如何使用ASPEN TM_软件模拟完成精馏的设计和控制 第一章
如何使用ASPEN软件模拟完成精馏的设计和控制马后炮
第6 章:使用稳态计算选择控制结构Steadt-state Calculations for Control Structure Selection 在我们转入将稳态模拟转化为动态模拟细节讨论之前,要先讨论一些重要的稳态模拟计算方法。
因为经常被用于精馏设计中帮助为其选择一个实用且高效的控制结构,。
故此类讨论可能是一定意义的。
绝大部分精馏塔的设计是为了将两种关键组分分离获得指定的分离效果。
通常是两个设计自由度指定为馏出物中重关键组分的浓度和塔底产品中轻关键组分的浓度。
因此,在精馏塔的操作和控制中,“理想的”控制结构需测定两股产品的组成并操控两输入变量(如,回流流量和再沸器的输入热量),从而能够达到两股产品中关键组分的纯度要求。
然而,由于一些现实的原因,很少有精馏塔使用这种理想的控制结构。
组分检测仪通常购价昂贵且维修成本高,其可靠性对连续在线控制而言,有时略显不足。
如果使用色层法,还会在控制回路中引入死时间。
此外,不使用直接测量组分法,通常也有可能取得非常高效的控制效果。
温度测量被广泛应用于组分的推理控制。
温度传感器廉价而又可靠,在控制回路上只有很小的测量滞后。
对恒压二元体系,温度与组成是一一对应相关的。
这在多组分体系中不适用,但精馏塔中合适位置的温度通常能够相当准确地提供关于关键组分浓度的信息。
在单端控制结构中,只需控制某块塔板的温度;选择剩下的“控制自由度”时应使产品质量可变性最小。
例如,确定一定的回流比RR 或者固定回流与进料流量的比值R/F。
有时候,需要控制两个温度(双温控制系统)。
我们将在本章中讨论这些被选方案。
如果选择使用塔板温度控制,那么问题便是选择最佳一块或数块塔板,该处的温度保持恒定。
在精馏文献中,这个问题已讨论了半个世纪以上,且提出了一些可选择的方法。
我们将一一审视这些方法,并举例说明其在各个系统中的有效性。
需要重点关注的是,所有这些方法都仅使用稳态信息,因此,如Aspen Plus 之类的稳态过程模拟器可便捷地用于计算。
Aspen 模拟软件使用指南
第一章开始运行Aspen Pinch本章回顾了一个典型热集成研究案例。
阐述了一个类似研究案例的各个步骤,以及如何在不同的阶段应用Aspen Pinch。
同时,本章还介绍了Aspen Pinch界面,已经如何启动和推出Aspen Pinch。
一个典型的热集成案例下图表示了一个典型的热集成案例研究的主要步骤以及相应阶段Aspen Pinch的特征。
尽管本图看来是一个一次性完成的过程,但在实际过程中需要多次迭代来保证获得总体最优的结果。
一个热集成案例研究包含以下步骤:1.从你的流程中获取数据。
2.建立公用工程消耗,能量消耗和投资费用的操作目标。
3.作出一个换热网络的设计4.检查所设计换热网络的性能。
下面详细介绍这些步骤。
从你的流程模拟中获取数据一个热集成研究是从获取流程的数据开始的。
一个热集成研究所需要的数据包括每个流股的温度与热负荷信息。
对于任一个公用工程的温度和费用信息都是必要的。
如果你想作费用分析的话,就必须提供换热器的投资费用。
流股的数据可以直接从过程的物料与能量衡算获取。
另外,流股数据也可以从Aspen Plus模拟或其他软件输入。
输入数据可以运用Aspen Pinch 的数据输入功能、Aspen Plus 接口或流股分段功能来实现。
建立目标函数案例的下一个步骤是确定公用工程消耗、能量消耗和投资费用目标。
对于一个新的换热网络设计可以运用Aspen Pinch的targeting 功能。
换热网络的改造可以用retrofit targeting功能。
对于从不同过程单元回收热量的总过程来说,我们可以运用Aspen Pinch 的total site 功能。
当评价公用工程的费用与消耗时,你可能想研究一个公用工程系统的操作细节。
