高三总复习第四讲 常用逻辑用语

合集下载

高考数学总复习 常用逻辑用语

高考数学总复习 常用逻辑用语

知识网络:目标认知考试大纲要求:1.理解命题的概念;了解逻辑联结词“或”、“且”、“非”的含义.2.了解命题“若p,则q”的形式及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.3.理解必要条件、充分条件与充要条件的意义.4.理解全称量词与存在量词的意义;能正确地对含有一个量词的命题进行否定.重点:充分条件与必要条件的判定.难点:根据命题关系或充分(或必要)条件进行逻辑推理。

知识要点梳理知识点一:命题1.定义:一般地,我们把用语言、符号或式子表达的,可以判断真假的语句叫做命题.(1)命题由题设和结论两部分构成.命题通常用小写英文字母表示,如p,q,r,m,n等.(2)命题有真假之分,正确的命题叫做真命题,错误的命题叫做假命题.数学中的定义、公理、定理等都是真命题;(3)命题“”的真假判定方式:①若要判断命题“”是一个真命题,需要严格的逻辑推理;有时在推导时加上语气词“一定”能帮助判断。

如:一定推出.②若要判断命题“”是一个假命题,只需要找到一个反例即可.注意:“不一定等于3”不能判定真假,它不是命题.2.逻辑联结词:“或”、“且”、“非”这些词叫做逻辑联结词.(1)不含逻辑联结词的命题叫做简单命题,由简单命题与逻辑联结词构成的命题叫做复合命题.(2)复合命题的构成形式:①p或q;②p且q;③非p(即命题p的否定).(3)复合命题的真假判断(利用真值表):非真真假真真真假假真假假真真真假假假真假假①当p、q同时为假时,“p或q”为假,其它情况时为真,可简称为“一真必真”;②当p、q同时为真时,“p且q”为真,其它情况时为假,可简称为“一假必假”。

③“非p”与p的真假相反.注意:(1)逻辑连结词“或”的理解是难点,“或”有三层含义,以“p或q”为例:一是p成立且q不成立,二是p不成立但q成立,三是p成立且q也成立。

可以类比于集合中“或”.(2)“或”、“且”联结的命题的否定形式:“p或q”的否定是“p且q”;“p且q”的否定是“p或q”.(3)对命题的否定只是否定命题的结论;否命题,既否定题设,又否定结论。

数学高中专题 常用逻辑用语

数学高中专题     常用逻辑用语

数学高中专题常用逻辑用语1、逻辑联结词:⑴且(and) :命题形式p q ∧;⑵或(or):命题形式p q ∨;⑶非(not):命题形式p ⌝.2、⑴全称量词——“所有的”、“任意一个”等,用“∀”表示;全称命题p:)(,xpMx∈∀;全称命题p的否定⌝p:)(,xpMx⌝∈∃。

⑵存在量词——“存在一个”、“至少有一个”等,用“∃”表示;特称命题p:)(,xpMx∈∃;特称命题p的否定⌝p:)(,xpMx⌝∈∀;高考理科数学新课标对常用逻辑用语的要求:3、简单的逻辑连接词了解逻辑连接词或,且,非的含义4、全称量词与存在量词(1)理解全称量词与存在量词的意义(2)能正确的对含有一个量词的命题进行否定高考对常用逻辑用语主要考查逻辑联结词的应用、特(全)称命题的否定、充要条件的判断等.高考中集合属于基础题,多与不等式相结合考查集合的交、并、补运算及集合间的关系.近五年除了2012年及2016年其余都以小题形式出现,试题难度较小。

题型1: 充分条件、必要条件、充要条件的判断与证明。

此类题目出现的频率较高,多与不等式,三角,立体几何等知识点交汇出现。

1.(2015重庆理4)“1x >”是“12og ()l 20x +<”的( ).A. 充要条件B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件5.(2015北京理4)设α,β是两个不同的平面,m 是直线且m α⊂,“//m β”是“//αβ”的( ). A. 充分而不必要条件 B.必要而不充分条件 C. 充分必要条件 D.既不充分也不必要条件 变式练习1.(2015天津理4,文4)设x ∈R ,则“21x -< ”是“220x x +->”的( ). A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件2.(2015安徽理3)设:1<<2p x ,:21xq >,则p 是q 成立的( ).A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 3.(2015陕西理6,文6)“sin cos αα=”是“cos 20α=”的( ). A .充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要 4.(2015湖北理5)设12,,,n a a a ∈R ,3n …. 若p :12,,,n a a a 成等比数列;q :22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++ ,则( ). A. p 是q 的充分条件,但不是q 的必要条件 B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件题型2:判断含逻辑联结词的命题的真假1.(2015浙江理6)设,A B 是有限集,定义(,)()()d A B card A B card A B =- ,其中()card A 表示有限集A 中的元素个数,命题①:对任意有限集,A B ,“A B ≠”是“ (,)0d A B >”的充分必要条件; 命题②:对任意有限集,,A B C ,(,)(,)(,)d A C d A B d B C +…. 下列判断正确的是( ).A. 命题①和命题②都成立B. 命题①和命题②都不成立C. 命题①成立,命题②不成立D. 命题①不成立,命题②成立题型3: 全(特)称命题的否定1.(2015全国I 理3)设命题:p n ∃∈N ,22n n >,则p ⌝为( ). A .n ∀∈N ,22n n > B .n ∃∈N ,22n n … C .n ∀∈N ,22n n … D .n ∃∈N ,22n n = 变式练习1.(2015浙江理4)命题“**,()f n n ∀∈∈N N 且()f n n …的否定形式是( ). A. **,()f n n ∀∈∈N N 且()f n n > B. **,()f n n ∀∈∈N N 或()f n n > C. **00,()f n n ∃∈∈N N 且00()f n n > D. **00,()f n n ∃∈∈N N 或00()f n n >题型 4 四种命题及关系1(2015山东文5)设m ∈N ,命题“若0m >,则方程20x x m +-=有实根”的逆否命题 是( ).A. 若方程20x x m +-=有实根,则0m > B. 若方程20x x m +-=有实根,则0m … C. 若方程20x x m +-=没有实根,则0m > D. 若方程20x x m +-=没有实根,则0m …题型5:充分条件、必要条件、充要条件的判断与证明1.(2015湖南文3) 设x ∈R ,则“1x >”是“21x >”的( ). A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件2.(2015四川文4) 设,a b 为正实数,则“1a b >>”是“22log log 0a b >>”的( ). A.充要条件 B.充分不必要条件 C.必要不充分条件 D.既不充分也不必要条件 变式练习1.(2015浙江文3)设a ,b 是实数,则“0a b +>”是“0ab >”的( ). A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件2.(2015重庆文2)“1x =”是“2210x x -+=”的( ). A. 充要条件 B.充分不必要条件 C. 必要不充分条件 D.既不充分也不必要条件3.(2015安徽文3)设p :3x <,q :13x -<<,则p 是q 成立的( ). A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件4.(2015北京文6)设a ,b 是非零向量,“a b =a b ⋅”是“//a b ”的( ). A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件 D .p 既不是q 的充分条件,也不是q 的必要条件1.命题“∀x ∈R ,x 3﹣x 2+1≤0”的否定是( )A .不存在x ∈R ,x 3﹣x 2+1≤0B .∃x 0∈R ,x﹣x+1≥0C .∃x 0∈R ,x﹣x+1>0D .∀x ∈R ,x 3﹣x 2+1>02..下列叙述中正确的是( )A .若,,a b c R ∈,则“20ax bx c ++≥”的充分条件是“240b ac -≤” B .若,,a b c R ∈,则“22ab cb >”的充要条件是“a c >”C .命题“对任意x R ∈,有20x ≥”的否定是“存在x R ∈,有20x ≥” D .l 是一条直线,,αβ是两个平面,若,l l αβ⊥⊥,则//αβ 3.下列四个结论:①若p q ∧是真命题,则p ⌝可能是真命题;②命题“2000,10x R x x ∃∈--<”的否定是“2,10x R x x ∃∈--≥”; ③“5a >且5b >-”是“0a b +>”的充要条件; ④当0a <时,幂函数a y x =在区间()0+∞,上单调递减. 其中正确结论的个数是( )A 、0个B 、 1个C 、2个D 、3个4.已知a ,b 都是实数,那么“>”是“lna >lnb”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 以下说法错误的是( )A .命题“若“x 2﹣3x+2=0,则x=1”的逆否命题为“若x≠1,则x 2﹣3x+2≠0”B .“x=2”是“x 2﹣3x+2=0”的充分不必要条件C .若命题p :存在x 0∈R ,使得x 02﹣x 0+1<0,则¬p :对任意x ∈R ,都有x 2﹣x+1≥0D .若p 且q 为假命题,则p ,q 均为假命题 5.设a R ∈,则1a >是11a< 的 ( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 6.若“x ∈[2,5]或x ∈{x|x <1或x >4}”是假命题,则x 的取值范围是 . 7.命题“∀x ∈R ,x 2≥0”的否定是 .8.若命题“∃x ∈R ,使x 2+(a ﹣1)x+1<0”是假命题,则实数a 的取值范围为 . 9.命题“若x 2﹣2x ﹣3>0,则x <﹣1或x >3”的逆否命题是 .10.若“∀x ∈[0,],tanx <m”是假命题,则实数m 的最大值为 .11.若命题“存在x ∈R ,使得2x 2﹣3ax+9<0成立”为假命题,则实数a 的取值范围是 .12.设x ∈R ,则“|x ﹣2|<1”是“x 2+x ﹣2>0”的 条件.(填充分不必要、必要不充分、充要条件、既不充分也不必要) 13.有下列命题:①双曲线与椭圆有相同的焦点;②“”是“2x 2﹣5x ﹣3<0”必要不充分条件;③“若xy=0,则x 、y 中至少有一个为0”的否命题是真命题.;④若p 是q 的充分条件,r 是q 的必要条件,r 是s 的充要条件,则s 是p 的必要条件; 其中是真命题的有: .(把你认为正确命题的序号都填上)14.已知命题p :x≤1,命题q :≥1,则命题p 是命题q 的 条件.15.(2015福建理7)若,l m 是两条不同的直线,m 垂直于平面α ,则“l m ⊥ ”是“//l α”的 ( B ). A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件 16.(2015福建文12)“对任意π0,2x ⎛⎫∈ ⎪⎝⎭,sin cos k x x x <”是“1k <”的( ). A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件17.(2015湖北文5) 1l ,2l 表示空间中的两条直线,若p :1l ,2l 是异面直线,q :1l ,2l 不相交,则( ).A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件。

高中数学常用逻辑用语总复习(pdf版)

高中数学常用逻辑用语总复习(pdf版)

它的逆命题、否命题、逆否命题三个命题中,真命题的个数是( )
A.3
B. 2
C.1
D.
例 1 解析:原命题是真命题,则逆否命题一定也是真命题,逆命题为 y f (x) 不过第 四象限,则 y f (x) 是幂函数,很明显是一个假命题,逆命题和否命题等价,所
以否命题也是假命题,真命题的个数只有 1 个
[常用逻辑用语]
常用逻辑用语
命题及其关系
常用 逻辑 用语
充分条件与必要条件 简单的逻辑连接词
命题 四种命题 四种命题间的相互关系 充分条件与必要条件 充分条件、必要条件的四种类型 “且”“或”“非” 命题pq,pq ,p的真假判定
全称量词与全程命题
全称量词与存在量词
存在量词与特称命题
含有一个量词的命题的否定
A. (,2]
B. (2,2)
C. (2,) D.[2,)
解析:命题为真命题,即 (a 2)x2 4x a 1 0 恒成立;
例 2 当 a 2 时,不等式变为 4x 3 0 ,此不等式不能恒成立;当 a 2 时,要是
不等式恒成立,则需满足
a 2 0 14 4(a
2)(a
1)
0
1 解析:根据命题的定义:能判断真假的陈述句,符合条件的只有 C.
答案:C
下列语句是命题的是( )
A.你吃过午饭了吗
B.过点 A 作直线 MN
2 C.同角的余角相等
D.红扑扑的脸蛋
解析:根据命题的定义:能判断真假的陈述句,符合条件的只有 C.
答案:C
已知 f (x) ln(1 x) ln(1 x), x(1,1) ,现有下列命题: 3
D.若 tan 1,则 4
解析:逆否命题是把命题反过来说,再把条件和结论否了.

