含Zr V的7150合金的热加工性能和加工图

合集下载

7150铝合金等温多道次热压缩流变应力和静态软化规律

7150铝合金等温多道次热压缩流变应力和静态软化规律

7150铝合金等温多道次热压缩流变应力和静态软化规律蒋福林;张辉【期刊名称】《中国科技论文》【年(卷),期】2015(010)004【摘要】在Gleeble-1500热模拟机上对7150铝合金进行等温多道次热压缩实验,变形温度为300℃和400℃,变形速率为0.01s-1和0.1s-1,道次真应变均为0.2,道次间保温时间为10 s和100 s.结果表明:7150铝合金等温多道次变形过程呈现明显动态和静态软化特性;静态软化率在300℃时随着变形道次(或累积应变)的增加基本保持恒定,而在400℃时随着道次的增加迅速增加;随着温度的升高、应变速率的增大和道次间保温时间延长,软化率均明显增大;合金多道次热变形后,主要呈现典型的回复组织而未发生明显的再结晶.结合金相显微组织及软化率分析,对7150铝合金在变形温度400℃、变形速率0.1s-1条件下的多道次变形时出现软化率大于100%的“奇异”静态软化现象进行了探讨.【总页数】5页(P394-398)【作者】蒋福林;张辉【作者单位】湖南大学材料科学与工程学院,长沙410082;湖南大学材料科学与工程学院,长沙410082;喷射沉积技术及应用湖南省重点实验室,湖南大学,长沙410082【正文语种】中文【中图分类】TG146.21【相关文献】1.5052铝合金单双道次压缩动态与静态软化行为探讨 [J], 黎勇2.铸态42CrMo钢多道次热压缩的软化规律 [J], 吕振华;宋建丽;齐会萍;郑毅3.7150铝合金等温多道次热压缩流变应力和静态软化规律 [J], 蒋福林;张辉;4.铝合金多道次热变形过程的动态与静态软化 [J], 刘国金;张辉;林高用;彭大暑;杨立斌5.易拉罐用铝材多道次热压缩变形的软化规律研究 [J], 陈永禄;傅高升;陈文哲;王火生因版权原因,仅展示原文概要,查看原文内容请购买。

7055 (7A55) 铝合金研究进展

7055 (7A55) 铝合金研究进展

作者简介:牟春(1966-),男,四川巴中人,高级工程师,主要从事金属检测及物理学研究。

收稿日期:2021-01-107055(7A55)铝合金研究进展牟春,温庆红,林顺岩,冯旺,李霜(西南铝业(集团)有限责任公司,重庆401326)摘要:7055(7A55)铝合金是在7150合金的基础上,通过提高Zn/Mg 比值、进一步降低杂质含量而开发出来的合金化程度更高、强度更高、综合性能较优的变形铝合金。

国外自上世纪80年代起步研究,美国1991正式注册,并获得广泛应用。

国内研究起步较晚,工业化应用较少,有文献对该合金的综述性报道已超过十年。

本文从合金成分设计及优化、均匀化热处理工艺、热加工工艺、固溶热处理工艺、时效工艺、形变热处理工艺等方面介绍了7055(7A55)合金的研究现状及最新进展。

关键词:7055(7A55)铝合金;成分;均匀化;热处理;力学性能;晶间腐蚀;剥落腐蚀中图分类号:TG146.21文献标识码:A文章编号:1005-4898(2021)06-0003-06doi:10.3969/j.issn.1005-4898.2021.06.010前言高强铝合金是航空工业主要的结构用材之一。

随着现代航空业的高速发展,要求航空结构材料具有更高的强度、更好的断裂韧性和更优的抗应力腐蚀开裂性能和抗疲劳性能。

国外铝工业界不断开发出性能优异的新型铝合金,7055(7A55)合金是目前变形铝合金中强度最高的合金。

20世纪80年代,美国Alcoa 公司在7150合金的基础上,通过提高Zn/Mg 比值、进一步降低Fe、Si、Mn 等杂质含量,成功开发了一种新型超高强7055合金,并研制出T77热处理工艺,于1991年注册,但具体的T77工艺专利技术高度保密。

通过RRA 热处理工艺生产的7055-T77合金的强度比7150高10%,比7075高出30%;且其断裂韧性较好,抗疲劳裂纹扩展能力强。

7055-T77合金在B777和A380等先进民用飞机中获得广泛的应用,如上翼蒙皮、水平尾翼、龙骨架、座轨和货运滑轨等。

金属冶炼与成型加工第十三章

金属冶炼与成型加工第十三章
铅基轴承合金
图13-24 Pb-Sb合金相图
铝基轴承合金
铝基轴承合金是20世纪60年代发展起来的一种新型减摩材料。我国也已逐渐用它代替锡基、铅基和铜基轴承合金,因而大量节约了工业用铜。铝基轴承合金资源丰富,价格低廉,疲劳强度高,导热性能好,其耐蚀性也不亚于锡锑巴氏合金。因此铝基轴承合金广泛用于高速度、高载荷下工作的汽车、拖拉机的柴油机轴承。
铝合金的强化
(三)固溶强化和细晶强化
变形铝合金
不可热处理强化的变形铝合金 这类铝合金主要包括Al-Mn系和Al-Mg系合金。因其主要性能特点是具有优良的耐蚀性,故称为防锈铝合金。此外这类合金还具有良好的塑性和焊接性,适宜制造需深冲、焊接和在腐蚀介质中工作的零、部件。
变形铝合金
可热处理强化的变形铝合金 工业上得到广泛应用的可热处理强化变形铝合金不是二元合金,而是成分更复杂的三元系和四元系合金。主要有Al-Cu-Mg系、Al-Cu-Mn系合金(硬铝);Al-Zn-Mg系、Al-Zn-Mg-Cu系合金(超硬铝);Al-Mg-Si系、Al-Mg-Si-Cu系合金(锻铝)。这些合金主要通过时效硬化提高强度。
铝合金的强化
(一)形变强化
纯铝及不可热处理强化的铝合金,如Al-Mg、Al-Si和Al-Mn等合金,通常只能以退火或冷作硬化状态使用。冷作硬化可使简单形状的工件强度提高,塑性下降。经冷作硬化的铝合金,需进行再结晶退火,以达到消除加工硬化和获得细小晶粒的目的。
沉淀强化 可热处理强化的铝合金中,如Al-Cu、Al-Cu-Mg、Al-Mg-Si等铝合金,Cu、Mg、Si等元素与Al能形成CuAl2、Mg2Si、Al2CuMg等金属化合物(强化相)。这些强化相在铝中有较大溶解度,且随温度下降而显著减小。因此,过饱和固溶体由于强化相在脱溶过程中的某些中间状态具有特殊晶体结构,而使铝合金得到强化。铝合金加热到单相区保温后,快速冷却得到过饱和固溶体的热处理工艺叫固溶处理。过饱和固溶体在室温放置或加热到某一温度保温,随着时间延长,其强度和硬度升高,塑性和韧性下降的现象叫做沉淀强化或时效硬化。

