代数式的值练习题
代数式的值 浙教版七年级上册练习题(含答案)
4.3代数式的值一、选择题1.已知|x|=3,|y|=2,且xy>0,则x−y的值等于()A. 5或−5B. 1或−1C. 5或1D. −5或−12.若|a|=8,|b|=5,且ab<0,那么a−b的值为()A. 3或13B. 13或−13C. 8或−8D. −3或−133.已知m是√15的整数部分,n是√10的小数部分,则m2−n的值是()A. 6−√10B. 6C. 12−√10D. 134.已知|2m+n+1|+(3y+1)2=0,则3y+2m+n的值是()A. 1B. 0C. −2D. 25.已知代数式x−5y的值是100,则代数式−2x+10y+5的值是()A. 205B. −200C. −195D. 2006.已知a+b=12,则代数式2a+2b−3的值是()A. 2B. −2C. −4D. −3127.若a,b互为相反数,c,d互为倒数,则代数式(a+b−1)(cd+1)的值是()A. 1B. 0C. −1D. −28.已知a2+3a=1,则代数式2a2+6a−1的值为()A. 0B. 1C. 2D. 39.已知a+b=4,则代数式1+a2+b2的值为()A. 3B. 1C. 0D. −110.若x2−3x−5=0,则6x−2x2+5的值为()A. 0B. 5C. −5D. −10二、填空题11.如果m−n=3,那么2m−2n−3的值是______.12.在一次智力竞赛中,主持人问了这样的一道题目:“a是最小的正整数,b是最大的负整数的相反数,c是绝对值最小的有理数,请问:a、b、c三数之和为多少?”你能回答主持人的问题吗?其和应为______.13.若|x−5|+(y+1)2=0,则xy的值是_______14.有理数2,+7.5,−0.03,−300%,0,中,非负整数有a个,负数有b个,正分数有c个,则a−b+c=__________.三、解答题15.已知a,b互为相反数,m,n互为倒数,c的绝对值为2,求代数式a+b+mn−c的值.16.某班为了开展乒乓球比赛活动,准备购买一些乒乓球和乒乓球拍,通过去商店了解情况,甲乙两家商店出售同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价48元,乒乓球每盒定价12元,经商谈,甲乙两家商店给出了如下优惠措施:甲店每买一副乒乓球拍赠送一盒乒乓球,乙店全部按定价的9折优惠.现该班急需乒乓球拍5副,乒乓球x盒(不少于5盒).(1)请用含x的代数式分别表示去甲、乙两店购买所需的费用;(2)当需要购买40盒乒乓球时,通过计算,说明此时去哪家商店购买较为合算;(3)当需要购买40盒乒乓球时,你能给出一种更为省钱的方法吗?试写出你的购买方法和所需费用.17.分别用a,b,c,d表示有理数,a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,d是数轴上到原点距离为5的点表示的数,求|3a−b+2c−d|的倒数.答案和解析1.【答案】B【解析】解:∵|x|=3,|y|=2,∴x=±3,y=±2.又xy>0,∴x=3,y=2或x=−3,y=−2.∴x−y=±1.故选:B.绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.有理数的乘法法则:同号得正,异号得负.本题考查了代数式求值、绝对值的性质:互为相反数的绝对值相等.能够根据两个数的乘积的符号判断两个数的符号的关系.2.【答案】B【解析】【分析】本题主要考查的是绝对值,有理数的乘法,有理数的减法,代数式求值的有关知识,先根据ab<0可以得到a,b异号,然后求出a,b,再代入代数式求值即可.【解答】解:∵ab<0,∴a,b异号,∵|a|=8,|b|=5,∴a=8,b=−5或a=−8,b=5,∴a−b=8−(−5)=13或a−b=−8−5=−13.故选B.3.【答案】C【解析】略4.【答案】C【解析】【分析】本题主要考查了绝对值,完全平方的非负性,令2m+n+1=0,3y+1=0,运用整体代入可以求出2m+n=−1,3y=−1的值代入即可求出结果.【解答】解:∵|2m+n+1|+(3y+1)2=0∴2m+n+1=0,3y+1=0∴2m+n=−1,3y=−1∴3y+2m+n=−2.故选C.5.【答案】C【解析】【分析】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.原式前两项提取−2变形后,把已知x−5y=100代入计算即可求出值.【解答】解:∵x−5y=100,∴原式=−2(x−5y)+5=−200+5=−195故选C.6.【答案】B【解析】【分析】本题主要考查的是代数式求值,运用了整体代入法的有关知识,将给出的代数式进行变形,然后整体代入求值即可.【解答】解:∵a+b=12,∴原式=2(a+b)−3=2×12−3=1−3=−2,故选B.7.【答案】D【解析】【分析】本题主要考查的是代数式求值,相反数,倒数的有关知识,先利用相反数,倒数的定义得到a+b=0,cd=1,然后代入代数式求值即可.解:∵a,b互为相反数,c,d互为倒数,∴a+b=0,cd=1,∴原式=(−1)×(1+1)=−2,故选D.8.【答案】B【解析】【分析】此题主要考查了代数式求值,正确将原式变形是解题关键.直接利用已知将原式变形,然后整体代入计算即可求出答案.【解答】解:∵a2+3a=1,∴2a2+6a=2(a2+3a)=2∴2a2+6a−1=2−1=1.故选B.9.【答案】A【解析】解:当a+b=4时,原式=1+12(a+b)=1+12×4=1+2=3,故选:A.将a+b的值代入原式=1+12(a+b)计算可得.本题主要考查代数式求值,解题的关键是得出待求代数式与已知等式间的特点,利用整体代入的办法进行计算.10.【答案】C【解析】本题考查了代数式求值,整体代入法,关键是由x2−3x−5=0,得x2−3x=5把x2−3x看作一个整体,代入计算的值即可.【解答】解:6x−2x2+5,=−2x2+6x+5=−2(x2−3x)+5=−2×5+5=−5.故选C.11.【答案】3【解析】解:∵m−n=3,∴原式=2(m−n)−3=2×3−3=6−3=3.故答案为:3.原式前两项提取公因式变形后,把已知等式代入计算即可求出值.此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.12.【答案】2【解析】解:∵a是最小的正整数,b是最大的负整数的相反数,c是绝对值最小的有理数,∴a=1,b=1,c=0,∴a+b+c=1+1+0=2.故答案是2.先根据已知条件求出a、b、c的值,再代入代数式求值即可.解题的关键是先求出a、b、c的值,然后再求代数式的值.13.【答案】−514.【答案】2【解析】【分析】本题考查了有理数的分类,解题的关键是分类的标准要不重不漏的找到符合条件的a,b,c的值.根据有理数的分类标准把给出的非负整数有a个,负数有b个,正分数有c 个,,即可求出a−b+c的值.【解答】解:有理数2,+7.5,−0.03,−300%,0中,非负整数有3个,负数有2个,正分数有1个,则a−b+c=3−2+1=2.故答案为2.15.【答案】解:∵a,b互为相反数,m,n互为倒数,c的绝对值为2,∴a+b=0,mn=1,c=±2,当c=2时,a+b+mn−c=0+1−2=−1;当c=−2时,a+b+mn−c=0+1−(−2)=0+1+2=3;由上可得,代数式a+b+mn−c的值是−1或3.【解析】本题考查的是相反数定义,倒数定义和绝对值的性质以及代数式的值,根据a,b互为相反数,m,n互为倒数,c的绝对值为2,可以求得a+b,mn、c的值,从而可以求得所求式子的值.16.【答案】解:(1)甲店购买需付款48×5+(x−5)×12=(12x+180)元;乙店购买需付款48×90%×5+12×90%×x=(10.8x+216)元;(2)当x=40时,甲店需12×40+180=660元;乙店需10.8×40+216=648元;所以乙店购买合算;(3)先甲店购买5副球拍,送5盒乒乓球240元,另外35盒乒乓球再乙店购买需378元,共需618元.【解析】(1)按照对应的方案的计算方法分别列出代数式即可;(2)把x=40代入求得的代数式求得数值,进一步比较得出答案即可;(3)根据两种方案的优惠方式,可得出先甲店购买5副球拍,送5盒乒乓球,另外35盒乒乓球再乙店购买即可.此题考查列代数式,理解两种方案的优惠方案,得出运算的方法是解决问题的关键.17.【答案】解:∵a是最小的正整数,∴a=1,∵b是最大的负整数,∴b=−1,∵c是绝对值最小的有理数,∴c=0,∵d是数轴上到原点距离为5的点表示的数,∴d=±5,∴|3a−b+2c−d|=|3+1+0−5|=1或|3a−b+2c−d|=|3+1+0+5|=9∴|3a−b+2c−d|的倒数为1或19【解析】本题主要考查了有理数的加减混合运算,有理数、绝对值,数轴及倒数,熟练掌握各自的定义是解决本题的关键.根据最小的正整数为1,最大的负整数为−1,绝对值最小的有理数为0,以及数轴上到原点距离的定义,确定出a,b,c,d的值,即可求出|3a−b+2c−d|的值,再求出其倒数即可.。
代数式的值的练习题
1、当 x = 时,代数式
412-x 的值是0。
2、在代数式 x
1 中, x 的取值不能是 。
3、当x = 21时,代数式 58
12++x x 的值是 。
4、当 23=-b a 时,求 ()b a --33 的值。
5、若 2,55-==b ,且 0>ab ,求 b a +的值。
6、在某地,人们发现某种蟋蟀叫的次数x 与t 温度之间有如下的近似关系;用蟋蟀1分钟叫的次数x 除以7,然后再加上3,就近似地得到该地当时的温度t (℃)。
(1)试用代数式表示该地当时的温度t (℃)。
(2)当蟋蟀1分钟叫的次数分别是50和70时,该地当时的温度t 大约是多少?
7、已知2,2,1-=-==c b a ,求()()()[]
b a
c b b a -+--222的值。
8、若0122=+-a a ,求代数式()a a 222-的值。
9、电灯泡的瓦数是Q ,则t 小时的用电量为1000
Qt 千瓦时,用一个40瓦的灯泡,如果平均每天用电5小时,每月(以30天计)共用电多少千瓦时?
