电解镍液中添加剂的定量核磁共振

合集下载

核磁共振研究电解液溶剂化结构

核磁共振研究电解液溶剂化结构

核磁共振研究电解液溶剂化结构【知识】核磁共振研究电解液溶剂化结构-探索离子在液体中的行为1. 引言核磁共振(NMR)作为一种非常重要的科学技术手段,被广泛应用于化学、物理学以及材料科学等领域。

在电化学中,NMR技术也发挥着关键的作用,尤其是在研究电解液溶剂化结构方面。

本文将详细探讨核磁共振如何帮助我们了解电解液的溶剂化结构,并展示在此领域内取得的重要研究成果。

2. 电解液溶剂化结构的重要性在电化学中,电解液的溶剂化结构对于电子和离子的迁移、反应速率以及电化学效应都有着重要的影响。

研究电解液溶剂化结构可以帮助我们深入理解离子在液体中的行为,以及液体中电荷传递的机制。

然而,由于电解液中离子和溶剂分子的数量庞大、动态行为复杂并且难以直接观察,探测其溶剂化结构一直是一个挑战。

3. 核磁共振技术的优势核磁共振技术以其无损、定量、非侵入性的特点,在电化学研究中展现出了巨大的潜力。

通过对电解液样品进行核磁共振实验,我们可以获得溶剂化离子周围的详细信息,如溶剂化壳的构成、动态行为以及离子与溶剂分子之间的相互作用。

这些信息对于揭示电解液中离子溶剂化现象具有重要意义。

4. 核磁共振研究电解液溶剂化结构的方法在核磁共振实验中,常用的研究电解液溶剂化结构的方法有两种:一种是通过二维核磁共振技术,如二维核磁共振相关谱(2D NMR correlation spectra),可以同时获得离子和溶剂分子之间的相互作用信息;另一种是通过核磁共振扩散技术,可以研究离子在溶液中的扩散行为。

这些方法可以帮助我们更全面地了解电解液的溶剂化行为。

5. 电解液溶剂化结构的研究进展通过核磁共振技术,许多研究人员已经取得了重要的研究成果。

研究发现Lithium-salt溶液中锂离子会形成溶剂化壳,其中溶剂分子通过氨基团与锂离子之间的氢键相互作用。

研究还发现,一些溶剂分子在形成溶剂化壳时会发生取代反应,进一步揭示了溶剂分子在电解液中的动态行为。

镀镍液中1,4-丁炔二醇的测定

镀镍液中1,4-丁炔二醇的测定

镀镍液中1,4-丁炔二醇的测定张伟,刘茵,王琴,巨雪霞,李丽丽,曹晓霞甘肃省化工研究院,730020,兰州【摘要】:建立电镀镍槽液中1,4-丁炔二醇的化学分析方法,该方法终点好判断,准确度高,精密度高。

【关键词】:化学滴定、碘量法、硫代硫酸钠标准溶液、1,4-丁炔二醇、镀镍液前言镀镍是电镀工业中最常见的镀种之一,因其具有良好的外观及耐蚀性而被用作防护-装饰或功能性镀层。

随着现代工业的发展,镀镍已广泛应用于信息、电子、航空航天、能源及国防等领域。

近年来,为满足日益增长的高新技术需求,电镀镍在特种加工和微米及纳米制造等方面也获得了重要应用。

众所周知,镀层性能很大程度上受工艺参数的影响,例如镀液组成、温度、pH、电流密度及添加剂等。

添加剂对镍镀层质量起着至关重要的作用。

通过合理的选择和控制添加剂的用量能够有效地改善镀层的表面形貌,使其具有一定光亮度,同时还能优化其延展性能及电解液的整平能力。

在硫酸盐镀镍工艺中,通常加入第一类光亮剂糖精和第二类光亮剂1,4-丁炔二醇以获得光亮平整的镀层。

随着对镀镍光亮剂的研究,人们认识到,第一类光亮剂与第二类光亮剂的联合使用不仅能获得全光亮、平整的镀层,其内应力也能得到控制。

因此,在电镀镍中对光亮剂1,4-丁炔二醇的测定显得尤其重要。

1.实验部分1.1方法摘要由定量的溴酸钾与溴化钾作用生成的溴,与1,4-丁炔二醇作用后,多余的溴与碘化钾作用,析出的碘用标准硫代硫酸钠滴定,以淀粉为指示剂。

1.2试剂0.02mol/L溴酸钾溶液、溴化钾、盐酸(1+1)、10%碘化钾溶液、0.1mol/L的硫代硫酸钠溶液、10g/L淀粉指示剂、1,4-丁炔二醇1.3溶液配制0.1mol/L的硫代硫酸钠溶液的配制:称取26g硫代硫酸钠(Na2S2O3·5H2O)(或16g无水硫代硫酸钠),加0.2g无水碳酸钠,溶于1000ml水中,缓缓煮沸10min,使之完全溶解,冷却,倒入细口瓶中,摇匀。

核磁弛豫试剂的作用

核磁弛豫试剂的作用

核磁弛豫试剂的作用
核磁弛豫试剂是一种广泛应用于核磁共振(NMR)实验中的
化合物,它们具有以下几种作用:
1. 确定样品溶液的浓度:核磁弛豫试剂可以用作内部标准物质,通过测量核磁共振谱中样品信号与核磁弛豫试剂信号的比值,可以确定样品溶液的浓度。

2. 提供对比剂:一些核磁弛豫试剂具有特定的核磁共振性质,可以用作对比剂来增强样品信号的强度,从而更好地观察和分析样品的核磁共振谱。

3. 判断样品纯度:核磁弛豫试剂的核磁共振信号通常非常锐利且不受干扰,因此可以用来判断样品的纯度。

如果样品溶液中出现某些不相关的杂质信号,可能会干扰到样品信号,而核磁弛豫试剂的信号则可以作为一个参考来判断样品信号的纯度。

总之,核磁弛豫试剂在核磁共振实验中起到了重要的作用,可以用于测定样品溶液的浓度、增强样品信号的强度以及判断样品的纯度。

镀镍电解中氯化钠含量的测定

镀镍电解中氯化钠含量的测定

毕业设计(论文)说明书题目镀镍电解液中氯化钠含量的测定院别:辽宁石油化工大学继续教育学院专业:应用化学班级:应化082设计人:孙德文指导教师:邸万山老师毕业设计(论文)任务书一、题目镀镍电解液中氯化钠含量的测定二、基础数据(1)0.1000 mol·L-1NaCl标准溶液。

称取5.844克(在400 ~450℃下灼烧至无爆裂声,冷却)的分析纯氯化钠,溶于水,转移至1000mL容量瓶中,稀释至刻度;(2)0.1 mol·L-1 AgNO3标准溶液。

称取约17克分析纯AgNO3溶于水,在容量瓶中稀释至1000 ml,用标准氯化钠溶液标定其准确浓度。

标定方法见实验步骤;(3)6 mol·L-1HNO3;三、内容要求1.说明部分测定化学镀镍电解液中氯化钠的含量,探索建立化学镀镍工艺的质量控制方法。

以氯化钠基准试剂为对照,硝酸银溶液滴定,电位滴定法测定镀镍电解液中氯化钠含量。

氯化钠在10.0~70.0 mg范围内,与消耗的硝酸银体积呈良好的线性关系,回归方程:Y=0.168 4X+0.055 7(r=0.999 96,n=7),平均回收率为97.48 %,RSD为2.40 %,不同镀镍电解液中氯化钠的含量0.83 %~ 1.86 %.电位滴定法测定饮片中氯化钠含量方法简便、准确、重现性好,可以作为化学镀镍工艺氯化钠含量测定方法。

