解一元一次不等式(第3课时)
2019年秋浙教版八年级上册数学课件:3.3 第3课时
3
• 【典例】某城市的一种出租车起步价是8元(即行程在3 km以内都需付8 元车费),超过3 km后,每增加1 km,加价1.5元(不足1 km的部分按1 km计算).现在某人乘这种出租车从甲地到乙地,支付车费18.5元.从 甲地到乙地的路程大约是多少千米?
• 分析:此题的车费分两部分,即起步价8元和超过3 km后的费用.不 等关系为“起步价+超过3 km后的费用≤18.5元”.
• (2)根据题意,得2x≤80-3x.解得x≤16.由(1),知x≥14,则14≤x≤16.又 ∵x是正整数,∴x=14,15,16.故有三种购买方案:方案一:购买甲种 电冰箱28台,乙种电冰箱14台,丙种电冰箱38台;方案二:购买甲种 电冰箱30台,乙种电冰箱15台,丙种电冰箱35台;方案三:购买甲种 电冰箱32台,乙种电冰箱16台,丙种电冰箱32台.
种型号节能灯 450 只.
14
思维训练
• 9.为响应“家电下乡”的惠农政策,某商场决定从厂家购进甲、乙、 丙三种不同型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱 台数的2倍,购买三种电冰箱的全部金额不超过132 000元.已知甲、 乙、丙三种电冰箱的出厂价格分别为1200元/台、1600元/台、2000元 /台.
• (1)求每辆大客车和每辆小客车的座位数;
• (2)经学校统计,实际参加活动的人数增加了40人,学校决定调整租车 方案,在保持租用车辆总数不变的情况下,为使所有参加活动的师生 均有座位,最多租用小客车多少辆?
11
解:(1)设每辆小客车的座位数是 x 个,每辆大客车的座位数是 y 个.根据题意, 得y4-y+x=6x1=5, 310, 解得xy==4205., 故每辆大客车的座位数是 40 个,每辆小客车的座 位数是 25 个.
专题03 解一元一次不等式(组)及参数问题八种模型(学生版)
专题03解一元一次不等式(组)及参数问题八种模型【类型一解一元一次不等式模型】例题:(2022·陕西·模拟预测)解不等式3136x x-<-,并在如图所示的数轴上表示出该不等式的解集.【变式训练1】(2022·陕西·西安市西光中学二模)解不等式7132184x x->--,并把它的解集在如图所示的数轴上表示出来.【变式训练2】(2021·上海徐汇·期中)解不等式38236x x---≤,把解集在数轴上表示出来,并求出最小整数解.【变式训练3】(2022·福建·三明一中八年级阶段练习)解不等式:(1)2(41)58x x -≥-(2)261136x x +-≤【变式训练4】(2022·河南驻马店·八年级阶段练习)解下列一元一次不等式,并把它们的解集表示在数轴上:(1)2﹣5x <8﹣6x ;(2)53-x +1≤32x .【类型二解一元一次不等式组模型】例题:(2022·福建·三明一中八年级阶段练习)解不等式组52331132x xx x -≤⎧⎪-+⎨<-⎪⎩,并把不等式组的解集在数轴上表示出来:【变式训练1】(2022·广东·汕头市龙湖实验中学九年级阶段练习)解不等式组:1011122x x -≥⎧⎪⎨--<⎪⎩,并写出它的所有整数解.【变式训练2】(浙江省温州市2020-2021学年八年级上学期3月月考数学试题)解一元一次不等式组523(1)131722x x x x ->+⎧⎪⎨-≤-⎪⎩,并把解集在数轴上表示出来.【变式训练3】(2022·广东揭阳·八年级阶段练习)解不等式组:12(1)2235xx x x ⎧+<-⎪⎪⎨+⎪>⎪⎩,并把它的解集在数轴上表示出来.【变式训练4】(2022·湖南岳阳·八年级期末)(1)解不等式121132x x+++≥;(2)解不等式组:3242(1)31x x x -<⎧⎨-≤+⎩,并把它的解集在数轴上表示出来.【类型三一元一次不等式的定义时含参数问题】例题:(2021·全国·七年级课时练习)已知不等式||1(2)20n n x --->是一元一次不等式,则n =____.【变式训练1】(2022·山东·枣庄市第十五中学八年级阶段练习)已知()3426m m x --+>是关于x 的一元一次不等式,则m 的值为______.【变式训练2】(2021·黑龙江·肇源县超等蒙古族乡学校八年级期中)若21(2)15m m x --->是关于x 的一元一次不等式,则m 的值为______________.【类型四一元一次不等式整数解中含参数问题】例题:(2022·上海·七年级期中)如果不等式2x ﹣3≤m 的正整数解有4个,则m 的取值范围是_____.【变式训练1】(2020·全国·八年级单元测试)已知不等式30x m -≤有5个正整数解,则m 的取值范围是________.【类型五一元一次方程组与不等式间含参数问题】例题:(2022·全国·八年级)关于x 的方程42158x m x -+=-的解是负数,则满足条件的m 的最小整数值是_____.【变式训练1】(2021·四川成都·八年级期末)已知关于x 的方程35x a x +=-的解是正数,则实数a 的取值范围是______.【变式训练2】(2021·全国·七年级课时练习)如果关于x 的方程2435x a x a++=的解不是负数,那么a 的取值范围是________.【变式训练3】(2021·全国·七年级课时练习)当m________时,关于x的方程222x m xx---=的解为非负数.【类型六二元一次方程组与不等式间含参数问题】例题:(2021·内蒙古呼和浩特·七年级期末)已知关于x、y的二元一次方程组231231x y kx y k+=+⎧⎨+=-⎩的解满足x+y<4,则满足条件的k的最大整数为____.【变式训练1】(2021·四川绵阳·x,y的二元一次方程组221x yx y k+=⎧⎨+=+⎩的解为正数,则k的取值范围为__.【变式训练2】(2021·江苏江苏·七年级期末)已知关于x,y的二元一次方程组231323x y mx y m+=+⎧⎨-=+⎩,且x,y满足x+y>3.则m的取值范围是___.【变式训练3】(2021·四川南充·七年级期末)已知关于x,y的方程组24223x y kx y k+=⎧⎨+=-+⎩,的解满足x﹣y>0,则k的最大整数值是______________.【变式训练4】(2021·甘肃·九年级专题练习)若关于x,y的二元一次方程组3331x yx y a+=⎧⎨+=+⎩的解满足x+y<2,则a的取值范围为_______.【类型七解一元一次不等式组中有无解集求参数问题】例题:(2021·内蒙古·包头市青山区教育教学研究中心八年级期中)关于x的不等式组352x ax a->⎧⎨-<⎩无解,则a的取值范围是_____.【变式训练1】(2022·广西贵港·八年级期末)若关于x的不等式组33235x xx m-<⎧⎨->⎩有解,则m的取值范围是______.【变式训练2】(2021·四川凉山·七年级期末)已知关于x的不等式组5122x ax x->⎧⎨->-⎩无解,则a的取值范围是_________.【变式训练3】(2021·河南南阳·三模)已知关于x的不等式组3xx m>⎧⎨≤⎩有实数解,则m的取值范围是____.【变式训练4】(2022·江苏南通·九年级阶段练习)如果关于x的不等式组232x ax a>+⎧⎨<-⎩无解,则常数a的取值范围是______________.【类型八解一元一次不等式组中有整数解求参数问题】例题:(2021·宁夏中卫·八年级期末)不等式组,3x ax>⎧⎨<⎩的整数解有三个,则a的取值范围是_________.【变式训练1】(2021·安徽·马鞍山二中实验学校七年级期中)已知不等式组211x x a-<⎧⎨-≤⎩,只有三个整数解,则a 的取值范围是_________.【变式训练2】(2021·黑龙江佳木斯·模拟预测)不等式组2312x ax -⎧⎨-≤⎩<有3个整数解,则a 的取值范围是_____.【变式训练3】(2020·内蒙古·北京八中乌兰察布分校一模)关于x 的不等式组3x ax <⎧⎨≥⎩只有两个整数解,则a 的取值范围是_____.【变式训练4】(2022·湖南湘潭·八年级期末)已知关于x 的不等式组3010x a x -≤⎧⎨-≤⎩①②,有且只有3个整数解,则a 的取值范围是______________。
