic force microscopy in this study was manufactured by Shanghai AJ Nano-Science Development Limited(Shanghai,China) and operated in the tapping mode.RAP was diluted to thefinal concentration of5g/mL in distilled water.5L of solutions was dropped onto freshly cleaved mica and allowed to stand in air before imaging.The quoted spring constant was between5.5and 25N m−1.2.10.Immunomodulatory activities of RAP on human peripheral blood mononuclear cells(PBMC)Immunomodulatory activities of RAP were determined by the capacity of the compounds to influence the cytokine production by human PBMC.PBMCs were obtained from the buffy coat collected from Hong Kong Red Cross by density gradient separation.Buffy coat was diluted1:1with phosphate buffer saline(PBS)and this was overlaid on Ficoll Paque Plus(Amersham Biosciences).Cells were washed with PRMI and plated in96-well plates at105cells/well. Serial dilutions of RAP from10to10,000ng/mL were added to the wells.The plates were maintained in a37◦C incubator for24h. The immunomodulatory effects on PBMC of RAP were compared with a well known mitogen lipopolysaccharide(LPS)from Gram negative bacteria.The cell free supernatants were then assayed for GM-CSF(granulocyte-macrophage colony-stimulating factor), IFN(interferon)-␥,IL(interleukin)-1,IL-2,IL-4,IL-10IL-12and TNF(tumor necrosis factor)-␣production by commercially avail-able human cytokine ELISA kits(BD OptEIA,USA)according to the manufacturer instruction with detection limits ranged from3.1to 7.8pg/mL.3.Results and discussion3.1.Isolation and purification of RAPRAP was purified from the crude polysaccharide RACP through a Hiload26/60Superdex-200column.It presented a single and symmetrical peak in GPC(gel-permeation chromatography)exam-ination on an Ultrahydrogel TM1000column(Fig.1).The average molecular weight was1334kDa with reference to Dextran T-series standard samples of known molecular weight.The total sugar con-tent was determined to be76.5%using the phenol-sulfuric acid method.It had a high specific rotation of[␣]D20+125.8(0.54,H2O) and weak UV absorption at280nm which was consistent with its low protein content(only0.72%).The uronic acid content was56.7% using colorimetric method.3.2.Monosaccharide compositions analysisAfter complete hydrolysis of RAP by2M TFA,its monosaccha-ride composition was determined using GC–MS.As demonstrated in Table1,RAP contained Rha,Ara,Glc and Gal.Reduction of RAP with CMC-NaBH4gave the carboxyl-reduced derivative RAP-R and further analysis of RAP and RAP-R both indicated the presence of GalA.The molar ratio of Rha,Ara,Glc,Gal and GalA of RAP was 0.03:1.00:0.27:0.36:0.30,in which the ration of GalA was calculated by the increase of Gal content in RAP-R.Table1Monosaccharide composition of RAP,RAP-R(RAP after reduction),RAP-P-H,RAP-P-L,and RAP-P-L-NH.RAP,after partially hydrolysis followed by dialysis,gave two parts:RAP-P-H(the part in the dialysis bag)and RAP-P-L(the part outside of the dialysis bag).RAP-P-L-NH meant direct examination on the monosac-charides in RAP-P-L before complete hydrolysis.The results were obtained ona Shimadzu GC/MS-QP2010series coupled with a DB-5ms capillary column(0.25m×0.25m×30m).Samples Mw(kDa)Monosaccharide composition(molar,%)Rha Ara Glc GalRAP13340.03(1.8) 1.00(60.2)0.27(16.3)0.36(21.7) RAP-R n.d.0.01(0.6) 1.00(55.6)0.13(7.2)0.66(36.7) RAP-P-H12150.28(5.4) 1.00(19.2) 1.84(35.3) 2.00(38.4) RAP-P-L n.d.n.d. 1.00(89.3)0.10(8.9)0.02(1.8) RAP-P-L-NH n.d.n.d. 1.00(100.0)n.d.n.d.n.d.not determined.3.3.Methylation analysisRAP and RAP-R were methylated and analyzed by GC–MS in order to elucidate the linkages(Table2).Compared with GalA’s content given in monosaccharide composition analysis,the carboxyl-reduced RAP-R showed a significant increase of1,4-linked Gal p,suggesting the GalA in RAP was1,4-linked.Similarly,it could be suggested that RAP was mainly composed of T-linked Ara f,1,5-linked Ara f,1,4-linked Glc p,1,4-linked GalA p,1,3-linked Glc p and 1,3,6-linked Gal p.The terminals consisted of Ara f(20.6%),Glc p (2.0%)and Gal p(5.2%),indicating RAP was significantly branched and the side chains were terminated by the Ara residues.The ratio of T-,1,5-and1,3,5-linked Ara f(50.9:41.7:7.4)sug-gested that the Ara side chains contained a central core of1,5-linked Ara f residues.The high proportion of T-linked Ara f residues sug-gested that some terminal Ara residues existed in the Ara side chains,and others were attached to the highly branched Gal side chains or connected to the back bone directly(Ros,Schols,& Voragen,1996;Sun,Cui,Tang,&Gu,2010).The proportion of terminal,1,4-,1,3-,1,6-,1,2,4-,1,4,6-and 1,3,6-linked Gal p was9.3:8.7:16.1:8.1:5.0:11.1:41.6.The low pro-portion of terminal residues of Gal(9.3%)indicated that a part of the Gal side chains were terminated by the Ara residues.The Rha residues were exclusively1,2,4-linked.Glc residues were mainly terminal,1,4-linked units,with a small amount of1,3,4-linkedTable2GC–MS analysis for methylation of RAP,RAP-R and RAP-P-H on a DB-5ms capillary column(0.25m×0.25m×30m).PMAA a Molar ratios b Linkages cRAP RAP-R RAP-P-H2,3,5-Me3-Ara13.420.6 4.2T-2,3-Me2-Ara10.919.89.01,5-2-Me-Ara 2.0 4.3–1,3,5-3-Me-Rha 3.9 5.8 3.91,2,4-2,3,4,6-Me4-Glc 4.4 2.0 4.2T-2,3,6-Me3-Glc24.315.330.11,4-2,6-Me2-Glc 1.9 1.7 3.91,3,4-2,3,4,6-Me4-Gal 3.6 5.27.5T-2,3,6-Me3-Gal 3.414.4 3.31,4-2,4,6-Me3-Gal 6.3 2.014.21,3-2,3,4-Me3-Gal 3.2 1.8 6.91,6-3,6-Me2-Gal 1.90.8–1,2,4-2,3-Me2-Gal 4.4 2.1 5.11,4,6-2,4-Me2-Gal16.3 4.17.51,3,6-–,not determined.a The sugar type was confirmed both with the literature and mass spectrum anal-ysis.b Molar ratios were given as percentage of total ion count(TIC).c The pyranosyl or furanosyl forms of glycosyl residues was confirmed with13C NMR.670J.-Y.Yin et al./Carbohydrate Polymers87 (2012) 667–675Fig.1.GPC chromatogram of RAP on an Ultrahydrogel TM1000column(7.8mm×300mm),mobile phase:water,at aflow rate of0.3mL/min,the ELS Detector conditions were:drift tube temperature(75◦C),nebulizer temperature(48◦C),gain(300◦C),gas pressure(45Psi).Fig.2.The IR spectra of RAP(A)and RAP-P-H(B,partially hydrolyzed RAP),recorded in KBr tablet at the absorbance mode from4000to400cm−1(mid infrared region)at a resolution of4cm−1.J.