2.计算部分结果的表示和计算:氯离子含量(%)=(V - V0)× TAgNO3/CI- /W式中 V----硝酸银标准溶液的用量,mL;V0---空白试验硝酸银标准溶液的用量,mL;TAgNO3/CI- ---硝酸银标准溶液对氯离子的滴定度(mg/mL);W------ 称取样品质量,mg。

3.绘图部分1 镍-铬2 镍-镍-铬3 镍-镍-镍-铬4 镍封闭-铬多层镍腐蚀机理示意图(日小慕秀夫,大谷和弘-1963)冲击镍:含硫0.1-0.2确定滴定终点的方法:E-V曲线法镀镍电解液中氯化钠含量的测定四、发给日期:2010 年 5 月12 日五、要求完成日期:2010 年 5 月23 日指导教师:邸万山系主任:赵连俊2010年 5 月22 日镀镍电解液中氯化钠含量的测定孙德文辽宁石化职业技术学院(121001)摘要:测定化学镀镍电解液中氯化钠的含量,探索建立化学镀镍工艺的质量控制方法。

糖精钠和硫酸铈对电解厚镍始极片性能的影响

糖精钠和硫酸铈对电解厚镍始极片性能的影响

糖精钠和硫酸铈对电解厚镍始极片性能的影响杨芬;王春霞;刘辉;彭雄宇【摘要】采用X-射线衍射和电化学测量法研究糖精钠和硫酸铈两种添加剂对电镀镍始极片的晶面取向、晶粒大小以及耐蚀性的影响.结果表明,在镀镍溶液中加入糖精钠或硫酸铈对镀层晶面取向、晶粒大小均有影响,晶面取向都呈现(200)择优,且晶粒都更细小.镀层的极化曲线显示糖精钠和硫酸铈都能使其自腐蚀电位更负,而对其腐蚀速率都有减缓作用,厚镍始极片作为电镀阳极时有利于电极的均匀溶解.【期刊名称】《电镀与精饰》【年(卷),期】2016(038)010【总页数】4页(P6-9)【关键词】糖精钠;硫酸铈;始极片;晶面取向;晶粒【作者】杨芬;王春霞;刘辉;彭雄宇【作者单位】南昌航空大学材料科学与工程学院,江西南昌330063;南昌航空大学材料科学与工程学院,江西南昌330063;南昌航空大学材料科学与工程学院,江西南昌330063;南昌航空大学材料科学与工程学院,江西南昌330063【正文语种】中文【中图分类】TQ153.12镍是一种略带黄色的磁性过渡金属,在全球有色金属中,镍的消费量仅次于铜、铝、铅及锌,居有色金属第5位。

因此,镍被视为重要战略物资,一直为各国所重视,其中电解厚镍主要应用于电镀、合金及冶炼等行业,作为电镀阳极时,要求其具有良好的溶解性能。

电解厚镍是通过电解的方法在始极片上沉积12~16cm的镍层,而始极片也是通过电解的方法在导电基底的表面上沉积一层具有所需形态和性能的金属沉积层,通过物理剥离获取镍层。

始极片作为电解厚镍的阴极,要求其具有良好的溶解性和表面均匀性。

其性能直接影响到后续电解厚镍的质量,在整个电解厚镍中始极片的制作起着至关重要的作用。

本工作重点研究了糖精钠和硫酸铈两种添加剂对电解厚镍始极片性能的影响,以期改善始极片的晶粒度和溶解性[1]。

1.1 材料阴极采用TA2钛板作为基体,试样尺寸为65mm×100mm×1mm,镀覆面积为0.5dm2,余面用绝缘胶布密封,阳极用镍板。

液体核磁共振内标

液体核磁共振内标

液体核磁共振内标液体核磁共振(Liquid-state nuclear magnetic resonance,简称LS-NMR)是一种重要的分析技术,在化学、生物、医药等领域得到广泛应用。

内标是LS-NMR中的重要概念,它在分析样品中起到定量和定性分析的作用。

本文将从内标的定义、内标的优势、内标的选择以及内标的应用等方面进行探讨。

我们来了解一下内标的概念。

内标是指在分析过程中所使用的参照物质,其化学性质与待测物相近,且在NMR谱图中有明确的信号,能够作为样品中各组分的定量和定性分析的参照。

内标的选择应该满足以下几个条件:与待测物相似的化学性质、在NMR谱图上有清晰的峰、不会干扰待测物的峰、易于操作和购买。

内标在LS-NMR中具有很多优势。

首先,内标可以用来消除仪器和样品之间的误差,提高分析的准确性。

其次,内标可以用来校正谱图的强度,使得不同样品之间的比较更加准确。

此外,内标还可以用来确定待测物的浓度,从而实现定量分析。

在LS-NMR实验中,选择合适的内标非常重要。

一般来说,内标应当与待测物具有相似的化学性质,这样可以保证内标和待测物在实验条件下的响应相近。

同时,内标的信号应当在NMR谱图上有明确的峰,便于分析和定量。

此外,内标的选择还要考虑其对待测物的峰的干扰程度,尽量选择不会与待测物产生重叠的峰。

最后,内标的操作和购买也需要考虑成本和便利性的因素。

内标在LS-NMR中有着广泛的应用。

首先,在定量分析中,内标可以用来确定待测物的浓度,通过内标的峰面积与待测物的峰面积之比,可以得到待测物的浓度。

其次,在定性分析中,内标可以用来判断样品中是否存在待测物。

通过观察内标的峰是否出现,可以判断样品中是否存在待测物。

此外,内标还可以用来研究化学反应的动力学和机理,通过观察内标的峰的变化,可以了解化学反应的过程和速率。

另外,内标还可以用来检测样品的纯度,通过观察内标的峰的强度和形状,可以评估样品的纯度。

总结起来,液体核磁共振内标在LS-NMR分析中具有重要的作用。

核磁录井溶液配制标准

核磁录井溶液配制标准

核磁录井溶液配制标准一、溶液配制概述核磁录井溶液配制标准是用于核磁共振(NMR)录井作业中的一套规范,旨在确保现场工作人员能够正确、有效地配制和储存核磁录井溶液,从而保证录井结果的准确性和可重复性。

