山东省肥城市2017届高三上学期升级统测数学(理)试题 word版含答案
山东省部分重点中学2017届高三数学上学期第一次调研考试(12月)试题 理(扫描版)
山东省部分重点中学2017届高三数学上学期第一次调研考试(12月)试题理(扫描版)数学试题(理科A 卷)答案第I 卷(选择题,共50分)一、选择题:本大题共10小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】B【解析】设z a bi =+,则z a bi =-(34)(34)()(34)(43)1213411254322555i z i a bi a b a b i ia ab z i a b b ∴-⋅=-⋅-=--+=+⎧=-⎪-=⎧⎪∴⇒⇒=--⎨⎨+=-⎩⎪=-⎪⎩故选B【考点】共轭复数,复数的乘除运算2.【答案】C【解析】由A 中log 2(x ﹣1),得到x ﹣1>0,即x >1,∴A=(1,+∞),∵全集U=R ,∴∁U A=(﹣∞,1],由B 中y=2x ,得到y >0,即B=(0,+∞),则A∩(∁U B )=(0,1]故选:C .【考点】交、并、补集的混合运算.3.【答案】D【解析】判定“1sin 2θ≠”是否是“6πθ≠”的必要不充分条件即判定“6πθ=”是否是“1sin 2θ=”的必要不充分条件。
易判定“6πθ=”是“1sin 2θ=” 的充分不必要条件。
【考点】命题及关系,条件的判断。
4.【答案】C【解答】解:由三视图可知该几何体是由一个半圆柱与一个直三棱柱组合而成的几何体, ∵圆柱的底面直径为2,高为2,棱柱的底面是边长为2的等边三角形,高为2,于是该几何体的体积为.故选:C【考点】由三视图求面积、体积.5.【答案】D【解析】2sin2sin,sin0,sin23a B B B A A=≠∴=∴=由得π【考点】正弦定理。
6.【答案】C【解析】2sin(22)12cos1cos2sin(22)cos24y x x xx xC=+ϕ+==+π+ϕ=ϕ=原函数经过平移变换后得:即,符合。
故选【考点】图像平移变换,二倍角公式。
7.【答案】B解析:17s化简为917a,得189=a.原式.123233323339117331173773737==+=-++=-+=-=-aaaaaaaaaaaaaa考点:等差数列性质的运用。
山东省肥城市2017届高三上学期升级统测数学(文)试题 W
高三文科数学第Ⅰ卷一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1、若2z i =+,则41izz =- A .1 B .-1 C .i D .i -2、设集合2{|230},{|450}A x x B x x x =+>=+-<,则A B =A .(5,)-+∞B .3(5,)2--C .3(,1)2-D .3(,)2-+∞ 3、如图是某居民消去年龄在20岁到45岁的 居民上网情况的频率分布直方图,现已知年龄 在[30,35),[35,40),[40,45]的上网人数呈现递 减等差数列,则年龄在[35,40)的频率A .0.04B .0.06C .0.2D .0.34、在平面直角坐标系xOy 中,M 为不等式组360200,0x y x y x y --≤⎧⎪-+≥⎨⎪≥≥⎩所表示的区域上一动点,已知点(1,2)A -,则直线AM 斜率的最小值为 A .23-B .2-C .0D .455、已知b 是实数,则“2b =”是“34x y b +=与圆222210x y x y +--+=相切”的 A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件 6、若(0,)2πα∈,且23sin cos(2)210παα++=,则tan α= A .17B .13 C .3 D .77、若非零向量,a b 满足22a b =∞,且()(32)a b a b +⊥+,则a 与b 的夹角为 A .4π B .3π C .2π D .34π8、一个几何体的三视图如右图所示,且其侧视图是一个等边三角形,则这个几何体的体积为 A.(43π+ B.(4π+C9、定义在R 上的函数()f x 满足()1(1)f x f x +=-,在区间[1,1)-上,(),102,015x m x f x x x --≤<⎧⎪=⎨-≤<⎪⎩,其中m R ∈,若59()()22f f -=,则(5)f m =A .85-B .25-C .35D .7510、设直线,l m 分别是函数()ln ,01ln ,1x x f x x x -<<⎧=⎨>⎩图象上在点M 、N 处的切线,已知l 与m 互相垂直,且分别与y 轴相交于点,A B ,点P 是函数(),(1)y f x x =>图象上任意一点,则PAB ∆的面积的取值范围是A .(0,1)B .(0,2)C .(2,)+∞D .(1,)+∞第Ⅱ卷二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卷的横线上。
2017届山东肥城市高三上学期升级统测数学(理)试题(解析版)
2017届山东肥城市高三上学期升级统测数学(理)试题一、选择题1.若2z i =+,则41izz =-( ) A .1 B .1- C .i D .i -【答案】C【解析】试题分析:444(2)(2)14111i i iii i zz ===+--+--,选C.【考点】复数运算【名师点睛】本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()(),(,,.)++=-++∈a bi c di ac bd ad bc i a b c d R .其次要熟悉复数相关基本概念,如复数(,)+∈a bi a b R 的实部为a 、虚部为b(,)a b 、共轭为.-a bi2.设集合{}{}2|230,|450A x x B x x x =+>=+-<,则A B = ( )A .()5,-+∞B .35,2⎛⎫-- ⎪⎝⎭C .3,12⎛⎫- ⎪⎝⎭D .3,2⎛⎫-+∞ ⎪⎝⎭【答案】A【解析】试题分析:{}{}23|230(,),|450(5,1)2A x x B x x x =+>=-+∞=+-<=-, 所以3(,)(5,1)(5,)2A B =-+∞-=-+∞U U ,选A.【考点】集合运算【方法点睛】集合的基本运算的关注点(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提.(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn 图. 3.如图是某居民小区年龄在20岁到45岁的居民上网情况的频率分布直方图,现已知年龄在[)[)[)30,35,35,40,40,45的上网人数呈现递减的等差数列,则年龄在[)35,40的频率是( )A .0.04B .0.06C .0.2D .0.3 【答案】C【解析】试题分析:[)[)[)30,35,35,40,40,45的概率和为1(0.010.07)50.6-+⨯=,又[)[)[)30,35,35,40,40,45的概率依次成等差数列,所以[)35,40的频率为0.60.2.3=选C.【考点】频率分布直方图4.在平面直角坐标系xOy 中,M 为不等式组360200,0x y x y x y --≤⎧⎪-+≥⎨⎪≥≥⎩所表示的区域上一动点,已知点()1,2A -,则直线AM 斜率的最小值为( ) A .23-B .2-C .0D .45【答案】B【解析】试题分析:可行域为一个四边形OBCD 及其内部,其中(0,2),(2,0),(4,6)B C D ,因此直线AM 斜率的最小值为直线AO 斜率,为2-,选B.【考点】线性规划【易错点睛】线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.5.已知b 是实数,则“2b =”是“直线34x y b +=与圆222210x y x y +--+=”相切的( )A .充要条件B .充分不必要条件C .必要不充分条件D .即不充分也不必要条件 【答案】B【解析】试题分析:22222210(1)(1)1x y x y x y +--+=⇒-+-=,所以圆心到直线34x y b +=距离为|7|5b -,因此当2b =时,|7|15b -=,即直线34x y b +=与圆222210x y x y +--+=相切;而直线34x y b +=与圆222210x y x y +--+=相切,则|7|15b -=,即2b =或12b =,因此选B.【考点】充要关系【名师点睛】充分、必要条件的三种判断方法.1.定义法:直接判断“若p 则q”、“若q 则p”的真假.并注意和图示相结合,例如“p ⇒q”为真,则p 是q 的充分条件.2.等价法:利用p ⇒q 与非q ⇒非p ,q ⇒p 与非p ⇒非q ,p ⇔q 与非q ⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件. 6.若0,2πα⎛⎫∈ ⎪⎝⎭,且23sin cos 2210παα⎛⎫++= ⎪⎝⎭,则tan α=( ) A .17 B .13C .3D .7 【答案】C【解析】试题分析:222233tan 2tan 31sin cos 2sin sin 2tan 3tan 210101tan 107πααααααααα-⎛⎫++=⇒-=⇒=⇒==- ⎪+⎝⎭或(舍选C.【考点】三角函数求值弦化切【方法点睛】三角函数求值的三种类型(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数。