Aspen Pinch具有热功模块来模拟公用工程的操作从而使你可以准确的预测公用工程系统的规模及大小。
此时,本热集成案例已经可以通过运用基础案例的操作条件来预测流程的最佳操作性能与费用。
aspen 精馏模拟详细过程及探讨疑问
精馏塔设计初步介绍1.设计计算◆输入参数:●利用DSTWU模型,进行设计计算●此时输入参数为:塔板数(或回流比以及最小回流比的倍数)、冷凝器与再沸器的工作压强、轻组分与重组分的回收率(可以从产品组成估计)、冷凝器的形式◆输出参数(得到用于详细计算的数据):●实际回流比●实际塔板数(实际回流比和实际塔板数可以从Reflux Ratio Profile 中做图得到)●加料板位置(当加料浓度和此时塔板上液体浓度相当时的塔板)●蒸馏液(馏分)的流量●其他注:以上数据全部是估计得初值,需要按一定的要求进行优化(包括灵敏度以及设计规定的运用),优化主要在RadFrac模型中进行。
2.详细计算◆输入参数:●输入参数主要来自DSTWU中理论计算的数据◆输出参数:●输出的主要是设计板式塔所需要的水力学数据,尺寸数据等其他数据(主要是通过灵敏度分析以及设计规定来实现)3.疑问●在简捷计算中:回收率有时是估计值,它对得到详细计算所需的数据可靠性的影响是不是很大?●在简捷计算中:有多少个变量,又有多少个约束条件?●在简捷计算中:为什么回流比和塔板数有一定的关系?简捷计算(对塔)1.输入数据:●Reflux ratio :-1.5(估计值,一般实际回流比是最小回流比的1.2—2倍)●冷凝器与再沸器的压强:1.013 ,1.123 (压降为0.11bar)●冷凝器的形式:全冷凝(题目要求)、●轻重组分的回收率(塔顶馏出液):0.997 ,0.002 (如果没有给出,可以根据产品组成估计)●分析时,注意Calculation Option 中的设置,来确定最佳回流比以及加料板位置2.输出数据:●Reflux Ratio Profile中得到最佳的回流比与塔板数为:塔板数在45—50中选择,回流比在:0.547 —0.542●选定塔板数为:48,回流比为:0.544●把所选的塔板数回代计算,得到下列用于RadFrac模型计算的数据(见下图):●●从图中可得:实际回流比为:0.545(摩尔比);实际塔板数为:48;加料板位置:33;Distillate to feed fraction :0.578(自己认为是摩尔比,有疑问??);馏出液的流量:11673.5kg/h疑问:进料的流量是怎么确定的,肯定是大于11574kg/h,通过设计规定得到甲醇产量为:11574kg/h(分离要求),求出流量为:16584.0378kg/h。
aspen精馏过程模拟
一、首先用简捷法模拟,选择DSTWU模块,精馏装置如下截图对文件命名并自定义单位如截图所示然后在计算机上输入物料的组成,如下截图所示选择一个热力学方法为SRK方法如下截图所示对1号进料物流管进行参数设定,为泡点进料,进料压力为16.5Kg/cm2,进料流量为100kmol/h。
还有物料组成及比例如下截图所示对精馏塔进行参数的设定,回流比为最小回流比的1.2倍,塔顶轻组分丙烷的含量为0.999,重组分含量丁烷为0.001,参数设定值如下截图所示参数设定完成运行软件并查看结果,计算结果如下图所示从结果可知实际的回流比为1.198,实际塔板数为38块,实际的进料板为第17块板,冷凝器的温度为44.25℃,塔釜的温度为116.88℃。
二、进行严格法计算根据简化法得到的条件进行模拟选择Radfrac模块,模拟装置图如下截图对文件命名并自定义单位如截图所示在计算机上输入物料的组成,如下截图所示选择一个热力学方法为SRK方法如下截图所示对1号进料物流管进行参数设定,为泡点进料,进料压力为16.5Kg/cm2,进料流量为100kmol/h。
还有物料组成及比例如下截图所示对塔进行参数设置,根据简化法的计算结果知,塔板数为38,实际回流比为1.198。