热力学模拟优化高强耐蚀7150合金成分

热力学模拟优化高强耐蚀7150合金成分
(1. Shandong N anshan A luminum Co. , Ltd. , Longkou 265713, C hina; 2. School of M aterials Science and E ngineering, H arbin Institute of T echnology, H arbin 150006, China)
MgZn2 含 量 高 于 4. 55% ,而 Al2CuM g相 含 量 低 于 0. 9 % ,既 实 现 强 化 效 果 ,又 能 够 提 高 抗 腐 蚀 性 能 。采 用 扫 描 电 镜 和 热 分 析 手 段
研 究 优 化 后 的 实 验 合 金 Al-6. 4Zn-2. 4Mg-2. 3C u结 果 与 计 算 值 基 本 保 持 一 致 。从 实 验 合 金 的 T T T 和 C C T 曲 线 可 以 看 出 该 合 金
第 10卷 第 2 期 2020年 2月
有色金属工程 Nonferrous Metals Engineering
doi :10. 3969/j. issn. 2095-1744. 2020. 02. 006
Vol. 1 0 ,No. 2 February 0 合金成分
Key word:7150 allo y ;sim ulated optim ization;nose tip tem p eratu re;critical cooling rate
7x x x 系 铝 合 金 因 其 优 异 的 低 密 度 、高 强 度 、良好 的 加 工 性 能 及 耐 腐 蚀 性 能 等 优 点 ,被 广 泛 应 用 在 航 空 航 天 、船 舶 的 船 体 构 件 以 及 核 工 业 等 众 多 领 域 [133。 近 些 年 ,特 别 是 在 2 0 世 纪 7 0 年 代 到 2 1 世 纪 初 ,是国 际 铝 合 金 发 展 的 黄 金 时 代 。 国 内 外 科 学 家 及 Alcoa 公 司 在 对 7x x x 系 合 金 的 成 分 进 行 了 设 计 优 化 、微量 合 金 元 素 添 加 以 及 杂 质 元 素 控 制 等 手 段 ,研 发 出 了 优

Nb-10Zr合金的热变形行为、组织特征及热加工图

Nb-10Zr合金的热变形行为、组织特征及热加工图

材料研究与应用 2024,18(2):287‐291Materials Research and ApplicationEmail :clyjyyy@http ://mra.ijournals.cn Nb -10Zr 合金的热变形行为、组织特征及热加工图贾志强1,武宇2,朱绍珍1(1.西安诺博尔稀贵金属材料股份有限公司, 陕西 西安 710201; 2.西部金属材料股份有限公司,陕西 西安 710201)摘要: Nb -10Zr 合金可作为特种薄膜功能材料应用于太阳能行业。

深入理解Nb -10Zr 合金的热变形行为是实现该应用的前提,然而国内目前围绕该合金热加工过程的材料加工性能相关研究十分匮乏。

建立热材料加工图可实现描述指定条件下的材料可加工性,明确合金的变形窗口,指导材料加工工艺的制定和优化。

选用均匀化处理后的电铸熔炼铸锭Nb -10Zr 合金,采用热模拟试验机开展了热模拟压缩试验,并基于动态材料模型,通过对应变速率敏感系数m 、功率耗散系数η和失稳系数ξ的数据分析,建立了材料不同温度和应变速率条件下的流变稳态区和非稳态区的热加工图。

同时,通过微观组织观察,分析和验证了加工图的准确性。

研究结果表明,Nb -10Zr 合金铸锭在1 300 ℃下经24 h 均匀化处理后,未出现Zr 元素偏聚所形成的缺陷,也未见裂纹、气孔、疏松和夹渣等其他类型的缺陷。

铸态组织中存在粗大晶粒和细小晶粒,晶粒尺寸分别为 500—800 μm 和 20—30 μm 。

在应变为0.4和0.6条件下,Nb -10Zr 合金存在2个合理的热加工窗口,即变形温度1 060—1 100 ℃和应变速率0.01—0.04 s −1,以及变形温度1 080—1 100 ℃和应变速率0.3—1 s −1。

在不同变形条件下,变形后的Nb -10Zr 合金均获得了细小的动态再结晶组织。

在温度1 100 ℃和应变速率0.01 s −1下,合金晶粒尺寸为80—100 μm ;而在温度1 100 ℃及应变速率1 s −1下,合金晶粒尺寸为40—60 μm 。

Al-Zn-Mg-Sc-Zr合金的热变形行为及加工图

Al-Zn-Mg-Sc-Zr合金的热变形行为及加工图

Al-Zn-Mg-Sc-Zr合金的热变形行为及加工图何振波;李慧中;梁霄鹏;尹志民【摘要】在Gleeble-1500热模拟试验机上对Al-5.5Zn-1.5Mg-0.2Sc-0.1Zr铝合金进行高温等温压缩实验,研究该合金在变形温度为300~500℃、应变速率为0.01~10s-1条件下的流变行为,建立合金高温变形的本构方程和加工图,采用电子背散射衍射(EBSD)分析变形过程中合金的组织特征.结果表明流变应力随变形温度的升高而降低;当应变速率ε=10s-1,变形温度为300~500℃时,合金发生了动态再结晶.Al-5.5Zn-1.5Mg-0.2Sc-0.1Zr合金的高温流变行为可用Zener-Hollomon 参数描述.在热变形过程中,随着真应变增加,合金的变形失稳区域增大.该合金适宜的变形条件如下变形温度300~360℃、应变速率0.01~0.32s-1,或变形温度380~500℃、应变速率0.56~10s-1.【期刊名称】《中国有色金属学报》【年(卷),期】2011(021)006【总页数】9页(P1220-1228)【关键词】Al-Zn-Mg-Sc-Zr合金;热变形;加工图【作者】何振波;李慧中;梁霄鹏;尹志民【作者单位】中南大学材料科学与工程学院,长沙410083;东北轻合金有限责任公司,哈尔滨150060;中南大学材料科学与工程学院,长沙410083;中南大学材料科学与工程学院,长沙410083;中南大学材料科学与工程学院,长沙410083【正文语种】中文【中图分类】TG113.26含Sc和Zr的7×××系合金是一种强度高、塑性好、可焊性好、耐腐蚀性能优良的中高强铝合金,被广泛应用于航天航空、核能和舰船等领域[1−2]。