10、某电视机厂生产一批电视机,每天生产a 台,计划生产b 天,为提前投放市场,需提前2天完成,用代数式表示该厂实际每天多生产多少台,并求当22,1200==b a 时,每天多生产的台数。
七年级数学上册代数式运算专项练习题
七年级数学上册代数式运算专项练习题1. 计算下列代数式的值:a) 3x - 2y,当 x = 5,y = 2 时;b) 2a^2 + 3a - 4,当 a = 4 时;c) 5b - 3b^2,当 b = -2 时。
2. 化简下列代数式:a) 2(x + 3) - 4(2 - 3x);b) 3(2 - m) + 4(m - 1);c) 5x - (2x + 3)。
3. 展开并化简下列代数式:a) (x - 2)(x + 4);b) (3a + 2)(4a - 1);c) (2x - 1)(3x + 2)。
4. 因式分解下列代数式:a) 2x^2 + 6x;b) 4m^2 - 9;c) 5x^2 - 20x。
5. 求解下列方程:a) 2x + 3 = 7;b) 4y - 5 = 3y + 10;c) 3z - 2(z + 4) = z + 6。
解答:1. a) 3x - 2y,当 x = 5,y = 2 时:3(5) - 2(2) = 15 - 4 = 11b) 2a^2 + 3a - 4,当 a = 4 时:2(4)^2 + 3(4) - 4 = 2(16) + 12 - 4 = 32 + 12 - 4 = 40 c) 5b - 3b^2,当 b = -2 时:5(-2) - 3(-2)^2 = -10 - 3(4) = -10 - 12 = -222. a) 2(x + 3) - 4(2 - 3x):2x + 6 - (8 - 12x) = 2x + 6 - 8 + 12x = 14x - 2b) 3(2 - m) + 4(m - 1):6 - 3m + 4m - 4 = 1m + 2c) 5x - (2x + 3):5x - 2x - 3 = 3x - 33. a) (x - 2)(x + 4):x(x) + x(4) - 2(x) - 2(4) = x^2 + 4x - 2x - 8 = x^2 + 2x - 8b) (3a + 2)(4a - 1):3a(4a) + 3a(-1) + 2(4a) + 2(-1) = 12a^2 - 3a + 8a - 2 = 12a^2 + 5a - 2 c) (2x - 1)(3x + 2):2x(3x) + 2x(2) - 1(3x) - 1(2) = 6x^2 + 4x - 3x - 2 = 6x^2 + x - 24. a) 2x^2 + 6x:2x(x + 3) = 2x^2 + 6xb) 4m^2 - 9:(2m)^2 - 3^2 = (2m + 3)(2m - 3)c) 5x^2 - 20x:5x(x - 4) = 5x^2 - 20x5. a) 2x + 3 = 7:2x = 7 - 32x = 4x = 2b) 4y - 5 = 3y + 10:4y - 3y = 10 + 5y = 15c) 3z - 2(z + 4) = z + 6:3z - 2z - 8 = z + 6z - 8 = z + 6-8 = 6 (不满足方程,无解)通过解答以上的代数式运算专项练习题,我们可以对七年级数学上册的代数式运算有更深入的理解。
求代数式的值专项练习60题(有答案)
45.已知a是最小的正整数,b是a的相反数,c的绝对值为9,试求2a+2b ﹣3c的值. 46.已知2x2+3x=5,求代数式﹣4x2﹣6x+6的值. 47.当a=3,b=﹣2,c=﹣5时,代数式b2﹣4ac的值是 _________ . 48.若|a|=4,b是绝对值最小的数,c是最大的负整数,求a+b﹣c的 值. 49.已知a与b互为相反数,c与d互为倒数,|x|=5,求x2+ (a+b)2012+(﹣cd)2013的值. 50.若|x﹣4|+(2y﹣x)2=0,求代数式x2﹣2xy+y2的值. 51.已知|m|=3,n2=16,且mn<0,求2m﹣3n的值. 52.若a、b互为相反数,c、d互为倒数,|m|=3,求 +m2﹣3cd+5m的值. 53.己知:|x|=4,y2= ;且x>0,y<0,求2x﹣7y的值. 54.已知m2﹣mn=21,mn﹣n2=﹣12.求下列代数式的值: (1)m2﹣n2(2)m2﹣2mn+n2. 55.a※b是新规定的这样一种运算法则:a※b=a2+2ab,例如3※(﹣ 2)=32+2×3×(﹣2)=﹣3 (1)试求(﹣2)※3的值 (2)若1※x=3,求x的值 (3)若(﹣2)※x=﹣2+x,求x的值 56.已知a是最小的正整数,b、c是有理数,且 有|2+b|+(3a+2c)2=0,求代数式
∴原式=2a﹣3﹣2b =2(a﹣b)﹣3 =2×1﹣3 =﹣1. 故答案为﹣1 24.∵x2﹣2x=6, ∴﹣3x2+6x+5=﹣3(x2﹣2x)+5=﹣3×6+5=﹣13. 故答案为﹣13 25.原式=x﹣y﹣2, 当x﹣y=5时,原式=5﹣2=3. 故答案为3 26.∵a2+ab=5,b2+ab=2, ∴a2+ab+b2+ab=7, ∴a2+2ab+b2=7. 故答案为:7 27.6x+10=3(2x+3)+1=15+1=16. 故答案是:16 28.∵m2+2m﹣2=0, ∴m2+2m=2, ∴2m2+4m﹣9=2(m2+2m)﹣9=2×2﹣9=﹣5. 故答案为﹣5. 29.由已知得: 3x2﹣4x+6=9, 即3x2﹣4x=3, , = (3x2﹣4x)+6, =
求代数式的值专项练习60题(有答案)ok
求代数式的值专项练习60题(有答案)1.当x=﹣1时,代数式2﹣x的值是_________ .2.若a2﹣3a=1,则代数式2a2﹣6a+5的值是_________ .3.若a2+2a=1,则(a+1)2= _________ .4.如图是一个数值转换机,若输入a值为2,则输出的结果应为_________ .5.若x+y=﹣1,且(x+y)2﹣3(x+y)a=7,则a2+2= _________ .6.若a、b互为相反数,x、y互为倒数,则式子2(a+b)+5xy的值为_________ .7.若a+b=2,则2a+2b+1= _________ .8.当a=1,|a﹣3|= _________ .9.若x=﹣3,则= _________ ,若x=﹣3,则﹣x= _________ .10.若a,b互为相反数,且都不为零,则(a+b﹣1)(+1)的值为_________ .11.若a﹣b=,则10(b﹣a)= _________ .12.如果m﹣n=,那么﹣3(n﹣m)= _________ .13.a、b互为相反数,m,n互为倒数,则(a+b)2+= _________ .14.a,b互为相反数,a≠0,c、d互为倒数,则式子的值为_________ .15.若a﹣b=1,则代数式a﹣(b﹣2)的值是_________ ;若a+b=1,则代数式5﹣a﹣b的值是_________ .16.d是最大的负整数,e是最小的正整数,f的相反数等于它本身,则d﹣e+2f的值是_________ .17.当x= _________ 时,代数式2009﹣|2008﹣x|有最大值,最大值为_________ .18.若|m|=3,则m2= _________ .19.若代数式2a+2b的值是8,则代数式a+b的值是_________ .20.若m=n﹣5,则5m﹣5n+5等于_________ .21.已知x=﹣,则代数式1﹣x3的值等于_________ .22.当x=2时,x3﹣x﹣8= _________ .23.若代数式a﹣b的值是1,那么代数式2a﹣(3+2b)的值等于_________ .24.若x2﹣2x的值是6,则﹣3x2+6x+5的值是_________ .25.已知x﹣y=5,代数式x﹣2﹣y的值是_________ .26.已知:a2+ab=5,b2+ab=2,则a2+2ab+b2= _________ .27.若2x+3=5,则6x+10等于_________ .28.若m2+2m﹣2=0,则2m2+4m﹣9= _________ .29.已知多项式3x2﹣4x+6的值为9,则多项式的值为_________ .30.若3a2﹣a﹣3=0,则6a2﹣2a+9= _________ .31.若(3+a)2+|b﹣2|=0,则3a﹣2b﹣2012的值为_________ .32.在数轴上,点A、B分别表示有理数 a、b,原点O恰好是AB的中点,则(a+b)2004+()2005的值是_________ .33.如果x2+3x﹣1的值是4,则代数式2x2+6x+5的值是_________ .34.已知a、b互为相反数,c、d互为倒数,m的绝对值为2,求m2+a+b+的值.35.求代数式的值:(1)当,b=5时,求8a+3b的值;(2)已知a=|﹣4|,b=(﹣2)3,求b2﹣ab的值.36.已知a2+5ab=76,3b2+2ab=51,求代数式a2+11ab+9b2的值.37.当x=2,y=﹣4时,求代数式x2+2xy+y2的值.38.如果有理数a、b满足|a﹣1|+(b+1)2=0,求a101+b100的值.39.当x=﹣,y=﹣3时,求代数式x2﹣2xy+y2的值.40.已知,|a|=3,|b|=5,且a2>0,b3<0,求2a+b的值.41.当x=7时,代数式ax3+bx﹣5的值为7;当x=﹣7时,代数式ax3+bx﹣5的值为多少?42.求代数式的值:(1)当a=﹣2,b=5时,求2a+5b的值;(2)已知a=|﹣3|,b=(﹣2)3,求a2+b2的值.43.有理数m,n为相反数,x,y互为负倒数,z的绝对值等于7,求3m+3n+5xy+z的值.44.三个有理数a,b,c的积是负数,其和为正数,当x=++时,试求x2011﹣2010x+2009 的值.45.已知a是最小的正整数,b是a的相反数,c的绝对值为9,试求2a+2b﹣3c的值.46.已知2x2+3x=5,求代数式﹣4x2﹣6x+6的值.47.当a=3,b=﹣2,c=﹣5时,代数式b2﹣4ac的值是_________ .48.若|a|=4,b是绝对值最小的数,c是最大的负整数,求a+b﹣c的值.49.已知a与b互为相反数,c与d互为倒数,|x|=5,求x2+(a+b)2012+(﹣cd)2013的值.50.若|x﹣4|+(2y﹣x)2=0,求代数式x2﹣2xy+y2的值.51.已知|m|=3,n2=16,且mn<0,求2m﹣3n的值.52.若a、b互为相反数,c、d互为倒数,|m|=3,求+m2﹣3cd+5m的值.53.己知:|x|=4,y2=;且x>0,y<0,求2x﹣7y的值.54.已知m2﹣mn=21,mn﹣n2=﹣12.求下列代数式的值:(1)m2﹣n2(2)m2﹣2mn+n2.55.a※b是新规定的这样一种运算法则:a※b=a2+2ab,例如3※(﹣2)=32+2×3×(﹣2)=﹣3(1)试求(﹣2)※3的值(2)若1※x=3,求x的值(3)若(﹣2)※x=﹣2+x,求x的值56.已知a是最小的正整数,b、c是有理数,且有|2+b|+(3a+2c)2=0,求代数式的值.57.如果4a﹣3b=7,并且3a+2b=19,求14a﹣2b的值.58.已知,求代数式的值.59.已知a、b互为相反数,c、d互为倒数,x的绝对值是5.试求﹣x2+[a+b+cd2﹣(d﹣1)]﹣(a+b﹣4)3﹣|cd ﹣3|的值.60.已知当x=2时,多项式ax5+bx3+cx+3的值为100,那么当x=﹣2时,求多项式ax5+bx3+cx+3的值.求代数式的值60题参考答案:1.∵x=﹣1∴2﹣x=2﹣(﹣1)=2+1=3.2.