9.2一元一次不等式(三) 同步练习 2020-2021学年人教版数学七年级下册
9.2一元一次不等式(三)【笔记】对于用不等式解决实际问题,主要是正确分析题意,找出满足条件的不等关系,然后根据不等关系列出不等式.解不等式的应用题,要注意题目中表示不等关系的词语,如“不大于”“不小于”“不超过”“不低于”等.解决实际问题的时候还要注意实际意义.例如材料选用一般是“进一法”.【训练】1.小明准备用22元钱买笔和笔记本,已知每支笔3元,每本笔记本2元,他买了3本笔记本后,其余的钱用来买笔,那么他最多可以买( )A. 3支笔B. 4支笔C. 5支笔D. 6支笔2.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多可打( )A.6折B.7折C.8折D.9折3.西宁市天然气公司在一些居民小区安装天然气管道时,采用一种鼓励居民使用天然气的收费办法,若整个小区每户都安装,收整体初装费10000元,再对每户收费500元.某小区住户按这种收费方法全部安装天然气后,每户平均支付不足1000元,则这个小区的住户数( )A.至少20户B.至多20户C.至少21户D.至多21户4.某商店搞促销:某种矿泉水原价每瓶5元,现有两种优惠方案:(1)买一赠一;(2)一瓶按原价,其余一律四折.小华为同学选购,则至少买瓶矿泉水时,第二种方案更便宜.( ) A.5 B.6 C.7 D.85.在抗震救灾中,某抢险地段需实行爆破.操作人员点燃导火线后,要在炸药爆炸前跑到400米以外的安全区域.已知导火线的燃烧速度是1.2厘米/秒,操作人员跑步的速度是5米/秒.为了保证操作人员的安全,导火线的长度要超过厘米.6.张老师带领学生到科技馆参观,门票每张25元,购票时发现所带的钱不足,售票处工作人员告诉他:如果参观人数50人以上(含50人),可以按团体票享受8折优惠,于是张老师买了50张票,结果发现所带的钱还有剩余,那么张老师和他的学生至少有人.7.有3人携带会议材料乘坐电梯,这3人的体重共210kg,每捆材料重20kg,电梯最大负荷为1050kg,则该电梯在此3人乘坐的情况下最多还能搭载捆材料.8.(张家界中考)某社区购买甲、乙两种树苗进行绿化,已知甲种树苗每棵30元,乙种树苗每棵20元,且乙种树苗购买棵数比甲种树苗购买棵数的2倍还少40棵,购买两种树苗的总金额为9000元.(1)求购买甲、乙两种树苗各多少棵;(2)为保证绿化效果,社区决定再购买甲、乙两种树苗共10棵,总费用不超过230元,求可能的购买方案.9.某景区售出的门票分为成人票和儿童票,成人票每张100元,儿童票每张50元,若干家庭结伴到该景区旅游,成人和儿童共30人,售票处规定:一次性购票数量达到30张,可购买团体票,每张票均按成人票价的八折出售,请你帮助他们选择花费最少的购票方式.10.(绍兴中考)有两种消费券:A券,满60元减20元,B券,满90元减30元,即一次购物大于等于60元、90元,付款时分别减20元、30元.小敏有一张A券,小聪有一张B券,他们都购了一件标价相同的商品,各自付款,若能用券时用券,这样两人共付款150元.则所购商品的标价是元.11.某企业为了提高污水处理的能力,决定购买10台污水处理设备,现有A,B两种型号的设备,其中每台的价格、月处理污水量如下表:A型B型价格(万元/台)1210处理污水量(吨/月)240200经预算,该企业购买设备的资金不高于105万元.(1)请你设计该企业可能的购买方案;(2)若企业每月产生的污水量为2040吨,为了节约资金,应该选哪种购买方案?请说明理由.12.某商店A型号笔记本电脑的售价是a元/台.最近,该商店对A型号笔记本电脑进行促销活动,有两种优惠方案.方案一:每台按售价的九折销售;方案二:若购买不超过5台,每台按售价销售;若购买超过5台,超过的部分每台按售价的八折销售.某公司一次性从该商店购买A型号笔记本电脑x台.(1)当x=8时,应选择哪种方案,该公司购买费用最少?最少费用是多少元?(2)若该公司采用方案二购买更合算,求x的取值范围.13.甲、乙两商场以相同价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费.顾客到哪家商场购物花费少?参考答案9.2一元一次不等式(三)【训练】1.C2.B3.C4.C5.966.417.428.(1)购买甲种树苗140棵,购买乙种树苗240棵;(2)方案一:不购买甲种树苗,购买乙种树苗10棵;方案二:购买甲种树苗1棵,购买乙种树苗9棵;方案三:购买甲种树苗2棵,购买乙种树苗8棵;方案四:购买甲种树苗3棵,购买乙种树苗7棵.9.设参加旅游的儿童有m人,则成人有(30-m)人.根据题意,得按团体票购买时,总费用为100×80%×30=2400(元).分别按成人票、儿童票购买时,总费用为100(30-m)+50m=(3000-50m)元.①若3000-50m=2400,解得m=12.即当儿童为12人时,两种购票方式花费相同.②若选择购买团体票时花费少,则有3000-50m>2400,解得m<12.即当儿童少于12人时,选择购买团体票花费少.③若选择分别按成人票、儿童票购票时花费少,则有3000-50m<2400,解得m>12.即当儿童多于12人时,选择分别按成人票、儿童票购票花费少.10.100或8511.(1)设购买x台A型污水处理设备,则购买(10-x)台B型污水处理设备,由题意,得.故有3种购买方案:12x+10(10-x)≤105.解得x≤52方案一:购买0台A型污水处理设备,10台B型污水处理设备;方案二:购买1台A型污水处理设备,9台B型污水处理设备;方案三:购买2台A型污水处理设备,8台B型污水处理设备.(2)应选择购买1台A型污水处理设备,9台B型污水处理设备.理由:设购买a台A型污水处理设备,由题意,得240a+200(10-a)≥2040.解得a≥1.当a=1时,需资金12×1+10×9=102(万元);当a=2时,需资金12×2+10×8=104(万元).∵102<104,∴购买1台A型污水处理设备,9台B型污水处理设备.12.(1)设购买A型号笔记本电脑x台时的费用为w元.当x=8时,方案一:w=90%a×8=7.2a,方案二:w=5a+(8-5)a×80%=7.4a,∵7.2a<7.4a,∴当x=8时,应选择方案一,该公司购买费用最少,最少费用是7.2a元.(2)∵该公司采用方案二购买更合算,∴x>5.方案一:w=90%ax=0.9ax,方案二:当x>5时,w=5a+(x-5)a×80%=5a+0.5ax-4a=a+0.8ax,令0.9ax>a+0.8ax,解得x>10.∴x的取值范围是x>10.13.(1)当累计购买不超过50元时,在甲、乙商场购物都不享受优惠,且两商场以相同价格出售同样的商品,因此到两商场购物花费一样;(2)当累计购物超过50元而不超过100元时,享受乙商场的购物优惠,不享受甲商场的购物优惠,因此到乙商场购物花费少;(3)当累计购物超过100元时,设累计购物x(x>100)元.①若到甲商场购物花费少,则50+0.95(x-50)>100+0.9(x-100),解得x>150.则累计购物超过150元时,到甲商场购物花费少;②若到乙商场购物花费少,则50+0.95(x-50)<100+0.9(x-100),解得x<150.则累计购物超过100元而不到150元时,到乙商场购物花费少;③若50+0.95(x-50)=100+0.9(x-100),解得x=150.则累计购物为150元时,到甲、乙两商场购物花费一样.。
9.3一元一次不等式组(第3课时)课件人教版数学七年级下册
解:(1)设小明答对了 x 道题,则答错或不答的题有(20-x)道, 列方程得 5x-3(20-x)=68,解得 x=16,∴小明答对了 16 道题.