2017年高三深一模数学试卷(理科)(带完美解析)(2021年整理)
(完整word)2017年高三深一模数学试卷(理科)(带完美解析)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整word)2017年高三深一模数学试卷(理科)(带完美解析)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整word)2017年高三深一模数学试卷(理科)(带完美解析)(word版可编辑修改)的全部内容。
2017年广东省深圳市高考数学一模试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若集合A={2,4,6,8},B={x|x2﹣9x+18≤0},则A∩B=()A.{2,4} B.{4,6} C.{6,8} D.{2,8}2.若复数(a∈R)为纯虚数,其中i为虚数单位,则a=()A.2 B.3 C.﹣2 D.﹣33.袋中装有大小相同的四个球,四个球上分别标有数字“2”,“3”,“4”,“6”,现从中随机选取三个球,则所选的三个球上的数字能构成等差数列的概率是()A. B.C. D.4.等比数列{a n}的前n项和为S n=a•3n﹣1+b,则=()A.﹣3 B.﹣1 C.1 D.35.直线l:kx+y+4=0(k∈R)是圆C:x2+y2+4x﹣4y+6=0的一条对称轴,过点A(0,k)作斜率为1的直线m,则直线m被圆C所截得的弦长为()A. B. C. D.26.祖冲之之子祖暅是我国南北朝时代伟大的科学家,他在实践的基础上提出了体积计算的原理:“幂势既同,则积不容异”.意思是,如果两个等高的几何体在同高处截得的截面面积恒等,那么这两个几何体的体积相等.此即祖暅原理.利用这个原理求球的体积时,需要构造一个满足条件的几何体,已知该几何体三视图如图所示,用一个与该几何体的下底面平行相距为h(0<h<2)的平面截该几何体,则截面面积为()A.4π B.πh2 C.π(2﹣h)2 D.π(4﹣h)2 7.函数f(x)=•cosx的图象大致是()8.已知a>b>0,c<0,下列不等关系中正确的是()A.ac>bc B.a c>b cC.log a(a﹣c)>log b(b﹣c) D.>9.执行如图所示的程序框图,若输入p=2017,则输出i的值为( )A.335 B.336 C.337 D.33810.已知F是双曲线E:﹣=1(a>0,b>0)的右焦点,过点F作E的一条渐近线的垂线,垂足为P,线段PF与E相交于点Q,记点Q到E的两条渐近线的距离之积为d2,若|FP|=2d,则该双曲线的离心率是( )A. B.2 C.3 D.411.已知棱长为2的正方体ABCD﹣A1B1C1D1,球O与该正方体的各个面相切,则平面ACB1截此球所得的截面的面积为()A.B. C. D.12.已知函数f(x)=,x≠0,e为自然对数的底数,关于x的方程+﹣λ=0有四个相异实根,则实数λ的取值范围是( )A.(0,) B.(2,+∞) C.(e+,+∞)D.(+,+∞)二、填空题:本大题共4小题,每小题5分,满分20分,将答案填在答题纸上13.已知向量=(1,2),=(x,3),若⊥,则|+|= .14.(﹣)5的二项展开式中,含x的一次项的系数为(用数字作答).15.若实数x,y满足不等式组,目标函数z=kx﹣y的最大值为12,最小值为0,则实数k= .16.已知数列{a n}满足na n+2﹣(n+2)a n=λ(n2+2n),其中a1=1,a2=2,若a n<a n+1对∀n∈N*恒成立,则实数λ的取值范围是.三、解答题:解答应写出文字说明、证明过程或演算步骤。
山东省肥城市2017届高三一模考试数学(理)试题Word版含答案
山东省肥城市2017届高三一模考试试题数学(理科)第I 卷(共50分)一、选择题:本大题共10个小题,每小题5分,共50分.每小题给出的四个选项中只有一项是符合题目要求的.(1)设集合{}20,41=3x A x B x x A B x -⎧⎫=≤=-≤≤⋂⎨⎬+⎩⎭,则 (A)[-3,1] (B)[-4,2] (C)[-2,1] (D)(-3,1](2)若复数z满足)=4i z i ⋅,其中i 为虚数单位,则z=(A) 1(B) i(C) i(D) 1(3)中国诗词大会的播出引发了全民的读书热,某小学语文老师在班里开展了一次诗词默写比赛,班里40名学生得分数据的茎叶图如右图.若规定得分不小于85分的学生得到“诗词达人”的称号,小于85分且不小于70分的学生得到“诗词能手”的称号,其他学生得到“诗词爱好者”的称号.根据该次比赛的成绩按照称号的不同进行分层抽样抽选10名学生,则抽选的学生中获得“诗词能手”称号的人数为(A)2 (B)4 (C)5 (D)6(4)在1,60ABC AC BC B ∆===o 中,,则ABC ∆的面积为(A) (B)2(C) (D)3(5)若变量x ,y 满足约束条件20,0,3220.x y y x y z x x y +≥⎧⎪-≤=⎨-⎪-+≥⎩则的最小值等于 (A) 4- (B) 2- (C) 18- (D)0 (6)设x ∈R ,若“()1x a a R -<∈”是“220x x +->”的充分不必要条件,则a 的取值范围是(A) (][),32,-∞-⋃+∞(B) ()[),32,-∞-⋃+∞ (C) ()32-, (D)[-3,2](7)我国古代数学家刘徽在学术研究中,不迷信古人,坚持实事求是.他对《九章算术》中“开立圆术”给出的公式产生质疑,为了证实自己的猜测,他引入了一种新的几何体“牟合方盖”:以正方体相邻的两个侧面为底做两次内切圆柱切割,然后剔除外部,剩下的内核部分.如果“牟合方盖”的主视图和左视图都是圆,则其俯视图形状为(8)若110a b >>,有四个不等式:①33a b <;②21log 3log 3a b ++>;③;④3322a b ab +>.则下列组合中全部正确的为(A)①② (B)①③ (C)②③ (D)①④(9)已知O 为坐标原点,F 是双曲线()2222:10,0x y C a b a b-=>>的左焦点,A ,B 分别为左、右顶点,过点F 做x 轴的垂线交双曲线于点P ,Q ,连结PB 交y 轴于点E ,连结AE 交QF 于点M ,若M 是线段QF 的中点,则双曲线C 的离心率为(A) 2 (B) 52 (C) 3 (D) 72(10)设函数()22,0,11,22,0.ax x x f x x ax x x ⎧+≥⎪⎡⎤=∈-⎨⎢⎥-+<⎣⎦⎪⎩当时恒有()()f x a f x +<,则实数a 的取值范围是(A) 1122⎛- ⎝⎭ (B) 11,2⎛+- ⎝⎭(C) 12⎛⎫- ⎪ ⎪⎝⎭(D) 1122⎛⎫- ⎪ ⎪⎝⎭第Ⅱ卷(共100分)二、填空题:本大题共5个小题,每小题5分,共25分.(11)函数()31f x x =+的定义域为____________. (12)执行下边的程序框图,当输入的x 为2017时,输出的y =___________.(13)已知()()*12n x n N -∈的展开式中第3项与第8项的二项式系数相等,则展开式中所有项的系数和为_____________.