本标准主要包括溶液配制概述、配制前的准备、溶剂选择及用量、溶质选择及用量、溶液配制步骤、质量控制等方面。

二、配制前的准备在配制核磁录井溶液前,需做好以下准备工作:1.确认所需的溶质和溶剂,以及所需的用量。

2.准备清洁的容器和工具,如量筒、搅拌器等。

3.检查实验室内的水、电和通风等设施是否正常运转。

4.确保所需试剂的质量和纯度符合要求。

如有需要,可进行预实验以确定试剂的质量。

三、溶剂选择及用量在核磁录井中,常用的溶剂包括水、甲醇、乙醇等。

选择合适的溶剂和用量需根据具体的实验条件和要求进行选择。

一般情况下,溶剂的用量需根据溶质的溶解度和实验所需的浓度进行确定。

四、溶质选择及用量在核磁录井中,常用的溶质包括各种有机和无机化合物。

选择合适的溶质和用量需根据实验的目的和要求进行选择。

在确定溶质用量时,需考虑实验所需的浓度、溶质的溶解度以及与其他试剂的相互作用等因素。

五、溶液配制步骤1.将所需的溶剂倒入准备好的容器中,根据实验要求加入适量的溶质。

2.用搅拌器搅拌溶液,确保溶质充分溶解。

3.如果需要,可以进行过滤或离心处理,以去除杂质或悬浮物。

4.将配制好的溶液转移至洁净的容器中,贴上标签并记录相关信息,如溶剂种类、溶质名称和浓度等。

5.根据需要,可以进行分装或储存。

六、质量控制为确保核磁录井溶液的质量和稳定性,建议采取以下质量控制措施:1.在配制过程中,应遵循清洁卫生原则,确保无污染或杂质混入。

2.在储存过程中,应定期检查溶液的颜色、澄清度、pH值等指标,以及观察是否有沉淀、变质等现象出现。

如有异常,应及时处理或报废。

3.在使用过程中,应遵循先配先用的原则,确保溶液的新鲜度和质量。

同时,应避免交叉污染和不同批次溶液的混用。

电解法处理电镀含镍浓缩废液的试验研究

电解法处理电镀含镍浓缩废液的试验研究

电解法处理电镀含镍浓缩废液的试验研究熊正为;陈齐玮;王劲松;张炜铭;虢清伟;朱雷【摘要】以电解法处理含镍浓缩液并回收镍,考察了电流强度、镍离子浓度、温度、pH和缓冲溶液对镍回收效果的影响.结果显示,以钌铱涂层钛板为阳极,在极距为20 mm、电流15A、温度50℃、镍离子质量浓度为20 g/L并通气搅拌的条件下,镍回收率最高达到85.1%,相应的电流效率为51.8%.正交试验结果表明,镍回收率影响因素的大小顺序是电流>镍离子浓度>pH>温度.%The concentrated nickel-containing solution has been treated by electrolytic method,and the nickel recovered.The influences of current intensity,concentration of nickelions,temperature,initial pH and buffer solution on the recovery of nickelare investigated.The results show that under the following conditions:using Ru-Ir coated titanium plate as anode,plate distance 20 mm,electric current 15 A,temperature 50 ℃,the initial mass concentration of nickel ions 20g/L,and by aeration and agitation,the nickel recovery rate can be as high as 85.1%,and the corresponding current efficiency is 51.8%.The orthogonal experiments show that the sequence of influential factors on recovery rate is electric current > concentration of nickel ion > pH > temperature.【期刊名称】《工业水处理》【年(卷),期】2017(037)008【总页数】5页(P70-73,104)【关键词】电镀废水;镍;电解法;回收【作者】熊正为;陈齐玮;王劲松;张炜铭;虢清伟;朱雷【作者单位】南华大学土木工程学院,湖南衡阳421001;南华大学土木工程学院,湖南衡阳421001;南华大学土木工程学院,湖南衡阳421001;南京大学环境学院,江苏南京210046;环境保护部华南环境科学研究所,广东广州510655;湖南大学土木工程学院,湖南长沙410000【正文语种】中文【中图分类】X703目前国内外对电镀含镍废水的处理主要采用化学沉淀、离子交换、吸附、生物和电化学等方法〔1〕。

定量核磁方法

定量核磁方法

与其他光谱方法相同,NMR定量分析是通过比较不同的吸收峰强度实现的。

在进行NMR定量分析时,对于确定的核(如质子),其信号强度与产生该信号的核(如质子)的数目成正比,而与核的化学性质无关,故一般只要对该化合物中某一基团上质子引起的峰面积进行比较,即可求出其绝对含量。

当分析混合物时,利用内标法或相对比较法分析混合物中某一化合物时,无需该化合物的纯品作为对照标品。

内标法只要找一合适的内标物进行比较就可求出其绝对含量;而采用各个组分的各自指定基团上质子产生的吸收峰强度进行相对比较,便可求得其相对含量。

因此,在测量峰面积或峰高以前,必需了解化合物的各组成基团上质子所产生共振峰的相对位置,也就是它们的化学位移值,并选择一个合适的峰作为测量峰。

USP(24)采用的NMR定量分析方法主要有两种:1、内标法(绝对测量法):此法为NMR分析最常用的方法,它与GC内标法相似,在样品溶液中,直接加入一定量的内标物后,进行NMR光谱测定。

将样品指定基团上的质子引起的共振峰面积进行比较,当样品与内标均经精密称重时,则样品的绝对重量(Wx)可由下式求得:Wx=Ws×(Ax/As)×(E/Es)式中,Ws为内标物重量;Ax为样品峰面积;As为内标物峰面积;E为样品在该化学位移处的质子当量,即E=样品分子量/产生该共振峰的基团中的质子数;Es为内标物在该化学位移处的质子当量,即Es=内标物分子量/产生该共振峰的基团中的质子数。

若样品称重为W,则百分含量=Wx/W×100%对内标物的要求:一个较好的内标物至少应具备以下性质:①不应与样品中任何组分相互作用。

②最好能产生单一的共振峰。

在扫描的磁场区域中,参比共振峰与样品峰的位置至少有30Hz间隔。

③应能溶于分析溶剂中。

④应有尽可能小的质子当量(Es)。

NMR定量分析常用的内标物有:六甲基三硅氧烷(0.15ppm);三噁烷(5.10ppm);吡嗪(8.51ppm);苯或苯甲酸苄酯(5.3ppm处,苄基质子的吸收峰),适用于非芳香化合物;马来酸适用于非链烯氢化合物。

核磁共振研究电解液溶剂化结构

核磁共振研究电解液溶剂化结构

核磁共振研究电解液溶剂化结构核磁共振(Nuclear Magnetic Resonance,NMR)是一种重要的研究电解液溶剂化结构的技术。

它利用原子核的磁共振现象来研究溶液中溶剂和溶质分子的构型、动力学和相互作用。

电解液是由溶剂和溶质分子组成的溶液体系。

溶剂是电解液中的主要组分,它参与溶液的溶解和溶质分子的溶解过程。

溶剂的溶剂化行为对电解液的性质有重要影响。

核磁共振技术可以通过观测溶剂分子的运动和相互作用来揭示溶剂化结构。

在核磁共振实验中,溶液样品被置于强磁场中,溶剂中的原子核受到外加磁场的影响发生共振。

溶剂中的原子核可以通过吸收和发射电磁波的方式来反应它们的环境。

通过测量溶剂中吸收和发射的电磁波的频率和强度,可以得到关于溶剂分子的信息。

核磁共振可以提供关于溶剂分子的结构、动力学和相互作用的信息。

首先,通过核磁共振技术可以确定溶剂分子的位置和构型。

溶剂分子的原子核位置对电解液的溶解过程和离子输运过程有重要影响。

核磁共振可以揭示溶剂分子在溶液中的空间排列和定位信息,从而帮助我们理解溶剂的溶剂化行为。

其次,核磁共振可以研究溶剂分子的动力学性质。

溶剂分子的运动对于溶液的性质和反应过程具有重要影响。

通过核磁共振技术,可以研究溶剂分子的转动、振动和扭转等运动,以及溶液中溶质分子和溶剂分子之间的相互作用。

这对于理解电解液的溶质溶剂相互作用机制和动力学过程非常重要。

最后,核磁共振可以研究溶剂分子之间和溶剂分子与溶质分子之间的相互作用。

溶剂化结构对于溶液的性质和反应过程具有重要影响。

通过核磁共振技术可以研究溶剂分子之间的相互作用,如氢键、范德华力和离子-溶剂相互作用等。

这些相互作用对于解释电解液的溶解和离子输运过程具有重要作用。

总之,核磁共振是一种重要的研究电解液溶剂化结构的技术。

通过核磁共振技术,可以揭示溶剂分子的位置、构型、动力学和相互作用等信息,帮助我们理解电解液的性质和行为。

这对于开发新型电解液和改进电化学能源储存和转化设备具有重要意义。

《2024年镀液成分和添加剂对电沉积Ni-W-P合金镀层影响的研究》范文

《2024年镀液成分和添加剂对电沉积Ni-W-P合金镀层影响的研究》范文

《镀液成分和添加剂对电沉积Ni-W-P合金镀层影响的研究》篇一一、引言随着现代工业的快速发展,电沉积技术已成为制造高质量合金镀层的重要手段。

Ni-W-P合金镀层因其优异的物理和化学性能,如高硬度、良好的耐腐蚀性和耐磨性,被广泛应用于机械、电子和化工等领域。

电沉积过程中,镀液成分和添加剂的种类及浓度对镀层性能具有重要影响。

本文旨在研究镀液成分和添加剂对电沉积Ni-W-P合金镀层的影响,为优化电沉积工艺提供理论依据。

二、实验方法1. 材料与试剂实验所用材料包括镍(Ni)、钨(W)和磷(P)的盐类,以及其他添加剂。

所有试剂均为分析纯,使用前未进一步处理。

2. 电沉积过程采用电化学工作站进行电沉积实验。

通过改变镀液成分和添加剂的种类及浓度,制备不同条件的Ni-W-P合金镀层。

3. 性能测试采用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、硬度计和盐雾试验机等设备,对镀层的形貌、结构、硬度和耐腐蚀性等性能进行测试。