∵a2﹣3a=1,∴原式=2×1+5=7.3.等式两边同时加1,等式即可转换为a2+2a+1=2,即为(a+1)2=2.故答案为:24.﹣3a2+1=﹣3×4+1=﹣11.5.∵x+y=﹣1,∴(x+y)2﹣3(x+y)a=7,1+3a=7,即a=2,则a2+2=4+2=66.∵a、b互为相反数,x、y互为倒数,∴a+b=0,xy=1,∴2(a+b)+5xy=0+5=57.2a+2b+1=2(a+b)+1=2×2+1=5.8.当a=1时,|a﹣3|=|1﹣3|=|﹣2|=2.9.(1)∵x=﹣3,∴=﹣;(2)∵x=﹣3,∴﹣x=﹣(﹣3)=3.10.由题意得:a+b=0且a≠0、b≠0,∴原式=﹣1×0=0.11.当a﹣b=时,原式=10×(﹣)=﹣4.故填﹣4.12.当m﹣n=时,原式=﹣3×[﹣(m﹣n)]=﹣3×(﹣)=.故填.13.∵a、b互为相反数∴a+b=0∵m,n互为倒数∴mn=1∴(a+b)2+=02+=3故此题应该填3.14.∵a,b互为相反数,a≠0,c、d互为倒数,∴a+b=0,cd=1,∴式子=+(﹣1)2007﹣12008=0﹣1﹣1=﹣2,故答案为﹣2 将a﹣b=1代入得:所求的结果为1+2=3.同理,整理代数式得,5﹣a﹣b=5﹣(a+b),将a+b=1代入得,所求结果为5﹣1=4.故本题答案为:3、4.16.由题意知,d=﹣1,e=1,f=0,所以d﹣e+2f=﹣1﹣1+0=﹣2.故应填﹣217.∵代数式2009﹣|2008﹣x|有最大值,∴2008﹣x=0,即x=2008.当x=2008时,代数式2009﹣|2008﹣x|=2009.故当x=2008时,代数式2009﹣|2008﹣x|有最大值,最大值为200918.∵|m|=3,∴m=﹣3或3,∴m2=(±3)2=919.由题意得:2a+2b=8∴a+b=4.20.∵m=n﹣5,∴m﹣n=﹣5,∴5m﹣5n+5=5(m﹣n)+5=﹣25+5=﹣20.21.∵x=﹣,∴1﹣x3=1﹣(﹣)3=1+=4,故答案为422.当x=2时,x3﹣x﹣8=23﹣2﹣8=﹣2.故答案为:﹣223.∵a﹣b=1,∴原式=2a﹣3﹣2b=2(a﹣b)﹣3=2×1﹣3=﹣1.故答案为﹣124.∵x2﹣2x=6,∴﹣3x2+6x+5=﹣3(x2﹣2x)+5=﹣3×6+5=﹣13.故答案为﹣1325.原式=x﹣y﹣2,当x﹣y=5时,原式=5﹣2=3.故答案为326.∵a2+ab=5,b2+ab=2,∴a2+ab+b2+ab=7,∴a2+2ab+b2=7.故答案为:727.6x+10=3(2x+3)+1=15+1=16.故答案是:16∴m2+2m=2,∴2m2+4m﹣9=2(m2+2m)﹣9=2×2﹣9=﹣5.故答案为﹣5.29.由已知得:3x2﹣4x+6=9,即3x2﹣4x=3,,=(3x2﹣4x)+6,=×3+6=7.故答案为:730.∵3a2﹣a﹣3=0,∴3a2﹣a=3,∴6a2﹣2a+9=2(3a2﹣a)+9=2×3+9=15.故答案为15.31.根据题意得,3+a=0,b﹣2=0,解得a=﹣3,b=2,所以,3a﹣2b﹣2012=3×(﹣3)﹣2×2﹣2012=﹣9﹣4﹣2012=﹣2025.故答案为:﹣202532.∵点A、B分别表示有理数 a、b,原点O恰好是AB 的中点,∴a+b=0,即a=﹣b,∴(a+b)2004+()2005=0﹣1=﹣133.由x2+3x﹣1=4得x2+3x=5,∴2x2+6x+5=2(x2+3x)+5=2×5+5=15.故本题答案为:15.34.a,b互为相反数,则a+b=0,c,d互为倒数,则cd=1,m的绝对值是2,则m=±2,当m=2时,原式=4+0+=;当m=﹣2时,原式=4+0﹣=.35.(1)∵,b=5,∴8a+3b=﹣4+15=11;(2)∵a=|﹣4|,b=(﹣2)3,∴a=4,b=﹣8时,∴b2﹣ab=64+32=96.(3分)36.a2+11ab+9b2=a2+5ab+6ab+9b2=a2+5ab+3(2ab+3b2)∵a2+5ab=76,3b2+2ab=51,37.∵x=2,y=﹣4,∴x+y=2﹣4=﹣2,x2+2xy+y2=(x+y)2=(﹣2)2=4.38.∵|a﹣1|+(b+1)2=0,∴a﹣1=0,b+1=0,∴a=1,b=﹣1,当a=1,b=﹣1时,原式=1101+(﹣1)100=239.当时,原式==﹣3+9=.40.∵|a|=3,且a2>0,∴a=±3,∵|b|=5,b3<0,∴b=﹣5,∴当a=3,b=﹣5时,2a+b=6﹣5=1;当a=﹣3,b=﹣5时,2a+b=﹣6﹣5=﹣11;答:2a+b的值为1或﹣1141.∵x=7时,代数式ax3+bx﹣5的值为7,∴a×73+7b﹣5=7,即a×73+7b=12,∴当x=﹣7时,a×(﹣7)3﹣7x﹣5=﹣(a×73+7b)﹣5=﹣12﹣5=﹣17.42.(1)当a=﹣2,b=5时,2a+5b=2×(﹣2)+5×5=21;(2)∵a=|﹣3|=3,b=(﹣2)3=﹣8,∴a2+b2=9+64=7343.∵m,n为相反数,x,y互为负倒数,z的绝对值等于7,∴m+n=0,xy=﹣1,z=±7,∴3m+3n+5xy+z=3(m+n)+5xy+z=3×0+5×(﹣1)+z=﹣5+z,当z=7时,3m+3n+5xy+z=﹣5+7=2;当z=﹣7时,3m+3n+5xy+z=﹣5﹣7=﹣12.∴3m+3n+5xy+z的值为2或﹣1244.∵三个有理数a,b,c的积是负数,其和为正数,∴三个有理数a,b,c中有两个正数、一个负数,∴、、中有两个1和一个﹣1,∴x=++=1,∴x2011﹣2010x+2009=12011﹣2010×1+2009=045.∵a是最小的正整数,∴a=1,∴b=﹣1,∵c的绝对值为9,∴c=9或﹣9,当c=9时,2a+2b﹣3c=2×1+2×(﹣1)﹣3×9=﹣27,当c=﹣9时,2a+2b﹣3c=2×1+2×(﹣1)﹣3×(﹣9)=27,所以,代数式的值是27或﹣2746.∵2x2+3x=5,∴(2x2+3x)×(﹣2)=5×(﹣2),即:﹣4x2﹣6x=﹣10,∴﹣4x2﹣6x+6=﹣10+6=﹣447.当a=3,b=﹣2,c=﹣5时,原式=(﹣2)2﹣4×3×(﹣5)=64.故答案是6448.由|a|=4,得a=4或a=﹣4,∵b是绝对值最小的数,∴b=0,又∵c是最大的负整数,∴c=﹣1,∴a+b﹣c=4+0﹣(﹣1)=4+1=5,或a+b﹣c=﹣4+0﹣(﹣1)=﹣4+1=﹣3,即a+b﹣c的值为﹣3或549.∵a与b互为相反数,∴a+b=0,∵c与d互为倒数∴cd=1,∵|x|=5,∴x2=25,∴x2+(a+b)2012+(﹣cd)2013=25+0+(﹣1)=24.50.因为|x﹣4|+(2y﹣x)2=0,所以x﹣4=0,2y﹣x=0,解得:x=4,y=2,x2﹣2xy+y2=(x﹣y)2,把x=4,y=2代入得:(4﹣2)2=4,所以代数式x2﹣2xy+y2的值为:451.∵|m|=3,n2=16,∴m=±3,n=±4,又∵mn<0,∴(1)当m=3,n=﹣4时,2m﹣3n=2×3﹣3×(﹣4),=6+12,=18;(2)当m=﹣3,n=4时,2m﹣3n=2×(﹣3)﹣3×4,=﹣6﹣12,=﹣18.综上所述,2m﹣3n的值为18或﹣1852.∵a、b互为相反数,c、d互为倒数,|m|=3,∴a+b=0,cd=1,m=±3,①m=3时,原式=0+9﹣3+15=21;∴+m2﹣3cd+5m的值是21或﹣953.∵|x|=4,y2=;且x>0,y<0,∴x=4,y=﹣,∴2x﹣7y=2×4﹣7×(﹣)=8+1=954.(1)∵m2﹣mn=21,mn﹣n2=﹣12,∴m2﹣n2=(m2﹣mn)+(mn﹣n2)=21﹣12=9;(2)∵m2﹣mn=21,mn﹣n2=﹣12,∴m2﹣2mn+n2=(m2﹣mn)﹣(mn﹣n2)=21﹣(﹣12)=21+12=3355.(1)(﹣2)※3=(﹣2)2+2×(﹣2)×3=4﹣12=﹣8;(2)∵1※x=3,∴12+2x=3,∴2x=3﹣1,∴x=1;(3)﹣2※x=﹣2+x,(﹣2)2+2×(﹣2)x=﹣2+x,4﹣4x=﹣2+x,﹣4x﹣4=﹣2﹣4,﹣5x=﹣6,x=56.由已知得a=1,又因为|2+b|+(3a+2c)2=0,所以2+b=0,3a+2c=0,所以b=﹣2,c=.把a=1,b=﹣2,c=代入原式求得:57.∵4a﹣3b=7,并且3a+2b=19,∴14a﹣2b=2(7a﹣b)=2[(4a+3a)+(﹣3b+2b)]=2[(4a﹣3b)+(3a+2b)]=2(7+19)=52,答:14a﹣2b的值为52∴xy=2(x+y)∴原式===59.∵a、b互为相反数,c、d互为倒数,x的绝对值是5.∴a+b=0,cd=1,x2=25,∴﹣x2+[a+b+cd2﹣(d﹣1)]﹣(a+b﹣4)3﹣|cd﹣3| =﹣25+(0+d﹣d+1)﹣(0﹣4)3﹣|1﹣3|=﹣25+1+64﹣2=3860.x=2时,25a+23b+2c+3=100,∴25a+23b+2c=97,x=﹣2时,ax5+bx3+cx+3=﹣25a﹣23b﹣2c+3=﹣97+3=﹣94。
七年级代数式练习题
七年级代数式练习题解决七年级代数式练习题在七年级学习代数时,练习题是提高自己掌握代数知识的重要途径。
本篇文章将提供一些七年级代数式的练习题,以帮助同学们更好地理解和掌握代数式的相关概念和运算方法。
一、基础代数式练习题1. 计算下列代数式的值:a = 4, b = 2a + ba - b2a + bab2. 计算下列代数式的值:x = 3, y = 53x + 2yx^2 + 2xy + y^2(x + y)(x - y)3. 给定代数式:5x + 2y,当 x = 2, y = 3时,求其值。
4. 将下列代数式展开:(a + b)^2(x - y)^25. 将下列代数式因式分解:x^2 + 5x + 6y^2 - 4y + 4二、复杂代数式练习题1. 将下列代数式化简:2a + 3a - 5a + a2(x + y) - 3(x - y) + 4(x + y)2. 求解方程:2x + 3 = 93(x + 4) = 2x - 53. 根据给定的条件,列方程并求解:a) 一个数的三倍减去5等于20,求这个数。
b) 两个数之和等于15,且其中一个数是另一个数的3倍,求这两个数。
4. 根据给定的图形,列方程并求解:a) 一个正方形的边长加上5等于这个正方形的对角线长。
b) 一个长方形的长是宽的3倍,且长和宽的和等于24,求长方形的周长。
5. 求解方程组:a) 3x + 2y = 102x - y = 3b) 2(a + b) = 10a -b = 4三、代数式的应用练习题1. 一个矩形的周长是16cm,宽是x cm,根据周长和宽度列方程,求出矩形的长。
2. 手机充电器收取固定费用5元,及每分钟通话费用0.2元。
根据通话时间列代数式,计算通话10分钟的费用。
3. 一个正方形和一个长方形的面积加起来是42平方米。
已知正方形的边长是x米,长方形的长是2x米,求长方形的宽度。
4. 汽车以恒定的速度行驶,行驶时间和行驶的距离之间的关系可以用代数式d = 60t来表示,其中d为距离,t为时间(单位:分钟)。
代数式求值(习题及答案)