(14)在平面直角坐标系内任取一个点(),P x y 满足0202x y ≤≤⎧⎨≤≤⎩,则点P 落在曲线1y x =与直线2,2x y ==围成的阴影区域(如图所示)内的概率为__________.(15)如图,正方形ABCD 的边长为8,点E ,F 分别在边AD ,BC 上,且AE=3ED ,CF=FB ,如果对于常数m ,在正方形ABCD 的四条边上有且只有6个不同的点P ,使得PE PF uur uu u r g =m 成立,那么m 的取值范围是__________.三、解答题:本大题共6小题,共75分.(16)(本小题满分12分)已知函数()22sin cos 222x x x f x ⎛⎫=+- ⎪⎝⎭ (I)求()f x 的单调区间;(II)求()[]0f x π在,上的值域.(17)(本小题满分12分)如图,正四棱台1111ABCD A BC D -的高为2,下底面中心为O ,上、下底面边长分别为2和4. (I)证明:直线1//OC 平面11ADD A ;(II)求二面角1B CC O --的余弦值.18)(本小题满分12分)已知{}n a 是公差不为零的等差数列,n S 为其前n 项和,325149,,S a a a =,并且成等比数列,数列{}n b 的前n 项和为1332n n T +-=. (I)求数列{}n a ,{}n b 的通项公式;(Ⅱ)若2318log n n n n na b c a b ++=,求数列{}n c 的前n 项和n M .(19)(本小题满分12分)2017年1月25日智能共享单车项目摩拜单车正式登陆济南,两种车型采用分段计费的方式,Mobike Lite 型(Lite 版)每30分钟收费0.5元 (不足30分钟的部分按30分钟计算);Mobike (经典版)每30分钟收费1元(不足30分钟的部分按30分钟计算).有甲、乙、丙三人相互独立的到租车点租车骑行(各租一车一次).设甲、乙、丙不超过30分钟还车的概率分别为321,,432,三人租车时间都不会超过60分钟.甲、乙均租用Lite 版单车,丙租用经典版单车.(I)求甲、乙两人所付的费用之和等于丙所付的费用的概率;(Ⅱ)设甲、乙、丙三人所付的费用之和为随机变量ξ,求ξ的分布列和数学期望.(20)(本小题满分13分)已知函数()()211ln 2f x ax a x x a R =-++∈,其中. (I)当0a >时,讨论函数f (x )的单调性; (II)当0a =时,设()()2g x xf x =-+,是否存在区间[](),1,m n ⊆+∞使得函数()g x 在区间[],m n 上的值域为()()2,2k m k n ++⎡⎤⎣⎦?若存在,求实数k 的取值范围;若不存在,请说明理由.(21)(本小题满分14分) 设椭圆()2222:10x y C a b a b+=>>,定义椭圆的“伴随圆”方程为2222x y a b +=+;若抛物线24x y =的焦点与椭圆C 的一个短轴端点重合,且椭圆C 的离心率为3(I)求椭圆C 的方程和“伴随圆”E 的方程;(II)过“伴随圆”E 上任意一点P 作椭圆C 的两条切线PA ,PB ,A ,B 为切点,延长PA 与“伴随圆”E 交于点Q ,O 为坐标原点.(i)证明:PA ⊥PB ;(ii)若直线OP ,OQ 的斜率存在,设其分别为12,k k ,试判断12k k 是否为定值,若是,求出该值;若不是,请说明理由.山东省肥城市2017届高三一模考试数学(理)试题答案。
(word完整版)2017全国三卷理科数学高考真题及答案,推荐文档
2017年普通高等学校招生全国统一考试(新课标山)理科数学、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1 •已知集合A= (x, y)| x2y21,B= (x, y)l y X,贝y A l B中兀素的个数为A . 3B. 2C. 1 D. 02 .设复数z满足(1+i)z=2i, 则1z 1=1A . 一2B. 2C. 2 D. 23•某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是A •月接待游客量逐月增加B .年接待游客量逐年增加C •各年的月接待游客量高峰期大致在7,8月份D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳4. ( x+ y )(2 x - y )5的展开式中x3 y 3的系数为A . -80B. -4C. 40D. 805.已知双曲线2 2x y C :C : 2 .2a b1(a > 0,b > 0)的一条渐近线方程为y x,且与椭圆22 2話二1有公共焦点,则C的方程为体积为3 nnnA . nB .C .D .—4 2 49.等差数列a n 的首项为1,公差不为0 .若a 2, a 3, a 6成等比数列,则a n 前6项的和A . -24B . -3C . 3D . 82 2x y10 .已知椭圆 C :二 2 1 , ( a>b>0)的左、右顶点分别为 A 1, A 2,且以线段 A 1A 2为a b直径的圆与直线 bx ay 2ab 0相切,则C 的离心率为.3-1A .BC .D .33 3 32 2xy ’A .12 2x y ’ B .12x C.—52 x D.— 42y- i 36.设函数则下列结论错A • f(x)的一个周期为-2 B . y=f(x)的图像关于直线 8x=- 3对称C . f(x+n 的一个零点为x=—6D . f(x)在(一,n 单调递减22的同一个球的球面上,则该圆柱的N 的最小值为11 .已知函数f(x)2x 2x a(ex1e % 1)有唯一零点,则 a=11 1A .B.-C.-D . 1232uur12.在矩形ABC D中,AB=1 ,AD=2,动点P 在以点 C 为圆心且与 BD 相切的圆上.若APuuu uuurAB +AD , 则 +的最大值为A . 3B . 2 2C . 5D . 2二、 填空题:本题共 4小题,每小题5分,共20分。
(完整word版)2017全国三卷理科数学高考真题及答案(3),推荐文档
2017年普通高等学校招生全国统一考试(新课标Ⅲ)理科数学一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A I B 中元素的个数为A .3B .2C .1D .02.设复数z 满足(1+i)z =2i ,则∣z ∣=A .12B CD .23.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图. 根据该折线图,下列结论错误的是 A .月接待游客量逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月份D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 4.(x +y )(2x -y )5的展开式中x 3y 3的系数为A .-80B .-40C .40D .805.已知双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线方程为y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为 A .221810x y -=B .22145x y -= C .22154x y -= D .22143x y -= 6.设函数f (x )=cos(x +3π),则下列结论错误的是 A .f (x )的一个周期为?2πB .y =f (x )的图像关于直线x =83π对称C .f (x +π)的一个零点为x =6π D .f (x )在(2π,π)单调递减 7.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为A .5B .4C .3D .28.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A .πB .3π4C .π2D .π49.等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a6成等比数列,则{}n a 前6项的和为A .-24B .-3C .3D .810.已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A.BCD .1311.已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =A .12-B .13C .12D .112.在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP u u u r=λAB u u u r +μAD u u u r,则λ+μ的最大值为A .3B .C.D .2二、填空题:本题共4小题,每小题5分,共20分。
