1.3.导数习题

合集下载

高等数学c教材第三版答案

高等数学c教材第三版答案

高等数学c教材第三版答案第一章:函数与极限1. 函数的概念及性质1.1 函数的定义1.2 函数的图像和函数的性质1.3 函数的分类2. 极限与连续2.1 数列的极限2.2 函数的极限2.3 函数的连续性3. 无穷级数3.1 无穷级数的概念3.2 收敛级数与发散级数3.3 常见级数的性质第二章:导数与微分1. 导数与导数的计算1.1 导数的定义1.2 导数的计算方法1.3 导数的几何意义2. 高阶导数与微分2.1 高阶导数的概念2.2 高阶导数的计算2.3 微分的定义与性质3. 函数的应用3.1 驻点、极值与拐点3.2 泰勒展开3.3 曲线的图形与绘制第三章:积分与不定积分1. 积分与不定积分的概念1.1 积分的定义1.2 不定积分的定义和性质1.3 常用初等函数的不定积分2. 定积分与反常积分2.1 定积分的定义和性质2.2 反常积分的概念和收敛性2.3 常见函数的定积分计算3. 微积分基本定理与应用3.1 微积分基本定理的两个部分3.2 平均值定理与洛必达法则3.3 曲线的长度与曲面的面积第四章:微分方程1. 微分方程与基本概念1.1 微分方程的基本概念1.2 微分方程的解与解的存在唯一性1.3 一阶线性微分方程2. 高阶线性常微分方程2.1 高阶线性常微分方程的基本理论 2.2 常系数齐次线性微分方程2.3 变系数线性常微分方程3. 常微分方程的应用3.1 物理问题中的微分方程3.2 生物问题中的微分方程3.3 工程问题中的微分方程总结:本文按照《高等数学C教材第三版》的章节划分,分别对每一章节的知识点进行了论述。

通过对函数与极限、导数与微分、积分与不定积分以及微分方程等内容的讲解,希望读者能够全面理解高等数学C 教材第三版所涉及的知识,并为学习提供参考答案。

高等数学是大学数学的一门重要课程,掌握好这门课的知识对于理工科等相关专业的学生来说至关重要。

希望本文所提供的答案能够帮助读者更好地理解和学习高等数学C教材第三版的内容。

高中数学 导数的运算

高中数学  导数的运算

y =
lim
x0
f
(x x) x
f
(x)
=
lim
x0
4(
x
x) x
4
x
= lim 4 = 4. x0
(2x)=2. (3x)=3. (4x)=4.
y y=4x y=3x
4 y=2x 3 2
o1 x
练习: (课本13, 14页 “探究”)
1. 在同一平面直角坐标系中, 画出函数 y=2x,
y=3x, y=4x 的图象, 并根据导数定义, 求它们的导数.
导数的运算法则(第二课时)
几个常用函数的导数
返回目录
1. 常数函数, 正比例函数, 反比例函数, 幂函数等的导数各是多少?
2. 以上函数的导数与图象、函数性质各 有什么关系?
问题1. 上一课时我们学习了导函数, 你能求出以
下函数的导函数吗? 其几何意义和物理意义如何?
(1) y=c (c为常数);
y=x2y o
(3) y=x2;
(4)
y
=
1 x
;
(5) y = x.
(3) y=x2,
y
x
= = =
lim
x0
lim
x0
lim
x0
y x
= lim x0
f
(x x) x
f
(
(x x)2 x2
x x2 2x(x) (x)2 x2
x
x)
几何意义: 当 x<0 时, 切线的斜率为 负, 且逐渐增大;
4. 若 f(x)=cos x, 则 f (x)= sin x;
5. 若 f(x)=ax, 则 f (x)=ax lna;

高等数学第七版教材答案详解

高等数学第七版教材答案详解

高等数学第七版教材答案详解1. 课后习题答案1.1 第一章:函数与极限1.1.1 习题1解答1.1.2 习题2解答...1.2 第二章:导数与微分1.2.1 习题1解答1.2.2 习题2解答...1.3 第三章:微分中值定理与导数的应用1.3.1 习题1解答1.3.2 习题2解答...2. 课后思考题答案2.1 第一章:函数与极限2.1.1 思考题1解答2.1.2 思考题2解答...2.2 第二章:导数与微分2.2.1 思考题1解答2.2.2 思考题2解答...2.3 第三章:微分中值定理与导数的应用2.3.1 思考题1解答2.3.2 思考题2解答...3. 课后习题详解3.1 第一章:函数与极限3.1.1 习题1详解3.1.2 习题2详解...3.2 第二章:导数与微分3.2.1 习题1详解3.2.2 习题2详解...3.3 第三章:微分中值定理与导数的应用3.3.1 习题1详解3.3.2 习题2详解...在这篇文章中,我将给出《高等数学第七版》教材的习题答案和课后思考题答案的详细解析。

为了方便阅读,我将按章节划分答案,并提供习题和思考题的解答。

如果你在学习过程中遇到了困惑,希望这些答案能够帮助你更好地理解相关的数学概念和解题方法。

首先,我将给出每章节的课后习题答案。

在习题解答中,我将详细解释每个题目的解题思路和步骤,并给出最终答案。

你可以根据自己的需要,选择性地查看想要解答的习题。

接下来是课后思考题答案的解析。

这些思考题往往比较有挑战性,需要一定的思考和推导。

我将为每个思考题提供解答,希望能够帮助你在思考和解决问题时找到正确的方向。

最后,我将给出课后习题的详细解析。

在这一部分中,我将逐题逐题地分析解题思路,并给出详细的步骤和推导过程。

通过仔细研究这些解析,你可以更好地理解每个题目的解法,并且提高自己的解题能力。

总之,在这篇文章中,我将为你提供《高等数学第七版》教材的习题答案和课后思考题答案的详细解析。

人教a版数学【选修2-2】练习:1.3.2函数的极值与导数(含答案)

人教a版数学【选修2-2】练习:1.3.2函数的极值与导数(含答案)

选修2-2 第一章 1.3 1.3.2一、选择题1.已知函数f (x )在点x 0处连续,下列命题中,正确的是( ) A .导数为零的点一定是极值点B .如果在点x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是极小值C .如果在点x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是极大值D .如果在点x 0附近的左侧f ′(x )<0,右侧f ′(x )>0,那么f (x 0)是极大值 [答案] C[解析] 导数为0的点不一定是极值点,例如f (x )=x 3,f ′(x )=3x 2,f ′(0)=0,但x =0不是f (x )的极值点,故A 错;由极值的定义可知C 正确,故应选C.2.(2013·北师大附中高二期中)函数y =14x 4-13x 3的极值点的个数为( )A .0B .1C .2D .3[答案] B[解析] y ′=x 3-x 2=x 2(x -1),由y ′=0得x 1=0,x 2=1. 当x 变化时,y ′、y 的变化情况如下表3.函数y =ax 3+bx 2取得极大值和极小值时的x 的值分别为0和13,则( )A .a -2b =0B .2a -b =0C .2a +b =0D .a +2b =0[答案] D[解析] y ′=3ax 2+2bx 由题设0和13是方程3ax 2+2bx =0的两根,∴a +2b =0.4.若a >0,b >0,且函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值,则ab 的最大值等于( )A .2B .3C .6D .9[答案] D[解析] f ′(x )=12x 2-2ax -2b =0的一根为x =1,即12-2a -2b =0. ∴a +b =6,∴ab ≤(a +b 2)2=9,当且仅当a =b =3时“=”号成立.5.已知实数a 、b 、c 、d 成等比数列,且曲线y =3x -x 3的极大值点坐标为(b ,c ),则ad 等于( )A .2B .1C .-1D .-2[答案] A[解析] ∵a 、b 、c 、d 成等比数列,∴ad =bc , 又(b ,c )为函数y =3x -x 3的极大值点, ∴c =3b -b 3,且0=3-3b 2,∴⎩⎪⎨⎪⎧ b =1,c =2,或⎩⎪⎨⎪⎧b =-1,c =-2.∴ad =2. 6.(2013·辽宁实验中学期中)函数f (x )=-x e x (a <b <1),则( )A .f (a )=f (b )B .f (a )<f (b )C .f (a )>f (b )D .f (a ),f (b )的大小关系不能确定[答案] C[解析] f ′(x )=(-x e x )′=(-x )′·e x -(-x )·(e x )′(e x )2=x -1e x. 当x <1时,f ′(x )<0,∴f (x )为减函数, ∵a <b <1,∴f (a )>f (b ). 二、填空题7.(2014·福建安溪一中、养正中学联考)曲线y =x (3ln x +1)在点(1,1)处的切线方程为________.[答案] 4x -y -3=0[解析] y ′|x =1=(3ln x +4)|x =1=4,∴切线方程为y -1=4(x -1),即4x -y -3=0. 8.(2014·河北冀州中学期中)若函数f (x )=x +a sin x 在R 上递增,则实数a 的取值范围为________.[答案] [-1,1][解析] f ′(x )=1+a cos x ,由条件知f ′(x )≥0在R 上恒成立,∴1+a cos x ≥0,a =0时显然成立;a >0时,∵-1a ≤cos x 恒成立,∴-1a ≤-1,∴a ≤1,∴0<a ≤1;a <0时,∵-1a≥cos x 恒成立,∴-1a≥1,∴a ≥-1,即-1≤a <0,综上知-1≤a ≤1.9.设x =1与x =2是函数f (x )=a ln x +bx 2+x 的两个极值点,则常数a =________. [答案] -23[解析] f ′(x )=ax +2bx +1,由题意得⎩⎪⎨⎪⎧a +2b +1=0,a 2+4b +1=0.∴a =-23.三、解答题10.已知f (x )=ax 3+bx 2+cx (a ≠0)在x =±1时取得极值,且f (1)=-1. (1)试求常数a 、b 、c 的值;(2)试判断x =±1时函数取得极小值还是极大值,并说明理由. [解析] (1)由f ′(-1)=f ′(1)=0,得3a +2b +c =0,3a -2b +c =0. 又f (1)=-1,∴a +b +c =-1. ∴a =12,b =0,c =-32.(2)f (x )=12x 3-32x ,∴f ′(x )=32x 2-32=32(x -1)(x +1).当x <-1或x >1时,f ′(x )>0;当-1<x <1时,f ′(x )<0,∴函数f (x )在(-∞,-1)和(1,+∞)上是增函数,在(-1,1)上为减函数.∴当x =-1时,函数取得极大值f (-1)=1;当x =1时,函数取得极小值f (1)=-1. [点评] 若函数f (x )在x 0处取得极值,则一定有f ′(x 0)=0,因此我们可根据极值得到两个方程,再由f (1)=-1得到一个方程,解上述方程组成的方程组可求出参数.一、选择题11.(2014·山东省德州市期中)已知函数f (x )=e x (sin x -cos x ),x ∈(0,2013π),则函数f (x )的极大值之和为( )A .e 2π(1-e 2012π)e 2π-1B .e π(1-e 2012π)1-e 2πC .e π(1-e 1006π)1-e 2πD .e π(1-e 1006π)1-e π[答案] B[解析] f ′(x )=2e x sin x ,令f ′(x )=0得sin x =0,∴x =k π,k ∈Z ,当2k π<x <2k π+π时,f ′(x )>0,f (x )单调递增,当(2k -1)π<x <2k π时,f ′(x )<0,f (x )单调递减,∴当x =(2k +1)π时,f (x )取到极大值,∵x ∈(0,2013π),∴0<(2k +1)π<2013π,∴0≤k <1006,k ∈Z .∴f (x )的极大值之和为S =f (π)+f (3π)+f (5π)+…+f (2011π)=e π+e 3π+e 5π+…+e 2011π=e π[1-(e 2π)1006]1-e 2π=e π(1-e 2012π)1-e 2π,故选B.12.已知函数f (x )=x 3-px 2-qx 的图象与x 轴切于(1,0)点,则f (x )的极大值、极小值分别为( )A .427,0B .0,427C .-427,0D .0,-427[答案] A[解析] f ′(x )=3x 2-2px -q , 由f ′(1)=0,f (1)=0得,⎩⎪⎨⎪⎧ 3-2p -q =0,1-p -q =0,解得⎩⎪⎨⎪⎧p =2,q =-1,∴f (x )=x 3-2x 2+x . 由f ′(x )=3x 2-4x +1=0得x =13或x =1,易得当x =13时f (x )取极大值427.当x =1时f (x )取极小值0.13.(2014·西川中学高二期中)已知f (x )=x 3+ax 2+(a +6)x +1有极大值和极小值,则a 的取值范围是( )A .-1<a <2B .-3<a <6C .a <-3或a >6D .a <-1或a >2[答案] C[解析] f ′(x )=3x 2+2ax +a +6, ∵f (x )有极大值与极小值, ∴f ′(x )=0有两不等实根,∴Δ=4a 2-12(a +6)>0,∴a <-3或a >6. 二、填空题14.已知函数y =x 3+ax 2+bx +27在x =-1处有极大值,在x =3处有极小值,则a =________________,b =________.[答案] -3 -9[解析] y ′=3x 2+2ax +b ,方程y ′=0有根-1及3,由韦达定理应有⎩⎨⎧-1+3=-2a3,-3=b 3.∴⎩⎪⎨⎪⎧a =-3,b =-9.经检验a =-3,b =-9符合题意. 三、解答题15.(2013·新课标Ⅰ文,20)已知函数f (x )=e x (ax +b )-x 2-4x ,曲线y =f (x )在点(0,f (0))处的切线方程为y =4x +4.(1)求a ,b 的值;(2)讨论f (x )的单调性,并求f (x )的极大值. [解析] (1)f ′(x )=e x (ax +a +b )-2x -4. 由已知得f (0)=4,f ′(0)=4,故b =4,a +b =8. 从而a =4,b =4.(2)由(1)知,f (x )=4e x (x +1)-x 2-4x , f ′(x )=4e x (x +2)-2x -4=4(x +2)(e x -12).令f ′(x )=0得,x =-ln2或x =-2.从而当x ∈(-∞,-2)∪(-ln2,+∞)时,f ′(x )>0;当x ∈(-2,-ln2)时,f ′(x )<0. 故f (x )在(-∞,-2),(-ln2,+∞)上单调递增,在(-2,-ln2)上单调递减. 当x =-2时,函数f (x )取得极大值,极大值为f (-2)=4(1-e -2).16.(2014·三峡名校联盟联考)已知函数f (x )=ln x +x 2+ax . (1)当a =-3时,求函数y =f (x )的极值点;(2)当a =-4时,求方程f (x )+x 2=0在(1,+∞)上的根的个数. [解析] (1)f (x )=ln x +x 2-3x ,f ′(x )=1x +2x -3,令f ′(x )=0,则x =1或x =12,由f ′(x )>0得0<x <12,或x >1,∴f (x )在(0,12)和(1,+∞)上单调递增,在(12,1)上单调递减,∴f (x )的极大值点x =12,极小值点x =1.(2)当a =-4时,f (x )+x 2=0,即ln x +2x 2-4x =0, 设g (x )=ln x +2x 2-4x ,则g ′(x )=1x +4x -4=4x 2-4x +1x ≥0,则g (x )在(0,+∞)上单调递增,又g (1)=-2<0,g (2)=ln2>0, 所以g (x )在(1,+∞)上有唯一实数根.17.(2014·温州八校联考)已知函数f (x )=-x 3+ax 2+b (a 、b ∈R ). (1)求函数f (x )的单调递增区间;(2)若对任意a ∈[3,4],函数f (x )在R 上都有三个零点,求实数b 的取值范围. [解析] (1)∵f (x )=-x 3+ax 2+b , ∴f ′(x )=-3x 2+2ax =-3x (x -2a 3).当a =0时,f ′(x )≤0函数f (x )没有单调递增区间; 当a >0时,令f ′(x )>0,得0<x <2a3,函数f (x )的单调递增区间为(0,23a );当a <0时,令f ′(x )>0,得2a3<x <0, 函数f (x )的单调递增区间为(23a,0).(2)由(1)知,a ∈[3,4]时,x 、f ′(x )、f (x )的取值变化情况如下:∴f (x )极小值=f (0)=b ,f (x )极大值=f (2a 3)=4a 327+b ,∵对任意a ∈[3,4],f (x )在R 上都有三个零点, ∴⎩⎪⎨⎪⎧ f (0)<0,f (2a 3)>0,即⎩⎪⎨⎪⎧b <0,4a 327+b >0.得-4a 327<b <0.∵对任意a ∈[3,4],b >-4a 327恒成立,∴b >(-4a 327)max =-4×3327=-4.∴实数b 的取值范围是(-4,0).。

