Semitrans-low inductance DC-bus design-np

合集下载

一种大功率交流恒流源的设计

一种大功率交流恒流源的设计

电气传动2021年第51卷第23期摘要:针对某些低压电气设备需要对特定电流的热效应进行严格测试的需求,设计了一种具有多种运行模式的大功率交流恒流源装置。

该恒流源装置采用多组逆变H 桥共直流母线的电路拓扑,以矢量控制作为核心算法,根据不同的测试需求,可选择不同的运行模式,包括单相独立运行模式、单相并联运行模式以及三相运行模式。

经过实验验证,所提出的具有多种运行模式的恒流源完全可以满足不同种类低压电气设备的测试需求,并且基于矢量控制理论的控制策略使该恒流源装置实现可靠高效运行,获得了低谐波、高精度的输出电流,具有广阔的应用范围和市场前景。

关键词:恒流源;逆变H 桥;LCL 滤波器;矢量控制中图分类号:TM464文献标识码:ADOI :10.19457/j.1001-2095.dqcd22030Design of High Power AC Constant Current SourceSUN Chuanjie ,TIAN Kai ,CHU Zilin ,YANG Jingran ,ZHANG Zhonglei(Tianjin Research Institute of Electric Science Co.,Ltd.,Tianjin 300180,China )Abstract:For some low-voltage electrical equipment that requires strict testing of the thermal effects of specific currents ,a high power AC constant current source with multiple operating modes was designed.The constant current source adopts the circuit topology of multiple sets of H-bridge inverter common DC bus ,and uses vector control as the core algorithm ,according to different test requirements ,different operation modes can be selected ,including single-phase operation in independence ,single-phase operation in parallel and three-phase operation.Experimental results demonstrate that the constant current source can meet the testing needs of different types of low-voltage electrical equipment ,the control strategy based on vector control theory enables the constant current source to operate reliably and efficiently ,and obtains low harmonic ,high-precision output current ,the constant current source has a wide range of applications and market prospects.Key words:constant current source ;H-bridge inverter ;LCL filter ;vector control基金项目:天津电气院科研开发创新基金(GE2017ZL002)作者简介:孙传杰(1988—),男,硕士,工程师,Email :***************一种大功率交流恒流源的设计孙传杰,田凯,楚子林,杨敬然,张中磊(天津电气科学研究院有限公司,天津300180)交流恒流源被广泛应用于低压电气设备的型式试验,当前市场份额基本被国内产品占据。