(word完整版)2017全国三卷理科数学高考真题及答案,推荐文档
2017年普通高等学校招生全国统一考试(新课标Ⅲ)理科数学一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A I B 中元素的个数为 A .3B .2C .1D .02.设复数z 满足(1+i)z =2i ,则∣z ∣= A .12B .2 C .2 D .23.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是 A .月接待游客量逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月份D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 4.(x +y )(2x -y )5的展开式中x 3y 3的系数为 A .-80B .-40C .40D .805.已知双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线方程为52y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为A .221810x y -= B .22145x y -= C .22154x y -= D .22143x y -= 6.设函数f (x )=cos(x +3π),则下列结论错误的是 A .f (x )的一个周期为−2πB .y =f (x )的图像关于直线x =83π对称 C .f (x +π)的一个零点为x =6πD .f (x )在(2π,π)单调递减 7.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为A .5B .4C .3D .28.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .πB .3π4C .π2D .π49.等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为 A .-24B .-3C .3D .810.已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A .63B .33C .23D .1311.已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =A .12-B .13C .12D .112.在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP u u u r=λAB u u u r +μAD u u u r,则λ+μ的最大值为A .3B .CD .2二、填空题:本题共4小题,每小题5分,共20分。
(完整word版)2017全国三卷理科数学高考真题及答案
2017年普通高等学校招生全国统一考试(新课标Ⅲ)理科数学一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A I B 中元素的个数为 A .3B .2C .1D .02.设复数z 满足(1+i)z =2i ,则∣z ∣= A .12B .2 C .2 D .23.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是 A .月接待游客量逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月份D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 4.(x +y )(2x -y )5的展开式中x 3y 3的系数为 A .-80B .-40C .40D .805.已知双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线方程为52y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为A .221810x y -= B .22145x y -= C .22154x y -= D .22143x y -= 6.设函数f (x )=cos(x +3π),则下列结论错误的是 A .f (x )的一个周期为−2πB .y =f (x )的图像关于直线x =83π对称 C .f (x +π)的一个零点为x =6πD .f (x )在(2π,π)单调递减 7.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为A .5B .4C .3D .28.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .πB .3π4C .π2D .π49.等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为 A .-24B .-3C .3D .810.已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A .63B .33C .23D .1311.已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =A .12-B .13C .12D .112.在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP u u u r=λAB u u u r +μAD u u u r,则λ+μ的最大值为A .3B .CD .2二、填空题:本题共4小题,每小题5分,共20分。
2017高考数学山东卷理(附参考答案及详解)
) /?$*%' 0*0" '"0* 0*0! '"0* '8@"' 0*0" '"0* $!.*8@
"%###
) /$*%\$!#.6%]^_`!
)
/$*%#/$!%#M"+*
#
! "
!
&
*.
! +
'*.*'"*.*.+.89:"$*.+%#
)
+ "*
#89:"$*.+%#*.
! +
!
(?, )¿(, )NSÁÂ!
!3!$本小题满 分 !$ 分%已 知 !#*"是 各 项 均 为 正 数 的 等 比 数 列#且 #! /#$ '(##( 0#$ '$! $!%求 数 列 !#* "的 通 项 公 式 ' $$%如图#在平面直角坐标系 #4- 中#依次连接点 6!$#!#!%#6$ $#$#$%#, #6*/! $#*/!#*/!%得 到 折 线 6!6$ ,6*/!#求 由 该 折 线 与 直 线 -'###'#!##'#*/!所 围 成 的 区 域 的 面 积 K*!
$$%当 "$'(#"&'$时#求二面角 07"J7% 的大小!
第 !2 题 图
年 普 通 高 等 学 校 招 生 全 国 统 一 考 试 数 学 理
!.!$本小题满分 !$ 分%在 心 理 学 研 究 中#常 采 用 对 比 试 验 的 方 法 评价不同心理暗 示 对 人 的 影 响#具 体 方 法 如 下&将 参 加 试 验 的 志愿者随机分成 两 组#一 组 接 受 甲 种 心 理 暗 示#另 一 组 接 受 乙 种心理暗示#通过对比这两组志 愿 者 接 受 心 理 暗 示 后 的 结 果 来 评 价 两 种 心 理 暗 示 的 作 用 !现 有 & 名 男 志 愿 者 "!#"$#"(#"-# ""#"& 和 - 名 女 志 愿 者 $!#$$#$(#$-#从 中 随 机 抽 取 " 人 接 受 甲 种 心 理 暗 示 #另 " 人 接 受 乙 种 心 理 暗 示 ! $!%求接受 甲 种 心 理 暗 示 的 志 愿 者 中 包 含 "! 但 不 包 含 $! 的 概率' $$%用 8 表示接受乙种心理暗 示 的 女 志 愿 者 人 数#求 8 的 分 布 列与数学期望08 !