第一章导数及其应用练习题

第一章导数及其应用练习题

第一章导数及其应用1.1变化率与导数1.1.1变化率问题1.1.2导数的概念1.已知函数f(x)=2x2-4的图象上一点(1,-2)及邻近一点(1+Δx,-2+Δy),则ΔyΔx等于().A.4 B.4x C.4+2Δx D.4+2(Δx)22.如果质点M按规律s=3+t2运动,则在一小段时间[2,2.1]中相应的平均速度是().A.4 B.4.1 C.0.41 D.33.如果某物体的运动方程为s=2(1-t2)(s的单位为m,t的单位为s),那么其在1.2 s末的瞬时速度为().A.-4.8 m/s B.-0.88 m/s C.0.88 m/s D.4.8 m/s4.已知函数y=2+1x,当x由1变到2时,函数的增量Δy=________.5.已知函数y=2x,当x由2变到1.5时,函数的增量Δy=________.6.利用导数的定义,求函数y=1x2+2在点x=1处的导数.7.已知函数y=f(x)=x2+1,则在x=2,Δx=0.1时,Δy的值为().A.0.40 B.0.41 C.0.43 D.0.448.设函数f(x)可导,则limΔx→0f(1+Δx)-f(1)3Δx等于().A.f′(1) B.3f′(1) C.13f′(1) D.f′(3)9.一做直线运动的物体,其位移s与时间t的关系是s=3t-t2,则物体的初速度是________.10.某物体作匀速运动,其运动方程是s=v t,则该物体在运动过程中其平均速度与任何时刻的瞬时速度的关系是________.11.子弹在枪筒中的运动可以看作是匀变速运动,如果它的加速度是a=5×105 m/s2,子弹从枪口射出时所用的时间为t0=1.6×10-3s,求子弹射出枪口时的瞬时速度.12.(创新拓展)已知f(x)=x2,g(x)=x3,求满足f′(x)+2=g′(x)的x的值.导数练习题 2015年春第 3 页 共 16 页1.1.3 导数的几何意义1.已知曲线y =12x 2-2上一点P ⎝ ⎛⎭⎪⎫1,-32,则过点P 的切线的倾斜角为( ).A .30°B .45°C .135°D .165°2.已知曲线y =2x 3上一点A (1,2),则A 处的切线斜率等于( ). A .2 B .4 C .6+6Δx +2(Δx )2 D .63.设y =f (x )存在导函数,且满足lim Δx →0f (1)-f (1-2Δx )2Δx=-1,则曲线y =f (x )上点(1,f (1))处的切线斜率为( ). A .2 B .-1 C .1 D .-24.曲线y =2x -x 3在点(1,1)处的切线方程为________. 5.设y =f (x )为可导函数,且满足条件 lim x →0f (1)-f (1-x )2x=-2,则曲线y =f (x )在点(1,f (1))处的切线的斜率是________.6.求过点P (-1,2)且与曲线y =3x 2-4x +2在点M (1,1)处的切线平行的直线.7.设函数f (x )在x =x 0处的导数不存在,则曲线y =f (x )( ).A .在点(x 0,f (x 0))处的切线不存在B .在点(x 0,f (x 0))处的切线可能存在C .在点x 0处不连续D .在x =x 0处极限不存在 8.函数y =-1x 在⎝ ⎛⎭⎪⎫12,-2处的切线方程是( ).A .y =4xB .y =4x -4C .y =4x +4D .y =2x -49.若曲线y=2x2-4x+p与直线y=1相切,则p的值为________.10.已知曲线y=1x-1上两点A⎝⎛⎭⎪⎫2,-12、B(2+Δx,-12+Δy),当Δx=1时割线AB的斜率为________.11.曲线y=x2-3x上的点P处的切线平行于x轴,求点P的坐标.12.(创新拓展)已知抛物线y=ax2+bx+c通过点P(1,1),Q(2,-1),且在点Q 处与直线y=x-3相切,求实数a、b、c的值.导数练习题2015年春1.2导数的计算1.2.1几个常用函数的导数1.2.2基本初等函数的导数公式及导数的运算法则第1课时基本初等函数的导数公式1.已知f(x)=x2,则f′(3)().A.0 B.2x C.6 D.92.f(x)=0的导数为().A.0 B.1 C.不存在D.不确定3.曲线y=x n在x=2处的导数为12,则n等于().A.1 B.2 C.3 D.44.设函数y=f(x)是一次函数,已知f(0)=1,f(1)=-3,则f′(x)=________. 5.函数f(x)=x x x的导数是________.6.在曲线y=x3+x-1上求一点P,使过P点的切线与直线y=4x-7平行.7.设f0(x)=sin x,f1(x)=f0′(x),f2(x)=f1′(x),…,f n+1(x)=f n′(x),n∈N,则f2010(x)=().A.sin x B.-sin x C.cos x D.-cos x第 5 页共16 页8.下列结论①(sin x )′=-cos x ;②⎝ ⎛⎭⎪⎫1x ′=1x 2;③(log 3x )′=13ln x ;④(ln x )′=1x .其中正确的有( ).A .0个B .1个C .2个D .3个 9.曲线y =4x 3在点Q (16,8)处的切线的斜率是________. 10.曲线y =9x 在点M (3,3)处的切线方程是________.11.已知f (x )=cos x ,g (x )=x ,求适合f ′(x )+g ′(x )≤0的x 的值.12.(创新拓展)求下列函数的导数:(1)y =log 4x 3-log 4x 2;(2)y =2x 2+1x -2x ;(3)y =-2sin x 2(2sin 2x4-1).导数练习题 2015年春第 7 页 共 16 页第2课时 导数的运算法则及复合函数的导数1.函数y =cos x1-x的导数是( ). A.-sin x +x sin x (1-x )2B.x sin x -sin x -cos x (1-x )2C.cos x -sin x +x sin x (1-x )2D.cos x -sin x +x sin x 1-x2.已知f (x )=ax 3+3x 2+2,若f ′(-1)=4,则a 的值为( ). A.193 B.103 C.133 D.163 3.已知f ⎝ ⎛⎭⎪⎫1x =x 1+x ,则f ′(x )等于( ).A.11+x B .-11+x C.1(1+x )2 D .-1(1+x )24.若质点的运动方程是s =t sin t ,则质点在t =2时的瞬时速度为________. 5.若f (x )=log 3(x -1),则f ′(2)=________.6.过原点作曲线y =e x 的切线,求切点的坐标及切线的斜率.7.函数y=(x-a)(x-b)在x=a处的导数为().A.ab B.-a(a-b) C.0 D.a-b8.当函数y=x2+a2x(a>0)在x=x0处的导数为0时,那么x0=().A.a B.±a C.-a D.a29.若f(x)=(2x+a)2,且f′(2)=20,则a=________.10.函数f(x)=x3+4x+5的图象在x=1处的切线在x轴上的截距为________.11.曲线y=e2x·cos 3x在(0,1)处的切线与直线L的距离为5,求直线L的方程.12.(创新拓展)求证:可导的奇函数的导函数是偶函数.导数练习题 2015年春第 9 页 共 16 页1.3 导数在研究函数中的应用1.3.1 函数的单调性与导数1.在下列结论中,正确的有( ). (1)单调增函数的导数也是单调增函数; (2)单调减函数的导数也是单调减函数; (3)单调函数的导数也是单调函数;(4)导函数是单调的,则原函数也是单调的. A .0个 B .2个 C .3个 D .4个 2.函数y =12x 2-ln x 的单调减区间是( ).A .(0,1)B .(0,1)∪(-∞,-1)C .(-∞,1)D .(-∞,+∞)3.若函数f (x )=x 3-ax 2-x +6在(0,1)内单调递减,则实数a 的取值范围是( ). A .a ≥1 B .a =1 C .a ≤1 D .0<a <1 4.函数y =ln(x 2-x -2)的递减区间为________.5.若三次函数f (x )=ax 3+x 在区间(-∞,+∞)内是增函数,则a 的取值范围是________.6.已知x >1,证明:x >ln(1+x ).7.当x >0时,f (x )=x +2x 的单调递减区间是( ).A .(2,+∞)B .(0,2)C .(2,+∞)D .(0,2) 8.已知函数y =f (x )的导函数f ′(x )=ax 2+bx +c 的图象如图所示,则y =f (x )的图象可能是( ).9.使y =sin x +ax 为R 上的增函数的a 的范围是________. 10.已知f (x )=x 2+2xf ′(1),则f ′(0)=________.11.已知函数f (x )=x 3+ax +8的单调递减区间为(-5,5),求函数y =f (x )的递增区间.12.(创新拓展)求下列函数的单调区间,并画出大致图象: (1)y =x +9x ; (2)y =ln(2x +3)+x 2.导数练习题 2015年春第 11 页 共 16 页1.3.2 函数的极值与导数1.下列函数存在极值的是( ).A .y =1xB .y =x -e xC .y =x 3+x 2+2x -3D .y =x 32.函数y =1+3x -x 3有( ).A .极小值-1,极大值1B .极小值-2,极大值3C .极小值-2,极大值2D .极小值-1,极大值33.函数f (x )的定义域为R ,导函数f ′(x )的图象如图所示,则函数f (x )( ).A .无极大值点,有四个极小值点B .有三个极大值点,两个极小值点C .有两个极大值点,两个极小值点D .有四个极大值点,无极小值点4.设方程x 3-3x =k 有3个不等的实根,则常数k 的取值范围是________.5.已知函数y =x 2x -1,当x =________时取得极大值________;当x =________时取得极小值________.6.求函数f (x )=x 2e -x 的极值.7.函数f (x )=2x 3-6x 2-18x +7( ).A .在x =-1处取得极大值17,在x =3处取得极小值-47B .在x =-1处取得极小值17,在x =3处取得极大值-47C.在x=-1处取得极小值-17,在x=3处取得极大值47D.以上都不对8.三次函数当x=1时有极大值4,当x=3时有极小值0,且函数过原点,则此函数是().A.y=x3+6x2+9x B.y=x3-6x2+9xC.y=x3-6x2-9x D.y=x3+6x2-9x9.函数f(x)=x3+3ax2+3(a+2)x+3既有极大值又有极小值,则实数a的取值范围是________.10.函数y=x3-6x+a的极大值为________,极小值为________.11.已知函数y=ax3+bx2,当x=1时函数有极大值3,(1)求a,b的值;(2)求函数y的极小值.12.(创新拓展)设函数f(x)=a3x3+bx2+cx+d(a>0),且方程f′(x)-9x=0的两个根分别为1,4.(1)当a=3且曲线y=f(x)过原点时,求f(x)的解析式;(2)若f(x)在(-∞,+∞)内无极值点,求a的取值范围.导数练习题 2015年春第 13 页 共 16 页1.3.3 函数的最大(小)值与导数1.函数y =x e -x ,x ∈[0,4]的最大值是( ).A .0 B.1e C.4e 4 D.2e 22.函数f (x )=x 3-3ax -a 在(0,1)内有最小值,则a 的取值范围为( ).A .0≤a <1B .0<a <1C .-1<a <1D .0<a <123.设f (x )=x (ax 2+bx +c )(a ≠0)在x =1和x =-1处均有极值,则下列点中一定在x 轴上的是( ).A .(a ,b )B .(a ,c )C .(b ,c )D .(a +b ,c )4.函数y =x +2cos x 在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值是________. 5.函数f (x )=sin x +cos x 在x ∈⎣⎢⎡⎦⎥⎤-π2,π2的最大、最小值分别是________. 6.求函数f (x )=x 5+5x 4+5x 3+1在区间[-1,4]上的最大值与最小值.7.函数y =x 33+x 2-3x -4在[0,2]上的最小值是( ).A .-173B .-103C .-4D .-6438.已知函数f (x )=2x 3-6x 2+m (m 为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值为().A.-37 B.-29 C.-5 D.-119.函数f(x)=4xx2+1,x∈[-2,2]的最大值是________,最小值是________.10.如果函数f(x)=x3-32x2+a在[-1,1]上的最大值是2,那么f(x)在[-1,1]上的最小值是________.11.已知函数f(x)=-x3+3x2+9x+a.(1)求f(x)的单调递减区间;(2)若f(x)在区间[-2,2]上的最大值为20,求它在该区间上的最小值.12.(创新拓展)已知函数f(x)=x2e-ax(a>0),求函数在[1,2]上的最大值.导数练习题 2015年春第 15 页 共 16 页1.4 生活中的优化问题举例1.如果圆柱截面的周长l 为定值,则体积的最大值为( ).A.⎝ ⎛⎭⎪⎫l 63πB.⎝ ⎛⎭⎪⎫l 33πC.⎝ ⎛⎭⎪⎫l 43πD.14⎝ ⎛⎭⎪⎫l 43π 2.若一球的半径为r ,作内接于球的圆柱,则其侧面积最大为( ).A .2πr 2B .πr 2C .4πr D.12πr 2 3.某公司生产一种产品, 固定成本为20000元,每生产一单位的产品,成本增加100元,若总收入R 与年产量x 的关系是R (x )=⎩⎪⎨⎪⎧ -x 3900+400x ,0≤x ≤390,90 090,x >390,则当总利润最大时,每年生产产品的单位数是( ). A .150 B .200 C .250 D .3004.有矩形铁板,其长为6,宽为4,现从四个角上剪掉边长为x 的四个小正方形,将剩余部分折成一个无盖的长方体盒子,要使容积最大,则x =________.5.如图所示,某厂需要围建一个面积为512平方米的矩形堆料场,一边可以利用原有的墙壁,其他三边需要砌新的墙壁,当砌壁所用的材料最省时,堆料场的长和宽分别为________.6.如图所示,已知矩形的两个顶点位于x 轴上,另两个顶点位于抛物线y =4-x 2在x 轴上方的曲线上,求这个矩形面积最大时的边长.7.设底为正三角形的直棱柱的体积为V,那么其表面积最小时,底面边长为().A.3V B.32V C.34V D.23V8.把长为12 cm的细铁丝截成两段,各自摆成一个正三角形,那么这两个正三角形的面积之和的最小值是().A.32 3 cm2B.4 cm2 C.3 2 cm2D.2 3 cm29.在半径为r的圆内,作内接等腰三角形,当底边上的高为________时它的面积最大.10.做一个无盖的圆柱形水桶,若要使其体积是27π,且用料最省,则圆柱的底面半径为________.11.某地建一座桥,两端的桥墩已建好,这两墩相距m米,余下工程只需建两端桥墩之间的桥面和桥墩.经测算,一个桥墩的工程费用为256万元;距离为x米的相邻两墩之间的桥面工程费用为(2+x)x万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为y万元.(1)试写出y关于x的函数关系式;(2)当m=640米时,需新建多少个桥墩才能使y最小?12.(创新拓展)如图所示,在边长为60 cm的正方形铁片的四角上切去相等的正方形,再把它沿虚线折起,做成一个无盖的长方体箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?。