再根据题目设计的要求冷凝器为全回流,塔顶的采出率为80。
参数如下截图所示:根据简化法结果进料板为第十七块板进料,截图如下设置塔顶压力为16kg/cm2,冷凝器压力为15.8kg/cm2,全塔的压降为0.2kg/cm2。
设置如下截图所示参数设置完成并运行软件,查看结果不满足分离的目的,则进行自定义设定,目标值设定为0.001选择丙烷选择3号物流设置回流比的可变范围为1到100,增量为0.1运行软件查看结果满足分离的要求。
接下来进行灵敏度分析以确定最佳的进料位置参数设置完成并运行软件查看灵敏度分析的结果如下截图从结果的表中可以看出第22块板的回流比,冷凝器的热负荷,再沸器的热负荷都是最小的,从而可以知道最佳的进料位置为第22块板并对数据在plot里作出X-Y的曲线图如下截图所示从图中也可以明显的看出最佳的进料板为第22块塔板。
aspen流程模拟一般步骤
aspen流程模拟一般步骤下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!Aspen流程模拟的一般步骤详解Aspen是一款广泛应用于化工、石油、能源等行业的流程模拟软件,它能够帮助工程师们在设计和优化复杂的过程系统时,进行精确的热力学和流动计算。
利用化工模拟软件ASPEN PLUS设计轻苯馏分体系精馏塔设计
《化工过程模拟与优化》综合报告设计题目轻苯馏分体系精馏塔设计学生姓名吴凡平班级09化工(2)班学号********指导教师姓名张明珏完成时间2012年12月13日综合报告成绩:指导教师签字:目录第一章综述 (1)1.1 设计题目 (1)1.2 题目概述 (1)1.3 公用工程条件与注意事项 (1)1.4 设计任务 (1)1.5 确定设计方案原则 (2)1.6 Aspen Plus软件简介 (3)第二章工艺计算过程 (4)2.1 绘制工艺流程草图 (4)2.2 C4精馏塔的简捷计算 (4)2.3 C4精馏塔的严格计算 (9)2.4 精馏塔灵敏度分析 (14)2.5 C5 和C6 精馏塔的简捷计算 (22)2.6 C5 和C6 精馏塔的严格计算 (25)2.7 物流表 (32)第三章设备计算 (33)3.1 塔设备计算 (33)3.1.1 C4 塔设备计算 (33)3.1.2 C5 塔设备计算 (37)3.1.3 C6 塔设备计算 (40)3.2 冷凝器设备计算与设计规定的应用 (44)3.2.1 C4 精馏塔冷凝器 (44)3.2.2 C5 精馏塔冷凝器 (56)3.2.3 C6 精馏塔冷凝器 (56)3.3再沸器设备计算 (57)3.3.1 C4 精馏塔再沸器 (57)3.3.2 C5 精馏塔再沸器 (68)3.3.3 C6 精馏塔再沸器 (68)第四章参考文献 (69)第五章设计心得 (70)第一章综述1.1 设计题目轻苯馏分体系精馏塔设计1.2 题目概述有一股轻苯馏分,流率为960kg/h,温度80℃,压力600kPa,经过反应器后将其中环戊二烯经热二聚反应生成双环戊二烯后,温度变为103℃,组成和基本物性见表1-1。
物性:SRK方程要求将热二聚反应产物分离成为4个馏分,即C4馏分(主要成分1-丁烯)、C5(主要成分环戊烯)、C6(主要成分苯)、C10(主要成分双环戊二烯)。
每个馏分中主要成分的质量分数不低于0.95,收率不低于0.96。
ASPEN软件进行精馏塔设计
1引言1.1ASPENPLUS概述AspenPlus是大型通用流程模拟系统,源于美国能源部七十年代后期在麻省理工学院(MIT)组织的会战,开发新型第三代流程模拟软件。
该项目称为“过程工程的先进系统”(Advanc ed System for Proces s Engine ering,简称ASPE N),并于1981年底完成。
1982年为了将其商品化,成立了Asp enTec h公司,并称之为As pen Plus。