2017年成考高起点数学(理)真题及答案
2017年成考高起点数学(理)真题及答案第1卷(选择题,共85分)一、选择题(本大题共17小题,每小题5分,共85分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合M={1,2,3,4,5),N={2,4,6),则M∩N= 【】A.{2,4}B.{2,4,6}C.{1,3,5}D.{1,2,3,4,5,6}2.函数的最小正周期是【】A.8πB.4πC.2πD.3.函数的定义域为【】A.B.C.D.4.设a,b,C为实数,且a>b,则【】A.B.D.5.若【】A.B.C.D.6.函数的最大值为A.1B.2C.6D.37.右图是二次函数Y=X2+bx+C的部分图像,则【】A.b>0,C>0B.b>0,C<0C.b<0,C>0D.b<0,c<08.已知点A(4,1),B(2,3),则线段AB的垂直平分线方程为【】A.z-Y+1=0C.x-Y-1=0D.x-2y+1=09.函数【】A.奇函数,且在(0,+∞)单调递增B.偶函数,且在(0,+∞)单调递减C.奇函数,且在(-∞,0)单调递减D.偶函数,且在(-∞,0)单调递增10.一个圆上有5个不同的点,以这5个点中任意3个为顶点的三角形共有【】A.60个B.15个C.5个D.10个11.若【】A.5mB.1-mC.2mD.m+112.设f(x+1)一x(x+1),则f(2)= 【】A.1B.3C.2D.613.函数y=2x的图像与直线x+3=0的交点坐标为【】A.B.C.D.14.双曲线的焦距为【】A.1B.4C.2D.根号215.已知三角形的两个顶点是椭圆的两个焦点,第三个顶点在C上,则该三角形的周长为【】A.10B.20C.16D.2616.在等比数列{a n}中,若a3a4=l0,则a l a6+a2a5=【】A.100B.40C.10D.2017.若l名女牛和3名男生随机地站成一列,则从前面数第2名是女生的概率为【】A.B.C.D.第Ⅱ卷(非选择题,共65分)二、填空题(本大题共4小题,每小题4分。
(完整word版)2017全国三卷理科数学高考真题及答案,推荐文档
2017年普通高等学校招生全国统一考试(新课标Ⅲ)理科数学一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A I B 中元素的个数为 A .3B .2C .1D .02.设复数z 满足(1+i)z =2i ,则∣z ∣= A .12B .2 C .2 D .23.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是 A .月接待游客量逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月份D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 4.(x +y )(2x -y )5的展开式中x 3y 3的系数为 A .-80B .-40C .40D .805.已知双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线方程为52y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为A .221810x y -= B .22145x y -= C .22154x y -= D .22143x y -= 6.设函数f (x )=cos(x +3π),则下列结论错误的是 A .f (x )的一个周期为−2πB .y =f (x )的图像关于直线x =83π对称 C .f (x +π)的一个零点为x =6πD .f (x )在(2π,π)单调递减 7.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为A .5B .4C .3D .28.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .πB .3π4C .π2D .π49.等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为 A .-24B .-3C .3D .810.已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A .63B .33C .23D .1311.已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =A .12-B .13C .12D .112.在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP u u u r=λAB u u u r +μAD u u u r,则λ+μ的最大值为A .3B .CD .2二、填空题:本题共4小题,每小题5分,共20分。
2017年成考高起点数学(理)真题及答案
2017年成考高起点数学(理)真题及答案一、选择题(本大题共17小题,每小题5分,共85分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合M={1,2,3,4,5),N={2,4,6),则M∩N=()A.{2,4}B.{2,4,6}C.{1,3,5}D.{1,2,3,4,5,6}【答案】A【考情点拨】本题主要考查的知识点为交集.【应试指导】M∩N={2,4}.最小正周期是()2.函数的y=sinπ4A.8πB.4πC.2πD.【答案】A【考情点拨】本题主要考查的知识点为最小正周期.=8π.【应试指导】T=2π143.函数的定义域为()A.B.C.D..【答案】D【考情点拨】本题主要考查的知识点为定义域.【应试指导】x(x-1)≥0时,原函数有意义,即x≥1或x≤0.4.设a,b,C为实数,且a>b,则()A.B.C.D.【答案】A【考情点拨】本题主要考查的知识点为不等式的性质. 【应试指导】a>b,则a-c>b-c.5.若()A.B.C.D.【答案】B【考情点拨】本题主要考查的知识点为三角函数.【应试指导】因为π2<θ<π,所以cosθ<0,cosθ=−√1−sin2θ=−√1−(13)2=−2√23.6.函数的最大值为A.1B.2C.6D.3【答案】D【考情点拨】本题主要考查的知识点为函数的最大值.【应试指导】y=6sinxcosx=3sin2x,当sin2x=1时y取最大值3.7.右图是二次函数Y=X2+bx+C的部分图像,则()A.b>0,C>0B.b>0,C<0C.b<0,C>0D.b<0,c<0【答案】A【考情点拨】本题主要考查的知识点为二次函数图像.【应试指导】由图像可知,当x=0时y=c>0,也就是图像与y轴的交点;图像的对称<0,则b>0轴x=−b28.已知点A(4,1),B(2,3),则线段AB的垂直平分线方程为()A.z-Y+1=0B.x+y-5=0C.x-Y-1=0D.x-2y+1=0【答案】C【考情点拨】本题主要考查的知识点为垂直平分线方程.【应试指导】线段AB的斜率为k1=3−1=−1,A、B(的中点坐标为(3,2),则AB的垂直平分线方程y-2=x-3,即x-y-1=0.9.函数()A.奇函数,且在(0,+∞)单调递增B.偶函数,且在(0,+∞)单调递减C.奇函数,且在(-∞,0)单调递减D.偶函数,且在(-∞,0)单调递增【答案】C【考情点拨】本题主要考查的知识点为函数的奇偶性及单调性.【应试指导】f(−x)=−1x =−f(x),f′(x)=−1x2,当x<0或x>0时f(x)<0,故y=1x是奇函数,且在(-∞,0)和(0,+∞)上单调递减.10.一个圆上有5个不同的点,以这5个点中任意3个为顶点的三角形共有()A.60个B.15个C.5个D.10个【答案】D【考情点拨】本题主要考查的知识点为效列组合.【应试指导】C:=5×4×33×2=10.11.若()A.5mB.1-mC.2mD.m+1【答案】B【考情点拨】本题主要考查的知识点为对数函数.=1−lg5=1−m.【应试指导】lg2=lg10512.设f(x+1)-x(x+1),则f(2)=()A.1B.3C.2D.612.【答案】C【考情点拨】本题主要考查的知识点为函数.