总结一些华图宝典数量关系公式教学文案
数量关系讲义(华图课件)
A.15
B.17
C.19
Page 12
D.22
第七章 杂题模块
第一节 年龄问题
第二节 其他问题
Page 13
第七章 杂题模块
第一节 年龄问题
“年龄”问题核心公式: 一、每过N年,每个人都长N岁。(适用于简单列方程解答的年 龄问题)。 二、两个人的年龄差在任何时候都是固定不变的。 三、直接代入法。
Page 24
技巧点拨
常见的排列规律 1、奇偶数规律:各个数都是奇数或偶数。
2、等差:相邻数之间的差值相等,整个数字序列依次递增或递 减。
3、等比:相邻数之间的比值相等,整个数字序列依次递增或递 减。 4、二级等差数列:相邻数之间的差或比构成一个等差数列。 5、二级等比数列:相邻数之间的差或比构成一个等比数列。
Page 9
第六章 计数问题模块
第一节 枚举法 第二节 排列问题 第三节 容斥问题 第四节 抽屉原理问题
第五节 过河问题
Page 10
第六章 计数问题模块
第五节 过河问题
“过河”问题提示: 一、 需要有一人将船划回;
二、 最后一次过河“只去不回”;
三、 计算时间的时候多注意是“过一次××分钟”还是“往返 一次××分钟”
Page 32
题型一:等差数列
变式 :
差: ∨ ∨ ∨ ∨ ∨ 1 2 3 4 5
4,5,7,10,14,( 19 )
∨ ∨ ∨ ∨ ∨ ∨ 差: 2 3 2 5 8 12 ∨ ∨ ∨ ∨ ∨ 0 1 2 3 4
3,5,7,10,15,23,( 35)
Page 33
题型一:等差数列
2
4
6
Page 25
总结一些华图宝典数量关系公式
数学运算第一章基本知识储备常用余数性质:1.加法封闭性:和的余数就是余数的和的余数2.减法封闭性:差的余数就是余数的差的余数3.乘法封闭性:积的余数就是余数的积得余数4.幂次封闭性:幂的余数就是余数的幂的余数第二章基本解题思路直接代入法“直接代入”的时候,如果问的是“最少、/最小。
”,那么应该从最小的数开始代入,如果问的是“最大/最多。
”那么应该从最大的数开始代入。
同样,如果问的是“第一次/下一次。
”应从最早的时刻开始代入,这样可减少一些运算量。
一、数字特性法1、大小特性2、奇偶特性3、尾数特性4、倍数特性5、因子特性6、余数特性7、幂次特性二、特值分析法思想:很多题目的结论,与一些量的具体取值无关,此时可以将其取为某个特殊值,以便于计算三、极端分析思想分析:题目若出现了“至多”、“至少”、“最多”、最少、最大、最小、最快、最慢、最高、最低等字样,通常可以可虑极端分析法,其基本思想是构造“极端”的情形。
四、构造思想构造思想:解题时直接构造出满足条件的情况,从而得到答案的思想五、枚举归纳思想有些和N有关的数学问题,需要先计算当N较小的时比较容易计算的情况,再总结归纳出一些规律,从而得到较大的数的规律。
六、逆向分析思想有些数学问题,从正面不容易入手,这时可以从他的反面进行思考。
即首先算出不满足题目要求的情形,从而计算出满足题目要求的情形。
第三章计算问题模块一、尾数法基本原理:1、加法封闭法:和的尾数就是尾数的和的尾数2、减法封闭法:差的尾数就是尾数的差的尾数3、乘法封闭法:积的尾数就是尾数的积的尾数基本解题技巧:1.各选项间的尾数不同,可考虑用尾数法2.使用多位尾数法时需注意以下两点:(1).过程和结果当中的数字如果只有一位,则需要补零,以补足两位(2).过程和结果当中的数字如果是负数,可以反复加100补成0到100之间的数二、弃9法计算时,将计算过程中数字除以9,留其余数进行计算的方法。