高中常用逻辑用语

高中常用逻辑用语

高中常用逻辑用语1. 高中常用逻辑用语啊,那可太重要啦!就像我们走路需要看清路一样,逻辑用语能让我们的思维更清晰呀!比如“如果明天下雨,我就不出门”,这就是一个简单的逻辑关系嘛。

2. 嘿,高中常用逻辑用语,不就是帮我们理清思路的好帮手嘛!就好比在迷宫里找到正确的路线一样。

像“要么选文科,要么选理科”,是不是很直白?3. 哇塞,高中常用逻辑用语真的很神奇呢!它就像一把钥匙,能打开我们思维的大门呀!“所有的三角形内角和都是 180 度”,这就是一个典型例子呀。

4. 高中常用逻辑用语呀,那可是学习中不可或缺的呀!这不就跟我们每天要吃饭一样重要嘛!“只要努力学习,就会取得好成绩”,大家都懂吧?5. 哎呀呀,高中常用逻辑用语,简直就是思维的导航仪呀!就像在海上航行需要指南针一样。

“没有一个人不喜欢美好的事物”,是不是这样?6. 嘿哟,高中常用逻辑用语,可太有意思啦!它就像游戏里的规则,让一切都有条有理呢!比如“只有认真听讲,才能学好知识”。

7. 哇哦,高中常用逻辑用语,那可是相当重要哇!就好像盖房子需要坚实的基础一样。

“有的同学喜欢数学”,这就是一种存在呀。

8. 高中常用逻辑用语,不就是让我们说话做事更有条理嘛!像给混乱的线团找到线头一样。

“若一个数是偶数,则它能被 2 整除”,多清晰呀。

9. 哎呀,高中常用逻辑用语,真是神奇的东西呢!就像魔法棒一样能让我们的思维变得更厉害!“不是正数就是负数”,很简单易懂吧。

10. 高中常用逻辑用语,那绝对是学习的好帮手呀!就跟好朋友一样可靠呢!“只要坚持锻炼,身体就会健康”,这道理多浅显。

我的观点结论就是:高中常用逻辑用语非常重要,能帮助我们更好地理解和表达,一定要好好掌握呀!。

高中数学常用逻辑用语

高中数学常用逻辑用语

逆否命题: 若 q 则 p
结论1:要写出一个命题的另外三个命
题关键是分清命题的题设和结论(即
把原命题写成“若p则q”的形式)
注意:三种命题中最难写 的是否命题。 高中数学常用逻辑用语
三、四种命题之间的 关系
原命题
பைடு நூலகம்若p则q
互逆 逆命题
若q则p




否命题
逆否命题
若﹁p则﹁q
互逆 若﹁q则﹁p
高中数学常用逻辑用语
x∈N”是“x∈M∩N”的
B
A.充要条件
B必要不充分条件
C充分不必要 D既不充分也不必要
注、集合法
2、a∈R,|a|<3成立的一个必要不充分条件是
A.a<3 B.|a|<2 C.a2<9 D.0<a<2
A
高中数学常用逻辑用语
练习5、
1.已知p是q的必要而不充分条件, 那么┐p是┐q的___充__分_不__必__要_条__件__.
(2)从这个假设出发,经过推理 论证,得出矛盾;
(3) 由矛盾判定假设不正确, 从而肯定命题的高中数结学常用论逻辑正用语 确。
归谬 结论
1.写出命题“当c>0时,若a>b, 则ac>bc“的逆命题,否命题 与逆否命题,并分别判断他们的真假
2.写出命题“若x≠a且x≠b, 则x2-(a+b)x+ab≠0”的否命题
充分非必要条件
2) 若A B且B A,则甲是乙的
必要非充分条件
3)若A B且B A,则甲是乙的
既不充分也不必要条件 4)若A=B ,则甲是高中乙数学的常用逻充辑用分语 且必要条件。
注意点
1.在判断条件时,要特别注意的是它们能否互相 推出,切不可不加判断以单向推出代替双向推出.

高考数学专题复习《常用逻辑用语》PPT课件

高考数学专题复习《常用逻辑用语》PPT课件
故选A.
解题心得充要条件的三种判断方法:
(1)定义法:根据p⇒q,q⇒p是否同时成立进行判断.
(2)集合法:根据p,q成立对应的集合之间的包含关系进行判断.
(3)等价转化法:指对所给题目的条件进行一系列的等价转化,直到转化成
容易判断充要条件为止.
对点训练1(1)(2020河南开封三模,文3,理3)已知a,b∈R,则“a>b”是“a|a|>b|b|”的
B.存在偶函数的图像关于y轴对称
C.存在偶函数的图像不关于y轴对称
D.不存在偶函数的图像不关于y轴对称
答案 C
解析 “偶函数的图像关于y轴对称”等价于“所有的偶函数的图像关于y轴对
称”,根据全称命题进行否定规则,全称量词改写为存在量词,条件不变,否定
结论.所以原命题否定是“存在偶函数的图像不关于y轴对称”.故选C.
“a|a|>b|b|”的充分必要条件,故选 C.
(2)若 p 成立,则 a=4 -2 =
x
1
-4, + ∞
x
2
1
2 - 2
1
− 4,所以
1
a≥-4,即
a 的取值范围为
;若 q 成立,则 x+a-2>1 对∀x>0 恒成立,所以 a>3-x 对∀x>0 恒
成立,则 a≥3.即 a 的取值范围为[3,+∞).由于[3,+∞)⫋
4
1
4
1
4
∴- ≤m< ,或- <m≤ ,∴- ≤m≤ .
2
3
2
3
2
3
解题心得解决此类问题一般是根据条件把问题转化为集合之间的关系,并
由此列出关于参数的不等式(组)求解.要注意区间端点值的检验,不等式是

高考英语常用逻辑词

高考英语常用逻辑词

高考英语常用逻辑词1. 并列关系and, or或者,furthermore并且, also还, likewise同样的, in addition除此之外, what is more 并且(此外), for instance例如,for example例如2. 转折关系Although虽然, however然而, on the contrary相反的, but,in spite of尽管, nevertheless然而(不过), yet然而, otherwise否则, despite尽管3. 顺序关系First第一, second第二, third第三, and so on等等,then然后, after后来, before之前, next接下来4. 因果关系as a result结果, for因为, thus因此, because因为,for this reason由于这个原因, so,therefore因此, as因为, since因为, consequently因此, on account of由于(因为)5. 归纳关系as a result结果(因此,总之), finally最终(最后), therefore因此, accordingly因此(于是、相应地), in short总而言之, thus因此,consequently因此, in conclusion总之(总的来说), so,in brief简言之, in a word总之(总的来说)6. 表层次关系①for the one hand 一方面,for the other hand 另一方面②for one thing 一方面,for another 另一方面③first of all 首先,what’s more 然后,finally 最后。

常用逻辑用语知识点总结

常用逻辑用语知识点总结

常用逻辑用语知识点总结在数学和日常的逻辑思考中,常用逻辑用语是非常重要的工具,它们帮助我们清晰准确地表达思想、进行推理和判断。

下面就让我们来一起总结一下常用逻辑用语的相关知识点。

一、命题命题是能够判断真假的陈述句。

比如“今天是晴天”,如果今天确实是晴天,那么这个命题就是真的;如果今天不是晴天,那么这个命题就是假的。

需要注意的是,疑问句、祈使句和感叹句都不是命题。

命题又分为真命题和假命题。

真命题就是判断为真的命题,假命题则是判断为假的命题。

二、四种命题及其关系1、原命题:若 p,则 q。

2、逆命题:若 q,则 p。

3、否命题:若¬p,则¬q。

4、逆否命题:若¬q,则¬p。

其中,原命题和逆否命题同真同假,逆命题和否命题同真同假。

这两对关系在推理和证明中经常被用到。

三、充分条件与必要条件如果有“若 p,则q”为真命题,那么 p 是 q 的充分条件,q 是 p 的必要条件。

例如,“如果一个数是偶数,那么这个数能被 2 整除”,“一个数是偶数”就是“这个数能被 2 整除”的充分条件,“这个数能被 2 整除”就是“一个数是偶数”的必要条件。

充分不必要条件:p 能推出 q,但 q 不能推出 p。

必要不充分条件:q 能推出 p,但 p 不能推出 q。

充要条件:p 能推出 q,q 也能推出 p。

四、逻辑联结词1、“且”(∧):表示两个命题同时成立。

例如,命题 p:今天是星期一;命题 q:今天是晴天。

那么“今天是星期一且今天是晴天”就是用“且”联结的复合命题。

只有当 p 和 q 都为真时,“p 且q”为真。

2、“或”(∨):表示两个命题至少有一个成立。

例如,“今天是星期一或今天是晴天”,只要 p 和 q 中有一个为真,“p 或q”就为真。

3、“非”(¬):表示对一个命题的否定。

例如,命题 p:今天是星期一,那么“非p”就是“今天不是星期一”。

当 p 为真时,“非p”为假;当 p 为假时,“非p”为真。

常用逻辑用语(解析版)

常用逻辑用语(解析版)