三、结果与讨论1. 镀液成分的影响(1)主盐浓度:当主盐浓度增加时,镀层中Ni、W和P的含量也相应增加。

这是因为高浓度的主盐有利于更多的金属离子还原为金属原子并沉积在基体上。

但过高的主盐浓度可能导致镀层结晶不均匀,降低其性能。

(2)pH值:镀液的pH值对镀层的结晶形态和化学组成具有重要影响。

当pH值较低时,有利于W和P的共沉积,使镀层中W和P的含量增加;而当pH值较高时,镀层中Ni的含量相对较高。

(3)温度:温度对电沉积过程的反应速率具有显著影响。

随着温度的升高,金属离子的还原速率加快,有利于提高镀层的沉积速率。

但过高的温度可能导致镀层结晶粗大,降低其性能。

2. 添加剂的影响(1)表面活性剂:表面活性剂可以改善镀液的润湿性和分散性,使镀层更加均匀致密。

此外,表面活性剂还可以降低镀层的内应力,提高其耐腐蚀性。

(2)络合剂:络合剂可以与金属离子形成络合物,降低金属离子的还原电位,从而改变金属在镀层中的分布。

定量核磁共振

定量核磁共振

定量核磁共振定量核磁共振(Quantitative Nuclear Magnetic Resonance,简称qNMR)是一种基于核磁共振技术的定量分析方法。

它通过测量样品中特定核磁共振峰的积分强度,可以确定样品中目标物质的含量。

qNMR 在化学、药学、食品科学等领域得到广泛应用,具有分析快速、准确可靠等优点。

核磁共振技术是通过对样品中原子核的核磁共振现象进行探测和分析的一种方法。

在核磁共振过程中,样品置于强磁场中,并施加特定的射频脉冲以激发核自旋系统。

当核自旋系统恢复到平衡态时,会释放出射频信号,通过对这些信号的检测和分析,可以获得样品中不同核自旋的信息。

在定量核磁共振中,我们主要关注样品中目标物质的含量。

为了进行定量分析,首先需要选择一个合适的内标物质。

内标物质是在样品中添加的已知浓度的化合物,其核磁共振峰的积分强度与其浓度成正比。

通过内标物质的核磁共振峰积分强度与目标物质的核磁共振峰积分强度之比,可以计算出目标物质的含量。

为了保证定量核磁共振的准确性,需要进行一系列的校正和优化。

首先,需要校准核磁共振仪的仪器响应,通常使用已知浓度的内标物质进行校准。

其次,样品的制备也需要严格控制,包括溶液的配制、样品的装填和封装等。

同时,还需要选择合适的核磁共振参数,如脉冲宽度、回波延迟时间等,以获得清晰的核磁共振谱图。

定量核磁共振的原理基于核磁共振信号的积分强度与核自旋数的比例关系。

在核磁共振谱图中,不同核自旋会产生不同的峰,每个峰的积分强度与其核自旋数成正比。

通过测量目标物质和内标物质的核磁共振峰的积分强度,可以得到它们之间的比例关系。

在已知内标物质的浓度的情况下,可以计算出目标物质的浓度。

定量核磁共振具有许多优点。

首先,它是一种非破坏性的分析方法,样品在测试过程中不会受到破坏。

其次,它具有高度的选择性和灵敏度,可以对样品中不同核自旋的信号进行分离和检测。

此外,定量核磁共振还可以同时测定多个目标物质的含量,具有高通量的特点。

电镀液添加剂的定性分析

电镀液添加剂的定性分析

电镀液添加剂的定性分析作者:刘志江戴达勇刘友桃吴洁来源:《当代化工》2015年第06期摘要:对未知成分的电镀液中的添加剂进行了定性分析。

结合红外谱图分析以及液相色谱—质谱联用仪对镀液中添加剂进行定性分析,分析得出了添加剂中的可能组成物质分别为光亮剂主要成分为1,4—丁炔二醇、环氧乙烷、噻吩—2—磺酸,稳定剂中的可能组成物质为苯并三氮唑、硫脲。

准确的证明了糖精结构的存在。

实验结果满意,对实际电镀液添加剂分析有一定的借鉴意义。

关键词:电镀液;添加剂;定性分析中图分类号:O 657.3 文献标识码: A 文章编号: 1671-0460(2015)06-1237-03Qualitative Analysis of Electroplating Liquid AdditivesLIU Zhi-Jiang1, DAI Da-Yong2, LIU You-Tao3, WU Jie3(1. College of Environmental and Chemical Engineering, Shenyang Ligong University,Liaoning Shenyang 110159, China;2. Qinghai Entry-Exit Inspection and Quarantine Bureau, Qingha Xining 810000, China;3. Institute of Chemistry and Chemical Engineering, Central South University, Hunan Changsha 410000, China)Abstract: Qualitative analysis of additives in electroplating liquid with unknow composition was carried out by infrared spectra analysis and liquid chromatography-mass spectrometry. The analysis results show that the main component of brightener is but-2-yne-1,4-diol, oxirane,thiophene-2- sulfonic acid; and the stabilizer composition material is 1H-benzotriazole, thiourea. The existence of saccharin structure has been proved. Experimental results are satisfactory. The paper has certain reference significance for actual electroplating liquid additive analysis.Key word: Electroplating liquid; Additive; Qualitative analysis电镀液中的有机添加剂主要来源于电镀添加剂中间体,中间体是一种可以直接用来配制电镀添加剂的化工原材料,均以有机物为主。

镍电解液中柠檬酸钠的测定

镍电解液中柠檬酸钠的测定
关键词 光化学反应 分光光度法 柠檬酸钠 镍电解液
1 前言
柠檬酸及其盐广泛存在在于各种植物和动物组 织中, 在水果疏菜中的含量较高。作为添加剂广泛用 于各种食品中, 在无氰电镀业中, 它是光亮电镀业的 添加剂。我院在镍铁合金箔的工艺试验中, 柠檬酸钠 是镍电解液中的一种重要添加剂。
食品卫生业中, 主要用气相色谱和生物酶法测 定柠檬酸钠, 但其分析方法繁杂。 近年来, 王占玲等 采用光化学动力法测定汽水中柠檬酸[1], 我们对该 方法进行验证时发现, 在镍电解液中, 镍、铁对测定 干扰严重, 但光化学动力法测定柠檬酸简便, 灵敏度 高, 线性范围达 0~ 12 m g L。
·96·
有色冶炼
第 28 卷增刊
功能的充分发挥, 以及人对作业环境、机械设备所固 有的行为意识上的刺激性能相适应的健康身心功 能, 从容不迫地把工作做好。
由于历史的原因和现实的国情, 一般而言, 当前 我国矿山职工安全常识和安全意识的深度、广度, 与 矿山安全生产的客观要求, 尚有不小的差距, 集中表 现为“三 违”现 象 多、肇 事 机 率 大, 且 伤 亡 事 故 中 80% 的遇难者是青年工人。事实说明, 我国采矿业职 工自主保安文化素质的提高, 任重而道远。
sep a ra tion and p u rifica tion of R h and Ir. Key words Irid ium R hod ium ch lo ride so lu tion so lven t ex traction Go ld Pa llad ium
本方法适用于镍电解液中 0105 g L 以上的柠 檬酸钠, 本法相对标准偏差为 7195% , 已应用于生 产实践。
2 试验部分
211 仪器 ( 1) 7230 型分光光度计; (2) 光化学反应箱 (自