注意:弃9法的前提条件是选项除以9余数必须不相同三、凑整法四、估算法五、乘法分配律正向乘法分配律:(a+b)c=ac+bc逆向乘法分配律:ac+bc=(a+b)c六、整体消去法在比较复杂的计算中,将相近的数化为相同,从而作为一个整体进行抵消的方法七、分组计算法八、裂项相加法在分数运算当中运用九、比较大小法十、乘方尾数法1.底数留个位2.指数末两位除以4留余数(余数为0则看做4)注:尾数为0,1,5,6的数,乘方尾数是不变的第四章行程问题模块第一节初等行程问题基本知识点:1.基本公式:距离=速度 * 时间2.相遇追及问题中:相遇距离=(大速度+小速度)*相遇时间追及距离=(大速度-小速度)*追及时间3.环形运动问题中:环形周长=(大速度+小速度)*相向运动中的两人两次相遇的时间间隔环形周长=(大速度-小速度)*同向运动中的两人两次相遇的时间间隔4.流水行船问题中:顺流路程=顺流速度*顺流时间=(船速+水速)*顺流时间逆流路程=逆流速度*逆流时间=(船速-水速)*逆流时间5.电梯运动问题中:能看到的电梯级数=(人速+电梯速度)*沿电梯运动方向运动所需时间能看到的电梯级数=(人速-电梯速度)*逆电梯运动方向运动所需时间5.电梯问题:能看到级数=(人速+电梯速度)*顺行运动所需时间(顺)能看到级数=(人速-电梯速度)*逆行运动所需时间(逆)第二节比例型行程问题基本知识点:1.行程问题基本比例:S甲/S乙=(V甲/V乙)/(T甲/T乙)2.运动时间相等,运动距离与运动速度成正比3.运动速度相等,运动距离与运动时间成正比4.运动距离相等,运动速度与运动时间成反比第三节典型行程模型基本知识点:1.两次相遇公式:单岸型S=(3S1+S2)/2 两岸型S=3S1-S2例题:两艘渡轮在同一时刻垂直驶离 H 河的甲、乙两岸相向而行,一艘从甲岸驶向乙岸,另一艘从乙岸开往甲岸,它们在距离较近的甲岸 720 米处相遇。
华图行测模块宝典
华图行测模块宝典华图行测模块宝典20天,行测83分,申论81分(适合:国家公务员,各省公务员,村官,事业单位,政法干警,警察,军转干,路转税,选调生,党政公选,法检等考试)———知识改变命运,励志照亮人生我是2010年10月15号报的国家公务员考试,职位是共青团中央国际联络部的青年外事工作科员,报名之后,买了教材开始学习,在一位大学同学的指导下,大约20天时间,行测考了83.2分,申论81分,进入面试,笔试第二,面试第一,总分第二,成功录取。
在这里我没有炫耀的意思,因为比我考的分数高的人还很多,远的不说,就我这单位上一起进来的,85分以上的,90分以上的都有。
只是给大家一些信心,分享一下我的经验,我只是普通大学毕业,智商和大家都一样,关键是找对方法,事半功倍。
指导我的大学同学是2009年考上的,他的行测、申论、面试都过了80分,学习时间仅用了20多天而已。
我也是因为看到他的成功,才决定要考公务员的。
“人脉就是实力”,这句话在我这位同学和我身上又一次得到验证,他父亲的一位朋友参加过国家公务员考试命题组,这位命题组的老师告诉他一些非常重要的建议和详细的指导,在这些建议的指导下,我同学和我仅仅准备了20天左右的时间,行测申论就都达到了80分以上。
这些命题组的老师是最了解公务员考试机密的人,只是因为他们的特殊身份,都不方便出来写书或是做培训班。
下面我会把这些建议分享给你,希望能够对你有所帮助。
在新员工见面会上,我又认识了23位和我同时考进来的其他职位的同事,他们的行测申论几乎都在80分以上,或是接近80分,我和他们做了详细的考试经验交流,得出了一些通用的备考方案和方法,因为只有通用的方法,才能适合于每一个人。
2010年国考成功录取后,为了进一步完善这套公务员考试方案,我又通过那位命题组的老师联系上了其他的5位参加过命题的老师和4位申论阅卷老师,进一点了解更加详细的出题机密和阅卷规则。
因为申论是人工阅卷,这4位申论阅卷老师最了解申论阅卷的打分规则,他们把申论快速提高到75到80分的建议写在纸上,可能也就50页纸而已,但是,他们的建议比任何培训机构和书籍效果都好(我是说申论)。
公务员考试数量关系公式整理
公务员考试数量关系公式整理范围:1.典型题:年龄、余数、不定方程、多位数。
2.看选项:选项为一组数、可转化为一组数(选项信息充分)。
3.剩两项:只剩两项时,代一项即得答案。
4.超复杂:题干长、主体多、关系乱。
方法:1.先排除:尾数、奇偶、倍数。
2.在代入:最值、好算。