(2)设小亮答对了 m 道题,则答错或不答的题有(20-m)道,列不 等式组得55mm--33((2200--mm))≥≤7900,,解得 1614≤m≤1834.
归纳新知
审
解用 决一
设
实元 际一
列
问次
题不
解
的等
步的 关系,找出题目中的不等关系. 设出合适的未知数.
根据题中的不等关系列出不等式组. 解不等式组,求出其解集.
检验所求出的不等式组的解集是否符合题意. 写出答案.
课堂练习 1.如果点P(2x+6,x-4)在平面直角坐标系的第四象限内,
列一元一次不等式组解决实际问题的步骤: (1)审:分析已知量、未知量及它们之间的关系,找出题 目中的不等关系; (2)设:设出合适的未知数; (3)列:根据题目中的不等关系,列出一元一次不等式组; (4)解:解不等式组(可以借助数轴也可以用“口诀”); (5)验:检验所求出的不等式组的解集是否符合题意及实际意义; (6)答:写出答案.
∵m 为正整数,∴小亮答对了 17 或 18 道题.
7.求不等式(2x-1)(x+3)>0的解集.
解:根据“同号两式相乘,积为正”,可得 ①2xx+-31>>00,,或②2xx+-31<<0.0, 解①得 x>12;解②得 x<-3. ∴不等式的解集为 x>21或 x<-3.
请你仿照上述方法解决下列问题: (1)求不等式(2x-3)(x+1)<0 的解集; (2)求不等式31xx+-21≥0 的解集.
巩固新知
3 一元一某次不等出式组租汽车公司计划购买 A 型和 B 型两种节能汽车,若购买 A 型
华师大版七年级下册数学练习课件-第8章-8.2 3 第3课时一元一次不等式的解法
基础过关
1.下列不等式中,属于一元一次不等式的是( D )
A.3x-2>y
B.2x2>0
C.x3-2<1x
D.x7<x
2.已知12(m+4)x|m|-3+6>0 是关于 x 的一元一次不等式,则 m 的值为( A )
A.4
B.±4
C.3
D.±3
4
▪ 3.【2019·四川凉山中考】不等式1-x≥x-1C的解集是( ) ▪ A.x≥1 B.x≥-1 ▪ C.x≤1 D.x≤-1
第8章 一元一次不等式
8.2 解一元一次不等式
3 解一元一次不等式
第三课时 一元一次不等式的解法
名师点睛
▪ 知识点1 一元一次不等式
▪ 只含有一个未知数,并且含未知数的式子都是整式,未知数 的次数都是1的不等式叫做一元一次不等式.
▪ 提示:一元一次不等式的两边都应满足以下条件:(1)都是整 式;(2)只含有一个未知数(若有其他字母,按常数对待);(3) 未知数的次数都是1.
15.若代数式x-3 5+1 的值不小于x+2 1-1 的值,则 x 的取值范围是____x≤_-__1___.
12
16.小明解不等式1+2 x-2x+3 1≤1 的过程如下图. 解:去分母,得 3(1-x)-2(2x+1)≤1.① 去括号,得 3+3x-4x+1≤1.② 移项,得 3x-4x≤1-3-1.③ 合并同类项,得-x≤-3.④ 两边都除以-1,得 x≤3.⑤
5
▪ 4.【2019·辽宁大连中考】不等式5x+1≥3x-1的解集在数 轴B 上表示正确的是( )
6
5.关于 x 的方程 3x-2m=1 的解为正数,则 m 的取值范围是( B )
A.m<-12
B.m>-12
一元一次不等式3
第3课时 多项式关键问答①多项式与单项式有什么区别?②如何确定多项式的次数?1.①在abc 22,2x 4-1,17c +1d ,a +b 2,m +n m 中,多项式有( ) A .2个 B .3个 C .4个 D .5个2.②多项式5-6x 3y 2+xy 3-x 2是______次______项式,它的最高次项是________,常数项是________.3.多项式xy 2-9xy +5x 2y -25的二次项系数是________.4.下列各式分别是几次几项式?最高次项是什么?最高次项的系数是什么?常数项是多少?(1)7x 2-3x 3y -y 3+6x -3y 2+1; (2)10x +y 3-0.5.命题点 1 多项式的项及整式识别 [热度:86%]5.③多项式-x 2-12x +1的各项分别是( ) A .-x 2,12x ,1 B .-x 2,-12x ,1 C .x 2,12x ,1 D .x 2,-12x ,+1 易错警示③多项式的项包括系数的符号.6.④若多项式x 2+(k -1)x +3中不含有x 的一次项,则k =________. 方法点拨④多项式不含有哪一项,即这一项的系数为0.7.⑤在-12,xy 23,a ,a π,n m ,12x +13y ,a 2+ab +1b 2中,哪些是单项式?哪些是多项式?哪些是整式?方法点拨⑤(1)分母中含有字母的式子不是整式;(2)单项式和多项式都是整式;(3)单项式不含加、减运算,多项式必含加、减运算.8.一个关于a ,b 的多项式,除常数项为-1外,其余各项的次数都是3,系数都为-1,并且各项都不相同,这个多项式最多有几项?请将这个多项式写出来.命题点 2 多项式的项数与次数 [热度:94%]9.多项式7x 2-3y +5xy 5+x 5-18的项数与次数分别是( )A .5,5B .5,6C .5,4D .4,510.下列关于多项式5ab 2-2a 2bc -1的说法中,正确的是( )A .它的常数项是1B .它是四次二项式C .它的最高次项是-2a 2bcD .它是三次三项式11.⑥⑦多项式12x |m |-(m -2)x +7是关于x 的二次三项式,则m 的值为( ) A .2 B .-2 C .±2 D .3易错警示⑥除了考虑字母的指数之外,还要考虑项数,一次项的系数也与m 有关,所以m 既要满足|m |=2,也要满足m -2≠0.方法点拨⑦关于某个(某些)字母的几次几项式,指的是除了这个(这些)字母外,其他字母都是常数,这类题的解题过程往往要用到逆向思维.12.已知多项式x -3xy m +1+x 3y -3x 4-1是五次多项式,则m =________. 13.⑧若关于x 的多项式(m -2)x 3+3x n +1-5x 的次数是2,则m +n =________. 解题突破⑧多项式中次数高于2的项的系数应该是多少?14.一个关于x 的二次三项式,二次项的系数是-1,一次项的系数和常数项都是2,则这个多项式是________.15.⑨已知单项式-xy 3,5x 4y ,-4y 5,23x 6y 4,3x 2y 2,请你用这些单项式按下列要求解决问题:(1)写出一个五次三项式;(2)所有这些单项式可以组成一个多项式,它是几次几项式.解题突破⑨要写一个五次三项式,应该取三个单项式,且所取单项式的次数最高是5.16.已知-5x2y m+1+xy2-3x3-6是六次四项式,且与3x2n y5-m的次数相同.(1)求m,n的值;(2)写出该多项式的常数项并求各项系数的和.命题点3求多项式的值[热度:90%]17.⑩已知x2+x+3的值为7,则2x2+2x-3=________.解题突破⑩多项式x2+x与2x2+2x有什么关系?如果知道x2+x的值,你能求出2x2+2x的值吗?18.