上海高一函数的奇偶性的典型例题

合集下载

高中必修一函数的奇偶性详细讲解及练习(详细答案)

高中必修一函数的奇偶性详细讲解及练习(详细答案)

函数的单调性和奇偶性例1(1)画出函数y=-x2+2|x|+3的图像,并指出函数的单调区间.解:函数图像如下图所示,当x≥0时,y=-x2+2x+3=-(x-1)2+4;当x<0时,y=-x2-2x+3=-(x+1)2+4.在(-∞,-1]和[0,1]上,函数是增函数:在[-1,0]和[1,+∞)上,函数是减函数.评析函数单调性是对某个区间而言的,对于单独一个点没有增减变化,所以对于区间端点只要函数有意义,都可以带上.(2)已知函数f(x)=x2+2(a-1)x+2在区间(-∞,4]上是减函数,求实数a的取值范围.分析要充分运用函数的单调性是以对称轴为界线这一特征.解:f(x)=x2+2(a-1)x+2=[x+(a-1)]2-(a-1)2+2,此二次函数的对称轴是x=1-a.因为在区间(-∞,1-a]上f(x)是单调递减的,若使f(x)在(-∞,4]上单调递减,对称轴x=1-a必须在x=4的右侧或与其重合,即1-a≥4,a≤-3.评析这是涉及逆向思维的问题,即已知函数的单调性,求字母参数范围,要注意利用数形结合.例2判断下列函数的奇偶性:(1)f(x)=-(2)f(x)=(x-1).解:(1)f(x)的定义域为R.因为f(-x)=|-x+1|-|-x-1|=|x-1|-|x+1|=-f(x).所以f(x)为奇函数.(2)f(x)的定义域为{x|-1≤x<1},不关于原点对称.所以f(x)既不是奇函数,也不是偶函数.评析用定义判断函数的奇偶性的步骤与方法如下:(1)求函数的定义域,并考查定义域是否关于原点对称.(2)计算f(-x),并与f(x)比较,判断f(-x)=f(x)或f(-x)=-f(x)之一是否成立.f(-x)与-f(x)的关系并不明确时,可考查f(-x)±f(x)=0是否成立,从而判断函数的奇偶性.例3已知函数f(x)=.(1)判断f(x)的奇偶性.(2)确定f(x)在(-∞,0)上是增函数还是减函数?在区间(0,+∞)上呢?证明你的结论.解:因为f(x)的定义域为R,又f(-x)===f(x),所以f(x)为偶函数.(2)f(x)在(-∞,0)上是增函数,由于f(x)为偶函数,所以f(x)在(0,+∞)上为减函数.其证明:取x1<x2<0,f(x1)-f(x2)=- ==.因为x1<x2<0,所以x2-x1>0,x1+x2<0,x21+1>0,x22+1>0,得f(x1)-f(x2)<0,即f(x1)<f(x2).所以f(x)在(-∞,0)上为增函数.评析奇函数在(a,b)上的单调性与在(-b,-a)上的单调性相同,偶函数在(a,b)与(-b,-a)的单调性相反.例4已知y=f(x)是奇函数,它在(0,+∞)上是增函数,且f(x)<0,试问F(x)=在(-∞,0)上是增函数还是减函数?证明你的结论.分析根据函数的增减性的定义,可以任取x1<x2<0,进而判定F(x1)-F(x2)=-=的正负.为此,需分别判定f(x1)、f(x2)与f(x2)的正负,而这可以从已条件中推出.解:任取x1、x2∈(-∞,0)且x1<x2,则有-x1>-x2>0.∵y=f(x)在(0,+∞)上是增函数,且f(x)<0,∴f(-x2)<f(-x1)<0.①又∵f(x)是奇函数,∴f(-x2)=-f(x2),f(-x1)=-f(x1)②由①、②得f(x2)>f(x1)>0.于是F(x1)-F(x2)=>0,即F(x1)>F(x2),所以F(x)=在(-∞,0)上是减函数.评析本题最容易发生的错误,是受已知条件的影响,一开始就在(0,+∞)内任取x1<x2,展开证明.这样就不能保证-x1,-x2,在(-∞,0)内的任意性而导致错误.避免错误的方法是:要明确证明的目标,有针对性地展开证明活动.例5讨论函数f(x)=(a≠0)在区间(-1,1)内的单调性.分析根据函数的单调性定义求解.解:设-1<x1<x2<1,则f(x1)-f(x2)=-=∵x1,x2∈(-1,1),且x1<x2,∴x1-x2<0,1+x1x2>0,(1-x21)(1-x22)>0于是,当a>0时,f(x1)<f(x2);当a<0时,f(x1)>f(x2).故当a>0时,函数在(-1,1)上是增函数;当a<0时,函数在(-1,1)上为减函数.评析根据定义讨论(或证明)函数的单调性的一般步骤是:(1)设x1、x2是给定区间内任意两个值,且x1<x2;(2)作差f(x1)-f(x2),并将此差式变形;(3)判断f(x1)-f(x2)的正负,从而确定函数的单调性.例6求证:f(x)=x+ (k>0)在区间(0,k]上单调递减.解:设0<x1<x2≤k,则f(x1)-f(x2)=x1+ -x2-=∵0<x1<x2≤k,∴x1-x2<0,0<x1x2<k2,∴f(x1)-f(x2)>0∴f(x1)>f(x2),∴f(x)=x+ 中(0,k]上是减函数.评析函数f(x)在给定区间上的单调性反映了函数f(x)在区间上函数值的变化趋势,是函数在区间上的整体性质.因此,若要证明f(x)在[a,b]上是增函数(减函数),就必须证明对于区间[a,b]上任意两点x1,x2,当x1<x2时,都有不等式f(x1)<f(x2)(f(x1)>f(x2))类似可以证明:函数f(x)=x+ (k>0)在区间[k,+∞]上是增函数.例7判断函数f(x)=的奇偶性.分析确定函数的定义域后可脱去绝对值符号.解:由得函数的定义域为[-1,1].这时,|x-2|=2-x.∴f(x)=,∴f(-x)===f(x).且注意到f(x)不恒为零,从而可知,f(x)=是偶函数,不是奇函数.评析由于函数解析式中的绝对值使得所给函数不像具有奇偶性,若不作深入思考,便会作出其非奇非偶的判断.但隐含条件(定义域)被揭示之后,函数的奇偶性就非常明显了.这样看来,解题中先确定函数的定义域不仅可以避免错误,而且有时还可以避开讨论,简化解题过程.函数奇偶性练习一、选择题1.已知函数f(x)=ax2+bx+c(a≠0)是偶函数,那么g(x)=ax3+bx2+cx()A .奇函数B .偶函数C .既奇又偶函数D .非奇非偶函数 2.已知函数f (x )=ax 2+bx +3a +b 是偶函数,且其定义域为[a -1,2a ],则( ) A .31=a ,b =0 B .a =-1,b =0 C .a =1,b =0 D .a =3,b =0 3.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-2x ,则f (x )在R 上的表达式是( ) A .y =x (x -2) B .y =x (|x |-1) C .y =|x |(x -2) D .y =x (|x |-2) 4.已知f (x )=x 5+ax 3+bx -8,且f (-2)=10,那么f (2)等于( ) A .-26 B .-18 C .-10 D .10 5.函数1111)(22+++-++=x xx x x f 是()A .偶函数B .奇函数C .非奇非偶函数D .既是奇函数又是偶函数 6.若)(x ϕ,g (x )都是奇函数,2)()(++=x bg a x f ϕ在(0,+∞)上有最大值5, 则f (x )在(-∞,0)上有( )A .最小值-5B .最大值-5C .最小值-1D .最大值-3 二、填空题 7.函数2122)(xx x f ---=的奇偶性为________(填奇函数或偶函数) .8.若y =(m -1)x 2+2mx +3是偶函数,则m =_________. 9.已知f (x )是偶函数,g (x )是奇函数,若11)()(-=+x x g x f ,则f (x )的解析式为_______.10.已知函数f (x )为偶函数,且其图象与x 轴有四个交点,则方程f (x )=0的所有实根之和为________. 三、解答题11.设定义在[-2,2]上的偶函数f (x )在区间[0,2]上单调递减,若f (1-m )<f (m ),求实数m 的取值范围.12.已知函数f (x )满足f (x +y )+f (x -y )=2f (x )·f (y )(x ∈R ,y ∈R ),且f (0)≠0, 试证f (x )是偶函数.13.已知函数f (x )是奇函数,且当x >0时,f (x )=x 3+2x 2—1,求f (x )在R 上的表达式.14.f (x )是定义在(-∞,-5] [5,+∞)上的奇函数,且f (x )在[5,+∞)上单调递减,试判断f (x )在(-∞,-5]上的单调性,并用定义给予证明.15.设函数y =f (x )(x ∈R 且x ≠0)对任意非零实数x 1、x 2满足f (x 1·x 2)=f (x 1)+f (x 2), 求证f (x )是偶函数.函数的奇偶性练习参考答案1. 解析:f (x )=ax 2+bx +c 为偶函数,x x =)(ϕ为奇函数,∴g (x )=ax 3+bx 2+cx =f (x )·)(x ϕ满足奇函数的条件. 答案:A2.解析:由f (x )=ax 2+bx +3a +b 为偶函数,得b =0. 又定义域为[a -1,2a ],∴a -1=2a ,∴31=a .故选A . 3.解析:由x ≥0时,f (x )=x 2-2x ,f (x )为奇函数,∴当x <0时,f (x )=-f (-x )=-(x 2+2x )=-x 2-2x =x (-x -2).∴,,)0()0()2()2()(<≥---=⎩⎨⎧x x x x x x x f 即f (x )=x (|x |-2)答案:D4.解析:f (x )+8=x 5+ax 3+bx 为奇函数,f (-2)+8=18,∴f (2)+8=-18,∴f (2)=-26. 答案:A5.解析:此题直接证明较烦,可用等价形式f (-x )+f (x )=0. 答案:B 6.解析:)(x ϕ、g (x )为奇函数,∴)()(2)(x bg x a x f +=-ϕ为奇函数. 又f (x )在(0,+∞)上有最大值5, ∴f (x )-2有最大值3.∴f (x )-2在(-∞,0)上有最小值-3, ∴f (x )在(-∞,0)上有最小值-1. 答案:C7.答案:奇函数8.答案:0解析:因为函数y =(m -1)x 2+2mx +3为偶函数,∴f (-x )=f (x ),即(m -1)(-x )2+2m (-x )+3=(m —1)x 2+2mx +3,整理,得m =0. 9.解析:由f (x )是偶函数,g (x )是奇函数,可得11)()(--=-x x g x f ,联立11)()(-=+x x g x f ,∴11)1111(21)(2-=----=x x x x f . 答案:11)(2-=x x f 10.答案:0 11.答案:21<m12.证明:令x =y =0,有f (0)+f (0)=2f (0)·f (0),又f (0)≠0,∴可证f (0)=1.令x =0,∴f (y )+f (-y )=2f (0)·f (y )⇒f (-y )=f (y ),故f (x )为偶函数. 13.解析:本题主要是培养学生理解概念的能力.f (x )=x 3+2x 2-1.因f (x )为奇函数,∴f (0)=0.当x <0时,-x >0,f (-x )=(-x )3+2(-x )2-1=-x 3+2x 2-1, ∴f (x )=x 3-2x 2+1.因此,.)0()0()0(12012)(,,2323<=>+--+=⎪⎩⎪⎨⎧x x x x x x x x f 点评:本题主要考查学生对奇函数概念的理解及应用能力. 14.解析:任取x 1<x 2≤-5,则-x 1>-x 2≥-5.因f (x )在[5,+∞]上单调递减,所以f (-x 1)<f (-x 2)⇒f (x 1)<-f (x 2)⇒f (x 1)>f(x2),即单调减函数.点评:此题要注意灵活运用函数奇偶性和单调性,并及时转化.15.解析:由x1,x2 R且不为0的任意性,令x1=x2=1代入可证,f(1)=2f(1),∴f(1)=0.又令x1=x2=-1,∴f[-1×(-1)]=2f(1)=0,∴(-1)=0.又令x1=-1,x2=x,∴f(-x)=f(-1)+f(x)=0+f(x)=f(x),即f(x)为偶函数.点评:抽象函数要注意变量的赋值,特别要注意一些特殊值,如,x1=x2=1,x1=x2=-1或x1=x2=0等,然后再结合具体题目要求构造出适合结论特征的式子即可.。