数字特性一、奇偶特性:范围:1.知和求差、知差求和:和差同性。
2.不定方程:一般先考虑奇偶性。
注意是“先”考虑。
3.A是B的2倍,将A平均分成两份:A为偶数。
4.质数:逢质必2.方法:1.加减法:同奇同偶则为偶,一奇一偶则为奇。
a+b和a-b 的奇偶性相同。
2.乘法:一偶则偶,全奇为奇。
4x、6x必为偶数,3x、5x不确定。
二、倍数特性1.整除型(求总体):若A=B×C(B、C均为整数),则A能被B整除且A能被C整除。
试用范围:用于求总体,如工作量=效率×时间,S=VT,总价=数量×单价。
2.整除判定法则:口诀法:,能被3整除不能被9整除。
,能被4整除不克不及被8整除。
看尾数是不是或5.拆分法:要验证是否是m的倍数,只需拆分成m的若干被+-小数字n,若小数字n能被m整除,原数即能被m整除。
例:217可否被7整除?217=210+7,以是能够被7整除。
复杂倍数用因式分解:判别一个数是否能被整除,这个数拆解后的数是否能被整除,拆分的数必需互质。
3.比例型:a)某班男女生比例为3:5,便可把男生看成3份,女生看成5份。
男生是3的倍数,女生是5的倍数,全班人数是5+3=8的倍数,男生女生差值是5-3=2的倍数b)A/B=M/N(M、N互质)A是M的倍数,B是N的倍数,A+B是M+N的倍数,A-B是M-N的倍数。
c)做题逻辑:想:看到比例要想到使用倍数特性。
看:直接看问题,倍数特性是技巧性方法,无需分析题目,找出与问题相关的比例。
干:找到做题方法,直接秒殺。
方程法1、普通方程:找等量,设未知数,列方程,解方程。
设未知数的技巧:1.设小不设大(减少分数计算)。
华图宝典数量关系公式
总结一些华图宝典数量关系公式(解题加速100%)一、基础代数公式1. 平方差公式:(a+b)×(a-b)=a2-b22. 完全平方公式:(a±b)2=a2±2ab+b2完全立方公式:(a±b)3=(a±b)(a2 ab+b2)3. 同底数幂相乘: am×an=am+n(m、n为正整数,a≠0)同底数幂相除:am÷an=am-n(m、n为正整数,a≠0)a0=1(a≠0)a-p=(a≠0,p为正整数)4. 等差数列:(1)sn ==na1+ n(n-1)d;(2)an=a1+(n-1)d;(3)n =+1;(4)若a,A,b成等差数列,则:2A=a+b;(5)若m+n=k+i,则:am+an=ak+ai ;(其中:n为项数,a1为首项,an为末项,d为公差,sn为等差数列前n项的和)5. 等比数列:(1)an=a1q-1;(2)sn =(q 1)(3)若a,G,b成等比数列,则:G2=ab;(4)若m+n=k+i,则:am•an=ak•ai ;(5)am-an=(m-n)d(6)=q(m-n)(其中:n为项数,a1为首项,an为末项,q为公比,sn为等比数列前n项的和)6.一元二次方程求根公式:ax2+bx+c=a(x-x1)(x-x2)其中:x1= ;x2= (b2-4ac 0)根与系数的关系:x1+x2=- ,x1•x2=二、基础几何公式1. 三角形:不在同一直线上的三点可以构成一个三角形;三角形内角和等于180°;三角形中任两边之和大于第三边、任两边之差小于第三边;(1)角平分线:三角形一个的角的平分线和这个角的对边相交,这个角的顶点和交点之间的线段,叫做三角形的角的平分线。
(2)三角形的中线:连结三角形一个顶点和它对边中点的线段叫做三角形的中线。
(3)三角形的高:三角形一个顶点到它的对边所在直线的垂线段,叫做三角形的高。
行政能力测试数量关系规律公式总结材料