如图2-1-5所示是一个长方形.(1)根据图中数据,用含x的式子表示阴影部分的面积S;(2)当x=3时,求S的值.图2-1-519.如图2-1-6,长方形的长为2a,宽为a,用式子表示阴影部分的面积,并计算当a=2时阴影部分的面积.(结果保留π)图2-1-620.⑪我们做如下规定:把一个多项式的各项按照同一个字母的指数从大到小的顺序排列,常数项放在最后面,叫做这个多项式按此字母的降幂排列;把一个多项式的各项按照同一个字母的指数从小到大的顺序排列,常数项放在最前面,叫做这个多项式按此字母的升幂排列.依据上述规定,把多项式3mn2-2m2n3+5-8m3n重新排列:(1)按m的降幂排列;(2)按n的升幂排列.方法点拨⑪按某一字母的升幂或降幂排列,指的只按这一字母的指数从小到大(升幂)或从大到小(降幂)的顺序,依据加法交换律,重新把多项式的各项进行排序.一般情况下,按升幂排列时,常数项放在最前;按降幂排列时,常数项放在最后.21.将“a-b”看成一个字母,把式子-(a-b)2-2-(a-b)3+2(a-b)按“a-b”的降幂排列,若设x=a-b,(1)将上述式子改写成关于x的多项式;(2)已知a=b+2,先求出x的值,再求出(1)中式子的值.详解详析1.A [解析] 多项式有2x 4-1,a +b 2,共2个. 2.五 四 -6x 3y 2 53.-9 [解析] 多项式xy 2-9xy +5x 2y -25的二次项为-9xy ,二次项系数是-9.4.解:(1)7x 2-3x 3y -y 3+6x -3y 2+1是四次六项式,最高次项是-3x 3y ,最高次项的系数是-3,常数项是1.(2)10x +y 3-0.5是三次三项式,最高次项是y 3,最高次项的系数是1,常数项是-0.5.5.B6.1 [解析] 多项式x 2+(k -1)x +3中不含有x 的一次项,即(k -1)x =0,所以k -1=0,解得k =1.7.[导学号:39852112]解:-12,xy 23,a ,a π是单项式;12x +13y 是多项式;-12,xy 23,a ,a π,12x +13y 是整式. 8.[导学号:39852113]解:这个多项式最多有五项,即-a 3-ab 2-a 2b -b 3-1.9.B [解析] 有五项,分别为7x 2,-3y ,5xy 5,x 5,-18,项数为5,且在五项中,次数最高项5xy 5的次数为6.10.C11.[导学号:39852114]B[解析] 由题意,得|m|=2且m -2≠0,所以m =-2.12.3 [解析] 由题意,得1+m +1=5,所以m =3.13.314.-x 2+2x +215.解:(1)答案不唯一,如:5x 4y -4y 5-xy 3.(2)组成的多项式是-xy 3+5x 4y -4y 5+23x 6y 4+3x 2y 2,它是十次五项式.16.[导学号:39852115]解:(1)由题意知该多项式是六次四项式,所以2+m +1=6,解得m =3.由题意知3x 2n y 5-m 的次数也是六次,所以2n +5-m =6,解得n =2.(2)该多项式为-5x 2y 4+xy 2-3x 3-6,常数项为-6,各项系数依次为-5,1,-3,-6, 故各项系数的和为-5+1-3-6=-13.17.5 [解析] 因为x 2+x +3=7,所以x 2+x =4,所以2x 2+2x -3=2×4-3=5.18.解:(1)由图形可知S =4×8-12×4×8-12×4(4-x)=16-8+2x =8+2x. (2)将x =3代入上式,得S =8+2×3=14.19.[导学号:39852116]解:阴影部分的面积为2a 2-12πa 2. 当a =2时,阴影部分的面积为2×22-12π×22=8-2π. 20.[导学号:39852117]解:(1)按m 的降幂排列为-8m 3n -2m 2n 3+3mn 2+5.(2)按n 的升幂排列为5-8m 3n +3mn 2-2m 2n 3.21.[导学号:39852118]解:由题意可知:按“a -b ”的降幂排列为-(a -b)3-(a -b)2+2(a -b)-2.(1)改写成关于x 的多项式为-x 3-x 2+2x -2.(2)由题意,得x =a -b =2,所以原式=-23-22+2×2-2=-10.【关键问答】①是数或字母的乘积的形式的式子是单项式,单独的一个数或一个字母也是单项式;多项式是几个单项式的和.②(1)先找到组成多项式的每一项;(2)确定每一项的次数;(3)根据次数找到次数最高的项,此项的次数就是多项式的次数.。
浙教版数学八年级上册3.3《一元一次不等式》教案(1)
浙教版数学八年级上册3.3《一元一次不等式》教案(1)一. 教材分析《一元一次不等式》是浙教版数学八年级上册第三章第三节的内容。
本节内容是在学生已经掌握了不等式的概念和性质的基础上进行教学的。
通过本节课的学习,使学生掌握一元一次不等式的定义、解法及其应用,培养学生解决实际问题的能力。
二. 学情分析学生在七年级时已经学习了不等式的基本概念和性质,对不等式有了一定的认识。
但他们对一元一次不等式的定义、解法和应用还不够了解。
因此,在教学过程中,教师需要引导学生从实际问题中抽象出一元一次不等式,并通过实例让学生掌握一元一次不等式的解法和应用。
三. 教学目标1.知识与技能:使学生掌握一元一次不等式的定义、解法及其应用。
2.过程与方法:通过实际问题引导学生从数学的角度进行分析,提高学生解决实际问题的能力。
3.情感态度与价值观:培养学生对数学的兴趣,使学生感受到数学在生活中的应用。
四. 教学重难点1.重点:一元一次不等式的定义、解法及其应用。
2.难点:一元一次不等式的解法。
五. 教学方法采用情境教学法、问题教学法和小组合作学习法。
通过实际问题引入一元一次不等式,引导学生主动探索、发现问题,并通过小组合作学习,共同解决问题。
六. 教学准备1.准备一些实际问题,用于导入和巩固知识点。
2.准备PPT,用于呈现知识点和示例。
3.准备练习题,用于课后巩固和拓展。
七. 教学过程1.导入(5分钟)通过展示一些实际问题,让学生思考如何用数学的方法来解决这些问题。
例如,小明有2个苹果,小红有3个苹果,问小明和小红谁苹果多?引导学生发现这个问题可以用不等式来表示和解决。
2.呈现(10分钟)通过PPT呈现一元一次不等式的定义、解法及其应用。
讲解一元一次不等式的定义,例如:ax > b(a、b为实数,a≠0)。
讲解一元一次不等式的解法,例如:将不等式两边同除以a,得到x > b/a。
同时,展示一些实例,让学生理解一元一次不等式的应用。
初中数学教学课例《一元一次不等式》课程思政核心素养教学设计及总结反思
演,强调学生的观察,使学生可以形象认识不等式解集
的几何意的具体体现。不等式的性质是正确解不等式
的基础。此时要提醒学生特别注意未知数的系数,当未
知数的系数为负数时,要改变不等号的方向。这也是学
生在学习过程中的一个易错点。
2.加强对实际问题中抽象出数量关系的数学建模
四巩固提升
1、解下列不等式,并将解集在数轴上表示出来:
2.解不等式(X+5)2-1<(3X+2)5,小兵的解答过
程是这样的.