该软件经过20多年来不断地改进、扩充和提高,已先后推出了十多个版本,成为举世公认的标准大型流程模拟软件,应用案例数以百万计。
全球各大化工、石化、炼油等过程工业制造企业及著名的工程公司都是Aspen Plus 的用户。
1.2精馏塔概述精馏塔是进行精馏的一种塔式汽液接触装置,又称为蒸馏塔。
有板式塔与填料塔两种主要类型。
根据操作方式又可分为连续精馏塔与间歇精馏塔。
蒸气由塔底进入。
蒸发出的气相与下降液进行逆流接触,两相接触中,下降液中的易挥发(低沸点)组分不断地向气相中转移,气相中的难挥发(高沸点)组分不断地向下降液中转移,气相愈接近塔顶,其易挥发组分浓度愈高,而下降液愈接近塔底,其难挥发组分则愈富集,从而达到组分分离的目的。
由塔顶上升的气相进入冷凝器,冷凝的液体的一部分作为回流液返回塔顶进入精馏塔中,其余的部分则作为馏出液取出。
塔底流出的液体,其中的一部分送入再沸器,加热蒸发成气相返回塔中,另一部分液体作为釜残液取出。
1.2.1 精馏塔的分类气-液传质设备主要分为板式塔和填料塔两大类。
精馏操作既可采用板式塔,也可采用填料塔,填料塔的设计将在其他分册中作详细介绍,故本书将只介绍板式塔。
板式塔为逐级接触型气-液传质设备,其种类繁多,根据塔板上气-液接触元件的不同,可分为泡罩塔、浮阀塔、筛板塔、穿流多孔板塔、舌形塔、浮动舌形塔和浮动喷射塔等多种。
Aspen反应精馏的模拟和设计
反应类型输入选择Reac-Dist
每一个化学反应对象可以包含多个化学反 应,每个反应都要设定计量学参数和动力学参 数/平衡参数。
1、计量学参数(Stoichiometry) 2、动力学参数 (Kinetic) 3、平衡参数 (Equilibrium)
在计量学表单中为每一个化学反应创建一 个对象,并选择对象类型为动力学 (Kinetic)或平 衡 (Equilibrium)型。输入反应方程式中的化学 计量系数(Coefficient),对于幂律型反应对象, 还要输入动力学方程式中每一个浓度因子的幂指 数(Exponent)。
收敛模块的类型
• 不同类型的收敛模块是用于下列不同用途的: 要收敛撕裂流,请用: • WEGSTEIN • DIRECT • BROYDEN • NEWTON 要收敛设计规定,请用: • SECANT • BROYDEN • NEWTON 要收敛设计规定和撕裂流,请用: • BROYDEN • NEWTON 对于优化,请用: • SQP • COMPLEX
• 在Convergence ConvOptions Defaults窗体上可以规定全局的收敛选项。
选择收敛的次数
执行与结果操作
塔内浓度分布
Tray sizing的column diameter参考值
冷凝器负荷
END
谢谢!
注意选择Kinetic 输入正反应的方式
输入逆反应的方式
在动力学表单中为每一个化学反应输入发 生反应的相态、动力学参数以及浓度基准。
幂律型:反应动力学因子(Kinetic factor)即反应 速率常数 k’,它与温度的关系用修正的 Arrhenius方程表示:
k'kT T0nexpR ET 1T 10
如何使用aspen软件模拟完成精馏的设计和控制马后炮终审稿)
如何使用A S P E N软件模拟完成精馏的设计和控制马后炮Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】如何使用ASPEN TM 软件模拟完成精馏的设计和控制威廉·L·鲁平博士第6 章:使用稳态计算选择控制结构Steadt-state Calculations for Control Structure Selection 在我们转入将稳态模拟转化为动态模拟细节讨论之前,要先讨论一些重要的稳态模拟计算方法。
因为经常被用于精馏设计中帮助为其选择一个实用且高效的控制结构,。
故此类讨论可能是一定意义的。
绝大部分精馏塔的设计是为了将两种关键组分分离获得指定的分离效果。