1.流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷22.追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数3.植树问题1、非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2、封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数总数÷总份数=平均数4.和差问题的公式(和+差)÷2=大数(和-差)÷2=小数5.和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)6.差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)7.牛吃草问题牛吃草问题又称为消长问题,是17世纪英国伟大的科学家牛顿提出来的。
典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。
由于吃的天不断地变化。
解决牛吃草问题常用到四个基本公式,分别是︰(1)草的生长速度对应的牛头数吃的天数;`2)原有草量=牛头数3)吃的天数=原有草量4)牛头数=原有草量8.抽屉原理的公式把N+1个物品放进N个抽屉里,至少有一个抽屉里有2个以上的物品9.时钟问题根据钟表的构造我们知道,一个圆周被分为12个大格,每一个大格代表1小时;同时每一个大格又分为5个小格,即一个圆周被分为60个小格,每一个小格代表1分钟。
完整版数量关系公式
数量关系常用公式总结:1.行程问题基础公式:路程=速度*时间一、相遇追及型追及问题:追及距离=(大速度-小速度)×追及时间相遇问题:相遇距离=(大速度+小速度)×相遇时间背离问题:背离距离=(大速度+小速度)×背离时间二、环形运动型反向运动:第N次相遇路程和为N个周长,环形周长=(大速度+小速度)×相遇时间同向运动:第N次相遇路程差为N个周长,环形周长=(大速度-小速度)×相遇时间三、流水行船型顺流路程=(船速+水速)×顺流时间逆流路程=(船速-水速)×逆流时间静水速度=(顺水速度+逆水速度)÷2水流速度=(顺水速度-逆水速度)÷2四、扶梯上下型扶梯总长=人走的阶数×[1±(V梯÷V人)],顺行用加法,逆行用减法,根据公式带入级,速度为v解析:设扶梯为s v=1 1) 解得×S=30×1(1+v÷S=20×2×(1+v÷2) s=60,所以选择B。
五、队伍行进型队头→队尾:队伍长度=(人速+队伍速度)×时间队尾→队头:队伍长度=(人速-队伍速度)×时间解析:假设通讯员和队伍的速度分别为v和u,所求时间为t,则: 600=(v-u)×3 解得 v=250600=v×(2+24÷60) u=50600=(v+u)×t t=2,所以选择D六、往返相遇型左右点出发:第N次迎面相遇,路程和=全程×(2N-1)第N次追上相遇,路程差=全程×(2N-1)同一点出发:第N次迎面相遇,路程和=全程×2N第N次追上相遇,路程差=全程×2N解析:a汽车第二次从甲地出发后与b汽车相遇,实际上是两辆车第3次迎面相遇,根据公式,路程和为5个全程,即5×210=1050(公里),使用的时间为1050÷(90+120)=5(小时),所以b汽车共行驶了120×5=600(公里),选择B七、典型行程模型等距离平均速度=(2速度1×速度2)÷(速度1+速度2)(调和平均数公式)(速度1和速度2分别代表往﹑返的速度)解析:代入公式v=2×60×120÷(60+120)=80等发车前后过车:发车间隔T=(2t1×t2) ÷(t1+t2);V车/V人=(t2+t1) ÷( t2-t1)例:某人沿电车线路匀速行走,每分钟有一辆电车从后面追上,每4分钟有一辆电车迎面开来,假设两个起点站的发车间隔相同,则这个发车间隔为多少?解析:依据公式,发车间隔T=(2t1×t2) ÷(t1+t2)=2×12×4÷(12+4)=6(分钟)。
公务员考试数量关系公式巧解汇总(总结篇)
一.页码问题对多少页出现多少1或2的公式如果是X千里找几,公式是1000+X00*3 如果是X百里找几,就是100+X0*2,X有多少个0 就*多少。