常用逻辑用语【考纲要求】1.理解必要条件、充分条件与充要条件的含义.2.理解全称量词与存在量词的意义.3.能正确地对含有一个量词的命题进行否一、充分条件与必要条件【思维导图】【考点总结】一、充分条件与必要条件一般地,“若p,则q”为真命题,是指由p通过推理可以得出q.这时,我们就说,由p可推出q,记作p⇒q,并且说p是q的充分条件,q是p的必要条件.(1)p是q的充分条件与q是p的必要条件表述的是同一个逻辑关系,只是说法不同.p是q的充分条件只反映了p⇒q,与q能否推出p没有任何关系.(2)注意以下等价的表述形式:①p⇒q;②p是q的充分条件;③q的充分条件是p;④q是p的必要条件;⑤p的必要条件是q.(3)“若p,则q”为假命题时,记作“p q”,则p不是q的充分条件,q不是p的必要条件.充分条件与必要条件命题真假“若p,则q”是真命题“若p,则q”是假命题推出关系p⇒q p⇒q条件关系p是q的充分条件q是p的必要条件p不是q的充分条件q不是p的必要条件二、全称量词与存在量词【思维导图】【考点总结】一、全称量词与全称量词命题1.短语“所有的”“任意一个”在逻辑中通常叫做全称量词,并用符号“∀”表示.2.含有全称量词的命题,叫做全称量词命题.3.全称量词命题的表述形式:对M中任意一个x,有p(x)成立,可简记为:∀x∈M,p(x),读作“对任意x属于M,有p(x)成立”.4.全称量词命题的真假判断:要判断一个全称量词命题量词是真命题,必须对限定集合M 中的每一个元素x ,验证p (x )成立;但要判断一个全称量词命题是假命题,只需列举出一个0x ∈M ,使得p (0x )不成立即可. 二、存在量词与存在量词命题(1)短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,并用符号“∃”表示. (2)含有存在量词的命题,叫做存在量词命题.(3)存在量词命题的表述形式:存在M 中的一个0x ,使p (0x )成立,可简记为:∃0x ∈M ,p (0x ),读作“存在M 中的元素0x ,使p(0x )成立”.(4)存在量词命题的真假判断:要判断一个存在量词命题是真命题,只要在限定集合M 中,能找到一个0x ,使得命题p (0x )成立即可;否则这一命题就是假命题. 三、全称量词命题与存在量词命题的否定(1)全称量词命题:,()p x M p x ∀∈的否定p ⌝为0x M ∃∈,0()p x ⌝. (2)存在量词命题00:,()p x M p x ∃∈的否定p ⌝为,()x M p x ∀∈⌝. 【常用结论】从集合的角度理解充分条件与必要条件若p 以集合A 的形式出现,q 以集合B 的形式出现,即A ={x |p (x )},B ={x |q (x )},则关于充分条件,必要条件又可以叙述为:(1)若A ⊆B ,则p 是q 的充分条件; (2)若A ⊇B ,则p 是q 的必要条件; (3)若A =B ,则p 是q 的充要条件; 【易错总结】(1)命题的条件与结论不明确;(2)含有大前提的命题的否命题易出现否定大前提的情况; (3)对充分必要条件判断错误.【题型汇编】题型一:充分条件与必要条件 题型二:全称量词与存在量词【题型讲解】题型一:充分条件与必要条件 一、单选题1.(2022·浙江·高考真题)设x ∈R ,则“sin 1x =”是“cos 0x =”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A 【解析】 【分析】由三角函数的性质结合充分条件、必要条件的定义即可得解. 【详解】因为22sin cos 1x x +=可得:当sin 1x =时,cos 0x =,充分性成立; 当cos 0x =时,sin 1x =±,必要性不成立; 所以当x ∈R ,sin 1x =是cos 0x =的充分不必要条件. 故选:A.2.(2022·北京·高考真题)设{}n a 是公差不为0的无穷等差数列,则“{}n a 为递增数列”是“存在正整数0N ,当0n N >时,0n a >”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】C 【解析】 【分析】设等差数列{}n a 的公差为d ,则0d ≠,利用等差数列的通项公式结合充分条件、必要条件的定义判断可得出结论. 【详解】设等差数列{}n a 的公差为d ,则0d ≠,记[]x 为不超过x 的最大整数. 若{}n a 为单调递增数列,则0d >,若10a ≥,则当2n ≥时,10n a a >≥;若10a <,则()11n a a n d +-=,由()110n a a n d =+->可得11a n d >-,取1011a N d ⎡⎤=-+⎢⎥⎣⎦,则当0n N >时,0n a >, 所以,“{}n a 是递增数列”⇒“存在正整数0N ,当0n N >时,0n a >”; 若存在正整数0N ,当0n N >时,0n a >,取N k *∈且0k N >,0k a >, 假设0d <,令()0n k a a n k d =+-<可得k a n k d >-,且k ak k d->, 当1k a n k d ⎡⎤>-+⎢⎥⎣⎦时,0n a <,与题设矛盾,假设不成立,则0d >,即数列{}n a 是递增数列.所以,“{}n a 是递增数列”⇐“存在正整数0N ,当0n N >时,0n a >”.所以,“{}n a 是递增数列”是“存在正整数0N ,当0n N >时,0n a >”的充分必要条件. 故选:C.3.(2022·全国·一模(理))设,,l m n 表示直线,,αβ表示平面,使“l α⊥”成立的充分条件是( ) A .αβ⊥,//l β B .αβ⊥,l β⊂C .//l n ,n α⊥D .m α⊂,n ⊂α,l m ⊥,l n ⊥【答案】C 【解析】 【分析】根据面面垂直、线面垂直、线面平行的判定与性质依次判断各个选项即可. 【详解】对于A ,当αβ⊥,//l β时,可能l α⊂、//l α或l 与α相交,充分性不成立,A 错误; 对于B ,当αβ⊥,l β⊂时,可能//l α或l 与α相交,充分性不成立,B 错误;对于C ,若两条平行线中的一条垂直于一个平面,则另一条也垂直于该平面,充分性成立,C 正确; 对于D ,若//m n ,则m α⊂,n ⊂α,l m ⊥,l n ⊥无法得到l α⊥,充分性不成立,D 错误. 故选:C.4.(2022·全国·模拟预测(文))已知向量(1,),(2,4)a k b ==,则“12k =-”是“222a b a b +=+”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【解析】 【分析】利用充分条件和必要条件的定义进行判断即可 【详解】由222a b a b +=+,得22222a a b b a b +⋅+=+,得0a b ⋅=,得(1,k )·(2,4)=0,解得12k =-,反之,当12k =-时,0a b ⋅=,所以22222a a b b a b +⋅+=+,所以222a b a b +=+,所以“12k =-”是“222a b a b +=+”的充要条件.故选:C. 【点睛】此题考查充分条件和必要条件的判断,考查向量的运算,属于基础题 5.(2022·全国·模拟预测(理))设a >0,b >0,则“94a b +≤”是“49ab ≤”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】 【分析】由均值不等式得到充分性成立,举出反例得到必要性不成立. 【详解】因为a >0,b >0,所以4929=6a b a b ab ≥+≥⋅则49ab ≤,当且仅当9=2a b =时,等号成立,所以94a b +≤可以推出49ab ≤,所以充分性成立. 当1=981a b =,,满足49ab ≤,但19=9+9481a b +⨯>,所以49ab ≤推不出94a b +≤,所以必要性不成立.故选:A.6.(2022·全国·模拟预测)已知,R a b ∈,则“ln ln a b >”是“sin sin a b b a +>+”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A【分析】由ln ln a b >及对数函数的单调性可得0a b >>;将sin sin a b b a +>+变形化同构,进而构造函数,利用导数讨论函数的单调性可得a b >,即可得解. 【详解】由ln ln a b >,得0a b >>.由sin sin a b b a +>+,得sin sin a a b b ->-.记函数()sin ()x x f x x R =-∈,则()1cos 0f x x '=-≥, 所以函数()f x 在R 上单调递增,又sin sin a a b b ->-, 则()()f a f b >,所以a b >.因此“ln ln a b >”是“sin sin a b b a +>+”的充分不必要条件. 故选:A .7.(2022·全国·模拟预测)已知向量(),2m k =-,()1,3n =,则“k 6<”是“m 与n 的夹角为钝角”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B 【解析】 【分析】先求出m 与n 的夹角为钝角时k 的范围,即可判断. 【详解】当m 与n 的夹角为钝角时,0m n ⋅<,且m 与n 不共线,即6032k k -<⎧⎨≠-⎩所以k 6<且23k ≠-.故“k 6<”是“m 与n的夹角为钝角”的必要不充分条件. 故选B.8.(2022·全国·模拟预测(文))在ABC 中,“cos cos A B >”是“sin sin A B <”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】C 【解析】利用余弦函数的单调性、大边对大角定理以及正弦定理判断可得出结论. 【详解】因为A 、()0,B π∈,且余弦函数cos y x =在()0,π上为减函数, 在ABC 中,cos cos sin sin A B A B a b A B >⇔<⇔<⇔<. 因此,“cos cos A B >”是“sin sin A B <”的充要条件. 故选:C.9.(2022·全国·模拟预测)“1a b +>”是“2221a b b -+>”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】D 【解析】 【分析】先对“条件”和“结论”变形,再看由“条件”能否推出“结论”,及由“结论”能否“推出”条件,从而确定充分性和必要性. 【详解】若2221a b b -+>成立,则2212a b b >-+成立,即()221a b >-, 即1a b >-,由1a b +>可得1a b >-,但不一定得到1a b >-, 相反由1a b >-也不一定能得出1a b >-, 故选:D .10.(2022·全国·模拟预测)2+=n n a a c (n N *∀∈,c 为非零常数)是数列{}n a 满足:4n n a a +=()*∀∈N n 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .非充分非必要条件【答案】A 【解析】由2+=n n a a c 可得4n n a a +=()*∀∈N n 成立,反之举反例2,,1,,n n a n ⎧=⎨-⎩为奇数为偶数可得必要性不成立;【详解】∵2+=n n a a c (n N *∀∈,c 为非零常数),∴24++=n n a a c ()*∀∈N n ,∴224+++=n n n n a a a a ()*∀∈N n , ∴4n n a a +=()*∀∈N n ,∴2+=n n a a c 是4n n a a +=的充分条件.若2,,1,,n n a n ⎧=⎨-⎩为奇数为偶数则4n n a a +=()*∀∈N n ,但2+=n n a a c (n N *∀∈,c 为非零常数)不成立,所以不是必要的. 故选:A. 【点睛】本题考查数列与简易逻辑知识的交会,求解时证明结论不成立,可举反例说明.11.(2022·全国·模拟预测(理))设甲:实数0a <;乙:方程2230x y x y a +-++=是圆,则甲是乙的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】 【分析】由方程表示圆可构造不等式求得a 的范围,根据推出关系可得结论. 【详解】若方程2230x y x y a +-++=表示圆,则()221341040a a -+-=->,解得:52a <; 502a a <⇒<,502a a <<,∴甲是乙的充分不必要条件.故选:A.12.(2022·全国·江西师大附中模拟预测(文))已知a ,b ∈R ,则“ab =0”是“20a b +=”成立的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B 【解析】 【分析】根据充分性和必要性的定义来判断即可.【详解】当0ab =时,若1,0a b ==,不能推出20a b +=,不满足充分性;当20a b +=,则0a b ,有0ab =,满足必要性;所以“0ab =”是“20a b +=”的必要不充分条件.故选:B .13.(2022·全国·模拟预测)设R x ∈,则“215x -≤”的必要不充分条件是( ) A .[)2,3- B .(),3-∞C .[]2,4-D .[)3,+∞【答案】C 【解析】 【分析】根据必要不充分条件的含义可知所选集合应该能真包含集合[]2,3-,由此可判断答案. 【详解】由215x -≤,得5215x -≤-≤,即23x -≤≤,则选项是“23x -≤≤”的必要不充分条件,即[]2,3-是选项中集合的真子集,结合选项,A,B 中集合都不含3,不符合题意,D 中集合[)3,+∞不能包含[]2,3-,不符合题意, 而C 集合满足[][]2,32,4--,故选:C.14.(2022·全国·模拟预测)已知m ,n ,p 是不同的直线,α,β是不重合的平面,则下列说法正确的是( ) A .