高一函数单调性奇偶性经典练习题

高一函数单调性奇偶性经典练习题

函数单调性奇偶性经典练习一、单调性题型高考中函数单调性在高中函数知识模块里面主要作为工具或条件使用,也有很多题会以判断单调性单独出题或有的题会要求先判断函数单调性才能进行下一步骤解答,另有部分以函数单调性质的运用为主. (一)函数单调性的判断 函数单调性判断常用方法:121212121212()()0()()()()0()()()()()()()()()()()()f x f x f x f x x x x x f x f x f x f x f x g x f x f x g x f x g x g x g x f x ->>⇒⎧<⎨-<<⇒⎩+⇒⎧-⎧⎪⇒-⇒⎨⎨-⎩⎪-⇒⎩即单调增函数定义法(重点):在其定义域内有任意,且即单调增函数复合函数快速判断:“同增异减”增为减函数基本初等函数加减(设为增函数,为减函数):增为增函数减互为反.⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩函数的两个函数具有相同的单调性例1 证明函数23()4x f x x +=-在区间(4)+∞,上为减函数(定义法)解析:用定义法证明函数的单调性,按步骤“一假设、二作差、三判断(与零比较)”进行.解:设12(4)x x ∈+∞,,且12x x <,1221121212232311()()()44(4)(4)x x x x f x f x x x x x ++--=-=---- 214x x >>Q 210x x ∴->,1(4)0x ->,2(4)0x -> 12()()f x f x ∴> 故函数()f x 在区间(4)+∞,上为减函数. 练习1 证明函数21()3x f x x -=+在区间(3)-+∞,上为减函数(定义法)练习2证明函数2()f x x =2()3-∞,上为增函数(定义法、快速判断法)练习3 求函数3()2x f x x -=+定义域,并求函数的单调增区间(定义法)练习4求函数()f x x =定义域,并求函数的单调减区间(定义法)(复合函数,基本初等函数相加减问题,反函数问题在本章结束时再练习) (二) 函数单调性的应用⎧⎪⎨⎪⎩单独考查单调性:结合单调函数变量与其对应函数值的关系求参数定义域与单调性结合:结合定义域与变量函数值关系求参数值域与单调性结合:利用函数单调性求值域 例1 若函数()f x 是定义在R 上的增函数,且2(2)(3)f x x f a +>+恒成立,数a 的围。

(完整word版)高一必修一数学函数的奇偶性经典习题秒杀

(完整word版)高一必修一数学函数的奇偶性经典习题秒杀

高一必修一数学函数的奇偶性经典习题秒杀例1.判断下列函数是否具有奇偶性(1) (2)(3) (4)(5) (6)例2.已知函数⑴判断奇偶性⑵判断单调性⑶求函数的值域x x f 2)(=2)1()(-=x x f 0)(=x f ()1,0,1)(2∈-=x x x f xx x f -+-=11)(x x x x f 32)(35++=x x x f 1)(-=例3.若f(x)为奇函数,且当x>0时,f(x)=x|x-2| ,求x<0时f(x)的表达式[课内练习]1.奇函数y=f(x),x ∈R 的图象必经过点 ( )A .(a,f (-a ))B .(-a,f (a ))C .(-a, -f (a ))D .(a, f ())2.对于定义在R 上的奇函数f(x)有 ( )A .f(x)+f(-x)<0B .f(x) -f(-x)<0C .f(x) f(-x)≤0D .f(x) f(-x)>03.已知且f(-2)=0,那么f(2)等于4.奇函数f(x)在1≤x ≤4时解吸式为,则当-4≤x ≤-1时,f(x)最大值为5.f(x)=为奇函数,y=在(-∞,3)上为减函数,在(3,+∞)上为增函数,则m= n=[归纳反思]a18)(35-++=bx ax x x f 54)(2+-=x x x f nx mx x ++2332++nx x1.按奇偶性分类,函数可分为四类:(1)奇函数 (2)偶函数(3)既是奇函数又是偶函数 (4)既非奇函数又非偶函数2.在判断函数的奇偶性的基本步骤:(1)判断定义域是否关于原点对称(2)验证f(-x)=f(x)或f(-x)=-f(x)3.可以结合函数的图象来判断函数的奇偶性[巩固提高]1.已知函数f(x)在[-5,5]上是奇函数,且f(3) <f(1),则 ( )(A )f(-1) <f(-3) (B )f(0) >f(1)(C )f(-1) <f(1) (D )f(-3) >f(-5)2.下列函数中既非奇函数又非偶函数的是 ( )(A )y= (B )y= (C )y=0 , x ∈[-1,2] (D )y=3.设函数f(x)=是奇函数,则实数的值为 ( )(A ) -1 (B ) 0 (C ) 2 (D ) 14.如果奇函数f(x)在区间[3,7]上是增函数且最小值为5,那么f(x)在区间[-7,-3]上是 ( )(A )增函数且最小值为-5 (B )增函数且最大值为-5(C )减函数且最大值为-5 (D )减函数且最小值为-5 x 1112+x 12+x x 211x ax ---a5.如果二次函数y=ax +bx+c (a ≠0)是偶函数,则b=6.若函数f(x)是定义在R 上的奇函数,则 f(0)=7.已知函数f(x)在(0, +∞)上单调递增,且为偶函数,则f(-),f(-),f(3)之间的大小关系是8.f(x)为R 上的偶函数,在(0,+∞)上为减函数,则p= f()与q= f( 2π3143-12+-a a。

函数奇偶性的六类经典题型

函数奇偶性的六类经典题型

奇偶性类型一:判断奇偶性[例1] 判断下列函数奇偶性(1)(且)(2)(3)(4)(5)解:(1)且∴奇函数(2),关于原点对称∴奇函数(3),关于原点对称∴既奇又偶(4)考虑特殊情况验证:;无意义;∴非奇非偶(5)且,关于原点对称∴为偶函数类型二:根据奇偶性求解析式1.函数f(x)在R上为奇函数,且x>0时,f(x)=x+1,则当x<0时,f(x)=________.解析:∵f(x)为奇函数,x>0时,f(x)=x+1,∴当x<0时,-x>0,f (x )=-f (-x )=-(-x +1), 即x <0时,f (x )=-(-x +1)=--x -1.答案:--x -1 2.求函数的解析式 (1)为R 上奇函数,时,,解:时,∴∴ (2)为R 上偶函数,时,解:时,∴类型三:根据奇偶性求参数1.若函数f(x)= xln (2a x +a=【解题指南】f(x)= xln (x+2a x +2ln()y x a x =+是奇函数,利用()()0f x f x -+=确定a 的值.【解析】由题知2ln()y x a x =+是奇函数,所以22ln()ln()x a x x a x ++-+=22ln()ln 0a x x a +-==,解得a =1. 答案:1.2.函数f (x )=(x +1)(x +a )x 3为奇函数,则a =______.解析:由题意知,g (x )=(x +1)(x +a )为偶函数,∴a =-1. 答案:-13.已知f (x )=3ax 2+bx -5a +b 是偶函数,且其定义域为[6a -1,a ],则a +b =( )A.17 B .-1 C .1D .7解析:选A 因为偶函数的定义域关于原点对称,所以6a -1+a =0,所以a =17.又f (x )为偶函数,所以3a (-x )2-bx -5a +b =3ax 2+bx -5a +b ,解得b =0,所以a +b =17.4.若函数f(x)=2x -|x +a|为偶函数,则实数a =______. (特殊值法) 解析:由题意知,函数f(x)=2x -|x +a|为偶函数,则f(1)=f(-1), ∴1-|1+a|=1-|-1+a|,∴a =0. 答案:05.已知函数f (x )=⎩⎪⎨⎪⎧x 2+x , x ≤0,ax 2+bx , x >0为奇函数,则a +b =________.(待定系数法)解析:当x >0时,-x <0, 由题意得f (-x )=-f (x ), 所以x 2-x =-ax 2-bx , 从而a =-1,b =1,a +b =0. 答案:06.(1),为何值时,为奇函数; (2)为何值时,为偶函数。