通常是两个设计自由度指定为馏出物中重关键组分的浓度和塔底产品中轻关键组分的浓度。
因此,在精馏塔的操作和控制中,“理想的”控制结构需测定两股产品的组成并操控两输入变量(如,回流流量和再沸器的输入热量),从而能够达到两股产品中关键组分的纯度要求。
然而,由于一些现实的原因,很少有精馏塔使用这种理想的控制结构。
组分检测仪通常购价昂贵且维修成本高,其可靠性对连续在线控制而言,有时略显不足。
如果使用色层法,还会在控制回路中引入死时间。
此外,不使用直接测量组分法,通常也有可能取得非常高效的控制效果。
温度测量被广泛应用于组分的推理控制。
温度传感器廉价而又可靠,在控制回路上只有很小的测量滞后。
对恒压二元体系,温度与组成是一一对应相关的。
这在多组分体系中不适用,但精馏塔中合适位置的温度通常能够相当准确地提供关于关键组分浓度的信息。
在单端控制结构中,只需控制某块塔板的温度;选择剩下的“控制自由度”时应使产品质量可变性最小。
例如,确定一定的回流比RR 或者固定回流与进料流量的比值R/F。
有时候,需要控制两个温度(双温控制系统)。
我们将在本章中讨论这些被选方案。
如果选择使用塔板温度控制,那么问题便是选择最佳一块或数块塔板,该处的温度保持恒定。
如何使用aspen软件模拟完成精馏的设计和控制马后炮终审稿)
如何使用A S P E N软件模拟完成精馏的设计和控制马后炮Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】如何使用ASPEN TM 软件模拟完成精馏的设计和控制威廉·L·鲁平博士第6 章:使用稳态计算选择控制结构Steadt-state Calculations for Control Structure Selection 在我们转入将稳态模拟转化为动态模拟细节讨论之前,要先讨论一些重要的稳态模拟计算方法。
因为经常被用于精馏设计中帮助为其选择一个实用且高效的控制结构,。
故此类讨论可能是一定意义的。
绝大部分精馏塔的设计是为了将两种关键组分分离获得指定的分离效果。
通常是两个设计自由度指定为馏出物中重关键组分的浓度和塔底产品中轻关键组分的浓度。
因此,在精馏塔的操作和控制中,“理想的”控制结构需测定两股产品的组成并操控两输入变量(如,回流流量和再沸器的输入热量),从而能够达到两股产品中关键组分的纯度要求。
然而,由于一些现实的原因,很少有精馏塔使用这种理想的控制结构。
组分检测仪通常购价昂贵且维修成本高,其可靠性对连续在线控制而言,有时略显不足。
如果使用色层法,还会在控制回路中引入死时间。
此外,不使用直接测量组分法,通常也有可能取得非常高效的控制效果。
温度测量被广泛应用于组分的推理控制。
温度传感器廉价而又可靠,在控制回路上只有很小的测量滞后。
对恒压二元体系,温度与组成是一一对应相关的。
这在多组分体系中不适用,但精馏塔中合适位置的温度通常能够相当准确地提供关于关键组分浓度的信息。
在单端控制结构中,只需控制某块塔板的温度;选择剩下的“控制自由度”时应使产品质量可变性最小。
例如,确定一定的回流比RR 或者固定回流与进料流量的比值R/F。
有时候,需要控制两个温度(双温控制系统)。
我们将在本章中讨论这些被选方案。
如果选择使用塔板温度控制,那么问题便是选择最佳一块或数块塔板,该处的温度保持恒定。
aspen精馏模拟步骤
Aspen精馏模拟的步骤一、板式塔工艺设计首先要知道工艺计算要算什么?要得到那些结果?如何算?然后再进展下面的计算步骤。
其次要知道你用的软件〔或软件模块〕能做什么,不能做什么?你如何借助它完成给定的设计任务。
设计方案,包括设计方法、路线、分析优化方案等,应该是设计开题报告中的一部份。
没有很好的设计方案,具体作时就会思路不清晰,足见开题的重要性。
下面给出工艺设计计算方案参考,希望借此对今后的构造和强度设计作一个详细的设计方案,明确的一下接下来所有工作详细步骤和方法,以便以后设计工作顺利进展。