目前,对含Sc铝合金的研究主要集中在添加Sc对合金组织,再结晶行为及力学性能的影响方面[3−6]。

而合金热变形过程中的流变应力是表征材料塑性变形性能的一个最基本量,在实际塑性变形过程中,合金的流变应力值决定了变形时所需施加的载荷大小和所需消耗能量的多少[7]。

热处理工艺对低温挤压Zn_15Al锌合金组织及性能的影响_孙世能

热处理工艺对低温挤压Zn_15Al锌合金组织及性能的影响_孙世能

网络出版时间:2016-01-10 14:01:52网络出版地址:/kcms/detail/21.1473.TF.20160110.1401.020.html热处理工艺对低温挤压Zn-15Al锌合金组织及性能的影响孙世能,王利卿,任玉平,杨波,秦高梧(材料各向异性与织构教育部重点实验室,东北大学,沈阳,110819)摘要:采用拉伸试验和扫描电镜分析技术手段,研究了不同冷却速度对200 ℃挤压Zn-15Al锌合金的微观组织和室温力学性能的影响。

结果表明:经320 ℃处理1h后,变形态细小的α(Al)相发生了粗化。

经水淬后α(Al)相发生了连续析出,形成了α(Al)+η(Zn)细小的粒状组织,使其强度稍有提高,塑性明显降低。

而经空冷后α(Al)相发生了共析分解,形成了细片层状组织,导致其强度提高约1倍,塑性下降约80%。

这意味着能够通过热处理工艺来调整变形态Zn-15Al锌合金的力学性能,以满足不同应用领域的要求。

关键词:Zn-15Al锌合金;热处理;微观组织;力学性能中图法分类号:TG146.13文献标识码: A 文章编号:Effects of heat treatmenton microstructure and mechanical property of extruded Zn-15Al Zn alloy at lower extrusion temperatureSun Shineng, WangLiqing, RenYuping, Yang Bo, QinGaowu(Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education) ,Northeastern University, Shenyang 110819, China)Abstract: The influences of cooling rates during heat treatment on the microstructure and mechanicalproperties of the extruded Zn-15Al Zn-alloy at 200 ℃ have been investigated by tensile test andscanning electron microscopy. The results show that the fine α(Al) phase of extruded Zn-15Al Zn-alloyat 200 ℃occurred coarsening by heated treatment at 320 ℃for 1h. The tensile strength of extrudedZn-15Al Zn-alloy increased slightly, while theelongationof extruded Zn-15Al Zn-alloy decreasedsignificantly after water quenching, because the α(Al) phaseis transformed into α(Al)+η(Zn) finegranular structurethough continuous precipitation. After air cooling, the tensile strengthen wereincreased by about 1 times and the elongation decreased by about 80%, Owing to the α(Al)phaseformed a fine lamellar structure decomposition byeutectoid transformation. It is implied that thedifferent mechanical properties can be obtained in the extrusion Zn-15Al Zn alloy manufactured by heattreatment, and the mechanical properties can be satisfied the requirements of different applications.___________________________收稿日期:2015-11-23基金项目:国家自然科学基金资助项目(51171043,51371046),教育部新世纪优秀人才(NECT-12-0109),东北大学基本科研业务费资助项目(N130610002)。

低温加热对铝合金7150-T77状态性能和组织的影响

低温加热对铝合金7150-T77状态性能和组织的影响
中 图分 类 号 : T G1 6 6 . 3 文 献 标 识 码 :A 文 章 编 号 :1 0 0 1 — 4 3 8 1 ( 2 0 0 7 ) 1 1 — 0 0 3 3 — 0 4
Abs t r a c t :The he a t i ng t e s t r e s e a r c h a i me d a t 7 1 5 0 一 T77 a l l oy i s pe r f or me d.The c ha n ge s o f t h a t pr ope r —
ne s s a nd t e ns i l e pr o pe r t y c ha n ge s no t a b i l i t y . W he n he a t i ng t e mpe r a t ur e gr e a t e r t h a n 1 85℃ , ma t e r i a l ’ S c on du c t i vi t y,h a r dn e s s a nd t e n s i l e pr o p er t y ha v e c h a ng e d t o b e d i s qu a l i f i c a t i o n. W he n he a t i n g t a m— p e r a t ur e ke e p o n h e i gh t e n, ma t e r i a l S c on duc t i v i t y,ha r dn e s s a n d t e ns i l e pr op e r t y ha v e c ha n ge d mo r e
Chi na;2 Xi ’ a n Ai r c r a f t Co mpa ny,Xi ’ a n 71 00 8 9,Chi n a )

7150铝合金高温热压缩变形流变应力行为

7150铝合金高温热压缩变形流变应力行为

和应变速率为 00 — 0 S 条件下 的流变应力行为 。结果表 明:流变应力在 变形初 期随着应变 的增加而增大,出 .1 1
现峰值后逐渐趋于平稳; 峰值应力 随着温度 的升高而减小 , 随着应变速 率的增大而增大 ; 可用包含 Z nr ol n e e H l mo - o
参数的 A reis 曲正弦关系来描述合金的热流 变行 为,其变形激活能为 2 66 88k/ l r n 双 h u 2 . J 9 mo;随着温度 的升 高和 应变速率的降低,合金 中拉长 的晶粒发生粗化 ,亚 晶尺寸增大 ,再结晶晶粒 在晶界交叉处 出现并且 晶粒数量逐渐
7 5 铝合 金高温热压 变形流变应 力行为 10 缩
寇琳媛 ,金 能萍 ,张 辉 ,韩 逸 ,吴文祥 ,李落星
(. 1 湖南大学 材 料科 学与工程 学院,长沙 4 0 8 ; 10 2
2 .苏 州 有 色 金 属研 究 院 有 限 公 司 , 苏州 2 5 2) 10 6