-Y.Yin et al./Carbohydrate Polymers87 (2012) 667–675671Fig.3.The1H NMR(600.1MHz)spectrum of RAP that was measured in a5-mm NMR tube with0.5mL of99.9%D2O.(A)At27◦C;(B)at50◦C.Fig.4.The13C NMR(151.0MHz)spectra of RAP(A)and RAP-P-H(B,partially hydrolyzed RAP)that were measured in a5-mm NMR tube with0.5mL of99.9%D2O.672J.-Y.Yin et al./Carbohydrate Polymers 87 (2012) 667–675Fig.5.SEM images of RAP at 1000×(A)and 3000×(B).The molecular morphology of RAP was first coated with a thin layer of gold,then observed using SEM at an accelerating voltage of 30kV.units.RAP contained two types of intra-chain linkages for galac-tose,a 1,4-linked that is common in type I arabinogalactan,and a 1,3,6-linked in type II arabinogalactan,suggesting that RAP contain different types of Gal branches.3.4.Partial acid analysisPartial degradation of polysaccharide by acid hydrolysis is based on the fact that some glycosidic linkages are tolerable to acid.To determine more structural features,RAP (50.5mg)was partially hydrolyzed with 0.1M TFA to give two parts,RAP-P-H (in the dialysis bag)and RAP-P-L (outside of the dialysis bag).Direct exam-ination on the monosaccharides in RAP-P-L found only Ara,while after complete hydrolysis it gave a small amount of Glc (9.0%)and Gal (2.1%)in addition to Ara (88.8%)(Table 1).It was suggested that RAP probably contained terminal residues of Ara in the branch areas.There was no GalA found in RAP-P-L in HPLC examination (Honda et al.,1989),which confirmed that GalA was located intheFig.6.AFM image of RAP.RAP was dissolved in distilled water at the concentration of 5g/mL.5L of solution was dropped onto freshly cleaved mica and allowed to stand in air before imaging.backbone of RAP.These results suggested that GalA and Rha existed in the backbone and the neutral sugars were located in the side chains.ESI-MS of RAP-P-L presented sodium cationized pseu-domolecular ions at m /z 1159.9[Ara 6(Glc/Gal)2+Na]+,997.3[Ara 6(Glc/Gal)+Na]+,702.0[Ara 5+Na]+,569.1[Ara 4+Na]+,407.1[Ara 3+Na]+and 305.1[Ara 2+Na]+.RAP-P-L seemed a mixture of monosaccharide (terminal Ara residues)and oligosaccharide (containing [Ara-Ara]linkages).The degraded polysaccharide RAP-P-H (30mg)was mainly com-posed of Gal and Glc,with small amounts of Rha and Ara (Table 1).Its average molecular weight was 1215kDa.The methylation analy-sis (Table 2)showed that the removal of most Ara f residues resulted in an increase of the ratio of 1,6-linked Gal p and significant increase for 1,3-linked Gal p .Therefore it could be deduced that Ara residues were attached to 1,6-linked and mainly 1,3-linked Gal residues.RAP-P-H gave no 1,3,5-linked Ara f ,suggesting that 1,3,5-linked Ara f should be in the branch.A great amount of 1,4-linked Glc p residues still detected in RAP-P-H indicated that 1,4-linked Glc p residues were located in the backbone of RAP.3.5.FT-IR spectra analysisThe IR spectrum of RAP (Fig.2A)showed a strong band at 3404cm −1which was attributed to the hydroxyl stretching vibra-tion of the polysaccharide.The band at 2935cm −1was due to C–H stretching vibration.Bands at 1743and 1618cm −1indicated the ester carbonyl (COOR)groups and carboxylated ion groups (COO −)(Gnanasambandam &Proctor,2000).The FT-IR spectrum of RAP showed a strong absorbance at 1021,1100and 1142cm −1attributed to the stretching vibrations of ␣-pyranose ring of the glucosyl residue.Moreover,the characteristic absorptions at 830and 916cm −1indicated that both ␣-and -configurations existed.These observations confirmed that the RAP was a polysaccharide containing uronic acid.The IR spectrum of RAP-P-H (Fig.2B)showed the same charac-teristic absorption with RAP which indicated RAP-P-H retained the backbone of RAP.3.6.NMR analysisSignals in the 1H and 13C NMR spectra of RAP were assigned as much as possible,according to monosaccharide compositions analysis,methylation results and literature values (Bock,Pedersen,&Pedersen,1984;Chandra,Ghosh,Ojha,&Islam,2009;Polle,J.-Y.Yin et al./Carbohydrate Polymers87 (2012) 667–675673Fig.7.Cytokines production(GM-CSF,IFN-␥,IL-1,IL-2,IL-4,IL-10IL-12and TNF-␣)of human blood mononuclear cells(PBMC)with the addition of RAP or LPS from2to 10,000ng/mL.Each bar represents the mean±SEM of duplicates(n=7).Ovodova,Shashkov,&Ovodov,2002;Sun et al.,2010;Xu,Dong, Qiu,Cong,&Ding,2010).The1H NMR spectrum(Fig.3A)showed signals in the anomeric region.Due to the existence of H2O in the sample or HDO from D2O,there was large signal atı4.815ppm which disturbed the analysis of RAP.Therefore,another1H NMR spectrum was obtained at50◦C(Fig.3B).From methylation analysis,1,4-linked Glc p was the main resides in RAP.So the signal atı5.096ppm was assigned to␣-1,4-linked Glc p.The signal atı 5.254ppm was assigned to␣-1,5-linked Ara f,and the signal atı5.162ppm was originated from␣-1,3,5-linked Ara f.The signal atı4.968ppm was assigned to␣-1,4-linked GalA p6Me,which meant some of1,4-linked GalA p was present as methyl ester.The signal atı4.922could be assigned to␣-1,4-linked GalA p.The signals atı4.693and4.653ppm were assigned to-1,3,6-linked Gal p.The signal atı4.469ppm was assigned to-1,3-linked Gal p and corresponded with-1,3-linked Gal p anomeric carbon resonance atı104.43ppm in the HSQC.The proton signals nearbyı2.083,2.131and2.186ppm could be assigned from the–CH3of the O-acetyl groups.It suggested that RAP contained kinds of O-acetyl groups at the different positions of the sugar residues or different chemical environments.Signal atı1.260ppm was identified to be H-6from methyl group of the Rha residues.The overlapped signals in the range ofı3.355–4.410ppm were assigned to protons H-2to H-5(or H-6)of the glycosidic ring.The anomeric signals in the13C NMR spectrum of RAP (Fig.4A)were assigned partly according to correlations in the HSQC spectrum.The signal atı108.66ppm correlated to H-1 (ı108.66/5.096ppm)of T-Ara f.The signal atı110.48ppm cou-pled to H-1(ı110.48/5.254ppm)of1,5-linked Ara f.The signal atı108.13ppm corresponded to1,3,5-linked Ara f,which was confirmed by its absence in the13C NMR spectrum of RAP-P-H (Fig.4B).The low-field chemical shifts indicated the Ara residues were in furnanose form and adopted␣-anomeric configuration(Xu et al.,2010).Methylation analysis results showed that1,3-linked674J.