丁二酮肟分光光度法测镍的原理

丁二酮肟分光光度法测镍的原理

丁二酮肟分光光度法测镍的原理
丁二酮肟分光光度法是一种经常被用于测定金属镍的化学分析方法。

它通过丁二酮、肟基剂以及分子吸收原理来检测金属镍的含量。

一般情况,待测样品(溶液或悬浮液)中添加丁二酮,调节pH值至2,待样品中的金属镍和酴肟基剂酴发生反应,生成一种叫酴镍膦酸盐复合物。

此复合物在指定波长约为400 nm时具有最大吸收峰,根据最大吸收峰的吸收强度和浓度大小而受到影响,从而可以准确测量样品中金属镍的含量。

在实际工作中,一种特殊的分光光度仪将被用于测量样品吸光度,它能够有效避免由物体表面反射导致的误差,准确测量样品中金属镍的含量。

该仪器具有多次测量功能,因此可以多次测量一种样品,以改善准确性并避免重复测量的耗时。

除此之外,丁二酮肟分光光度法也具有其它一些优点。

相比其他的方法,该方法简便快捷,可以迅速准确的测定金属镍的含量;而且还简化了对高浓度样品的测定,大大地提高了分析的效率。

综上所述,丁二酮肟分光光度法是一种快速准确的金属镍测定方法,具有灵敏度高、所需试剂少、结果准确、操作便捷等诸多特点,因而被广泛应用于金属镍含量的测定中。

X射线荧光光谱法测定镍电解液中的镍、氯、硫酸根

X射线荧光光谱法测定镍电解液中的镍、氯、硫酸根

X射线荧光光谱法测定镍电解液中的镍、氯、硫酸根王纪华;刘晓丽;高龙;王琳;李婷【摘要】本文利用低功率X射线荧光分析技术(XRF)对电解镍溶液样品进行了研究,重点探讨了影响镍电解液中Ni2+、Cl-、SO42-同时测量的因素,优化了实验条件.实验表明,镍的质量浓度(ρ)在35~110 g/L、氯离子的质量浓度(ρ)在30~90 g/L、硫酸根离子的质量浓度(ρ)在55~160 g/L范围内,待测元素质量浓度与其荧光强度存在着良好的线性关系.将本方法用于镍电解液实际样品分析,测得结果与其它化学分析方法结果相符合,相对标准偏差(RSD,n=11)为0.3%~0.4%.【期刊名称】《冶金分析》【年(卷),期】2012(032)012【总页数】5页(P29-33)【关键词】镍电解液;镍;氯;硫酸根离子;X射线荧光光谱法【作者】王纪华;刘晓丽;高龙;王琳;李婷【作者单位】金川集团有限公司检测中心,甘肃金昌737100;金川集团有限公司检测中心,甘肃金昌737100;金川集团有限公司检测中心,甘肃金昌737100;金川集团有限公司检测中心,甘肃金昌737100;金川集团有限公司检测中心,甘肃金昌737100【正文语种】中文【中图分类】O657.31镍电解液中Ni 2+、Cl-、SO4 2-含量的控制,是保证电解镍产品质量稳定的一个重要前提,因而对其进行快速、准确的分析具有积极的意义。

目前,镍电解液中 Ni 2+、Cl-、SO4 2-的分析,分别采用了镍-EDTA容量法、氯根-硝酸银容量法、硫酸根-醋酸铅间接EDTA容量法这三种化学分析方法,虽然其优良的准确度在多年的电解镍生产中得到了验证,但存在着分析流程长、化学试剂消耗的品种多、工作效率不高等缺点(约要60 min)。