【应试指导】f(2)=f(1+1)=1×(1+1)=2.13.函数y=2x的图像与直线x+3=0的交点坐标为()A.B.C.D.【答案】B【考情点拨】本题主要考查的知识点为线的交点.,则函数y=2ˣ与直线x+3=0的交点坐标为【应试指导】x+3=0,x=−3,y=2−2=18)(−3,1814.双曲线的焦距为()A.1B.4C.2D.根号2【答案】B【考情点拨】本题主要考查的知识点为双曲线的焦距.【应试指导】c=√a2+b2=√3+1=2,则双曲线的焦距2c=4.15.已知三角形的两个顶点是椭圆的两个焦点,第三个顶点在C上,则该三角形的周长为()A.10B.20C.16D.26【答案】C【考情点拨】本题主要考查的知识点为椭圆的性质.【应试指导】椭圆的两个焦点的距离为2c=2√a2−b2=6.又因为第三个顶点在C上,则该点与两个焦点问的距离的和为2a=2×5=10,则三角形的周长为10+6=16.16.在等比数列{an}中,若a3a4=l0,则ala6+a2a5=()A.100B.40C.10D.20【答案】D【考情点拨】本题主要考查的知识点为等比数列.q1•a1q3=a12q5=10,a1a6=a12q5,a2a5=a1q•a4q4=【应试指导】a i a4=α1a13q5,a1a6+a2a6=2a1a4=2017.若l名女牛和3名男生随机地站成一列,则从前面数第2名是女生的概率为()A.1B .13C .12D .34【答案】A【考情点拨】本题主要考查的知识点为随机事件的概率. 【应试指导】设A 表示第2名是女生,P (A )=1C 41=14.第Ⅱ卷(非选择题,共65分)二、填空题(本大题共4小题,每小题4分。
2017年高考理科数学山东卷(含答案解析)
数学试卷 第1页(共14页) 数学试卷 第2页(共14页)绝密★启用前2017年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第II 卷两部分,满分150分.考试时间120分钟.参考公式:如果事件A ,B 互斥,那么+=+P A B P A P B ()()();如果事件A ,B 独立,那么=P AB P A P B ()()(). 第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设函数24x y -=的定义域为A ,函数)1ln(x y -=的定义域为B ,则=A B ( )A.()1,2B.](1,2C.()2,1-D.[2,1)- 2.已知R a ∈,i 是虚数单位.若z a =,4z z ⋅=,则a = A.1或1-C.3.已知命题p :0x ∀>,ln(1)0x +>;命题q :若a b >,则22a b >.下列命题为真命题的是 ( ) A.p q ∧ B.p q ∧⌝ C.p q⌝∧D.p q ⌝∧⌝4.已知x ,y 满足约束条件3035030x y x y x -+≤⎧⎪++≤⎨⎪+≥⎩,,,则2z x y =+的最大值是( )A.0B.2C.5D.65.为了研究某班学生的脚长x (单位:厘米)和身高y (单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y 与x 之间有线性相关关系,设其回归直线方程为y b x a ∧∧∧=+,已知101225ii x==∑,1011600ii y==∑,4b ∧=.该班某学生的脚长为24,据此估计其身高为 ( ) A.160 B.163 C.166 D.170 6.执行两次如图所示的程序框图,若第一次输入的x 的值为7,第二次输入的x 的值为9,则第一次、第二次输出的a 的值分别为 ( ) A.0,0 B.1,1 C.0,1 D.1,07.若0a b >>,且1ab =,则下列不等式成立的是 ( )A.21log ()2a ba ab b +<<+B.21log ()2a b a b a b <+<+C.21log ()2a b a a b b +<+<D.21log ()2a ba b a b +<+<8.从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张,则抽到的2张卡片上的数奇偶性不同的概率是 ( ) A.518 B.49 C.59 D.799.在ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,若ABC ∆为锐角三角形,且满足sin (12cos )2sin cos cos sin B C A C A C +=+,则下列等式成立的是 ( ) A.2a b = B.2b a = C.2A B = D.2B A =10.已知当[]0,1x ∈时,函数2(1)y mx =-的图象与y m =的图象有且只有一个交点,则正实数m 的取值范围是( )A.(])0,123,⎡+∞⎣ B.(][)0,13,+∞C.()23,⎡+∞⎣D.([)3,+∞毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共14页) 数学试卷 第4页(共14页)第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分.(11)已知(13)n x +的展开式中含有2x 项的系数是54,则n =________.(12)已知1e 、2e 是互相垂直的单位向量.12e -与12e e λ+的夹角为60︒,则实数λ的值是________.(13)由一个长方体和两个14圆柱体构成的几何体的三视图如图,则该几何体的体积为________.(14)在平面直角坐标系xOy 中,双曲线22221x y a b-=(0a >,0b >)的右支与焦点为F的抛物线22x py =(0p >)交于A ,B 两点,若4AF BF OF +=,则该双曲线的渐近线方程为________. (15)若函数()xe f x ( 2.71828e =是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质.下列函数中所有具有M 性质的函数的序号为________.①()2x f x -= ①()3x f x -= ①3()f x x = ①2()2f x x =+ 三、解答题:本大题共6小题,共75分. (16)(本小题满分12分)设函数()sin()sin()62f x x x ππωω=-+-,其中03ω<<,已知()06f π=. (1)求ω; (2)将函数()y f x =的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移4π个单位,得到函数()y g x =的图象,求()g x 在3,44ππ⎡⎤-⎢⎥⎣⎦上的最小值.(17)(本小题满分12分)如图,几何体是圆柱的一部分,它是由矩形ABCD (及其内部)以AB 边所在直线为旋转轴旋转120︒得到的,G 是DF 的中点. (1)设P 是GE 上的一点,且AP BE ⊥,求CBP ∠的大小; (2)当3AB =,2AD =时,求二面角E AG C --的大小.数学试卷 第5页(共14页) 数学试卷 第6页(共14页)(18)(本小题满分12分)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用.现有6名男志愿者1A ,2A ,3A ,4A ,5A ,6A 和4名女志愿者1B ,2B ,3B ,4B ,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(Ⅰ)求接受甲种心理暗示的志愿者中包含1A 但不包含B 1的概率;(Ⅱ)用X 表示接受乙种心理暗示的女志愿者人数,求X 的分布列与数学期望EX .(19)(本小题满分12分)已知{}n x 是各项均为正数的等比数列,且123x x +=,322x x -=.(Ⅰ)求数列{}n x 的通项公式;(Ⅱ)如图,在平面直角坐标系xOy 中,依次连接点()11,1P x ,()22,2P x ,…,()11,1n n P x n +++得到折线121n PP P +,求由该折线与直线0y =,1x x =,1n x x +=所围成的区域的面积n T .(20)(本小题满分13分)已知函数2()2cos f x x x =+,()(cos sin 22)x g x e x x x =-+-,其中 2.71828e =是自然对数的底数.