导数的实际应用.15

导数的实际应用.15

高二(下)数学理科学案15:1.3.3导数的实际应用【知识目标】1.会利用导数解决实际问题中的最优化问题.2.体会导数在解决实际问题中的作用.3.将实际问题转化为数学问题,建立函数模型.【教材分析】一、解决实际应用问题的步骤(1)审题:阅读理解文字中表达的题意,分清条件和结论,找出问题的主要关系.(2)建模:将文字语言转化成数学语言,利用数学知识,建立相应的数学模型.(3)解模:把数学问题化为常规问题,选择合适的数学方法求解.(4)检验:对结果进行验证评估,定性、定量分析,作出正确的判断,确定其答案.二、生活中的最优化问题常见类型(1)利润最大问题.首先要找到销售价格、销售数量,由此可得销售收入,然后看单件成本及总成本,最后产生利润函数.(2)用料最省问题.主要考虑几何体的侧面积,往往也会以工程造价最低(不同的面造价会不同,实际问题可能要分开计算)的形式出现.(3)容积最大问题,此类问题实际上是体积问题,首先要明白条件的给出方式,可能会将重要条件隐藏在表面积之中;其次要注意几何体的特征.(4)效率最高问题.首先要清楚效率是如何求出的:效率=产量时间,然后要紧紧抓住产量与生产时间,通过这个比产生结论.(5)运输费用最省问题.其实此类问题就是路程、时间、速度三者的关系问题,建立在时间与速度的基础上产生路程,根据路程产生运输费用最少或是油耗最小.(6)最大流量、最大功率、最大亮度等问题.流量与横截面的面积大小有关,欲求最大流量,其实就是求横截面的面积的最大值.功率问题,要注意功率的计算公式,不同的问题背影,计算式子本身也会有相应的区别.亮度问题,往往要结合问题本身的特点,根据题目的条件(或是已知的式子)进行.【典型例题】例题1 某商品每件成本9元,售价30元,每星期卖出432件,如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值x(单位:元,0≤x≤30)的平方成正比,已知商品单价降低2元时,一星期多卖出24件.(1)将一个星期的商品销售利润表示成x的函数;(2)如何定价才能使一个星期的商品销售利润最大?例题2 某单位用木料制作如图所示的框架,框架的下部是边长分别为x、y(单位:m)的矩形,上部是等腰直角三角形,要求框架围成的总面积为8m2,问x、y分别为多少时用料最省.(精确到0.001m)例题3 某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r 米,高为h米,体积为V平方米.假设建造成本仅与表面积有关,侧面的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12 000π元(π为圆周率).例题4 如图,用宽为a、长为b的三块矩形木板,做成一个横截面为等腰梯形的水槽,试问当倾斜角θ多大时,可使得水槽的流量最大?例题5 现有一批货物由海上A地运往B地,已知轮船的最大航行速度为35海里/小时,A地至B地之间的航行距离约为500海里,每小时的运输成本由燃料费和其余费用组成,轮船每小时的燃料费与轮船速度的平方成正比(比例系数为0.6),其余费用为每小时960元.(1)把全程运输成本y(元)表示为速度x(海里/小时)的函数;(2)为了使全程运输成本最小,轮船应以多大速度行驶?【课堂小结】【】1.内接于半径为4的圆的矩形的面积的最大值是()A.32B.16C.16πD.642.设底面为等边三角形的直棱柱的体积为V,那么其表面积最小时,底面边长为()D.3.若商品的年利润y(万元)与年产量x(百万件)的函数关系式为y=-x3+27x+123(x>0),则获得最大利润时的年产量为()A.1百万件 B.2百万件 C.3百万件 D.4百万件4.把一个周长为12 cm的长方形围成一个圆柱,当圆柱的体积最大时,该圆柱底面周长与高的比为()A.1∶2 B.1∶π C.2∶1 D.2∶π5.要做一个圆锥形漏斗,其母线长为20cm,要使其体积最大,则其高为()A B.100cm C.20cm D.20cm 3从上午6时到9时,车辆通过该市某一路段的用时y (分钟)与车辆进入该路段的时刻t 之间的关系可近似地用如下函数表示:32133684y t t t =--+-6294,则在这段时间内,通过该路段用时最多的时刻是( )A .6时B .7时C .8时D .9时7.三棱锥O -ABC 中,OA 、OB 、OC 两两垂直,OC =2x ,OA =x ,OB =y ,且x +y =3,则三棱锥O -ABC 体积的最大值为( ) A .4 B .8 C .43 D .838.某公司生产一种产品,固定成本为20 000元,每生产一单位的产品,成本增加100元,若总收入R (x )元与年产量x 的关系是()R x =3400,0390,90090090,390,x x x x ⎧-+≤≤⎪⎨⎪>⎩则当总利润最大时,每年生产产品的单位数是( )A .150B .200C .250D .300 9.球的直径为d ,当其内接正四棱柱的体积最大时的高为_________. 10.抛物线22y x =-与x 轴所围图形的内接矩形的最大面积为_________. 11.正三棱柱体积为16,当其表面积最小时,底面边长a =________.12.等腰三角形的周长为2p ,问绕这个三角形的底边所在直线旋转一周所形成的几何体的体积最大时,各边长分别是多少?13.一个圆柱形圆木的底面半径为1 m ,长为10 m ,将此圆木沿轴所在的平面剖成两部分.现要把其中一部分加工成直四棱柱木梁,长度保持不变,底面为等腰梯形ABCD (如图所示,其中O 为圆心,C ,D 在半圆上),设BOC θ∠=,木梁的体积为V (单位:m 3),表面积为S (单位:m 2).(1)求V 关于θ的函数表达式;(2)求θ的值,使体积V 最大; (3)问当木梁的体积V 最大时,其表面积S 是否也最大?请说明理由.【B 组训练题】1.一个箱子的容积与底面一边长x 的关系为V (x )=x 2·(60-x 2)(0<x <60),则当箱子的容积最大时,x 的值为( )A .30B .40C .50D .602.已知某生产厂家的年利润y (单位:万元)与年产量x (单位:万件)的函数关系式为y =-13x 3+81x -234,则使该生产厂家获取最大年利润的年产量为( ) A .13万件 B .11万件 C .9万件D .7万件3.若一球的半径为r ,作内接于球的圆柱,则圆柱侧面积最大值为( )A .2πr 2B .πr 2C .4πrD.12πr 2 4.某工厂要围建一个面积为512平方米的矩形堆料场,一边可以利用原有的墙壁,其他三边需要砌新的墙壁,当砌壁所用的材料最省时,堆料场的长和宽分别为( )A .32 16B .30 15C .40 20D .36 186.如图,修建一条公路需要一段环湖弯曲路段与两条直道平滑连接(相切).已知环湖弯曲路段为某三次函数图象的一部分,则该函数的解析式为( )A .y =12x 3-12x 2-xB .y =12x 3+12x 2-3xC .y =14x 3-xD .y =14x 3+12x 2-2x7.一房地产公司有50套公寓要出租,当月租金定为1 000元时,公寓会全部租出去,当月租金每增加50元,就会多一套租不出去,而租出去的公寓每月每套需花费100元维修费,则房租定为________元时8.在高为H、底面半径为R的圆锥内作一个内接圆柱,问圆柱底面半径r为多大时,圆柱体积最大?9.为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=k3x+5(0≤x≤10),若不建隔热层,每年能源消耗耗费用为8万元.设f(x)为隔热层建造费用与20年的能源消耗费用之和.(1)求k的值及f(x)的表达式;(2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.10.某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式y=ax-3+10(x-6)2,其中3<x<6,a为常数.已知销售价格为5元/千克时,每日可售出该商品11千克.(1)求a的值;(2)若该商品的成本为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大.。

初中数学:1.3.1函数的单调性与导数

初中数学:1.3.1函数的单调性与导数

练习
判断下列函数的单调性, 并求出单调区间:
例3 如图, 水以常速(即单位时间内注入水的体积相同)注 入下面四种底面积相同的容器中, 请分别找出与各容器对应 的水的高度h与时间t的函数关系图象.
h
h
h
h
O
t
(A)
O
t
(B)
O
t
(C)
O
t
(D)
一般地, 如果一个函数在某一范围内导数 的绝对值较大, 那么函数在这个范围内变化得 快, 这时, 函数的图象就比较“陡峭”(向上或 向下); 反之, 函数的图象就“平缓”一些.
可知 在此区
间内单调递减;
y
当 x = 4 , 或 x = 1时,
综上, 函数 图象
O1
4
的大致形状如右图所示.
x
题2 判断下列函数的单调性, 并求出单调区间:
解: (1) 因为
, 所以
因此, 函数 (2) 因为

上单调递增.
, 所以

, 即 时, 函数

, 即 时, 函数
单调递增; 单调递减.
题2 判断下列函数的单调性, 并求出单调区间:
也能使f(x)在这个区间上单调,
所以对于能否取到等号的问题需要单独验证
增例2:
本题用到一个重要的转化:
例3:方程根的问题 求证:方程
只有一个根。
作业:
已知函数f(x)=ax³+3x²-x+1在R上是减函数, 求a的取值范围。
解:

内是减函数.
由 的递减区间是 函数.
, 解得 , 即函数
, 所以函数

内是减
一、求参数的取值范围

1.3.1函数的单调性与导数(一)

1.3.1函数的单调性与导数(一)

1.3.1函数的单调性与导数(一)【学习目标】1. 记住函数的单调性与导数之间的关系;2. 学会用导数研究函数的单调性,会求函数的单调区间.【重点难点】重点: 函数的单调性与导数之间的关系难点: 利用函数的导数判断单调性【学习过程】【预习案】预习教材P22~26,完成以下问题1.一般地,设函数y=f(x)在某个区间内有导数,如果在这个区间内,f ′(x)>0,那么函数y=f(x)为在这个区间内的如果在这个区间内,f ′(x)<0,那么函数y=f(x)为在这个区间内的2.函数图象的变化趋势与导数值大小的关系3.用导数求函数单调区间的步骤:①优先确定函数的定义域;②求函数f(x)的导数f ′(x);③定义域内满足不等式f ′(x)>0的x的区间就是递增区间;满足不等式f ′(x)>0的x的区间就是递减区间.[预习诊断]判断(正确的打“√”,错误的打“×”)1.函数f(x)在定义域上都有f′(x)>0,则函数f(x)在定义域上单调递增.() 2.函数在某一点的导数越大,函数在该点处的切线越“陡峭”.( )3.函数在某个区间上变化越快,函数在这个区间上导数的绝对值越大.( ) 【探究案】探究一函数余导函数图象间的关系例1:设函数f(x)在定义域内可导,y=f(x)的图象如图所示,则导函数y=f ′(x)的图象可能为()【变式训练】设f ′(x)是函数f(x)的导函数,f ′(x)的图象如图所示,则f(x)的递增区间是.探究二利用导数求函数的单调区间例2:求下列函数的单调区间:(1)f(x)=x-x3;(2)f(x)=x2-ln x.【变式训练】证明:函数xxxfsin)(=在区间),2(ππ上单调递减.注意事项:①求函数的单调区间,必须在函数的定义域内进行.②如果函数的单调区间有多个时,单调区间不能用“∪”符号连接,只能用“,”或“和”隔开.③导数法求得的单调区间一般用开区间表示【检测案】1.函数f(x)=x+ln x在(0,6)上是()A.单调增函数B.单调减函数C.在⎝⎛⎭⎫0,1e上是减函数,在⎝⎛⎭⎫1e,6上是增函数D.在⎝⎛⎭⎫0,1e上是增函数,在⎝⎛⎭⎫1e,6上是减函数2.函数y=x2-4x+a的增区间为________,减区间为________.是()4.如图所示的是函数y=f(x)的导函数y=f′(x)的图象,则在[-2,5]上函数f(x)的单调递增区间为________.5.函数f(x)=(x-3)e x的单调递增区间是()A.(-∞,2) B.(0,3)C.(1,4) D.(2,+∞)6.函数y=12x2-ln x的单调递减区间为()A.(-1,1] B.(0,1]C.[1,+∞) D.(0,+∞)7.判断函数xxxfln)(=在区间(0,e)上的单调性。

高中数学导数复习(基础版)

高中数学导数复习(基础版)