板式塔工艺计算步骤1.物料衡算〔手算〕目的:求解 aspen 简捷设计模拟的输入条件。
容:(1) 组份分割,确定是否为清晰分割;(2)估计塔顶与塔底的组成。
得出结果:塔顶馏出液的中关键轻组份与关键重组份的回收率参考:"化工原理"有关精馏多组份物料平衡的容。
2.用简捷模块〔DSTWU〕进展设计计算目的:结合后面的灵敏度分析,确定适宜的回流比和塔板数。
方法:选择设计计算,确定一个最小回流比倍数。
得出结果:理论塔板数、实际板数、加料板位置、回流比,蒸发率等等 RadFarce 所需要的所有数据。
3.灵敏度分析目的:1.研究回流比与塔径的关系〔NT-R〕,确定适宜的回流比与塔板数。
2.研究加料板位置对产品的影响,确定适宜的加料板位置。
方法:可以作回流比与塔径的关系曲线〔NT-R〕,从曲线上找到你所期望的回流比及塔板数。
得到结果:实际回流比、实际板数、加料板位置。
4. 用DSTWU再次计算目的:求解aspen塔详细计算所需要的输入参数。
方法:依据步骤3得到的结果,进展简捷计算。
得出结果:加料板位置、回流比,蒸发率等等 RadFarce 所需要的所有数据。
5. 用详细计算模块〔RadFrace〕进展初步设计计算目的:得出构造初步设计数据。
方法:用 RadFrace 模块的Tray Sizing〔填料塔用PAking Sizing〕,利用第4步〔DSTWU〕得出的数据进展准确设计计算。
Aspen 模拟软件使用指南
第一章开始运行Aspen Pinch本章回顾了一个典型热集成研究案例。
阐述了一个类似研究案例的各个步骤,以及如何在不同的阶段应用Aspen Pinch。
同时,本章还介绍了Aspen Pinch界面,已经如何启动和推出Aspen Pinch。
一个典型的热集成案例下图表示了一个典型的热集成案例研究的主要步骤以及相应阶段Aspen Pinch的特征。
尽管本图看来是一个一次性完成的过程,但在实际过程中需要多次迭代来保证获得总体最优的结果。
一个热集成案例研究包含以下步骤:1.从你的流程中获取数据。
2.建立公用工程消耗,能量消耗和投资费用的操作目标。
3.作出一个换热网络的设计4.检查所设计换热网络的性能。
下面详细介绍这些步骤。
从你的流程模拟中获取数据一个热集成研究是从获取流程的数据开始的。
一个热集成研究所需要的数据包括每个流股的温度与热负荷信息。
对于任一个公用工程的温度和费用信息都是必要的。
如果你想作费用分析的话,就必须提供换热器的投资费用。
流股的数据可以直接从过程的物料与能量衡算获取。
另外,流股数据也可以从Aspen Plus模拟或其他软件输入。
输入数据可以运用Aspen Pinch 的数据输入功能、Aspen Plus 接口或流股分段功能来实现。
建立目标函数案例的下一个步骤是确定公用工程消耗、能量消耗和投资费用目标。
对于一个新的换热网络设计可以运用Aspen Pinch的targeting 功能。
换热网络的改造可以用retrofit targeting功能。
对于从不同过程单元回收热量的总过程来说,我们可以运用Aspen Pinch 的total site 功能。
当评价公用工程的费用与消耗时,你可能想研究一个公用工程系统的操作细节。
Aspen Pinch具有热功模块来模拟公用工程的操作从而使你可以准确的预测公用工程系统的规模及大小。
此时,本热集成案例已经可以通过运用基础案例的操作条件来预测流程的最佳操作性能与费用。
ASPEN软件进行精馏塔设计
1引言1.1ASPEN PLUS概述Aspen Plus是大型通用流程模拟系统,源于美国能源部七十年代后期在麻省理工学院(MIT)组织的会战,开发新型第三代流程模拟软件。
该项目称为“过程工程的先进系统”(Advanced System for Process Engineering,简称ASPEN),并于1981年底完成。
1982年为了将其商品化,成立了AspenTech公司,并称之为Aspen Plus。