(Ⅰ)求曲线()y f x =在点()(),f ππ处的切线方程;(Ⅱ)令()()()h x g x af x =-(a R ∈),讨论()h x 的单调性并判断有无极值,有极值时求出极值.(21)(本小题满分14分)在平面直角坐标系xOy 中,椭圆2222:1x y E a b+=(0a b >>,焦距为2.(Ⅰ)求椭圆E 的方程;(Ⅱ)如图,动直线l:1y k x =交椭圆E 于A ,B 两点,C 是椭圆E 上一点,直线OC 的斜率为2k ,且12k k =,M 是线段OC 延长线上一点,且23MC AB ︰=︰,M 的半径为MC ,OS ,OT 是M 的两条切线,切点分别为S ,T .求SOT ∠的最大值,并求取得最大值时直线l 的斜率.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共14页) 数学试卷 第8页(共14页)2017年普通高等学校招生全国统一考试(山东卷)理科数学答案解析第Ⅰ卷一、选择题 1.【答案】D【解析】由题意可知={|2x 2}A x -≤≤,{x |x 1}B =<,故={|21}A B x x -≤<. 2.【答案】A【解析】解法一:由题意可知2=,=34z a z z a a a -∴=++=()(,故1a =或1-. 解法二:2234zz za =+==,故1a =或1-.3.【答案】B【解析】当0x >时,11x +>,因此ln(1)0x +>,即p 为真命题;取12a b ==-,.这时满足b a >,显然22b a >不成立,因此q 是假命题.易知B 为真命题.4.【答案】C【解析】x y ,满足的约束条件对应的平面区域如图中阴影部分所示,将直线22x zy =-+进行平移,显然当该直线过点(3,4)A -时z 取得最大值max 385z =-+=.5.【答案】C【解析】由题意可知4y x a ∧∧=+,又22.5,160x y ==,因此160=22.5470a a ∧∧⨯+∴=,,因此470y x ∧=+.当24x =时,42470=96+70=166y ∧=⨯+. 6.【答案】D【解析】当输入7x =时,2b =,因为2b x >不成立且x 不能被b 整除,故3b =,这时2b x >成立,故1a =,输出a 的值为1.当输入9x =时,2b =,因此2b x >不成立且x 不能被b 整除,故3b =,这时2b x >不成立且x 能被b 整除,故0a =,输出a 的值为0.7.【答案】B【解析】根据题意,令122a b ==,进行验证,易知22115+4,log ()log 1282a b a a b b ==+=>,,因此21log ()2a b a a b b +>+>. 8.【答案】C【解析】所求概率为111254119859C C C P C C ==. 9.【答案】A【解析】由题意可知sin 2sin cos sin cos sin +B B C A C A C +=+(),即2sin cos sin cos B C A C =,又cosC 0≠,故2sin sin B A =,由正弦定理可知2a b =. 10.【答案】B【解析】当01m <≤时,需满足21+1m m ≥-(),解得03m ≤≤,故这时01m <≤.当1m >时,需满足2(1)1+m m -≥解得3m ≥或0m ≤,故这时3m ≥.综上可知,正实数m 的取值范围为0,1][3+⋃∞(,). 第Ⅱ卷二.填空题。
2017山东卷高考数学试题(Word版本)
2017年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第I 卷和第II 卷两部分,共4页。
满分150分。
考试用时120分钟。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。
2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
答案写在试卷上无效。
3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4、填空题请直接填写答案,解答题应写出文字说明,证明过程或演算步骤。
参考公式:如果事件A ,B 互斥,那么P (A+B )=P(A)+P(B)第I 卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符号题目要求的.(1) 设函数A ,函数y=的定义域为B,则A B =(A )(1,2) (B )⎤⎦(1,2 (C )(-2,1) (D )[-2,1) (2)已知i 是虚数单位,(A )i 或-1 (B (C ) (D(3)已知命题p:()>,log 1>0+x x;命题q :若a >b ,则>a ba b ,下列命题为真命题的是(A ) p q ∧ (B )p q ⌝∧ (C ) p q ⌝∧ (D )p q ⌝⌝∧ (4)已知x,y 满足31,+11⎧-+≤⎪+≤⎨⎪⎩x y 2x y ,则z=x+2y 的最大值是(A ) (B ) (C ) (D )6(5)为了研究某班学生的脚长x (单位:厘米)和身高y (单位:厘米)的关系,从该班随机抽取10名学生,学|科网根据散点图可以看出y 与x 之间有相关关系,直线方程为y=bx+a 已知∑=225,∑=1000,b=1该班某学生的脚长为,据此估计身高为(A )160(B )183(C )(D )170(6)执行两次右图所示的程序框图,若第一次输入的x 值为7,第二次输入的x 值为,则第一次,第二次输出的的值分别为(A )0,0(B )1,1(C )0,1(D )1,0(7)若a >b >0,且ab=1,则下列不等式成立的是(A )2a 1b a log (a b)2+〈〈+b(B )2a b 1log (a b)a 2〈+〈+b(C )2a 1b a log (a b)2+〈+〈b (D )2a 1b log (a b)a 2+〈+〈b (8)从分别标有1,2,…,9的9张卡片中不放回地随机抽取Z 次,每次抽取1张,则抽到在2张卡片上的数奇偶性不同的概率是(A ) (B ) (C ) (D )(9)在ABC 中,角A ,B ,C 的对边分别为a,b,c,若ABC 为锐角三角形,且满足sinB (1+2cosC )=2sinAcosC+cosAsinC ,则下列等式成立的是(A )a=2b (B)b=2a (C)A=2B (D) B=2A(10)已知当x []01∈,时,函数y=(mx-1)2 的图象与y=+m 的图象有且只有一个交点,则正实数m 的取值范围是(A )(0,1)[2,+] (B )(0,1)[3,+ ] (C )(0,[2,+] (C) (0,[3,+]第II 卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分(11)已知(1+3x )n 的展开式中含有x -1的系数是54,则n =(12)已知12,e e 是互相垂直的单位向量,若 123-e e 与12+3e e 夹角为 则实数λ的值是(13)由一个长方体和两个14圆柱构成的几何体的三视图如图,则该几何体的体积为 .(14)在平面直角坐标系xOy 中,双曲线4(0)>>2222x y +=a b a b 与焦点为F 的抛物线()2x =2py p >0 交于A,B 两点,若AF +BF =OF ,则该双曲线的渐近线方程为_________.(15)若函数y=f(x),本题请等后更新。
(完整word版)2017全国三卷理科数学高考真题及答案