-Y.Yin et al./Carbohydrate Polymers87 (2012) 667–675Gal p residues increased significantly after partial acid hydrolysis of pared with the13C NMR of RAP,signal atı104.43ppm became much stronger in RAP-P-H.So the signal atı104.43ppm (ı104.43/4.469ppm from HSQC)was assigned to1,3-linked Gal p. The signal atı101.37ppm was assigned to C-1of1,4-linked GalA p. The signals atı101.60and100.18ppm were assigned to C-1 of1,3,6-linked Gal p and␣-1,4-linked GalA p6Me.And the signal atı100.61ppm was assigned to C-1of1,4-linked Glc p.The sig-nal atı62.36ppm was assigned to C-5of a terminal Ara,while the stronger signal atı61.68ppm was attributed to the C-6of 1,4-linked Glc p.The signal atı18.06ppm could be assigned to the methyl carbon of Rha.The signal atı54.15ppm could be assigned to methyl ester groups of RAP.The presence of methyl esterified GalA p was also supported by the signals atı54.15/3.814ppm in HSQC spectrum (Bushneva,Ovodova,Shashkov,&Ovodov,2002).In the lowfield, typical signals for the C-6carboxyl group of GalA were observed at ı176.33and172.06ppm,which confirmed the presence of free and esterified carboxyl groups of GalA.RAP and RAP-R after hydrolysis were acetylated,and no methylated monosaccharide was detected by GC–MS(Samuelsen et al.,1999).It was confirmed that the1,4-linked GalAp was present as1,4-linked GalAp6Me.3.7.Molecular morphology of RAPIts molecular morphology was further investigated by scanning electron microscopy(SEM)and atomic force microscopy(AFM).The SEM micrograph of RAP was shown in Fig.5.RAP appeared as loose flaky and curly aggregation.The observed irregular microstructure demonstrated that RAP was a type of amorphous solid.The molecular morphology of RAP was further investigated by single molecular AFM.The topographical image was shown in Fig.6. The results showed that there were many spherical lumps within the height of3–70nm while the height of a single polysaccharide chain is generally0.1–1nm,which suggested molecular aggrega-tion happened somehow.There might be a repulsive force between the polysaccharide and the mica causing aggregation(Chen et al., 2009)because both RAP and the mica a type of aluminum sili-cate were negative.The side chains might be another reason for the aggregation(Sletmoen,Maurstad,Sikorski,Paulsen,&Stokke, 2003).3.8.Immunomodulatory activities on human peripheral blood mononuclear cells(PBMC)RAP has been investigated for its in vitro effect on the cytokine profile(GM-CSF,IFN-␥,IL-1,IL-2,IL-4,IL-10,IL-12and TNF-␣) of unstimulated human PBMC compared with LPS.No significant productions of cytokines were detected in drug free negative con-trol.When RAP was added to RPMI for24h incubations,potent stimulatory effects on the production of two pro-inflammatory cytokines IL-1and TNF-␣from PBMC were observed from200to 10,000ng/mL(Fig.7).These cytokines are important in mediating the immune response against bacterial infections.Dose dependent stimulation of IL-10,IL-12and GM-CSF productions from PBMC were also observed with RAP addition but the stimulatory activ-ities was not weaker than LPS.The source of these5cytokines is mainly from monocytes and these results suggested that RAP is an activator of monocytes and further studies are required to inves-tigate its mechanism of action such as the involvement of toll like receptors.For T cell producing cytokines(IL-2,IL-4and IFN-␥),RAP did not produce any significant effects on PBMC(Fig.7).4.ConclusionA water soluble polysaccharide(RAP),with the average molec-ular weight1334kDa,was isolated from Radix Astragali.It was composed of Rha,Ara,Glc,Gal and GalA in a molar ratio of 0.03:1.00:0.27:0.36:0.30.The structure was characterized by par-tial acid hydrolysis,methylation analysis,FT-IR,GC–MS and1H and13C NMR analysis.The backbone of RAP mainly consisted of 1,2,4-linked Rha p,␣-1,4-linked Glc p,␣-1,4-linked GalA p6Me,-1,3,6-linked Gal p.It had branches at O-4of the1,2,4-linked Rha p and O-3or O-6of-1,3,6-linked Gal p.The side chains mainly consisted of␣-T-Ara f and␣-1,5-linked Ara f possessing O-3as branching points,with trace Glc and Gal.The terminal residues were T-linked Ara f,T-linked Glc p and T-linked Gal p.Morphol-ogy analysis using SEM and AFM showed that RAP took random coil feature.This hyperbranched heteroglycan exhibited significant immunomodulating effects by stimulating the cytokines produc-tion mainly from monocytes in a dose dependent manner. AcknowledgementThis research is funded by the Innovation and Technology Fund (ITS/311/09and InP/108/10)of the Government of the Hong Kong Special Administrative Region.ReferencesBedir,E.,Pugh,N.,Calis,I.,Pasco,D.S.,&Khan,I.A.(2000).Immunostimulatory effects of cycloartane-type triterpene glycosides from Astragalus species.Biological& Pharmaceutical Bulletin,23(7),834–837.Blumenkr,N.,&Asboehan,G.(1973).New method for quantitative determination of uronic acids.Analytical Biochemistry,54(2),484–489.Bock,K.,Pedersen,C.,&Pedersen,H.(1984).Carbon-13nuclear magnetic resonance data for oligosaccharides.Advances in Carbohydrate Chemistry and Biochemistry, 42,193–225.Bradford,M.M.(1976).A rapid and sensitive method for the quantitation of protein utilizing the principle of protein-dye binding.Analytical Biochemistry,72(1–2), 248–254.Bushneva,O.A.,Ovodova,R.G.,Shashkov,A.S.,&Ovodov,Y.S.(2002).Structural studies on hairy region of pectic polysaccharide from campion Silene vulgaris (Oberna behen).Carbohydrate Polymers,49(4),471–478.Chan,J.Y.W.,Lam,F.C.,Leung,P.C.,Che,C.T.,&Fung,K.P.(2009).Antihyper-glycemic and antioxidative effects of a herbal formulation of Radix Astragali Radix Codonopsis and Cortex Lycii in a mouse model of type2diabetes mellitus.Phytotherapy Research,23(5),658–665.Chandra,K.,Ghosh,K.,Ojha,A.K.,&Islam,S.S.