赛米控丹佛斯 SEMITRANS 全碳化硅功率模块 SKM260MB170SCH17 数据表

赛米控丹佛斯 SEMITRANS 全碳化硅功率模块 SKM260MB170SCH17 数据表

© by SEMIKRONRev. 1.0–04.11.20201SEMITRANS ®3SiC MOSFET ModuleSKM260MB170SCH17Features*•Full Silicon Carbide (SiC) power module•High reliability 2nd Generation SiC MOSFETs•Optimized for fast switching and lowest power losses•External SiC Schottky Barrier Diode embedded•Insulated copper baseplate using DBC technology (Direct Bonded Copper)•Improved thermal performances with Aluminum Nitride (AlN) substrate •UL recognized, file no. E63532Typical Applications•High frequency power supplies •AC inverters •Traction APU •EV Chargers•Industrial Test SystemsRemarks•Case temperature limited to T C = 125°C max.•Recommended T jop = -40 ... +150°C •Gate-Source SURGE VOLTAGE(t surge <300ns), V GS_surge = -10V ... +26VAbsolute Maximum Ratings SymbolConditions Values UnitMOSFET V DSS T j =25°C 1700VI D T j =175°CT c =25°C 378 A T c =80°C301 A I DMPW ≤ 10µs, Duty cycle ≤ 1%980A I DM,repetitive790A V GS -6...22V T j-40 (175)°CAbsolute Maximum Ratings SymbolConditionsValuesUnitInverse diodeV RRM T j =25°C 1700V I F T j =175°CT c =25°C 552A T c =80°C428A I Fnom 300A I FRM 900A I FSM t p =10ms, sin 180°, T j =150°C, including body diode2030A T j-40 (175)°CAbsolute Maximum Ratings SymbolConditions Values UnitModule I t(RMS)500A T stg module without TIM -40...125°C V isolAC sinus 50 Hz, t =1min4000V2Rev. 1.0–04.11.2020© by SEMIKRONSEMITRANS ®3SiC MOSFET ModuleSKM260MB170SCH17Features*•Full Silicon Carbide (SiC) power module•High reliability 2nd Generation SiC MOSFETs•Optimized for fast switching and lowest power losses•External SiC Schottky Barrier Diode embedded•Insulated copper baseplate using DBC technology (Direct Bonded Copper)•Improved thermal performances with Aluminum Nitride (AlN) substrate •UL recognized, file no. E63532Typical Applications•High frequency power supplies •AC inverters •Traction APU •EV Chargers•Industrial Test SystemsRemarks•Case temperature limited to T C = 125°C max.•Recommended T jop = -40 ... +150°C •Gate-Source SURGE VOLTAGE(t surge <300ns), V GS_surge = -10V ... +26VMOSFET V (BR)DSS V GS =0V,I D =1mA, T j =25°C 1700V V GS(th)V DS =V GS , I D =57.75mA1.62.84V I DSS V GS =0V,V DS =1700V, T j =25°C 1.8mA I GSS V GS =22V,V DS =0V 700nA R DS(on)V GS =18V I D =161AchiplevelT j =25°C 8.110m ΩT j =150°C 14m ΩC iss V GS =0V V DS =800Vf =1MHzT j =25°C 27nF C oss T j =25°C 0.88nF C rss T j =25°C0.105nF R Gint T j =25°C2.1ΩQ G V DD =1000V, V GS =-5 ... 20V, I D =300A 1470nC t d(on)V DD =900V I D =300A V GS =-5 / +20VR Gon =0.7ΩR Goff =0.7Ωdi/dt on =12kA/µs di/dt off =9.5kA/µsdv/dt off =22kV/µs T j =150°C 64ns t r T j =150°C 60ns t d(off)T j =150°C162ns t f T j =150°C 32ns E on T j =150°C 7.59mJ E off T j =150°C6.21mJ R th(j-c)per MOSFET0.065K/W R th(c-s)per MOSFET (λgrease =0.81 W/(m*K))0.03K/WCharacteristics SymbolConditionsmin.typ.max.UnitInverse diodeV F = V SD I F =300A chiplevel T j =25°C 1.65 1.95V T j =150°C 2.51 2.86V V F0chiplevel T j =25°C 1.00 1.10V T j =150°C 0.860.96V r F chiplevelT j =25°C2.2 2.8m ΩT j =150°C5.56.3m ΩC j parallel to C oss , f =1MHz, V R =1700V, T j =25°C1.026nF Q c V R =800V, di/dt off =500A/µs, T j =25°C 0.95µCR th(j-c)per diode0.056K/W R th(c-s)per diode (λgrease =0.81 W/(m*K))0.027K/W© by SEMIKRONRev. 1.0–04.11.20203SEMITRANS ®3SiC MOSFET ModuleSKM260MB170SCH17Features*•Full Silicon Carbide (SiC) power module•High reliability 2nd Generation SiC MOSFETs•Optimized for fast switching and lowest power losses•External SiC Schottky Barrier Diode embedded•Insulated copper baseplate using DBC technology (Direct Bonded Copper)•Improved thermal performances with Aluminum Nitride (AlN) substrate •UL recognized, file no. E63532Typical Applications•High frequency power supplies •AC inverters •Traction APU •EV Chargers•Industrial Test SystemsRemarks•Case temperature limited to T C = 125°C max.•Recommended T jop = -40 ... +150°C •Gate-Source SURGE VOLTAGE(t surge <300ns), V GS_surge = -10V ... +26VModule L DS 15nH R DD'+SS'measured per switchT C =25°C0.55m ΩT C =125°C0.85m ΩR th(c-s)1calculated without thermal coupling (λgrease =0.81 W/(m*K))0.008K/W R th(c-s)2including thermal coupling, T s underneath module (λgrease =0.81 W/(m*K))0.013K/W M s to heat sink M635Nm M tto terminals M62.55Nm Nmw325g4Rev. 1.0–04.11.2020© by SEMIKRON© by SEMIKRON Rev. 1.0–04.11.202056Rev. 1.0–04.11.2020© by SEMIKRON© by SEMIKRON Rev. 1.0–04.11.20207This is an electrostatic discharge sensitive device (ESDS) due to international standard IEC 61340.*IMPORTANT INFORMATION AND WARNINGSThe specifications of SEMIKRON products may not be considered as guarantee or assurance of product characteristics ("Beschaffenheitsgarantie"). The specifications of SEMIKRON products describe only the usual characteristics of products to be expected in typical applications, which may still vary depending on the specific application. Therefore, products must be tested for the respective application in advance. Application adjustments may be necessary. The user of SEMIKRON products is responsible for the safety of their applications embedding SEMIKRON products and must take adequate safety measures to prevent the applications from causing a physical injury, fire or other problem if any of SEMIKRON products become faulty. The user is responsible to make sure that the application design is compliant with all applicable laws, regulations, norms and standards. Except as otherwise explicitly approved by SEMIKRON in a written document signed by authorized representatives of SEMIKRON, SEMIKRON products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury. No representation or warranty is given and no liability is assumed with respect to the accuracy, completeness and/or use of any information herein, including without limitation, warranties of non-infringement of intellectual property rights of any third party. SEMIKRON does not assume any liability arising out of the applications or use of any product; neither does it convey any license under its patent rights, copyrights, trade secrets or other intellectual property rights, nor the rights of others. SEMIKRON makes no representation or warranty of non-infringement or alleged non-infringement of intellectual property rights of any third party which may arise from applications. Due to technical requirements our products may contain dangerous substances. For information on the types in question please contact the nearest SEMIKRON sales office. This document supersedes and replaces all information previously supplied and may be superseded by updates. SEMIKRON reserves the right to make changes.8。

一种不对称半桥正反激DC DC变换器

一种不对称半桥正反激DC DC变换器

2. 变换器工作原理
2.1. 变换器结构
不对称半桥正反激 DC/DC 变换器电路结构由不对称半桥结构、 正反激变压器组和副边并联半波整流 构成(见图 1)。图中:Q1、Q2 为主功率开关管,C2 为隔直电容,NP1 和 NS1 分别为正激变压器 T1 的原边和 副边绕组,NP2 和 NS2 分别为反激变压器 T2 的原边和副边绕组。原边绕组 NP1、NP2 串联,副边绕组 NS1、 NS2 通过整流二极管 D1 和 D2 并联连接到负载, 此结构减小整流二极管的电流应力的同时还可以减小输出 的电流纹波,有利于减小输出滤波器的体积。高压侧的不对称半桥结构减小了功率开关管的电压应力, 隔直电容 C1 所承受电压也较低。
绕组串联、 低压侧绕组通过整流二极管并联的结构, 让其具有高效率、 高功率密度、输出纹波小、利用自身拓扑结构易实现软开关的特点。因此,有源嵌位正反激变换器被广 泛应用于锂电池充电,电动汽车,航空电源等领域。文献[1] [2] [3]详细的分析了该变换器的工作原理。 但是,实际工作中由于变换器自身结构的原因,主开关管和嵌位电容的电压应力总是很高,大大影响了 其在高电压输入场合的应用。 基于此,本文提出一种不对称半桥正反激 DC/DC 变换器,将不对称半桥结构与有源嵌位正反激变换 器结合起来,继承了有源嵌位正反激变换器的原有优点,减小了主开关管电压应力,因此在相同的输入 电压等级下可以选用耐压低、 导通电阻小的 MOSFET, 进一步提高变换器效率, 不对称半桥正反激 DC/DC 变换器也更加适合高压输入场合[4] [5] [6] [7]。
3. 稳态特性分析
3.1. 基本数量关系
利由上述模态分析可知,模态 1 和模态 5 是变换器工作的主要模态,其他模态相对于这两个模态非 常短暂,在分析基本数量关系是可忽略。定义开关周期为 TS,开关管 Q1 导通的占空比为 D。 1) 隔直电容电压 由变压器原边侧的伏秒平衡可以得到:

MEMS微电感共42页文档

MEMS微电感共42页文档

线圈结构
3.9mm
1.5mm
线圈制作流程(I)
线圈制作流程(II)
结果与讨论
电感设计---磁芯形状
• 对于一个特定应用,由于材料的Bs确定,而且工作电 流I也确定,设计中能够改变影响的只是材料的材料的 相对导磁率μr和磁性材料的结构就成为主要的设计要 素。通常情况下,磁芯的形状(剖面)为矩形时能够获 得最大电感;在高频下,磁芯形状的设计需要考虑趋 肤效应。
• 储存和转换能量的能力
品质因数(Q)
• 能量储存与转化的效率
自谐振频率(f0)
• 电感可以工作的频率范围
电感量 L
• 带绕电感的L可以表示为:
• 微电感采用软磁材料有:
– 坡莫合金(NiFe,磁头100MHz) – 铁氧体(MnZn铁氧体,20-500KHz) – 纳米晶(Fe 纳米晶, Ryu: 0.8 mH & Q=1.11MHz,2019) – 其他合金
MEMS Transformer & Inductor
主要内容
概述 电感的特征参数 低频电感 高频电感 一个简单的电感仿真实例
电源变压器
DC/DC Cnductors
微磁通门
线圈结构
电感的电学参数
电感主要有3个电学参数: 电感量(L)
1、由于硅的半导体性质,当电感线圈中传播的信号频 率增高时,硅衬底耦合到地的漏电损耗增大;
2、金属导体的趋肤效应使得电感线圈中高频信号电流 逐渐聚集到电感表层的狭小空间内分布,从表层向线 圈内部呈指数衰减,因此高频下电感线圈电阻损耗将 会升高;
3、信号频率的增加使得金属线圈和衬底内的涡流损耗 加剧;
Step 4 沉积并形成金焊点,沉积AZ绝缘层

基于三重移相的双有源桥DC-DC变换器效率与动态性能混合优化控制策略

基于三重移相的双有源桥DC-DC变换器效率与动态性能混合优化控制策略

基于三重移相的双有源桥DC-DC变换器效率与动态性能混合
优化控制策略
王攀攀;徐泽涵;王莉;高利强;王轩
【期刊名称】《电工技术学报》
【年(卷),期】2022(37)18
【摘要】为提升双有源桥(DAB)DC-DC变换器的效率和动态响应速度,在三重移相控制的基础上,提出一种混合优化控制策略。

首先,从三重移相控制下的DAB工作模式中,选出两种作为变换器的实际工作模式,并引入新的外移相角,用以降低变换器建模和后续优化设计的难度;然后,分析这两种模式的工作特性,推导各自模式下的传输功率模型、电流应力表达式和软开关约束条件,借助Karush-Kuhn-Tucker条件法,求出满足最小电流应力和软开关条件的最优移相比组合;之后,建立输出电压状态空间模型,利用当前电压电流信息预测下一时刻输出电压,以改善变换器的动态性能;最后,搭建实验样机,验证了所提混合优化控制策略的有效性和优越性。

【总页数】12页(P4720-4731)
【作者】王攀攀;徐泽涵;王莉;高利强;王轩
【作者单位】中国矿业大学电气与动力工程学院
【正文语种】中文
【中图分类】TM46
【相关文献】
1.双重移相控制与传统移相控制相结合的双有源桥式DC-DC变换器优化控制策略
2.热平衡移相控制策略在双有源桥DC-DC变换器的应用研究
3.基于双有源桥DC/DC变换器回流功率优化的变频移相混合控制策略
4.结合电流应力优化与虚拟电压补偿的双有源桥DC-DC变换器三重移相优化控制
5.双有源桥DC-DC变换器三重移相优化控制策略
因版权原因,仅展示原文概要,查看原文内容请购买。

多相非隔离双向DC-DC变换器新型耦合电感设计

多相非隔离双向DC-DC变换器新型耦合电感设计

多相非隔离双向DC-DC变换器新型耦合电感设计刘朝辉;刘海峰;张宁【摘要】The coupled inductor of multi-phase interleaving magnetic integration bidirectional DC-DC converter(BDC) has several shortcomings,including:complicated design,expensive mode,higher local temperature rise,and asym-metry of coupling inductance.A new type of"EIE"structure-coupled inductor applied to four-phase magnetic inte-grated BDC with symmetric coupling was proposed in this paper.According to the principle of inductance integration and magnetic circuit equivalent,the magnetic flux and its air gap were analyzed,and the magnetic circuit model con-sidering the marginal reluctance and gap reluctance was established.The formulas of self-inductance,mutual induct-ance and the coupling coefficient were deduced,and the design principles and methods for realizing flux symmetry and decoupling integration were presented.The coupled inductor retains the advantages of coupling coefficient adjustment with high degree.The drawback of high air-gap fringing flux losses in conventional E-shape coupled inductor structure is solved.The correctness of magnetic theory and design method are verified by finite element simulation and experi-ments.As well as its superiority in terms of steady-state loss,transient response,efficiency is still tested.%多相交错型磁耦合双向DC-DC变换器(BDC)的耦合电感普遍存在设计复杂、开模昂贵、局部温升较高以及耦合非对称等缺点.提出一种新型"EIE"结构耦合电感器,应用于两两对称耦合的四相磁集成BDC.根据电感集成原理和磁路等效原则,分析其磁通及气隙分布,建立考虑边缘磁阻和气隙磁阻的磁路模型,推演出耦合磁件自感、互感及耦合系数,给出可实现磁通对称化和解耦集成的设计原则和方法.该结构耦合电感器可实现耦合系数高自由度调节,并解决了传统"E"形铁芯构造的耦合电感器中边缘气隙磁通损耗较高的缺点.通过有限元仿真和实验,验证了磁路理论和设计方法的正确性,以及在稳态损耗、暂态响应和效率等方面优越性.【期刊名称】《电力科学与技术学报》【年(卷),期】2018(033)001【总页数】8页(P38-45)【关键词】"EIE"型耦合电感;交错并联磁集成;耦合系数;双向DC-DC;磁路模型与仿真【作者】刘朝辉;刘海峰;张宁【作者单位】国网河北省电力公司检修分公司,河北石家庄050000;国网河北省电力公司,河北石家庄050000;国网河北省电力公司检修分公司,河北石家庄050000【正文语种】中文【中图分类】TM46开关变换器越来越追求轻、薄、小,高效率及高功率密度的目标。