要 :在 G ebe 10 模 拟 机 上 对 7 5 铝 合金 进 行 高温 热 压 缩 实 验 , 研 究 该 合 金 在变 形温 度 为 3 0 4 0 ℃ lel一 5 0热 10 0- 5
Fl w t e sb ha i r o 1 0 a u i u l y d r ng h t o sr s e v o f7 5 l m n m a l u i o o c m pr s i n de o m a i n a l v t d t m p r t r o e so f r to te e a e e e au e
第2 O卷第 1 期
、0 .O N O 1 f1 . 2e eJ u n l f n e r u e a s eCh n s o r a o No f r o s M t l

Zr 与时效处理工艺对Al-Zn-Mg-Cu 合金组

Zr 与时效处理工艺对Al-Zn-Mg-Cu 合金组

基金项目:广东省基础与应用基础研究基金项目(2020B1515120093)。

作者简介:林玉金(1973-),女,广东惠州人,工程师,主要从事铝合金材料与加工研究工作。

收稿日期:2022-08-16Zr 与时效处理工艺对Al-Zn-Mg-Cu 合金组织与性能的影响林玉金1,夏鹏2,周楠2,胡权1(1.佛山市三水凤铝铝业有限公司,佛山528133;2.广东省科学院新材料研究所,广州510650)摘要:采用TEM 、电化学工作站、慢应变速率拉伸机等方法研究了添加微量Zr 元素以及T6(时效)、RRA (回归再时效)、FSA (四级时效)等不同热处理工艺对Al-Zn-Mg-Cu 合金微观组织、力学性能与应力腐蚀性能的影响。

结果表明,Al-Zn-Mg-Cu 合金经Zr 微合金化后,力学性能、抗应力腐蚀性能均得到明显提升,T6处理可获得最优的力学性能,经RRA 和FSA 处理后可进一步提升材料的抗应力腐蚀性能。

关键词:Al-Zn-Mg-Cu 合金;Zr 微合金化;微观组织;抗应力腐蚀性能中图分类号:TG146.21文献标识码:A文章编号:1005-4898(2022)06-0045-06doi:10.3969/j.issn.1005-4898.2022.06.100前言Al-Zn-Mg-Cu 合金因其具有较低的密度和超高的强度而被广泛应用于航空航天、船舶、轨道交通以及汽车等领域,近年来随着汽车、高铁等运输工具轻量化的快速发展,高性能铝合金材料特别是高强Al-Zn-Mg-Cu 合金材料的需求日益增大。

Al-Zn-Mg-Cu 合金经适宜的时效处理后基本都能满足各类交通工具承载结构件对强度的要求,但是该系列合金作为轻量化材料应用时面临的应力腐蚀问题仍亟需解决[1-3]。

以往改善Al-Zn-Mg-Cu 合金性能的研究大部分集中在晶内析出相和晶界无沉淀析出带(PFZ )等微观组织的影响上,如采用过时效(T7X )处理或者回归再时效(RRA )处理使晶界析出相粗化并呈不连续分布,从而达到降低合金的应力腐蚀开裂(SCC )敏感性的目的。

7mn15cr2al3v2wmo热处理工艺

7mn15cr2al3v2wmo热处理工艺

7mn15cr2al3v2wmo热处理工艺7mn15cr2al3v2wmo热处理工艺引言•7mn15cr2al3v2wmo热处理工艺是一种重要的金属处理方法,广泛应用于工业领域。