该软件经过20多年来不断地改进、扩充和提高,已先后推出了十多个版本,成为举世公认的标准大型流程模拟软件,应用案例数以百万计。
全球各大化工、石化、炼油等过程工业制造企业及著名的工程公司都是Aspen Plus 的用户。
1.2精馏塔概述精馏塔是进行精馏的一种塔式汽液接触装置,又称为蒸馏塔。
有板式塔与填料塔两种主要类型。
根据操作方式又可分为连续精馏塔与间歇精馏塔。
蒸气由塔底进入。
蒸发出的气相与下降液进行逆流接触,两相接触中,下降液中的易挥发(低沸点)组分不断地向气相中转移,气相中的难挥发(高沸点)组分不断地向下降液中转移,气相愈接近塔顶,其易挥发组分浓度愈高,而下降液愈接近塔底,其难挥发组分则愈富集,从而达到组分分离的目的。
由塔顶上升的气相进入冷凝器,冷凝的液体的一部分作为回流液返回塔顶进入精馏塔中,其余的部分则作为馏出液取出。
塔底流出的液体,其中的一部分送入再沸器,加热蒸发成气相返回塔中,另一部分液体作为釜残液取出。
1.2.1 精馏塔的分类气-液传质设备主要分为板式塔和填料塔两大类。
精馏操作既可采用板式塔,也可采用填料塔,填料塔的设计将在其他分册中作详细介绍,故本书将只介绍板式塔。
板式塔为逐级接触型气-液传质设备,其种类繁多,根据塔板上气-液接触元件的不同,可分为泡罩塔、浮阀塔、筛板塔、穿流多孔板塔、舌形塔、浮动舌形塔和浮动喷射塔等多种。
板式塔在工业上最早使用的是泡罩塔(1813年)、筛板塔(1832年),其后,特别是在本世纪五十年代以后,随着石油、化学工业生产的迅速发展,相继出现了大批新型塔板,如S型板、浮阀塔板、多降液管筛板、舌形塔板、穿流式波纹塔板、浮动喷射塔板及角钢塔板等。
第5讲 ASPEN PLUS 精馏模拟收敛技巧及特殊精馏过程的模拟(1)
蒸馏过程简化计算法理论基础
①
最小理论板数计算-Fenske公式 简化法根据Fenske方程求取最小理 论板数Sm:
S m = log
(
X l ,d X h ,d X h , d X l ,b
)/ log α
av
最小理论板数是在全回流下所需板数;
式中:
Sm-全部理论板数,包括冷凝器和再沸器; αav -轻重关键组分在塔内平均相对挥发度; l-轻关键组分,h-重关键组分; d-塔顶, b-塔釜;
2 1 B1 3
蒸馏塔的类型-2
复杂蒸馏塔 (Complex column) 多股进料,设有塔 顶冷凝器和塔釜 再沸器,可有多 股侧线采出,可 有中间再沸器或 中间冷凝器,塔 顶、塔釜各有采 出一股;
B2 5 4
6
蒸馏塔的类型-3
吸收塔(Absorber) 无塔顶冷凝器和塔釜 再沸器,气体进料 位置在塔釜,塔顶 有吸收剂淋下;塔 顶为气相采出,塔 釜为液相采出;
reactivedist1醋酸丁酯的合成反应精馏练习reactivedist2乙酸乙酯的合成乙酸从塔上部加入乙醇从塔下部加入受相平衡的制约乙酸在塔内有向塔底富集的趋势乙醇有向塔顶富集的趋势两者在塔内逆流接触并发生反应生成的乙酸乙酯则和乙醇水从塔顶流和常规精馏过程不同的是反应精馏涉及的不仅是相平衡的问题还涉及化学反应平衡和反应动力学的问题
④
优惠回流比R的选取:通常R=(1.1~2)Rm 随着能源价格的不断上升,目前实际回流比 的选择,愈来愈靠近最小回流比,以降低 操作费用;
精馏过程简化计算
优惠回流比R的变化:
年代 1961~ 1970 90 23 1971~ 1980 140 18 1981~ 1990 180 16 1991~ 2000 210 14 2001~ 迄今 最大256 12
aspen精馏模拟步骤
Aspen精馏模拟的步骤一、板式塔工艺设计二、首先要知道工艺计算要算什么要得到那些结果如何算然后再进行下面的计算步骤。
三、其次要知道你用的软件(或软件模块)能做什么,不能做什么你如何借助它完成给定的设计任务。
四、设计方案,包括设计方法、路线、分析优化方案等,应该是设计开题报告中的一部份。