解:去分母,得 x+5-1<3x+2
移项得 x-3x<2-5+1
合并同类项,得-2x<-2
系数化为 1,得 x<1
请问:小兵同学的解答是否正确?如果错误,请指
出错在哪里?并给出正确的解答.
思想教学,体现课程标准中:对重要的概念和数学思想
呈螺旋上升的原则。要注意对一元一次方程相关知识的
复习,让学生进行比较、归纳,理解它与一元一次不等
式的的联系与区别(特别强调“不等式两边同时乘以或
除以一个负数时,不等号方向改变”),教学中,一方
面加强训练,锻炼学生的自我解题能力。另一方面,通
过“纠错”题型的练习和学生的相互学习、剖析逐步提
高解题的正确性。
力分析 关系、数量大小的比较等知识已经有所了解,但对含有
未知数的不等式还是第一次接触,本节就是对“不等”
这一概念进一步明确,使它成为一种有效的数学工具。
教学策略选
根据七年级学生注意力不太集中,又好动的心理特
择与设计 点我采用了合作讨论法和自主探究法以提高学生自觉 学习的习惯。 一回顾旧知 1.不等式的基本性质是什么?2.什么是一元一次 方程?解方程的步骤有哪些?3.运用不等式的性质把 下列不等式化为 x>a 或 x 的形式。 (1)x-7>26(2)3x<2x+1(3)23x>50(4)-4x>3 二自主探究 探究一 自学课本。 含有未知数,未知数的次数是的不等式,叫做一元 一次不等式。
一元一次不等式课件(共21张PPT)
随堂演练
基础巩固
1. 若代数式 2x 3 的值是非负数,则x的
7
取值范围是( B )
3
A.x≥ 2
C.x>
3 2
B.x≥ 3
2
D.x> 3
2
2.如图所示,图中阴影部分表示x的取值范 围,则下列表示中正确的是( B )
A.-3>x>2 C.-3≤x≤2
B.-3<x≤2 D.-3<x<2
3.当x或y满足什么条件时,下列关系成立?
系数化为1得:x≥8.
08
(2) 2 x ≥ 2x 1
2
3
解:去分母得:3(2+x)≥2(2x-1);
去括号得:6+3x≥4x-2; 移项得:3x-4x ≥ -2-6; 合并同类项得:-x ≥ -8;
将解集用数轴表 示,则如下图:
系数化为1得:x≤8.
0
8
小 结 解一元一次不等式的一般步骤
01
(3)未知数的次数都是1.
含有一个未知数,未知数次数是1的 不等式,叫做一元一次不等式.
解下列不等式,并在数轴上表示解集:
(1)2(1+x)<3; (2) 2 x ≥ 2x 1
2
3
解下列不等式,并在数轴上表示解集:
(1)2(1+x)<3;
解:去括号得:2+2x<3; 将解集用数轴表
移项得:2x<3-2;
03
05
通过解这两个不等式,
去 分 母
你02能归纳出移解一元0一4 次 不等式的一项般步骤吗?