•本文将介绍7mn15cr2al3v2wmo热处理工艺的基本原理、工艺流程以及应用领域。

基本原理•7mn15cr2al3v2wmo热处理工艺利用热处理过程中的相变和组织结构的变化来改善金属材料的性能。

•通过控制材料的加热、保温和冷却过程,使材料经历固溶处理、时效强化等阶段,以达到理想的物理和机械性能。

工艺流程•准备阶段:–清洗和除去表面污染物。

–切割材料到合适尺寸和形状。

•加热阶段:–将材料放入热处理设备中,通常采用高温炉进行加热。

–控制加热温度和保温时间,使材料达到所需的温度。

•保温阶段:–将材料保持在目标温度下一定时间,以实现相变和组织结构的调整。

–保温时间的长短和温度的高低会直接影响材料的性能和结构。

•冷却阶段:–采用适当的冷却速率,将材料迅速冷却到室温。

–冷却速率的控制对材料的性能也有较大的影响。

•后处理阶段:–对处理后的材料进行清洗、表面处理以及其他必要的工序。

–检测材料的性能是否符合要求,并进行质量验证。

应用领域•7mn15cr2al3v2wmo热处理工艺在以下领域有着广泛的应用:–航空航天工业:用于制造飞机发动机、涡轮机叶片等高温结构件。

–汽车工业:用于生产发动机部件、变速器零件以及高强度结构件。

–石油化工工业:用于制造高耐磨、高强度的管线材料和设备。

–电力工业:用于生产高压电缆和导线。

结论•7mn15cr2al3v2wmo热处理工艺是一项重要的金属处理方法,通过控制材料的热处理过程,可以明显改善材料的性能和结构。

•在航空航天、汽车、石油化工和电力等领域,7mn15cr2al3v2wmo 热处理工艺的应用已经取得了显著的成果,为相关行业的发展做出了重要贡献。

7mn15cr2al3v2wmo热处理工艺的优点提高材料的硬度和强度•7mn15cr2al3v2wmo热处理工艺可以通过固溶处理和时效强化等控制组织结构,从而显著提高材料的硬度和强度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Hot Workability and Processing Maps of 7150AluminumAlloys with Zr and V AdditionsCangji Shi and X.-Grant Chen(Submitted September 30,2014;published online March 18,2015)The hot workability and processing maps of 7150aluminum alloys with different Zr additions (0-0.15wt.%)and V additions (0.01-0.15wt.%)were investigated using uniaxial compression tests con-ducted at various temperatures (300-450°C)and strain rates (0.001-10s 21).The results reveal that the processing map of the 7150base alloy exhibits a single domain (Domain I)associated with dynamic recovery and partially dynamic recrystallization.With the increasing Zr and V additions,Domain I shrinks toward higher temperatures and higher strain rates and exhibits decreases in efficiency of power dissipation due to a restrained level of dynamic recovery caused by the pinning effect of Al 3Zr and Al 21V 2dispersoids.When the added Zr and V contents reach 0.15%,another domain (Domain II)is formed,corresponding to cavity formation in the microstructure.Flow instability during hot deformation of 7150alloys is attributed to the formation of adiabatic shear bands and deformation bands.The instability region extends toward lower strain rates when alloyed with Zr and V .The optimum hot-working parameters for those alloys are determined to be a deformation temperature of 450°C and a strain rate of 0.01s 21.Keywords7150aluminum alloy,dispersoid pinning effect,hot compression,power dissipation efficiency,processing map,Zr and V1.IntroductionIn recent years,aluminum alloys have been progressively used in aircraft and transportation industries due to their remarkable physical and mechanical properties.Among all,the 7xxx series (Al-Zn-Mg-Cu)aluminum alloys are utilized extensively due to their high fracture toughnesses,good corrosion resistance,and heat treatability properties (Ref 1).These aluminum alloys are generally subjected to hot forming processes such as rolling,extrusion,and forging;it is thus necessary to optimize the parameters of these processes for maximum efficiency and workability of the product metals.The hot workability is usually defined as the ease with which a material can be shaped by plastic deformation without the onset of fracture or reaching other undesirable conditions and is influenced by thermomechanical processing parameters and the alloying elements used (Ref 2,3).A clear understanding of the effects of the alloying elements used on the hot workability of the alloy is required to establish optimum processing conditions and improve mechanical properties.Zirconium addition is well known to increase the recrystal-lization resistance of aluminum alloys by forming fine,coherent Al 3Zr dispersoids (Ref 4,5).The presence of these dispersoids promotes the formation of a stable and refined subgrain structure during hot working,which provides additional substructure strengthening (Ref 6).Morere et al.(Ref 7)investigated the effects of Zr addition on the static recrystal-lization of AA7010aluminum alloys during solution treatment.A few studies have been conducted on the hot deformation of aluminum alloys containing Zr,in which a pinning effect of Al 3Zr dispersoids on dislocations and grain boundaries has been reported (Ref 8,9).In the author Õs recent work (Ref 10),the effects of various Zr additions (0-0.19wt.%)on the microstructural evolution during hot compression of 7150aluminum alloys was studied,and it was found that the dynamic recovery level was reduced after being alloyed with Zr due to the pinning effects of Al 3Zr dispersoids on dislocation motion and also due to restrained dynamic restoration.Vanadium addition has been reported to maintain the high-temperature strength of the aluminum alloy by forming thermally stable dispersoids of Al 11V (Ref 11,12).The presence of these dispersoids could retard dynamic softening and raise the recrystallization temperature during hot-working processes (Ref 13).Wang et al.(Ref 14)found that the addition of 0.045%V into the 5083aluminum alloy exhibited a restriction on the growth of recrystallized grains and yielded a refined fibrous structure in the rolling sheet.With the addition of 0.15wt.%V ,Cui et al.observed the precipitation of V-containing dispersoids in AA2091(2.15Li-2.04Cu-1.5Mg-0.14Zr)alloy (Ref 15).The effect of different V additions (0.01-0.19wt.%)on the hot deformation behavior of 7150aluminum alloy was reported in the author Õs previous work (Ref 16);it was suggested that vanadium-solute diffusion acted as the deformation rate controlling mechanism for alloys containing up to 0.05%V ,whereas the precipitation of Al 21V 2dispersoids in the alloys containing 0.11-0.19%V promoted the retardation of dynamic recovery and the inhibition of dynamic recrystal-lization.Processing maps were developed on the basis of the dynamic materials model (DMM)and have been used to design hot-working schedules for a wide variety of materials (Ref 3).The maps explicitly represent local peak efficiencies of power dissipation and regions of flow instability,which are associated with specific deformation mechanisms (Ref 3,17).With the help of processing maps,the deformation temperatureCangji Shi and X.-Grant Chen,Department of Applied Science,University of Que ´bec at Chicoutimi,Saguenay,QC G7H 2B1,Canada.Contact e-mail:cangji.shi@uwaterloo.ca.JMEPEG (2015)24:2126–2139ÓASM International DOI:10.1007/s11665-015-1478-11059-9495/$19.00and the strain rate corresponding to local peak efficiencies of power dissipation in the safe domain is chosen as the optimum processing parameters for the hot working of materials.Hot working should not be performed in the regions offlow instability to prevent the occurrence of microstructure defects (Ref18).Recently,processing maps had been widely used to optimize the processing parameters during the hot working of aluminum alloys.Luo et al.(Ref19)developed the processing maps of7050aluminum alloys at different strains and obtained the optimum processing parameters at a strain of0.7with an efficiency of42%.Various microstructural defects generated during hot deformation in2124aluminum alloys were studied using a processing map;theflow instability was found to be caused by the adiabatic shear band,and matrix cracking was observed(Ref20).Ganesan et al.(Ref21)developed the processing map for6061Al/15%SiCp using theflow stresses predicted from a neural network model,and the safe domains of hot working were identified and validated through microstruc-tural investigations.A4D process map was developed by Bhimavarapu et al.