(2009).Chemical analysis of a polysaccharide of unripe(green)tomato(Lycopersicon esculentum).Carbohy-drate Research,344(16),2188–2194.Chen,Y.,Xie,M.Y.,Nie,S.P.,Li,C.,&Wang,Y.X.(2008).Purification,composition analysis and antioxidant activity of a polysaccharide from the fruiting bodies of Ganoderma atrum.Food Chemistry,107(1),231–241.Chen,H.X.,Wang,Z.S.,Qu,Z.S.,Fu,L.L.,Dong,P.,&Zhang,X.(2009).Physicochem-ical characterization and antioxidant activity of a polysaccharide isolated from oolong tea.European Food Research and Technology,229(4),629–635.Choi,S.I.,Heo,T.R.,Min,B.H.,Cui,J.H.,Choi,B.H.,&Park,S.R.(2007).Allevi-ation of osteoarthritis by calycosin-7-O-beta-d-glucopyranoside(CG)isolated from Astragali Radix(AR)in rabbit osteoarthritis(OA)model.Osteoarthritis and Cartilage,15(9),1086–1092.Chu,C.,Qi,L.W.,Li,B.,Gao,W.,&Li,P.(2010).Radix Astragali(Astragalus):Latest advancements and trends in chemistry,analysis,pharmacology and pharma-cokinetics.Current Organic Chemistry,14(16),1792–1807.Ciucanu,I.,&Kerek,F.(1984).A simple and rapid method for the permethylation of carbohydrates.Carbohydrate Research,131(2),209–217.Dubois,M.,Gilles,K.A.,Hamilton,J.K.,Rebers,P.A.,&Smith,F.(1956).Colorimetric method for determination of sugars and related substances.Analytical Chemistry, 28(3),350–356.Fang,J.N.,&Wagner,H.(1988).Chemical structure of a glucan from Astragalus mongholicus.Acta Chimica Sinica,46(11),1101–1104.Gnanasambandam,R.,&Proctor,A.(2000).Determination of pectin degree of ester-ification by diffuse reflectance Fourier transform infrared spectroscopy.Food Chemistry,68(3),327–332.Guo,Q.,Cui,S.W.,Wang,Q.,&Christopher Young,J.(2008).Fractionation and physic-ochemical characterization of psyllium gum.Carbohydrate Polymers,73(1), 35–43.Honda,S.,Akao,E.,Suzuki,S.,Okuda,M.,Kakehi,K.,&Nakamura,J.(1989).High-performance liquid chromatography of reducing carbohydrates as strongly ultraviolet-absorbing and electrochemically sensitive1-phenyl-3-methyl5-pyrazolone derivatives.Analytical Biochemistry,180(2),351–357.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Conformation transition and molecular mobility of isolated poly(ethylene oxide)chains confined in urea nanochannelsHai-Mu Ye a ,Min Peng b ,Jun Xu a ,*,Bao-Hua Guo a ,Qun Chen b ,Tian-Liang Yun c ,d ,Hui Ma c ,daInstitute of Polymer Science &Engineering,Department of Chemical Engineering,Tsinghua University,Beijing 100084,ChinabPhysics Department and Shanghai Key Laboratory for Functional Magnetic Resonance Imaging,East China Normal University,Shanghai 200062,China cDepartment of Physics,Tsinghua University,Beijing 100084,China dGraduate School at Shenzhen,Tsinghua University,Shenzhen 518055,ChinaReceived 6July 2007;received in revised form 17October 2007;accepted 23October 2007Available online 26October 2007AbstractInclusion compounds formed from host small molecules and guest polymers have provided a novel platform to study the behavior of isolated polymer chains confined in nanochannels.In this article,the PEO chain conformation in the metastable poly(ethylene oxide)(PEO)e urea in-clusion compound (IC)and its transition was characterized via a combination of different analytical methods.Based on the FTIR and Raman spectroscopy results,PEO chains in the metastable tetragonal IC are tentatively assigned to the tgg 0conformation.The structural changes of the metastable tetragonal IC to the stable trigonal form were observed via in situ FTIR and ex situ WAXD.The transformation is a kinetic solid e solid process and can even occur at room temperature.The activation energy of about 222kJ/mol indicates that the transition occurred via cooperative disruption of several hydrogen bonds.Measurement of the laboratory frame spin-lattice relaxation time T 1(13C)shows that molecular motions of the nanoconfined PEO chains are more intensive than the neat crystalline PEO but weaker than those of the neat amor-phous PEO.Second harmonic generation microscopy demonstrates that the trigonal IC exhibits stronger nonlinear optical activity than the tetragonal IC.The intermolecular hydrogen bonding is attributed to the driving force for the transformation of the metastable tetragonal IC into the stable trigonal form.Ó2007Elsevier Ltd.All rights reserved.Keywords:Inclusion compound;Chain conformation;13C spin-lattice relaxation time1.IntroductionMore attention has been paid on the nanoconfined polymer chains because they show distinct different conformations from the bulk polymers.It will be of particular interest when each strand of polymer chains is separately confined in the nanochannels formed by another component.Extensive studies [1e 5]have focused on reeling of polymers into the preformed nanotubes.However,since the process leads to dramatic decrease of the entropy of the polymers,specialinteraction of the polymer chains with the confining environ-ment is necessary to obtain negative D G of the system.Due to the low diffusion coefficient of macromolecules into the nanochannels,the load capacity is usually unsatisfying [6].Furthermore,it is quite a challenge to obtain nanochannels with narrow size distribution.On the contrary,the crystalline inclusion compounds (ICs)[1,7e 10]formed from spontane-ous assembly of polymers and small molecules provide a new method for observing the behaviors of isolated nanocon-fined polymer chains.The ICs can be obtained in sufficient amount so that the common analytical methods are feasible to characterize the material structures.Various ICs of poly-mers and small molecules,such as urea [9e 17],perhydrotri-phene [1,18]and cyclodextrin [1,2,4],have been reported,in*Corresponding author.Tel./fax:þ861062784550.E-mail address:jun-xu@ (J.Xu).0032-3861/$-see front matter Ó2007Elsevier Ltd.All rights reserved.doi:10.1016/j.polymer.2007.10.033Available online at Polymer 48(2007)7364e7373/locate/polymerwhich the included polymer chains are confined by the nano-channels composed of the small molecules,or the host