⾼中数学导数复习(基础版)第⼀章导数及其应⽤1.1导数的概念1.函数f(x)=ax3+3x2+2,若f′(-1)=4,则实数a的值是()A.B.C.D.解析:∵f(x)=ax3+3x2+2,∴f′(-1)===(aΔx2-3aΔx+3a+3Δx-6)=3a-6=4,解得a=,故选D.答案:D2.(2019·杭州⼆中⽉考)设函数f(x)可导,则等于()A.f′(1)B.3f′(1)C.f′(1)D.f′(3)解析:==f′(1).答案:C3.⼦弹在枪筒中运动可以看作是匀变速运动,如果它的加速度是a=5×105m/s2,⼦弹从枪⼝射出时所⽤的时间为t0=1.6×10-3s,则⼦弹射出枪⼝时的瞬时速度为()A.1000m/sB.500m/sC.1600m/sD.800m/s解析:设运动⽅程为s=at2,∴==at0+aΔt,∴瞬时速度v==at0=5×105×1.6×10-3=800m/s,故选D.答案:D4.设f(x)在R上可导,已知f(-x)在x=a处的导数为A,则f(x)在x=-a处的导数为________.解析:∵f(-x)在x=a处的导数为A,∴A=,∴f(x)在x=-a处的导数f′(-a)==-A.答案:-A5.⼀质点沿直线运动,如果由始点起经过t秒后的位移为s=t3-t2+2t+1,求速度为零的时刻.解:∵Δs=s(t+Δt)-s(t)=(t+Δt)3-(t+Δt)2+2(t+Δt)+1-=t2Δt+tΔt2+Δt3-3tΔt-Δt2+2Δt,∴=t2+tΔt+Δt2-3t-Δt+2,∴=t2-3t+2,由t2-3t+2=0,得t=1或t=2.所以速度为零的时刻为1秒末和2秒末.6.⽤定义求函数f(x)=在x=1处的导数.解:Δy=f(1+Δx)-f(1)=-1====,∴=,∴==-.即函数f(x)在x=1处的导数为-.1.1.2导数的⼏何意义1.(2019·鄂东南九校期中)设P0为曲线f(x)=x3+x-2上的点,且曲线在P0处的切线平⾏于直线y=4x-1,则P0点的坐标为()A.(1,0)B.(2,8)C.(1,0)或(-1,-4)D.(2,8)或(-1,-4)解析:f′(x)===3x2+1.由于曲线f(x)=x3+x-2在P0处的切线平⾏于直线y=4x-1,所以f(x)在P0处的导数值等于4,设P0(x0,y0),则有f′(x0)=3x+1=4,解得x0=±1,P0的坐标为(1,0)或(-1,-4).故选C.答案:C2.下列曲线中,在x=1处切线的倾斜⾓为的是()A.y=x2-B.y=xlnxC.y=sinπxD.y=x3-2x2解析:∵曲线在x=1处切线的倾斜⾓为π,∴切线的斜率k =-1,在y=x3-2x2中,k==(-1+Δx+Δx2)=-1,故选D.答案:D3.如图,函数y=f(x)的图象在点P处的切线⽅程是y=-x+8,则f(5)+f′(5)=()A.2B.1C.D.0解析:由题可知,f(5)=3,f′(5)=-1,∴f(5)+f′(5)=2,故选A.答案:A4.曲线y=x3+2在点P处的切线斜率为3,则点P的坐标为()A.(-2,-8)B.(1,3)或(-1,1)C.(2,8)D.解析:设P(x0,y0).则f′(x0)===[3x+3x0Δx+(Δx)2]=3x=3,∴x0=±1,∴P(1,3)或P(-1,1).故选B.答案:B5.设曲线y=x2+x+在点(1,3)处的切线与直线ax+y+1=0垂直,则实数a=()A.2B.-2C.-D.解析:f′(1)==2,∴曲线y=x2+x+在点(1,3)处的切线的斜率为2,⼜因为它与直线ax+y+1=0垂直,∴a=,故选D.答案:D6.(2019·陵川⾼⼆⽉考)已知函数y=ax2+b在点(1,3)处的切线斜率为2,则=________.解析:∵f′(1)=2,⼜==(aΔx+2a)=2a,∴2a=2,∴a =1.⼜f(1)=a+b=3,∴b=2.∴=2.答案:27.曲线y=x2-2x在点处的切线的倾斜⾓的余弦值为________.解析:依题意k===-1,∴曲线在处的切线的倾斜⾓为π,其余弦值为cosπ=-.答案:-※(选做题)8.已知直线l:y=4x+a和曲线y=x3-2x2+3相切.求a的值及切点的坐标.解:设直线l与曲线C相切于点P(x0,y0),∵f′(x)==3x2-4x.由导数的⼏何意义,得3x-4x0=4,解得x0=-或x0=2.∴切点的坐标为或(2,3),当切点为时,有=4×+a,∴a=.当切点为(2,3)时,有3=4×2+a,∴a=-5.∴所求a的值为a=,切点为;a=-5,切点为(2,3).1.2.2基本初等函数的导数公式及导数的运算法则1.若f(x)=cos,则f′(x)等于()A.B.0C.D.-答案:B2.给出下列结论:①若y=,则y′=-;②若y=,则y′=;③若y=2x,则y′=2x;④若f(x)=logax(a>0且a≠1),则f′(x)=.其中正确的有()A.①②B.①②③C.②③④D.①②④答案:D3.正弦曲线y=sinx上⼀点P,以点P为切点的切线为直线l,则直线l的倾斜⾓的范围是()A.B.C.∪D.∪解析:设P(x0,y0),∵y′|x=x0=cosx0,∴直线l的斜率k=cosx0∈[-1,1].⼜直线l的倾斜⾓α∈[0,π),∴0≤α≤或≤α<π.故选C.答案:C4.(2019·⼭⼤附中⾼⼆检测)在平⾯直⾓坐标系xOy中,点A在曲线y=lnx上,且该曲线在点A处的切线经过点(-e,-1)(e为⾃然对数的底数),则点A的坐标是________.解析:∵y=lnx,∴y′=(x>0),设A(x0,lnx0)则在点A处的切线⽅程为y-lnx0=(x-x0),化简为y=x+lnx0-1,过点(-e,-1),∴-1=(-e)+lnx0-1,∴lnx0-=0,∴x0=e时⽅程成⽴,⼜∵y=lnx0-递减,∴⽅程有唯⼀解x0=e,A(e,1).答案:(e,1)5.(2019·武威⼀中阶段测试)已知直线y=kx是曲线y=3x的切线,则k的值为________.解析:设切点为(x0,y0).因为y′=3xln3,所以k=3x0ln3,所以y=(3x0ln3)·x,⼜因为(x0,y0)在曲线y=3x上,所以3x0ln3·x0=3x0,所以x0==log3e.所以k=eln3.答案:eln36.(2019·⾃贡富顺⼀中⾼⼆期中)设f(x)=x3+ax2+bx+1的导数f′(x)满⾜f′(1)=2a,f′(2)=-b,其中常数a,b∈R.求曲线y=f(x)在点(1,f(1))处的切线⽅程.解:因为f(x)=x3+ax2+bx+1,所以f′(x)=3x2+2ax+b.令x=1,得f′(1)=3+2a+b,⼜f′(1)=2a,所以3+2a+b=2a,解得b=-3.令x=2,得f′(2)=12+4a+b,⼜f′(2)=-b,所以12+4a+b=-b,解得a=-.则f(x)=x3-x2-3x+1,从⽽f(1)=-.⼜f′(1)=2×-=-3,所以曲线y=f(x)在点(1,f(1))处的切线⽅程为y--=-3(x-1),即6x+2y-1=0.※(选做题)7.若存在过点(1,0)的直线与曲线y=x3和y=ax2+x-都相切,求实数a的值.解:由y=x3,得y′=3x2,设过点(1,0)的直线与曲线y=x3相切于点(x0,x),则在点(x0,x)处的切线⽅程为y-x=3x(x-x0),∵点(1,0)在切线上,∴-x=3x(1-x0),解得x0=0或x0=.当x0=0时,切线⽅程为y=0,由y=0与y=ax2+x-相切,联⽴Δ=0可得a=-;当x0=时,切线⽅程为y=x-,由y=x-与y=ax2+x-相切,同理可得a=.综上所述,a的值为-或.1.3.1函数的单调性与导数1.若f(x)=x2-2x-4lnx,则f(x)的单调递增区间为()A.(-1,0)B.(-1,0)∪(2,+∞)C.(1,+∞)D.(2,+∞)解析:f(x)=x2-2x-4lnx的定义域为(0,+∞),f′(x)=2x-2-==,由f′(x)>0,得x>2,∴f(x)的单调递增区间为(2,+∞),故选D.答案:D2.已知函数f(x)=-x3+ax2-x-1在(-∞,+∞)上是单调函数,则实数a的取值范围是()A.(-∞,-)∪(,+∞)B.(-,)C.(-∞,-]∪[,+∞)D.[-,]解析:∵f(x)=-x3+ax2-x-1在(-∞,+∞)上单调,∴f′(x)=-3x2+2ax-1≤0在(-∞,+∞)上恒成⽴,∴Δ=(2a)2-4×(-3)×(-1)≤0,解得-≤a≤,即实数a的取值范围是[-,]故选D.答案:D3.(2019·南阳⼀中⾼⼆开学)函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f′(x)>2.则f(x)>2x+4的解集为()A.(-1,1)B.(-1,+∞)C.(-∞,-1)D.(-∞,+∞)解析:构造函数g(x)=f(x)-(2x+4),则g(-1)=2-(-2+4)=0,⼜f′(x)>2.∴g′(x)=f′(x)-2>0,∴g(x)是R上的增函数.∴f(x)>2x+4?g(x)>0?g(x)>g(-1),∴x>-1.答案:B4.(2019·仲元中学⾼⼆期中)若函数y=-x3+bx有三个单调区间,则实数b的取值范围是________.解析:若函数y=-x3+bx有三个单调区间,则y′=-4x2+b=0有两个不相等的实数根,所以b>0.答案:(0,+∞)5.若函数f(x)是R上的偶函数,且在(0,+∞)上有f′(x)>0,若f(-1)=0,那么关于x的不等式x·f(x)<0的解集为______________.解析:∵f(x)在(0,+∞)上满⾜f′(x)>0,∴f(x)在(0,+∞)上为增函数,⼜f(x)为偶函数,∴f(x)在(-∞,0)上为减函数,⼜f(-1)=0,∴f(1)=0,∴x·f(x)<0的解集为0<x<1或x<-1.答案:(-∞,-1)∪(0,1)6.若函数f(x)=在区间(m,2m+1)上是单调递增函数,则实数m的取值范围是________.解析:由f′(x)==≥0,解得-1≤x≤1.即f(x)的单调递增区间为[-1,1]由题意得解得-1nx;(2)f(x)=.解:(1)函数f(x)的定义域为(0,+∞).f′(x)=2x-=.因为x>0,所以>0,由f′(x)>0得x>,所以函数f(x)的单调递增区间为;由f′(x)<0得x<,⼜x∈(0,+∞),所以函数f(x)的单调递减区间为.(2)函数f(x)的定义域为(-∞,2)∪(2,+∞).f′(x)==.因为x∈(-∞,2)∪(2,+∞),所以ex>0,(x-2)2>0.由f′(x)>0得x>3,所以函数f(x)的单调递增区间为(3,+∞);由f′(x)<0得x<3,⼜定义域为(-∞,2)∪(2,+∞),所以函数f(x)的单调递减区间为(-∞,2),(2,3).8.(2019·龙岩⼀中⾼⼆⽉考)已知函数f(x)=x+-2lnx,a∈R,讨论函数f(x)的单调性.解:函数f(x)的定义域为(0,+∞),∴f′(x)=1--=.①当Δ=4+4a≤0,即a≤-1时,得x2-2x-a≥0,则f′(x)≥0.∴函数f(x)在(0,+∞)上单调递增.②当Δ=4+4a>0,即a>-1时,令f′(x)=0,得x2-2x-a=0,解得x1=1-,x2=1+>0.(ⅰ)若-10,+∞),∴f(x)在(0,1-),(1+,+∞)上单调递增,在(1-,1+)上单调递减.(ⅱ)若a>0,则x1<0,当x∈(0,1+)时,f′(x)<0,当x∈(1+,+∞)时,f′(x)>0,∴函数f(x)在区间(0,1+)上单调递减,在区间(1+,+∞)上单调递增.综上所述:①a≤-1时,f(x)在(0,+∞)上单调递增;②-1∞)上递增,在(1-,1+)上递减;③a>0时,f(x)在(0,1+)上递减,(1+,+∞)上递增.※(选做题)9.试求函数f(x )=kx-lnx的单调区间.解:函数f(x)=kx-lnx的定义域为(0,+∞),f′(x)=k-=.当k≤0时,kx -1<0,∴f′(x)<0,则f(x)在(0,+∞)上单调递减.当k>0时,由f′(x)<0,即<0,解得0<x<;由f′(x)>0,即>0,解得x>.∴当k>0时,f(x)的单调递减区间为,单调递增区间为.综上所述,当k≤0时,f(x)的单调递减区间为(0,+∞),⽆单调递增区间;当k>0时,f(x)的单调递减区间为,单调递增区间为.1.3.2函数的极值与导数1.函数f(x)=x3+ax2+3x-9,已知f(x)在x=-3处取得极值,则实数a=()A.2B.3C.4D.5解析:∵f(x)=x3+ax2+3x-9,∴f′(x)=3x2+2ax+3.∵f(x)在x=-3处取得极值,∴f′(-3)=27-6a+3=0,解得a=5,故选D.答案:D2.若函数y=x3-2ax+a在(0,1)内有极⼩值,则实数a的取值范围是()A.(0,3)B.(-∞,3)C.(0,+∞)D.解析:y′=3x2-2a.∵有极值,∴a>0.令3x2-2a=0,解得x=±.∵函数在(0,1)内有极⼩值.∴0<<1,解得0<a<.答案:D3.设a∈R,若函数y=eax+3x有⼤于零的极值点,则()A.a>-3B.a<-3C.a>-D.a<-解析:∵y=eax+3x,∴y′=eax·a+3,当a≥0时,y′>0,不符合题意;当a<0时,由y′=0,得x=ln.∵函数y=eax+3x有⼤于零的极值点,∴ln>0,解得a<-3,故选B.答案:B4.函数f(x)=lnx-x在区间(0,e)上的极⼤值为()A.-eB.-1C.1-eD.0解析:∵f′(x)=-1,令f′(x)=0,得x=1,⼜∵当0<x<1时,f′(x)>0,当1<x<e时,f′(x)<0,∴f(x)在x=1处取得极⼤值,f(1)=ln1-1=-1.故选B.答案:B5.(2019·东厦中学⾼⼆质量检测)若函数f(x)=x3-3ax+1在区间(0,1)内有极⼩值,则a的取值范围为________.解析:f′(x)=3x2-3a.当a≤0时,在区间(0,1)上⽆极值.当a>0时,令f′(x)>0,解得x>或x<-.令f′(x)<0,解得-cosx+x在(0,π)上的极⼤值为________.解析:f′(x)=-2sinx+1,令f′(x)=0,得x=或x=π.x,f′(x),f(x)取值情况如下表:xπf′(x)+0-0+f(x) 极⼤值 极⼩值 ∴f(x)极⼤值=f=2cos+=2×+=+.答案:+7.已知函数f(x)=x3-2ax2+a2x的极⼩值点是x=-1,则a=________.解析:∵f(x)=x3-2ax2+a2x,∴f′(x)=3x2-4ax+a2=(3x-a)(x-a).由f′(x)=0,得x=或x=a.∵f(x)的极⼩值点是x=-1,∴a<0,∴>a,∴为极⼩值点,即=-1,∴a=-3.答案:-38.已知函数f(x)=x3-2x2+x+1.(1)求曲线y=f(x)在点(2,f(2))处的切线⽅程;(2)求函数f(x)的极值.解:(1)f(2)=23-2×22+2+1=3,∵f′(x)=3x2-4x+1,∴f′(2)=3×22-4×2+1=5,∴所求切线⽅程为y-3=5(x-2),即y=5x-7.(2)由(1)知f′(x)=3x2-4x+1=(3x-1)(x-1),令f′(x)=0,得x=或x=1.当x变化时,f′(x),f(x)的变化情况如下表:x1(1,+∞)f′(x)+0-0+f(x) 极⼤值 极⼩值1 由上表知,f(x)的极⼤值为f=,f(x)的极⼩值为f(1)=1.9.设f(x)=a(x-5)2+6lnx,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线与y轴相交于点(0,6).(1)试确定a的值;(2)求函数f(x)的单调区间与极值.解:(1)因为f(x)=a(x-5)2+6lnx,所以f′(x)=2a(x-5)+(x>0).令x=1,得f(1)=16a,f′(1)=6-8a,所以曲线y=f(x)在点(1,f(1))处的切线⽅程为y-16a=(6-8a)(x-1),由点(0,6)在切线上可得6-16a=8a-6,故a=.(2)由(1)知,f(x)=(x-5)2+6lnx(x>0),f′(x)=x-5+=.令f′(x)=0,解得x1=2或x2=3.当0<x<2或x>3时,f ′(x)>0,故f(x)在(0,2),(3,+∞)上为增函数;当2<x<3时,f′(x)<0,故f(x)在(2,3)上为减函数.由此可知f(x)在x=2处取得极⼤值f(2)=+6ln2,在x=3处取得极⼩值f(3)=2+6ln3.10.(2019·郑州⼀中⾼⼆期中)设a∈R,函数f(x)=x3-x2-x+a.(1)求f(x)的极值;(2)当a在什么范围内取值时,曲线y=f(x)与x轴仅有⼀个交点?解:(1)f′(x)=3x2-2x-1.令f′(x)=0,则x=-或x=1.当x变化时,f′(x),f(x)的变化情况如下表:x-∞,---,11(1,+∞)f′(x)+0-0+f(x) 极⼤值 极⼩值 所以f(x)的极⼤值是f-=+a,极⼩值是f(1)=a-1.(2)函数f(x)=x3-x2-x+a=(x-1)2(x+1)+a-1,由此可知,x取⾜够⼤的正数时,有f(x)>0,x取⾜够⼩的负数时,有f(x)<0,所以曲线y=f(x)与x轴⾄少有⼀个交点.由(1)知f(x)极⼤值=f-=+a,f(x)极⼩值=f(1)=a-1.因为曲线y=f(x)与x轴仅有⼀个交点,所以f(x)极⼤值<0或f(x)极⼩值>0,即+a<0或a-1>0,所以a<-或a>1,所以当a∈-∞,-∪(1,+∞)时,曲线y=f(x)与x轴仅有⼀个交点.11.已知f(x)=(x2-a)ex,x∈R.(1)若a=3,求f(x)的单调区间和极值;(2)已知x1,x2是f(x)的两个不同的极值点,且|x1+x2|≥|x1x2|,求实数a的取值的集合M.解:(1)∵a=3,∴f(x)=(x2-3)ex,∴f′(x)=(x2+2x-3)ex.令f′(x)=0,解得x=-3或1.当x∈(-∞,-3)∪(1,+∞)时,f′(x)>0;当x∈(-3,1)时,f′(x)<0.∴f(x)的增区间为(-∞,-3][1,+∞);减区间为[-3,1].f(x)的极⼤值为f(-3)=6e-3;极⼩值为f(1)=-2e.(2)f′(x)=(x2+2x-a)ex,令f′(x)=0.即x2+2x-a=0.由题意两根为x1,x2,∴x1+x2=-2,x 1x2=-a,故-2≤a≤2.⼜Δ=4+4a>0,∴-1y=的最⼤值为()A.e-1B.eC.e2D.解析:y′==.由y′>0得,1-lnx>0,解得0得,1-lnx<0,解得x>e.∴y=在(0,e)上递增,在(e,+∞)上递减.f(e)为极⼤值,也是最⼤值,且f(e)==e-1.答案:A2.函数f(x)=x3-3x2+m在区间[-1,1]上的最⼤值是2,则常数m=()A.-2B.0C.2D.4解析:f′(x)=3x2-6x=3x(x-2),令f′(x)=0,得x=0或x=2(舍去),当-1≤x<0时,f′(x)>0;当0期中)已知函数f(x)=x3-x2+6x+a,若?x0∈[-1,4]使f(x0)=2a成⽴,则实数a的取值范围是()A.B.C.[2,16]D.解析:f(x0)=2a,即x-x+6x0+a=2a,可化为x-x+6x0=a,设g(x)=x3-x2+6x,则g′(x)=3x2-9x+6=3(x-1)(x-2)=0,得x=1或x=2,∴g(1)=,g(2)=2,g(-1)=-,g(4)=16.由题意,g(x)min≤a≤g(x)max,∴-≤a≤16.故选D.答案:D4.设直线x=t与函数f(x)=x2,g(x)=lnx的图象分别交于M,N,则当|MN|最⼩时t的值为()A.1B.C.D.解析:|MN|=f(t)-g(t)=t2-lnt,令h(t)=t2-lnt(t>0),∴h′(t)=2t-==.当0当t>时,h′(t)>0,h(t)为增函数,∴h(t)min=h=-ln,故|MN|最⼩时t=,故选D.答案:D5.已知函数f(x)=x+xlnx,若m∈Z且f(x)-m(x-1)>0对任意的x>1恒成⽴,则m的最⼤值是()A.2B.3C.4D.5解析:依题意可得,m1),则g′(x)=,令φ(x)=x-2-lnx,(x>1),则φ′(x)=1->0,所以φ(x)=x-2-lnx在(1,+∞)上单调递增,⼜φ(3)=1-ln3<0,φ(4)=2-2ln2>0,故存在x0∈(3,4),使φ(x0)=x0-2-lnx0=0,从⽽g(x)在(1,x0)上单调递减,在(x0,+∞)上单调递增,即g(x)min=g(x0)===x0,故m已知a≤4x3+4x2+1对任意x∈[-1,1]都成⽴,则实数a的取值范围是________.解析:设f(x)=4x3+4x2+1,则f′(x)=12x2+8x=4x(3x+2),由f′(x)=0得x=-或x=0.⼜f(-1)=1,f-=,f(0)=1,f(1 )=9,故f(x)在[-1,1]上的最⼩值为1.故a≤1.答案:(-∞,1]7.(2019·承德⾼三模拟)定义在R上的函数f(x)满⾜f′(x)>1-f(x),f(0)=6,其中f′(x)是f(x)的导函数,则不等式exf(x)>ex+5(其中e为⾃然对数的底数)的解集为________.解析:不等式exf(x)>ex+5可化为exf(x)-ex-5>0.设g(x)=exf(x)-ex-5,则g′(x)=exf(x)+exf′(x)-ex=ex[f(x)+f′(x)-1]>0,所以函数g(x)在定义域R上单调递增.⼜g(0)=0,所以g(x)>0的解集为(0,+∞).答案:(0,+∞)8.已知函数f(x)=2lnx+(a>0).若当x∈(0,+∞)时,f(x)≥2恒成⽴,则实数a的取值范围是________.解析:f(x)≥2即a≥2x2-2x2lnx.令g(x)=2x2-2x2lnx(x>0),则g′(x)=2x(1-2lnx).由g′(x)=0得x=e,且00;当x>e时,g′(x)<0,∴x=e时,g(x)取最⼤值g(e)=e,∴a≥e,即实数a的取值范围是[e,+∞).答案:[e,+∞)9.已知函数f(x)=x·(lnx+ax+1)-ax+1.(1)若f(x)在[1,+∞)上是减函数,求实数a的取值范围;(2)若f(x)的最⼤值为2,求实数a的值.解:(1)若f(x)在[1,+∞)上是减函数,则f′(x)≤0在[1,+∞)上恒成⽴,即f′(x)=lnx+2ax+2-a≤0,∴a≤-.设g(x)=-,则g′(x)=,∵x≥1,∴g′(x)>0,∴g(x)单调递增,∴g(x)≥g(1),⼜g(1)=-2,∴a≤-2.故实数a的取值范围为(-∞,-2].(2)由f(1)=2,要使f(x)max=2,故f(x)的递减区间是[1,+∞),递增区间是(0,1),∴f′(1)=0,即ln1+2a+2-a=0,∴a=-2.10.(2019·镇海中学⾼⼆期末)已知函数f(x)=(x-k)ex.(1)求f(x)的单调区间;(2)求f(x)在区间[0,1]上的最⼩值.解:(1)f′(x)=(x-k+1)ex.令f′(x)=0,得x=k-1.令x变化时,f(x)与f′(x)的变化情况如下表:x(-∞,k-1)k-1(k-1,+∞)f′(x)-0+f(x) -ek-1 所以,f(x)的单调递减区间是(-∞,k-1);单调递增区间是(k-1,+∞).(2)当k-1≤0,即k≤1时,函数f(x)在[0,1]上单调递增,所以f(x)在区间[0,1]上的最⼩值为f(0)=-k;当0以f(x)在区间[0,1]上的最⼩值为f(k-1)=-ek-1;当k-1≥1,即k≥2时,函数f(x)在[0,1]上单调递减.f(x)min=f(1)=(1-k)·e;综上,当k≤1时,f(x)min=-k,当1<k<2时,f(x)min=-ek-1,当k≥2时,f(x)min=f(1)=(1-k)·e.11.设函数f(x)=2x3+3ax2+3bx+8c在x=1及x=2时取得极值.(1)求a、b的值;(2)若对于任意的x∈[0,3]都有f(x),因为函数f(x)在x=1及x=2取得极值,则有f′(1)=0,f′(2)=0.即解得a=-3,b=4.经检验,符合题意.(2)由(1)可知,f(x)=2x3-9x2+12x+8c,f′(x)=6x2-18x+12=6(x-1)(x-2),当x∈(0,1)时,f′(x)>0;当x∈(1,2)时,f′(x)<0;当x∈(2,3)时,f′(x)>0.所以,当x=1时,f(x)取得极⼤值f(1)=5+8c,⼜f(0)=8c,f(3)=9+8c,则当x∈[0,3]时,f(x)的最⼤值为f(3)=9+8c.因为对于任意的x∈[0,3]有f(x)9,因此c的取值范围为(-∞,-1)∪(9,+∞).12.(2019·北京卷)已知函数f(x)=x3-x2+x.(1)求曲线y=f(x)的斜率为1的切线⽅程;(2)当x∈[-2,4]时,求证:x-6≤f(x)≤x;(3)设F(x)=|f(x)-(x+a)|(a∈R),记F(x)在区间[-2,4]上的最⼤值为M(a).当M(a)最⼩时,求a的值.解:(1)由f(x)=x3-x2+x得f′(x)=x2-2x+1.令f′(x)=1,即x2-2x+1=1,得x=0或x=.⼜f(0)=0,f=,所以曲线y=f(x)的斜率为1的切线⽅程是y=x与y-=x-,即y =x与y=x-.(2)证明:令g(x)=f(x)-x,x∈[-2,4].由g(x)=x3-x2得g′(x)=x2-2x.令g′(x)=0,得x=0或x=.当x变化时,g′(x),g(x)的情况如下:x-2(-2,0)00,,44g′(x)+-+g(x)-6 0 - 0所以g(x)的最⼩值为-6,最⼤值为0.故-6≤g(x)≤0,即x-6≤f(x)≤x.(3)由(2)知,当a<-3时,M(a)≥F(0)=|g(0)-a|=-a>3;当a>-3时,M(a)≥F(-2)=|g(-2)-a|=6+a>3;当a=-3时,M(a)=3.综上,当M(a)最⼩时,a=-3.1.4⽣活中的优化问题举例1.已知某⽣产⼚家的年利润y(单位:万元)与年产量x(单位:万件)的函数关系式为y=-x3+81x-234,则使该⽣产⼚家获取最⼤年利润的年产量为()A.13万件B.11万件C.9万件D.7万件解析:∵y=-x3+81x-234,∴y′=-x2+81.令y′=0,得x=9或x=-9(舍).⼜当0<x<9时,y′>0,当x>9时,y′<0,∴x=9时,y取得最⼤值.故选C.答案:C2.(2019·清⽔六中⾼⼆⽉考)要做⼀个圆锥形的漏⽃,其母线长为20cm,要使其体积最⼤,则⾼为()A.cmB.cmC.cmD.cm解析:设圆锥的⾼为xcm,则底⾯半径为cm.其体积为V=πx(202-x2)(0′>0;当箱的底⾯边长为()A.5cmB.6cmC.7cmD.8cm解析:设⽔箱的底⾯边长为xcm,∵容积为256,∴⽔箱的⾼为,∴⽔箱的表⾯积f(x)=4x·+x2=x2+,f′(x)=2x-.令f′(x)=0,得x=8,⼜当0<x<8时,f′(x)<0,当x>8时,f′(x)>0,∴当x=8时,f(x)取得最⼩值.答案:D4.某公司为了加⼤产品的宣传⼒度,准备⽴⼀块⼴告牌,在其背⾯制作⼀个形如△ABC的⽀架,要求∠ACB=60°,BC的长度⼤于1m,且AC⽐AB长0.5m.为节省材料,要求AC的长度越短越好.(1)设BC =xm,AC=ym,将y写成关于x的函数,并写出定义域;(2)当BC的长度为多少时,AC最短,求出最短长度.解:(1)由题设知BC=xm(x>1),AC=ym,则AB=y-.在△ABC中,由余弦定理,得2=y2+x2-2xycos60°.所以y=,定义域为{x|x>1}.(2)y′==.由y′=0,得x=1+.因为当11+时,y′>0,所以当x=1+时,y有最⼩值2+.故AC的最短长度为(2+)m,此时BC的长度为m.5.某商场销售某种商品的经验表明,该商品每⽇的销售量y(单位:千克)与销售价格x(单位:元/千克)满⾜关系式y=+10(x-6)2,其中3<x<6,a为常数.已知销售价格为5元/千克时,每⽇可售出该商品11千克.(1)求a的值;(2)若该商品的成本为3元/千克,试确定销售价格x 的值,使商场每⽇销售该商品所获得的利润最⼤.解:(1)∵x=5时,y=11,∴+10=11,∴a=2.(2)由(1)可知,该商品每⽇的销售量y=+10(x-6)2,∴商场每⽇销售该商品所获得的利润f(x)=(x-3)=2+10(x-3)(x-6)2,(3<x<6).从⽽,f′(x)=10[(x-6)2+2(x-3)(x-6)]=30(x-4) (x-6).于是,当x变化时,f′(x),f(x)的变化情况如下表:x(3,4)4(4,6)f′(x)+0-f(x)单调递增极⼤值42单调递减由上表可得,x=4是函数f(x)在区间(3,6)内的极⼤值点,也是最⼤值点.∴当x=4时,函数f(x)取得最⼤值,且最⼤值等于42.∴当销售价格为4元/千克时,商场每⽇销售该商品所获得的利润最⼤.第1页共2页。