高一数学函数奇偶性练习题及答案解析

高一数学函数奇偶性练习题及答案解析

高一数学函数奇偶性练习题及答案解析数学函数奇偶性练习题及答案解析1.下列命题中,真命题是A.函数y=1x是奇函数,且在定义域内为减函数B.函数y=x3x-10是奇函数,且在定义域内为增函数C.函数y=x2是偶函数,且在-3,0上为减函数D.函数y=ax2+cac≠0是偶函数,且在0,2上为增函数解析:选C.选项A中,y=1x在定义域内不具有单调性;B中,函数的定义域不关于原点对称;D中,当a<0时,y=ax2+cac≠0在0,2上为减函数,故选C.2.奇函数fx在区间[3,7]上是增函数,在区间[3,6]上的最大值为8,最小值为-1,则2f-6+f-3的值为A.10B.-10C.-15D.15解析:选C.fx在[3,6]上为增函数,fxmax=f6=8,fxmin=f3=-1.∴2f-6+f-3=-2f6-f3=-2×8+1=-15.3.fx=x3+1x的图象关于A.原点对称B.y轴对称C.y=x对称D.y=-x对称解析:选A.x≠0,f-x=-x3+1-x=-fx,fx为奇函数,关于原点对称.4.如果定义在区间[3-a,5]上的函数fx为奇函数,那么a=________.解析:∵fx是[3-a,5]上的奇函数,∴区间[3-a,5]关于原点对称,∴3-a=-5,a=8.答案:81.函数fx=x的奇偶性为A.奇函数B.偶函数C.既是奇函数又是偶函数D.非奇非偶函数解析:选D.定义域为{x|x≥0},不关于原点对称.2.下列函数为偶函数的是A.fx=|x|+xB.fx=x2+1xC.fx=x2+xD.fx=|x|x2解析:选D.只有D符合偶函数定义.3.设fx是R上的任意函数,则下列叙述正确的是A.fxf-x是奇函数B.fx|f-x|是奇函数C.fx-f-x是偶函数D.fx+f-x是偶函数解析:选D.设Fx=fxf-x则F-x=Fx为偶函数.设Gx=fx|f-x|,则G-x=f-x|fx|.∴Gx与G-x关系不定.设Mx=fx-f-x,∴M-x=f-x-fx=-Mx为奇函数.设Nx=fx+f-x,则N-x=f-x+fx.Nx为偶函数.4.已知函数fx=ax2+bx+ca≠0是偶函数,那么gx=ax3+bx2+cxA.是奇函数B.是偶函数C.既是奇函数又是偶函数D.是非奇非偶函数解析:选A.gx=xax2+bx+c=xfx,g-x=-x•f-x=-x•fx=-gx,所以gx=ax3+bx2+cx是奇函数;因为gx-g-x=2ax3+2cx不恒等于0,所以g-x=gx不恒成立.故gx不是偶函数.5.奇函数y=fxx∈R的图象必过点A.a,f-aB.-a,faC.-a,-faD.a,f1a解析:选C.∵fx是奇函数,∴f-a=-fa,即自变量取-a时,函数值为-fa,故图象必过点-a,-fa.6.fx为偶函数,且当x≥0时,fx≥2,则当x≤0时A.fx≤2B.fx≥2C.fx≤-2D.fx∈R解析:选B.可画fx的大致图象易知当x≤0时,有fx≥2.故选B.7.若函数fx=x+1x-a为偶函数,则a=________.解析:fx=x2+1-ax-a为偶函数,∴1-a=0,a=1.答案:18.下列四个结论:①偶函数的图象一定与纵轴相交;②奇函数的图象一定通过原点;③fx=0x∈R既是奇函数,又是偶函数;④偶函数的图象关于y轴对称.其中正确的命题是________.解析:偶函数的图象关于y轴对称,不一定与y轴相交,①错,④对;奇函数当x=0无意义时,其图象不过原点,②错,③对.答案:③④9.①fx=x2x2+2;②fx=x|x|;③fx=3x+x;④fx=1-x2x.以上函数中的奇函数是________.解析:1∵x∈R,∴-x∈R,又∵f-x=-x2[-x2+2]=x2x2+2=fx,∴fx为偶函数.2∵x∈R,∴-x∈R,又∵f-x=-x|-x|=-x|x|=-fx,∴fx为奇函数.3∵定义域为[0,+∞,不关于原点对称,∴fx为非奇非偶函数.4fx的定义域为[-1,0∪0,1]即有-1≤x≤1且x≠0,则-1≤-x≤1且-x≠0,又∵f-x=1--x2-x=-1-x2x=-fx.∴fx为奇函数.答案:②④10.判断下列函数的奇偶性:1fx=x-1 1+x1-x;2fx=x2+x x<0-x2+x x>0.解:1由1+x1-x≥0,得定义域为[-1,1,关于原点不对称,∴fx为非奇非偶函数. 2当x<0时,-x>0,则f-x=--x2-x=--x2+x=-fx,当x>0时,-x<0,则f-x=-x2-x=--x2+x=-fx,综上所述,对任意的x∈-∞,0∪0,+∞,都有f-x=-fx,∴fx为奇函数.11.判断函数fx=1-x2|x+2|-2的奇偶性.解:由1-x2≥0得-1≤x≤1.由|x+2|-2≠0得x≠0且x≠-4.∴定义域为[-1,0∪0,1],关于原点对称.∵x∈[-1,0∪0,1]时,x+2>0,∴fx=1-x2|x+2|-2=1-x2x,∴f-x=1--x2-x=-1-x2x=-fx,∴fx=1-x2|x+2|-2是奇函数.12.若函数fx的定义域是R,且对任意x,y∈R,都有fx+y=fx+fy成立.试判断fx的奇偶性.解:在fx+y=fx+fy中,令x=y=0,得f0+0=f0+f0,∴f0=0.再令y=-x,则fx-x=fx+f-x,即fx+f-x=0,∴f-x=-fx,故fx为奇函数.感谢您的阅读,祝您生活愉快。

函数奇偶性经典例题

函数奇偶性经典例题

函数的奇偶性一、典型例题例1 判断下列函数的奇偶性(1)1()(1)1x f x x x +=-- (2)2lg(1)()|2|2x f x x -=--(3)22(0)()(0)x x x f x x xx ⎧+<⎪=⎨-+>⎪⎩ (4)22()11f x x x =--(5)()11f x x x =-+- (6)2211()11x x f x x x ++-=+++例2 已知()f x 是R 上的奇函数,且当(0,)x ∈+∞时,3()(1)f x x x =+,则()f x 的解析式为________________.例 3 ①已知函数)(x f 是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有)()1()1(x f x x xf +=+,则)25(f 的值是________________.②已知()f x 是奇函数,满足()()2f x f x += ,当[]0,1x ∈时,()21xf x =- ,则=)2(f _____,21log 24f ⎛⎫ ⎪⎝⎭的值是_________ .例 4 ()f x 和()g x 的定义域都是非零实数,()f x 是偶函数,()g x 是奇函数,且21()()1f xg x x x +=-+,求()()f x g x 的取值范围。

二、课后练习1、判断下列函数的奇偶性(1)x xy a a -=+ (2)x xy a a-=-(3)x x x xa a y a a ---=+ (4)11x x a y a -=+(5)1log 1a x y x-=+ (6)2log (1)a y x x =+-(7)若0,1,()a a F x >≠是一个奇函数,讨论11()()12xG x F x a ⎛⎫=+ ⎪-⎝⎭的奇偶性。

2、设()f x 为定义在R 上的奇函数,当0x ≥时,()22xf x x b =++ (b 为常数),则(1)f -=( )(A) 3 (B) 1 (C)-1 (D)-3 3、已知函数()f x 对一切,x y R ∈,都有()()()f x y f x f y +=+, (1)求证:()f x 是奇函数; (2)若(3)f a -=,用a 表示(12)f4、已知3()sin 4f x a x b x =++(,a b 为实数)且3(lg log 10)5f =,则(lglg3)f =____5、函数1(1)1y x x =≠±-可以表示成一个偶函数()f x 与一个奇函数()g x 的和,则()f x =____6、已知)(x f y =是偶函数,当0>x 时,2)1()(-=x x f ;若当⎥⎦⎤⎢⎣⎡--∈21,2x 时,m x f n ≤≤)(恒成立,则n m -的最小值为( ) A.1 B. 21 C. 31 D. 43。