WNM6001 单向 N 渠道 60V 0.5A 电源 MOSFET 数据手册说明书

WNM6001 单向 N 渠道 60V 0.5A 电源 MOSFET 数据手册说明书

WNM6001Single N-Channel, 60V, 0.50A, Power MOSFETDescriptionsThe WNM6001 is N-Channel enhancement MOS Field Effect Transistor. Uses advanced trench technology and design to provide excellent R DS (ON) with low gate charge. This device is suitable for use in DC-DC conversion, power switch and charging circuit. Standard Product WNM6001 is Pb-free and Halogen-free.Features● Trench Technology● Supper high density cell design● Excellent ON resistance for higher DC current ● Extremely Low Threshold Voltage ● Small package SOT-23Applications● Driver for Relay, Solenoid, Motor, LED etc. ● DC-DC converter circuit ● Power Switch ● Load Switch ● ChargingHttp//:SOT-23Pin configuration (Top view)W61*W61= Device Code*= Month (A~Z) MarkingOrder information3 12Absolute Maximum ratingsThermal resistance ratingsa Surface mounted on FR-4 Board using 1 square inch pad size, 1oz copperb Surface mounted on FR-4 board using minimum pad size, 1oz copperc Pulse width<380µsd Maximum junction temperature T J=150°C.Electronics Characteristics (Ta=25o C, unless otherwise noted)On-Resistance vs. Drain currentOn-Resistance vs. Junction temperatureOn-Resistance vs. Gate-to-Source voltageThreshold voltage vs. TemperatureI D -Drain Current(A)N o r m a l i z e d G a t e T h r e s h o l d V o l t a g eTemperature (oC)V GS -Gate-to-Source Voltage(V)R D S (o n )-O n -R e s i s t a n c eN o m a l i z e dTemperature(oC)CapacitanceSingle pulse powerBody diode forward voltageGate Charge CharacteristicsV G S -G A T E -t o -s o u r c e V o l t a g e (V )Q g (nC)C (p F )Time(s)S DV SD -Source-to-Drain Voltage(V)Safe operating powerI D - D r a i n C u r r e n t (A )VDS- Drain Source Voltage (V)V DS (V)1E-41E-30.010.111010010001020304050P o w e r (W )Transient thermal response (Junction-to-Ambient)Square Wave Pulse Duration (s)N o r m a l i z e d E f f e c t i v e T r a n s i e n t T h e r m a l I m p e d a n c ePackage outline dimensionsSOT-23TOP VIEW SIDE VIEW SIDE VIEWSymbolDimensions in Millimeters Min.Typ.Max.A0.89 1.10 1.30 A10.00-0.10 b0.300.430.55 c0.05-0.20D 2.70 2.90 3.10E 1.15 1.33 1.50 E1 2.10 2.40 2.70 e0.95Typ.e1 1.70 1.90 2.10TAPE AND REEL INFORMATIONReel DimensionsQuadrant Assignments For PIN1Orientation In Tape1User Direction of FeedQ1Q2Q3Q4Q1Q2Q3Q47inch 13inch 2mm 8mm 4mm Q1Q2Q3Q48mm12mm。

低噪声DC-DC变换器设计

低噪声DC-DC变换器设计

第6期2016年12月微处理机MICROPROCESSORSNo. 6Dec. ,2016•大规模集成电路设计、制造与应用•低噪声DC - D C变换器设计$杨东杰,邰锋,王骥,曹灿华,甄少伟,罗萍,张波(电子科技大学电子薄膜与集成器件国家实验室,成都610054)摘要:提出了一种基于Sigma-Delta调制原理的低噪声D C-D C变换器。

首先对比了传统 PW M调制器型DC - D C变换器及传统Sigma- Delta调制器型DC - D C变换器;从它们各自的优缺 点出发,基于改进的一阶Sigma-D elta调制器,构建了新型的DC -D C变换器架构。

传统的PWM 调制器被去除,由钟控量化器实现了调制功能。

环路补偿被简化,将片外电容及电感组成积分功能 模块,直接用于环路的构成。

整体电路基于40mn M ixed-Signal CMOS工艺进行设计,仿真结果表 明,该结构相比传统固定频率PW M调制D C - D C变换器,输出电压频谱中的谐波尖峰能够得到有 效抑制。

在2M H z开关频率处,频谱尖峰减小了 40dB,同时具有良好的瞬态响应特性,快速响应时 间及较小的上下过冲。

关键词:DC - D C变换器;PW M调制;Sigma- D elta调制;低噪声;频谱抑制;架构简化D O I:10.3969/j.issn.1002 -2279.2016.06.001中图分类号:TN4 文献标识码:A文章编号=1002 -2279(2016)06 -0001 -04Design of Low - Noise DC - DC ConverterYang Dongjie,Tai Feng,Wang Yi,Cao Canhua,Zhen Shaowei,Luo Ping,Zhang Bo(State Key Laboratory o f Electronic Thin Films and Integrated Devices, Universityo f Electronic Science and Technology o f China ^ Chengdu 61QQ54, China)A bstract:A low - noise DC - DC converter based on Sigma - Delta modulation is proposed.Theconventional PWM modulated DC - DC is compared with the conventional Sigma- Delta modulated DC - DC firstly.Improved first- order Sigma- Delta modulation structure is adopted to build the new DC - DC converter.The conventional PWM modulator is replaced by the clock - controlled quantizer.The loop compensation is simplified.The integrated block which consists of off- chip capacitor and inductor is adopted to form the whole loop.The whole circuit is designed and simulated in a 40nm mixed - signal standard CMOS process and the results show that the frequency harmonic spurs of the output voltage are effectively suppressed comparing to the conventional PWM modulation DC - DC converter.The spurious noise is reduced by 40dB at the switching frequency of 2MHz.Meanwhile,a good transient response characteristic with fast response time and small overshoot is simulated.Key words:DC- DC converter;PWM modulator;Sigma- Delta modulator;Low - noise;Frequency spectrum suppress;Structure simplifiedi引言电源和衬底噪声对敏感射频SoC影响巨大,往 往会严重制约射频电路的性能。