函数的最大(小)值与导数(上课用)

函数的最大(小)值与导数(上课用)
[分析] 由题目可获取以下主要信息: ①函数f(x)=ax3-6ax2+b在x∈[-1,2]上的最大值 为3,最小值为-29; ②根据最大值、最小值确定a,b的值. 解答本题可先对f(x)求导,确定f(x)在[-1,2]上的单 调性及最值,再建立方程从而求得a,b的值.
[解析] 存在. 显然a≠0,f′(x)=3ax2-12ax. 令f′(x)=0,得x=0或x=4(舍去). (1)当a>0时,x变化时,f′(x),f(x)变化情况如 下表:
2.函数y=f(x)在区间[a,b]上的最大值是M,最小值是 m,若M=m,则f (x) ( A )

A.等于0 B.大于0 C.小于0
D.以上都有可能
堂上练习
3.函数y 1 x4 1 x3 1 x2,在-1,1上最小值为 A
432
A.0 B. 2 C. 1
D. 13 12
4.函数y 2x x2 的最大值为( A ) x 1
A. 3
B.1 C. 1
D. 3
3
2
2
堂上练习
5. 函 数 y=2x3 - 3x2 - 12x+5 在 [ 0 , 3 ] 上 的 最 小 值 是
______-_1_5___.
6.函数 f (x)=sin2x-x在[-
2
,
最小值为_____2__.
2 ]上的最大值为___2__;
7.将正数a分成两部分,使其立方和为最小,这两部分应分
aa
成___2___和__2____.
课外练习:
例练习题12::已知函数f (x) 2x3 6x2 a在2,2上有最小值 37 1求实数a的值; 2求f (x)在2,2上的最大值。
解:(1)f (x) 6x2 12x 令f (x) 0解得x 0或x 2

1.3.2 函数的极值与导数(4)

1.3.2 函数的极值与导数(4)

知识改变命运,学习成就未来
欢迎各位老师踊跃投稿,稿酬丰厚 邮箱:zxjkw@
第 1 页 共 1 页 1.3.2 函数的极值与导数(4)
运用导数及函数的极值判断方程解的个数、函数图象与x 轴交点个数
例1、设a 为实数,函数f (x ) = x 3 – x 2 – x + a .
(1)求f (x )的极值;
(2)当a 在什么范围内取值时,曲线y = f (x )与x 轴仅有一个交点.
例2.已知函数3()f x x x =-.
(1)求曲线()y f x =在点(())M t f t ,处的切线方程;
(2)设0a >,如果过点()a b ,可作曲线()y f x =的三条切线,证明:()a b f a -<<.
例3.已知cx bx ax x f ++=23)(在区间[0,1]上是增函数,在区间),1(),0,(+∞-∞上是减函数,又.2
3)21
(='f (Ⅰ)求)(x f 的解析式; (Ⅱ)若在区间],0[m (m >0)上恒有)(x f ≤x 成立,求m 的取值范围.
例4.设函数2()ln f x ax b x =+,其中0ab ≠.
证明:当0ab >时,函数()f x 没有极值点;当0ab <时,函数()f x 有且只有一个极值点,并求出极值.
例5.设函数2()ln(1)f x x b x =++,其中0b ≠. (Ⅰ)当12
b >时,判断函数()f x 在定义域上的单调性; (Ⅱ)求函数()f x 的极值点;
(Ⅲ)证明对任意的正整数n ,不等式23111ln 1n n n
⎛⎫+>- ⎪⎝⎭都成立.。

1.3 1函数单调性与导数 导学案 (教师版)

1.3 1函数单调性与导数  导学案  (教师版)