高一数学函数的奇偶性训练及答案

高一数学函数的奇偶性训练及答案

函数的奇偶性与单调性练习(解析版〕一、利用单调性、奇偶性解不等式1. 假设)(x f 为奇函数,且在(0,+∞)内是增函数,又0)3(=-f ,那么0)(<x xf 的解集为(3,0)(0,3)-.命题意图:此题主要考察函数的奇偶性、单调性的综合性质,一元一次不等式的解集以及运算能力和逻辑推理能力.属★★★级题目.知识依托:奇偶性及单调性定义及判定、不等式的解法及转化思想.错解分析:此题对不等式组的解题能力要求较高,容易漏掉小于0的情形,同时交并集的运算技能不过关,结果也难获得.技巧与方法:将0)(<x xf 转化为不等式组求解,或在直角坐标系中画出示意图,依据图形求解. 详解: .30030)(00)(00)(<<<<-⇒⎩⎨⎧<>⎩⎨⎧><⇒<x x x f x x f x x xf 或或2. 偶函数)(x f 在区间[0,+∞〕单调递增,那么满足)31()12(f x f <-的x 取值X 围是).32,31( 命题意图:此题主要考察函数的奇偶性、单调性的判定以及运算能力和逻辑推理能力.属★★★★级题目.知识依托:奇偶性及单调性定义及判定、分类讨论数学思想及转化思想.错解分析:此题对思维能力要求较高,如果不会分类,运算技能不过关,结果很难获得. 技巧与方法:分类讨论与添加绝对值.详解一:[)1210,(21)(),()0+3x f x f f x ->-<∞当时由及函数在,上是单调增函数 121221,,3323x x x -<<<<则得所以[)21=0,()0+x f x -∞当时函数在,上是单调增函数11(0)()32f f x <=成立,得11210,(21)()(),33x f x f f -<-<=-当时由[)()0+f x ∞偶函数在,上是单调增函数(]()f x -∞则函数在,0上是单调减函数111121,3332x x x ->-><<于是得,所以11,32x ⎛⎫⎪⎝⎭综上所述,的取值范围是详解二:1()(21)(|21|)()3f x f x f x f ∴ -=-<是偶函数[)()0+f x ∞又函数在,上是单调增函数11111|2-1|<2133332x x x ∴ ⇒-<-<⇒<<11,32x ⎛⎫⎪⎝⎭因此,的取值范围是3. 设函数f (x )是定义在R 上的偶函数,并在区间(-∞,0)内单调递增,f (2a 2+a +1)<f (3a 2-2a +1).求a 的取值X 围.命题意图:此题主要考察函数奇偶性、单调性的根本应用以及对复合函数单调性的判定方法.此题属于★★★★★级题目.知识依托:逆向认识奇偶性、单调性、指数函数的单调性及函数的值域问题. 错解分析:逆向思维受阻、条件认识不清晰、复合函数判定程序紊乱.技巧与方法:此题属于知识组合题类,关键在于读题过程中对条件的思考与认识,通过此题会解组合题类,掌握审题的一般技巧与方法.解:设0<x 1<x 2,那么-x 2<-x 1<0,∵f (x )在区间(-∞,0)内单调递增, ∴f (-x 2)<f (-x 1),∵f (x )为偶函数,∴f (-x 2)=f (x 2),f (-x 1)=f (x 1), ∴f (x 2)<f (x 1).∴f (x )在(0,+∞)内单调递减..032)31(3123,087)41(2122222>+-=+->++=++a a a a a a 又由f (2a 2+a +1)<f (3a 2-2a +1)得:2a 2+a +1>3a 2-2a +1.解之,得0<a <3. 二、利用单调性、奇偶性比拟大小4. 如果函数f (x )在R 上为奇函数,在[-1,0)上是增函数,试比拟f (31),f (32),f (1)的大小关系_ f (31)<f (32)<f (1)_.命题意图:此题主要考察函数的奇偶性、单调性的判定和逻辑推理能力.属★★级题目. 知识依托:奇偶性及单调性定义及判定、比拟大小及转化思想.错解分析:此题注重考察根底知识,较易判断,可依据示意图直接得出结论. 技巧与方法:利用图象法求解.详解:由题意,函数在区间(]0,1上是增函数,于是12()()(1)33f f f <<三、利用单调性、奇偶性求函数值 5. 函数f (x )对于任意实数x 满足条件f (x +2)=1()f x ,假设f (1)=-5,那么f (f (5))=_15-__.命题意图:此题主要考察函数的周期性的判定以及运算能力和逻辑推理能力.属★★★★★级题目. 知识依托:奇偶性及单调性定义及判定、赋值法及转化思想.错解分析:此题对思维能力要求较高,如果“赋值〞不够准确,运算技能不过关,结果很难获得. 技巧与方法:对先计算f (5),然后计算结果. 详解:111(3)(12),(5)(32)5,(1)5(3)f f f f f f =+==-=+==- 1111(1)(12),(1),(1)(12)(1)5f f f f f f =-+=-===---+ 11111(3)5,(5).(32)(1)(52)(3)5f f f f f f -===--===--+--+-一般地,假设函数()f x 满足1()(()0)()f x a f x f x +=≠或()()f x a f x +=-, 那么(2)()f x a f x +=,其中a 为非0实常数. 四、判断抽象函数的单调性、奇偶性6. 函数f (x )对一切x 、y ∈R ,都有f (x+y )= f (x )+ f (y ), (1)判断函数f (x )的奇偶性; (2)假设f (-3)=a ,用a 表示f (12).分析:判断函数奇偶性的一般思路是利用定义,看f (-x )与f (x )的关系,进而得出函数的奇偶性;解决此题的关键是在f (x+y )= f (x )+ f (y )中如何出现f (-x );用a 表示f (12)实际上是如何用f (-3)表示f (12),解决该问题的关键是寻找f (12)与f (-3)的关系. 解答:()1()()()(),0(0)2(0),(0)0.,(0)()(),()(),()f x R x y f x y f x f y x y f f f y x f f x f x f x f x f x +=+∴===∴==-=+-∴-=-∴显然的定义域是,关于原点对称。

高考数学复习----《函数的奇偶性的综合应用》典型例题讲解

高考数学复习----《函数的奇偶性的综合应用》典型例题讲解

高考数学复习----《函数的奇偶性的综合应用》典型例题讲解【典型例题】例1、(2023·全国·高三专题练习)已知定义在R 上的函数()f x 在(],3−∞上单调递增,且()3f x +为偶函数,则不等式()()12f x f x +>的解集为( )A .51,3⎛⎫ ⎪⎝⎭B .()5,1,3⎛⎫−∞⋃+∞ ⎪⎝⎭C .(),1−∞D .()1,+∞【答案】B【解析】∵()3f x +为偶函数, ∴()()33f x f x −+=+,即函数()f x 关于3x =对称,又函数()f x 在(],3−∞上单调递增,∴函数()f x 在[)3,+∞上单调递减,由()()12f x f x +>,可得1323x x +−<−,整理得,23850x x −+>,解得1x <或53x >. 故选:B .例2、(2023·全国·高三专题练习)设()f x 是定义在R 上的奇函数,且当0x ≥时,()2f x x =,不等式()()24f x f x ≥的解集为( )A .(][),04,−∞+∞UB .[]0,4C .(][),02,−∞⋃+∞D .[]0,2【答案】C 【解析】根据题意,当0x ≥时,()2f x x =,所以()f x 在[0,)+∞上为增函数,因为()f x 是定义在R 上的奇函数,所以()f x 在R 上为增函数,因为20x ≥,所以24()f x x =,24124x f x ⎛⎫= ⎪⎝⎭, 所以221()42x f x f ⎛⎫= ⎪⎝⎭, 所以不等式()()24f x f x ≥可化为2()2x f f x ⎛⎫≥ ⎪⎝⎭, 所以22x x ≥,解得0x ≤或2x ≥, 所以不等式()()24f x f x ≥的解集为(][),02,−∞⋃+∞,故选:C例3、(2023·全国·高三专题练习)已知偶函数()f x 的定义域为R ,且当0x ≥时,()11x f x x −=+,则使不等式()2122f a a −<成立的实数a 的取值范围是( ) A .()1,3−B .()3,3−C .()1,1−D .(),3−∞【答案】A 【解析】当0x ≥时,()()12121111x x f x x x x +−−===−+++,所以()f x 在[)0,∞+上单调递增, 且()132f =,不等式()2122f a a −<即为()()223f a a f −<. 又因为()f x 是偶函数,所以不等式()()223f a a f −<等价于()()223f a a f −<, 则223a a −<,所以,222323a a a a ⎧−<⎨−>−⎩,解得13a −<<. 综上可知,实数a 的取值范围为()1,3−,故选:A .例4、(2023·全国·高三专题练习)定义在R 上的奇函数()f x 在(,0]−∞上单调递增,且(2)2f −=−,则不等式1(lg )lg 4f x f x ⎛⎫−> ⎪⎝⎭的解集为( ) A .10,100⎛⎫ ⎪⎝⎭B .1,100⎛⎫+∞ ⎪⎝⎭C .(0,100)D .(100,)+∞【答案】D【解析】因为函数()f x 为奇函数,所以()()f x f x −=−,又(2)2f −=−,(2)2f =, 所以不等式1(lg )lg 4f x f x ⎛⎫−> ⎪⎝⎭,可化为()2(lg )422f x f >=, 即()(lg )2f x f >,又因为()f x 在(,0]−∞上单调递增,所以()f x 在R 上单调递增,所以lg 2x >,解得100x >.故选:D .例5、(2023春·广西·高三期末)()f x 是定义在R 上的函数,1122f x ⎛⎫++ ⎪⎝⎭为奇函数,则()()20232022f f +−=( )A .-1B .12−C .12D .1【答案】A 【解析】()f x 是定义在R 上的函数,1122f x ⎛⎫++ ⎪⎝⎭为奇函数,则 1111111222222f x f x f x f x ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫−++=−++⇒−+++=− ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦. ∴()()40451404512023202212222f f f f ⎛⎫⎛⎫+−=++−+=− ⎪ ⎪⎝⎭⎝⎭. 故选:A 例6、(2023春·甘肃兰州·高三兰化一中校考阶段练习)若函数f (x )=e e sin x x x x −−+−,则满足()()22ln 102x f a x f ⎛⎫−++≥ ⎪⎝⎭恒成立的实数a 的取值范围为( )A .12ln 2,2⎡⎫−+∞⎪⎢⎣⎭B .1(ln 2,)4−+∞C .[7,)4+∞D .[3,)2+∞ 【答案】A 【解析】因为()e e sin ()x x f x x x f x −−−=−+=−,所以()f x 是R 上的奇函数,由()e +e cos 1x x f x x −'=+−cos 11cos 0x x ≥−=+≥ ,所以()f x 是R 上的增函数, 所以2(2ln(1))02x f a x f ⎛⎫−++≥ ⎪⎝⎭等价于: 22(2ln(1))22x x f a x f f ⎛⎫⎛⎫−+≥−=− ⎪ ⎪⎝⎭⎝⎭即22ln(1)2x a x −+≥−, 所以22ln(1)2x a x ≥−++, 令2()2ln(1)2x g x x =−++, 则问题转化为:max ()a g x ≥,因为()()g x g x −=且定义域为R ,所以()g x =22ln(1)2x x −++是R 上的偶函数, 所以只需求()g x 在()0,∞+上的最大值即可.当[)0,x ∈+∞时,2()2ln(1)2x g x x =−++, ()()22122()111x x x x g x x x x x +−−−+'=−+==−+++, 则当()0,1x ∈时,()0g x '>;当()1,x ∈+∞时,()0g x '<; 所以()g x 在()0,1上单调递增,在()1,+∞上单调递减,可得:max 1()(1)2ln 22g x g ==−, 即12ln 22a ≥−, 故选:A . 本课结束。

高一数学函数的奇偶性试题

高一数学函数的奇偶性试题

高一数学函数的奇偶性试题1.已知f(x)是定义在(-3,3)上的奇函数,当0<x<3时,如图所示,那么不等式f(x)cosx<0的解集是( ).A.B.C.D.【答案】B.【解析】图1图2如图1为f(x)在(-3,3)的图象,图2为y=cosx图象,要求得的解集,只需转化为在寻找满足如下两个关系的区间即可:,结合图象易知当时,,当时,,当时,,故选B.【考点】奇函数的性质,余弦函数的图象,数形结合思想.2.设函数 ().(1)若为偶函数,求实数的值;(2)已知,若对任意都有恒成立,求实数的取值范围.【答案】(1)0;(2)【解析】(1)根据偶函数定义,得到,平方后可根据对应系数相等得到a的值,也可将上式两边平方得恒成立,得a的值。