代数式求值(习题)➢ 例题示范例1:若23a b -=,则代数式2(2)422000b a a b --++的值是_______.思路分析观察已知,发现字母a ,b 的值无法确定,所以考虑整体代入.对比已知及所求,把2a -b 当作一个整体,对所求式子进行变形.原式=2(2)2(2)2000a b a b ---+最后整体代入,化简➢ 巩固练习1. 关于x 的代数式222(28)4(21)x x kx x x ⎡⎤+---+⎣⎦,当k 为何值时,代数式的值是常数?2. 若关于x 的代数式2214(45)64x mx x x mx mx ⎛⎫+---+- ⎪⎝⎭的值与x 无关,求代数式2223(21)363m m m m ⎡⎤-+-+⎢⎥⎣⎦的值. 3. 若232a b a b -=+,则代数式2(2)15(2)22a b a b a b a b-+-+-+的值是_______. 4. 若代数式2346x x -+的值是9,则代数式2463x x -+的值是___________. 5. 若2x y =,则代数式45x y x y-+的值是___________. 6. 已知当5x =时,代数式25ax bx +-的值是10,则当5x =时,代数式25ax bx ++的值是____________.7. 已知当3x =-时,代数式535ax bx cx ++-的值是7,则当3x =时,代数式535ax bx cx ++-的值是__________.8. 若m 表示一个两位数, n 表示一个两位数,把m 放在n 的右边,则这个四位数可用代数式表示为_____________.9. 若a 表示一个一位数,b 表示一个两位数,c 表示一个三位数,把c 放在a的左边,b 放在a 的右边,组成一个六位数,则这个六位数可用代数式表示为__________________.➢ 思考小结1. 已知3240x x --=,则代数式3361x x -++的值是_______.通过本讲的学习,小明的做法:①把含有字母的项“32x x -”作为整体,则324x x -=;②在所求的代数式中找整体,对比系数解决:小刚的做法:①把最高次项“3x ”作为整体,则324x x =+;②在所求的代数式中找整体,对比系数解决:小聪的做法:①把“324x x --”作为整体;②在所求的代数式中找整体,对比系数解决:对比小明、小刚、小聪的做法,我们发现无论把“32x x -”, “3x ”还是“324x x --”作为整体,代入,目标都是把所求的代数式降次,这种转化的思想是“高次降次”.【参考答案】➢巩固练习1.当k=6时,代数式的值为常数2.m=-1,原式=-m-3,当m=-1时,原式=-23.114.75.16.207.-178.100n+m9. 1 000c+100a+b➢思考小结-11。
初二代数式求值练习题
初二代数式求值练习题今天我们来一起做一些初二代数式求值练习题,通过这些题目的练习,我们将更好地理解和掌握代数式的求值方法。
在解答问题时,请确保每一步计算都清晰明了,以免出错。
让我们开始吧!1. 计算并求值:2x + 1,当 x = 3 时。
解答:代入 x = 3,得到:2(3) + 1 = 6 + 1 = 7。
所以,当 x = 3 时,2x + 1 的值为 7。
2. 计算并求值:3(x + 2),当 x = 4 时。
解答:代入 x = 4,得到:3(4 + 2) = 3(6) = 18。
所以,当 x = 4 时,3(x + 2) 的值为 18。
3. 计算并求值:(2x - 3)(x + 5),当 x = 2 时。
解答:代入 x = 2,得到:(2(2) - 3)(2 + 5) = (-2)(7) = -14。
所以,当 x = 2 时,(2x - 3)(x + 5) 的值为 -14。
4. 计算并求值:2x^2 + 3x - 4,当 x = 1 时。
解答:代入 x = 1,得到:2(1)^2 + 3(1) - 4 = 2 + 3 - 4 = 1。
所以,当 x = 1 时,2x^2 + 3x - 4 的值为 1。
5. 计算并求值:4(x^2 + 2x) - (x - 1),当 x = -2 时。
解答:代入 x = -2,得到:4((-2)^2 + 2(-2)) - (-2 - 1) = 4(4 - 4) - (-3) = 0 - (-3) = 3。
所以,当 x = -2 时,4(x^2 + 2x) - (x - 1) 的值为 3。
通过以上的练习题,我们复习了如何求解代数式的值。
希望这些题目能够加深我们对代数式求值的理解,并提高我们在该方面的能力。
代数是数学中一个重要的分支,它在解决实际问题中起着重要的作用。
代数式求值作为代数的基础知识,在我们学习更复杂的代数运算和方程解法时发挥着重要的作用。
因此,我们要充分掌握代数式求值的方法,不断加强练习。
5.3《代数式的值》专题练习
5.3 代数式的值专题一代数式的值的意义与求值1. a为有理数.下列说法中正确的是( )A.(a+1) 2的值是正数B.a2+1的值是正数C.-(a+1)2的值是负数D.-a2+1的值小于12. 如果1<x<2,则代数式2121x x xx x x---+--的值是( )A.1 B.-1 C.2 D.3 专题二与代数式的值有关的探究题3. 已知代数式25342()x ax bx cxx dx+++,当x=1时,值为1,那么该代数式当x=1-时的值是()A. 1B. 1-C. 0D.24. 已知y=ax7+bx5+cx3+dx+e,其中a,b,c,d,e为常数,当x=2时,y =23;当x=-2时,y=-35,那么e的值是()A.6 B.-6 C.12 D.-125. QQ是一种流行的中文网络即时通讯软件.注册用户通过累积“活跃天数”就可获得相应的等级,如果用户当天(0:00~24:00)使用QQ在2小时以上(包括2小时),其“活跃天数”累积为1天.一个新用户等级升到1级需要5天的“活跃天数”,这样可以得到1个星星,此后每升1级需要的“活跃天数”都比前一次多2天,每升1级可以得到1个星星,每4个星星可以换成一个月亮,每4个月亮可以换成1个太阳.网名是“未来”的某用户今天刚升到2个月亮1个星星的等级,那么他可以升到1个太阳最少还需经过的天数是多少天?状元笔记【知识要点】1. 代数式的值:一般地,用具体数值代替代数式中的字母,按照代数式中的运算关系计算得出的结果,叫代数式的值.2. 求代数式的值的步骤:一代入,二求值.【温馨提示(针对易错)】求代数式的值时,要注意书写格式;代入负数或分数时,要注意适时添加括号. 【方法技巧】求代数式的值,有时求不出其字母的值,需要利用技巧,利用“整体”代入.。
《代数式求值》专项练习
代数式求值一、选择题(共12 小题)1.已知 m=1,n=0,则代数式 m+n的值为()A.﹣ 1 B.1C.﹣ 2 D.22.已知 x2﹣ 2x﹣8=0,则 3x2﹣6x﹣ 18 的值为()A.54 B.6C.﹣ 10D.﹣ 183.已知 a2+2a=1,则代数式 2a2+4a﹣1 的值为()A.0B.1C.﹣ 1 D.﹣24.在数学活动课上,同学们利用如图的程序进行计算,发现不论x 取任何正整数,结果都会进入循环,下面选项必定不是该循环的是()A.4,2,1 B.2,1,4 C.1,4,2 D.2,4,15.当 x=1 时,代数式 4﹣3x 的值是()A.1B.2C.3D.46.已知 x=1,y=2,则代数式 x﹣y 的值为()A.1B.﹣1 C.2D.﹣37.已知 x2﹣ 2x﹣3=0,则 2x2﹣4x 的值为()A.﹣6 B.6C.﹣2或 6D.﹣2 或 308.按如图的运算程序,能使输出结果为 3 的 x,y 的值是()A.x=5, y=﹣2 B .x=3, y=﹣3 C. x=﹣4,y=2 D.x=﹣3,y=﹣99.若 m+n=﹣1,则( m+n)2﹣2m﹣2n 的值是()A.3B.0C.1D.210.已知 x﹣2y=3,则代数式 6﹣2x+4y 的值为()A.0B.﹣1 C.﹣ 3 D.311.当 x=1 时,代数式a x3﹣3bx+4 的值是 7,则当 x=﹣1 时,这个代数式的值是()A.7B.3C.1D.﹣712.如图是一个运算程序的表示图,若开始输入x 的值为 81,则第 2014 次输出的结果为()A.3B.27 C.9D.1二、填空题(共18 小题)13.若 4a﹣2b=2π,则 2a﹣ b+π=.14.若 2m﹣n2=4,则代数式 10+4m﹣2n2的值为.15.若 a﹣ 2b=3,则 9﹣2a+4b 的值为.16.已知 3a﹣2b=2,则 9a﹣ 6b=.17.若 a2﹣3b=5,则 6b﹣2a2 +2015=.18.依据如下图的操作步骤,若输入的值为3,则输出的值为.19.若 a﹣ 2b=3,则 2a﹣ 4b﹣5=.2220.已知 m﹣m=6,则 1﹣2m+2m=.21.当 x=1 时,代数式 x2 +1=.22.若 m+n=0,则 2m+2n+1=.23.按如下图的程序计算.若输入x 的值为 3,则输出的值为.24.依据如下图的操作步骤,若输入x 的值为 2,则输出的值为.25.刘谦的魔术表演风靡全国,小明也学起了刘谦发了然一个魔术盒,当随意实数对( a,b)进入此中时,会获得一个新的实数:a2 +b﹣1,比如把( 3,﹣ 2)放入其中,就会获得 32+(﹣ 2)﹣ 1=6.现将实数对(﹣ 1,3)放入此中,获得实数m,再将实数对( m,1)放入此中后,获得实数是.26.假如 x=1 时,代数式 2ax3+3bx+4 的值是 5,那么 x=﹣1 时,代数式 2ax3 +3bx+4的值是.27.若 x2﹣2x=3,则代数式 2x2﹣4x+3 的值为.2228.若 m﹣2m﹣ 1=0,则代数式2m﹣4m+3的值为.29.已知 x(x+3)=1,则代数式 2x2+6x﹣5 的值为.30.已知 x2﹣2x=5,则代数式2x2﹣ 4x﹣1 的值为.参照答案与试题分析一、选择题(共12 小题)1.已知 m=1,n=0,则代数式 m+n的值为()A.﹣ 1 B.1C.﹣ 2 D.2【考点】代数式求值.【剖析】把 m、n 的值代入代数式进行计算即可得解.【解答】解:当m=1,n=0 时, m+n=1+0=1.应选 B.【评论】本题考察了代数式求值,把m、 n 的值代入即可,比较简单.2.已知 x2﹣ 2x﹣8=0,则 3x2﹣6x﹣ 18 的值为()A.54 B.6C.﹣ 10D.﹣ 18【考点】代数式求值.【专题】计算题.【剖析】所求式子前两项提取 3 变形后,将已知等式变形后辈入计算即可求出值.【解答】解:∵ x2﹣ 2x﹣8=0,即 x2﹣ 2x=8,∴3x2﹣ 6x﹣18=3(x2﹣2x)﹣ 18=24﹣18=6.应选 B.【评论】本题考察了代数式求值,利用了整体代入的思想,是一道基本题型.3.已知 a2+2a=1,则代数式 2a2+4a﹣1 的值为()A.0B.1C.﹣ 1 D.﹣2【考点】代数式求值.【专题】计算题.【剖析】原式前两项提取变形后,将已知等式代入计算即可求出值.【解答】解:∵ a2+2a=1,∴原式 =2(a2+2a)﹣ 1=2﹣ 1=1,应选 B【评论】本题考察了代数式求值,利用了整体代入的思想,娴熟掌握运算法例是解本题的重点.4.在数学活动课上,同学们利用如图的程序进行计算,发现不论x 取任何正整数,结果都会进入循环,下面选项必定不是该循环的是()A.4,2,1 B.2,1,4 C.1,4,2 D.2,4,1【考点】代数式求值.【专题】压轴题;图表型.【剖析】把各项中的数字代入程序上当算获得结果,即可做出判断.【解答】解: A、把 x=4 代入得:=2 ,把 x=2 代入得:=1 ,本选项不合题意;B、把 x=2 代入得:=1 ,把 x=1 代入得: 3+1=4,把 x=4 代入得:=2 ,本选项不合题意;C、把 x=1 代入得: 3+1=4,把 x=4 代入得:=2 ,把 x=2 代入得:=1 ,本选项不合题意;D、把 x=2 代入得:=1 ,把 x=1 代入得: 3+1=4,把 x=4 代入得:=2 ,本选项切合题意,应选 D【评论】本题考察了代数式求值,弄清程序框图中的运算法例是解本题的重点.5.