系数 化为
去
合并
1
括
同类
号
项
练 习 1.解下列不等式和方程(不等式
的解集要在数轴上表示出来)
一元一次不等式解
一元一次不等式解
一、教学目标
1. 掌握一元一次不等式的解法。
2. 通过实例了解不等式与方程的联系,感受不等式的基本性质。
3. 培养学生分析和解决实际问题的能力。
二、教学内容与步骤
1. 引入新课:通过生活中的实例,如购物时找零、速度与时间的关系等,引出一元一次不等式的基本概念和性质。
2. 讲解知识点:介绍一元一次不等式的解法,包括移项、合并同类项、系数化为1等步骤。
同时,通过例题演示解题过程。
3. 练习与讨论:给出几个一元一次不等式的问题,让学生自己尝试求解。
同时,分组讨论,总结解一元一次不等式时需要注意的问题。
4. 拓展知识:通过一些具体的实例,介绍一元一次不等式在实际生活中的应用,如旅游预算、时间安排等。
5. 课堂小结:总结本节课的主要内容,强调一元一次不等式的解法及其在实际问题中的应用。
三、教学重点与难点
重点:一元一次不等式的解法。
难点:如何将实际问题转化为数学模型,即如何根据问题建立一元一次不等式。
四、作业与要求
1. 完成相关练习题,巩固所学知识。
2. 尝试解决一些生活中的实际问题,如购物时找零、时间安排等,并写出解题过程。
3. 分组讨论,总结解一元一次不等式时需要注意的问题。
七年级下册《9.2 一元一次不等式》教案、导学案、同步练习
《9.2 一元一次不等式》教案一第1课时 一元一次不等式的解法【教学目标】1、使学生熟练掌握一元一次不等式的解法,初步认识一元一次不等式的应用价值;2、对比一元一次不等式的解法与一元一次方程的解法,让学生感知不等式和方程的不同作用与内在联系,体会其中渗透的类比思想;3、让学生在分组活动和班级交流的过程中,积累数学活动的经验并感受成功的喜悦,从而增强学习数学的自信心。
【教学重点】:熟练并准确地解一元一次不等式。
【教学难点】:熟练并准确地解一元一次不等式。
【教学过程】(师生活动)提出问题:某地庆典活动需燃放某种礼花弹.为确保人身安全,要求燃放者在点燃导火索后于燃放前转移到10米以外的地方.已知导火索的燃烧速度为0.02m/s,人离开的速度是4m/s ,导火索的长x(m)应满足怎样的关系式?你会运用已学知识解这个不等式吗?请你说说解这个不等式的过程.探究新知1、在学生充分发表意见的基础上,师生共同归纳出这个不等式的解法.教师规范地板书解的过程.2、例题.解下列不等式,并在数轴上表示解集:(1)32x ≤50 (2)-4x<3 (3)7-3x ≤10(4)2x-3<3x +1分组活动.先独立思考,然后请4名学生上来板演,其余同学组内相互交流,作出记录,最后各组选派代表发言,点评板演情况.教师作总结讲评并示范解题格式.3、教师提问:从以上的求解过程中,你比较出它与解方程有什么异同? 让学生展开充分讨论,体会不等式和方程的内在联系与不同之处。
巩固新知1、解下列不等式,并在数轴上表示解集:(1)7671 x (2)-8x<102、用不等式表示下列语句并写出解集:(1)x 的3倍大于或等于1;(2)y 的41的差不大于-2.解决问题测量一棵树的树围(树干的周长)可以计算它的树龄一般规定以树干离地面1.5m 的地方作为测量部位.某树栽种时的树围为5cm,以后树围每年增加约3cm.这棵树至少生一长多少年,其树围才能超过2.4m?总结归纳:围绕以下几个问题:1、这节课的主要内容是什么?2、通过学习,我取得了哪些收获?3、还有哪些问题需要注意?让学生自己归纳,教师仅做必要的补充和点拨.布置作业:教科书第120页 习题9.1第6题9.2实际问题与一元一次不等式(一)【教学目标】1、会从实际问题中抽象出数学模型,会用一元一次不等式解决实际问题;2、通过观察、实践、讨论等活动,经历从实际中抽象出数学模型的过程,积累利用一元一次不等式解决实际问题的经验,渗透分类讨论思想,感知方程与不等式的内在联系;3、在积极参与数学学习活动的过程中,初步认识一元一次不等式的应用价值,形成实事求是的态度和独立思考的习惯。
华师版数学七年级下册8.2.3解一元一次不等式(共2课时25页)
(4) -4x>3
概括总结 一元一次不等式的定义: 只含一个未知数,并且含未知数的式子都是整式,
未知数的次数都是 1,像这样的不等式,叫做一元一 次不等式.
练一练
下列不等式中,哪些是一元一次不等式?
(1) 3x+2>x-1 ✓ (2) 5x+3< 0
✓
(3) 1 +3<5x -1 ✕ x
(4) x (x-1)<2x ✕
x 4
≤
9.
解得 x ≤ 12.
因此要满足下午 4 点以前必须返回
出发点,小华他们最远能登上 D 山顶.
典例精析
例1 某童装店按每套 90 元的价格购进 40 套童装,应 缴纳的税费为销售额的 10%. 如果要获得不低于 900 元的纯利润,每套童装的售价至少是多少元?
分析: 本题涉及的数量关系是: 销售额-成本-税费≥纯利润(900元).
生联想,根据小草的结构发明了锯子.
鲁班在这里就运用了“类比”的思想方法,“类比” 也是数学学习中常用的一种重要方法.
合作探究
思考 观察下面的不等式: (1) x-7>26 (2) 3x-7>26 (3) 2 x >50
3
它们有哪些共同特征? 左右两边都是整式; 都只含有一个未知数; 未知数的次数是 1.
步骤
华师版七下数学教学课件
8.2 解一元一次不等式
8.2.3 解一元一次不等式
第2课时 一元一次不等式的实际应用
导入新课
回顾与思考
1. 应用一元一次方程解实际问题的步骤:
实际问题
设未知数
找相等关系
检验解的 合理性
解方程
列出方程
2. 将下列生活中的不等关系翻译成数学语言.
(1) 超过 > (2) 至少 ≥
一元一次不等式组的应用第三课时
练一练:
1、将若干只鸡放入若干个笼,若每个笼里放4只, 、将若干只鸡放入若干个笼,若每个笼里放 只 则有一只鸡无笼可放;若每个笼里放5只 则有一只鸡无笼可放;若每个笼里放 只,则有一 笼无鸡可放。那么至少有多少只鸡?多少个笼? 笼无鸡可放。那么至少有多少只鸡?多少个笼? 2、某宾馆底楼客层比二楼少5间,某旅游团有 人, 、某宾馆底楼客层比二楼少 间 某旅游团有48人 若全部安排底楼,每间住4人 房间不够;每间住5人 若全部安排底楼,每间住 人、房间不够;每间住 人、 有的房间没住满。又若全部安排二楼,每间住3人 有的房间没住满。又若全部安排二楼,每间住 人、 房间不够;每间住4人 有的房间没住满4人 房间不够;每间住 人,有的房间没住满 人。 该宾馆底楼客层有多少间客房? 问:该宾馆底楼客层有多少间客房?
5 , 23 或 6 , 26
思考题:
某自行车厂今年生产销售一种新型自行车,现向你提供 某自行车厂今年生产销售一种新型自行车 现向你提供 以下有关信息: 以下有关信息 (1)该厂去年已备有自行车车轮 该厂去年已备有自行车车轮10000只,车轮车间今年平均 只 车轮车间今年平均 该厂去年已备有自行车车轮 每月可生产车轮1500只,每辆自行车需装配 只车轮 每辆自行车需装配2只车轮 每月可生产车轮 只 每辆自行车需装配 只车轮; (2)该厂装配车间 自行车最后一道工序的生产车间)每月至少 该厂装配车间(自行车最后一道工序的生产车间 每月至少 该厂装配车间 自行车最后一道工序的生产车间 可装配这种自行车1000辆,但不超过 但不超过1200辆; 可装配这种自行车 辆 但不超过 辆 (3)该厂已收到各地客户今年订购这种自行车共 该厂已收到各地客户今年订购这种自行车共14500辆的订 辆的订 该厂已收到各地客户今年订购这种自行车共 单; (4)这种自行车出厂销售单价为 这种自行车出厂销售单价为500元/辆. 元辆 这种自行车出厂销售单价为 设该厂今年这种自行车销售金额为a万元 请根据以上信息 设该厂今年这种自行车销售金额为 万元,请根据以上信息 判 万元 请根据以上信息,判 断a的取值范围是 的取值范围是 .
05 -一次函数的应用(第三课时)-1教案
当y1>y2时,即400+4x>820+2x,解得x>210
∴当运输路程大于210公里时,选择火车运输较好.
当y1=y2时,即400+4x=820+2x,解得x=210
∴当运输路程大等于210公里时,选择任意一种运输方式均可.
当y1<y2时,即400+4x<820+2x,解得x<210
将函数图象问题转化为利用函数表达式求值问题,实现一次函数与一元一次方程间的转化。
新授
一次函数与一元一次不等式
从例1的图象中,仅能得到直线y=kx+b与两个坐标轴的交点坐标吗?有同学会说,直线左低右高,k>0,y值随x值的增大而增大.还有同学会说,直线经过一、二、三象限.