随着生产系统的不断扩能,现有方法已不能完全满足快速分析的时限要求,同时在化学分析过程中经常使用氯化汞、硝酸铅、氨水、乙酸等重金属盐类和挥发性物质,不仅对员工的身体健康造成危害,还存在着对环境造成污染等弊端。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ORIGINAL PAPERQuantitative nuclear magnetic resonance for additives determination in an electrolytic nickel bathMiren Ostra &Carlos Ubide &Maider VidalReceived:14October 2010/Revised:18November 2010/Accepted:29November 2010/Published online:17December 2010#Springer-Verlag 2010Abstract The use of proton nuclear magnetic resonance (1H-NMR)for the quantitation of additives in a commercial electrolytic nickel bath (Supreme Plus Brilliant,Atotech formulation)is reported.A simple and quick method is described that needs only the separation of nickel ions by precipitation with NaOH.The four additives in the bath (A-5(2X),leveler;Supreme Plus Brightener (SPB);SA-1,leveler;NPA,wetting agent;all of them are commercial names from Atotech)can be quantified,whereas no other analytical methods have been found in the literature for SA-1and NPA.Two calibration methods have been tried:integration of NMR signals with the use of a proper internal standard and partial least squares regression applied to the characteristic NMR peaks.The multivariate method was preferred because of accuracy and precision.Multivariate limits of detection of about 4mL L −1A-5(2X),0.4mL L −1SPB,0.2mL L −1SA-1and 0.6mL L −1NPA were found.The dynamic ranges are suitable to follow the concentration of additives in the bath along electrodeposition.1H-NMR spectra provide evidence for SPB and SA-1consumption (A-5(2X)and NPA keep unchanged along the process)and the growth of some products from SA-1degradation can be followed.The method can,probably,be extended to other electrolytic nickel baths.Keywords qNMR .Ni electroplating .Additives determination .Process analysisIntroductionNuclear magnetic resonance (NMR)is a versatile technique since it can offer a high number of data of several molecules in a single spectrum.No other spectroscopic method contains equally detailed structural and dynamic information about chemical systems under investigation [1].The availability of high field instruments in conjunction with improvements in probe design and electronic perfor-mance have considerable increased sensitivity,resolution,precision and applicability of quantitative NMR (qNMR)determinations from the beginning of the nineties [2].qNMR has gained growing interest ever since and it has been successfully applied in numerous fields.In electrolytic baths,additives are of prime relevance,but the additive control has frequently been accomplished in an empirical way,due to the lack of rapid and accurate analytical methods for every additive [3].In most cases,the experience of the operator decides what agents and in which concentration should be added,sometimes based on distillation and colorimetric,spectrophotometric or chro-matographic monitoring [4].V oltammetry has also been used [5].However,the automatic addition,based on the time of use of the bath (ampere-hour),is frequently preferred [4,6].In general,quantitation usually requires a specific method and a standard as reference.The use of qNMR also requires the choice of an adequate signal for every analyte,and the integration respect to an internal standard is frequently needed.The choice of the signals for both the analyte and the standard is critical and a wrong decision can strongly affect results,especially in the case of crowded spectra with impurity signals overlapping resonance.One of the main limitations of qNMR is probably the need ofM.Ostra :C.Ubide (*):M.VidalDepartamento de Química Aplicada,Facultad de Química,Universidad del País Vasco,Apdo.1072,San Sebastián 20080,Spain e-mail:carlos.ubide@ehu.esAnal Bioanal Chem (2011)399:1907–1915DOI 10.1007/s00216-010-4573-zhuman intervention during processing operations that closely influence integral values.Several software com-mands are available in order to reduce at minimum the subjective decisions of the operator,but they have demonstrated to perform worse than a manual processing made by a skilled operator[7].The increasing apparition of powerful computers and software has led to the increase of chemometric applica-tions for NMR signals,as far as a large amount of data is produced and peaks can be strongly overlapped[1].Thus, several references applying chemometric tools to NMR spectra of oils[8],tobaccos[9],alcohol mixtures[1]or biological samples[10]can be found,and a paper comparing the quantitation results obtained by partial least squares(PLS)regression and by integration of NMR peak areas is available[7].PLS is the multivariate quantitation algorithm most frequently used;it improves accuracy and allows the determination of components with overlapped signals,but when the number of calibration samples is short,the algorithm classical least squares(CLS)may outperform PLS,specially when non-linearities are absent.No previous papers dealing with NMR in nickel electro-plating baths have been found in the literature,but the organic composition of additives makes NMR a suitable technique for quantitation.The problem arises because plating baths usually contain a big amount of inorganic salts and,in this case,a large amount of nickel ions that are paramagnetic(they have unpaired electrons)and,so,they relax so quickly that the typical signals of other compounds in the NMR spectrum are precluded.In the present paper,a commercial nickel bath is used and a method for nickel elimination is reported.Reproducible NMR spectra can be obtained and the four additives present in the bath(A-5 (2X),Supreme Plus Brightener(SPB),SA-1and NPA, commercial names)can be determined through their NMR signals.Univariate calibration procedures as well as PLS are applied and compared.There are some precedents on the use of UV-chemometric procedures applied to additives in electrolytic zinc and nickel baths[11–14];because of that UV–vis spectrophotometry is applied as a reference technique for those additives showing UV–vis absorption; namely,A-5(2X)and SPB.ExperimentalReagentsA volume of1.8L of a commercial nickel bath(Supreme Plus Brilliant,Atotech®formulation)was used with the following composition:NiSO4·6H2O(250g L−1), NiCl2·6H2O(50gL−1)and H3BO3(45gL−1)as non-additive solution;SA-1(2.6ml L−1),A-5(2X)(20ml L−1),NPA(2ml L−1)and SPB(1ml L−1)as additives.The chemical composition of the additives is unknown.The final pH was4.0and it was maintained constant along the process with the addition of either NiCO3or H2SO4as required.Non-additive chemicals were of analytical reagent grade(Panreac or Fluka)and used without further purifi-cation.Additives were obtained from Atotech and used as received.Doubly distilled water was used throughout.An amount of0.00150g of3-(trimethylsilyl)-2,2,3,3-tetradeu-teroprionic acid sodium salt(TSP)dissolved in5mL D2O was used as a reference forδ=0.00ppm.Succinic acid (20gL−1)as an internal standard was also prepared.HCl and NaOH at several concentrations were also used.ApparatusThe following instrumentation was used:an electrodeposi-tion vessel with a water jacket for the nickel bath;a Crison 501pH meter;a Haake water bath thermostat controlled by an external probe dipped into the nickel bath and a rectifier (±20A/30V)from HQ Power(Nedis BV,model no.PS 3020)(Fig.1).A Bruker Avance-500spectrometer was used to record500mHz1H-NMR spectra at a temperature of30°C.An amount of128scans of64K data points was acquired every time with a spectral width of8012Hz (16ppm),acquisition time of2.2s.,recycle delay of9.0s, flip angle of90ºand a constant gain of11,585.The solventFig.1Manifold for process analysis of nickel electroplating.a, Vessel for electrodepostion;b,anodes;c,cathode;d,temperature probe;e,magnetic stirrer;f,current source;g,water bath thermostat; h,pH meter1908M.Ostra et al.signal suppression was achieved using the watergate pulse sequence [15].The data were acquired at a rate of 24min per sample.Micropipettes brand or Eppendorf were used throughout.Sample preparation and NMR spectra acquisition A volume of 19.25μL of succinic acid solution (internal standard)was added to 2.5mL of the nickel bath solution to be analysed in a conical test tube.Then,3.5mL of NaOH 10M were added in order to remove Ni(II)from the solution through the formation of nickel hydroxide precip-itate.The process was assisted by a glass stick and a combination of heating and stirring in an ultrasonic bath during 5min at 65°C.After some cooling,the solution was centrifuged during 5min at 4,000rpm.An amount of 1.0mL of concentrated HCl was added to a volume of 2.5mL of the supernatant solution and the pH was adjusted approximately to 4.0(a pH range between 3.95and 4.05was considered acceptable)with a diluted solution of HCl.The solution was taken to 10mL in a volumetric flask with HCl 10−4M (pH=4.00).A volume of 500μL of this final solution was placed in a 5mm NMR tube and 50μL of the D 2O-TSP solution was added.D 2O served as the field frequency lock.The final concentrations were: 4.1×10−3g L −1TSP and 9%D 2O.The whole process entails a dilution of 10.6-fold from the original bath concentration.A sketch of the process is depicted in Scheme 1.CalibrationBath solutions (no current through)were prepared main-taining the non-additive bath components at their standard concentrations.The concentration level of additives was fixed among the following:5.0,10,15,20and 25mL/L for A-5(2X);0.10,0.25,0.50,0.75,1.00and 1.25mL/L for SPB;0.5,1.3,2.5and 3.0mL/L for SA-1;and 1.0,1.5,2.0and 2.5mL/L for NPA.Initially,the whole set of samples shaped a tetrahedron that,afterwards,was enlarged to cover some poorly represented concentrations.A total amount of 82samples was used,including 15replicates.The calibration set was formed by 51samples and the validation set by 