(Ref22),illustrating the contours of power dissipation andflow instability with respect to the strain rate, temperature,and strain.However,most of these studies focused on the influence of thermomechanical parameters on the processing map of an individual material.Studies that inves-tigate the effects of micro-alloying elements on the processing maps for hot working of aluminum alloys are not common.In the present study,the effects of different Zr concentra-tions(0.04-0.15wt.%)and V additions(0.05-0.15wt.%)on the processing maps of homogenized7150alloys were studied by hot compression tests at various temperatures and strain rates.The microstructural evolution of the alloys during hot deformation was investigated to understand the effects of Zr and V additions on the processing maps and dynamic deformation mechanisms that occurred under various deforma-tion conditions.2.ExperimentalExperiments were conducted on7150base alloy and alloys with Zr contents from0.04to0.15%and V contents from0.05 to0.15%.All alloy compositions are in wt.%unless otherwise indicated.The chemical compositions of these alloys are provided in Table1.Approximately3kg of each material was melted in an electrical resistance furnace and then cast into a rectangular permanent steel mold measuring30x40x80mm3. The cast ingots of these alloys were homogenized at465°C for 24h,followed by direct water quenching to room temperature. Cylindrical samples measuring10mm in diameter and15-mm long were machined from the homogenized ingots.Uniaxial compression tests were conducted on a Gleeble3800thermo-mechanical simulation unit at strain rates of0.001,0.01,0.1,1, and10sÀ1and deformation temperatures of300,350,400,and 450°C,respectively.During the tests,the samples were heated to the desirable deformation temperature at a heating rate of 10°C/s and held for3min to ensure a homogeneous tem-perature distribution throughout the samples.The samples were deformed to a total true strain of0.8and then immediately water-quenched to retain the microstructure at the deformation temperature.The microstructure of the homogenized materials was etched by KellerÕs solution prior to hot deformation.All deformed samples were sectioned parallel to the compression axis along the centerline,and then polished and etched in the Keller solution for optical microscope observation.Addition-ally,some deformed samples were selected for electron backscattered diffraction(EBSD)analysis under a scanning electron microscope(JEOL JSM-6480LV).The step size between the scanning points was set to1.0l m.Samples for TEM observation were mechanically ground to a thicknesses of 35-60l m and followed by electropolishing in a twin-jet polishing unit,which was operated at15V andÀ20°C using a30%nitric acid and70%methanol solution.The samples were observed under a transmission electron microscope(JEOL JEM-2100)operated at200kV.3.Results3.1Flow Stress BehaviorTheflow stress behavior of the7150alloys with Zr additions from0.04to0.19%and those with V additions from 0.03to0.19%was investigated in the authorÕs previous studies (Ref10,16).Figure1presents a series of typical true stress-true strain curves obtained during hot deformation for the alloys containing different Zr and V contents.It is evident that the flow stresses increase rapidly at the beginning of deformation and then either remain fairly constant or decrease to some extent after attaining a peak stress.The level offlow stress increases with increasing strain rate and decreasing deformation temperature,which is a general trend in hot deformation (Ref2).Previous results(Ref10,16)revealed that under a given deformation condition,no significant variation inflow stress was observed between the base alloy and the alloy containing0.04%Zr.However,the values offlow stress show a gradual rise with increasing content of Zr from0.04to0.19%. Conversely,the alloys containing0.03-0.05%V display dramatic increases offlow stress relative to the base alloy, especially at low deformation temperatures of300-350°C. With the increasing V contents from0.11and0.15%,theflowTable1Chemical composition of the alloys studied(wt.%)Alloy Zn Mg Cu Si Fe Ti Zr V Al 7150base alloy 6.44 2.47 2.290.160.150.009ÆÆÆ0.01Bal. 7150-0.04%Zr 6.27 2.14 2.230.110.140.0080.040.01Bal. 7150-0.12%Zr 6.35 2.22 2.340.160.150.0080.120.01Bal. 7150-0.15%Zr 6.16 2.15 2.160.110.140.0080.150.01Bal. 7150-0.05%V 6.21 2.18 2.200.160.140.009ÆÆÆ0.05Bal. 7150-0.11%V 6.31 2.30 2.240.160.140.008ÆÆÆ0.11Bal. 7150-0.15%V 6.16 2.10 2.150.160.130.008ÆÆÆ0.15Bal.stress is increased significantly during deformation at all temperature ranges investigated.Furthermore,when the V addition reaches 0.19%,the effect on flow stress becomes less evident.To study the effects of Zr and V additions on the processing map for hot deformation of 7150alloy,seven alloys including the base alloy (Table 1)were selected in the present work.3.2Initial MicrostructureFigure 2gives an example of the microstructural evolution of the 7150alloys with 0.12%Zr and 0.11%V addition after homogenization.The homogenized structures of all three alloys are composed of uniform equiaxed grains formed during casting.The average grain size of the base alloy is determined tobeFig.1Typical true stress-true strain curves during hot compression deformation:(a)base alloy and the alloys with (b)0.04%Zr;(c)0.12%Zr;(d)0.15%Zr (e)0.05%V;(f)0.11%V;and (g)0.15%V127l m.The alloys containing Zr exhibit much coarser grain structures.The average grain sizes are approximately586,547, and524l m for the alloys with0.04,0.12,and0.15%Zr, respectively.This is due to the poisoning effect of Zr,through which the added Zr reacts with iron and silicon in the melt, reducing the growth restriction of grains(Ref23).The Vaddition appears to slightly coarsen the grain structure.The average grain sizes are approximately157,152,and133l m for the alloys containing0.05,0.11,and0.15%V,respectively.In addition,the EBSD analysis results reveal that the grain boundaries of all of the alloys are characterized by high-angle boundaries,typically with misorientation angles between30and60°.After homogenization at465°C for24h,the precipitation of Al3Zr dispersoids was clearly observed in the alloys with0.12 and0.15%Zr.The dark-field TEM micrograph in Fig.3(a)shows an example of the precipitation of spheroidal and coherent Al3Zr dispersoids with an average diameter of15nm in the alloy containing0.12%Zr.When V was added into the alloy,the precipitation of V-containing dispersoids was found in the alloys containing0.11and0.15%V.These dispersoids were determined to be in the Al21V2-type phase by TEM selected area electron diffraction in the authorÕs previous studies(Ref24).The STEM micrograph(Fig.3b)shows that a large number of spheroidal Al21V2dispersoids with an average diameter of51nm were precipitated in the alloy containing0.11%V.In the samples with lower contents of Zr(0.04%)and V(0.05%),almost no Al3Zr and Al21V2dispersoids were observed,indicating that the added Zr and V mainly existed as the solute atoms in the aluminum matrix.3.3Effects of Zr and V on Processing MapProcessing maps have been widely used to understand the hot workability of materials in terms of various dynamic deformation mechanisms operating at different deformation conditions,which were developed on the basis of the DMM by Prasad(Ref3,17).In this method,the efficiency of power dissipation,g,represents the energy dissipated through the microstructural evolution and is given in Eq1:g¼2m2mþ1;ðEq1Þwhere m is the strain rate sensitivity of the