“m α∥”是“m 平行于平面α内的任意一条直线”的充分不必要条件 B .“m α∥,//n α”是“//m n ”的必要不充分条件C .“p m ⊥,p n ⊥”是“m α⊂,n ⊂α,p α⊥”的必要不充分条件D .已知αβ∥,则“m α⊂”是“m β∥”的充要条件 【答案】C 【解析】 【分析】根据空间中线线、线面、面面的位置关系,结合充分条件与必要条件的概念依次判断各选项即可得答案.解:对于A 选项;“m 平行于平面α内的任意一条直线”这句话本身的表达就是错的; 对于B 选项:“//m α,//n α”是“m n ∥”的既不充分也不必要条件; 对于C 选项:“m α⊂,n ⊂α,p α⊥”可以证明“p m ⊥,p n ⊥”,由“p m ⊥,p n ⊥”要证明“p α⊥”,还需添加条件“m α⊂,n ⊂α,且m 和n 相交”, 所以C 正确;对于D 选项:已知αβ∥,则“m α⊂”是“m β∥”的充分不必要条件. 故选:C15.(2022·全国·模拟预测(文))已知0,0m n >>,条件:53p m n mn +=,条件:3564q m n +≥,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A 【解析】 【分析】利用基本不等式证明充分性,利用特殊值证明必要性不成立,即可判断; 【详解】解:因0,0m n >>,由53m n mn +=,得:531n m +=,则()531515353464m n m n n m n m ⎛⎫+⋅+=++≥ ⎪⎝⎭,当且仅当8m n ==时取等号,因此p 推得出q ,即充分性成立,取2,12m n ==,满足3564m n +≥,但53m n mn +≠,即q 推不出p ,即必要性不成立,所以p 是q 的充分不必要条件, 故选 :A16.(2022·全国·模拟预测(理))“2m =-”是“直线1:420l mx y ++=与直线2:10++=l x my 平行”的( ) A .充要条件 B .必要不充分条件 C .充分不必要条件 D .既不充分也不必要条件【答案】A 【解析】 【分析】根据两直线平行求得m 的值,由此确定充分、必要条件.“直线1:420l mx y ++=与直线2:10++=l x my 平行”因为2m =-,所以直线1:210l x y --=,直线2:210l x y -+=,1l 与2l 平行,故充分条件成立; 当直线1:420l mx y ++=与直线2:10++=l x my 平行时,24m =, 解得2m =或2m =-,当2m =时,直线1:210l x y ++=与直线2:210l x y ++=重合,当2m =-时,直线1:210l x y --=,直线2:210l x y -+=平行,故充要条件成立. 故选:A .17.(2022·上海奉贤·二模)在ABC 中,三个内角A 、B 、C 所对应的边分别是a 、b 、c .已知α:sin sin A B >,β:a b >,则α是β的( ).A .充分非必要条件;B .必要非充分条件;C .充要条件;D .既非充分又非必要条件.【答案】C 【解析】 【分析】利用定义法直接判断. 【详解】充分性:由正弦定理sin sin a bA B=.因为sin sin A B >,可得a b >.故充分性满足; 必要性:由正弦定理sin sin a bA B=.因为a b >,可得sin sin A B >.故必有性满足. 故α是β的充要条件. 故选:C18.(2022·上海普陀·二模)“0x y >>”是“11x y x y->-”的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分也非必要条件【答案】A 【解析】 【分析】应用作差法,结合充分、必要性定义判断条件间的推出关系即可. 【详解】由221111(1)()()x y xy x y x y x y x y xy--+----=-=,又0x y >>,所以11()0x y x y --->,即11x y x y->-,充分性成立; 当11x y x y ->-时,即(1)()0xy x y xy+->,显然2,1x y ==-时成立,必要性不成立. 故“0x y >>”是“11x y x y->-”的充分非必要条件. 故选:A19.(2022·江西·新余市第一中学三模(理))若0,0a b >>,则“222a b +≥”是“2a b +≥”的( )条件. A .充分不必要 B .必要不充分 C .充要 D .既非充分也非必要【答案】B 【解析】 【分析】利用充分条件,必要条件的定义直接判断作答. 【详解】依题意,取12,2a b ==,满足222a b +≥,而2a b +<, 当2a b +≥时,()()()22222122a b a b a ba b ++-+=≥+,当且仅当a b =时取“=”,则222a b +≥, “222a b +≥”是“2a b +≥”的必要不充分条件. 故选:B20.(2022·北京·北大附中三模)已知ABC ,则“sin cos 1A A +<”是“ABC 是钝角三角形”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A 【解析】 【分析】在三角形中,由sin cos 1A A +<先利用辅助角公式结合正弦函数性质求得角A 为钝角成立,反之举反例得出必要性不成立,从而得出结论.【详解】解:ABC 中,0A π<<,sin cos 2)14A A A π++<,2sin()4A π∴+<444A ππππ<+<+,344A ππ∴+>,2A π∴>,所以ABC 是钝角三角形,充分性成立;若ABC 是钝角三角形,角A 不一定是钝角,反例:6A π=,此时sin cos =sincos166A A ππ++>,必要性不成立; 故选:A.21.(2022·海南海口·二模)已知x ,R y ∈且0x ≠,则“x y >”是“21yx x>”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】C 【解析】 【分析】求出不等式的等价条件,结合充分条件和必要条件的定义进行判断即可. 【详解】因为0x ≠,所以20x >,则“x y >”两边同除以2x 即可得到“21yx x>”,反过来同乘以2x 即可,故“x y >”是“21yx x >”的充要条件. 故选:C.22.(2022·北京四中三模)已知数列{n a }的通项为22n a n n λ=-,则“0λ<”是“*n ∀∈N ,1n n a a +>”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A 【解析】 【分析】根据1n n a a +>,求得21122n n λ+<=+,对n *∀∈N 恒成立,进而得到32λ<,结合充分条件、必要条件的判定方法,即可求解. 【详解】由题意,数列{}n a 的通项为22n a n n λ=-,则221(1)2(1)22120n n a a n n n n n λλλ+=+-+-+=+->-,即21122n n λ+<=+,对n *∀∈N 恒成立, 当1n =时,1n 2+取得最小值32,所以32λ<, 所以“0λ<”是“*n ∀∈N ,1n n a a +>”的充分不必要条件. 故选:A.23.(2022·天津·耀华中学二模)已知下列命题:①命题:“(0,2)x ∀∈,33x x >”的否定是:“(0,2)x ∃∈,33x x ≤”; ②抛物线216y x =的焦点坐标为(0,4);③已知x ∈R ,则|1|3x +>是24x >的必要不充分条件; ④在ABC 中,A B >是sin sin A B >的充要条件. 其中真命题的个数为( )个 A .1 B .2 C .3 D .4【答案】B 【解析】 【分析】根据全称量词命题的否定性质、抛物线焦点坐标公式,结合必要不充分条件、充要条件的定义逐一判断即可. 【详解】①;因为全称量词命题的否定是存在量词命题,所以“(0,2)x ∀∈,33x x >”的否定是:“(0,2)x ∃∈,33x x ≤”,因此本说法正确;②:2211616y x x y =⇒=,因此该抛物线的焦点坐标为:1(0,)64,所以本说法不正确; ③:由|1|32x x +>⇒>,或4x <-,由242x x >⇒>,或2x <-, 因此由|1|3x +>能推出24x >,但是由24x >不一定能推出|1|3x +>, 所以|1|3x +>是24x >的充分不必要条件,因此本说法不正确;④:在ABC 中,一方面,因为A B >,所以a b >,由正弦定理可知:sin sin A B >; 另一方面,由sin sin A B a b A B >⇒>⇒>,所以在ABC 中,A B >是sin sin A B >的充要条件,因此本说法正确, 所以真命题的个数为2个,24.(2022·山东烟台·三模)若a 和α分别为空间中的直线和平面,则“a α⊥”是“a 垂直α内无数条直线”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A 【解析】 【分析】利用充分条件、必要条件的定义结合线面垂直的意义判断作答. 【详解】若a α⊥,则a 垂直α内所有直线,因此,命题“若a α⊥,则a 垂直α内无数条直线”正确,a 垂直α内无数条直线,若这无数条直线中无任何两条直线相交,此时直线a 可以在平面α内,即不能推出a α⊥,所以“a α⊥”是“a 垂直α内无数条直线”的充分不必要条件. 故选:A25.(2022·山东淄博·三模)已知条件:p 直线210x y +-=与直线()2110a x a y ++-=平行,条件:q 1a =,则p 是q 的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件【答案】D 【解析】 【分析】根据充分条件和必要条件的定义,结合两直线平行的条件分析判断 【详解】当直线210x y +-=与直线()2110a x a y ++-=平行时,21112a a +=≠,解得12a =-,当1a =时,直线210x y +-=与直线()2110a x a y ++-=重合,所以p 是q 的既不充分也不必要条件,二、多选题1.(2022·辽宁·抚顺市第二中学三模)下列命题正确的是( ) A .“1a >”是“11a<”的必要不充分条件 B .命题“()0000,,ln 1x x x ∃∈+∞=-”的否定是“()0,,ln 1x x x ∀∈+∞≠-” C .若0MN >,则log log log a a a MN M N =+ D .若22ac bc >,则a b > 【答案】BD 【解析】 【分析】对于A :求出不等式11a<的解集,即可判断出两个命题的关系; 对于B :根据命题的否定规则即可判断; 对于C :根据对数定义域的限制条件即可判断; 对于D :根据不等式的性质即可进行判断. 【详解】 因为11a <,1110aa a --=<,解得1a >或0a <,所以“1a >”是“11a<”的充分不必要条件,所以选项A 错误;命题“()0000,,ln 1x x x ∃∈+∞=-”的否定是“()0,,ln 1x x x ∀∈+∞≠-”,所以选项B 正确;当0M <且0N <时,log a M 与log a N 没有意义,所以选项C 错误;若22ac bc >,可得20c >,则a b >,所以选项D 正确.故选:BD.2.(2022·河北张家口·三模)已知公差为d 的等差数列{}n a 的前n 项和为n S ,则( ) A .n S n ⎧⎫⎨⎬⎩⎭是等差数列B .n S 是关于n 的二次函数C .{}n na 不可能是等差数列D .“0d >”是“112n n n S S S -++>”的充要条件【答案】AD 【解析】 【分析】根据等差数列前n 项公式及函数特征结合等差数列的定义即可判断ABC ,再结合充分条件和必要条件的定义即可判断D. 【详解】解:由11(1)2n S na n n d =+-知,11(1)2n S a n d n =+-,则1112+-=+n n S S d n n ,所以n S n ⎧⎫⎨⎬⎩⎭是等差数列,故A 正确; 当0d =时,1n S na =不是n 的二次函数,故B 不正确; 当0d =时,11,n n a a na na ==,则()111n n n a na a ++-=,所以{}n na 是等差数列,故C 不正确; 当0d >时,1102n n n S S d S -+=->+,故112n n n S S S -++>,11111120n n n n n n n n n n n S S S S S S S a a a a d -++-+++>⇔->-⇔>⇔-=>, 所以“0d >”是“112n n n S S S -++>”的充要条件,故D 正确. 故选:AD.3.(2022·江苏南京·三模)设2P a a=+,a ∈R ,则下列说法正确的是( ) A .22P ≥B .“a >1”是“22P ≥的充分不必要条件 C .“P >3”是“a >2”的必要不充分条件 D .∃a ∈(3,+∞),使得P <3 【答案】BC 【解析】 【分析】根据双勾函数的单调性,逐一分析,即可求解. 【详解】解:A 错误,当0a <时,显然有P 小于0B 正确,1a >时,22222P a a a a=+⋅≥22P ≥0a >即可;C 正确,23P a a=+>可得01a <<或2a >,当2a >时3P >成立的,故C 正确; D 错误,因为3a >有22333a a +>+>,故D 错误; 故选:BC.4.(2022·辽宁·二模)下列结论正确的是( ) A .“5x >是“25x >”的充分不必要条件B .2πtan 18π21tan 8=+ C .已知在前n 项和为Sn 的等差数列{n a }中,若75a =,则1375S = D .已知001a b a b >>+=,,,则14ba b-+的最小值为8【答案】AD 【解析】 【分析】A :求解不等式25x >,根据充分条件和必要条件的概念即可判断;B :根据同角三角函数的商数关系、平方关系、正弦的二倍角公式即可化简求值;C :根据等差数列与下标和有关的性质及等差数列前n 项和公式即可求解判断;D :()14141411b a b a b a b a b -⎛⎫+=+-=++- ⎪⎝⎭,展开利用基本不等式即可求解判断. 