当 x=1 时,代数式 4﹣3x 的值是()A.1B.2C.3D.4【考点】代数式求值.【专题】计算题.【剖析】把 x 的值代入原式计算即可获得结果.【解答】解:当x=1 时,原式 =4﹣3=1,应选 A.【评论】本题考察了代数式求值,娴熟掌握运算法例是解本题的重点.6.已知 x=1,y=2,则代数式 x﹣y 的值为()A.1B.﹣1 C.2D.﹣3【考点】代数式求值.【剖析】依据代数式的求值方法,把x=1,y=2 代入 x﹣y,求出代数式 x﹣y 的值为多少即可.【解答】解:当x=1,y=2 时,x﹣y=1﹣ 2=﹣1,即代数式 x﹣y 的值为﹣ 1.应选: B.【评论】本题主要考察了代数式的求法,采纳代入法即可,要娴熟掌握,解答本题的重点是要明确:求代数式的值能够直接代入、计算.假如给出的代数式能够化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.7.已知 x2﹣ 2x﹣3=0,则 2x2﹣4x 的值为()A.﹣6 B.6C.﹣2或 6D.﹣2 或 30【考点】代数式求值.【剖析】方程两边同时乘以2,再化出 2x2﹣ 4x 求值.【解答】解: x2﹣2x﹣3=02×( x2﹣2x﹣3)=02×( x2﹣2x)﹣ 6=02x2﹣4x=6应选: B.【评论】本题考察代数式求值,解题的重点是化出要求的2x2﹣4x.8.按如图的运算程序,能使输出结果为 3 的 x,y 的值是()A.x=5, y=﹣2 B .x=3, y=﹣3 C. x=﹣4,y=2 D.x=﹣3,y=﹣9【考点】代数式求值;二元一次方程的解.【专题】计算题.【剖析】依据运算程序列出方程,再依据二元一次方程的解的定义对各选项剖析判断利用清除法求解.【解答】解:由题意得,2x﹣y=3,A、x=5 时, y=7,故 A 选项错误;B、x=3 时, y=3,故 B 选项错误;C、x=﹣4 时, y=﹣11,故 C选项错误;D、x=﹣3 时, y=﹣9,故 D选项正确.应选: D.【评论】本题考察了代数式求值,主要利用了二元一次方程的解,理解运算程序列出方程是解题的重点.9.若 m+n=﹣1,则( m+n)2﹣2m﹣2n 的值是()A.3B.0C.1D.2【考点】代数式求值.【剖析】把( m+n)看作一个整体并代入所求代数式进行计算即可得解.【解答】解:∵ m+n=﹣1,∴( m+n)2﹣2m﹣2n=(m+n)2﹣2(m+n)=(﹣ 1)2﹣2×(﹣ 1)=1+2=3.应选: A.【评论】本题考察了代数式求值,整体思想的利用是解题的重点.10.已知 x﹣2y=3,则代数式 6﹣2x+4y 的值为()A.0B.﹣1 C.﹣ 3 D.3【考点】代数式求值.【剖析】先把 6﹣2x+4y 变形为 6﹣2(x﹣2y),而后把 x﹣ 2y=3 整体代入计算即可.【解答】解:∵ x﹣2y=3,∴6﹣ 2x+4y=6﹣ 2(x﹣2y)=6﹣ 2× 3=6﹣6=0应选: A.【评论】本题考察了代数式求值:先把所求的代数式依据已知条件进行变形,而后利用整体的思想进行计算.11.当 x=1 时,代数式a x3﹣3bx+4 的值是 7,则当 x=﹣1 时,这个代数式的值是()A.7B.3C.1D.﹣7【考点】代数式求值.【专题】整体思想.【剖析】把 x=1 代入代数式求出a、b 的关系式,再把 x=﹣1 代入进行计算即可得解.【解答】解: x=1 时,ax 3﹣ 3bx+4=a﹣ 3b+4=7,解得a﹣3b=3,3当 x= 1 ,ax3bx+4=a+3b+4= 3+4=1.【点】本考了代数式求,整体思想的利用是解的关.12.如是一个运算程序的表示,若开始入x 的 81,第 2014 次出的果()A.3B.27 C.9D.1【考点】代数式求.【】表型.【剖析】依据运算程序行算,而后获得律从第 4 次开始,偶数次运算出的果是 1,奇数次运算出的果是3,而后解答即可.【解答】解:第 1 次,× 81=27,第 2 次,×27=9,第 3 次,×9=3,第 4 次,×3=1,第 5 次, 1+2=3,第 6 次,×3=1,⋯,依此推,偶数次运算出的果是1,奇数次运算出的果是3,∵ 2014 是偶数,∴第 2014 次出的果1.故: D.【点】本考了代数式求,依据运算程序算出从第 4 次开始,偶数次运算出的果是 1,奇数次运算出的果是 3 是解的关.二、填空题(共18 小题)13.若 4a﹣2b=2π,则 2a﹣ b+π= 2π.【考点】代数式求值.【剖析】依据整体代入法解答即可.【解答】解:由于4a﹣ 2b=2π,因此可得 2a﹣b=π,把 2a﹣ b=π代入 2a﹣b+π =2π.【评论】本题考察代数式求值,重点是依据整体代入法计算.14.若 2m﹣n2=4,则代数式 10+4m﹣2n2的值为18.【考点】代数式求值.【剖析】察看发现4m﹣ 2n2是 2m﹣ n2的 2 倍,从而可得 4m﹣2n2=8,而后再求代数式10+4m﹣2n2的值.【解答】解:∵ 2m﹣n2=4,∴4m﹣2n2=8,∴10+4m﹣2n2=18,故答案为: 18.【评论】本题主要考察了求代数式的值,重点是找出代数式之间的关系.15.若 a﹣ 2b=3,则 9﹣2a+4b 的值为3.【考点】代数式求值.【专题】计算题.【剖析】原式后两项提取﹣ 2 变形后,把已知等式代入计算即可求出值.【解答】解:∵ a﹣2b=3,∴原式 =9﹣2(a﹣2b)=9﹣6=3,故答案为: 3.【评论】本题考察了代数式求值,娴熟掌握运算法例是解本题的重点.16.已知 3a﹣2b=2,则 9a﹣ 6b= 6.【考点】代数式求值.【剖析】把 3a﹣ 2b 整体代入进行计算即可得解.【解答】解:∵ 3a﹣2b=2,∴9a﹣6b=3(3a﹣2b)=3×2=6,故答案为; 6.【评论】本题考察了代数式求值,整体思想的利用是解题的重点.17.若 a2﹣3b=5,则 6b﹣2a2 +2015= 2005.【考点】代数式求值.【剖析】第一依据 a2﹣3b=5,求出 6b﹣2a2的值是多少,而后用所得的结果加上2015,求出算式 6b﹣2a2+2015 的值是多少即可.【解答】解: 6b﹣2a2+2015=﹣2(a2﹣ 3b)+2015=﹣2×5+2015=﹣10+2015=2005.故答案为: 2005.【评论】本题主要考察了代数式的求值问题,采纳代入法即可,要娴熟掌握,题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.18.依据如下图的操作步骤,若输入的值为3,则输出的值为55.【考点】代数式求值.【专题】图表型.【剖析】依据运算程序列式计算即可得解.2【解答】解:由图可知,输入的值为 3 时,( 3 +2)× 5=(9+2)× 5=55.【评论】本题考察了代数式求值,读懂题目运算程序是解题的重点.19.若 a﹣ 2b=3,则 2a﹣ 4b﹣5= 1.【考点】代数式求值.【剖析】把所求代数式转变为含有(a﹣2b)形式的代数式,而后将a﹣2b=3 整体代入并求值即可.【解答】解: 2a﹣4b﹣5=2(a﹣2b)﹣ 5=2×3﹣5=1.故答案是: 1.【评论】本题考察了代数式求值.代数式中的字母表示的数没有明确见告,而是隐含在题设中,第一应从题设中获得代数式(a﹣2b)的值,而后利用“整体代入法”求代数式的值.2220.已知 m﹣m=6,则 1﹣2m+2m= ﹣11.【考点】代数式求值.【专题】整体思想.2【剖析】把 m﹣ m看作一个整体,代入代数式进行计算即可得解.2【解答】解:∵ m﹣ m=6,22∴ 1﹣ 2m+2m=1﹣ 2( m﹣m)=1﹣ 2× 6=﹣11.故答案为:﹣ 11.【评论】本题考察了代数式求值,整体思想的利用是解题的重点.21.当 x=1 时,代数式 x2 +1= 2.【考点】代数式求值.【剖析】把 x 的值代入代数式进行计算即可得解.22故答案为: 2.【评论】本题考察了代数式求值,是基础题,正确计算是解题的重点.22.若 m+n=0,则 2m+2n+1= 1.【考点】代数式求值.【剖析】把所求代数式转变成已知条件的形式,而后整体代入进行计算即可得解.【解答】解:∵ m+n=0,∴2m+2n+1=2(m+n)+1,=2×0+1,=0+1,=1.故答案为: 1.【评论】本题考察了代数式求值,整体思想的利用是解题的重点.23.按如下图的程序计算.若输入x 的值为 3,则输出的值为﹣3.【考点】代数式求值.【专题】图表型.【剖析】依据 x 的值是奇数,代入下面的关系式进行计算即可得解.【解答】解: x=3 时,输出的值为﹣ x=﹣ 3.故答案为:﹣ 3.【评论】本题考察了代数式求值,正确选择关系式是解题的重点.24.依据如下图的操作步骤,若输入x 的值为 2,则输出的值为20.【考点】代数式求值.【专题】图表型.【剖析】依据运算程序写出算式,而后辈入数据进行计算即可得解.【解答】解:由图可知,运算程序为(x+3)2﹣5,当 x=2 时,( x+3)2﹣5=( 2+3)2﹣ 5=25﹣ 5=20.故答案为: 20.【评论】本题考察了代数式求值,是基础题,依据图表正确写出运算程序是解题的重点.25.刘谦的魔术表演风靡全国,小明也学起了刘谦发了然一个魔术盒,当随意实数对( a,b)进入此中时,会获得一个新的实数:a2 +b﹣1,比如把( 3,﹣ 2)放入其中,就会获得 32+(﹣ 2)﹣ 1=6.现将实数对(﹣ 1,3)放入此中,获得实数 m,再将实数对( m,1)放入此中后,获得实数是 9 .【考点】代数式求值.【专题】应用题.【剖析】察看可看出未知数的值没有直接给出,而是隐含在题中,需要找出规律,代入求解.【解答】解:依据所给规则: m=(﹣ 1)2+3﹣1=3∴最后获得的实数是 32+1﹣1=9.【评论】依据规则,第一计算 m的值,再进一步计算即可.隐含了整体的数学思想和正确运算的能力.26.假如 x=1 时,代数式 2ax3+3bx+4 的值是 5,那么 x=﹣1 时,代数式 2ax3 +3bx+4的值是3.【考点】代数式求值.【剖析】将 x=1 代入代数式 2ax3 +3bx+4,令其值是 5 求出 2a+3b 的值,再将 x=﹣1代入代数式 2ax3 +3bx+4,变形后辈入计算即可求出值.【解答】解:∵ x=1 时,代数式 2ax3+3bx+4=2a+3b+4=5,即 2a+3b=1,∴ x=﹣1 时,代数式 2ax3+3bx+4=﹣2a﹣3b+4=﹣( 2a+3b)+4=﹣ 1+4=3.故答案为: 3【评论】本题考察了代数式求值,利用了整体代入的思想,是一道基本题型.27.若 x2﹣2x=3,则代数式 2x2﹣4x+3 的值为9.【考点】代数式求值.【专题】计算题.【剖析】所求式子前两项提取 2 变形后,将已知等式代入计算即可求出值.【解答】解:∵ x2﹣ 2x=3,∴2x2﹣ 4x+3=2( x2﹣2x) +3=6+3=9.故答案为: 9【评论】本题考察了代数式求值,利用了整体代入的思想,是一道基本题型.22.28.若 m﹣2m﹣ 1=0,则代数式 2m﹣4m+3的值为 5【考点】代数式求值.【专题】整体思想.【剖析】先求出2m﹣2m的值,而后把所求代数式整理出已知条件的形式并代入进行计算即可得解.【解答】解:由22m﹣2m﹣ 1=0得 m﹣2m=1,22因此, 2m﹣4m+3=2(m﹣ 2m)+3=2×1+3=5.故答案为: 5.【评论】本题考察了代数式求值,整体思想的利用是解题的重点.29.已知 x(x+3)=1,则代数式 2x2+6x﹣5 的值为﹣3.【考点】代数式求值;单项式乘多项式.【专题】整体思想.【剖析】把所求代数式整理出已知条件的形式,而后辈入数据进行计算即可得解.【解答】解:∵ x(x+3) =1,∴2x2+6x﹣ 5=2x(x+3)﹣ 5=2×1﹣5=2﹣ 5=﹣3.故答案为:﹣ 3.【评论】本题考察了代数式求值,整体思想的利用是解题的重点.30.已知 x2﹣2x=5,则代数式 2x2﹣ 4x﹣1 的值为9.【考点】代数式求值.【专题】整体思想.【剖析】把所求代数式整理成已知条件的形式,而后辈入进行计算即可得解.【解答】解:∵ x2﹣ 2x=5,∴2x2﹣ 4x﹣1=2(x2﹣2x)﹣ 1,=2×5﹣1,=10﹣ 1,=9.故答案为: 9.【评论】本题考察了代数式求值,整体思想的利用是解题的重点.。