31samples.The distribution of samples in the two sets was random,except the tetrahedron extremes that were included in the calibration set.Replicates were always kept in the same cross-validation segment.To avoid overesti-mation,several additive concentrations could be varied at the same time.Nickel electrodepositionNickel electrodeposits were obtained galvanostatically in a glass cylindrical vessel (10.5cm inner diameter,21cm height)of approximately 2L of capacity (Fig.1)with a lid that minimized heat and solvent losses.The electrodeposi-tion was carried out on both sides of 16.5×3cm commer-cial steel sheets at a temperature of 65°C with magnetic stirring under 4Adm −2current density for 15min.Prior to each electrodeposition,the steel sample was cleaned with soap and water,then with calcium carbonate,and finally etched with hydrochloric acid/Beizentfetter®solution for 30s and rinsed with water.Two 20×3A-cm Ni pieces were used as anodes.An amount of 53steel sheets were nickel plated along the bath life.After that,the bath was considered to have run out.Additive determination in an electrolytic nickel bathV olumes of 2.5mL were regularly extracted from the bath during electrodeposition for NMR analysis (see “Sample preparation and NMR spectra acquisition ”),until the nickel bath was considered to have run out.A total of 20aliquots were measured along the whole process (one aliquot every three steel sheets approximately).Software and data processingPreliminary data processing was carried out with Bruker software,TOPSPIN 1.3.The free induction decay signals were Fourier transformed (1.0-Hz line broadening),the spectra were phased and the baseline corrected through data analysis with the MestRe-C 4.8.6.0software package2.5 mL nickel bath + 19.25 µL inner standard (succinic acid)3.5 mL NaOH + Heat (5min, 65ºC) + Stirring (sonication)Ni precipitate (discard) solutiontake 2.5 mL1mL. conc. HCl + diluted HCl10.00 mL (pH 4.0)take 500 µLNMR measurement+ 50 µL D 2O·TSPScheme 1NMR measurementqNMR for additives determination in an electrolytic nickel bath 1909(Santiago de Compostela University,Spain).The resulting spectra were aligned by right or left shifting,as necessary,using the TSP signal as a reference and the i coshift algorithm (Matlab®7.4.0environment).The Unscrambler®v.9.7(Camo A/S,Trondheim,Norway,2007)software package was used for PLS application.To test the prediction capability of the developed models,the statistic relative error (RE)was used:RE ¼100ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP m i ¼1^y i Ày i ðÞ2P m i ¼1y 2iv u u u u u twhere ^y i is the estimated analyte concentration in the sample i and y i is the analyte concentration in the same sample.RE can be applied either to the calibration (RE cal )or the prediction (RE val )sets.The calibration and prediction (validation)sets were always defined before any data processing and remained unchanged along the whole work.The cross-validation procedure was used to assess the robustness of the constructed models.Choosing the optimum number of factors (LV s )to be used with the PLS model was made through a previously established method [16].That is,the lowest number of LV for which the cross-validation variance value does not differ signifi-cantly from the minimum,according to an F test with probability P =0.25,was chosen.Results and discussion NMR spectraAll the additives in a nickel bath show NMR signal (Fig.2).A-5(2X)(peak 2)and NPA (11)show signals where no other bath component absorbs.SPB and SA-1show theindependent signals (1)and (3),respectively,but they bothalso show the signals (4)and (6),that correspond to the same species which is present in both additive preparations,so peaks (4)and (6)in Fig.2have not quantitative usefulness in this case.Signal (5)is for water,signal (8)is for the internal standard,succinic acid,and signal (12)is for the displacement reference,TSP (δ=0ppm).New peaks coming from the degradation products of additives appear as current passes through;they correspond to signals (7),(9)and (10).Linear calibrationUnivariate (linear)calibrations with NMR signals make use of peak areas,but in the present case the sample is subject to a previous precipitation and separation of nickel;this makes necessary the use of an internal standard to account for any possible uncontrolled loss of sample.The choice of an internal standard for quantitation was carefully accom-plished,taking into account that several assumptions must be fulfilled.Thus,it was necessary to find a compound with a clean and simple signal in the NMR spectra at pH 4and not overlapping with any additive signal.It should be water-soluble and not excessively expensive because the internal standard must be added at the beginning of the procedure and bath aliquots were diluted 10.6-fold in the NMR tubes after the whole pre-treatment,resulting in a high internal standard consumption.The high price of TSP was the main reason for discarding it as internal standard,but it was still used as a displacement reference.Succinic acid demonstrated to be a suitable and reliable internal standard.The individual spectra were manually integrated for each analyte.Thus,in each spectrum,the area of succinic acid was taken to 1.000and the area of each additive peak was calculated accordingly.The quantitation by integration of signals needs to fix the integration limits with good precision to avoid large errors due to chemical-112345678910δ (ppm)Fig.2Typical NMR spectrum for a nickel bath sample after some current has passedthrough.New peaks are signals appearing along the electrode-postion process.1,SPB;2,A-5(2X);3,SA-1;4,SA-1+SPB;5,water;6,SA-1+SPB;7,9and 10,new peaks appearing along the electrodeposition process;8,succinic acid (internal standard);11,NPA;12,TSP (δ=0)1910M.Ostra et al.shifts that can be due,for instance,to small pH variations as well as intermolecular interactions.Manual integration overcomes the most of errors.The calibration models for the four additives are shown in Table 1when succinic acid was used as internal standard.The calibration line for A-5(2X)provides a good regression (low errors),but those for the rest of additives do not;that is,the internal standard is efficient only for A-5(2X),showing that the complex procedure involved is not the only relevant source of error in the determination of SPB,SA-1and NPA.Crowded NMR spectra and low signals are probably responsible for the poor results obtained.The relative calibration and prediction errors and some other features of the applied univariate calibration method applied for the A-5(2X)determination are given in Table 2.The linear calibration models for the other additives were not considered further owing to the poor results they provided.The limit of detection for A-5(2X)was obtained according to the 3s criterion recommended by IUPAC [17].Independent studies of accuracy and precision for A-5(2X)determination are given in Table 3.Measurements were taken along 1week,1month after the calibration model was built.The results obtained agree with expect-ations derived from Table 2.Mean systematic errors were lower than 8%and the precision was always better than 7%,except in one case (5.0mL/L;Table 3).So,the linear calibration model with internal standard can be proposed as a good quantitation method for the determination of A-5(2X)in electrolytic nickel baths.PLS regressionSimilarly to linear calibration,peak misalignments can deteriorate the chemometric modelling [18,19];so,spectra were always aligned prior to the multivariate modelling.The alignment procedure was made with the i coshift (interval correlation shifting )programme,based on Corre-lation SHIFTing of Spectral Intervals.The programme demonstrated to be highly efficient in solving signal alignment problems in metabonomic NMR data analysis and it works faster than similar methods found in the literature [20].Unlike linear calibration,when multivariate methods are used,no need of normalization with internal standard is usually required because small errors in the amount ofsample taken can be modelled with some extra latent variable.First of all,the algorithm CLS was tried,but PLS always provided better results,probably because CLS is more prone to signal variations,interferences from the matrix,etc.and it was not considered further.Table 2summarizes the results obtained for the four additives when PLS was applied,including some characteristics of the calibration models,the relative prediction errors and some estimations of the limits of detection.The NMR variables used to build the data matrices depend on each analyte.Only those variables with observable signal for any specific analyte were used,in order to reduce the amount of no-correlated variance in data.Agreeing with some other precedents [21],the models based on selected regions of the NMR spectra provided better predicting ability and needed a lower number of latent variables.The signals for SPB,SA-1and NPA are very weak after the sample has been highly diluted with consequences in precision.The RE values were similar for the calibration and validation sets (Table 2)as would be expected,and most of errors keep under 10%,which represent much lower errors for SPB,SA-1and NPA than those found by using relative areas as analytical signal.However,the additive A-5(2X)can be equally predicted by areas integration,probably due to the large NMR signal.The limit of detection in multivariate calibration was calculated through two different methods:Found vs .added concentration plots [22]and the recently proposed multivariate residuals procedure [23];in any case,similar values for LOD were found regardless the calibration method used.Data for independent studies of accuracy and precision are given in Table 3.The determination