clath-rates.In the polymer e urea inclusion compounds,the polymer chains are extended and separated from neighboring chains by the channels of about5.5A˚diameter[1,19].Among them,the PEO e urea IC has attracted much interest due to the following reasons:first,there are at least two types of crystal modifications;second,melt crystallization is allowed because the melting temperature is lower than the degradation temper-ature;third,hydrogen bonding is a key factor affecting the crystallization behavior.Up to now,three crystalline modifications have been ob-served in PEO e urea ICs,which depend on the crystallization condition.The IC formed from solution took a trigonal crystal structure[13,20],in which PEO segments adopted an approx-imate41helix conformation;while recrystallization from melt produced a hexagonal form[13].The ethylene oxide oligomer (PEG)e urea inclusion compounds were found to crystallize in two crystalline modifications,tetragonal and hexagonal form. The tetragonal form contained eight molecules of urea and eight ethylene oxide units in a unit cell,which transformed into the trigonal form on heating[15].Bogdanov et al. [14,21]studied both the solid and molten states of PEO e urea IC via infrared spectroscopy and observed the transfor-mation of the metastable IC into the stable form when heated to85e90 C;however,the crystalline structure and the chain conformation in the metastable form have not been assigned yet.Solid state13C NMR has been applied to determine the mobility of polymer chains in the trigonal PEO e urea IC. The measured spin-lattice relaxation time showed that the in-cluded polymer chains demonstrated higher mobility than the bulk crystalline polymer chains[1,13].Though much work has been carried out on PEO e urea IC, however,there are still some items unsolved,e.g.the PEO conformation,the chain mobility in the metastable crystalline modification and the details of the transition of the crystal modification have not yet been clarified.In addition,urea has been found to show nonlinear optical(NLO)behavior; nonetheless,the NLO behavior of the polymer e urea complex has not been reported so far.In the present work,the crystalline structure,PEO confor-mation,kinetics of the transition process and the PEO mobility in the metastable tetragonal ICs are clarified via a combination of different methods,such as polarized optical microscopy (POM),differential scanning calorimetry(DSC),Fourier trans-form infrared spectroscopy(FTIR),Raman spectroscopy,wide angle X-ray diffraction(W AXD)and solid state13C NMR.Fur-thermore,second harmonic generation(SHG)microscopy was introduced to characterize the nonlinear optical property of the different crystal modifications of the ICs for thefirst time. 2.Experimental part2.1.Sample preparationPEO with Mw of about1Â106was obtained from Shang-hai Lianshen Chemical Company.The solution-grown PEO e urea IC crystals were obtained from the dilute(0.5%,w/v)wa-ter solution of PEO and urea using a freezing drier after the solution had been frozen in aÀ20 C refrigerator.There were no water molecules in the ICs,since the ICs prepared from freeze drying showed the same IR spectra as the samples cocrystallized from the supersaturated methanol solution.2.2.POMThe inclusion compound was melted between two clean glass slides at160 C and held for2min,then transferred quickly to a thermal stage preset at afixed temperature for iso-thermal crystallization.After impingement of the spherulites and no observable changes occurred,the digital images of the spherulites were captured with a computer controlled charge coupled detector(Tota,Japan).To obtain qualitative in-formation of birefringence,afirst order tint plate(530nm) was inserted into the illumination path.2.3.DSCDSC-60calorimeter(Shimadzu,Japan)was employed in the calorimetric analysis of pure PEO,urea and PEO e urea IC.Sample about3mg was held in aluminum seal during each process at a heating rate of10 C/min and an indium standard was used for calibration.The endothermic peak tem-perature was taken as melting point.2.4.X-ray diffractionWide angle X-ray diffractions of the disk-shaped samples of about5mm in diameter and0.5mm in thickness were re-corded at ambient conditions on a BRUKER D8Advance in-strument using Ni-filtered Cu K a radiation.The supplied power was3kW.The scanning was carried out with2q from2 to50 with a step of0.02 ,and the diffraction peak positions of the sample were calibrated from the pattern of aluminum.2.5.FTIRThe PEO e urea ICfilm was sandwiched between KBr win-dows.FTIR spectra were recorded on a Nicolet-560IR spec-trometer by signal averaging over32scans at a resolution of 4cmÀ1in the wavenumber range of4000e400cmÀ1.To re-veal the details of transformation of the crystals,in situ FTIR study was carried out.The thinfilm sandwiched between KBr windows was placed in a manually controlled heater.The tetragonal PEO e urea ICs were kept at afixed temperature for a long period of time and the FTIR spectrum was recorded for every2or3min.2.6.Raman spectroscopyA Renishaw RM-2000micro-Raman spectrometer was used to obtain the Raman spectra of the samples at the excita-tion wavelength of633nm.The spectrometer operates in1807365H.