依次类推!请注意,要找的数一定要小于X ,如果大于X就不要加1000或者100一类的了,比如,7000页中有多少3 就是1000+700*3=3100(个)20000页中有多少6就是2000*4=8000 (个)友情提示,如3000页中有多少3,就是300*3+1=901,请不要把3000的3忘了二,握手问题N个人彼此握手,则总握手数S=(n-1){a1+a(n-1)}/2=(n-1){1+1+(n-2)}/2=『n^2-n』/2 =N×(N-1)/2例题:某个班的同学体育课上玩游戏,大家围成一个圈,每个人都不能跟相邻的2个人握手,整个游戏一共握手152次,请问这个班的同学有()人A、16B、17C、18D、19【解析】此题看上去是一个排列组合题,但是却是使用的多边形对角线的原理在解决此题。
按照排列组合假设总数为X人则Cx取3=152 但是在计算X时却是相当的麻烦。
我们仔细来分析该题目。
以某个人为研究对象。
则这个人需要握x-3次手。
每个人都是这样。
则总共握了x×(x-3)次手。
但是没2个人之间的握手都重复计算了1次。
则实际的握手次数是x×(x-3)÷2=152 计算的x=19人三,钟表重合公式钟表几分重合,公式为:x/5=(x+a)/60 a时钟前面的格数四,时钟成角度的问题设X时时,夹角为30X ,Y分时,分针追时针5.5,设夹角为A.(请大家掌握)钟面分12大格60小格每一大格为360除以12等于30度,每过一分钟分针走6度,时针走0.5度,能追5.5度。
1.【30X-5.5Y】或是360-【30X-5.5Y】【】表示绝对值的意义(求角度公式)变式与应用2.【30X-5.5Y】=A或360-【30X-5.5Y】=A (已知角度或时针或分针求其中一个角)五,往返平均速度公式及其应用(引用)某人以速度a从A地到达B地后,立即以速度b返回A地,那么他往返的平均速度v=2ab/(a+b )。
数量关系知识点总结
数量关系知识点总结一、数量关系的基本概念数量关系是指两个或多个数值之间的比较和关联。
在数量关系中,数值之间可以有大小、大小关系,也可以有比例、倍数、倍率等关系。
1. 大小关系:在数量关系中,我们常常需要比较两个数值的大小。
如果一个数值比另一个数值大,我们可以用“大于”符号(>)来表示;如果一个数值比另一个数值小,我们可以用“小于”符号(<)来表示;如果两个数值相等,我们可以用“等于”符号(=)来表示。
2. 比例关系:在一定条件下,两个或多个数值之间的比较关系可以保持不变,这种关系就叫做比例关系。
比例关系通常用“:”或者“/”来表示,如a:b或a/b。
在比例关系中,我们还可以引入比例因子的概念,比例因子是指除数和被除数之间的比值。
3. 倍数关系:在数量关系中,我们常常会涉及到一个数值是另一个数值的几倍的问题。
如果一个数值是另一个数值的n倍,我们可以用乘法运算来表示,即n*a。
在倍数关系中,我们还可以引入整数倍的概念,即当n是一个整数时,a就是b的整数倍。
4. 倍率关系:倍率关系是指两个数值之间的比值关系。
如果一个数值是另一个数值的m倍,我们可以用除法运算来表示,即a/b=m。
倍率关系在概率、利率等领域有广泛的应用。
二、数量关系的运算在数量关系中,我们常常需要进行各种运算,如加法、减法、乘法、除法等。
这些运算可以帮助我们求解问题,比较大小关系,计算比例关系,等等。
1. 加法运算:加法是指将两个或多个数值相加,得到它们的总和。
在加法运算中,我们需要注意数值的正负、小数、分数等的规则,以确保计算的准确性。
2. 减法运算:减法是指将一个数值从另一个数值中减去,得到它们的差。
在减法运算中,我们也需要注意规则,如负数减法、借位减法等。
3. 乘法运算:乘法是指将两个数值相乘,得到它们的乘积。
乘法运算可以用于计算两个数值的倍数关系,计算比例关系中的比率等。
4. 除法运算:除法是指将一个数值除以另一个数值,得到它们的商。
华图 数量关系 讲义教案技巧
C. 26.62%
D. 25.84%
52
数量关系 七、行程问题模块
53
核心提示
一个公式: S=V×T
两种方法:
方程法 图示法
54
基础行程问题
【例】甲每分钟走80米,乙每分钟走72米,两人同时
从A地出发到B地,乙比甲多用4分钟。AB两地的距离
为多少米?