一种低交叉调整率的四路输出DC/DC变换器设计

一种低交叉调整率的四路输出DC/DC变换器设计

一种低交叉调整率的四路输出DC/DC变换器设计孙康;孙烁【摘要】Thedesignofconverterwith4-routoutputDC/DCisdescribedinthispaper.Themain technical specifications,the composition diagram,the circuit principle and reel method are given.The design has the excellent advantage of low cross regulation when the conditions of ripple noise,efficiency, volume and weight meet the requirements.%介绍了一款四路输出DC/DC变换器的设计,并给出了主要技术指标、组成方框图、电路原理图和变压器的绕制方法。

该设计在保证纹波噪声、效率、体积和重量等重要指标均满足要求的情况下,仍具有低交叉调整率的突出优点。

【期刊名称】《微处理机》【年(卷),期】2014(000)006【总页数】4页(P70-73)【关键词】DC/DC变换器;四路输出;交叉调整率【作者】孙康;孙烁【作者单位】中国电子科技集团公司第四十七研究所,沈阳 110032;中国电子科技集团公司第四十七研究所,沈阳 110032【正文语种】中文【中图分类】TP29由于DC/DC变换器具有输入与输出端电气隔离的特点,因而能够切断由供电母线引起的各种设备之间的交叉干扰,可为各类用电设备提供稳定、干净的供电电源。

此外,DC/DC电源变换器还具有高效率、高可靠、低纹波、小体积、系列化、组态灵活的突出优点,因而广泛应用在工业控制、交通、通讯、雷达、导航、航空、宇航等国民经济的各个重要领域中。

在一部典型的电子设备中,通常包括模拟电路、数字电路、存储电路、通讯电路、嵌入式CPU以及外部接口电路等。

一种新型SEPIC_可拓展高增益DC-DC_变换器

一种新型SEPIC_可拓展高增益DC-DC_变换器
输入电流纹波,以延长光伏板的使用寿命,同时以避
免泄漏 电 流 并 降 低 辐 射 电 磁 干 扰 ( electromagnetic
interference,EMI) 。 工业上,应用最为广泛的是传统
Boost 变换器。 理论上,它可以获得无穷大的输出电
压。 然而,无源和有源器件的寄生电阻在占空比接
。 太阳能是
清洁无污染的可再生能源,对其进行高效开发利用
[2]
只能在一定的占空比范围内变化。
,例如,太阳能光伏板的
输出电压远低于直流母线电压 [4 - 6] 。 为了解决太阳
能光伏板和直流母线电压之间的电压水平不匹配问
题, 需 要 一 个 具 有 高 电 压 增 益 的 DC-DC 变 换
器 [7 - 14] 。 除了高增益特性外,该变换器还应具有低
其性能优势。 最后,搭建了一台 200 W 的实验样机进行验证,实验结果表明了所提变换器的正确
性和可行性。
关键词:光伏发电;非隔离;SEPIC 变换器;高增益;低电压应力
DOI:10. 15938 / j. emc. 2023. 04. 007
中图分类号:TM46
文献标志码:A
文章编号:1007- 449X(2023)04- 0064- 11
近极端值的情况下会恶化变换器的电压增益。
文献[4 - 11] 中介绍了许多具有高增益的 DC-
DC 变换器拓扑。 它们可以分为带磁耦合的拓扑和
电压增益,低输入电流纹波,以及低电压应力。 它能
直流并网前级母线电压(380 ~ 400 V) 。 这些特点
使其在太阳能光伏发电系统中的应用占据优势。
1 工作原理
第 27 卷 第 4 期
2023 年 4 月

铁道机车专业英语词汇-铁路运输

铁道机车专业英语词汇-铁路运输

混凝土基础 [ˈkɑ:ŋkri:t] adj. 具体的 n.混凝土
frictional resistance
摩擦阻力
electric power railway electrification diesel engines signaling system energy efficiency steam engine connecting rod driving wheel in working order stationary source overhead wire
n.轨道 n.车辆 n.道砟 adj.摩擦的 n.信号 n.锅炉 n.轴 n.交流电
DC--direct current
rail transport means of conveyance referred to as in contrast to road transport flat surface rolling stock steel rails concrete foundation frictional resistance
电力,电功率 铁道电气化,铁路电气化 柴油机 信号系统 能量系数,能量效率 蒸汽机 [机]连杆 驱动轮,主动轮 能正常发挥,处于正常运转状态 固定电源 高架线
electric power railway electrification diesel engines signaling system energy efficiency steam engine connecting rod driving wheel in working order stationary source overhead wire
when lower traffic levels are considered.