(2)应先去掉绝对值将其改写为分段函数,在每段上求函数在时的最小值,在每段求最值时都属于定轴动区间问题,需讨论。

最后比较这两个最小值的大小取最小的那个,即为原函数的最小值。

要使恒成立,只需的最小值大于等于1即可,从而求得a的范围试题解析:(1)若的为偶函数,则,,故,两边平方得,展开时,为偶函数。

(2)设,①求,即的最小值:若,;若,②求,即的最小值,比较与,的大小:,故“对恒成立”即为“()”令,解得。

【考点】奇偶性,恒成立问题3.已知函数的定义域为,且为偶函数,则实数的值可以是( ) A.B.C.D.【答案】A【解析】因为函数的定义域为,所以在函数中,,则函数的定义域为,又因为为偶函数,所以,故选A.【考点】本题主要考查了抽象函数的定义域,以及偶函数的性质.4.若函数是奇函数,则为A.B.C.D.【答案】B【解析】由于函数是奇函数,即所以,故选:B.【考点】函数的奇偶性5.已知函数是偶函数,定义域为,则( )A.B.C.1D.-1【答案】C【解析】因为函数是定义在的偶函数,所以,,可得,所以,所以,函数是二次函数,且是偶函数,所以,有,所以,答案选.【考点】函数奇偶性的性质.6.为R上的偶函数,且当时,,则当时,___________.【答案】x(x+1)【解析】因为,为R上的偶函数,所以,。

高一数学函数的奇偶性试题答案及解析

高一数学函数的奇偶性试题答案及解析

高一数学函数的奇偶性试题答案及解析1.若函数是偶函数,则的递减区间是【答案】【解析】偶函数的图像关于轴对称,故,则,则的递减区间是。

【考点】(1)偶函数图像的性质;(2)二次函数单调区间的求法。

2.设函数和分别是上的偶函数和奇函数,则下列结论恒成立的是A.是偶函数B.是奇函数C.是偶函数D.是奇函数【答案】A【解析】由设函数f(x)和g(x)分别是R上的偶函数和奇函数,我们易得到|f(x)|、|g(x)|也为偶函数,进而根据奇+奇=奇,偶+偶=偶,逐一对四个结论进行判断,即可得到答案.∵函数f(x)和g(x)分别是R上的偶函数和奇函数,则|g(x)|也为偶函数,则f(x)+|g(x)|是偶函数,故A满足条件;f(x)-|g(x)|是偶函数,故B不满足条件;|f(x)|也为偶函数,则|f(x)|+g(x)与|f(x)|-g(x)的奇偶性均不能确定故选A【考点】函数奇偶性的判断3.设函数为奇函数,,,则=()A.0B.C.D.-【答案】C.【解析】由题意知,,又因为函数为奇函数,所以,且,再令中得,,即,所以,故选C.【考点】函数的奇偶性;抽象函数.4.已知为偶函数,当时,,则满足的实数的个数为().A.2B.4C.6D.8【答案】D【解析】令,则,解得;又因为为偶函数,所以当时,,则或;当时,,方程无解;,方程有两解;,方程有一解;,方程有一解;即当时,有四解,由偶函数的性质,得当时,也有四解;综上,有8解.【考点】函数的性质、方程的解.5.偶函数满足,且在时,,若直线与函数的图像有且仅有三个交点,则的取值范围是()A.B.C.D.【答案】B【解析】因为,所以函数的图像关于直线对称,又是偶函数,所以,即有,所以是周期为2的函数,由,得,即,画出函数和直线的示意图因为直线与函数的图像有且仅有三个交点,所以根据示意图易知:由直线与半圆相切,可计算得到,由直线与半圆相切可计算得到,所以,选B.【考点】1.函数的对称性、奇偶性、周期性;2.函数图像;3.直线与圆的位置关系;4.点到直线的距离公式.6.若函数在其定义域上为奇函数,则实数 .【答案】【解析】小题可采用带特殊值法求得,检验此时在处有定义.【考点】奇函数定义及特殊值法.7.已知函数是偶函数(1)求k的值;(2)若函数的图象与直线没有交点,求b的取值范围;(3)设,若函数与的图象有且只有一个公共点,求实数的取值范围【答案】(1);(2);(3)【解析】(1)因为函数是偶函数,所以根据偶函数的定义,得到一个关于x,k的等式.由于对于任意的x都成立,相当于恒过定点的问题,所以求得k的值.(2)因为函数的图象与直线没有交点,所以对应的方程没有解,利用分离变量的思维可得到一个等式,该方程无解.所以等价两个函数与没有交点,所以求出函数的最值.即可得到b的取值范围.(3)因为,若函数与的图象有且只有一个公共点,所以等价于方程有且只有一个实数根.通过换元将原方程化为含参的二次方程的形式,即等价于该二次方程仅有一个大于零的实根,通过讨论即可得到结论.试题解析:(1)因为为偶函数,所以,即对于任意恒成立.于是恒成立,而不恒为零,所以. 4分(2)由题意知方程即方程无解.令,则函数的图象与直线无交点.因为,由,则,所以的取值范围是 . 8分(3)由题意知方程有且只有一个实数根.令,则关于的方程 (记为(*))有且只有一个正根.若,则,不合题意, 舍去;若,则方程(*)的两根异号或有两相等正根.由或;但,不合题意,舍去;而;若方程(*)的两根异号综上所述,实数的取值范围是. 12分【考点】1.函数的奇偶性.2.函数的与方程的思想的转化.3.换元法的应用.4.含参数的方程的根的讨论.8.设函数是定义在上的偶函数,当时,.若,则实数的值为 .【答案】【解析】若,则由,得,,解得成立.若,则由,得,即,,得,即,所以.【考点】函数的奇偶性.9.定义在上的函数,对任意都有,当时,,则________.【答案】【解析】由可知函数是周期函数且周期为;所以,而当时,,故.【考点】1.函数的周期性;2.抽象函数;3.函数的解析式.10.已知是定义在上的奇函数,当时,,那么的值是( ) A.B.C.D.【答案】A【解析】因为是定义在上的奇函数,所以.【考点】奇函数的定义.11.已知函数的定义域为,且为偶函数,则实数的值可以是( ) A.B.C.D.【答案】A【解析】因为函数的定义域为,所以在函数中,,则函数的定义域为,又因为为偶函数,所以,故选A.【考点】本题主要考查了抽象函数的定义域,以及偶函数的性质.12.已知定义在R上的单调递增函数满足,且。

高一数学函数的奇偶性试题答案及解析

高一数学函数的奇偶性试题答案及解析

高一数学函数的奇偶性试题答案及解析1.设函数和分别是上的偶函数和奇函数,则下列结论恒成立的是A.是偶函数B.是奇函数C.是偶函数D.是奇函数【答案】A【解析】由设函数f(x)和g(x)分别是R上的偶函数和奇函数,我们易得到|f(x)|、|g(x)|也为偶函数,进而根据奇+奇=奇,偶+偶=偶,逐一对四个结论进行判断,即可得到答案.∵函数f(x)和g(x)分别是R上的偶函数和奇函数,则|g(x)|也为偶函数,则f(x)+|g(x)|是偶函数,故A满足条件;f(x)-|g(x)|是偶函数,故B不满足条件;|f(x)|也为偶函数,则|f(x)|+g(x)与|f(x)|-g(x)的奇偶性均不能确定故选A【考点】函数奇偶性的判断2.若定义在上的奇函数和偶函数满足,则()A.B.C.D.【答案】A【解析】为奇函数和为偶函数,由可得,即,,可解得.故选A.【考点】函数的奇偶性.3.已知f(x)是定义在(-3,3)上的奇函数,当0<x<3时,如图所示,那么不等式f(x)cosx<0的解集是( ).A.B.C.D.【解析】图1图2如图1为f(x)在(-3,3)的图象,图2为y=cosx图象,要求得的解集,只需转化为在寻找满足如下两个关系的区间即可:,结合图象易知当时,,当时,,当时,,故选B.【考点】奇函数的性质,余弦函数的图象,数形结合思想.4.已知函数为偶函数,且若函数,则= .【答案】2014【解析】由函数为偶函数,且得从而,故应填入2014.【考点】函数的奇偶性.5.若函数在其定义域上为奇函数,则实数 .【答案】【解析】小题可采用带特殊值法求得,检验此时在处有定义.【考点】奇函数定义及特殊值法.6.函数的图像大致是()【答案】A【解析】因为的定义域为且,所以为上的偶函数,该函数的图像关于轴对称,只能是图像A、C选项之一,而,故选A.【考点】1.函数的图像;2.函数的奇偶性.7.已知,,则_ ____.【答案】5【解析】函数,,又为奇函数,所以.【考点】函数奇偶性.8.已知是奇函数,且,则.【解析】令,因为此函数是奇函数,所以。