A. 320
B.288
C. 1440
D. 2880
A. 80% B. 90% C. 60% D. 100%
43
工程问题
【例】 3 个人用 3 分钟时间可以把 3 个箱子装上卡车,
按照这个工作效率,如果用 1 小时 39 分钟把 99 只箱子
(假设每只箱子的重量是一样的)装上卡车,需要多
少人?
A. 3 B. 9 C. 18 D. 99
44
数量关系 六、溶液问题模块
42
工程问题
【例】某项工程由A、B、C三个工程队负责施工,他 们将工程总量等额分成了三份同时开始施工。当 A 队 完成了自己任务的 90% , B 队完成了自己任务的 50% ,
C队完成了B队已完成任务量的80%,此时A队派出2/3
的人力加入 C 队工作。问 A 队和 C 队都完成任务时, B
队完成了其自身任务的()?
38、44个乒乓球,小赵拿走一盒,其余被小钱、小孙、
小李取走,已知小钱和小孙取走的乒乓球个数相同,
且都是小李取走的两倍,则小钱取走的盒子中乒乓球
的可能是?
A. 17、44
C. 24、29、36
B. 24、38
D. 24、29、35
15
整除特性
2、4、8整除及余数判定基本法则; 3、9整除及余数判定基本法则; 11整除判定基本法则
数量关系知识点和公式总结
数量关系知识点和公式总结湖北华图王单(一)解题思想考点1.代入排除思想题型:多位数问题、年龄问题、余数问题、不定方程问题、没有思路的问题等。
代入技巧:①最值代入:出现最多(大),从最大的一项开始依次代入。
出现最少(小),从最小的一项开始依次代入。
②最简代入:从最简单、最容易计算的选项代入。
③居中代入:从数值居于中间选项开始代入(一般为B/C选项)。
④常识代入:代入选项后要符合生活常识。
⑤先排除后代入:利用数字特性(倍数特性、奇偶特性)排除选项,再代入计算。
考点2.数字特性思想1.奇偶特性①和差同类:两个数做和与做差的奇偶性相同应用:知和求差或知差求和②同类为偶:奇偶性相同的数做和或做差后为偶数异类为奇:奇偶性不同的数做和或做差后为奇数应用:求解不定方程2.整除特性2(5):一个数的末一位能被2(5)整除,则这个数能被2(5)整除;4(25):一个数的末两位能被4(25)整除,则这个数能被4(45)整除;3(9):一个数的各位数字之和能被3(9)整除,则这个数能被3(9)整除。
3.比例倍数特性若a:b=m:n(m、n互质)则a是m的倍数;b是n的倍数;a±b是m±n的倍数。
考点3.方程思想1.定方程和方程组方程三步走:1.设未知数:【1】一般情况下,求谁设谁。
【2】设中间量。
【3】设比例分数(有分数、百分数、比例、倍数)2.列方程:找准等量关系,所设方程应便于求解。
3.解方程:【1】“加减消元法”;【2】“代入消元法”;【3】未知数对称时,整体考虑。
2.不定方程和不定方程组1.不定方程:概念:一元一次方程组中方程的个数小于未知数的个数。
方法:奇偶性、代入排除法、尾数法、倍数法。
2.不定方程组:概念:多元一次方程组中方程的个数小于未知数的个数。
方法:未知数为整数时:先消去一个未知数转化为不定方程,再求解。
未知数不一定为整数时:凑系数法、赋0法。
(二)初等数学考点1.约数和倍数①概念:的倍数。
行测数量关系49个常见问题公式法巧解
一.页码问题对多少页出现多少1或2的公式如果是X千里找几,公式是1000+X00*3 如果是X百里找几,就是100+X0*2,X有多少个0 就*多少。