of additives was made in the presence of variable amounts of the rest of additives,trying to reproduce possible stages along the bath live.In general,both systematic and random errors have values according to expected;they all keep under 10%in most of cases.That precision is enough to follow the working conditions of the nickel bath.As a whole,lower errors are obtained for the additive A-5(2X)regardless areas integration or PLS calibration is used.Evaluation of modelsThe univariate method does not need a high number of standards for calibration and it does not require anyAnalyte Peak number (Fig.2)a ±s mb ±s br s y/x A-5(2X)2a+2b+2c 0.510±0.0140.1±0.20.9800.6SPB 10.21±0.03−0.01±0.030.7810.03SA-130.18±0.030.06±0.070.7320.08NPA110.157±0.03−0.09±0.060.6620.05Table 1Calibration data for the general equation A analyte /A TSP =a ×C (mL L −1)+bs m standard error for slope,s b standard error for intercept,s y/x standard error for regression lineqNMR for additives determination in an electrolytic nickel bath 1911Analyte Added/mL L −1Found/mL L −1Error (%)RSD (%)(SPB,SA-1and NPA)A-5(2X)a5.0 5.48.014(1.25,2.6and 2.0)5.0 4.8−4.06.6(0.1,2.6and 2.0)15.015.9 6.0 6.6(0.75,2.6and 2.0)25.025.3 1.2 2.8(0.1,2.6and 2.0)25.025.6 2.4 3.0(1.25,2.6and 2.0)(SPB,SA-1and NPA)A-5(2X)b5.06.020 3.8(1.25,2.6and 2.0)5.0 5.510 2.1(0.1,2.6and 2.0)15.013.6−9.3 6.8(0.75,2.6and 2.0)25.021.4−14 1.7(0.1,2.6and 2.0)25.023.7−5.28.3(1.25,2.6and 2.0)(A-5(2X),SA-1and NPA)SPB b0.750.73−2.711(15.0,2.6and 2.0)1.25 1.09−13 2.5(5.0,2.6and 2.0)1.25 1.14−8.88.2(25.0,2.6and 2.0)(A-5(2X),SPB and NPA)SA-1b1.3 1.515 1.6(20.0,1.0and 1.5)3.02.8−6.7 1.7(20.0,1.0and 1.5)3.0 3.0− 3.0(20.0,1.0and 2.5)(A-5(2X),SPB and SA-1)NPA b1.5 1.6 6.78.1(20.0,1.0and 1.3)2.5 2.3−8.09.9(20.0,1.0and 0.1)2.52.1−1610(20.0,1.0and 1.3)Table 3Accuracy andprecision in the determination of additives in synthetic nickel baths by NMR,using both linear and PLS calibration models (Tables 1and 2)(seven replicates)The last column shows the con-centration of the rest of addi-tives.Concentrations are in millilitres of additive per litre batha Linear regresión bPLS regresiónTable 2Calibration models,relative prediction errors and some figures of merit,found for the determination of A-5(2X),SPB,SA-1and NPA AnalyteSetNo.of samplesNMR signal/ppmAnalytical signalRegressionRE (%)LOD/mL L −1IUPAC aFound vs added bMR cA-5(2X)Cal d 597.5–8.2Analyte area/Internal standard area Linear 6.8 3.5Val e 31 6.5A-5(2X)Cal d 597.5–8.2Spectral profile,mean centred dataPLS 2LV 8.254Val e 319.1SPB Cal d 408.85–8.95PLS 1LV 9.30.30.4Val e 2114SA-1Cal d 36 3.55–3.8+5.25–5.55+5.8–6.1+8.85–8.95PLS 3LV7.70.60.2Val e 229.6NPA Cal d 400.84–0.90PLS 2LV 120.80.6Val e259.5The value of LOD is given in millilitres of additive per litre batha IUPAC criterion for linear calibration was applied [17]b Found vs added plots were used [22]c The multivariate residual method was used [23]d Calibration samples eValidation samples1912M.Ostra et al.chemometric knowledge to build the calibration models.The need of an internal standard can be expected because electroplating baths are complex matrices with a number of compounds at very high concentrations and the experimen-tal procedure requires nickel separation by precipitation.Oddly enough,only the A-5(2X)determination with integrated areas clearly improves by the use of an internal standard,probably because some other relevant sources of error are also present for the rest of additives.On the other hand,PLS requires a larger amount of calibration samples;this can become an arduous task,as long as nickel elimination is strictly needed before NMR measurements;however,no internal standard is needed.The algorithm PLS can be recommended for SPB,SA-1and NPA determi-nations,taking advantage that no internal standard is needed,though it could probably be used as a way to correct experimental and spectral reproducibility in a number of cases.On the contrary,because the univariatemethod tends to give slightly better results than the PLS method for A-5(2X)(Table 2),the calibration technique chosen will depend,in this case,on the particular situation;in this work both methods were used and compared.Additives determination along the electrodeposition process The concentration of the four additives in the bath can be monitored over time by taking out periodical aliquots and measuring the NMR spectrum after proper pre-treatment.The additives concentration was estimated by using the calibration methods given in Table 2.Concentrations were corrected to the initial volume to take into account the new volume after every extraction (at the end of the bath life the volume reduction amounts 2.8%).The results obtained are shown in Fig.3.The additives A-5(2X)and NPA do not change their concentration along the process,but SPB and SA-1do it.Because of its relatively high LOD (Table 2),Additive Found/mL L −1Added/mL L −1Total found/mL L −1Recovered Recovery (%)SA-12.630.48 2.980.35731.10 1.15 2.43 1.331160.84 1.48 2.39 1.55105NPA1.870.482.260.39811.780.96 2.88 1.101151.331.192.881.55130Table 4Concentrations of SA-1and NPA additives found in nickel electroplating baths with PLS calibration applied to NMR data.Concentrations are in mL additive/L bath0102030m L A -5(2X )/ L b a t hCurrent /A·h·L -1Current /A·h·L -1Current /A·h·L -1Current /A·h·L -1m L S P B /L b a t h(c)0123m L S A -1/L b a t h(d)012m L N P A /L b a t h1530153015307.515Fig.3Concentrations (infact volume fractions)of a A-5(2X),b SPB,c SA-1and d NPA found along the electrodeposi-tion process.Asterisks ,NMR-PLS;empty circles ,NMR-relative areas;filled circles ,UV-Visible (reference)qNMR for additives determination in an electrolytic nickel bath 1913the SPB concentration cannot be completely followed along the bath life;on the other hand,relatively high imprecision is obtained (Tables 2and 3),but the concentration data obtained are valuable enough if the main aim is to keep the additive concentration at its original value by successive additions as needed.The evolution of A-5(2X)and SPB can be compared with the concentration profiles followed by UV-visible spectrometry (Fig.3a,b ),that is used here as a reference technique.It can be concluded that similar results are obtained by both techniques though NMR data for SPB are more imprecise.However,UV –vis data show better precision and lower detection limit.The limit of detection (LOD)value of the NMR method precludes its use to follow the SPB evolution during the last third of the process.The additives SA-1and NPA do not show any UV –vis absorption;so that,the technique cannot be used as a reference.Because of that,recovery studies of both additives in spiked samples were made.Several bath aliquots were spiked with known concentrations of the additives and the recovery concentration was then calculated.Table 4summarizes the results obtained.Recovery results stand between 73and 130%,which can be considered according to expected taking into account the random errors found in the estimation of both additives (Fig.3c,d ).These results can be considered acceptable when data are obtained with bath control purposes.Additive degradation productsSeveral peaks arise in the NMR spectrum (Fig.2)as the nickel bath is being used.Figure 4shows the growing peaks evolution obtained along the bath life.The new species,therefore,build up as reaction products from the additives degradation.Because the additives composition is unknown,so is the structure of their degradation products,but the way in which the profile of the new peaks evolves obeys a pseudo-first-order rate law,according to the equation:relative area t ¼relative area 11Àe Àk obs t ÀÁð1ÞWhere the subscript t refers to any time,the subscript ∞means that the reaction has gone to completion and k obs is the experimental pseudo-first-order rate constant.Thisbehaviour is not singular in electrodeposition coating processes and some precedents can be found for both zinc [13,21]and nickel [14]baths.From Eq.1,the following equation can be deduced:ln relative area t Àrelative area 1ðÞ¼ln relative area 1ðÞÀk obs tð2ÞBy plotting Eq.2,a straight line is obtained from which k obs can be evaluated.The values of k obs deduced from the intensity increase of the three peaks in Fig.4do not differ significantly from each other [24]in any case (p =0.05)and they might come from the same additive (they may,even,correspond to the same species).A mean value for the experimental rate constant of products formation can be obtained:k obs ðproducts Þ¼0:049Æ0:006Ah =L ðÞÀ1ð3ÞThe evolution of additives in the nickel bath has been shown in Fig.3.The concentration of A-5(2X)and NPA do not significantly change along the process,so they cannot be a source of degradation products;on the contrary,the degradation products should come either from SA-1,from SPB or,perhaps,from both of them.It has already been shown that SPB decay obeys a first-order rate law [21]and using the data in Fig.3b (NMR data)the first order rate constant:k obs ðSPB Þ¼Àslope ¼0:099Æ0:011Ah =L ðÞÀ1ð4Þis deduced.The SA-1decay does not show a definite pattern,probably due to imprecision of measurements,but the SA-1data in Fig.3c can be tentatively adjusted to a first-order decay and then a value of:k obs ðSA À1Þ¼0:025Æ0:001Ah =L ðÞÀ1ð5Þis obtained.The value of k obs(products)(Eq.3)differs significantly from both k obs(SPB)(Eq.4)and k obs(products)(Eq.5),so nothing can be concluded from the origin of products.Perhaps either non-considered sources of uncertainty,insufficient number of measurements in the case of SPB,1…52.95 1...51.8/ppm1 (5)1.032.832.89 1.681.740.971.0/ppm /ppm Fig.41H-NMR spectra,for peaks a (7),b (9)and c (10)in Fig.2,along the electrode-position process.1,A·h/L;2,5A·h/L;3,13.3A·h/L;4,21.7A·h/L;5,28.9A·h/L1914M.Ostra et al.。

相关文档
最新文档