高一数学函数的奇偶性试题

高一数学函数的奇偶性试题

高一数学函数的奇偶性试题1.已知函数为偶函数,且若函数,则= .【答案】2014【解析】由函数为偶函数,且得从而,故应填入2014.【考点】函数的奇偶性.2.下列函数中,既是偶函数又在区间上单调递增的函数是()A.B.C.D.【答案】D【解析】A为偶函数,在上单调递减;B为奇函数,单调递增;C为偶函数,上不单调;D为偶函数,在上单调递增.【考点】函数的奇偶性、单调性.3.设函数是定义在上的偶函数,当时,.若,则实数的值为 .【答案】【解析】若,则由,得,,解得成立.若,则由,得,即,,得,即,所以.【考点】函数的奇偶性.(4x+1)+kx(k∈R)是偶函数.4.已知函数f(x)=log4(1)求k的值;(2)探究函数f(x)=ax+(a、b是正常数)在区间和上的单调性(只需写出结论,m=0有解的m的取值范围.不要求证明).并利用所得结论,求使方程f(x)-log4【答案】(1);(2)函数f(x)=ax+ (a、b是正常数)在区间上为减函数,在区间上为增函数;.【解析】(1)由已知函数的定义域为关于原点对称,又是偶函数,则可根据偶函数的定义(或者利用特殊值代入计算亦可,如),得到一个关于的方程,从而求出的值;(2)由函数在区间上为减函数,在区间上为增函数,结合是可知函数在区间上为单调递减函数,在区间上为单调递增函数.由题意知方程,即为方程,若使方程有解,则对数式的值要在函数的值域范围内,所以首先要求出函数的值域,对函数进行化归得,故原方程可化为,令,,则在区间上为减函数,在区间上为增函数,故函数的最小值为,即当,时函数的值,所以函数的值域为,从而可求出. 试题解析:(1)由函数f(x)是偶函数,可知.∴.即, 2分, 4分∴对一切恒成立.∴. 5分(注:利用解出,亦可得满分)(2)结论:函数 (a、b是正常数)在区间上为减函数,在区间上为增函数. 6分由题意知,可先求的值域,. 8分设,又设,则,由定理,知在单调递减,在单调递增,所以, 11分∵为增函数,由题意,只须,即故要使方程有解,的取值范围为. 13分【考点】1.偶函数;2.对数函数;3.函数;4.复合函数值域.5.已知定义在上的偶函数,当时,,那么时,_____.【答案】【解析】先由函数是偶函数得,然后将所求区间利用运算转化到已知区间上,代入到时,,即可的时,函数的解析式.这类题一般是求那一部设那一部分.当时则因为是偶函数,所以所以时,【考点】函数解析式的求解及常用方法;函数奇偶性的性质.6.若函数为偶函数,则实数的值为__________.【解析】根据偶函数的定义,对定义域中的任意,有,即,故.【考点】函数的奇偶性.7.已知定义在R上的单调递增函数满足,且。

(完整版)上海高一函数的奇偶性的典型例题

(完整版)上海高一函数的奇偶性的典型例题

专题二 函数奇偶性一般地,对于函数f(x)(1)如果对于函数定义域内的任意一个x ,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。

(2)如果对于函数定义域内的任意一个x ,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。

(3)如果对于函数定义域内的任意一个x ,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。

(4)如果对于函数定义域内的任意一个x ,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。

说明:①奇、偶性是函数的整体性质,对整个定义域而言②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数。

(分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论)③判断或证明函数是否具有奇偶性的根据是定义.奇偶函数图象的特征定理f(x)为奇函数等价于f(x)的图像关于原点对称点(x,y )→(-x,-y )奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。

偶函数 在某一区间上单调递增,则在它的对称区间上单调递减。

函数的奇偶性的典型例题一、关于函数的奇偶性的定义定义说明:对于函数)(x f 的定义域内任意一个x :⑴)()(x f x f =- ⇔)(x f 是偶函数;⑵)()(x f x f -=-⇔)(x f 奇函数;函数的定义域关于原点对称是函数为奇(偶)函数的必要不充分条件。

二、函数的奇偶性的几个性质①、对称性:奇(偶)函数的定义域关于原点对称;②、整体性:奇偶性是函数的整体性质,对定义域内任意一个x 都必须成立;③、可逆性: )()(x f x f =- ⇔)(x f 是偶函数;)()(x f x f -=-⇔)(x f 奇函数;④、等价性:)()(x f x f =-⇔0)()(=--x f x f)()(x f x f -=-⇔0)()(=+-x f x f⑤、奇函数的图像关于原点对称,偶函数的图像关于y 轴对称;⑥、可分性:根据函数奇偶性可将函数分类为四类:奇函数、偶函数、既是奇函数又是偶函数、非奇非偶函数。

高中必修一函数的奇偶性详细讲解及练习(详细答案)

高中必修一函数的奇偶性详细讲解及练习(详细答案)