【详解】对于A ,由255x x >⇔>5x <-A 正确;对于B ,22222πsin8ππππtancossin cos 1π28888sin ππππ241tan sin sin cos88881πcos 8====+++B 错误;对于C ,11313713()13652a a S a +===,故C 错误; 对于D ,()14141444114248b b a b a a b a b a b a b a b a b -⎛⎫+=+-=++-=++≥⨯= ⎪⎝⎭,当且仅当1233a b ==,时取等号,故D 正确﹒ 故选:AD .5.(2022·湖南衡阳·二模)下列结论中正确的是( ) A .在ABC 中,若A B >,则sin sin A B >B .在ABC 中,若sin2sin2A B =,则ABC 是等腰三角形C .两个向量,a b 共线的充要条件是存在实数,使b a λ=D .对于非零向量,a b ,“0a b +=”是“a b ∥”的充分不必要条件 【答案】AD 【解析】 【分析】根据三角形的边与角的关系,以及根据共线向量的定义,逐个选项判断即可得到正确答案. 【详解】对于A :大角对大边,用正弦定理可得该命题正确;对于B :若sin2sin2A B =,则22A B =或22A B π+=,即A B =或2A B π+=即ABC 是等腰三角形或直角三角形,所以该命题不正确;对于C :若0,0b a ≠=,满足向量,a b 共线,但不存在实数λ,使b a λ=,所以该命题不正确; 对于D :若“0a b +=”,则“//a b ”;若“//a b ”,则“0a b +=”不一定成立.所以该命题正确; 故选:AD6.(2022·重庆·二模)已知空间中的两条直线,m n 和两个平面,αβ,则αβ⊥”的充分条件是( )A .,m mα⊥βB .,,m n m n αβ⊂⊂⊥C .,m mα⊂,n n β⊥D .,,m n m n αβ⊥⊥⊥ 【答案】ACD 【解析】 【分析】根据线面垂直或平行关系,代入分析讨论求证即可. 【详解】对于选项A ,m β , 则有m β内的一条直线,l 因为m α⊥, 所以,l α⊥ 又,l β⊂所以αβ⊥,即条件“,m m α⊥β”能够得到αβ⊥,所以选项A 是αβ⊥的充分条件;对于选项B ,,,m n m n αβ⊂⊂⊥不一定能够得出结论αβ⊥,,βα 也可能相交或平行;因此该选项错误;对于选项C ,n β⊥,m n ,所以m β⊥,又因为,m α⊂所以αβ⊥,因此该选项正确;对于选项D ,因为,,m n m α⊥⊥ 所以,n α或,n α⊂又因为n β⊥,所以αβ⊥.故选:ACD.7.(2022·辽宁·沈阳二中二模)对任意实数a ,b ,c ,给出下列命题,其中假命题是()A .“a b =”是“ac bc =”的充要条件B .“a b >”是“22a b >”的充分条件C .“5a <”是“3a <”的必要条件D .“5a +是无理数”是“a 是无理数”的充分不必要条件【答案】ABD【解析】【分析】根据充分、必要性的推出关系,判断各选项中条件间的关系,即可得答案.【详解】A :由a b =有ac bc =,当ac bc =不一定有a b =成立,必要性不成立,假命题;B :若12a b =>=-时22a b <,充分性不成立,假命题;C :5a <不一定3a <,但3a <必有5a <,故“5a <”是“3a <”的必要条件,真命题;D :5a +是无理数则a 是无理数,若a 是无理数也有5a +是无理数,故为充要条件,假命题.故选:ABD8.(2022·广东·普宁市华侨中学二模)下列说法错误的是( )A .“1a =-”是“直线30x ay -+=与直线10ax y -+=互相垂直”的充分必要条件B .直线cos 30x y α-+=的倾斜角θ的取值范围是30,,44πππ⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭C .若圆221:64120C x y x y +-++=与圆222:1420C x y x y a +--+=有且只有一个公共点,则34a =D .若直线y x b =+与曲线234y x x =-b 的取值范围是122,3⎡⎤-⎣⎦【答案】AC【解析】【分析】当1a =-时,可判断直线30x ay -+=与直线10ax y -+=互相平行,判断A;根据直线的方程可求得斜率,进而求得倾斜角的范围,判断B;根据圆221:64120C x y x y +-++=与圆222:1420C x y x y a +--+=有且只有一个公共点,判断出两圆的位置关系,求得a 的值,判断C;求出曲线234y x x =-数形结合,求得b 的范围,判断D.【详解】对于A,当1a =-时,30x y ++=与直线10x y --+=互相平行,即“1a =-”不是“直线30x ay -+=与直线10ax y -+=互相垂直”的充分条件,故A 错误;对于B, 直线cos 30x y α-+=的倾斜角θ满足tan cos [1,1]θα=∈- ,故30,,44ππθπ⎡⎤⎡⎫∈⋃⎪⎢⎥⎢⎣⎦⎣⎭,故B 正确; 对于C ,圆221:64120C x y x y +-++=的圆心为3,2-(),半径1r =,圆222:1420C x y x y a +--+=的圆心为(7,1) ,半径50,(50)R a a =-<,两圆有且只有一个公共点, 则两圆外切或内切,()()223721550a -+--==-()()2237215150a -+--==-,解得34a = 或14a = ,故C 错误;对于D, 曲线234y x x =-22(2)(3)4,(3)x y y -+-=≤ ,表示以(2,3) 为圆心,半径为2 的半圆,如图示:直线y x b =+与曲线234y x x =-y x b =+与圆相切或过点(0,3), 22= 22= ,解得122b =-, 当直线过点(0,3)时,3b = ,则数b 的取值范围是122,3⎡⎤-⎣⎦,故D 正确,故选:AC9.(2022·湖南邵阳·一模)给出下列命题,其中正确的命题有( )A .“αβ=”是“sin sin αβ=”的必要不充分条件B .已知命题P :“0x R ∃∈,00e 1x x <+”,则P ⌝:“x R ∀∈,e 1x x ≥+”C .若随机变量12,3B ξ⎛⎫ ⎪⎝⎭,则()23E ξ= D .已知随机变量()23,XN σ,且()()213P X a P X a >-=<+,则43a = 【答案】BCD【解析】【分析】 选项A :利用充分条件和必要条件的概念,并结合同角或终边相同的角的三角函数值相同即刻判断;选项B :利用特称命题的否定的概念即可判断;选项C :利用二项分布的期望公式即可求解;选项D :利用正态曲线的对称性即可求解.【详解】选项A :若αβ=,则sin sin αβ=;若sin sin αβ=,则2k αβπ=+,k Z ∈,从而“αβ=”是“sin sin αβ=”的充分不必要条件,故A 错误;选项B :由特称命题的否定的概念可知,B 正确;选项C :因为12,3B ξ⎛⎫ ⎪⎝⎭,所以()12233E ξ=⨯=,故C 正确; 选项D :结合已知条件可知,正态曲线关于3x =对称,又因为()()213P X a P X a >-=<+,从而21323a a -++=⨯,解得43a =,故D 正确. 故选:BCD10.(2022·江苏·南京市宁海中学二模)下列命题正确的是( )A .“1a >”是“21a >”的充分不必要条件B .“M N >”是“lgM lgN >”的必要不充分条件C .命题“2,10x R x ∀∈+<”的否定是“x R ∃∈,使得210x +<”D .设函数()f x 的导数为()'f x ,则“0()0f x '=”是“()f x 在0x x =处取得极值”的充要条件【答案】AB【解析】根据定义法判断是否为充分、必要条件,由全称量词命题的否定是∀→∃,否定结论,即可知正确的选项.【详解】A 选项中,211a a >⇒>,但211a a >⇒>或1a <-,故A 正确;B 选项中,当0M N >>时有lgM lgN >,而lgM lgN >必有0M N >>,故B 正确;C 选项中,否定命题为“x R ∃∈,使得210x +≥”,故C 错误;D 选项中,0()0f x '=不一定有()f x 在0x x =处取得极值,而()f x 在0x x =处取得极值则0()0f x '=,故D 错误;故选:AB【点睛】本题考查了充分、必要条件的判断以及含特称量词命题的否定,属于简单题.题型二:全称量词与存在量词1.(2022·全国·模拟预测(理))若“x ∃∈R ,使得sin 3x x a =”为假命题,则实数a 的取值范围是( )A .[]22-,B .()2,2-C .(][),22,-∞-+∞D .()(),22,∞∞--⋃+【答案】D【解析】【分析】 写出全称量词命题为真命题,利用辅助角公式求出()[]2,2f x ∈-,从而求出实数a 的取值范围.【详解】因为“x ∃∈R ,使得sin 3x x a =”为假命题,则“x ∀∈R ,使得sin 3x x a ≠”为真命题,因为()[]πsin 32sin 2,23f x x x x ⎛⎫==-∈- ⎪⎝⎭,所以实数a 的取值范围是()(),22,∞∞--⋃+故选:D2.(2022·全国·模拟预测)命题“π,02x ⎛⎫∀∈- ⎪⎝⎭,tan x x >”的否定是( )A .,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x ≤B .,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x <C .,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x ≤D .,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x <【答案】C【解析】【分析】利用含有一个量词的命题的否定的定义求解.【详解】 解:由全称量词命题的否定是存在量词命题,所以命题“,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x >”的否定是“,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x ≤”,故选:C .3.(2022·全国·哈师大附中模拟预测(理))命题“2x ∀≥,2440x x -+≥”的否定是()A .2x ∀≥,2440x x -+<B .2x ∃<,2440x x -+<C .2x ∀<,2440x x -+<D .2x ∃≥,2440x x -+<【答案】D【解析】【分析】对原命题“改量词,否结论”即可求得结果.【详解】命题2x ∀≥,2440x x -+≥的否定是:2x ∃≥,2440x x -+<.故选:D.4.(2022·全国·东北师大附中模拟预测(文))命题“0x R ∃∈,00e 1x x -≥”的否定是( )A .0x R ∃∈,00e 1x x -<B .0x R ∃∈,00e 1x x -<C .x R ∀∈,e 1x x -≤D .x R ∀∈,e 1x x -<【答案】D【解析】【分析】 根据特称量词命题的否定为全称量词命题判断即可;【详解】命题“0R x ∃∈,00e 1x x -≥”为特称量词命题,其否定为R x ∀∈,e 1x x -<;故选:D5.(2022·全国·模拟预测(文))命题“R x ∀∈,20x ≥”的否定是( )A .R x ∀∈,20x <B .R x ∀∈,20x ≥C .0R x ∃∈,200x < D .0R x ∃∈,200x ≥ 【答案】C【解析】【分析】由全称量词命题的否定:将任意改为存在并否定原结论,即可写出命题的否定形式.【详解】由全称量词命题的否定为特称命题,所以原命题的否定为:0R x ∃∈,200x <. 故选:C6.(2022·全国·东北师大附中模拟预测(理))命题“00x ∃≥,001x e x -≥”的否定是( )A .00x ∃<,001x e x -<B .00x ∃≥,001x e x -<C .0x ∀<,1x e x -<D .0x ∀≥,1x e x -<【答案】D【解析】【分析】将特称命题的否定改为全称量词命题即可【详解】命题“00x ∃≥,001x e x -≥”的否定是“0x ∀≥,1x e x -<”,故选:D7.(2022·全国·模拟预测)命题():0,p x ∀∈+∞,1ln x x +≤的否定为( )A .()0,x ∃∈+∞,1ln x x +≤B .()0,x ∀∈+∞,1ln x x +≥C .()0,x ∃∈+∞,1ln x x +>D .()0,x ∀∈+∞,1ln x x +> 【答案】C【解析】【分析】根据全称量词命题的否定直接得出结果.【详解】因为全称量词命题的否定是特称量词命题,故原命题的否定是()0,x ∃∈+∞,1ln x x +>.故选:C8.(2022·广东汕头·三模)下列说法错误的是( )A .命题“x R ∀∈,cos 1≤x ”的否定是“0x R ∃∈,0cos 1x >”B .在△ABC 中,sin sin A B ≥是A B ≥的充要条件C .若a ,b ,R c ∈,则“20ax bx c ++≥”的充要条件是“0a >,且240b ac -≤”D .“若1sin 2α≠,则6πα≠”是真命题 【答案】C【解析】【分析】利用全称量词命题的否定可判断A ,由正弦定理和充要条件可判断B ,通过举特例可判断C ,通过特殊角的三角函数值可判断D .【详解】A.命题“x R ∀∈,cos 1≤x ”的否定是“0x R ∃∈,0cos 1x >”,正确;B. 在△ABC 中,sin sin A B ≥,由正弦定理可得22a b R R≥(R 为外接圆半径),a b ≥,由大边对大角可得A B ≥;。