人教版七年级上册代数式的求值练习题40
人教版七年级上册代数式的求值练习题40一、选择题(共8小题;共40分)1. 当时,代数式的值是B. C. D.2. 定义一种新的运算:,如,则3. 根据下面所示程序图计算函数值,若输入的的值为A. B. C. D.4. 已知,则代数式的值为A. B.5. 若,且的值等于C.6. 当,时,值为的代数式是A. B.C. D.7. 代数式的值是,则的值是A. C. D.8. 已知,则代数式的值为A. B. D.二、填空题(共4小题;共22分)9. 按如图所示的程序流程计算,若开始输入的值为,则最后输出的结果是.10. 按如图所示程序工作,如果输入的数是,那么输出的数是.11. 阅读材料并填空.当分别取,,,时,求多项式的值.当.当.当.以上的求解过程中,和都是变化的,并且随着变大而变(填“大”或“小”).12. 如图,是一个运算程序的示意图,若开始输入的值为,则第次输出的结果为.三、解答题(共4小题;共52分)13. 当,时,求下列代数式的值.(1);(2).14. 我们常用的数是十进制数,如,数要用个数码(又叫数字):,,,,,,,,,,在电子计算机中用的二进制,只要两个数码:和,如二进制中等于十进制中的数,等于十进制中的数.那么二进制中的数等于十进制中的哪个数?15. 小玲在电脑中设置了一个程序,输入数,按键,再输入数,就可以运算.(1)求的值;(2)小华在运用程序时,屏幕显示“该操作无法进行”,你猜猜看,小华输入的数据有什么特征?16. 我们规定:用表示的整数部分,如,,在此规定下解决下列问题:(1)填空:;(2)求的值.答案第一部分1. C 【解析】将代入,得.故选C.2. B 【解析】,.3. B4. B 【解析】原式前两项变形后,将已知等式代入计算即可.5. C6. A7. A 【解析】得:,8. A第二部分9.【解析】把代入计算程序中得:,把代入计算程序中得:,则输出结果为11. ,的值;,的值,小【解析】当,当,当,以上的求解过程中,和的值都是变化的,并且的值随着变大而变小.12.第三部分13. (1)当,时,.(2)当,时,.14. 根据题目中给出的方法,通过类比得到:.所以二进制中的数等于十进制中的.15. (1).(2)第一个数的倍等于第二个数,即,导致除数为零,无法进行除法运算.16. (1)【解析】因为,,,所以当时,;当时,,所以.(2)。
3.3《代数式求值》练习题
3.3 《代数式求值》练习题一、基础过关1.当2,1-==y x 时,求下列代数式的值.(1))2)(2(31y x y x -- (2)yx y x 33+- (3)22y x -2.笔记本每本0.8元,n 本笔记本 元,当n =12时,共计 元.3.当21-=x 时,代数式21342--x x = .4.华氏温度f 与摄氏温度c 的关系为:3259+=c f ,当人的体温为37.5摄氏度时,华氏温度为 度. 5.解答题:(1)当2=m 时,求代数式1322+-m m 的值.(2)当1-=x 时,代数式31953117234+-+-x x x x 的值是多少?(3)若22=-y x ,求x y x y y x 36)2(41)2(23-+---的值.二、能力提升 6.已知:4=+-ba b a ,求代数式)(3)(4)(2b a b a ba b a -+-+-的值.7.已知:311=+yx ,则yxy x y xy x +-++33的值.8.当3=x 时,代数式53-+bx ax 的值为3,当3-=x 时,代数式53++bx ax 的值为多少?9.(1)已知:0122333)1(a x a x a x a x +++=+,求0123a a a a +++的值.(2)已知:012233444)12(a x a x a x a x a x ++++=-,求01234a a a a a +-+-的值.10.某种型号的汽车,开始行驶时油箱里有油40升,每行驶1千米耗油0.08升, (1)当汽车行驶t 千米时,油箱里剩油量是多少升?(2)当汽车行驶200千米时,油箱里剩油量是多少升?(3)行驶n 千米时,油箱里剩油量是多少升?这箱油最多可行驶多少千米?11.大庆市电力公司为了鼓励居民节约用电,采用分段计费的方式计算电费,每月用电不超过100度时,按每度a 元计算,每月用电超过100度时,其中100度仍按原价收费,超过部分按每度b 元计算.(a <b )(1)小王家一月份共用了67度电,二月份用了120度电,则他家一、二月份分别交纳多少元电费? (2)如果a =0.49元,b =1.50元,则小王家一、二月份应分别交纳多少电费?(3)如果小王家三月份交纳76元电费,则他家三月份共用电多少度?三、聚沙成塔巧躲敲诈小芳下岗后去了一家搬运公司打工,公司的老板让她搬运瓷器.一天,小芳不小心将一箱瓷盘打碎了一些,老板要求小芳按100只瓷盘的价钱赔偿.小芳明知这是老板有意敲诈她,可是面对着一堆碎片,又不知道打碎了几只,怎么办呢?一旁的小李看不下去,走过来说:“我有办法知道打碎了几只瓷盘,只要你称一下碎瓷盘的重量,再称一下一只瓷盘的重量,用碎瓷盘的重量除以一只瓷盘的重量,就可以知道打碎了几只瓷盘.”小李的一番话,立即使小芳躲过了一次敲诈.从此她俩成了好朋友.。
求代数式的值专项练习60题(有答案)ok
求代数式的值专项练习60题(有答案)ok求代数式的值专项练习60题(有答案)1.当x=﹣1时,代数式2﹣x的值是_________ .2.若a2﹣3a=1,则代数式2a2﹣6a+5的值是_________ .3.若a2+2a=1,则(a+1)2= _________ .4.如图是一个数值转换机,若输入a值为2,则输出的结果应为_________ .5.若x+y=﹣1,且(x+y)2﹣3(x+y)a=7,则a2+2=_________ .6.若a、b互为相反数,x、y互为倒数,则式子2(a+b)+5xy 的值为_________ .7.若a+b=2,则2a+2b+1= _________ .8.当a=1,|a﹣3|= _________ .9.若x=﹣3,则= _________ ,若x=﹣3,则﹣x=_________ .10.若a,b互为相反数,且都不为零,则(a+b﹣1)(+1)的值为_________ .11.若a﹣b=,则10(b﹣a)= _________ .12.如果m﹣n=,那么﹣3(n﹣m)= _________ .13.a、b互为相反数,m,n互为倒数,则(a+b)2+=_________ .14.a,b互为相反数,a≠0,c、d互为倒数,则式子的值为_________ .15.若a﹣b=1,则代数式a﹣(b﹣2)的值是_________ ;若a+b=1,则代数式5﹣a﹣b的值是_________ .16.d是最大的负整数,e是最小的正整数,f的相反数等于它本身,则d﹣e+2f的值是_________ .17.当x= _________ 时,代数式2009﹣|2008﹣x|有最大值,最大值为_________ .18.若|m|=3,则m2= _________ .19.若代数式2a+2b的值是8,则代数式a+b的值是_________ .20.若m=n﹣5,则5m﹣5n+5等于_________ .21.已知x=﹣,则代数式1﹣x 3的值等于_________ .22.当x=2时,x3﹣x﹣8= _________ .23.若代数式a﹣b的值是1,那么代数式2a﹣(3+2b)的值等于_________ .24.若x2﹣2x的值是6,则﹣3x2+6x+5的值是_________ .25.已知x﹣y=5,代数式x﹣2﹣y的值是_________ .26.已知:a2+ab=5,b2+ab=2,则a2+2ab+b2= _________ .27.若2x+3=5,则6x+10等于_________ .28.若m2+2m﹣2=0,则2m2+4m﹣9= _________ .29.已知多项式3x 2﹣4x+6的值为9,则多项式的值为_________ .30.若3a2﹣a﹣3=0,则6a2﹣2a+9= _________ .31.若(3+a)2+|b﹣2|=0,则3a﹣2b﹣2012的值为_________ .32.在数轴上,点A、B分别表示有理数 a、b,原点O恰好是AB的中点,则(a+b)2004+()2005的值是_________ .33.如果x2+3x﹣1的值是4,则代数式2x2+6x+5的值是_________ .34.已知a、b互为相反数,c、d互为倒数,m的绝对值为2,求m 2+a+b+的值.35.求代数式的值:(1)当,b=5时,求8a+3b的值;(2)已知a=|﹣4|,b=(﹣2)3,求b2﹣ab的值.36.已知a2+5ab=76,3b2+2ab=51,求代数式a2+11ab+9b2的值.37.当x=2,y=﹣4时,求代数式x2+2xy+y2的值.38.如果有理数a、b满足|a﹣1|+(b+1)2=0,求a101+b100的值.39.当x=﹣,y=﹣3时,求代数式x 2﹣2xy+y2的值.40.已知,|a|=3,|b|=5,且a2>0,b3<0,求2a+b的值.41.当x=7时,代数式ax3+bx﹣5的值为7;当x=﹣7时,代数式ax3+bx﹣5的值为多少?42.求代数式的值:(1)当a=﹣2,b=5时,求2a+5b的值;(2)已知a=|﹣3|,b=(﹣2)3,求a2+b2的值.43.有理数m,n为相反数,x,y互为负倒数,z的绝对值等于7,求3m+3n+5xy+z的值.44.三个有理数a,b,c的积是负数,其和为正数,当x=++时,试求x 2011﹣2010x+2009 的值.45.已知a是最小的正整数,b是a的相反数,c的绝对值为9,试求2a+2b﹣3c的值.46.已知2x2+3x=5,求代数式﹣4x2﹣6x+6的值.47.当a=3,b=﹣2,c=﹣5时,代数式b2﹣4ac的值是_________ .48.若|a|=4,b是绝对值最小的数,c是最大的负整数,求a+b﹣c的值.49.已知a与b互为相反数,c与d互为倒数,|x|=5,求x2+(a+b)2012+(﹣cd)2013的值.50.若|x﹣4|+(2y﹣x)2=0,求代数式x2﹣2xy+y2的值.51.已知|m|=3,n2=16,且mn<0,求2m﹣3n的值.52.若a、b互为相反数,c、d互为倒数,|m|=3,求+m 2﹣3cd+5m的值.53.己知:|x|=4,y 2=;且x>0,y<0,求2x﹣7y的值.54.已知m2﹣mn=21,mn﹣n2=﹣12.求下列代数式的值:(1)m2﹣n2(2)m2﹣2mn+n2.55.a※b是新规定的这样一种运算法则:a※b=a2+2ab,例如3※(﹣2)=32+2×3×(﹣2)=﹣3(1)试求(﹣2)※3的值(2)若1※x=3,求x的值(3)若(﹣2)※x=﹣2+x,求x的值56.已知a是最小的正整数,b、c是有理数,且有|2+b|+(3a+2c)2=0,求代数式的值.57.如果4a﹣3b=7,并且3a+2b=19,求14a﹣2b的值.58.