依次类推!请注意,要找的数一定要小于X ,如果大于X就不要加1000或者100一类的了,比如,7000页中有多少3 就是1000+700*3=3100(个)20000页中有多少6就是2000*4=8000 (个)友情提示,如3000页中有多少3,就是300*3+1=901,请不要把3000的3忘了二,握手问题N个人彼此握手,则总握手数S=(n-1){a1+a(n-1)}/2=(n-1){1+1+(n-2)}/2=『n^2-n』/2 =N×(N-1)/2例题:某个班的同学体育课上玩游戏,大家围成一个圈,每个人都不能跟相邻的2个人握手,整个游戏一共握手152次,请问这个班的同学有( )人A、16B、17C、18D、19【解析】此题看上去是一个排列组合题,但是却是使用的多边形对角线的原理在解决此题。
按照排列组合假设总数为X人则Cx取3=152 但是在计算X时却是相当的麻烦。
我们仔细来分析该题目。
以某个人为研究对象。
则这个人需要握x-3次手。
每个人都是这样。
则总共握了x×(x-3)次手。
但是没2个人之间的握手都重复计算了1次。
则实际的握手次数是x×(x-3)÷2=152 计算的x=19人三,钟表重合公式钟表几分重合,公式为:x/5=(x+a)/60 a时钟前面的格数四,时钟成角度的问题设X时时,夹角为30X ,Y分时,分针追时针5.5,设夹角为A.(请大家掌握)钟面分12大格60小格每一大格为360除以12等于30度,每过一分钟分针走6度,时针走0.5度,能追5.5度。
1.【30X-5.5Y】或是360-【30X-5.5Y】【】表示绝对值的意义(求角度公式)变式与应用2.【30X-5.5Y】=A或360-【30X-5.5Y】=A (已知角度或时针或分针求其中一个角)五,往返平均速度公式及其应用(引用)某人以速度a从A地到达B地后,立即以速度b返回A地,那么他往返的平均速度v=2ab/(a+b )。
华图模块宝典(总结)
判断推理模块宝典第6版1.一个人从饮食中摄入的胆固醇和脂肪越多,他的血清胆固醇指标就越高。
存在着一个界限.在这个界限中,二者成正比。
超过了这个界限,即使摄人的胆固醇和脂肪急剧增加,血清胆固醇指标也只会缓慢地有所提高。
这个界限对于各个人种是一样的,大约是欧洲人均胆固醇和脂肪摄人量的1/4。
可见:A.中国的人均胆固醇和脂肪摄入量是欧洲的1/2,但中国的人均血清胆固醇指标不一定等于欧洲人的1/2。
B.如果把胆固醇和脂肪的摄入量控制在上述界限内,就能确保血清胆固醇指标的正常C.上述界限可以通过减少胆固醇和脂肪的摄入量得到降低D.3/4的欧洲人的血清胆固醇含量超出正常指标2.一项调查报告显示,儿童意外伤害地点排名中,客厅卧室占39.85%,排名居首,其次才是幼儿园占37.41%,再次是公共场所和娱乐场所22.74%,由此有专家认为,儿童受伤,头号凶手是“家”。
以下选项,最能削弱上述结论的是()。
A.调查显示,很多情况下儿童受伤是因为年轻父母缺乏经验造成的B.据调查,造成意外死亡的地点大多是在公共场所和娱乐场所C.统计显示,儿童在客厅卧室的时间占儿童活动时间的50%以上D.这份调查是针对3至6岁儿童进行的3.因某种原因,甲、乙两人现面临A、B两种方案的选择,如果两人都选择A方案,则甲得到5个单位利益,而乙得到2个单位利益;如果甲选择A方案,乙选择B方案,则甲、乙均得到4个单位利益;如果甲选择B方案,乙选择A方案,则甲得到6单位利益,乙得到1单位利益;如果甲、乙均选择B方案,则各得到3个单位利益。