高中数学《常用逻辑用语》教案

高中数学《常用逻辑用语》教案

高中数学《常用逻辑用语》教案一、教学目标1. 让学生理解并掌握常用的逻辑用语,如且、或、非、逆、逆否等。

2. 培养学生运用逻辑用语进行判断和推理的能力。

3. 让学生能够识别和分析实际问题中的逻辑关系,提高解决问题的能力。

二、教学内容1. 常用的逻辑用语:且、或、非、逆、逆否等。

2. 逻辑运算的规律:分配律、结合律、De Morgan 定律等。

3. 逻辑判断:充分必要条件、充要条件、逆否命题等。

三、教学方法1. 采用讲授法,讲解逻辑用语的定义和运用。

2. 利用案例分析法,分析实际问题中的逻辑关系。

3. 采用小组讨论法,让学生合作探讨逻辑运算的规律。

四、教学准备1. PPT课件:包含逻辑用语的定义、例题和练习题。

2. 案例材料:涉及实际问题中的逻辑关系。

3. 练习题:包括选择题、填空题和解答题。

五、教学过程1. 导入:通过一个实际问题引入逻辑用语的学习,激发学生的兴趣。

2. 新课讲解:讲解常用的逻辑用语,如且、或、非、逆、逆否等,并通过例题演示其运用。

3. 逻辑运算规律:介绍分配律、结合律、De Morgan 定律等,并通过练习题巩固。

4. 逻辑判断:讲解充分必要条件、充要条件、逆否命题等,并通过例题演示其运用。

5. 案例分析:分析实际问题中的逻辑关系,让学生运用所学知识解决问题。

6. 小组讨论:让学生合作探讨逻辑运算的规律,培养学生的合作能力。

8. 课后作业:布置练习题,巩固所学知识。

9. 课后反思:教师反思教学效果,针对学生的掌握情况调整教学策略。

10. 教学评价:对学生的学习情况进行评价,包括逻辑用语的掌握和运用能力。

六、教学评价1. 评价方式:采用课堂练习、课后作业和小测验等方式进行评价。

2. 评价内容:评价学生对常用逻辑用语的理解和运用能力,以及逻辑运算规律的掌握情况。

3. 评价标准:根据学生的答案准确性、解题思路清晰程度以及运用逻辑用语的恰当性进行评分。

七、课后作业1. 练习题:包括选择题、填空题和解答题,涵盖本节课所学的常用逻辑用语和逻辑运算规律。

2024年高考数学----常用逻辑用语知识点

2024年高考数学----常用逻辑用语知识点

2
x
1 x
min,令f(x)=2x-
1 x
,由于函数f(x)=2x-
1 x

1 2
,
2
上单调递增,因此f(x)min=f
1 2
=-1,则λ≤-1.答案 (-∞,-1]来自⇒-3<k≤0,所
0
以(-3,0)是“∀x∈R,2kx2+kx- 3<0”为真命题的充分不必要条件,A符合题
8
意,(-3,0]是“∀x∈R,2kx2+kx- 3<0”为真命题的充要条件,B不符合题意,(-
8
3,-1)是“∀x∈R,2kx2+kx- 3<0”为真命题的充分不必要条件,C符合题意,
8
(-3,+∞)是“∀x∈R,2kx2+kx- 3<0”为真命题的必要不充分条件,D不符合
1 2
,
2,使得2x2-λx-1<0成立”
是假命题,则实数λ的取值范围为
.
解析
若“∃x∈
1 2
, 2,使得2x2-λx-1<0成立”是假命题,则“∀x∈
1 2
,
2,
使得2x2-λx-1≥0成立”是真命题,由于x∈
1 2
,
2
,所以λ≤
2
x2 x
1=2x-
1 x
在x

1 2
,
2
上恒成立,则λ≤
实数a的取值范围是
.
解析 由x2-(2a+1)x+a(a+1)<0,得[x-(a+1)]·(x-a)<0,即a<x<a+1,令A={x|a<x
<a+1},由lg(2x-1)≤1,得0<2x-1≤10,解得

常用逻辑用语

常用逻辑用语

常用逻辑用语一、充分条件与必要条件1.1、命题的定义在数学中,命题是用来判断一件事情的句子。

这些句子用语言、符号或数学式子来表达,并且能够明确地判断为真或假。

数学命题是数学推理和证明的基础,它们构成了数学理论的基石。

注意:命题的明确性和可判断性。

1.2、真命题与假命题真命题:定义:如果一个命题在特定条件下为真,即它所陈述的内容在逻辑上是成立的,那么该命题被称为真命题。

举例说明:如“两直线平行,则它们不会相交”是一个真命题。

假命题:定义:如果一个命题在特定条件下为假,即它所陈述的内容在逻辑上是不成立的,那么该命题被称为假命题。

举例说明:如“所有的质数都是奇数”是一个假命题,因为存在反例(如2是质数但它是偶数)。

1.3、数学命题的一般形式数学命题经常以“若p,则q”的形式出现,其中p被称为命题的条件,q被称为命题的结论。

这种形式是数学推理和证明中常用的结构。

条件(p):命题的前提或假设部分,是推理的起点。

结论(q):在条件成立的情况下,必然为真的部分,是推理的终点。

示例:命题“若一个数是偶数,则它能被2整除”中,“一个数是偶数”是条件p,“它能被2整除”是结论q。

根据整数的性质,这个命题是真命题。

1.4、充分条件和必要条件的背景在探索世界的奥秘时,人们常常需要判断事物之间的因果关系或逻辑关系。

充分条件和必要条件作为逻辑学中的核心概念,为我们提供了一种分析和理解这些关系的工具。

从古代的哲学思考到现代的科学研究,充分条件和必要条件始终扮演着重要角色。

1.5、充分条件和必要条件定义(1)、充分条件定义:如果条件A成立,那么结果B一定成立,即A是B的充分条件。

换句话说,A的发生足以保证B的发生,但B的发生不一定只由A导致。

实例:假设“下雨”是“地面湿润”的充分条件。

当天空下雨时,地面一定会变得湿润;但地面湿润的原因可能还有其他,如洒水、河流泛滥等。

需要着重记忆和理解的地方:充分条件强调的是“足够性”,即A足够导致B,但B的发生不一定仅由A引起。

第四讲 常用逻辑用语(一和二)

第四讲     常用逻辑用语(一和二)
4若p q,且q p,则p是q的既不充分也不必要条件。
★高中数学
第五讲 常用逻辑用语(二)
⑵集合法:
一个命题的条件和结论之间的逻辑关系与集合和集合之间的包含关系密切相关。设p包含的对象组成集合A,q包含的对象组成集合B,则有:
1若 ,则p是q的充分条件;
2若 ,则p是q的必要条件;
3若 ,则p是q的充要条件;
4若 ,且 ,则p是q的既不充分也不必要条件。
对上述关系,我们也常用Venn图来表示和判断。
四种条件的判定方法
充分条件、必要条件、充要条件、既不充分也不必要条件的判定方法:①定义法;②特殊值法;③集合法;④图示法.
例4 填空:
1f(0)=0是f(x)为奇函数的条件;
2A=B是tanA=tanB的条件条件;
若原命题为“若p,则q”,则它的逆命题为“若q,则p”。
⑵对于两个命题,其中一个命题的条件和结论恰好为另一个命题的条件的否定和结论的否定,把这样的两个命题叫做互否命题。我们把其中一个命题叫做原命题,那么另一个命题叫做原命题的否命题。
若原命题为“若p,则q”,则它的否命题为“若 p,则 q”。
⑶对于两个命题,其中一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,我们把这样的两个命题叫做互为逆否命题,如果把其中一个命题叫做原命题,那么另一个命题叫做原命题的逆否命题。
2写出其逆否命题,判断其真假,并证明你的结论.
6、充分条件与必要条件
一般地,“若p,则q”为真命题,是指由p可以推出q,记住“pq”,这时称p是q的充分条件,q是p的必要条件.
7、充要条件
如果既有pq,又有qp,就称p是q成立的充分必要条件,简称充要条件.(当然也可以称q是p成立的充分必要条件,它们两个称为互为充要条件)