一种非隔离改进二次型Boost高增益DC-DC变换器

一种非隔离改进二次型Boost高增益DC-DC变换器

,非隔离型变换器具有 小、 高等优点。
非隔离型变换器 -oost、二次型-oost、-uc>、
Buck-Boost^开关电容型、开关电感型变换器 等[$*0-12 o其中传统Boost变换器凭借其拓扑结构
简单、输出增益较高的优点
应用。为获得
更高的电压增益,研究者在传统Boost电路的基础 上引入各种辅助电路[$ *i ,虽然提升了输出电压,
放电。 态下有:
一 -;+ ; + ;: ? 0
4 -;C 1 + ;2 + ;2C 二 0
(4)
-;CG1 + ;l2 + ;gC3 ? 0
、-;+ ; + ;l2 + ;c2 ? 0
2性能分析
2.1 Type-1变换器性能分析
2. 1. 1 Type-1变换器电压增益
根据变换器的模态
电感伏-秒平衡原
dt+[
J T
(22
sfdt
=0
DT
I(
w0
一(a
- "0 ) d<
+
T
I(-
"0 ) d<
=
0
1
J DT
(9) :(_o、(_°ff、im_o (=_°ff分别是开关闭合和关 断时的电感电 输入电流°
假设电感值足够大,电感电流连续;流过电感
的平均电
下式表示:
1 DT
1
T
"7 _
0 (gdt = ( 1 - D) TDT(od< ( 10)
—100 —
电札与挖剧应用2021,48(6)
电力电子变流器技术I EMCA

赛米控丹佛斯 SEMITRANS IGBT模块 SKM800GA125D 数据表

赛米控丹佛斯 SEMITRANS IGBT模块 SKM800GA125D 数据表

SEMITRANS ®4SKM800GA125DFeatures•Homogeneous Si •NPT-IGBT•V CE(sat) with positive temperature coefficient•High short circuit capability, self limiting to 6 x I CTypical Applications*•Resonant inverters up to 100 kHz •Inductive heating•Electronic welders at f sw > 20 kHzRemarks•I DC ≤ 500 A limited by terminals•Take care of over-voltage caused by stray inductancesAbsolute Maximum Ratings SymbolConditions Values UnitIGBT V CES T j =25°C 1200V I C T j =150°CT c =25°C 760A T c =80°C530A I Cnom 600A I CRMI CRM = 2xI Cnom 1200A V GES -20...20V t psc V CC =600V V GE ≤ 15V V CES ≤ 1200VT j =125°C10µs T j-40...150°C Inverse diode I F T j =150°CT c =25°C 720A T c =80°C 500A I Fnom600A I FRM I FRM = 2xI Fnom1200A I FSM t p =10ms, sin 180°, T j =25°C5760A T j -40...150°C Module I t(RMS)500A T stg -40 (125)°C V isolAC sinus 50 Hz, t =1min4000VCharacteristics SymbolConditions min.typ.max.UnitIGBT V CE(sat)I C =600A V GE =15V chiplevel T j =25°C 3.20 3.70V T j =125°C 4.00 4.80V V CE0chiplevel T j =25°C 1.50 1.75V T j =125°C 1.70 1.95V r CE V GE =15V chiplevel T j =25°C 2.83 3.25m ΩT j =125°C3.834.75m ΩV GE(th)V GE =V CE , I C =24mA4.55.56.5V I CES V GE =0V V CE =1200V T j =25°C0.6mA -mA C ies V CE =25V V GE =0Vf =1MHz 37.2nF C oes f =1MHz 5.6nF C res f =1MHz2.80nF Q G V GE =- 8 V...+ 15 V 4200nC R Gint T j =25°C 0.5Ωt d(on)V CC =600V I C =600AV GE =+15/-15V R G on =0.5ΩR G off =0.5ΩT j =125°C 480ns t r T j =125°C 116ns E on T j =125°C 88mJ t d(off)T j =125°C 666ns t f T j =125°C 58ns E off T j =125°C48mJ R th(j-c)per IGBT0.03K/WCharacteristics SymbolConditionsmin.typ.max.UnitInverse diodeV F = V EC I F =600AV GE =0V chiplevelT j =25°C 2.3 2.58V T j =125°C 1.87 2.38V V F0chiplevel T j =25°C 1.10 1.45V T j =125°C 0.85 1.20V r Fchiplevel T j =25°C 1.61 1.88m ΩT j =125°C 1.70 1.96m ΩI RRM I F =600A V GE =±15V V CC =600V T j =125°C 370A Q rr T j =125°C 83µC E rr T j =125°C28mJR th(j-c)per diode0.07K/W Module L CE 15nH R CC'+EE'terminal-chip T C =25°C 0.18m ΩT C =125°C0.22m ΩR th(c-s)per module 0.020.038K/W M s to heat sink M635Nm M t to terminalsM6 2.55Nm M41.12Nm w330gSEMITRANS ® 4SKM800GA125DFeatures•Homogeneous Si •NPT-IGBT•V CE(sat) with positive temperature coefficient•High short circuit capability, self limiting to 6 x I CTypical Applications*•Resonant inverters up to 100 kHz •Inductive heating•Electronic welders at f sw > 20 kHzRemarks•I DC ≤ 500 A limited by terminals•Take care of over-voltage caused by stray inductancesThis is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, chapter IX.*IMPORTANT INFORMATION AND WARNINGSThe specifications of SEMIKRON products may not be considered as guarantee or assurance of product characteristics ("Beschaffenheitsgarantie"). The specifications of SEMIKRON products describe only the usual characteristics of products to be expected in typical applications, which may still vary depending on the specific application. Therefore, products must be tested for the respective application in advance. Application adjustments may be necessary. The user of SEMIKRON products is responsible for the safety of their applications embedding SEMIKRON products and must take adequate safety measures to prevent the applications from causing a physical injury, fire or other problem if any of SEMIKRON products become faulty. The user is responsible to make sure that the application design is compliant with all applicable laws, regulations, norms and standards. Except as otherwise explicitly approved by SEMIKRON in a written document signed by authorized representatives of SEMIKRON, SEMIKRON products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury. No representation or warranty is given and no liability is assumed with respect to the accuracy, completeness and/or use of any information herein, including without limitation, warranties of non-infringement of intellectual property rights of any third party. SEMIKRON does not assume any liability arising out of the applications or use of any product; neither does it convey any license under its patent rights, copyrights, trade secrets or other intellectual property rights, nor the rights of others. SEMIKRON makes no representation or warranty of non-infringement or alleged non-infringement of intellectual property rights of any third party which may arise from applications. Due to technical requirements our products may contain dangerous substances. For information on the types in question please contact the nearest SEMIKRON sales office. This document supersedes and replaces all information previously supplied and may be superseded by updates. SEMIKRON reserves the right to make changes.。