-M.Ye et al./Polymer48(2007)7364e7373backscattering geometry and utilizes a grating of1800lines/mm.The resolution is1cmÀ1.A50Âobjective lens with a nu-merical aperture of0.5is used to collect backscattering lightand,accordingly,the radius of laser spot is0.65m m.TheRaman spectrum was obtained via six accumulations of thebackscattering light,each lasting for30s.The laser powerirradiated on the sample is4.7mW.2.7.Solid state13C NMRHigh-resolution solid state13C NMR experiments were per-formed on a Bruker DSX-300spectrometer operating at75.47MHz at room temperature.13C spectra were all acquiredby employing the combination of cross-polarization(CP),magic-angle spinning(MAS)and high-power dipolar decou-pling(DD)techniques.The acquisition parameters were asfollows:MAS rate,5kHz;recycle delay,5s;contact timefor CP,0.2ms;1H decouplingfield strength,62.5kHz;num-ber of accumulations,1024.The13C chemical shifts were de-termined from the carbonyl carbon signal(176.03ppm)ofglycine relative to tetramethylsilane(TMS).13C spin-latticerelaxation time T1was determined by a CP based inversion-recovery pulse sequence.2.8.Second harmonic generation microscopyA two-photonfluorescence microscope(BioRadMRC1024MP)was used for SHG imaging.The light sourcewas a Ti e Sapphire femto second laser system(MillenniumV pumped Tsunami Lite,Spectra Physics),which providedw120fs polarized short pulses at80MHz rep rate and 810nm wavelength.Optics for the transmission imagingchannel was replaced with an extra detection channel for for-ward propagating SHG.A10nm pass-bandfilter centered at405nm was used tofilter through the narrow band SHG,anda high OD blockingfilter was used to reject the two-photonfluorescence and,more importantly,the810nm fundamentallaser light.3.Results and discussion3.1.Crystalline structure of the inclusion compoundsAfter melting,the PEO e urea inclusion compound(IC)wasisothermally crystallized at different temperatures rangingfrom room temperature to110 C.In the crystallizedfilm,the PEO e urea IC can exist as two types of crystals:whencrystallized at the temperatures higher than70 C,only thestable form with positive spherulites were observed(Fig.1a);while crystallized at temperatures lower than70 C,the metastable form appeared as small crystal grainsor negative spherulites besides the stable form.When themelt was quenched to liquid nitrogen temperature,the meta-stable form was predominantly observed(Fig.1b).By adjust-ing the crystallization condition,the two types of crystals withoccupation area larger than5Â5mm2could be separatelyobtained,which were used for further DSC,WAXD,FTIR,Raman and solid state13C NMR studies.Real-time POM was carried out during heating to reveal the melting process of the different crystalline modifications.While heating to 65e90 C,the metastable form transformed into another form,whichfinally melted in the range of136e140 C.The stable form melted at about140 C as well.DSC curves of the two types of crystals were recorded dur-ing heating at a rate of10 C/min.Two endothermic peaks at ca.71 C and141 C were observed for the metastable form of the PEO e urea IC(Fig.2,curve a),while only one endotherm at141 C appeared for the stable form(Fig.2,curve b).To re-veal the origin of the endotherm at71 C,annealing of the metastable IC samples were carried out at60 C for0,1, and3h,respectively.Fig.3shows the DSC results of the an-nealed ICs.The endothermic peak at around71 C decreased with annealing time and almost disappeared after annealing for3h,which confirms that the endothermic peak at71 C corresponds to the metastable form.Both POM observation and DSC study indicate that the metastable form transforms into the stable form on heating. The transition has been reported by Bogdanov et al.’s[14] and Suehiro and Nagano’s studies[15],though different tran-sition temperature was observed,which may be due to the dif-ferent preparation method of the PEO e urea ICs.In the previous reports[14,15]the PEO e urea ICs were all produced by cocrystallization from the supersaturated methanol solu-tion;while in this article the ICs were produced from freeze drying of the water solution.To reveal the microscopic crystalline structure of the two types of PEO e urea ICs,WAXD study was performed,with the results shown in Fig.4.The diffractograms of the metasta-ble form(curve a)and the stable form(curve b)are quite dif-ferent.The latter is indexed into a trigonal unit cell with the crystal lattice parameters a¼b¼10.51A˚and c¼9.28A˚, which are close to the result of Chenite and Brisse’s work [20],in which a¼b¼10.52A˚and c¼9.26A˚(measured at room temperature).The diffractions of the metastable form are indexed into a tetragonal unit cell with the lattice parameters as follows: a¼b¼9.30A˚,c¼19.51A˚.This is different from the previ-ous report[13]that the high-Mw PEO e urea IC melt crystal-lized at room temperature produced hexagonal modification. Nevertheless,the unit cell parameters of the tetragonal modi-fication of the high-Mw PEO e urea IC agree with the results of Suehiro and Nagano’s[15]and Tonelli et al.’s work[13]on low-Mw(Mw¼400)PEG e U IC.The unit cell dimension of tetragonal PEO e urea IC is much larger than that of bulk urea,which is also tetragonal with a¼b¼5.58A˚.The differ-ence is due to the insertion of PEO molecules in the clathrates. From Fig.4,it is observed that the sample is not100%phase pure.The tetragonal IC sample contained trace amount of tri-gonal IC and vice versa.Our interpretation is that crystalliza-tion of the IC at around70 C was very fast,so that the quenched sample still contained trace amount of trigonal IC, which was formed at high temperature.When the IC melt was isothermally crystallized at high temperatures,crystalliza-tion was not complete,after cooled to room temperature,7366H.-M.Ye et al./Polymer48(2007)7364e7373a small amount of amorphous melt further crystallized to form tetragonal IC.Fig.5shows the WAXD diffractograms of PEO e urea ICs after annealing for different periods of time.The curve(a) belongs to the as-prepared metastable tetragonal IC,and the curves(b)e(d)indicate the diffractograms of the same sample after annealing at60 C for1h,3h,and after further annealed at70 C for12h,paring the four diffracto-grams,we canfind that the intensities of the peaks at21.16 and22.36 due to the(202)and(114)planes of the tetragonal form gradually decrease,and the intensity of the peak at 21.74 due to the(201)plane of the trigonal form increases with the thermal treatment(see Fig.5(b)e(d)).Fig.5further confirms that the crystals of PEO e urea IC transit from the tetragonal into the trigonal form during annealing.3.2.PEO conformation in the inclusion compoundsFourier transform infrared spectroscopy(FTIR)and Raman spectroscopy are effective tools to reveal the conformation of polymer chains.Fig.6shows the FTIR spectra of PEO e urea IC melt,the