高中数学知识点总结:常用逻辑用语

高中数学知识点总结:常用逻辑用语

优选精品优选精品 欢迎下载欢迎下载1 / 2高中数学知识点总结:常用逻辑用语高中学生在学习中或多或少有一些困惑,的编辑为大家总结了高中数学知识点总结:常用逻辑用语,各位考生可以参考。

常用逻辑用语:1、四种命题:⑴原命题:若p 则q;⑵逆命题:若q 则p;⑶否命题:若p;⑶否命题:若 p p 则 q;⑷逆否命题:若q;⑷逆否命题:若 q q 则 p注:注:11、原命题与逆否命题等价、原命题与逆否命题等价;;逆命题与否命题等价。

判断命题真假时注意转化。

2、注意命题的否定与否命题的区别:命题否定形式是、注意命题的否定与否命题的区别:命题否定形式是 ; ; ;否否命题是命题是 . . .命题命题或 的否定是 且 且 的否定是 或 . 3、逻辑联结词:⑴且⑴且(and) (and) (and) :命题形式:命题形式:命题形式 p q; p q p q p q p p q; p q p q p q p⑵或⑵或(or)(or)(or):命题形式:命题形式:命题形式 p q; p q; p q; 真真真 真 真 假 ⑶非⑶非(not)(not)(not):命题形式:命题形式:命题形式 p . p . p . 真真假 假 真 假 假 真 假 真 真假 假 假 假 真或命题的真假特点是一真即真,要假全假且命题的真假特点是一假即假,要真全真非命题的真假特点是一真一假4、充要条件优选精品优选精品 欢迎下载欢迎下载2 / 2 由条件可推出结论,条件是结论成立的充分条件由条件可推出结论,条件是结论成立的充分条件;;由结论可推出条件,则条件是结论成立的必要条件。

5、全称命题与特称命题:短语所有在陈述中表示所述事物的全体,逻辑中通常叫做全称量词,并用符号表示。

含有全体量词的命题,叫做全称命题。

短语有一个或有些或至少有一个在陈述中表示所述事物的个体或部分,逻辑中通常叫做存在量词,并用符号 表示,含有存在量词的命题,叫做存在性命题。

高三数学复习资料常用逻辑用语学习指导理

高三数学复习资料常用逻辑用语学习指导理

《常用逻辑用语》学习指导逻辑知识作为整章内容在高中出现,经历了从无到有、由难到易、由繁到简、位置由前到后、内容由少到多的演变.《普通高中数学课程标准(实验)》中明确指出:通过学习常用逻辑用语,使学生能“体会逻辑用语在表述和论证中的作用,利用这些逻辑用语准确地表达数学内容,更好地进行交流.”由此可以看出,对本章的学习,其基点应是常用的...逻辑用语,而不是简易逻辑的学习,更不是数理逻辑的学习.因此,本章内容应以教材为准,既不要拨高,也不要拓展.要强化基础知识的识记与理解,注意命题的灵活运用,并使之成为我们理解、分析、解决问题的有效工具.下面,我们按知识点的顺序将本章知识进行归纳整理,分类剖析,以期达到“以点带面,抛砖引玉”之目的.知识点一、(简单)命题的概念例1 下列语句中哪些是命题?其中哪些是真命题?①垂直于同一条直线的两条直线必平行吗?②一个数不是正数就是负数;③好大的一棵树啊!④对于(x -1)2≤0,有2x -1<0;⑤作ABC ∆∽111A B C ∆;⑥等边三角形难道不是等腰三角形吗?解析 ①是疑问句,没有对垂直于同一条直线的两条直线是否平行作出判断,不是命题;②是假命题,数0既不是正数也不是负数;③感叹句,不是命题;④是命题.因为(x -1)2≤0,即x =1时,2x -1<0不成立,所以是假命题;⑤祈使句,不是命题;⑥通过反问句,对等边三角形是等腰三角形作出判断,是真命题. ∴是命题的有②④⑥,真命题有⑥.点拨 此为概念辨析题.判断一个语句是不是命题,关键在于能否判断其真假. 一般地,陈述句都是命题,而疑问句、祈使句、感叹句都不是命题.另外,命题不只有两种规范形式:“若p ,则q ”和“如果p ,那么q ”,命题也可写成“只要p ,就有q ”的形式.因此,将④中的语句改写成“若(x -1)2≤0,则2x -1<0”或“只要(x -1)2≤0,就有2x -1<0”,则其是否为命题就显而易见. 例2 已知a 与b 均为单位向量,其夹角为θ,有下列四个命题:1p :2||1[0,)3a b πθ+>⇔∈ 2p :2||1(,]3a b πθπ+>⇔∈ 3p :||1[0,)3a b πθ->⇔∈ 4p :||1(,]3a b πθπ->⇔∈ 其中的真命题是( )A .1p ,4pB .1p ,3pC .2p ,3pD .2p ,4p 解析 由||1a b +>,得2221a a b b +•+>,即12a b •>-,∴1cos 2||||a ba b θ•=>-•, ∵[0,]θπ∈,∴2[0,]3πθ∈;由||1a b ->,得2221a a b b -•+>,即12a b •<, ∴1cos 2||||a ba b θ•=<•,∵[0,]θπ∈,∴(,]3πθπ∈;故选A. 点拨 要判断命题的真假,一方面,要根据命题本身涉及的知识去判断;另一方面,要判断一个命题为真,一般要进行严格的证明,而要判断一个命题为假,只要举一个反例即可.例3 设函数ax ax x f --=25lg )(的定义域为A ,若命题p :A ∈3与命题q :A ∈5中至少有一个是真命题,求实数a 的取值范围.解析:定义域A 即为不等式250ax x a->-的解集,等价于不等式2(5)()0ax x a -->的解集.若命题p :A ∈3与命题q :A ∈5都是假命题,即35A B ∉∉且,则有(35)(9)0(55)(25)0a a a a --≤⎧⎨--≤⎩,解得251a a ≥≤或,所以命题p :A ∈3与命题q :A ∈5中至少有一个是真命题时实数a 的取值范围是125a <<.点拨 两个命题中至少有一个是真命题,若从正面求解,则有三种情况,比较复杂,所以先从反面考虑,再求补集即可.知识点二、四种命题及其真假的判断例4 写出命题“乘积为奇数的两个整数都不是偶数”的逆命题、否命题、逆否命题,并判断真假.解析 原命题可写成:若两个整数的乘积为奇数,则它们都不是偶数,是真命题.逆命题:若两个整数的乘积都不是偶数,则这两个整数的乘积为奇数,是真命题.否命题:若两个整数的乘积不为奇数,则这两个整数至少有一个是偶数,是真命题. 逆否命题:若两个整数中至少有一个是偶数,则这两个整数的乘积不为奇数,是真命题.点拨 要构造出一个命题的逆命题、否命题、逆否命题,首先应将原命题改写成“若p 则q ” 的形式,然后根据定义进行改写.另外,对“都不”的否定,有人认为是“不都”,这是错误的. “都不”的否定应为“至少有一个”,而“不都”是对“都”的否定.例5 给出下列命题:①“若xy =1,则x 、y 互为倒数”的逆命题;②“面积相等的三角形全等”的否命题;③“若m ≤1,则方程x 2-2x +m =0有实根”的逆否命题;④“若A ∩B =B ,则A ⊆B ”的逆否命题.其中是真命题的有 . 解析 ①的逆命题为“若x 、y 互为倒数,则xy =1”,是真命题;②的否命题为“面积不相等的三角形不全等”,是真命题;③“若m ≤1,则x 2-2x +m =0有实根”为真命题,因此其逆否命题也为真命题;④“若A ∩B =B ,则A ⊆B ”为假命题,则其逆否命题也为假命题. ∴真命题有①②③.点拨 在判断原命题及其逆命题、否命题、逆否命题的真假时,可以借助互为逆否的两个命题同真同假进行判断.知识点三、复合命题的构造及其真假的判断例6 分别写出下列各组命题构成的“p 或q ”、“p 且q ”、“非p ”形式的复合命题: (1)p :连续的三个整数的乘积能被2整除,q :连续的三个整数的乘积能被3整除;(2)p :对角线互相垂直的四边形是菱形,q :对角线互相平分的四边形是菱形.解析 (1)p 或q :连续的三个整数的乘积能被2或能被3整除;p 且q :连续的三个整数的乘积能被2且能被3整除;非p :连续的三个整数的乘积不能被2整除.(2)p 或q :对角线互相垂直的四边形是菱形或对角线互相平分的四边形是菱形;p 且q :对角线互相垂直的四边形是菱形且对角线互相平分的四边形是菱形;非p :对角线互相垂直的四边形不一定是菱形.点拨 (1)对于复合命题的构造,教材中规定:用逻辑联结词“且”、“或”把命题p 和命题q 联结起来得到的新命题分别称为p 且q 命题、p 或q 命题. 根据真值表,复合命题可以写成简单形式,如(1),但对于(2),如果将命题“p 或q”写成:“对角线互相垂直或互相平分的四边形是菱形”,命题“ p 且q”写成:“对角线互相垂直且互相平分的四边形是菱形”,虽然把“或”与“且”写进了新的命题,但其实都是错的.事实上,命题p 、q 都是假命题,由真值表知,命题p 或q 、p 且q 也都应该是假命题,但命题“对角线互相垂直且互相平分的四边形是菱形”却是真命题,显然矛盾.因此,要正确理解逻辑联结词“且”、“或”和 “非”的含义, “且”是指必须两个都选,“或”是指两个中至少选一个,“非”是指否定的意思。

常用逻辑用语知识点总结

常用逻辑用语知识点总结

常用逻辑用语知识点总结逻辑是一种以证明、推理和推断为基础的理性思维方法。

在日常生活和学术研究中, 人们经常会遇到各种逻辑问题, 如何正确运用逻辑用语是非常重要的。

下面将就常用的逻辑用语进行知识点总结。

一、假言命题1. 假言命题是由“如果……,则……”的句子构成的命题。

它表示的是一种条件关系。

2. 假言命题的充分条件和必要条件。

充分条件是指如果A成立,则B必定成立;必要条件是指B成立就必定是A成立。

3. 常用逻辑连接词:如果……,就……;只要……,就……;每当……,就……。

4. 示例:如果下雨,地面就会湿。

这就是一个假言命题,如果下雨是充分条件,地面湿是必要条件。

5. 常见的假言命题推理错误:偷换充分条件与必要条件;否定假设;无中生有。

二、联言命题1. 联言命题是由“而且”、“也”、“而且还”等词连接的两个或多个简单命题构成的命题。

它表示的是多个条件同时成立的关系。

2. 常用逻辑连接词:而且、又、且、还、除此之外还。

3. 示例:他不但聪明,而且还非常勤奋。

这就是一个联言命题,表示他既聪明又勤奋。

4. 常见的联言命题推理错误:谬误的联言;与联言条件无关;由联言推出联言分解。

三、析言命题1. 析言命题是由“但是”、“除了……还有”等词连接的两个或多个简单命题构成的命题。

它表示的是两个条件相互排斥的关系。

2. 常用逻辑连接词:但是、然而、不过、相反、相反地、与……相反。

3. 示例:他很有学识,但是思维缜密不足。

这就是一个析言命题,表示他虽然有学识,但思维缜密不足。

4. 常见的析言命题推理错误:非提出人之谬误;擅自坚持;不正当引用。

四、复言命题1. 复言命题是由多个简单命题以及相应的逻辑连接词构成的复杂命题。

2. 常用逻辑连接词:如果……,就……;且;但是;不是;如果……则……;不是因为……而是因为……。

3. 示例:如果你努力学习,就一定会取得好成绩。

这就是一个复言命题,由假言命题构成。

5. 常见的复言命题推理错误:对联言的否定;混淆假言及联言;推而广之。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三总复习第四讲 常用逻辑用语 姓名 .教学目标:了解命题的概念和命题的构成;理解逻辑联结词“或”“且”“非”的含义;理解四种命题及其互相关系;教学重点:复合命题的构成及其真假的判断,四种命题的关系. (一)主要知识:1.命题分类:真命题与假命题,简单命题与复合命题;2.复合命题的形式:“p 或q ”: “x ∈A 或x ∈B ” x ∈AB“p 且q ”: “x ∈A 且x ∈B ” 即x ∈A B “非p ”:x ∉A 即 x ∈A C U3.复合命题的真假:对p 且q 而言,当q 、p 为真时,其为真;当p 、q 中有一个为假时,其为假。