2017年普通高等学校招生全国统一考试(新课标Ⅲ)理科数学一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A I B 中元素的个数为 A .3B .2C .1D .02.设复数z 满足(1+i)z =2i ,则∣z ∣= A .12B .2 C .2 D .23.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是 A .月接待游客量逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月份D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 4.(x +y )(2x -y )5的展开式中x 3y 3的系数为 A .-80B .-40C .40D .805.已知双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线方程为52y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为A .221810x y -= B .22145x y -= C .22154x y -= D .22143x y -= 6.设函数f (x )=cos(x +3π),则下列结论错误的是 A .f (x )的一个周期为−2πB .y =f (x )的图像关于直线x =83π对称 C .f (x +π)的一个零点为x =6πD .f (x )在(2π,π)单调递减 7.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为A .5B .4C .3D .28.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .πB .3π4C .π2D .π49.等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为 A .-24B .-3C .3D .810.已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A .63B .33C .23D .1311.已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =A .12-B .13C .12D .112.在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP u u u r=λAB u u u r +μAD u u u r,则λ+μ的最大值为A .3B .CD .2二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三理科数学
第Ⅰ卷
一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1、若2z i =+,则41
i zz =- A .1 B .-1 C .i D .i -
2、设集合2{|230},{|450}A x x B x x x =+>=+-<,则A
B = A .(5,)-+∞ B .3
(5,)2-- C .3(,1)2
- D .3(,)2-+∞ 3、如图是某居民消去年龄在20岁到45岁的
居民上网情况的频率分布直方图,现已知年龄
在[30,35),[35,40),[40,45]的上网人数呈现递
减等差数列,则年龄在[35,40)的频率
A .0.04
B .0.06
C .0.2
D .0.3
4、在平面直角坐标系xOy 中,M 为不等式组36020
0,0x y x y x y --≤⎧⎪-+≥⎨⎪≥≥⎩
所表示的区域上一动点,
已知点(1,2)A -,则直线AM 斜率的最小值为
A .23-
B .2-
C .0
D .45
5、已知b 是实数,则“2b =”是“34x y b +=与圆222210x y x y +--+=相切”的
A .充要条件
B .充分不必要条件
C .必要不充分条件
D .既不充分也不必要条件
6、若(0,
)2πα∈,且23sin cos(2)210παα++=,则tan α= A .17 B .13
C .3
D .7 7、若非零向量,a b 满足22a b =∞
,且()(32)a b a b +⊥+,则a 与b 的夹角为 A .4π B .3π C .2
π D .34π 8、一个几何体的三视图如右图所示,且其侧视图
是一个等边三角形,则这个几何体的体积为
A
.(4π+C
D
9、定义在R 上的函数()f x 满足()1(1)f x f x +=-,在区间[1,1)-上,(),102,015x m x f x x x --≤<⎧⎪=⎨-≤<⎪⎩
,其中m R ∈,若59()()22
f f -=,则(5)f m = A .85- B .25- C .35 D .75
10、设直线,l m 分别是函数()ln ,01ln ,1
x x f x x x -<<⎧=⎨>⎩图象上在点M 、N 处的切线,已知l 与m 互相垂直,且
分别与y 轴相交于点,A B ,点P 是函数(),(1)y f x x =>图象上任意一点,则PAB ∆的面积的取值范围是
A .(0,1)
B .(0,2)
C .(2,)+∞
D .(1,)+∞
第Ⅱ卷
二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卷的横线上。
.
11、只想如图所示的程序可图,若输入x 的值为32-
, 则输出i 的值是
12、28
1
()x x -的展开式中的7x 的系数是 13、在区间[]4,4-上随机取一个数x , 使得125x x -++≤成立的概率为
14、在平面直角坐标系xOy 中,若双曲线22
214
x y m m -=+
m 的值为
15、已知函数()log (0a f x x a =>且1)a ≠和函数()sin
2g x x π=,若()f x 与()g x 的图象有且只有3个
交点,则a 的取值范围是
三、解答题:本大题共6小题,满分75分,解答应写出文字说明、证明过程或演算步骤
16、(本小题满分12分)
ABC ∆的内角,,A B C 的对边分别是,,a b c ,已知2cos (cos cos )A b C c B a +=。
(1)求角A ;
(2)若5a b c =+=,求ABC ∆的面积。
17、(本小题满分12分)
如图,在边长为4的菱形ABCD 中,060DAB ∠=,点E 、F 分别是边CD 、CB 的中点,AC
EF O =,
沿EF 将CEF ∆翻折到PEF ∆,连接PA 、PB 、PD ,得到如图的五棱锥P-ABFED ,且PB =(1)求证:BD ⊥平面POA ;
(2)求二面角B AP O --的余弦值。
18、(本小题满分12分)
设数列{}n a 的前n 项和为,已知111,21,n n a a S n N *+==+∈
(1)求数列{}n a 的通项公式;
(2)求数列{}2n a n --的前n 项和n T 。
19、(本小题满分12分)
某公司采用招考的方式引进人才,规定考生必须在B 、C 、D 三个测试点中任意选取两个进行测试,若在这两个测试点都测试合格,则可参加面试,否则不被录用,已知考生在每个测试点的测试结果只有合格与不合格两种,且在每个测试点的测试结果互不影响,若考生小李和小王一起前来参加招考,小李在测试点B 、
C 、
D 测试合格的概率分别为211,,332,小王在上述三个测试点测试合格的概率都是23。
(1)问小李选择哪两个测试点测试才能使得可以参加面试的可能性最大?请说明理由;
(2)假设小李选择测试点B 、C 进行测试,小王选择测试点B 、D 进行测试,记X 为两人在各测试点测试合格的测试点之和,求随机变量X 的分布列及其数学期望EX 。
20、(本小题满分13分)
已知椭圆22
22:1(0)x y E a b a b
+=>>的左右焦点分别为12,F F ,离心率为12e =,过点1F 且垂直 于x 轴的直线被椭圆E 截得的线段长为3.
(1)求椭圆E 的方程;
(2)若直线l 过椭圆E 的右焦点2F ,且与x 轴不重合,交椭圆E 于M 、N 零点,过2F 且与l 垂直的直线与圆22:2150C x y x ++-=交于P 、Q 零点,求四边形MPNQ 面积的取值范围。
21、(本小题满分14分)
已知函数2()(2)ln ,()ln ()g x a x h x x ax a R =-=+∈,令()()()f x g x h x '=+,其中()h x '是函数()h x 的导数。
(1)当0a =时,求()f x 的极值;
(2)当82a -<<-时,若存在[]12,1,3x x ∈,使得122()()(ln 3)2ln 3ln()3
f x f x m a a ->+-+-恒成立,求m 的取值范围。