material given by@ln r @ln_e .The contour plot of the iso-efficiency g values as a functionof temperature and strain rate constitutes the power dissipationmap.Different domains in the power dissipation map implyspecific microstructural manifestations,such as dynamic re-crystallization,dynamic recovery,wedge cracking,and voidformation(Ref3,17).However,during the deformationprocess,flow instability may occur and lead to deformationdefects in the microstructure,includingflow localization,adiabatic shear deformation,flow rotation,and kinking(Ref3).The criterion to evaluate theflow instabilities isexpressed asn¼@ln½m=ðmþ1Þ@ln_eþm<0:ðEq2ÞThe material may exhibit deformation defects when n isnegative(Ref3).Hence,the instability map can be generatedbased on the variation of n with the temperature and strain rate.Finally,the processing map is obtained by superimposing theinstability map on the power dissipation map.Figure4shows the typical processing maps developed forthe base alloy and alloys containing different Zr and V contentsat the true strain of0.8.The contour numbers represent theefficiency of power dissipation,and the shaded zones corre-spond to theflow instability region.It can be seen that in thebase alloy,the efficiency of power dissipation generallyincreases with increasing deformation temperature,indicatingan increased level of energy dissipated through the dynamicdeformation mechanisms(Ref3).A single domain(Domain I)is observed at the temperatures of402-450°C and the strainrates of0.001-0.4sÀ1,reaching a peak efficiency of42%at450°C and0.01sÀ1(Fig.4a).At a lower Zr content of0.04%(Fig.4b),the alloy exhibitsa similar processing map to the base alloy,in which only onedomain is present and is located in the same range oftemperatures and strain rates as the base alloy;an identicalpeak efficiency of42%is also reached at450°C and0.01sÀ1.This is as a result of little variation inflow stress from the basealloy(Fig.1).At higher Zr contents(0.12-0.15%),Al3Zr dispersoids beginto precipitate,influencing the processing map.Domain Iappears to shrink toward higher temperatures and higher strainrates,and a decrease of the efficiency value in this domain isobserved at a given deformation condition compared withtheFig.1continuedbase alloy (Fig.4c and d).In addition,under the deformation conditions at 350-400°C and 0.001-0.003s À1in the alloy with 0.12%Zr,the efficiency level is increased relative to that of the base alloy (Fig.4c).When a higher Zr content of 0.15%is added (Fig.4d),another domain (Domain II)appears between 378-412°C and 0.001-0.005s À1,which is associated with a significant increase in efficiency.It is apparent that the processing map of the alloy with 0.12%Zr still exhibitsaFig.2Optical micrographs showing the grain structures after homogenization:(a)the base alloy;and alloys with (b)0.12%Zr and (c)0.11%VFig.3Precipitation of Al 3Zr and Al 21V 2dispersoids after homogenization at 465°C for 24h:(a)dark-field TEM micrograph,displaying Al 3Zr dispersoids in the alloy with 0.12%Zr,recorded near the [011]a zone axis by using the (100)superlattice reflections of Al 3Zr (L12);(b)STEM image showing Al 21V 2dispersoids in the alloy with 0.11%Vsingle domain between 406-450°C and 0.003-0.2s À1with a peak efficiency of 39%at 450°C and 0.01s À1,while two domains occur in the alloy containing 0.15%Zr.Domain I is located between 420-450°C and 0.008-0.15s À1with a peak efficiency of 38%at 450and 0.01s À1,and Domain II is situated between 378-412°C and 0.001-0.005s À1with a peak efficiency of 37%at 400and 0.001s À1,respectively (Fig.4d).Compared with the base alloy,the processing map of the alloy containing 0.05%V (Fig.4e)displays higher efficiency values at lower temperatures (350-410°C)and lower strain rates (0.001-0.003s À1).A single domain is observed in the same range of temperatures and strain rates as the base alloy,but with a slightly lower peak efficiency of 40%at 450°C and 0.01s À1.Conversely,the precipitation of Al 21V 2dispersoids is observed in the alloys with V from 0.11to 0.15%,as shown in Fig.3.The evolution of the processing map of these alloys displays a similar trend to that of the alloys containing Al 3Zr pared with the base alloy,Domain I narrows at higher temperatures and higher strain rates (Fig.4f and g).With increasing V addition to 0.15%,Domain II gradually forms with a high degree of power dissipation efficiency,as shown inFig.4(g).The processing map of the alloy with 0.11%V exhibits only one domain between 428-450°C and 0.004-0.1s À1with a peak efficiency of 37%at 450°C and 0.01s À1.For the alloy with 0.15%V ,two domains are observed:Domain I between 422-450°C and 0.008-0.12s À1with a peak efficiency of 36%at 450and 0.01s À1,and Domain II between 375-415°C and 0.001-0.005s À1with a peak efficiency of 36%at 400°C and 0.001s À1,respectively.Moreover,a large region of flow instability is observed in the base alloy at the strain rates above 0.1s À1in the temperature range studied.After alloyed with Zr (0.04-0.15%)and V (0.05-0.15%),the evolution of the flow instability regions in all six alloys exhibits a similar tendency:the flow instability region expands toward lower strain rates.For the alloys containing Al 3Zr or Al 21V 2dispersoids,the instability region extends up to the strain rate of 0.01s À1,particularly at lower temperatures between 300and 350°C.It is evident that the flow instability regions in all alloys present lower values of power dissipation efficiencies,compared with the adjacent stable regions.For example,the efficiency values are approximately 2-28%when the deformation is conducted at the strain rates of 1-10s À1;however,they increase uptoFig.4The processing maps developed at the true strain of 0.8for:(a)the base alloy;and the alloys with (b)0.04%Zr;(c)0.12%Zr;(d)0.15%Zr;(e)0.05%V;(f)0.11%V;and (g)0.15%V36-42%under the deformation conditions in Domain I. Therefore,the processing parameters should not be chosen in the instability region of those alloys to obtain good hot workability and to prevent the occurrence of deformation defects.3.4Microstructural Evolution of Deformed SamplesTo understand the effects of Zr and V additions on the dynamic deformation mechanisms operating in each domain and on the manifestations offlow instability,the deformed samples of the base alloy and alloys containing0.15%Zr, 0.05%V,and0.15%V under different deformation conditions at the true strain of0.8were selected for microstructure examination using the optical microscope and the EBSD technique.In EBSD analysis,the misorientation angles of both grains and subgrains are distinguished as follows:white lines: 1-5°;red lines:5-15°;thin black lines:15-30°;and thick black lines:(>30°).3.4.1Domain I.Figure5shows the orientation imaging maps of the deformed samples of the four alloys under the deformation condition at450°C and0.01sÀ1,which corre-sponds to the peak efficiencies of power dissipation in Domain I(Fig.4).In the base alloy,small equiaxed grains with high-angle boundaries(>15°)containing substructures are formed along the bulged grain boundaries(see the arrows in Fig.5a).A large number of subgrains with low and medium-angle boundaries(1-15°)are observed inside the deformed grains.These results indicate a strong dynamic recovered microstructure mixed with partially dynamic recrystallization. However,only dynamically recovered microstructures are observed in the alloys containing Al3Zr or Al21V2dispersoids (0.15%Zr and0.15%V),and the subgrains were