§1.3导数在研究函数中的应用1.3.1函数的单调性与导数内容要求 1.结合实例,借助几何直观探索并了解函数的单调性与导数的关系.2.能利用导数研究函数的单调性.3.会求不超过三次的多项式函数的单调区间.知识点1函数的单调性与导数的关系(1)在区间(a,b)内函数的导数与单调性有如下关系:导数函数的单调性f′(x)>0单调递增f′(x)<0单调递减f′(x)=0常函数(2)在区间(a,b)函数的单调性导数单调递增f′(x) ≥0单调递减f′(x)≤0常函数f′(x)=0【预习评价】思考在区间(a,b)内,函数f(x)单调递增是f′(x)>0的什么条件?提示必要不充分条件.知识点2利用导数求函数的单调区间求可导函数单调区间的基本步骤:(1)确定定义域;(2)求导数f′(x);(3)解不等式f′(x)>0,解集在定义域内的部分为单调递增区间;(4)解不等式f′(x)<0,解集在定义域内的部分为单调递减区间.【预习评价】函数f(x)=13-x2-3x+2的单调增区间是________.3x解析 f ′(x )=x 2-2x -3,令f ′(x )>0,解得x <-1或x >3,故f (x )的单调增区间是(-∞,-1),(3,+∞). 答案 (-∞,-1),(3,+∞)题型一 利用导数判断(或证明)函数的单调性【例1】 证明:函数f (x )=sin x x 在区间⎝ ⎛⎭⎪⎫π2,π上单调递减.证明 f ′(x )=x cos x -sin x x 2,又x ∈⎝ ⎛⎭⎪⎫π2,π,则cos x <0,∴x cos x -sin x <0, ∴f ′(x )<0,∴f (x )在⎝ ⎛⎭⎪⎫π2,π上单调递减.规律方法 关于利用导数证明函数单调性的问题:(1)首先考虑函数的定义域,所有函数性质的研究必须保证在定义域内这个前提下进行.(2)f ′(x )>0(或<0),则f (x )为单调递增(或递减)函数;但要特别注意,f (x )为单调递增(或递减)函数,则f ′(x )≥0(或≤0).【训练1】 证明:函数f (x )=ln xx 在区间(0,e)上是增函数. 证明 ∵f (x )=ln xx ,∴f ′(x )=x ·1x -ln x x 2=1-ln x x 2.又0<x <e ,∴ln x <ln e =1. ∴f ′(x )=1-ln xx 2>0,故f (x )在区间(0,e)上是增函数.题型二 利用导数求函数的单调区间 【例2】 求下列函数的单调区间:(1)f (x )=2x 3+3x 2-36x +1; (2) f (x )=sin x -x (0<x <π); (3)f (x )=3x 2-2ln x ; (4) f (x )=x 3-3tx .解 (1) f ′(x )=6x 2+6x -36.由f ′(x )>0得6x 2+6x -36>0,解得x <-3或x >2; 由f ′(x )<0解得-3<x <2.故f (x )的增区间是(-∞,-3),(2,+∞);减区间是(-3,2). (2)f ′(x )=cos x -1.因为0<x <π,所以cos x -1<0恒成立, 故函数f (x )的单调递减区间为(0,π). (3)函数的定义域为(0,+∞), f ′(x )=6x -2x =2·3x 2-1x . 令f ′(x )>0,即2·3x 2-1x >0, 解得-33<x <0或x >33. 又∵x >0,∴x >33. 令f ′(x )<0,即2·3x 2-1x <0, 解得x <-33或0<x <33. 又∵x >0,∴0<x <33.∴f (x )的单调递增区间为(33,+∞),单调递减区间为(0,33).(4)f′(x)=3x2-3t.令f′(x) >0,得3x2-3t>0,即x2>t,∴当t≤0时,f′(x)>0恒成立,函数的增区间是(-∞,+∞);当t>0时,由x2>t解得x>t或x<-t;由f′(x)<0解得-t<x<t,函数f(x)的增区间是(-∞,-t)和(t,+∞),减区间是(-t,t).综上,当t≤0时,f(x)的增区间是(-∞,+∞);当t>0时,f(x)的增区间是(-∞,-t),(t,+∞),减区间是(-t,t).规律方法求函数的单调区间的具体步骤:(1)优先确定f(x)的定义域;(2)计算导数f′(x);(3)解f′(x)>0和f′(x)<0;(4)定义域内满足f′(x)>0的区间为增区间,定义域内满足f′(x)<0的区间为减区间.【训练2】求函数f(x)=x3+3x的单调区间.解方法一函数f(x)的定义域为(-∞,0)∪(0,+∞).f′(x)=3x2-3x2=3⎝⎛⎭⎪⎫x2-1x2.由f′(x)>0,解得x<-1或x>1.由f′(x)<0,解得-1<x<1,且x≠0.所以函数f(x)的单调递增区间为(-∞,-1),(1,+∞);单调递减区间为(-1,0),(0,1).方法二函数f(x)的定义域为(-∞,0)∪(0,+∞).f′(x)=3x2-3x2=3(x2-1x2);令f′(x)=0,得x=±1.当x 变化时,f ′(x )与f (x )的变化情况如下表: x (-∞,-1)-1 (-1,0) (0,1) 1 (1,+∞)f ′(x )+0 --0 + f (x ) 单调递增Z -4单调递减] 单调递减]4单调递增Z0),(0,1).方向1 已知函数的单调性求参数的取值范围【例3-1】 已知函数f (x )=x 2+ax (x ≠0,常数a ∈R ).若函数f (x )在x ∈[2,+∞)上是单调递增的,求a 的取值范围.解 f ′(x )=2x -a x 2=2x 3-ax 2.要使f (x )在[2,+∞)上是单调递增的,则f ′(x )≥0在x ∈[2,+∞)时恒成立, 即2x 3-ax 2≥0在x ∈[2,+∞)时恒成立. ∵x 2>0,∴2x 3-a ≥0,∴a ≤2x 3在x ∈[2,+∞)上恒成立. ∴a ≤(2x 3)min .∵x ∈[2,+∞)时,y =2x 3是单调递增的, ∴(2x 3)min =16,∴a ≤16.当a =16时,f ′(x )=2x 3-16x 2≥0(x ∈[2,+∞))有且只有f ′(2)=0,∴a 的取值范围是(-∞,16].方向2利用函数的单调性证明不等式【例3-2】已知a,b为实数,且b>a>e,其中e为自然对数的底,求证:a b>b a.证明当b>a>e时,要证a b>b a,只要证b ln a>a ln b,即只要证ln aa>ln bb.构造函数y=ln xx(x>0),则y′=1-ln xx2.因为当x>e时,y′=1-ln xx2<0,所以函数y=ln xx在(e,+∞)内是减函数.又因为b>a>e,所以ln aa >ln bb.故a b>b a.规律方法(1)已知函数的单调性,求函数解析式中参数的取值范围,可转化为不等式恒成立问题,一般地,函数f(x)在区间I上单调递增(或减),转化为不等式f′(x)≥0(f′(x)≤0)在区间I上恒成立,再用有关方法可求出参数的取值范围.(2)“构造”是一种重要而灵活的思维方式,应用好构造思想解题的关键是:一要有明确的方向,即为什么目的而构造;二是要弄清条件的本质特点,以便重新进行逻辑组合.【训练3】若函数f(x)=x3+x2+mx+1是R上的单调函数,求实数m的取值范围.解f′(x)=3x2+2x+m.因为f(x)是R上的单调函数,所以f′(x)≥0恒成立或f′(x)≤0恒成立.因为二次项系数3>0,所以只能有f′(x)≥0恒成立.因此Δ=4-12m≤0,故m≥13.当m =13时,使f ′(x )=0的点只有一个x =-13,也符合题意.故实数m 的取值范围是⎣⎢⎡⎭⎪⎫13,+∞.课堂达标1.函数f (x )=x +ln x 在(0,6)上是( ) A.增函数 B.减函数C.在⎝ ⎛⎭⎪⎫0,1e 上是减函数,在⎝ ⎛⎭⎪⎫1e ,6上是增函数D.在⎝ ⎛⎭⎪⎫0,1e 上是增函数,在⎝ ⎛⎭⎪⎫1e ,6上是减函数解析 ∵f ′(x )=1+1x >0, ∴函数在(0,6)上单调递增. 答案 A2.f ′(x )是函数y =f (x )的导函数,若y =f ′(x )的图象如图所示,则函数y =f (x )的图象可能是( )解析 由导函数的图象可知,当x <0时,f ′(x )>0,即函数f (x )为增函数;当0<x <2时,f ′(x )<0,即f (x )为减函数;当x >2时,f ′(x )>0,即函数f (x )为增函数.观察选项易知D 正确. 答案 D3.若函数f (x )=x 3-ax 2-x +6在(0,1)内单调递减,则实数a 的取值范围是( )A.[1,+∞)B.a =1C.(-∞,1]D.(0,1)解析 ∵f ′(x )=3x 2-2ax -1,又f (x )在(0,1)内单调递减,∴不等式3x 2-2ax -1≤0在(0,1)内恒成立,∴f ′(0)≤0,且f ′(1)≤0,∴a ≥1. 答案 A4.函数y =x 2-4x +a 的增区间为______,减区间为______. 解析 y ′=2x -4,令y ′>0,得x >2;令y ′<0,得x <2, 所以y =x 2-4x +a 的增区间为(2,+∞),减区间为(-∞,2). 答案 (2,+∞) (-∞,2)5.若函数f (x )=ln x -12ax 2-2x 存在单调递减区间,则实数a 的取值范围是________.解析 f ′(x )=1x -ax -2=-ax 2+2x -1x.因为函数f (x )存在单调递减区间,所以f ′(x )≤0有解.又因为函数f (x )的定义域为(0,+∞),所以ax 2+2x -1≥0在(0,+∞)内有解. ①当a >0时,y =ax 2+2x -1为开口向上的抛物线,ax 2+2x -1≥0在(0,+∞)内恒有解;②当a <0时,y =ax 2+2x -1为开口向下的抛物线, 若ax 2+2x -1≥0在(0,+∞)内恒有解,则⎩⎨⎧Δ=4+4a ≥0,x =-1a >0,解得-1≤a <0, 而当a =-1时,f ′(x )=x 2-2x +1x =(x -1)2x ≥0,不符合题意,故-1<a <0;③当a =0时,显然符合题意.综上所述,a 的取值范围是(-1,+∞). 答案 (-1,+∞)课堂小结1.导数的符号反映了函数在某个区间上的单调性,导数绝对值的大小反映了函数在某个区间或某点附近变化的快慢程度.2.利用导数求函数f (x )的单调区间的一般步骤: (1)确定函数f (x )的定义域; (2)求导数f ′(x );(3)在函数f (x )的定义域内解不等式f ′(x )>0和f ′(x )<0; (4)根据(3)的结果确定函数f (x )的单调区间.基础过关1.函数f (x )=(x -3)e x 的单调递增区间是( ) A.(-∞,2) B.(0,3) C.(1,4)D.(2,+∞)解析 f ′(x )=(x -3)′e x +(x -3)(e x )′=(x -2)e x ,令f ′(x )>0,即(x -2)e x >0,解得x >2,故选D. 答案 D2.y =x ln x 在(0,5)内的单调性是( ) A.单调递增 B.单调递减C.在⎝ ⎛⎭⎪⎫0,1e 内单调递减,在⎝ ⎛⎭⎪⎫1e ,5内单调递增D.在⎝ ⎛⎭⎪⎫0,1e 内单调递增,在⎝ ⎛⎭⎪⎫1e ,5内单调递减解析 函数的定义域为(0,+∞).y ′=ln x +1,令y ′>0,得x >1e ;令y ′<0,得0<x <1e .所以函数y =x ln x 在⎝ ⎛⎭⎪⎫0,1e 内单调递减,在⎝ ⎛⎭⎪⎫1e ,5内单调递增.答案 C3.函数f (x )=x 3+ax 2+bx +c ,其中a ,b ,c 为实数,当a 2-3b <0时,f (x )是( ) A.增函数 B.减函数 C.常数D.既不是增函数也不是减函数解析 求函数的导函数f ′(x )=3x 2+2ax +b ,导函数对应方程f ′(x )=0的Δ=4(a 2-3b )<0,所以f ′(x )>0恒成立,故f (x )是增函数. 答案 A4.函数y =f (x )在其定义域⎝ ⎛⎭⎪⎫-32,3内可导,其图象如图所示,记y =f (x )的导函数为y =f ′(x ),则不等式f ′(x )≤0的解集为________.解析 函数y =f (x )为减函数的区间,反映在图象上图象是下降的. 答案 ⎣⎢⎡⎦⎥⎤-13,1∪[2,3)5.当x >0时,f (x )=x +2x 的单调递减区间是________.解析 f ′(x )=1-2x 2=x 2-2x 2=(x -2)(x +2)x 2.由f ′(x )<0且x >0得0<x < 2. 答案 (0,2)6.已知函数f (x )=x 3+bx 2+cx +d 的图象经过点P (0,2),且在点M (-1,f (-1))处的切线方程为6x -y +7=0. (1)求函数y =f (x )的解析式; (2)求函数y =f (x )的单调区间.解 (1)由y =f (x )的图象经过点P (0,2),知d =2,∴f (x )=x 3+bx 2+cx +2,f ′(x )=3x 2+2bx +c .由在点M (-1,f (-1))处的切线方程为6x -y +7=0,知-6-f (-1)+7=0,即f (-1)=1,f ′(-1)=6.∴⎩⎪⎨⎪⎧3-2b +c =6,-1+b -c +2=1,即⎩⎪⎨⎪⎧2b -c =-3,b -c =0,解得b =c =-3. 故所求的解析式是f (x )=x 3-3x 2-3x +2.(2)f ′(x )=3x 2-6x -3.令f ′(x )>0,得x <1-2或x >1+2;令f ′(x )<0,得1-2<x <1+ 2.故f (x )=x 3-3x 2-3x +2的单调递增区间为(-∞,1-2)和(1+2,+∞),单调递减区间为(1-2,1+2).7.已知向量a =(x 2,x +1),b =(1-x ,t ).若函数f (x )=a ·b 在区间(-1,1)上是增函数,求t 的取值范围.解 由题意得f (x )=x 2(1-x )+t (x +1)=-x 3+x 2+tx +t ,则f ′(x )=-3x 2+2x +t .若f (x )在(-1,1)上是增函数,则在(-1,1)上f ′(x )≥0恒成立.即t ≥3x 2-2x 在区间(-1,1)上恒成立.令函数g (x )=3x 2-2x ,由于g (x )的图象是对称轴为x =13,开口向上的抛物线,故t ≥3x 2-2x 在区间(-1,1)上恒成立⇔t ≥g (-1),即t ≥5.故t的取值范围是[5,+∞).能力提升8.已知函数f(x)在定义域R上为增函数,且f(x)<0,则g(x)=x2f(x)在(-∞,0)内的单调情况一定是()A.单调递减B.单调递增C.先增后减D.先减后增解析因为函数f(x)在定义域R上为增函数,所以f′(x)≥0.又因为g′(x)=2xf(x)+x2f′(x),所以当x∈(-∞,0)时,g′(x)>0恒成立,所以g(x)=x2f(x)在(-∞,0)内单调递增.答案 B9.已知函数y=xf′(x)的图象如图所示,选项中的四个图象中能大致表示y=f(x)的图象的是()解析由题图可知,当x<-1时,xf′(x)<0,所以f′(x)>0,此时原函数为增函数,图象应是上升的;当-1<x <0时,xf ′(x )>0,所以f ′(x )<0,此时原函数为减函数,图象应是下降的;当0<x <1时,xf ′(x )<0,所以f ′(x )<0,此时原函数为减函数,图象应是下降的;当x >1时,xf ′(x )>0,所以f ′(x )>0,此时原函数为增函数,图象应是上升的.由上述分析可知选C.答案 C10.若函数f (x )=kx -ln x 在区间(1,+∞)上单调递增,则k 的取值范围是________.解析 由于f ′(x )=k -1x,f (x )=kx -ln x 在区间(1,+∞)上单调递增,故f ′(x )=k -1x ≥0在(1,+∞)上恒成立.由于k ≥1x ,而0<1x <1,故k ≥1,即k 的取值范围是[1,+∞).答案 [1,+∞)11. 已知函数f (x )=x 3-2x +e x -1e x ,其中e 是自然对数的底数,若f (a -1)+f (2a 2)≤0,则实数a 的取值范围是________.解析 f ′(x )=3x 2-2+e x +1e x ≥3x 2-2+2e x ·1ex =3x 2≥0且f ′(x )不恒为0,所以f (x )为单调递增函数.又f (-x )=(-x )3-2(-x )+e -x -1e -x =-⎝ ⎛⎭⎪⎫x 3-2x +e x -1e x =-f (x ),故f (x )为奇函数.由f (a -1)+f (2a 2)≤0得,f (2a 2)≤-f (a -1)=f (1-a ),所以2a 2≤1-a ,解得-1≤a ≤12,故实数a 的取值范围为⎣⎢⎡⎦⎥⎤-1,12. 答案 ⎣⎢⎡⎦⎥⎤-1,12 12.已知函数f (x )=ln x -f ′(1)x +1-ln 2,试求f (x )的单调区间.解 由f (x )=ln x -f ′(1)x +1-ln 2,x ∈(0,+∞),得f ′(x )=1x -f ′(1).令x =1,则f ′(1)=1-f ′(1),∴f ′(1)=12,f ′(x )=1x -12.由f ′(x )>0,即1x -12>0,得0<x <2;由f ′(x )<0,即1x -12<0,得x >2.故f (x )的单调递增区间为(0,2),单调递减区间为(2,+∞).创新突破13.已知函数f (x )=x 3+ax 2+x +1,a ∈R .(1)讨论函数f (x )的单调区间;(2)设函数f (x )在区间⎝ ⎛⎭⎪⎫-23,-13内是减函数,求a 的取值范围. 解 (1)f ′(x )=3x 2+2ax +1,Δ=4(a 2-3).当Δ>0,即a >3或a <-3时,令f ′(x )>0,即3x 2+2ax +1>0,解得x >-a +a 2-33或x <-a -a 2-33;令f ′(x )<0,即3x 2+2ax +1<0, 解得-a -a 2-33<x <-a +a 2-33. 故函数f (x )的单调递增区间是⎝ ⎛⎭⎪⎫-∞,-a -a 2-33,⎝ ⎛⎭⎪⎫-a +a 2-33,+∞; 单调递减区间是⎝ ⎛⎭⎪⎫-a -a 2-33,-a +a 2-33. 当Δ<0,即-3<a <3时,对所有的x ∈R 都有f ′(x )>0,故f (x )在R 上单调递增.当Δ=0,即a =±3时,f ′⎝ ⎛⎭⎪⎫-a 3=0,且对所有的x ≠-a 3都有f ′(x )>0,故f (x )在R 上单调递增.(2)由(1),知只有当a >3或a <-3时,f (x )在⎝ ⎛⎭⎪⎫-a -a 2-33,-a +a 2-33内是减函数, 所以⎩⎪⎨⎪⎧-a -a 2-33≤-23,-a +a 2-33≥-13.解得a ≥2.故a 的取值范围是[2,+∞).。

§1.3 导数

§1.3  导数

w w w i 则: lim lim lim e z 0 z 0 z 0 u iv i u v i lim e i e 0
再令z沿横向逼近于零, 即z ei i ei 0
沿射线 y k x, x 0 趋于零时,上式的极限 是一个与 k 有关的值
时, f z f 0 的极限不存在。
k ,表明当 z 0 1 ki
z
充分必要条件
设 f(z)=u(x,y)+iv(x,y),若u(x,y)和v(x,y) 在(x,y)处满足
u v v u , x y x y
逆命题不成立
f ( z)
Re z Im z
f(z)在z=0处不可导
例1:证明函数 f z
Re z Im z
在 z 0 满足C-R方程,但在 z 0处不可导。 证: u x, y
xy ,
v x, y 0
柯西-黎曼方程或柯西-黎曼条件(C-R条件)
复变函数可导的必要条件
Cauchy-Riemann条件
必要条件
设 f(z)=u(x,y)+iv(x,y)在区域B内一点 z=x+iy可导,那么有 u u v v 1. , , , 在( x, y )点处存在; x y x y
2. 在( x, y )点处满足Cauchy Riemann 条件
dw dz 1 dw dz dF ( w) dF dw dz dw dz
举例
dez z e dz
d sin z cos z dz d sinh z cosh z dz d cosh z sinh z dz