tetragonal and the trigonal crystalline forms. The latter two types of ICs demonstrate quite different IR spectra,suggesting different PEO chain conformations.PEO chains in the trigonal modification adopted41helical conformation(tgt)4,as reported by Chenite and Brisse[20]. The bands at1360,1279,1248,948and843cmÀ1bands are assigned to CH2wagging,CH2twisting,CH2rocking,CH2 rocking and CH2e O e CH2deformation of the gauche confor-mation,respectively.The bands at1342and964cmÀ1are assigned to CH2wagging,CH2twisting and CH2rocking of the trans conformation,respectively[22,23].The IR bands of the PEO chains in the tetragonal IC are quite different from those in the trigonal IC.New bands at 1350,1307,1242,931and848cmÀ1were observed in the te-tragonal IC.FTIR bands in the range of1314e1325cmÀ1, though much weaker than that reported here,were previously observed in PEO inserted into the interlamellar space of inter-calated CdPS3[24],homoionic NH4þ-smectites[25]and lay-ered double hydroxides[26],which were assigned tothe Fig.2.DSC curves of PEO e urea IC:(a)the metastable form and(b)the stableform.Fig.3.DSC curves of the PEO e urea IC crystals obtained via annealing of theoriginal metastable form at60 C for(a)0h;(b)1h,and(c)3h.Fig.1.Polarized optical micrographs of the stable form(a)and the metastable form(b)of the PEO e urea inclusion compound.7367H.-M.Ye et al./Polymer48(2007)7364e7373d (CH 2)vibration mode of trans O e CH 2e CH 2e O conforma-tion.It was also reported that in the stretched PEO film the chains adopted ttt conformation [27].To see whether the 1307cm À1band arised from trans O e CH 2e CH 2e O confor-mation,we recorded the FTIR spectrum of a uniaxially stretched PEO film;however,no bands were observed in the range of 1300e 1330cm À1(data not shown here).Conse-quently,it is not plausible to assign the band around 1307cm À1to the trans zigzag or ttt conformation.To further assign the chain conformation of PEO in the ICs,Raman spectroscopy of the two types of ICs was further inves-tigated,and the result is presented in Fig.7.The strongestband at 1008cm À1belongs to the urea clathrate.The trigonal IC shows Raman bands at 1278,1237,862and 845cm À1,sim-ilar to the neat crystallized PEO.The tetragonal IC demon-strates bands at 1308,1259and 845cm À1.The strong bands in the range of 800e 900cm À1arise from thebackboneFig.4.X-ray diffractograms of PEO e urea IC:(a)the metastable form,and (b)the stableform.Fig.6.Fourier transform infrared spectra in the region from 1700to 800cm À1of the melt IC (a),the stable trigonal IC (b),and the metastable tetragonal IC(c).Fig.5.In situ X-ray diffraction patterns of PEO e urea IC (a)the as-prepared meta-stable tetragonal IC;(b)annealed at 60 C for 1h;(c)annealed at 60 C for 3h;(d)annealed at 60 C for 3h and further annealed at 70 C for 12h.Fig.7.Raman spectroscopy of (a)trigonal PEO e urea IC;(b)tetragonal PEO and (c)crystallized neat PEO.The inset shows the Raman spectroscopy from 950to 750cm À1.7368H.-M.Ye et al./Polymer 48(2007)7364e 7373stretching vibration of PEO and are used for assignment of the chain conformation.Yang et al.reported simulation on Raman spectroscopy of different PEO conformations[28]:‘‘for the backbone stretching mode,the tgttgttgt and tggtggtgg se-quences have a strong simulated band around860cmÀ1,the tgg0tgg0tgg0sequence has one at830cmÀ1,and the ttttttttt and ttgttgttg sequences lack a substantial contributor in the 850cmÀ1region’’.Consequently,we tentatively assign the predominant PEO conformation in the tetragonal PEO e urea IC to tgg0.Shift of the Raman peak may result from the effect of molecular weight and confinement.Yang’s simulation re-sults were obtained from1,2-dimethoxyethane,while in this article the PEO chains are of high molecular weight of about 106confined in the nanochannels.Based on both the IR and Raman spectroscopy,we tentatively suggest that the band at 1307cmÀ1in the PEO complexes correspond to the gauche conformation of O e CH2e CH2e O units rather than the previ-ous assigned all trans conformation[24e26].Furthermore, our assignment agrees with the density functional simulation of vibrations of1,2-dimethoxyethane[29],which shows that tgg0instead of ttt and tgt conformations has vibration at 1312e1301cmÀ1.3.3.Transformation of the metastable tetragonal ICTo get a deeper insight,real-time FTIR was employed to study the transformation process of the metastable tetragonal form and to determine the kinetics at different temperatures. Fig.8shows the FTIR results at60 C.Significant changes can be observed during the transition process.Before the transformation,the PEO chains in the metastable tetragonal IC adopt tgg0conformation,with strong bands at1307, 1242,931and848cmÀ1.When kept at60 C,the tgg0confor-mation of O e CH2e CH2e O gradually converted into the tgt conformation with bands at1277,1248,948and843cmÀ1. Appearance of the peak at1691cmÀ1(Fig.8(c))indicates a transformation of the crystal structure from tetragonal to tri-gonal modification.The reason for this peak’s appearance is the existence of some isolated urea molecules in the channels of the trigonal IC[13].It can be found that the1350cmÀ1 (amorphous)band does not completely disappear after the transition.The appearance of1247cmÀ1band results from the overlap of the broad1242cmÀ1band of amorphous PEO and the narrow1248cmÀ1band of41helix.Fig.9compares thefinal spectrum after transition to the calculatedspectrum Fig.8.The in situ FTIR spectra of PEO e urea IC transformation at60 C.The time interval of two consecutive records is3min.7369H.