formed with neatly arranged boundaries between1°and15°(Fig.5b and d). In this case,dynamic recrystallization is inhibited as a result of the pinning effect of the dispersoids on the migration of high-angle boundaries(Ref10,16).Conversely,the alloy containing 0.05%V in solution displays a partially recrystallized structure and a larger number of recrystallized grains is presented, compared with that in the base alloy(see the arrows in Fig.5c), showing an increasing level of dynamic recrystallization.A previous study(Ref16)reveals that the V solutes in the7150 alloy can cause a higher multiplication rate of dislocations and restrain dynamic recovery,thereby leading to an improved driving force for dynamic recrystallization(Ref2,25),whereas the drag effect of solute atoms on the mobility of high-angle boundaries becomes limited due to the higher diffusion rateof Fig.4continuedsolutes at high temperature (Ref 26).Hence,dynamic recrys-tallization steadily occurs and causes a higher degree of recrystallized structure.Therefore,during the deformation in Domain I,the dynamic recovery and partially dynamic recrystallization act as the deformation mechanisms in the base alloy and the alloy containing 0.05%V .For the alloys with 0.15%V and 0.15%Zr,the mechanism is solely dynamic recovery.3.4.2Domain II.When the deformation is conducted at 400°C and 0.001s À1,both the alloys with 0.15%Zr and 0.15%V display high values of peak efficiency in Domain II,and a remarkable increase in the efficiency is also observed after the 0.05%V addition,compared with the base alloy (Fig.4).As shown in Fig.6,cracking is observed in the deformed microstructures of the micro-alloyed Zr and V materials.However,no obvious cracks are found in the base alloy.During a slow strain rate deformation and creep process at elevated temperatures,microcracks are usually observed in the deformed microstructure of metals,which are generally report-ed to occur in two modes:wedge cracking and cavity formation (Ref 3,20,27-30).Wedge cracks are produced at triple junctions of grain boundaries to relieve stress concentrations,when grain boundary sliding occurs under shear stress (Ref 3,27).Conversely,cavities are frequently observed along grain boundaries due to the stress concentration arising from dislocation pile-up against the grain boundary and the inter-metallic particles at grain boundaries;this process involves the Zener-Stroh mechanism (Ref 27,29).The deformed sample of the base alloy displays a high occurrence of dynamically recovered structures,in which the dislocation density is largely decreased and the subgrains are well organized with higher angle boundaries of 5-15°(Fig.7a).The formation of subgrains and the continuous increase in subgrain boundary misorientation effectively lead to grain refinement near the original grain boundaries.The dispersed fine subgrains subsequently accommodate the stress concen-tration at triple junctions of original grain boundaries by the subgrain boundary sliding during hot deformation,leading to a homogenous deformation without cracking (Ref 31).When the deformation is conducted in the alloys containing Al 3Zr or Al 21V 2dispersoids (0.15%Zr and 0.15%V),the formation of cavities along the grain boundaries is observed (Fig.6a and b).EBSD results show that the deformed structure is characterized by a large number of low-angle boundaries of 1-5°along the grain boundaries (Fig.7b and d),indicating a low level of dynamic recovery and a high density of dislocation tangle and cell structures.Thus,the deformation cannot be accommodated through subgrain boundary sliding,as occurred in the base alloy.During hot deformation,dislocation pile-up generally occurs at the grain boundaries under the applied shear stress.However,the slip and climb of the dislocations are strongly pinned by the dispersoids,resulting in a high concentration of dislocations accumulated at the grain bound-aries (Fig.7b and d).Subsequently,cavities can be initiated to release high energies induced by the dislocation pile-up,and then grow rapidly by the vacancy diffusion along the grain boundaries (Ref 27,29).With further straining,thepropagationFig.5Orientation imaging maps under the deformation condition at 450°C and 0.01s À1with the true strain of 0.8of:(a)the base alloy;and the alloys with (b)0.15%Zr;(c)0.05%V;and (d)0.15%Vof the cavities could lead to intercrystalline cracking,which was widely observed during hot deformation at low strain rates ranging from 0.003to 0.001s À1in different alloys,including Ni-20Cr,Mg-11.5Li-1.5Al alloy,and cast TXA321magnesium alloy (Ref 3,32).Conversely,wedge cracking is rarely found at the triple junction of grain boundaries because grain boundary sliding is effectively pinned by the dispersoids (Ref 25).The formation of cavities along grain boundaries is also present in the deformed sample of the alloy with 0.05%V (Fig.6c).Fig.7(c)illustrates a much less recovered microstruc-ture with numerous dislocation substructures along grain boundaries,which is similar to those observed in alloys containing dispersoids (Fig.7b and d),due to the V solute drag effect on dislocation motion and subgrain coalescence (Ref 16).High stress concentrations resulting from dislocation pile-up at grain boundaries stimulates the formation of cavities.However,wedge cracking at the triple junctions of grain boundaries is also observed (Fig.6c).Due to the limited drag effect of V solutes on the boundary mobility at high temperatures (Ref 16,26),original grain boundary sliding occurs during deformation,leading to accumulated stress at triple junctions and the formation of wedge cracks (Ref 20,27,28).Cavity formation is also observed in the alloys with 0.11%V and 0.12%Zr at 400°C and 0.001s À1;this likely causes the comparable increase in efficiency with the alloy containing 0.05%V (Fig.4).Therefore,the presence of microcracks in alloys with 0.12-0.15%Zr and 0.05-0.15%V likely results insignificant increases in the efficiency of power dissipation under deformation conditions at low strain rates of 0.001-0.003s À1in the temperature range of 350-410°C.3.4.3Flow Instability Region.Figure 8shows the mi-crostructure of four alloys under deformation conditions at 300°C and 1s À1,which is located in the flow instability region (Fig.4).The original grains of all four alloys are severely torn and broke into irregular deformation bands (DBs),which are often found in individual grains as a result of either inhomo-geneous stresses transmitted by neighboring grains or the intrinsic instability of the grains during deformation (Ref 25).Adiabatic shear bands (ASBs)are also observed and extend through several grains,implying highly localized plastic deformation.EBSD analyses indicate that these DBs are characterized by high-angle transition boundaries (>15°),and contain a large amount of low-level recovered substruc-tures.Hence,the formation of DBs and ASBs are the major mechanism causing the flow instability during hot deformation of the alloys.3.5Effect of Strain on Processing MapIn commercial 7150aluminum alloys,Zr is added at 0.08-0.15%to inhibit recrystallization by forming Al 3Zr dispersoids during homogenization treatment.To understand the effect of strain on processing map of 7150alloys,the alloy with 0.15%Zr was selected for study.Figure 9shows the evolution oftheFig.6Optical micrographs under deformation conditions at 400°C and 0.001s À1with the true strain of 0.8:(a)0.15%Zr;(b)0.15%V;and (c)0.05%V。

相关文档
最新文档