新人教A版选修2-2《1.3.3函数的最值与导数》同步练习及答案

新人教A版选修2-2《1.3.3函数的最值与导数》同步练习及答案

选修2-2 1.3.3 函数的最值与导数一、选择题1.函数y =f (x )在区间[a ,b ]上的最大值是M ,最小值是m ,若M =m ,则f ′(x )( ) A .等于0 B .大于0 C .小于0D .以上都有可能[答案] A[解析] ∵M =m ,∴y =f (x )是常数函数 ∴f ′(x )=0,故应选A.2.设f (x )=14x 4+13x 3+12x 2在[-1,1]上的最小值为( )A .0B .-2C .-1D.1312[答案] A[解析] y ′=x 3+x 2+x =x (x 2+x +1) 令y ′=0,解得x =0.∴f (-1)=512,f (0)=0,f (1)=1312∴f (x )在[-1,1]上最小值为0.故应选A.3.函数y =x 3+x 2-x +1在区间[-2,1]上的最小值为( ) A.2227B .2C .-1D .-4[答案] C[解析] y ′=3x 2+2x -1=(3x -1)(x +1) 令y ′=0解得x =13或x =-1当x =-2时,y =-1;当x =-1时,y =2; 当x =13时,y =2227;当x =1时,y =2.所以函数的最小值为-1,故应选C.4.函数f (x )=x 2-x +1在区间[-3,0]上的最值为( ) A .最大值为13,最小值为34B .最大值为1,最小值为4C .最大值为13,最小值为1D .最大值为-1,最小值为-7 [答案] A[解析] ∵y =x 2-x +1,∴y ′=2x -1,令y ′=0,∴x =12,f (-3)=13,f ⎝ ⎛⎭⎪⎫12=34,f (0)=1.5.函数y =x +1-x 在(0,1)上的最大值为( ) A. 2 B .1 C .0D .不存在[答案] A[解析] y ′=12x -121-x =12·1-x -xx ·1-x由y ′=0得x =12,在⎝ ⎛⎭⎪⎫0,12上y ′>0,在⎝ ⎛⎭⎪⎫12,1上 y ′<0.∴x =12时y 极大=2,又x ∈(0,1),∴y max = 2.6.函数f (x )=x 4-4x (|x |<1)( ) A .有最大值,无最小值 B .有最大值,也有最小值 C .无最大值,有最小值 D .既无最大值,也无最小值 [答案] D[解析] f ′(x )=4x 3-4=4(x -1)(x 2+x +1). 令f ′(x )=0,得x =1.又x ∈(-1,1) ∴该方程无解,故函数f (x )在(-1,1)上既无极值也无最值.故选D.7.函数y =2x 3-3x 2-12x +5在[0,3]上的最大值和最小值分别是( ) A .5,-15B .5,4C .-4,-15D .5,-16[答案] A[解析] y ′=6x 2-6x -12=6(x -2)(x +1), 令y ′=0,得x =2或x =-1(舍). ∵f (0)=5,f (2)=-15,f (3)=-4, ∴y max =5,y min =-15,故选A.8.已知函数y =-x 2-2x +3在[a,2]上的最大值为154,则a 等于( )A .-32B.12 C .-12D.12或-32[答案] C[解析] y ′=-2x -2,令y ′=0得x =-1. 当a ≤-1时,最大值为f (-1)=4,不合题意. 当-1<a <2时,f (x )在[a,2]上单调递减, 最大值为f (a )=-a 2-2a +3=154,解得a =-12或a =-32(舍去).9.若函数f (x )=x 3-12x 在区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是( )A .k ≤-3或-1≤k ≤1或k ≥3B .-3<k <-1或1<k <3C .-2<k <2D .不存在这样的实数 [答案] B[解析] 因为y ′=3x 2-12,由y ′>0得函数的增区间是(-∞,-2)和(2,+∞),由y ′<0,得函数的减区间是(-2,2),由于函数在(k -1,k +1)上不是单调函数,所以有k -1<-2<k +1或k -1<2<k +1,解得-3<k <-1或1<k <3,故选B.10.函数f (x )=x 3+ax -2在区间[1,+∞)上是增函数,则实数a 的取值范围是( ) A .[3,+∞) B .[-3,+∞) C .(-3,+∞)D .(-∞,-3)[答案] B[解析] ∵f (x )=x 3+ax -2在[1,+∞)上是增函数,∴f ′(x )=3x 2+a ≥0在[1,+∞)上恒成立即a ≥-3x 2在[1,+∞)上恒成立 又∵在[1,+∞)上(-3x 2)max =-3 ∴a ≥-3,故应选B. 二、填空题11.函数y =x 32+(1-x )32,0≤x ≤1的最小值为______.[答案]22由y ′>0得x >12,由y ′<0得x <12.此函数在⎣⎢⎡⎦⎥⎤0,12上为减函数,在⎣⎢⎡⎦⎥⎤12,1上为增函数,∴最小值在x =12时取得,y min =22.12.函数f (x )=5-36x +3x 2+4x 3在区间[-2,+∞)上的最大值________,最小值为________.[答案] 不存在;-2834[解析] f ′(x )=-36+6x +12x 2,令f ′(x )=0得x 1=-2,x 2=32;当x >32时,函数为增函数,当-2≤x ≤32时,函数为减函数,所以无最大值,又因为f (-2)=57,f ⎝ ⎛⎭⎪⎫32=-2834,所以最小值为-2834.13.若函数f (x )=xx 2+a(a >0)在[1,+∞)上的最大值为33,则a 的值为________. [答案]3-1[解析] f ′(x )=x 2+a -2x 2(x 2+a )2=a -x 2(x 2+a )2令f ′(x )=0,解得x =a 或x =-a (舍去) 当x >a 时,f ′(x )<0;当0<x <a 时,f ′(x )>0; 当x =a 时,f (x )=a 2a =33,a =32<1,不合题意. ∴f (x )max =f (1)=11+a =33,解得a =3-1.14.f (x )=x 3-12x +8在[-3,3]上的最大值为M ,最小值为m ,则M -m =________. [答案] 32[解析] f ′(x )=3x 2-12 由f ′(x )>0得x >2或x <-2, 由f ′(x )<0得-2<x <2.∴f (x )在[-3,-2]上单调递增,在[-2,2]上单调递减,在[2,3]上单调递增. 又f (-3)=17,f (-2)=24,f (2)=-8,f (3)=-1,∴最大值M =24,最小值m =-8, ∴M -m =32. 三、解答题15.求下列函数的最值:(1)f (x )=sin2x -x ⎝ ⎛⎭⎪⎫-π2≤x ≤π2;(2)f (x )=x +1-x 2.[解析] (1)f ′(x )=2cos2x -1. 令f ′(x )=0,得cos2x =12.又x ∈⎣⎢⎡⎦⎥⎤-π2,π2,∴2x ∈[-π,π], ∴2x =±π3,∴x =±π6.∴函数f (x )在⎣⎢⎡⎦⎥⎤-π2,π2上的两个极值分别为f ⎝ ⎛⎭⎪⎫π6=32-π6,f ⎝ ⎛⎭⎪⎫-π6=-32+π6. 又f (x )在区间端点的取值为f ⎝ ⎛⎭⎪⎫π2=-π2,f ⎝ ⎛⎭⎪⎫-π2=π2. 比较以上函数值可得f (x )max =π2,f (x )min =-π2.(2)∵函数f (x )有意义,∴必须满足1-x 2≥0,即-1≤x ≤1, ∴函数f (x )的定义域为[-1,1].f ′(x )=1+12(1-x 2)-12·(1-x 2)′=1-x 1-x2. 令f ′(x )=0,得x =22. ∴f (x )在[-1,1]上的极值为f ⎝⎛⎭⎪⎫22=22+1-⎝⎛⎭⎪⎫222= 2. 又f (x )在区间端点的函数值为f (1)=1,f (-1)=-1,比较以上函数值可得f (x )max =2,f (x )min =-1.16.设函数f (x )=ln(2x +3)+x 2.求f (x )在区间⎣⎢⎡⎦⎥⎤-34,14上的最大值和最小值.[解析] f (x )的定义域为⎝ ⎛⎭⎪⎫-32,+∞. f ′(x )=2x +22x +3=4x 2+6x +22x +3=2(2x +1)(x +1)2x +3.当-32<x <-1时,f ′(x )>0;当-1<x <-12时,f ′(x )<0;当x >-12时,f ′(x )>0,所以f (x )在⎣⎢⎡⎦⎥⎤-34,14上的最小值为 f ⎝ ⎛⎭⎪⎫-12=ln2+14.又f ⎝ ⎛⎭⎪⎫-34-f ⎝ ⎛⎭⎪⎫14=ln 32+916-ln 72-116=ln 37+12=12⎝ ⎛⎭⎪⎫1-ln 499<0, 所以f (x )在区间⎣⎢⎡⎦⎥⎤-34,14上的最大值为 f ⎝ ⎛⎭⎪⎫14=ln 72+116.17.(2010·安徽理,17)设a 为实数,函数f (x )=e x-2x +2a ,x ∈R . (1)求f (x )的单调区间及极值;(2)求证:当a >ln2-1且x >0时,e x>x 2-2ax +1.[分析] 本题考查导数的运算,利用导数研究函数的单调区间,求函数的极值和证明函数不等式,考查运算能力、综合分析和解决问题的能力.解题思路是:(1)利用导数的符号判定函数的单调性,进而求出函数的极值.(2)将不等式转化构造函数,再利用函数的单调性证明.[解析] (1)解:由f (x )=e x-2x +2a ,x ∈R 知f ′(x )=e x-2,x ∈R . 令f ′(x )=0,得x =ln2.于是当x 变化时,f ′(x ),f (x )的变化情况如下表:单调递减单调递增故f (x )(ln2,+∞),f (x )在x =ln2处取得极小值,极小值为f (ln2)=e ln 2-2ln2+2a =2(1-ln2+a ).(2)证明:设g (x )=e x-x 2+2ax -1,x ∈R ,于是g ′(x )=e x-2x +2a ,x ∈R .由(1)知当a >ln2-1时,g ′(x )最小值为g ′(ln2)=2(1-ln2+a )>0. 于是对任意x ∈R ,都有g ′(x )>0,所以g (x )在R 内单调递增. 于是当a >ln2-1时,对任意x ∈(0,+∞),都有g (x )>g (0). 而g (0)=0,从而对任意x ∈(0,+∞),g (x )>0. 即e x -x 2+2ax -1>0,故e x >x 2-2ax +1. 18.已知函数f (x )=4x 2-72-x ,x ∈[0,1].(1)求f (x )的单调区间和值域;(2)设a ≥1,函数g (x )=x 3-3a 2x -2a ,x ∈[0,1].若对于任意x 1∈[0,1],总存在x 0∈[0,1],使得g (x 0)=f (x 1)成立,求a 的取值范围.[解析] (1)对函数f (x )求导,得f ′(x )=-4x 2+16x -7(2-x )2=-(2x -1)(2x -7)(2-x )2令f ′(x )=0解得x =12或x =72.当x 变化时,f ′(x ),f (x )的变化情况如下表:所以,当x ∈(0,2)时,f (x )是减函数;当x ∈⎝ ⎛⎭⎪⎫12,1时,f (x )是增函数. 当x ∈[0,1]时,f (x )的值域为[-4,-3]. (2)g ′(x )=3(x 2-a 2).因为a ≥1,当x ∈(0,1)时,g ′(x )<0.因此当x ∈(0,1)时,g (x )为减函数,从而当x ∈[0,1]时有g (x )∈[g (1),g (0)]. 又g (1)=1-2a -3a 2,g (0)=-2a ,即x ∈[0,1]时有g (x )∈[1-2a -3a 2,-2a ]. 任给x 1∈[0,1],f (x 1)∈[-4,-3],存在x 0∈[0,1]使得g (x 0)=f (x 1)成立, 则[1-2a -3a 2,-2a ]⊇[-4,-3].即⎩⎪⎨⎪⎧1-2a -3a 2≤-4,①-2a ≥-3.②解①式得a ≥1或a ≤-53;解②式得a ≤32.又a ≥1,故a 的取值范围为1≤a ≤32.。

高等数学教材第三版答案

高等数学教材第三版答案

高等数学教材第三版答案为了方便广大高等数学学习者更好地学习,我特意整理了高等数学教材第三版的答案,希望能对大家的学习有所帮助。

下面是对教材中各章节习题的答案解析。

第一章微分学1.1 函数与极限1.2 导数与微分1.3 微分中值定理与导数的应用第二章积分学2.1 定积分2.2 反常积分2.3 定积分的应用第三章无穷级数3.1 数项级数3.2 幂级数3.3 函数项级数第四章高次方程及其解法4.1 代数方程与代数方程的根4.2 高次代数方程的整数根与有理根4.3高次代数方程的正根与实根4.4高次代数方程的复根第五章傅立叶级数5.1 傅立叶级数的定义与性质5.2 奇延拓与偶延拓5.3 傅立叶级数的收敛性第六章偏微分方程6.1 偏导数与偏微分方程6.2 一阶线性偏微分方程6.3 高阶线性偏微分方程第七章多元函数微分学7.1 多元函数的极限与连续7.2 一阶偏导数与全微分7.3 高阶偏导数与多元函数微分学应用第八章向量代数与空间解析几何8.1 向量代数8.2 空间解析几何8.3 平面与直线的夹角与距离第九章多元函数积分学9.1 二重积分9.2 三重积分9.3 三重积分的应用第十章曲线积分与曲面积分10.1 第一类曲线积分10.2 第二类曲线积分10.3 曲面积分第十一章广义重积分与格林公式11.1 广义重积分11.2 格林公式及其应用11.3 闭曲线上格林公式的应用第十二章级数的一致收敛性12.1 函数项级数的一致收敛性12.2 幂级数的一致收敛性12.3 一致收敛性的应用第十三章线性代数初步13.1 行列式13.2 向量空间与线性方程组13.3 特征值与特征向量第十四章线性代数进阶14.1 线性空间与线性映射14.2 矩阵与线性映射14.3 特征多项式与相似矩阵注意:以上只是教材中各章节的题目答案简要解析,建议在学习过程中,除了参考答案之外,还需要仔细研读教材中的知识点,并通过大量的练习来巩固和加深理解。

人教a版数学【选修2-2】练习:1.3.3函数的最大(小)值与导数(含答案)

人教a版数学【选修2-2】练习:1.3.3函数的最大(小)值与导数(含答案)