基于三相逆变器变开关频率和变直流母线电压的PMSM_控制

基于三相逆变器变开关频率和变直流母线电压的PMSM_控制

第 39 卷第 1 期电力科学与技术学报Vol. 39 No. 1 2024 年 1 月JOURNAL OF ELECTRIC POWER SCIENCE AND TECHNOLOGY Jan. 2024引用格式:杨红,杨帆,杨汝.基于三相逆变器变开关频率和变直流母线电压的PMSM控制[J].电力科学与技术学报,2024,39(1):225‑233. Citation:YANG Hong,YANG Fan,YANG Ru.PMSM control of three‑phase inverter with variable switching frequency and DC bus variable voltage [J]. Journal of Electric Power Science and Technology,2024,39(1):225‑233.基于三相逆变器变开关频率和变直流母线电压的PMSM控制杨红1,杨帆2,杨汝1(1.广州大学机械与电气工程学院,广东广州 510006;2.广州大学电子与通信工程学院,广东广州 510006)摘要:针对三相电压源逆变器应用固定开关频率和额定直流母线电压的空间矢量脉宽调制(space vector pulse width modulation, SVPWM)驱动方式时存在直流电压利用率低、绝缘栅双极性晶体管(insulated gate bipolar tran⁃sistors, IGBT)损耗较高的缺点,建立永磁同步电机(permanent magnet synchronous motor, PMSM)和基于输出周期的IGBT损耗控制模型,在此基础上以输出电流质量为约束条件,以开关频率和直流母线电压为约束变量,应用猫鼬优化算法获得基于输出周期的IGBT损耗最优的开关频率和直流母线电压。

对所提出的策略进行仿真和实验,通过比较输出电流总谐波畸变率(total harmonic distortion, THD)、电流波形、IGBT损耗和结温等验证所提策略在保证控制系统性能的条件下降低三相电压源逆变器损耗,增加三相电压源逆变器的可靠性。

用于电动汽车的双向交错式DC_DC变换器的设计

用于电动汽车的双向交错式DC_DC变换器的设计

关键词:变换器; 电动汽车; 低压大电流; 双向交错变换器
中 图 分 类 号 :TM46
文 献 标 识 码 :A
文 章 编 号 :1000-100X(2010)09-0016-02
A Bidirectional Interleaved DC/DC Converter for Electric Vehicle Applications
时的开关管控制脉冲占空比较大, 交错并联结构对
电流纹波的消除作用受到限制。
当系统在 Buck 工作模式时, 电感工作在连续
电流模式下,此时电压纹波 驻u1=U1Ts2(1-D)/(8LC)。 系统工作频率为 50 kHz, 为满足对电压纹波和
输入电流纹波的要求, 根据上述进行计算后, 选择
30 μH/40 A 的高频电感,低压端配以 2 200 μF 电解
=
1-D(t) C
iL(t)-
1 RLC
uo(t)
系统稳态工作时,设输入电压为 Uin*,输出电压
为 Uo*,稳 态 电 压 调 制 比 为 M*,令 微 分 项 为 零 ,线 性
化状态方程后代入状态方程消去稳态量,得:
鄣觶 x=A鄣x+B鄣u
(3)
鄣 鄣 式中:A=
%%%%%%0 (1-D*)/C
2.1 主电路拓扑及工作原理 双向 DC/DC 变换器具有 Boost 和 Buck 两 种 工
作模式,可把电压较低的辅助储能端能量通过 Boost 变换成电压较高、稳定的直流电源,也可把较高电源 端多余的能量通过 Buck 回馈给较低电压的储能端。
由于超级电容输出电压较低, 同时为了延长使 用 寿 命 , 要 求 输 出 电 流 纹 波 较 小 [3], 若 采 用 传 统 双 向 DC/DC 电 路 ,需 使 用 大 电 感 以 减 小 纹 波 电 流 ,但 能 通过大电流的电感体积大、造价高,且会使系统动态 响应变慢。 图 1 示出采用的双向交错并联 DC/DC 电 路,采用交错并联的工作方式,可利用纹波互消原理 减小纹波电流,亦可有效提高动态响应。

半导体一些术语的中英文对照

半导体一些术语的中英文对照

半导体一些术语的中英文对照离子注入机ion implanterLSS理论Lindhand Scharff and Schiott theory 又称“林汉德-斯卡夫-斯高特理论”。

沟道效应channeling effect射程分布range distribution深度分布depth distribution投影射程projected range阻止距离stopping distance阻止本领stopping power标准阻止截面standard stopping cross section退火annealing激活能activation energy等温退火isothermal annealing激光退火laser annealing应力感生缺陷stress-induced defect择优取向preferred orientation制版工艺mask-making technology图形畸变pattern distortion初缩first minification母版master mask铬版chromium plate干版dry plate乳胶版emulsion plate透明版see-through plate高分辨率版high resolution plate, HRP超微粒干版plate for ultra-microminiaturization 掩模mask掩模对准mask alignment对准精度alignment precision光刻胶photoresist又称“光致抗蚀剂”。

负性光刻胶negative photoresist正性光刻胶positive photoresist无机光刻胶inorganic resist多层光刻胶multilevel resist电子束光刻胶electron beam resistX射线光刻胶X-ray resist刷洗scrubbing甩胶spinning涂胶photoresist coating后烘postbaking光刻photolithographyX射线光刻X-ray lithography电子束光刻electron beam lithography离子束光刻ion beam lithography深紫外光刻deep-UV lithography光刻机mask aligner投影光刻机projection mask aligner曝光exposure接触式曝光法contact exposure method接近式曝光法proximity exposure method光学投影曝光法optical projection exposure method 电子束曝光系统electron beam exposure system分步重复系统step-and-repeat system显影development线宽linewidth去胶stripping of photoresist氧化去胶removing of photoresist by oxidation等离子[体]去胶removing of photoresist by plasma 刻蚀etching干法刻蚀dry etching反应离子刻蚀reactive ion etching, RIE各向同性刻蚀isotropic etching各向异性刻蚀anisotropic etching反应溅射刻蚀reactive sputter etching离子铣ion beam milling又称“离子磨削”。