例2通过观察图象,你能得到关于x的不等式kx+b>0的解集吗?
方式一:使用快递公司的邮车运输,装卸收费400元,另外每公里再加收4元;
方式二:使用铁路运输公司的火车运输,装卸收费820元,另外每公里再加收2元.
(1)请分别写出邮车、火车运输的总费用y1(元)、y2(元)与运输路程x公里之间的函数关系式;
(2)你认为选用哪种运输方式较好,为什么?
解:(1)运输总费用=装卸费+运输路程收费,邮车总费用y1=400+4x(x≥0),火车总费用y2=820+2x(x≥0)此时的自变量x取值范围,要符合实际意义大于等于0.
把x=1代入一次函数y=2x+3中得y=2×1+3=5,刚好与点(1,5)的纵坐标相吻合,所以(1,5)满足一次函数y=2x+3的表达式,它在一次函数y=2x+3的图象上.
相互关联一次函数y=kx+b的图象上有无数个点,这些点就是无数个有序数对(x,y).换另一个角度来考虑,若以x,y为未知数,y=kx+b这个二元一次方程中就有无数个解.倘若一个点是在一次函数y=kx+b的图象上,那么这个点的坐标必然是关于x,y的二元一次方程y=kx+b(k≠0)的解,它会使得方程成立.
第3讲 一元一次不等式(组)
D.m≤- 7 5
【答案】A
变
5.若关于
x
的一元一次不等式组
ìïí ïî
2 x-m≤0 -x<4
有解,则
m
的取值范围是(
)
A.m≥-8
B.m≤-8
C.m>-8
D.m<-8
【答案】C
考点四 整数解问题
例
5.关于
x
的不等式组
ìïí ïî
x-a>0 3-3x>0
的整数解共有
6
个,则
a
的取值范围是(
)
A.-6<a<-5 B.-6≤a<-5 C.-6<a≤-5 D.-6≤a≤-5
(2)化简|4a+5|-|a-x x
y y
5a 3a
1 9
得:
x y
4a 5 a 4
,
∵方程组的解为正数,
∴
4a a
5 4
0 0
,解得:-
5 4
<a<4;
(2)当- 5 <a<4 时,|4a+5|-|a-4|=4a+5-(4-a)=5a+1. 4
变
5.不等式组
ìïïïíïïïî
x - 3≥0 x <3 2
的所有整数解之和是(
)
A.9
B.12
C.13
【答案】B
D.15
变 6.如点 P(3x+9, 1 x-2)在平面直角坐标系的第四象限内,那么 x 的取值范围在数 2
轴上可表示为( )
A. -3 4
B. -3 4
C. -3 4 【答案】C
D. -3 4
例
3.若不等式组
人教版数学七年级下册一元一次不等式第三课时一元一次不等式的应用课件
答:加工乙种零件的同学至少为13人.
知识点 利用一元一次不等式解决比较复杂的实际问题
9.2 一元一次不等式 A.12
B.13
1.请你谈谈解一元一次不等式的一般方法和步骤是哪些.
另据估计,从2020年初起,该市此后每年报废的汽车数量是上年底汽车拥有量的10%.
根据题意,得(6 000-x)90%+95%x≥93%×6 000,
胸无大志,枉活一世。
天才是由于对事业的热爱感而发展起来的,简直可以说天才。
根据题意,得24×4x+16×5×(20-x)≥1 800, 人生不得行胸怀,虽寿百岁犹为无也。
对没志气的人,路程显得远;对没有银钱的人,城镇显得远。
雄鹰必须比鸟飞得高,因为它的猎物就是鸟。
解这个不等式,得x≥12.5. 雄鹰必须比鸟飞得高,因为它的猎物就是鸟。
燕雀安知鸿鹄之志哉。
不低于1 志正则众邪不生。
心志要坚,意趣要乐。
800元,加工乙种零件的同学至少为几人?
男儿不展同云志,空负天生八尺躯。
少年心事当拿云。
解:设加工乙种零件的同学为x 以天下为己任。
远大的希望造就伟大的人物。
人
,
则
这
天
可
加
工
乙
种
零
件
4x个
,
岂能尽如人意,但求无愧我心.
甲种零件有5(20-x)个. 人之所以异于禽者,唯志而已矣!
第九章 不等式与不等式组
第3课时 一元一次不等式的应用(2) 8若天人14少天另根雄1若另解 因若6另根因根 4千.....要才生千才据据鹰小据:为要据据为据米 请 小 某 某 小保 是 不 米 是 估 题 必 区 估 设x使 估 题 x题.你明次林明是是证由得才由计意须的计加 这计意意已谈家数场家正正绿于行能于,,比总,工 批,,,知谈离学计离整整色对胸不对从得鸟占从乙 树从得得他解火竞划火数数草事怀误事2(飞地2种 苗2((222步一车0赛0购0车,,111地业,当业2得面2零 的2666行元站0共0买0站所所×××面的虽次的高积件 成年年年的一有甲11以以999积热寿火热,为的 活0初初初0000速次、2xxkk%%%不爱百车爱因同率起01起起最最mm度不乙道4+++低感岁?感为学 不,,,小小,,0为等两选xxx0于而犹而它为 低该该该值值某某)))0式种9×择××规发为发的于0市m市x市是是天天的树米9题99人2定展无展猎此0此9此001111,一苗/%,3%%,3300分要起也起物后后%后..点点小+++般共评则,,求来。来就每每每11区xxx方分6这00跑且≤≤≤,的的是年年年分分0内222法办天0步购333则,,鸟报报报小小0每111和法可棵的买...最简简。废废废明明幢步:加,速树多直直的 的 的离 离楼骤答工甲度苗只可可汽汽汽家家房是对乙种为的能以以车车车赶赶的哪一种树2总建说说数数数111建11些题零苗0费点点造天天量量量米筑.得件每用整整多才才是是是面/54分棵最的的少。。上上上分x积个,5低火火幢年年年,元为,若,车车住底底底答,5甲他6应去去宅汽汽汽错乙0种要最某某楼车车车或m种零在2多地地?拥拥拥不树;件1选,,有有有答5苗有分购他他量量量一每5钟乙先先的的的题(棵2内种0以以1扣118-000到元树33%2%%x分达kk,苗...)个mm.乙相多//.hh参地关的的少赛,资速速棵学至料度度?生少表走走至需明了了少要:55 答跑mm甲ii对步nn、到到多乙达达少两汽汽道种车车题树站站成苗,,绩的然然才成后后能活乘乘不率公公低分共共于别汽汽(6为0车车分9去去0)%火火和车车95站站%... 请请问问::公公共共汽汽车车每每( 小小时时)至至少少走走多多
八年级数学上册第3章一元一次不等式3-3一元一次不等式第3课时作业浙教版
等式为( D )
A.30x+750>1080
B.30x-750≥1080
C.30x-750≤1080
D.30x+750≥1080
2.某工程队计划要在 6 天内完成 300 土方的工程, 第一天完成了 60 土方,现在要比原计划至少提前 2 天完成任务,以后几天内平均每天至少要完成多
少土方( D )
11.(2020·长沙)今年 6 月以来,我国多地遭遇 强降雨,引发洪涝灾害,人民的生活受到了极大 的影响.“一方有难,八方支援”,某市筹集了大 量的生活物资,用 A,Байду номын сангаас 两种型号的货车,分两批 运往受灾严重的地区.具体运输情况如下:
(1)A,B 两种型号货车每辆满载分别能运多少吨生 活物资?