选修2-2 第一章 1.3 1.3.3一、选择题1.函数y =2x 3-3x 2-12x +5在[-2,1]上的最大值、最小值分别是( ) A .12;-8 B .1;-8 C .12;-15 D .5;-16[答案] A[解析] y ′=6x 2-6x -12,由y ′=0⇒x =-1或x =2(舍去).x =-2时y =1;x =-1时y =12;x =1时y =-8.∴y max =12,y min =-8.故选A.2.(2014·北京东城区联考)如图是函数y =f (x )的导函数f ′(x )的图象,则下面判断正确的是( )A .在区间(-2,1)上f (x )是增函数B .在(1,3)上f (x )是减函数C .在(4,5)上f (x )是增函数D .当x =4时,f (x )取极大值[答案] C[解析] 由导函数y =f ′(x )的图象知,f (x )在(-2,1)上先减后增,在(1,3)上先增后减,在(4,5)上单调递增,x =4是f (x )的极小值点,故A 、B 、D 错误,选C.3.(2014·安徽程集中学期中)已知函数f (x )(x ∈R )满足f ′(x )>f (x ),则( ) A .f (2)<e 2f (0) B .f (2)≤e 2f (0) C .f (2)=e 2f (0) D .f (2)>e 2f (0)[答案] D[分析] 所给四个选项实质是比较f (2)与e 2f (0)的大小,即比较f (2)e 2与f (0)e 0的大小,故构造函数F (x )=f (x )ex 解决.[解析] 设F (x )=f (x )e x ,则F ′(x )=f ′(x )-f (x )e x>0, ∴F (x )在R 上为增函数,故F (2)>F (0), ∴f (2)e 2>f (0)e 0即f (2)>e 2f (0).4.函数f (x )=x (1-x 2)在[0,1]上的最大值为( ) A .239 B .229C .329D .38[答案] A[解析] f ′(x )=1-3x 2=0,得x =33∈[0,1], ∵f ⎝⎛⎭⎫33=239,f (0)=f (1)=0. ∴f (x )max =239. 5.(2014·河南淇县一中模拟)设a ∈R ,若函数y =e ax +3x ,x ∈R 有大于零的极值点,则( )A .a >-3B .a <-3C .a >-13D .a <-13[答案] B[解析] y ′=a e ax +3,由条件知,方程a e ax+3=0有大于零的实数根,∴0<-3a <1,∴a <-3.6.(2014·开滦二中期中)若函数f (x )=x 3-6bx +3b 在(0,1)内有极小值,则实数b 的取值范围是( )A .(0,1)B .(-∞,1)C .(0,+∞)D .(0,12)[答案] D[解析] f ′(x )=3x 2-6b ,∵f (x )在(0,1)内有极小值,∴在(0,1)内存在点x 0,使得在(0,x 0)内f ′(x )<0,在(x 0,1)内f ′(x )>0,由f ′(x )=0得,x 2=2b >0,∴⎩⎪⎨⎪⎧b >02b <1,∴0<b <12.7.(2014·抚顺市六校联合体期中)已知R 上可导函数f (x )的图象如图所示,则不等式(x 2-2x -3)f ′(x )>0的解集为( )A.(-∞,-2)∪(1,+∞)B.(-∞,-2)∪(1,2)C.(-∞,-1)∪(-1,0)∪(2,+∞)D.(-∞,-1)∪(-1,1)∪(3,+∞)[答案] D[解析]由f(x)的图象知,在(-∞,-1)上f′(x)>0,在(-1,1)上f′(x)<0,在(1,+∞)上f′(x)>0,又x2-2x-3>0的解集为(-∞,-1)∪(3,+∞),x2-2x-3<0的解集为(-1,3).∴不等式(x2-2x-3)f′(x)>0的解集为(-∞,-1)∪(-1,1)∪(3,+∞).二、填空题8.(2014·三亚市一中月考)曲线y=x2x-1在点(1,1)处的切线为l,则l上的点到圆x2+y2+4x+3=0上的点的最近距离是________.[答案]22-1[解析]y′|x=1=-1(2x-1)2|x=1=-1,∴切线方程为y-1=-(x-1),即x+y-2=0,圆心(-2,0)到直线的距离d=22,圆的半径r=1,∴所求最近距离为22-1.9.已知函数f(x)=x(x-c)2在x=2处取极大值,则常数c的值为________.[答案] 6[解析]f(x)=x(x-c)2=x3-2cx2+c2x,f′(x)=3x2-4cx+c2,令f′(2)=0解得c=2或6.当c=2时,f′(x)=3x2-8x+4=(3x-2)(x-2),故f(x)在x=2处取得极小值,不合题意舍去;当c=6时,f′(x)=3x2-24x+36=3(x2-8x+12)=3(x-2)(x-6),故f(x)在x=2处取得极大值.三、解答题10.(2014·淄博市临淄中学学分认定考试)已知函数f(x)=x3+ax2+bx+5,曲线y=f(x)在点P(1,f(1))处的切线方程为y=3x+1.(1)求a、b的值;(2)求y=f(x)在[-3,1]上的最大值.[解析](1)依题意可知点P(1,f(1))为切点,代入切线方程y=3x+1可得,f(1)=3×1+1=4,∴f(1)=1+a+b+5=4,即a+b=-2,又由f(x)=x3+ax2+bx+5得,f′(x)=3x2+2ax+b,而由切线y =3x +1的斜率可知f ′(1)=3, ∴3+2a +b =3,即2a +b =0, 由⎩⎪⎨⎪⎧a +b =-2,2a +b =0.解得⎩⎪⎨⎪⎧a =2,b =-4,∴a =2,b =-4.(2)由(1)知f (x )=x 3+2x 2-4x +5, f ′(x )=3x 2+4x -4=(3x -2)(x +2), 令f ′(x )=0,得x =23或x =-2.当x 变化时,f (x ),f ′(x )的变化情况如下表:∴f (x )的极大值为f (-2)=13,极小值为f (3)=27又f (-3)=8,f (1)=4, ∴f (x )在[-3,1]上的最大值为13.一、选择题11.函数f (x )=x 4-4x (|x |<1)( ) A .有最大值,无最小值 B .有最大值,也有最小值 C .无最大值,有最小值 D .既无最大值,也无最小值[答案] D[解析] f ′(x )=4x 3-4=4(x -1)(x 2+x +1). 令f ′(x )=0,得x =1.又x ∈(-1,1)且1∉(-1,1), ∴该方程无解,故函数f (x )在(-1,1)上既无极值也无最值.故选D.12.(2013·海淀区高二期中)函数f (x )在其定义域内可导,其图象如图所示,则导函数y =f ′(x )的图象可能为( )[答案] C[解析] 由图象知,f (x )在x <0时,图象增→减→增,x >0时,单调递增,故f ′(x )在x <0时,其值为+→-→+,在x >0时为+,故选C.13.若函数f (x )=x 3-12x 在区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是( )A .k ≤-3或-1≤k ≤1或k ≥3B .-3<k <-1或1<k <3C .-2<k <2D .不存在这样的实数[答案] B[解析] 因为y ′=3x 2-12,由y ′>0得函数的增区间是(-∞,-2)和(2,+∞),由y ′<0得函数的减区间是(-2,2),由于函数在(k -1,k +1)上不是单调函数,所以有k -1<-2<k +1或k -1<2<k +1,解得-3<k <-1或1<k <3,故选B.14.函数f (x )=x 3+ax -2在区间[1,+∞)上是增函数,则实数a 的取值范围是( ) A .[3,+∞) B .[-3,+∞) C .(-3,+∞) D .(-∞,-3)[答案] B[解析] ∵f (x )=x 3+ax -2在[1,+∞)上是增函数,∴f ′(x )=3x 2+a ≥0在[1,+∞)上恒成立,即a ≥-3x 2在[1,+∞)上恒成立, 又∵在[1,+∞)上(-3x 2)max =-3, ∴a ≥-3,故应选B. 二、填空题15.(2013·苏州五中高二期中)已知函数f (x )是定义在R 上的奇函数,f (1)=0,当x >0时,有xf ′(x )-f (x )x2>0,则不等式x 2f (x )>0的解集是________. [答案] (-1,0)∪(1,+∞)[解析] 令g (x )=f (x )x (x ≠0),∵x >0时,xf ′(x )-f (x )x2>0, ∴g ′(x )>0,∴g (x )在(0,+∞)上为增函数,又f (1)=0,∴g (1)=f (1)=0,∴在(0,+∞)上g (x )>0的解集为(1,+∞),∵f (x )为奇函数,∴g (x )为偶函数,∴在(-∞,0)上g (x )<0的解集为(-1,0),由x 2f (x )>0得f (x )>0,∴f (x )>0的解集为(-1,0)∪(1,+∞).三、解答题16.(2013·陕西师大附中一模)设函数f (x )=e x -k22-x .(1)若k =0,求f (x )的最小值; (2)若k =1,讨论函数f (x )的单调性.[解析] (1)k =0时,f (x )=e x-x ,f ′(x )=e x-1.当x ∈(-∞,0)时,f ′(x )<0;当x ∈(0,+∞)时,f ′(x )>0,所以f (x )在(-∞,0)上单调减小,在(0,+∞)上单调增加,故f (x )的最小值为f (0)=1.(2)若k =1,则f (x )=e x -12x 2-x ,定义域为R .∴f ′(x )=e x -x -1,令g (x )=e x -x -1,则g ′(x )=e x -1, 由g ′(x )≥0得x ≥0,所以g (x )在[0,+∞)上单调递增, 由g ′(x )<0得x <0,所以g (x )在(-∞,0)上单调递减, ∴g (x )min =g (0)=0,即f ′(x )min =0,故f ′(x )≥0. 所以f (x )在R 上单调递增.17.(2014·沈阳市模拟)设函数f (x )=x 3+ax 2+x +1,a ∈R .(1)若x =1时,函数f (x )取得极值,求函数f (x )的图像在x =-1处的切线方程; (2)若函数f (x )在区间(12,1)内不单调,求实数a 的取值范围.[解析] (1)f ′(x )=3x 2+2ax +1,由f ′(1)=0, 得a =-2,∴f (x )=x 3-2x 2+x +1,当x =-1时,y =-3, 即切点(-1,-3),k =f ′(x 0)=3x 20-4x 0+1令x 0=-1得k =8, ∴切线方程为8x -y +5=0.(2)f (x )在区间(12,1)内不单调,即f ′(x )=0在(12,1)有解,所以3x 2+2ax +1=0,2ax =-3x 2-1,由x ∈(12,1),2a =-3x -1x ,令h (x )=-3x -1x,∴h ′(x )=-3+1x 2<0,知h (x )在(33,1)单调递减,在(12,33]上单调递增,所以h (1)<h (x )≤h (33), 即h (x )∈[-4,-23],-4≤2a ≤-23, 即-2<a ≤-3,而当a =-3时,f ′(x )=3x 2-23x +1=(3x -1)2≥0,∴舍去, 综上a ∈(-2,-3).。

2014-2015学年高中数学(人教版选修2-2)配套课件第一章 1.3 1.3.4 函数与导数综合问题

2014-2015学年高中数学(人教版选修2-2)配套课件第一章 1.3 1.3.4 函数与导数综合问题

4x2+4x-2x2 x2 令 g(x)=x- -ln(1+x), 则 g(0)=0.又 g′(x)=1- 21+x 41+x2 1 2x2 - = >0, 1+x 41+x2 ∴g(x)在(0,+∞)内单调递增, x2 ∴x∈(0,+∞),x- -ln(1+x)>0 恒成立. 21+x x2 x2 ∴x- <ln(1+x)<x- . 2 21+x 点评: 利用导数证明不等式, 主要是利用单调性和最值法证明不等式.
栏 目 链 接
基 础 梳 理
3.导数与函数的极值点及极值:曲线在极值点处切线 的斜率为 0,极值点处的导数为 0;曲线在极大值点左侧切 线的斜率为正,右侧为负;曲线在极小值点左侧切线的斜 率为负,右侧为正. 4.导数与函数的最值:一般地,在区间 [a,b]上连续 的函数 y=f(x)在[a,b]上必有最大值与最小值.
栏 目 链 接
自 测 自 评
1 . 曲 线 y = x(3ln x + 1) 在 点 (1,1) 处 的 切 线 方 程 为 ____________.
栏 目 链 接
答案:y=1+3x-x3 有( A.极小值-1,极大值 1 B.极小值 1,极大值 3 C.极小值-2,极大值 2 D.极小值-1,极大值 3
栏 目 链 接
跟 踪 训 练
1.已知函数 f(x)=mx3+nx2 (m、n∈R,m≠0),函数 y= f(x)的图象在点(2,f(2))处的切线与 x 轴平行. (1)用关于 m 的代数式表示 n; (2)求函数 f(x)的单调增区间.
解析:(1)由已知条件得 f′(x)=3mx2+2nx, 又 f′(2)=0,所以 3m+n=0,故 n=-3m.
栏 目 链 接
1 x
点评:求过定点的曲线的切线方程,要区分定点是在 曲线上还是在曲线外,若定点在曲线上,则为切点,可直 接求导得出切线斜率,用点斜式写出切线方程;若不是切 点,则设出切点坐标,通过切线与曲线的相切关系列出关 于切点坐标的方程,求出切点坐标,再求出切线方程.
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[解析] 设f′(x)与x轴的4个交点,从左至右依次为x1 、x2、x3、x4, 当x<x1时,f′(x)>0,f(x)为增函数, 当x1<x<x2时,f′(x)<0,f(x)为减函数,则x=x1为极大
值点,同理,x=x3 为极大值点,x=x2 ,x=x4 为极小
值点,故选C. [答案] C
练 2.
3 2 2
尝试完成作图情形。N型曲线(

5 结合 f(x)的单调性可知,当 f(x)的极大值 +a<0, 27 5 即 a<-27时,它的极小值也小于 0,因此曲线 y=f(x) 与 x 轴仅有一个交点,该交点在(1,+∞)上;当 f(x)的极 小值 a-1>0,即 a>1 时,它的极大值也大于 0,因此曲线 1 y=f(x)与 x 轴仅有一个交点,该交点在(-∞,-3)上. 5 综上可知,当 a∈(-∞,-27)∪(1,+∞)时,曲线 y=f(x)与 x 轴仅有一个交点.
(1)f′(x)=3x2-6,令f′(x)=0,解得x1=-
2,x2= 2. 因为当x> 2或x<- 2时,f′(x)>0; 当- 2<x< 2时,f′(x)<0. 所以f(x)的单调递增区间为(-∞,- 2 )和( 2 ,+ ∞);单调减区间为(- 2, 2).
当x=- 2 时,f(x)有极大值5+4 2 ;当x= 2 时, f(x)有极小值5-4 2. (2)由(1)的分析知y=f(x)的图象的大致形状及走向如 右图所示, 当5-4 2 <a<5+4 2 时,直线y=a与y=f(x)的图象
[答案]
D
*思考: 已函数 f ( x) x 3
.
m x2 nx 2
的图象过点(-1,-6),且函数
g ( x) f ( x) 6 x
的图象关于y轴对称. (Ⅰ)求m、n的值及函数y=f(x)的单调区间; (Ⅱ)若a>0,求函数y=f(x)在区间(a-1,a+1)内的极值.
有三个不同交点,即方程f(x)=a有三个不同的解.
归纳方法:
导数的极值常与函数的单调性、导数联合考查,是 高考的常考内容,常常三者结合与含参数的讨论等知识 点相联系,综合考查.解决时可以以大化小分步解决, 严格遵循解决极值问题和单调性的解题步骤,遇到该讨 论时要进行合理、恰当地讨论. 这种综合题在解决时要弄清思路,分步进行,切忌
2 2
20
a 0 时 f (x) 3ax 3 3(ax 1) 0 ,即 f ( x)min f (1) a 2 0 a 2 ,舍去。
f ( x) 单调递减,
3
0

a 0 时 f ( x) 0 x
1 1 a 1 时 a
1 a
下列说法正确的是
(
)
A.若f(x)≥f(x0),则称f(x0)为f(x)的极小值
B.若f(x)≤f(x0),则称f(x0)为f(x)的极大值 C.若f(x0)为f(x)的极大值,则f(x)≤f(x0) D.以上都不对
[解析] A错,反例:f(x)= x ,f(x)≥f(0)=0,因为
0是区间[0,+∞)的端点,所以f(0)不是f(x)的极小值;B 错,反例:f(x)=- x ,f(x)≤f(0)=0,同理f(0)不是极大 值;C错,由极值定义知极大值不一定比定义域内的所 有函数值都大.故选D.
对于x1,1 总有 f ( x) 0
成立,则
a
=


【解析】本小题考查函数单调性及恒成立问题的综合运用, 体现了分类讨论的数学思想。要使之恒成立,只要在 x1,1 上 求f(x)最小值即可。
f ( x) 3ax2 3 3(ax2 1)
10
当a

0 时, x) 3x 1,所以 f ( x)min 2 ,不符合题意,舍去 f( 0
t
g (t )
g(t)
(0,1)
1
0
极大值1-m
(1,2)
+
递增
递减
∴g(t)在(0,2)内有最大值g(1)=1-m h(t)<-2t+m在(0,2)内恒成立等价于g(t)<0在(0,2)内恒成立, 即等价于1-m<0 所以m的取值范围为m>1
思考讨论:
f ( x) ax 3x 1
3
1 若x 3是函数f x 的极值点,求f x 在x 1, 5 1 若函数f x 是R上的单调递增函数,求实数a的取
【变式训练】(2010重庆)已知函数f x ax3 x 2 bx(其中常数 a、b R),g x f x f x 是奇函数.
23
当x变化时,f′(x)、f(x)的变化情况如下表:
(-∞.0) x f′(x) f(x) + ↑ 0 极大值 - ↓ 0 极小值 + ↑ 0 (0,2) 2 (2,+ ∞)
由此可得: 当0<a<1时,f(x)在(a-1,a+1)内有极大值f(0)=-2, 无极小值; 当a=1时,f(x)在(a-1,a+1)内无极值; 当1<a<3时,f(x)在(a-1,a+1)内有极小值f(2)= -6,无极大值; 当a≥3时,f(x)在(a-1,a+1)内无极值. 综上得:当0<a<1时,f(x)有极大值-2,无极小值, 当1<a<3时,f(x)有极小值-6,无极大值; 当a=1或a≥3时,f(x)无极值.
3.
值范围.
1 求f x 的表达式; 2 2 讨论g x 的单调性,并求g x 在区间1, 上的最大值和最小值.
参考:
2.(1) a 5;
3. (1)由奇函数 g(-x) - g(x)恒成立。 a 1 1 3 2 ,b 0 f(x) x 3 3 x 1 3 4 2 (2)可 g(x) 2x,下略 g(x) g( 2 ) ; g(x) 小 g(2) x 大 3 3 . 4 . 3
主次不分,讨论混乱.
练1.
.函数f(x)的定义域为R,导函数f′(x)的图象如右图所示, ( )
则函数f(x)
A.无极大值点、有四个极小值点 B.有三个极大值点、两个极小值点
C.有两个极大值点、两个极小值点
D.有四个极大值点、无极小值点
[分析] 通常给出函数的图象或与函数极值有关的命
题形式,进行辨别和判断函数极值的存在情况.
1.3导数习题
选自前课件
【提升例题】设函数f(x)=x3-6x+5,x∈R,
(1)求函数f(x)的单调区间和极值;
(2)若关于x的方程f(x)=a有三个不同实根,求实数
a的取值范围.
参见下 片 思考提高 . 13
*【提升例题】
范围. [解]
设函数f(x)=x3-6x+5,x∈R,
(1)求函数f(x)的单调区间和极值; (2)若关于x的方程f(x)=a有三个不同实根,求实数a的取值
(2)当
f ( x)min f (1) a 2 0 a 2
1 1 a 1 a
时 f ( x )在 x1,1 上单调递减,
,不符合题意,舍去。
综上可知:a=4.
1、课本P32页A组6 1,2) 思考:P32 B组:2T,三维。 ( 2、已知函数f x x3 ax 2 3x , a R 的最大值和最小值;
个原理,即若连续函数f(x)在区间(a,b)内,存在f(a)· 变式:一个交点;两个呢? f(b)<0,则f(x)与x
轴至少有一个交点.
[点拨] 利用极值判断方程根的问题,实际上是利用连续函数的一
【点评】导数与不等式恒成立的解题方法 利用导数证明不等式恒成立,就是利用不等式与函数之间的联系, 将不等式部分或全部投射到函数上,直接或等价变形后,结合不 等式的结构特征构造相应的函数,通过导数运算判断出函数的单 调性,然后求出函数在给定区间上的最值,问题得解.
解:( Ⅰ )由函数f(x)图象过点(-1,-6),得m-n=-3, ……① 由f(x)=x3+mx2+nx-2,得f′(x)=3x2+2mx+n, 则g(x)=f′(x)+6x=3x2+(2m+6)x+n; 而g(x)图象关于y轴对称,所以- 2m 6 =0,所以m=-3,
代入①得n=0. 于是f′(x)=3x2-6x=3x(x-2). 由f′(x)>0得x>2或x<0, 故f(x)的单调递增区间是(-∞,0),(2,+∞); 由f′(x)<0得0<x<2, 故f(x)的单调递减区间是(0,2). (Ⅱ)由(Ⅰ)得f′(x)=3x(x-2), 令f′(x)=0得x=0或x=2. 当x变化时,f′(x)、f(x)的变化情况,f(x)取最小值f(-t)=-t3+t-1,
),
即h(t)=-t3+t-1.
(II)令g(t)=h(t)-(-2t+m)=-t3+3t-1-m, 由 g (t )=-3t2+3=0得t=1,t=-1(不合题意,舍去). 当t变化时 g (t ) 、g(t)的变化情况如下表:
f (5)
( 2)a - 3,3 .

19;
f (1)

-1.
1 a
1 a
(1)当
1 , a
f ( x) 在 1,
( x) min


1 ,1 上单调递增,在 a
f (1) a 4 0
上单调递减。所以 f
1 0 a4 1 1 min f (1), f ( ) f ( ) 1 2 0 a a a
相关文档
最新文档