没有很好的设计方案,具体作时就会思路不清晰,足见开题的重要性。
下面给出工艺设计计算方案参考,希望借此对今后的结构和强度设计作一个详细的设计方案,明确的一下接下来所有工作详细步骤和方法,以便以后设计工作顺利进行。
五、板式塔工艺计算步骤六、 1.物料衡算(手算)七、目的:求解aspen 简捷设计模拟的输入条件。
八、内容:(1) 组份分割,确定是否为清晰分割;九、 (2)估计塔顶与塔底的组成。
十、得出结果:塔顶馏出液的中关键轻组份与关键重组份的回收率十一、参考:《化工原理》有关精馏多组份物料平衡的内容。
十二、 2.用简捷模块(DSTWU)进行设计计算十三、目的:结合后面的灵敏度分析,确定合适的回流比和塔板数。
十四、方法:选择设计计算,确定一个最小回流比倍数。
十五、得出结果:理论塔板数、实际板数、加料板位置、回流比,蒸发率等等RadFarce 所需要的所有数据。
十六、 3.灵敏度分析十七、目的:1.研究回流比与塔径的关系(NT-R),确定合适的回流比与塔板数。
十八、 2.研究加料板位置对产品的影响,确定合适的加料板位置。
十九、方法:可以作回流比与塔径的关系曲线(NT-R),从曲线上找到你所期望的回流比及塔板数。
二十、得到结果:实际回流比、实际板数、加料板位置。
二十一、 4. 用DSTWU再次计算二十二、目的:求解aspen塔详细计算所需要的输入参数。
二十三、方法:依据步骤3得到的结果,进行简捷计算。
二十四、得出结果:加料板位置、回流比,蒸发率等等RadFarce 所需要的所有数据。
二十五、 5. 用详细计算模块(RadFrace)进行初步设计计算二十六、目的:得出结构初步设计数据。
aspen精馏模拟报告zzu
甲醇精馏塔的核算一.设计任务要求:⑴建立流程图;⑵输入物料;⑶选择合适的物性方法;⑷查看计算结果。
二.DSTWU精馏模型建立选择DSTWU简捷精馏计算模型。
DSTWU 可对一个带有分凝器或全凝器一股进料和两种产品的蒸馏塔进行简捷精计算,假设恒定的摩尔溢流量和恒定的相对挥发度2.1 定义模拟流程2.1.1创建精馏塔模块在模型库中选择塔column标签,如图1。
图12.1.2点击该DSTWU模型的下拉箭头,弹出三个等效的模块,任选其一,如图2所示。
图22.1.3在空白流程图上单击,即可绘出一个精馏塔模型如图3所示。
图32.2绘制物流2.2.1单击流股单元下拉箭头,选择流股类型,在这里我们选择material类型,选择后得到图4所示。
图42.2.2在箭头提示下我们可以根据需要来绘制流股,其中红色箭头表示必须定义的流股,蓝色箭头表示可选定义的流股,不同的模型根据设计任务绘制,本例一股进料、塔顶和塔底两股出料,如图5。
图52.3模块和物流命名选择中流股/模块(单击流股/模块),点击鼠标右键,在弹出的菜单中选择rename stream或rename block,在对话框中输入改后的名称,即可改变名称。
在这里我们将入料改为FEED;塔顶出料改为D;塔底出料改为L;改变名称后的流程图如图6所示.图6三.模拟设置3.1单击N->快捷键,进入初始化设置页面,如图7.用户可以对Aspen Plus做全局设置、定义数据输入输出单位等。
图73.2定义数据输入输出单位Aspen plus提供了英制、公斤米秒制、国际单位制三种单位制.输入数据可以在输入时改变单位,输出报告则在此选择的单位制输出系统自身有一套默认的设置。
用户也可以根据要求来自己修改或定义包括单位及其他全局设置,在这里我们使用系统默认的设置。
3.3定义用户与工程信息“Setup/Specifications”页面的Accounting 选择项页面(如图8)。
Aspen精馏过程模拟
4 精馏过程模拟
第1页
例题-环己烷生产
•目的:创建一个流程来模拟环己烷生产过程 •环己烷可以用苯加氢反应得到,反应如下: • C6H6 苯 + 3 H2 氢气 = C6H12 环己烷