函数的单调性和奇偶性例1〔1〕画出函数y=-x2+2|x|+3的图像,并指出函数的单调区间.解:函数图像如以下图所示,当x≥0时,y=-x2+2x+3=-〔x-1〕2+4;当x<0时,y=-x2-2x+3=-〔x+1〕2+4.在〔-∞,-1]和[0,1]上,函数是增函数:在[-1,0]和[1,+∞〕上,函数是减函数.评析函数单调性是对某个区间而言的,对于单独一个点没有增减变化,所以对于区间端点只要函数有意义,都可以带上.〔2〕已知函数f〔x〕=x2+2〔a-1〕x+2在区间〔-∞,4]上是减函数,求实数a的取值范围.分析要充分运用函数的单调性是以对称轴为界线这一特征.解:f〔x〕=x2+2〔a-1〕x+2=[x+〔a-1〕]2-〔a-1〕2+2,此二次函数的对称轴是x=1-a.因为在区间〔-∞,1-a]上f〔x〕是单调递减的,假设使f〔x〕在〔-∞,4]上单调递减,对称轴x=1-a必须在x=4的右侧或与其重合,即1-a≥4,a≤-3.评析这是涉及逆向思维的问题,即已知函数的单调性,求字母参数范围,要注意利用数形结合.例2判断以下函数的奇偶性:〔1〕f〔x〕=-〔2〕f〔x〕=〔x-1〕.解:〔1〕f〔x〕的定义域为R.因为f〔-x〕=|-x+1|-|-x-1|=|x-1|-|x+1|=-f〔x〕.所以f〔x〕为奇函数.〔2〕f〔x〕的定义域为{x|-1≤x<1},不关于原点对称.所以f〔x〕既不是奇函数,也不是偶函数.评析用定义判断函数的奇偶性的步骤与方法如下:〔1〕求函数的定义域,并考查定义域是否关于原点对称.〔2〕计算f〔-x〕,并与f〔x〕比较,判断f〔-x〕=f〔x〕或f〔-x〕=-f〔x〕之一是否成立.f 〔-x〕与-f〔x〕的关系并不明确时,可考查f〔-x〕±f〔x〕=0是否成立,从而判断函数的奇偶性.例3已知函数f〔x〕=.〔1〕判断f〔x〕的奇偶性.〔2〕确定f〔x〕在〔-∞,0〕上是增函数还是减函数?在区间〔0,+∞〕上呢?证明你的结论.解:因为f〔x〕的定义域为R,又f〔-x〕===f〔x〕,所以f〔x〕为偶函数.〔2〕f〔x〕在〔-∞,0〕上是增函数,由于f〔x〕为偶函数,所以f〔x〕在〔0,+∞〕上为减函数.其证明:取x1<x2<0,f〔x1〕-f〔x2〕=- ==.因为x1<x2<0,所以x2-x1>0,x1+x2<0,x21+1>0,x22+1>0,得f〔x1〕-f〔x2〕<0,即f〔x1〕<f〔x2〕.所以f〔x〕在〔-∞,0〕上为增函数.评析奇函数在〔a,b〕上的单调性与在〔-b,-a〕上的单调性相同,偶函数在〔a,b〕与〔-b,-a〕的单调性相反.例4已知y=f〔x〕是奇函数,它在〔0,+∞〕上是增函数,且f〔x〕<0,试问F〔x〕=在〔-∞,0〕上是增函数还是减函数?证明你的结论.分析根据函数的增减性的定义,可以任取x1<x2<0,进而判定F〔x1〕-F〔x2〕=-=的正负.为此,需分别判定f〔x1〕、f〔x2〕与f〔x2〕的正负,而这可以从已条件中推出.解:任取x1、x2∈〔-∞,0〕且x1<x2,则有-x1>-x2>0.∵y=f〔x〕在〔0,+∞〕上是增函数,且f〔x〕<0,∴f〔-x2〕<f〔-x1〕<0.①又∵f〔x〕是奇函数,∴f〔-x2〕=-f〔x2〕,f〔-x1〕=-f〔x1〕②由①、②得f〔x2〕>f〔x1〕>0.于是F〔x1〕-F〔x2〕=>0,即F〔x1〕>F〔x2〕,所以F〔x〕=在〔-∞,0〕上是减函数.评析此题最容易发生的错误,是受已知条件的影响,一开始就在〔0,+∞〕内任取x1<x2,展开证明.这样就不能保证-x1,-x2,在〔-∞,0〕内的任意性而导致错误.防止错误的方法是:要明确证明的目标,有针对性地展开证明活动.例5讨论函数f〔x〕=〔a≠0〕在区间〔-1,1〕内的单调性.分析根据函数的单调性定义求解.解:设-1<x1<x2<1,则f〔x1〕-f〔x2〕=-=∵x1,x2∈〔-1,1〕,且x1<x2,∴x1-x2<0,1+x1x2>0,〔1-x21〕〔1-x22〕>0于是,当a>0时,f〔x1〕<f〔x2〕;当a<0时,f〔x1〕>f〔x2〕.故当a>0时,函数在〔-1,1〕上是增函数;当a<0时,函数在〔-1,1〕上为减函数.评析根据定义讨论〔或证明〕函数的单调性的一般步骤是:〔1〕设x1、x2是给定区间内任意两个值,且x1<x2;〔2〕作差f〔x1〕-f〔x2〕,并将此差式变形;〔3〕判断f〔x1〕-f〔x2〕的正负,从而确定函数的单调性.例6求证:f〔x〕=x+ 〔k>0〕在区间〔0,k]上单调递减.解:设0<x1<x2≤k,则f〔x1〕-f〔x2〕=x1+ -x2-=∵0<x1<x2≤k,∴x1-x2<0,0<x1x2<k2,∴f〔x1〕-f〔x2〕>0∴f〔x1〕>f〔x2〕,∴f〔x〕=x+ 中〔0,k]上是减函数.评析函数f〔x〕在给定区间上的单调性反映了函数f〔x〕在区间上函数值的变化趋势,是函数在区间上的整体性质.因此,假设要证明f〔x〕在[a,b]上是增函数〔减函数〕,就必须证明对于区间[a,b]上任意两点x1,x2,当x1<x2时,都有不等式f〔x1〕<f〔x2〕〔f〔x1〕>f〔x2〕〕类似可以证明:函数f〔x〕=x+ 〔k>0〕在区间[k,+∞]上是增函数.例7判断函数f〔x〕=的奇偶性.分析确定函数的定义域后可脱去绝对值符号.解:由得函数的定义域为[-1,1].这时,|x-2|=2-x.∴f〔x〕=,∴f〔-x〕===f〔x〕.且注意到f〔x〕不恒为零,从而可知,f〔x〕=是偶函数,不是奇函数.评析由于函数解析式中的绝对值使得所给函数不像具有奇偶性,假设不作深入思考,便会作出其非奇非偶的判断.但隐含条件〔定义域〕被揭示之后,函数的奇偶性就非常明显了.这样看来,解题中先确定函数的定义域不仅可以防止错误,而且有时还可以避开讨论,简化解题过程.函数奇偶性练习一、选择题1.已知函数f 〔x 〕=ax 2+bx +c 〔a ≠0〕是偶函数,那么g 〔x 〕=ax 3+bx 2+cx 〔 〕 A .奇函数 B .偶函数 C .既奇又偶函数 D .非奇非偶函数 2.已知函数f 〔x 〕=ax 2+bx +3a +b 是偶函数,且其定义域为[a -1,2a ],则〔 〕 A .31=a ,b =0 B .a =-1,b =0 C .a =1,b =0 D .a =3,b =0 3.已知f 〔x 〕是定义在R 上的奇函数,当x ≥0时,f 〔x 〕=x 2-2x ,则f 〔x 〕在R 上的表达式是〔 〕 A .y =x 〔x -2〕 B .y =x 〔|x |-1〕 C .y =|x |〔x -2〕 D .y =x 〔|x |-2〕 4.已知f 〔x 〕=x 5+ax 3+bx -8,且f 〔-2〕=10,那么f 〔2〕等于〔 〕 A .-26 B .-18 C .-10 D .10 5.函数1111)(22+++-++=x x x x x f 是〔〕A .偶函数B .奇函数C .非奇非偶函数D .既是奇函数又是偶函数 6.假设)(x ϕ,g 〔x 〕都是奇函数,2)()(++=x bg a x f ϕ在〔0,+∞〕上有最大值5, 则f 〔x 〕在〔-∞,0〕上有〔 〕A .最小值-5B .最大值-5C .最小值-1D .最大值-3 二、填空题 7.函数2122)(xx x f ---=的奇偶性为________〔填奇函数或偶函数〕 .8.假设y =〔m -1〕x 2+2mx +3是偶函数,则m =_________. 9.已知f 〔x 〕是偶函数,g 〔x 〕是奇函数,假设11)()(-=+x x g x f ,则f 〔x 〕的解析式为_______.10.已知函数f 〔x 〕为偶函数,且其图象与x 轴有四个交点,则方程f 〔x 〕=0的所有实根之和为________. 三、解答题11.设定义在[-2,2]上的偶函数f 〔x 〕在区间[0,2]上单调递减,假设f 〔1-m 〕<f 〔m 〕,求实数m 的取值范围.12.已知函数f 〔x 〕满足f 〔x +y 〕+f 〔x -y 〕=2f 〔x 〕·f 〔y 〕〔x ∈R ,y ∈R 〕,且f 〔0〕≠0, 试证f 〔x 〕是偶函数.13.已知函数f 〔x 〕是奇函数,且当x >0时,f 〔x 〕=x 3+2x 2—1,求f 〔x 〕在R 上的表达式.14.f 〔x 〕是定义在〔-∞,-5] [5,+∞〕上的奇函数,且f 〔x 〕在[5,+∞〕上单调递减,试判断f 〔x 〕在〔-∞,-5]上的单调性,并用定义给予证明.15.设函数y =f 〔x 〕〔x ∈R 且x ≠0〕对任意非零实数x 1、x 2满足f 〔x 1·x 2〕=f 〔x 1〕+f 〔x 2〕, 求证f 〔x 〕是偶函数.函数的奇偶性练习参考答案1. 解析:f 〔x 〕=ax 2+bx +c 为偶函数,x x =)(ϕ为奇函数,∴g 〔x 〕=ax 3+bx 2+cx =f 〔x 〕·)(x ϕ满足奇函数的条件. 答案:A2.解析:由f 〔x 〕=ax 2+bx +3a +b 为偶函数,得b =0.又定义域为[a -1,2a ],∴a -1=2a ,∴31=a .故选A . 3.解析:由x ≥0时,f 〔x 〕=x 2-2x ,f 〔x 〕为奇函数,∴当x <0时,f 〔x 〕=-f 〔-x 〕=-〔x 2+2x 〕=-x 2-2x =x 〔-x -2〕.∴,,)0()0()2()2()(<≥---=⎩⎨⎧x x x x x x x f 即f 〔x 〕=x 〔|x |-2〕答案:D4.解析:f 〔x 〕+8=x 5+ax 3+bx 为奇函数,f 〔-2〕+8=18,∴f 〔2〕+8=-18,∴f 〔2〕=-26. 答案:A5.解析:此题直接证明较烦,可用等价形式f 〔-x 〕+f 〔x 〕=0. 答案:B 6.解析:)(x ϕ、g 〔x 〕为奇函数,∴)()(2)(x bg x a x f +=-ϕ为奇函数. 又f 〔x 〕在〔0,+∞〕上有最大值5, ∴f 〔x 〕-2有最大值3.∴f 〔x 〕-2在〔-∞,0〕上有最小值-3, ∴f 〔x 〕在〔-∞,0〕上有最小值-1. 答案:C7.答案:奇函数8.答案:0解析:因为函数y =〔m -1〕x 2+2mx +3为偶函数,∴f 〔-x 〕=f 〔x 〕,即〔m -1〕〔-x 〕2+2m 〔-x 〕+3=〔m —1〕x 2+2mx +3,整理,得m =0. 9.解析:由f 〔x 〕是偶函数,g 〔x 〕是奇函数,可得11)()(--=-x x g x f ,联立11)()(-=+x x g x f ,∴11)1111(21)(2-=----=x x x x f . 答案:11)(2-=x x f 10.答案:0 11.答案:21<m12.证明:令x =y =0,有f 〔0〕+f 〔0〕=2f 〔0〕·f 〔0〕,又f 〔0〕≠0,∴可证f 〔0〕=1.令x =0,∴f 〔y 〕+f 〔-y 〕=2f 〔0〕·f 〔y 〕⇒f 〔-y 〕=f 〔y 〕,故f 〔x 〕为偶函数. 13.解析:此题主要是培养学生理解概念的能力.f 〔x 〕=x 3+2x 2-1.因f 〔x 〕为奇函数,∴f 〔0〕=0.当x <0时,-x >0,f 〔-x 〕=〔-x 〕3+2〔-x 〕2-1=-x 3+2x 2-1, ∴f 〔x 〕=x 3-2x 2+1.因此,.)0()0()0(12012)(,,2323<=>+--+=⎪⎩⎪⎨⎧x x x x x x x x f点评:此题主要考查学生对奇函数概念的理解及应用能力.14.解析:任取x1<x2≤-5,则-x1>-x2≥-5.因f〔x〕在[5,+∞]上单调递减,所以f〔-x1〕<f〔-x2〕⇒f〔x1〕<-f〔x2〕⇒f〔x1〕>f〔x2〕,即单调减函数.点评:此题要注意灵活运用函数奇偶性和单调性,并及时转化.15.解析:由x1,x2∈R且不为0的任意性,令x1=x2=1代入可证,f〔1〕=2f〔1〕,∴f〔1〕=0.又令x1=x2=-1,∴f[-1×〔-1〕]=2f〔1〕=0,∴〔-1〕=0.又令x1=-1,x2=x,∴f〔-x〕=f〔-1〕+f〔x〕=0+f〔x〕=f〔x〕,即f〔x〕为偶函数.点评:抽象函数要注意变量的赋值,特别要注意一些特殊值,如,x1=x2=1,x1=x2=-1或x1=x2=0等,然后再结合具体题目要求构造出适合结论特征的式子即可.。

2019年上海高考数学第一轮复习 第08讲 函数的奇偶性

2019年上海高考数学第一轮复习 第08讲 函数的奇偶性

第08讲 函数的奇偶性[基础篇]一、函数的奇偶性(奇偶性的前提:定义域关于原点对称):奇函数:对于函数)(x f 的定义域D 内任意实数x ,都有)()(x f x f -=-(或0)()(=-+x f x f ),那么就把函数)(x f 称为奇函数。

偶函数:对于函数)(x f 的定义域D 内任意实数x ,都有)()(x f x f =-(或0)()(=--x f x f ),那么就把函数)(x f 称为偶函数。

[备注](1)判断一个函数是奇函数,或者是偶函数,或者既不是奇函数也不是偶函数,叫做判断函数的奇偶性,判断的根据是定义;(2)函数中有奇函数,有偶函数,也有非奇非偶函数,还有既是奇函数又是偶函数,例如常数函数()()f x a x R =∈,当0a ≠时是偶函数,当0a =时,它既是奇函数又是偶函数;(3)判断函数的奇偶性,有时也可根据下面的式子来判断:对于()f x 定义域内任意一个x ,①若有()()0f x f x --=成立,则()f x 为偶函数;②若有()()0f x f x +-=成立,则()f x 为奇函数。

二、奇、偶函数的性质:(1)具有奇偶性的函数,其定义域关于原点对称(也就是说,函数为奇函数或偶函数的必要条件是其定义域关于原点对称);(2)奇函数的图像关于 对称,偶函数的图像关于 对称(反过来,若一个函数的图像关于原点对称,则这个函数是奇函数,若一个函数的图像关于y 轴对称,则这个函数是偶函数); (3)若奇函数的定义域包含数0,则=)0(f ;(4)奇函数在对称的单调区间内有相同的单调性,偶函数在对称的单调区间内具有相反的单调性; (6)奇函数的反函数也为奇函数。

三、奇、偶函数证明方法: 1、判断函数的奇偶性的方法:(1)定义法:首先判断其定义域是否关于原点中心对称. 若不对称,则为非奇非偶函数;若对称,则再判断()()f x f x =-或()()f x f x =-是否定义域上的恒等式; (2)图像法;(3)性质法:①设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域12D D D =上:奇±奇=奇,偶±偶=偶,奇⨯奇=偶,偶⨯偶=偶,奇⨯偶=奇;②若某奇函数若存在反函数,则其反函数必是奇函数; 2、判断函数的奇偶性有时可以用定义的等价形式:()()0f x f x ±-=,()1()f x f x =±-.[技能篇]题型一:函数奇偶性的证明: 例题1-1 判断下列函数的奇偶性(1)x x y --+=1111 (2)()(f x x =-(3)22)(+--=x x x f (4)⎩⎨⎧>+<-=0)1(0)1()(x x x x x x x f例题1-2 已知函数()f x 为定义在R 上的函数,则命题“存在0x R ∈,使00()()f x f x -≠且00()()f x f x -≠-”是命题“()f x 为非奇非偶函数”的 条件。