已知,求代数式的值.59.已知a、b互为相反数,c、d互为倒数,x的绝对值是5.试求﹣x2+[a+b+cd2﹣(d﹣1)]﹣(a+b﹣4)3﹣|cd﹣3|的值.60.已知当x=2时,多项式ax5+bx3+cx+3的值为100,那么当x=﹣2时,求多项式ax5+bx3+cx+3的值.求代数式的值60题参考答案:1.∵x=﹣1∴2﹣x=2﹣(﹣1)=2+1=3.2.∵a2﹣3a=1,∴原式=2×1+5=7.3.等式两边同时加1,等式即可转换为a2+2a+1=2,即为(a+1)2=2.故答案为:24.﹣3a2+1=﹣3×4+1=﹣11.5.∵x+y=﹣1,∴(x+y)2﹣3(x+y)a=7,1+3a=7,即a=2,则a2+2=4+2=66.∵a、b互为相反数,x、y 互为倒数,∴a+b=0,xy=1,∴2(a+b)+5xy=0+5=5 7.2a+2b+1=2(a+b)+1=2×2+1=5.8.当a=1时,|a﹣3|=|1﹣3|=|﹣2|=2.9.(1)∵x=﹣3,∴=﹣;(2)∵x=﹣3,∴﹣x=﹣(﹣3)=3.10.由题意得:a+b=0且a≠0、b≠0,∴原式=﹣1×0=0.11.当a﹣b=时,原式=10×(﹣)=﹣4.故填﹣4.12.当m﹣n=时,原式=﹣3×[﹣(m﹣n)]=﹣3×(﹣)=.故填.13.∵a、b互为相反数∴a+b=0∵m,n互为倒数∴mn=1∴(a+b)2+=02+=3故此题应该填3.14.∵a,b互为相反数,a≠0,c、d互为倒数,∴a+b=0,cd=1,∴式子=+(﹣1)2007﹣12008=0﹣1﹣1=﹣2,故答案为﹣215.整理所求代数式得:a﹣(b﹣2)=a﹣b+2,将a﹣b=1代入得:所求的结果为1+2=3.同理,整理代数式得,5﹣a ﹣b=5﹣(a+b),将a+b=1代入得,所求结果为5﹣1=4.故本题答案为:3、4.16.由题意知,d=﹣1,e=1,f=0,所以d﹣e+2f=﹣1﹣1+0=﹣2.故应填﹣217.∵代数式2009﹣|2008﹣x|有最大值,∴2008﹣x=0,即x=2008.当x=2008时,代数式2009﹣|2008﹣x|=2009.故当x=2008时,代数式2009﹣|2008﹣x|有最大值,最大值为200918.∵|m|=3,∴m=﹣3或3,∴m2=(±3)2=919.由题意得:2a+2b=8∴a+b=4.20.∵m=n﹣5,∴m﹣n=﹣5,∴5m﹣5n+5=5(m﹣n)+5=﹣25+5=﹣20.21.∵x=﹣,∴1﹣x3=1﹣(﹣)3=1+=4,故答案为422.当x=2时,x3﹣x﹣8=23﹣2﹣8=﹣2.故答案为:﹣223.∵a﹣b=1,∴原式=2a﹣3﹣2b=2(a﹣b)﹣3=2×1﹣3=﹣1.故答案为﹣124.∵x2﹣2x=6,∴﹣3x2+6x+5=﹣3(x2﹣2x)+5=﹣3×6+5=﹣13.故答案为﹣1325.原式=x﹣y﹣2,当x﹣y=5时,原式=5﹣2=3.故答案为326.∵a2+ab=5,b2+ab=2,∴a2+ab+b2+ab=7,∴a2+2ab+b2=7.故答案为:727.6x+10=3(2x+3)+1=15+1=16.故答案是:1628.∵m2+2m﹣2=0,∴m2+2m=2,∴2m2+4m﹣9=2(m2+2m)﹣9=2×2﹣9=﹣5.故答案为﹣5.29.由已知得:3x2﹣4x+6=9,即3x2﹣4x=3,,=(3x2﹣4x)+6,=×3+6=7.故答案为:730.∵3a2﹣a﹣3=0,∴3a2﹣a=3,∴6a2﹣2a+9=2(3a2﹣a)+9=2×3+9=15.故答案为15.31.根据题意得,3+a=0,b ﹣2=0,解得a=﹣3,b=2,所以,3a﹣2b﹣2012=3×(﹣3)﹣2×2﹣2012=﹣9﹣4﹣2012=﹣2025.故答案为:﹣202532.∵点A、B分别表示有理数 a、b,原点O恰好是AB 的中点,∴a+b=0,即a=﹣b,∴(a+b)2004+()2005=0﹣1=﹣133.由x2+3x﹣1=4得x2+3x=5,∴2x2+6x+5=2(x2+3x)+5=2×5+5=15.故本题答案为:15.34.a,b互为相反数,则a+b=0,c,d互为倒数,则cd=1,m的绝对值是2,则m=±2,当m=2时,原式=4+0+=;当m=﹣2时,原式=4+0﹣=.35.(1)∵,b=5,∴8a+3b=﹣4+15=11;(2)∵a=|﹣4|,b=(﹣2)3,∴a=4,b=﹣8时,∴b2﹣ab=64+32=96.(3分)36.a2+11ab+9b2=a2+5ab+6ab+9b2=a2+5ab+3(2ab+3b2)∵a2+5ab=76,3b2+2ab=51,∴a2+11ab+9b2=76+3×51=76+153=22937.∵x=2,y=﹣4,∴x+y=2﹣4=﹣2,x2+2xy+y2=(x+y)2=(﹣2)2=4.38.∵|a﹣1|+(b+1)2=0,∴a﹣1=0,b+1=0,∴a=1,b=﹣1,当a=1,b=﹣1时,原式=1101+(﹣1)100=239.当时,原式==﹣3+9=.40.∵|a|=3,且a2>0,∴a=±3,∵|b|=5,b3<0,∴b=﹣5,∴当a=3,b=﹣5时,2a+b=6﹣5=1;当a=﹣3,b=﹣5时,2a+b=﹣6﹣5=﹣11;答:2a+b的值为1或﹣11 41.∵x=7时,代数式ax3+bx ﹣5的值为7,∴a×73+7b﹣5=7,即a×73+7b=12,∴当x=﹣7时,a×(﹣7)3﹣7x﹣5=﹣(a×73+7b)﹣5=﹣12﹣5=﹣17.42.(1)当a=﹣2,b=5时,2a+5b=2×(﹣2)+5×5=21;(2)∵a=|﹣3|=3,b=(﹣2)3=﹣8,∴a2+b2=9+64=7343.∵m,n为相反数,x,y互为负倒数,z的绝对值等于7,∴m+n=0,xy=﹣1,z=±7,∴3m+3n+5xy+z=3(m+n)+5xy+z=3×0+5×(﹣1)+z=﹣5+z,当z=7时,3m+3n+5xy+z=﹣5+7=2;当z=﹣7时,3m+3n+5xy+z=﹣5﹣7=﹣12.∴3m+3n+5xy+z的值为2或﹣1244.∵三个有理数a,b,c的积是负数,其和为正数,∴三个有理数a,b,c中有两个正数、一个负数,∴、、中有两个1和一个﹣1,∴x=++=1,∴x2011﹣2010x+2009=12011﹣2010×1+2009=045.∵a是最小的正整数,∴a=1,∵b是a的相反数,∴b=﹣1,∵c的绝对值为9,∴c=9或﹣9,当c=9时,2a+2b﹣3c=2×1+2×(﹣1)﹣3×9=﹣27,当c=﹣9时,2a+2b﹣3c=2×1+2×(﹣1)﹣3×(﹣9)=27,所以,代数式的值是27或﹣2746.∵2x2+3x=5,∴(2x2+3x)×(﹣2)=5×(﹣2),即:﹣4x2﹣6x=﹣10,∴﹣4x2﹣6x+6=﹣10+6=﹣447.当a=3,b=﹣2,c=﹣5时,原式=(﹣2)2﹣4×3×(﹣5)=64.故答案是6448.由|a|=4,得a=4或a=﹣4,∵b是绝对值最小的数,∴b=0,又∵c是最大的负整数,∴c=﹣1,∴a+b﹣c=4+0﹣(﹣1)=4+1=5,或a+b﹣c=﹣4+0﹣(﹣1)=﹣4+1=﹣3,即a+b﹣c的值为﹣3或5 49.∵a与b互为相反数,∴a+b=0,∵c与d互为倒数∴cd=1,∵|x|=5,∴x2=25,∴x2+(a+b)2012+(﹣cd)2013=25+0+(﹣1)=24.50.因为|x﹣4|+(2y﹣x)2=0,所以x﹣4=0,2y﹣x=0,解得:x=4,y=2,x2﹣2xy+y2=(x﹣y)2,把x=4,y=2代入得:(4﹣2)2=4,所以代数式x2﹣2xy+y2的值为:451.∵|m|=3,n2=16,∴m=±3,n=±4,又∵mn<0,∴(1)当m=3,n=﹣4时,2m﹣3n=2×3﹣3×(﹣4),=6+12,=18;(2)当m=﹣3,n=4时,2m﹣3n=2×(﹣3)﹣3×4,=﹣6﹣12,=﹣18.综上所述,2m﹣3n的值为18或﹣1852.∵a、b互为相反数,c、d互为倒数,|m|=3,∴a+b=0,cd=1,m=±3,①m=3时,原式=0+9﹣3+15=21;②m=﹣3时,原式=0+9﹣3﹣15=﹣9;∴+m2﹣3cd+5m的值是21或﹣953.∵|x|=4,y2=;且x>0,y<0,∴x=4,y=﹣,∴2x﹣7y=2×4﹣7×(﹣)=8+1=954.(1)∵m2﹣mn=21,mn﹣n2=﹣12,∴m2﹣n2=(m2﹣mn)+(mn﹣n2)=21﹣12=9;(2)∵m2﹣mn=21,mn﹣n2=﹣12,∴m2﹣2mn+n2=(m2﹣mn)﹣(mn ﹣n2)=21﹣(﹣12)=21+12=33 55.(1)(﹣2)※3=(﹣2)2+2×(﹣2)×3=4﹣12=﹣8;(2)∵1※x=3,∴12+2x=3,∴2x=3﹣1,∴x=1;(3)﹣2※x=﹣2+x,(﹣2)2+2×(﹣2)x=﹣2+x,4﹣4x=﹣2+x,﹣4x﹣4=﹣2﹣4,﹣5x=﹣6,x=56.由已知得a=1,又因为|2+b|+(3a+2c)2=0,所以2+b=0,3a+2c=0,所以b=﹣2,c=.把a=1,b=﹣2,c=代入原式求得:57.∵4a﹣3b=7,并且3a+2b=19,∴14a﹣2b=2(7a﹣b)=2[(4a+3a)+(﹣3b+2b)] =2[(4a﹣3b)+(3a+2b)] =2(7+19)=52,答:14a﹣2b的值为52 58.∵=2∴xy=2(x+y)∴原式===59.∵a、b互为相反数,c、d互为倒数,x的绝对值是5.∴a+b=0,cd=1,x2=25,∴﹣x2+[a+b+cd2﹣(d﹣1)]﹣(a+b﹣4)3﹣|cd﹣3|=﹣25+(0+d﹣d+1)﹣(0﹣4)3﹣|1﹣3|=﹣25+1+64﹣2=3860.x=2时,25a+23b+2c+3=100,∴25a+23b+2c=97,x=﹣2时,ax5+bx3+cx+3=﹣25a ﹣23b﹣2c+3=﹣97+3=﹣94。
人教版七年级上册代数式的求值练习题19
人教版七年级上册代数式的求值练习题19一、选择题(共8小题;共40分)1. 根据如图所示的计算程序,若输入的值,则输出的值为C. D.2. 当时,代数式的值是B. C.3.A. B. C. D.4. 如果代数式的值为,那么的值等于A. B.5. 若,则的值为A. B. C. D.6. 若,满足等式,且,则式子的值为A. B. C. D.7. 下列说法正确的是A. 代数式的值与代数式中的字母无关B. 代数式的值是随着代数式中的字母的取值变化而变化的C. 代数式中的字母可以取任意的值D. 含有的代数式的值等于的值8. 代数式的值是,则的值是A. C. D.二、填空题(共4小题;共20分)9. 当,时,代数式的值是.10. 按照给定的计算程序,输入一个值,使得程序能够输出结果,这个值可以是,输出的结果为.11. 已知,则.12. 按照如图所示的计算程序,若,则输出的结果是.三、解答题(共4小题;共52分)13. 当,时,求下列各代数式的值.(1);(2);(3).14. 观察下列解题过程,计算的值.解:设则由②①得,所以.通过阅读,请你用学到的方法计算:的值.15. 根据如图所示的程序计算,若输入的值为,求输出的的值.16. 已知.(1)判断是否成立?请说明理由.(2)求的值(3)求的值.答案第一部分1. C 【解析】当,.2. C3. C 【解析】设,4. A 【解析】,,则,.5. B【解析】,,.6. C 【解析】,,,,,故选:C.7. B8. A 【解析】得:,第二部分9.10. ,(答案不唯一)【解析】当输入时,,,当时,,输出,故输出结果为:.(答案不唯一)【解析】由题意得,,解得,,所以,.12.第三部分13. (1)(2).(3).14. 设则由②①得.15. 当时,,.所以输出的的值为.16. (1)将代入,,故不成立.(2),.(3),,.。