对p 或q 而言,当p 、q 均为假时,其为假;当p 、q 中有一个为真时,其为真;当p 为真时,非p 为假;当p 为假时,非p 为真。

4.四种命题:记“若q 则p ”为原命题,则否命题为“若非p 则非q ”,逆命题为“若q 则p “,逆否命题为”若非q 则非p “。

其中互为逆否的两个命题同真假,即等价。

因此,四种命题为真的个数只能是偶数个。

5. 全称命题:,()x M p x ∀∈;其否定命题为“,()x M p x ∃∈⌝存在性(特称)命题:,()x M p x ∃∈,其否定命题为“,()x M p x ∀∈⌝” M 为给定集合,p(x)是一个关于x 的命题。

(二)主要方法:1.逻辑联结词“或”“且”“非”与集合中的并集、交集、补集有着密切的关系,解题时注意类比; 2.通常复合命题“p 或q ”的否定为“p ⌝且q ⌝”、“p 且q ”的否定为“p ⌝或q ⌝”、“全为”的否定是“不全为”、“都是”的否定为“不都是”等等;3.有时一个命题的叙述方式比较的简略,此时应先分清条件和结论,该写成“若p ,则q ”的形式; 二、基础演练1.下列语句中是命题的是( )A .周期函数的和是周期函数吗?B .0sin 451=C .2210x x +-> D .梯形是不是平面图形呢?2.命题p:“∃x ∈R,有x 2+x+1≤0”则⌝p: .3.有下列命题:①2004年10月1日是国庆节,又是中秋节;②10的倍数一定是5的倍数; ③梯形不是矩形;④方程21x =的解1x =±。

其中使用逻辑联结词的命题有( ) A .1个 B .2个 C .3个 D .4个 4.有下列四个命题:①、命题“若1=xy ,则x ,y 互为倒数”的逆命题; ②、命题“面积相等的三角形全等”的 否命题; ③、命题“若1m ≤,则022=+-m x x 有实根”的逆否命题; ④、命题“若A B B =,则A B ⊆”的逆否命题。

其中是真命题的是 (填上你认为正确的命题的序号)。

5.命题:“若220(,)a b a b R +=∈,则0a b ==”的逆否命题是( ) A.若0(,)a b a b R ≠≠∈,则220a b +≠B.若0(,)a b a b R =≠∈,则220a b +≠C.若0,0(,)a b a b R ≠≠∈且,则220a b +≠ D .若0,0(,)a b a b R ≠≠∈或,则220a b +≠ 6.命题“若p 不正确,则q 不正确”的逆命题的等价命题是 ( ) A .若q 不正确,则p 不正确 B. 若q 不正确,则p 正确 C. 若p 正确,则q 不正确 D . 若p 正确,则q 正确7.已知命题p:不等式︱x ︱+︱x-1︱>m 的解集为R,命题q :函数f(x)=-(5-2m)x是减函数,若“p 或q ”为真命题,“p 且q ”为假命题,则实数m 的取值范围是 .三、典例分析例1.写出下列命题的否定:(1)所有的人都喝水; (2)存在有理数x,使x 2-2=0;(3)对所有实数a ,都有︱a ︱≥0 (4)x ∀∈R,x 2+x+1>0 (5)x R ∃∈,x 2-x+1=0例2.命题p:方程x 2+mx+1=0有两个相异负根;命题q:方程4x 2+4(m-2)x+1=0无实根,若p 或q 为真,p 且 q 为假,求m 的取值范围。

例3.设p:关于x 的不等式a x >1的解集是{x ︱x<0},q:函数y=lg(ax 2-x+a)的定义域为R,如果p 和q 有且只有一个正确,求a 的取值范围。

例4.已知a>0,a ≠1,设P:函数y=log a (x+1)在x ∈(0,+∞)内单调递减。

Q:曲线y=x 2+(2a-3)x+1与x 轴交于不同的两点,如果P 和Q 有且只有一个正确,求a 的取值范围.例5.已知函数f(x)=ax 2+(b-8)x-a-ab,当x ∈(-3,2)时,f(x)>0, 当x ∈(-∞,-3)∪(2,+∞)时f(x)<0. (1) 求f(x)在〔0,1〕内的值域.(2) C 为何值时,ax 2+bx+c ≤0对∀x ∈R 恒成立.例 6.已知命题:p “]2,1[-∈∀x ,0322<++-a x x ”,命题:q “]2,1[-∈∃x ,024≤++-x a x ”. (Ⅰ)若命题p 是真命题,求实数a 的取值范围; (Ⅱ)若命题“p 或q ”是假命题,求实数a 的取值范围.四、巩固练习:1.写出命题“01,2=+-∈∃x x R x ”的否定: .2.“△ABC 中,若090C ∠=,则,A B ∠∠都是锐角”的否命题为 ; 3.若“[]2,5x ∈或{}|14x x x x ∈<>或”是假命题,则x 的范围是___________。

4.命题“若△ABC 不是等腰三角形,则它的任何两个内角不相等”的逆否命题 是 ;5.命题“2230ax ax -->不成立”是真命题,则实数a 的取值范围是_______。

6.命题:“若a b ⋅不为零,则,a b 都不为零”的逆否命题是 。

7.设原命题:若2a b +≥,则,a b 中至少有一个不小于1,则原命题与其逆命题 的真假情况是( )A .原命题真,逆命题假B .原命题假,逆命题真C .原命题与逆命题均为真命题D .原命题与逆命题均为假命题 8.有下列四个命题:①“若0x y += , 则,x y 互为相反数”的逆命题; ②“全等三角形的面积相等”的否命题; ③“若1q ≤ ,则220x x q ++=有实根”的逆否命题;④“不等边三角形的三个内角相等”逆命题; 其中真命题为( ) A .①② B .②③ C .①③ D .③④ 9.若命题“p q ∧”为假,且“p ⌝”为假,则( )A .p 或q 为假B .q 假C .q 真D .不能判断q 的真假10.下列说法中正确的是( )A .一个命题的逆命题为真,则它的逆否命题一定为真B .“a b >”与“ a c b c +>+”不等价C .“220a b +=,则,a b 全为0”的逆否命题是“若,a b 全不为0, 则220a b +≠” D .一个命题的否命题为真,则它的逆命题一定为真11.在命题“若抛物线2y ax bx c =++的开口向下,则{}2|0x ax bx c φ++<≠”的逆命题、否命题、逆否命题中结论成立的是( )A .都真B .都假C .否命题真D .逆否命题真12.设p:大于90°的角叫钝角,q:三角形三边的垂直平分线交于一点,则p 与q 的复合命题的真假是 ( ) A.p 或q 为假 B. p 且q 为真 C.q ⌝为真 D. p 或q 为真13.有下列四个命题:(1)“若a>b,则a 2>b 2”的逆否命题;(2)若x ≤-3,则x 2+ x – 6 > 0”的否命题;(3)“若a b 是无理数,则a 、b 是无理数”的逆命题;(4)“若m>0,则x 2+ x - m=0有实数根”的逆否命题。

其中真命题的个数是 ( ) A. 0 B. 1 C. 2 D. 314.命题“若x=2或x=3,则x 2-5x+6=0”以及它的逆命题、否命题、逆否命题中,假命题的个数为 ( )A. 0B. 2C. 3D. 415.“若240b ac -<,则20ax bx c ++=没有实根”,其否命题是 ( )A. 若240b ac ->,则20ax bx c ++=没有实根 B. 若240b ac ->,则20ax bx c ++=有实根 C. 若240b ac -≥,则20ax bx c ++=有实根 D. 若240b ac -≥,则20ax bx c ++=没有实根五、课后作业:1、对于命题“正方形的四个内角相等”,下面判断正确的是A 、所给命题为假B 、它的逆否命题为真C 、它的逆命题为真D 、它的否命题为真2、若命题“非p ”与命题“p 或q ”都是真命题,那么 ( ) A .命题p 与命题q 的真值相同 B .命题q 一定是真命题3、有下列四个命题:①“若x+y=0 , 则x ,y 互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若q ≤1 ,则x 2 + 2x+q=0有实根”的逆否命题;④“不等边三角形的三个内角相等”逆命题。

其中真命题为 ( ) A .①② B .②③ C .①③ D .③④4、命题p :若A B B =,则A B ⊆;命题q :若A B ⊄,则A B B ≠。

那么命题p 与命题q的关系是 ( )A .互逆B .互否C .互为逆否命题D .不能确定 5.若p 是真命题,q 是假命题。

以下四个命题:①p 且q ; ②p 或q ; ③非p ; ④非q. 其中假命的个数是 ( ) A.1 B.2 C.3 D.4 6、命题“若ab=0,则a 、b 中至少有一个为零”的逆否命题为____________7..命题p:“∃x ∈R,都有x 2+x+1≤0”则⌝p: .8.若q p ,是两个简单命题,且“p 或q ”的否定是真命题,则必有( )A .p 真q 真B .p 假q 假C .p 真q 假D .p 假q 真 9.下列命题为“p 或q ”的形式的是( ) A .25> B .2是4和6的公约数 C .{}0≠Φ D .B A ⊆ 10.下列命题为复合命题的是( )A .12是6的倍数B .12比5大C .四边形ABCD 不是矩形 D .222c b a =+ 11.命题“若b a >,则c b c a +>+”的逆否命题为( )A .若b a <,则c b c a +<+B .若b a ≤,则c b c a +≤+C .若c b c a +<+,则b a <D .若c b c a +≤+,则b a ≤12.有下列命题:①“若x 2+y 2=0,则x,y 全是0”的否命题; ②“全等三角形是相似三角形”的否命题;③“若m>1,则mx 2-2(m+1)x+(m-3)>0的解集为R ”的逆命题;④“若a+5是无理数,则a 是无理数”的逆否命题。

相关文档
最新文档