高一数学函数的奇偶性试题答案及解析

高一数学函数的奇偶性试题答案及解析

高一数学函数的奇偶性试题答案及解析1.已知是定义在上的奇函数,当时,则当时___________.【答案】【解析】设,则,又是定义在上的奇函数,则,故填.【考点】函数的奇偶性.2.设是定义在R上的奇函数,且的图象关于直线对称,则=________【解析】因为是定义在R上的奇函数,所以f(-x)=-f(x).又因为的图象关于直线对称.所以f(x)=f(1-x).所以由上两式可得f(1-x)=-f(-x)即f(-x)="-" f(1-x)=f(2-x).所以函数是一个周期为2的函数.所以.又因为函数是R上的奇函数所以,.所以填0.【考点】1.函数的周期性.2.函数的对称性.3.函数的奇偶性.3.已知偶函数满足,且当时,,则.【答案】2【解析】由知此函数周期 4,因为为偶函数,所以【考点】函数奇偶性周期性4.已知函数,下列叙述(1)是奇函数;(2)是奇函数;(3)的解为(4)的解为;其中正确的是________(填序号).【答案】(1)(3)【解析】这类问题,必须对每个命题都判断其真假,根据的解析式,显然对任意的都有,即是奇函数,(1)正确;当然此时函数是偶函数,(2)错误;对(3)按照分类讨论,可解得不等式的解是,(3)正确;而对不等式来讲,时,不等式就不成立,故(4)错误.填(1)(3).【考点】分段函数,函数的奇偶性,分类讨论.5.已知是定义在上的偶函数,那么=【答案】【解析】是定义在上的偶函数,因为偶函数定义域关于原点对称,,又由偶函数关于轴对称得:,所以【考点】偶函数的性质应用6.已知函数是定义在上的偶函数.当时,,则当时,.【答案】【解析】把转化为,利用偶函数的定义即可得所求.试题解析:时,.所以,.因为是是定义在上的偶函数,所以.【考点】偶函数,转化与化归思想7.定义在上的奇函数,当时,,则方程的所有解之和为.【答案】【解析】利用奇函数的图象关于原点对称的性质,通过观察图象可知方程的解是及的解的相反数.试题解析:作出时的图象,如下所示:方程的解等价于的图象与直线的交点的横坐标,因为奇函数的图象关于原点对称,所以等价于()的图象与直线的交点的横坐标和()的图象与直线的交点的横坐标的相反数,.由得.所以方程的所有解之和为.【考点】奇函数,方程与函数思想8.函数f(x)=x5+x3的图象关于()对称().A.y轴B.直线y=x C.坐标原点D.直线y=-x【答案】C【解析】∵,∴函数是奇函数,它的图象关于原点对称.图象关于y轴对称的函数是偶函数。

高一函数的奇偶性试题(有详细解答)

 高一函数的奇偶性试题(有详细解答)

高一函数的奇偶性试题一.选择题(共20小题),B9.函数()=.C.=f为偶函数为偶函数是非奇非偶函数的定义域为==:由题意可得函数满足即函数的定义域=16.已知,则它是()17.函数y=是():由函数的形式得解得=2x=是偶函数在二.填空题(共10小题)21.(2002•天津)设函数f(x)在(﹣∞,+∞)内有定义,下列函数(1)y=﹣|f(x)|;(2)y=xf(x2);(3)y=﹣f(﹣x);(4)y=f(x)﹣f(﹣x)中必为奇函数的有(2),(4)(要22.下列幂函数中是奇函数且在(0,+∞)上单调递增的是(2),(5)(写出所有正确的序号)(1)y=x2(2)y=x(3)(4)y=x﹣1(5)y=x3.是非奇非偶函数,不满足要求;23.判断函数的奇偶性为:非奇非偶.24.已知函数y=f(x)是定义在R上的奇函数,则下列函数中是奇函数的是②④(填序号).①y=f(|x|);②y=f(﹣x);③y=x•f(x);④y=f(x)+x.25.(2012•重庆)若f(x)=(x+a)(x﹣4)为偶函数,则实数a=4.26.(2004•上海)设奇函数f(x)的定义域为[﹣5,5],若当x∈[0,5]时,f(x)的图象如图,则不等式f(x)<0的解集是{x|﹣2<x<0或2<x≤5}.27.已知函数的图象关于原点对称,则b=﹣1.28.若函数为奇函数,则实数a的值是﹣1.=)29.若f(x)是R上的奇函数,当x>0时,f(x)=x(x+1),则当x<0时,f(x)=x30.设a是实数.若函数f(x)=|x+a|﹣|x﹣1|是定义在R上的奇函数,但不是偶函数,则a=1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题二 函数奇偶性
一般地,对于函数f(x)
(1)如果对于函数定义域内的任意一个x ,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。

(2)如果对于函数定义域内的任意一个x ,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。

(3)如果对于函数定义域内的任意一个x ,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。

(4)如果对于函数定义域内的任意一个x ,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。

说明:①奇、偶性是函数的整体性质,对整个定义域而言
②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数。

(分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论)
③判断或证明函数是否具有奇偶性的根据是定义.
奇偶函数图象的特征
定理
f(x)为奇函数等价于f(x)的图像关于原点对称
点(x,y )→(-x,-y )
奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。

偶函数 在某一区间上单调递增,则在它的对称区间上单调递减。

函数的奇偶性的典型例题
一、关于函数的奇偶性的定义
定义说明:对于函数)(x f 的定义域内任意一个x :
⑴)()(x f x f =- ⇔)(x f 是偶函数;⑵)()(x f x f -=-⇔)(x f 奇函数;
函数的定义域关于原点对称是函数为奇(偶)函数的必要不充分条件。

二、函数的奇偶性的几个性质
①、对称性:奇(偶)函数的定义域关于原点对称;
②、整体性:奇偶性是函数的整体性质,对定义域内任意一个x 都必须成立;
③、可逆性: )()(x f x f =- ⇔)(x f 是偶函数;
)()(x f x f -=-⇔)(x f 奇函数;
④、等价性:)()(x f x f =-⇔0)()(=--x f x f
)()(x f x f -=-⇔0)()(=+-x f x f
⑤、奇函数的图像关于原点对称,偶函数的图像关于y 轴对称;
⑥、可分性:根据函数奇偶性可将函数分类为四类:奇函数、偶函数、既是奇函数又是偶函数、非奇非偶函数。

三、函数的奇偶性的判断
判断函数的奇偶性大致有下列两种方法:
第一种方法:利用奇、偶函数的定义,主要考查)(x f 是否与)(x f -、)(x f 相等,判断步骤如下:
①、定义域是否关于原点对称;
②、数量关系)()(x f x f ±=-哪个成立;
例1:判断下列各函数是否具有奇偶性
⑴、x x x f 2)(3+= ⑵、2432)(x x x f += ⑶、1
)(2
3--=x x x x f ⑷、2)(x x f = []2,1-∈x ⑸、x x x f -+-=22)( ⑹、2211)(x x x f -+-=
例2:判断函数⎩⎨⎧<≥-=)0()0()(22x x x
x x f 的奇偶性。

第二种方法:利用一些已知函数的奇偶性及下列准则(前提条件为两个函数的定义域交集不为空集):两个奇函数的代数和是奇函数;两个偶函数的和是偶函数;奇函数与偶函数的和既不非奇函数也非偶函数;两个奇函数的积为偶函数;两个偶函数的积为偶函数;奇函数与偶函数的积是奇函数。

四、关于函数的奇偶性的几个命题的判定。

命题1 函数的定义域关于原点对称,是函数为奇函数或偶函数的必要不充分条件。

命题2 两个奇函数的和或差仍是奇函数;两个偶函数的和或差仍是偶函数。

命题3 f(x)是任意函数,那么|f(x)|与f(|x|)都是偶函数。

命题4 如果函数f(x)满足:|f(x)|=|f(-x)|,那么函数f(x)是奇函数或偶函数。

命题5 函数f(x)+f(-x)是偶函数,函数f(x)-f(-x)是奇函数。

命题6 已知函数f(x)是奇函数,且f(0)有定义,则f(0)=0。

命题7 已知f(x)是奇函数或偶函数,方程f(x)=0有实根,那么方程f(x)=0的所有实根之和为零;若f(x)是定义在实数集上的奇函数,则方程f(x)=0有奇数个实根。

五、关于函数按奇偶性的分类
全体实函数可按奇偶性分为四类:①奇偶数、②偶函数、③既是奇函数也是偶函数、④非奇非偶函数。

六、关于奇偶函数的图像特征
例1:已知偶函数)(x f y =在y 轴右则时的图像如图(一)试画出函数y 轴右则的图像。

七、关于函数奇偶性的简单应用
1、利用奇偶性求函数值
例1:已知8)(35-++=bx ax x x f 且10)2(=-f ,那么=)2(f
2、利用奇偶性比较大小
例2:已知偶函数)(x f 在()0,∞-上为减函数,比较)5(-f ,)1(f ,)3(f 的大小。

3.利用奇偶性求解析式
例3:已知)(x f 为偶函数时当时当01,1)(,10<≤--=≤≤x x x f x ,求)(x f 的解析式?
图(二)
图(一)
4、利用奇偶性讨论函数的单调性
例4:若3)3()2()(2+-+-=x k x k x f 是偶函数,讨论函数)(x f 的单调区间?
5、利用奇偶性判断函数的奇偶性
例5:已知函数)0()(23≠++=a cx bx ax x f 是偶函数,判断cx bx ax x g ++=23)(的奇偶性。

6、利用奇偶性求参数的值
例6:定义在R 上的偶函数)(x f 在)0,(-∞是单调递减,若)123()12(22+-<++a a f a a f ,则a 的取值范围是如何?
7、利用图像解题
例7(2004.上海理)设奇函数f(x)的定义域为[-5,5].若当x ∈[0,5]时, f(x)的图
象如右图,则不等式()0<x f 的解是 .
8.利用定义解题
例8.已知函数1().21
x f x a =-
+,若()f x 为奇函数,则a =________。

相关文档
最新文档