解:(1)设 A 种型号货车每辆满载能运 x t 生活物 资,B 种型号货车每辆满载能运 y t 生活物资.根
A.65 B.70 C.75 D.80
3.某商店为了促销一种定价为 26 元/斤的鸡蛋糕, 采取下列方式优惠销售:若一次性购买不超过 5 斤,按原价付款;若一次性购买 5 斤以上,超出 部分按原价八折付款.如果小明有 338 元钱,那
么他最多可购买鸡蛋糕( D )
A.9 斤 B.11 斤 C.13 斤 D.15 斤
x+3y=28, 据 题 意 , 得 2x+5y=50. 解 这 个 方 程 组 , 得 x=10, y=6. 答:A 种型号货车每辆满载能运 10 t 生活物资,B 种型号货车每辆满载能运 6 t 生活物资;
(2)该市后续又筹集了 62.4 t 生活物资,现已联 系了 3 辆 A 种型号货车,试问至少还需联系多少 辆 B 种型号货车才能一次性将这批生活物资运往 目的地?
第3章 一元一次不等式 3.3 一元一次不等式
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
合并同类项得 -2x>-1
1 系数化1得 x< 2
移项得 2x-x-3x>-3-2-1
合并同类项得 -2x>-6
系数化1得 x<3
解下列不等式:
(1) 2x-3 > 3x-2 3 2 (2) 4-x < x-3 -1 3 5
5 当X取小于 时代数式 7
5 x 7 x 4 3x 1
的值的差大于1.
1、求下列不等式的正整数解: (1)-4x≥-12; (2)3x-11<0. 2、如果关于x的不等式-k-x+6>0的 正整数解为1,2,3,正整数k应取怎样 的值? 3、若ax-3>0的解集是x<-1,则a的 值是多少?
x
(2) 5x+3<0 ✓ (4) x(x–1)<2x ✕
注意:
①只含有一个未知数, ②并且未知数的最高次数是1,
③系数不等于0,
一定是整式哦!
解一元一次方程
x 6 x 3 4 3 2
解一元一次不等式 x 6 x 3 4 3 2
解:2(x+6)=3(x-3)+24
去分母 解:2(x+6)<3(x-3)+24 2x+12<3x-9+24 2x+12=3x-9+24 去括号 2x-3x<-9+24-12 2x-3x=-9+24-12 移项 -x<3 合并同类项 -x=3 x>-3 系数化1 x=-3
去括号得 6x-3x+2x+2<6+x+8 移项得 6x-3x+2x-x<6+8-2 合并同类项得 系数化为1,程是否正确,如果不正确请给予改正。
x 1 x 1 x 1 解不等式 3 6 2
解:
解:
去分母得 2x+1-x-1>3x-1 去分母得2(x+1)-(x-1)>3(x-1)
x 4 3x 1 当X取何值时代数式 的值的差大于1? 与 3 2
例4
解:根据题意,得 x 4 3 x 1 1 3 2
2( x 4) 3(3x 1) 6
2x 8 9x 3 6 2x 9x 6 8 3
7 x 5
3 与 2
画数轴、向左还是向右、实心还是空心
例3 (1)解下列一元一次不等式,并 将解集在数轴上表示出来:
2 x 1 4 x 13
解: 2 x 4 x 13 1 2x 14
x 7
它在数轴上的表示如下:
0
-7
7
例3
(2)解下列一元一次不等式,并将解集在数轴上表示出 来: 2(5 x 3) x 3(1 2 x)
新课学习
观察下列不等式:
(1)2 x 2.5 15
(2) x 8.75
1、未知数
都只含有一个未知数
2、含有未知数的式子
都是整式
(3) x 4 (4)5 3x 240
3、未知数的次数
都是一次
这些不等式有哪些共同特点?
八年级数学(北师大) 一元一次不等式
只含有一个未知数,并且含有未知数的式 子都是整式,未知数的次数都是一次的不等式 叫做一元一次不等式. 判断下列哪些一元一次不等式? (1) 3x+2>x–1 ✓ 1 (3) +3<5x–1 ✕
一元一次不等式与一元 一次方程的解法有哪些 类似之处?有什么不同?
解一元一次不等式的步骤
1、去分母 2、去括号 各步骤都有哪 3、移项 些注意点呢? 4、合并同类项 5、系数化为1 另外有时要把解集在数轴上表示出来
去分母
去括号 移项 合并同类项 系数化为1
不漏乘,分子添括号
不漏乘,括号前面是负号时里面 的各项都要变号 移项要变号 字母不变,系数相加 等式两边同除以系数:正数方向 不变,负数方向改变
进行适当的变形 ? 2、利用不等式的性质对不等式 做什么
变形的目的 是为了得到x>a或x<a的形式
解下列不等式
1、x 2 0 2、x 1 0
解:x>2 解:x>-1
3、 2 x 4 4、 3x 0
解:x>-2 解:x<0
3、什么是一元一次方程?
只含有一个未知数、并且含有未知数的式子都是 整式,未知数的次数是1 的方程
解:
10 x x 6 x 3 6
3x 9
10 x 6 x 3 6x
x 3
0
它在数轴上的表示如下:
-3
●
3
下列解不等式过程是否正确,如果不正确请给予改正。
解不等式x-2(x-1)>0 解:去括号,得x-2x-2>0 解:去括号,得x-2x+2>0 合并同类项,得-x-2>0 移项,得-x>2 系数化为1,得x>-2 合并同类项,得-x+2>0 移项,得-x>-2 系数化为1,得x<2
小结
课后练习:
解不等式:
(1) 3 [ 2 ( x -1)-2] ≤2+x 2 3 4 (2) x -5≥ 4x+1-3 1 3 8 2 1.8-8x 1.3-3x 5x-0.4 (3) > 0.3 - 2 1.2 (4) 0.4x-1.1 + x-5 ≥ 0.03+0.02x 0.5 0.03 2
1、不等式有哪些基本性质:
⑴不等式的两边都加上(减去)同一个整式, 不等号的方向不变。 即如果a>b,那么a+c>b+c,a-c>b-c ⑵不等式的两边都乘以(除以)同一个正数, 不等号的方向不变。 即如果a>b,并且c>0,那么ac>bc ⑶不等式的两边都乘以(除以)同一个负数, 不等号的方向改变。 即如果a>b,并且c<0,那么ac<bc
练习:解下列不等式,并把解集在 数轴上表示出来: (1)2x+1>3; (2)2-x<1; (3)2(x+1)<3x; (4)3(x+2)≥4(x-1)+7.
下列解不等式过程是否正确,如果不正确 请给予改正。 解不等式 去分母得
x+ 1 x + 8 x x- 2 + 3 < 1+ 6
6x-3x+2(x+1)<6+x+8