代数式的值练习题
代数式的值练习题近年来,随着数学教育的发展,代数式的知识在学生们的学习中越来越重要。
代数式的值练习题是帮助学生巩固知识、培养逻辑思维能力的重要方法之一。
本文将介绍一些常见的代数式的值练习题,并提供详细的解答步骤,供学生参考。
题目一:计算代数式的值已知 x = 2,y = 3,计算以下代数式的值:1) 2x + 3y2) x^2 + y^2 - xy3) (x + y)^2 - x^2 - y^2解答:1) 2x + 3y = 2(2) + 3(3) = 4 + 9 = 132) x^2 + y^2 - xy = 2^2 + 3^2 - 2(3) = 4 + 9 - 6 = 73) (x + y)^2 - x^2 - y^2 = (2 + 3)^2 - 2^2 - 3^2 = 5^2 - 4 - 9 = 25 - 4 - 9 = 12题目二:代数式的展开将以下代数式展开:1) (x + y)(x - y)2) (2x + 3y)^23) (a - b)(a^2 + ab + b^2)解答:1) (x + y)(x - y) = x^2 - xy + xy - y^2 = x^2 - y^22) (2x + 3y)^2 = (2x + 3y)(2x + 3y) = 4x^2 + 6xy + 6xy + 9y^2 = 4x^2 + 12xy + 9y^23) (a - b)(a^2 + ab + b^2) = a^3 - a^2b + a^2b - ab^2 + ab^2 - b^3 = a^3 - b^3题目三:代数式的简化将以下代数式简化:1) 2x + 3x - x2) (a + b)^2 - (a - b)^23) a^2 - 2ab + b^2 - (a^2 - b^2)解答:1) 2x + 3x - x = 5x - x = 4x2) (a + b)^2 - (a - b)^2 = a^2 + 2ab + b^2 - (a^2 - 2ab + b^2) = a^2 + 2ab + b^2 - a^2 + 2ab - b^2 = 4ab3) a^2 - 2ab + b^2 - (a^2 - b^2) = a^2 - 2ab + b^2 - a^2 + b^2 = -2ab + 2b^2通过以上几道代数式的值练习题,希望能够帮助学生们更好地理解和掌握代数式的运算方法。
代数式的值练习题
代数式的值练习题代数式的值练习题数学作为一门抽象而又精确的学科,代数是其中的重要分支之一。
代数式的值是代数学习中的基础概念之一,也是学习代数的关键。
在这篇文章中,我们将探讨一些代数式的值练习题,帮助读者更好地理解和掌握这一概念。
1. 求值练习题:(1) 已知a = 2,求代数式3a - 5的值。
解析:将a的值代入代数式中,得到3 * 2 - 5 = 6 - 5 = 1。
所以代数式3a - 5的值为1。
(2) 已知b = -3,求代数式2b^2 + 5b的值。
解析:将b的值代入代数式中,得到2 * (-3)^2 + 5 * (-3) = 2 * 9 - 15 = 18 - 15 = 3。
所以代数式2b^2 + 5b的值为3。
2. 求解方程练习题:(1) 求解方程2x + 3 = 9。
解析:首先将方程转化为代数式形式,得到2x + 3 - 9 = 0。
化简得到2x - 6 = 0。
然后移项得到2x = 6。
最后除以系数2,得到x = 3。
所以方程2x + 3 = 9的解为x = 3。
(2) 求解方程x^2 + 5x + 6 = 0。
解析:首先尝试因式分解,得到(x + 2)(x + 3) = 0。
根据乘积为零的性质,可以得到x + 2 = 0或者x + 3 = 0。
解得x = -2或者x = -3。
所以方程x^2 + 5x + 6 = 0的解为x = -2或者x = -3。
3. 运用代数式的值解决实际问题练习题:(1) 一个长方形的长是x + 3,宽是2x - 1,求其面积。
解析:长方形的面积等于长乘以宽,即(x + 3)(2x - 1)。
将代数式展开得到2x^2 + 5x - 3。
所以该长方形的面积为2x^2 + 5x - 3。
(2) 一个正方形的边长是2a + 1,求其周长。
解析:正方形的周长等于4倍边长,即4(2a + 1)。
将代数式展开得到8a + 4。
所以该正方形的周长为8a + 4。
通过以上的练习题,我们可以看到代数式的值在数学中扮演着重要的角色。
人教版七年级上册代数式的求值练习题16
人教版七年级上册代数式的求值练习题16一、选择题(共8小题;共40分)1. 当时,代数式的值是C.2. 当时,代数式的值为时这个式子的值等于A. C. D.3. 已知,,则的值等于B. C. D.4. 在数学活动课上,同学们利用如图的程序进行计算,发现无论取任何正整数,结果都会进入循环.下面选项一定不是该循环的是A. ,,B. ,,C. ,,D. ,,5. 按如图所示的运算程序,能使输出值为的是A. ,B. ,C. ,D. ,6. 按如图所示的程序计算,若,则的结果为A. B. C.7. 对于代数式,当分别取下列各组中两个数值时,所得代数式的值相等的是A. 与B. 与C. 与D. 与8. 一件衣服,商店的进价是元,若先加价,再降价,则商店A. 赚了元B. 赔了元C. 不赚不赔D. 赚了元二、填空题(共4小题;共20分)9. 当时,代数式的值等于.10. 若实数,满足,则代数式的值是.11. 对于这样的等式:若,则()当时,;().12. 对于正数,规定,例如:,,,,,利用以上规律计算:的值为.三、解答题(共4小题;共52分)13. 已知,,,求下列各式的值:(1).(2).14. 是一个很大的数,怎样求出它的个位数字呢?我们依次计算一下,,,观察其个位数字的变化,寻找其中的规律,从而用归纳的方法得出结论:,,,,,,,.(1)观察上述各式,你可以得出它们的个位数字出现的规律是 .(2)请你猜测:的个位数字为;的个位数字为.15. 如果用表示一个人的脚印长度,表示身高,那么与的关系满足.(1)某人的脚印长度为厘米,则他的身高约为多少厘米?(2)在某次案件中,抓获了两名可疑人员,一个身高为米,另一个身高为米,现场测量的脚印长度为厘米,请你帮助侦查一下,哪个可疑人员作案的可能性更大.16. 计算机在进行计算时,总是根据程序进行的,如图是一个计算程序.当输入的数据为时,请解答下面的问题:(1)填写如表:(2)输出的结果是多少?答案第一部分1. B2. A3. A 【解析】因为,,所以.4. D 【解析】如图的程序按照,,,,,,循环.5. D6. D 【解析】由题意知,,时,,时,,时,,时,,时,,时,;发现规律:每个结果为一个循环,,.7. C8. B第二部分9.10.【解析】又,变形为,,【解析】()因为,所以当时,,即.()因为,所以当时,,即.12.【解析】第三部分13. (1).(2).14. (1),,,(2);15. (1)当(厘米)时,(厘米).答:他的身高约为厘米.(2)当(厘米)时,(厘米),身高为米的比较接近,所以身高为米的人作案的可能性更大.16. (1);;;(2).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
代数式的值
基础训练
一、填空题:
1、当x =-2时,代数式2x -1的值是 .
2、当 x =5,y =4时,代数式x -2y 的值是 .
3、明明步行的速度是5千米/小时,当他走了t 时的路程为 千米;当他走了2时的路程为 千米.
二、选择题:
4、把a = 121 ,b =2
1 代入(3a -2b )2,正确的结果是( ) A 、(3121-221)
2 B 、(321-2121)2 C 、(3×21-2×21)2 D 、(3×121-2×2
1)2 5、设三角形的底边长为a ,高为h ,面积为S ,若a =2,h =3,则S=( )
A 、3
B 、4
C 、5
D 、6
6、当a =0.25,b =0.5时,代数式a
1-b 2的值是( ) A 、3.75 B 、4.25 C 、0 D 、-21
7、当a =3,b=1时,代数式0.5(a -2b )的值是( )
A 、1
B 、0.5
C 、0
D 、25
8、代数式x 2+2的值( )
A 、大于2
B 、等于2
C 、小于2
D 、大于或等于2
三、解答题:
9、如果用C 表示摄氏温度,T 表示绝对温度,则C 与T 之间的关系是:C=T -273. 分别求出当T=0与T=273时C 的值。
10、如图是一个数值转换机
综合提高 一、填空题:
1、已知x =2,y 是绝对值最小的有理数,则代数式4x 2-2xy +2y 2= .
2、若x+3=5-y,a,b 互为倒数,则代数式2
1(x +y )+5 ab = . 3、一根长10厘米的弹簧,一端固定,如果另一端挂上物体,那么在正常情况下物体的质量输入 -2 -1 0 1 2 输出
每增加1千克,可以使弹簧增长2厘米,则在正常情况下,当挂着x 千克的物体时,弹簧的长度是 厘米,当x =2厘米时,弹簧的长度是 厘米. 二、选择题: 4、在1,2,3,4,5中,使代数式(x -2)(x -3)(x -4)(x -5)的值为零的有( )个。
A 、2
B 、3
C 、4
D 、5
5、下列各数中,使代数式4(a -5)与a 2-8a +16的值相等的a 应等于( )
A 、4
B 、5
C 、6
D 、7
6、当x 非常大时,代数式
x
x 613-的值接近于( ) A 、21 B 、31 C 、61 D 、1 7、已知“a 2b ”是一个三位数,用代数式表示为( )
A 、a ×2×b
B 、100a +20+b
C 、a ×100+2b
D 、a +2+b
8、若︱a ︱=3,︱b ︱=5,则︱a +b ︱的值为( )
A 、8
B 、2
C 、-8
D 、2或8
三、解答题:
9、小明由于粗心,在计算25+a 的值时,误将“+”看成“-”,结果得65,试求25+a 的值.
10、当x =1时,代数式ax 3+b x -6的值为8,试求当x =-1时,代数式ax 3+bx -6的值.
探究创新
一、填空题:
1、若a,b 互为相反数,c,d 互为倒数,m 的绝对值为2,那么m
b a ++m -cd 的值为 . 2、如果代数式2x 2+3x +5的值为6,那么代数式6x 2+9x -3的值为 . 思维点拨
6x 2+9x =3(2x 2+3x )
3、已知x -5y =0 (y ≠0),则代数式y
x y x 3263-+的值为 . 思维点拨
由x -5y =0得x =5y
二、选择题:
4、某商店在出售某种商品时,以m元的价格出售,亏本20%,则在这次买卖中该商店的亏损情况是()
A、亏20%m元
B、亏80%m元
C、亏25%m元
D、亏20%元
5、代数式a2+b2的值()
A、大于0
B、大于2
C、等于0
D、大于或等于0
6、如果a的值是整数,代数式2a的值是()
A、零
B、分数
C、整数
D、自然数
7、代数式2+(x+2)2的最小值是()
A、2
B、0
C、1
D、-1
8、若代数式2x-y=5,则代数式2y-4x+5的值为()
A、-15
B、-5
C、5
D、15
三、解答题:
9、已知a+19=b+9=c+8,求代数式(b-a)2+(c-b)2+(c-a)2的值.
10、一次足球比赛中,有n (n≧2)个球队参加比赛,假设此次比赛为单循环比赛(参加比赛的每一个队都与其他所有的队各赛一场),球队总数与总的比赛场数如下表
⑴当有n个球队参加时,共比多少场?
⑵当n=10时,共有多少场比赛?。