基于响应面法的电动汽车用非晶合金永磁同步电机优化设计

基于响应面法的电动汽车用非晶合金永磁同步电机优化设计

对非晶合
金定子永磁同步电机
化 %最后通过优化前后效率及转矩对比,
了非晶合金电机在效率提升方面的优
越性。
关键词:永磁同步电机;非晶合金;效率;有限元法;响应面法
中图分类号:TM351; TM341
文献标志码:A
文章编号:1001-6848(2021)06-0033-05
Optimization Design of Amorphous Alloy Permanent Magnet Synctronous Motor for Electric Vehicle Based on Responss Surface MetUod
之间通过Parameter Set /
传递。在AN­
SYS Workbench平台中搭建的
图6所示。优化
流程主要包括:①在Maxwell 2D
参数化 ,
材料定、网剖分、边界条件以及求解选项
等设置。②在Response Surface optimization模块中完
实验 ( DOE) 、 响
合( RJsponsJSuaoacJ)
以及优化(Optimization)的相

A
1
2 0 Geometry
每] 3
Setup
4 3 Solution
► 5 (p? Parameters
置与求解。

丿
|
Parameter Set
图4响应面分析流程
2.2优化目标和优化变量确定
2. 2. 1优化目标
非晶合金永磁同步电机的优化目标为:额定工
况下,电机效 得最大值,
CHEN Jinhua1,CHEN Hao1,2,GAO Yunpeny1,SUN Xianbei1,ZHANG Chi1,JIENG Zha1
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.8 x 7.5cm^2=21cm^2 ~210nH loop inductance !!!!!
75mm
Can the 0.22uF HF Cap help to overcome the layout leakage inductance?
EL = ½*L *I2 = 1/2 *C*(V22- V12) EL = 4.2mJ under full load. EL = 150mJ under short circuit
N.Pluschke 0705
2
Power Electronic from Semikron
Discrete
Module
Solution System
IGBT MOSFET Thyristor Diode CIB
Chips
Low power rectifier
SEMITOP
MiniSKiiP
SEMITRANS
Packaging Modules
Customized IPMs Modules Discretes
Spring
Technology
Technology
Discretes
Chips
Technology
DC-link capacitors Cooling
SiC
Chip
Technology
Discretes
SITUATION IS WORSE
snubber
N.Pluschke 0705
14
Asymmetrical Busbar layout
1cm^2 = 10nH
Moving caps away from IGBT creates extra inductance. Asymmetry causes spatial seperation of flux of I1 and I2, resulting in extra inductance. 1cm^2 = 10nH
Bottom layer Measure point
N.Pluschke 0705
4
Decrease the Inductance
compensation
N.Pluschke 0705
5
Low Inductance DC-link Design
The mechanical design has a significant influence on the stray inductance of the DC-link
28mm
Answer = Not Much!
V ~ 30V under full load V > 1000V under short circuit
N.Pluschke 0705 13
This is worse ! ! ! ! !
Bus Bar Loop Inductance:
2.8 x 7.5cm^2=21cm^2 ~210nH loop inductance between each IGBT and between IGBT and Cap and between each cap Short-circuit Inductance from DC Bus to load is highly asymmetrical
SEMiX
SKiiP 2, 3
SEMISTACK
System
SEMIPONT
SEMIX
SEMIPACK
Driver
Heat sink
N.Pluschke 0705
3
How to check and anlyze the stray inductance?
Wire bridge for testing in the praxis replaced by a capacitor Top layer
N.Pluschke 0705
16
Low inductance DC-link design
Comparison of different designs
Two capacitors in series Two serial capacitors in parallel Typical solution IGBT Moduls Low inductive soluti5
15
Symmetrical DC Bus layout
IGBT and Caps are close and in same columns. Result: Spatial separation of flux is minimised, inductance is at minimum possible.
The connections must be in line with the main current flow
Lstray = 100 % remaining loop
Lstray = 30 %
Position and direction of the capacitors very important
The conductors must be paralleled
Lstray = 100 %
loop
1 cm² ≈ 10 nH
Lstray < 20 %
N.Pluschke 0705
6
Low Inductance DC-link Design
The mechanical design has a significant influence on the stray inductance of the DC-link
F2
N.Pluschke 0705
10
Spatial separation of flux creates leakage inductance F1 + + F2 Insulato r
If currents I1 and I2 overlap perfectly and have no spatial separation, then flux F1 and F2 are of same magnitude and in same place. Result = No inductance.
N.Pluschke 0705 7
Low Inductance DC-link Design
The mechanical design has a significant influence on the stray inductance of the DC-link
A paralleling of the capacitors reduces the inductance further
May 2007
N.Pluschke 0705 1
From technology to system - everything from Semikron
Technology
Semiconductor
Solution
System
Electronics
IPM
SOI
Technology
Integration of customized Software Driver Protection
Lstray = 100 %
Lstray = 50 %
N.Pluschke 0705
8
Influence of +/- terminal structure
4,56 nH
5,55 nH
4,42 nH
3,62 nH
N.Pluschke 0705
9
FLUX DISPLACEMENT DURING COMMUTATION F1 Current flow during commutation: I1 I2 I1 flows through the top bus, creating magnetic flux F1 Load inductance causes current to stay constant during commutation. Load current commutates to bottom diode. I2 now creates flux F2.
Big current loop
+ + + --+ + -
+ + +
+ + + -
+ -
Capacitor
Capacitor
Much better because of the current loop (parallel)
N.Pluschke 0705 17
Benefits
Correct DC Bus design will improve the reliability of the system Lower over voltage will improve the reliability of the IGBT Low stray inductance will reduce the switching losses because of higher di/dt and no over voltage Correct Dc Bus design will create a compact power system Low Stray inductance DC Bus design will reduce the noise Low Stray inductance DC Bus design doesn’t need big snubber capacitors
N.Pluschke 0705
18
Focus June 2007
相关文档
最新文档