-M.Ye et al./Polymer48(2007)7364e7373from linear sum of 41helix and the amorphous conformation (using the IR band of the amorphous IC melt).The two spectra match well,which suggests that during the transition the con-fined tgg 0PEO chains in the tetragonal IC gradually change into 41helical and the random amorphous conformation,as schemed in Fig.10.It has been reported that the molar ratio of [urea]/[CH 2CH 2O]is 1.0in tetragonal form while 1.8in tri-gonal form of PEG e U IC and PEO e urea IC [15,20].During the transition,in order to satisfy the higher urea ratio con-sumption,some PEO chains escaped from the urea channels to form the random amorphous fraction.Fig.11shows the conversion of the tetragonal form at 50 C,60 C and 70 C,measured by FTIR (using the relative area change of peak at 1307cm À1).The transition rate de-pends on the annealing temperature.At 70 C,the transition is very fast,and the rate decreases at 60 C and 50 C.What’s more,this transition can even occur very slowly at room tem-perature.The low transition rate at room temperature makes it possible for future characterization of the chain mobility via solid state NMR.The above results confirm that the transfor-mation is a kinetic solid e solid transition process and does not have a defined transition temperature.To determine the kinetics of the transition,the following equation was used:d Ad t n¼ÀkA ð1Þwhere A is the area of the IR band at 1307cm À1,n is the exponent,and k is the rate constant depending on the temper-ature.To obtain n and k ,we integrate Eq.(1)to get a double logarithmic equation,the well-known Avrami equation [30]:log Àln A t ÀA NA 0ÀA N¼log k þn log tð2Þwhere A 0,A t and A N is the area of the IR band at time 0,t and N ,respectively.Experimental data for Eq.(2)at different temperatures are plotted and presented in Fig.12.The calculated results are listed in Table 1.The exponent n is around 1and the rate con-stant k increases sharply with annealing temperature.Arrhe-nius equation is employed to get the activation energy of the solid e solid transition:k T ¼k 0exp ÀERTð3Þlog k T ¼log k 0ÀE 2:303RTð4Þwhere k T is the rate constant at the temperature T and E is the activation energy of transition.Plot of Eq.(4)is presented in Fig.13.The activation energy is calculated to be 222kJ/mol.Assuming hydrogen bonding energy in the tetragonal IC is about 20kJ/mol,the transition occurs with cooperative disruption of at least 10hydrogen ly,the tgg 0PEO chains can only transform into the tgt conformation along with disruption of the surrounding ureachannels.parison of the final spectrum of transition (exp)and the calculated spectrum (simu)from linear sum of 41helix (curve b in Fig.6)and the amor-phous conformation (curve c in Fig.6).Fig.10.The sketch map of the conformation change of PEO chains during the solid e solid transition.0.00.20.40.60.81.0C o n v e r s i o nTime (min)Fig.11.The conversion from the metastable tetragonal to the stable trigonal IC at 50 C (:),60 C (C ),and 70 C (-)measured by FTIR,respectively.7370H.-M.Ye et al./Polymer 48(2007)7364e 73733.4.Mobility of the nanoconfined PEO chainsHigh-resolution solid state 13C CP/MAS/DD (cross-polari-zation,magic-angle spinning,dipolar decoupling)NMR is a powerful technique to determine the mobility of polymer chains.The spin-lattice relaxation times in the rotating (T 1r (1H))and laboratory frames (T 1(13C))have been demonstrated to be sensitive to molecular motions at several tens of kHz and several hundreds of MHz.The CP/MAS 13C NMR spectra of pure PEO (a),the meta-stable PEO e urea IC (b),the stable PEO e urea IC (c),and the transformed product of the metastable IC after annealing at 70 C overnight (d)are shown in Fig.14.A resonance peak at about 163.7ppm in spectrum (b)is assigned to carbon of urea in the tetragonal crystal lattice,which is slightly shifted to 163ppm in spectra (c)and (d).The resonance peak of meth-ylene carbon of PEO appeared at 71.0ppm for neat crystal-lized PEO,70.2ppm for the metastable IC,and 70.0ppm for the stable IC and the transformed product of metastable IC.The bulk PEO spectrum shows a resonance peak contain-ing narrow and broad components,which corresponds to the presence of amorphous and crystalline PEO,respectively.The ‘‘upfield’’shift of PEO line in the PEO e urea IC is similar to that occurred in the PEO e hydroxybenzene ICs [31],result-ing from hydrogen bonding between O of PEO and H of urea.Variation of the chemical shift of PEO reveals that the trigonal IC exhibited stronger hydrogen bonding between PEO and urea than the tetragonal form.The magnified resonance lines of urea in the two types of ICs are presented in Fig.15.‘‘Upfield’’shift of the resonance line of the carbonyl group in-dicates that the stable trigonal form possesses stronger hydro-gen bonding than the metastable tetragonal form,similar to the case of starch/poly(sodium acrylate)[32].Table 2shows 13C T 1for the four samples at room temper-ature,which reflects the local molecular motions at the fre-quency region of several hundreds of MHz [33].It is revealed that PEO in the ICs possessed slower molecular mo-tion than the neat amorphous PEO but faster than the neat crystalline PEO,which agrees with the trend reported by Tonelli et al.[1].For the ICs,the PEO chains in the tetragonal form show depressed local molecular motion than those in the trigonal form,which may be attributed to the different channel size and the different chain conformation as mentioned above.Annealing of the metastable tetragonal IC at 70 C overnight produced the transformed product with T 1(13C)of 0.71s,an intermediate value between that of the trigonal IC (0.91s)and the neat amorphous PEO (0.61s).Consequently,solid state 13C NMR determination further supports the above-2.0-1.5-1.0-0.50.00.51.0l o g [-l n ((A t -A ∞)/(A 0-A ∞))]log(t)Fig.12.Plots of log[Àln((A t ÀA N )/(A 0ÀA N ))]vs.log(t )for transition process.A 0,A N ,and A t are the initial area,final area,and area at time t of peak 1307cm À1,respectively.-2.5-2.0-1.5-1.0-0.50.0l o g (k )1/T (1/K)Fig.13.Plots of log(k )vs.1/T for transition process.k is the transition rate at temperature T .Fig.14.CP/MAS 13C NMR spectra of (a)pure PEO;(b)the metastable tetrag-onal PEO e urea IC;(c)the stable trigonal IC,and (d)the transformed product after annealing of (b)at 70 C overnight.Table 1Values of n and k for the transition kinetics determined from real-time FTIR resultsTemperature ( C)506070n 1.03 1.280.88k0.00470.07530.58437371H.-M.Ye et al./Polymer 48(2007)7364e 7373。