假定甲、乙两人都按照自己利益最大化标准来进行算计和行动,都明白上述的利益得失情况,两人的选择不分先后。
据此,可推出()。
A.甲选择B方案,乙选择B方案B.甲选择A方案,乙选择B方案C.甲选择A方案,乙选择A方案D.甲选择B方案,乙选择A方案4.最新的调查结果显示,时尚、美观、全智能的厨房家电整体式购买趋势明显。
考虑到价格便宜,安装方便,外观协调等因素,大多数消费者往往选择整体式厨房家电,从本质上讲是人们开始注重生活品质、改善家居环境的必然趋势,这表明以个性、品位、舒适为主要元素的“新家居”时代已经到来。
华图数量关系模块宝典(李委明)
第一部分 数字推理数字推理大纲标准定义:每道题给出一个数列,但其中缺少一项,要求报考者仔细观察这个数列各数字之间的关 系,找出其中的排列规律,然后从四个供选择的答案中选出最合适、最合理的一个来填补空 缺项,使之符合原数列的排列规律。
备考重点方向: ⏹ 基础数列类型 ⏹ 五大基本题型 ⏹ 基本运算速度 ⏹ 少量计算技巧第零章 数字推理基础知识一、数 列:按一定次序排列的一列数叫做数列 二、数列的项:数列中的每个数称为数列的项,其中第 N 个数称为第 N 项 三、基本数列:1、由一个固定的常数构成的数列叫做常数数列 【例】7、7、7、7、7、7、7、7、7… 2、 相邻两项之差(后项减去前项)等于定值的数列 【例】2、5、8、11、14、17、20、23… 3、 相邻两项之比(后项除以前项)等于定值的数列 【例】5、15、45、135、405、1215、3645、10935 …4、2、3、5、7、11、13、17、19… 4、6、8、9、10、12、14、15…【注】 质数:只有 1 和它本身两个约数的自然数;合数:除了 1 和它本身还有其 它约数的自然数;1 既不是质数、也不是合数。
B. C. D.第一章多级数列5 自某一项开始重复出现前面相同(相似)项的数列叫做周期数列或循环数列 【例 1】1、3、4、1、3、4… 【例 2】1、3、1、3、1、3… 【例 3】1、3、4、-1、-3、-4… 6、 关于某一项对称(相同或相似)的数列【例 1】1、3、2、5、2、3、1… 【例 2】1、3、2、5、5、2、3、1… 【例 3】1、3、2、5、-5、-2、-3、-1… 【例 4】1、3、2、0、-2、-3、-1…【例题分析】【例 1】0、6、12、18、( )【河北 2005 真题】A. 22B.24C.32D.28【例 2】11、22、44、88、( )【广东 2004 上-2】A.128B.156C.166D.176【例 3】18、-27、36、( )、54 【河北 2003 真题】A.44B.45C.-45D.-44【例 4】-81、-36、-9、0、9、36、( )【广州 2005-3】 A.49 B.64 C.81 D.100 【例 5】582、554、526、498、470、( )A.442 B. 452 C.432 D. 462【例 6】8、12、18、27、( )【江苏 2004A 类真题】A.39B.37C.40.5D.42.51【例 7】2、-1、 、21 1、 、( )【江苏 2004A 类真题】 4 811 A.B.10 121 1 C.D.1614【例 8】5、()、25、 2006-3】A.第一节二级数列【例 1】12、13、15、18、22、()【国 2001-41】 A.25B.27C.30D.34【例 2】-2、-1、1、5、()、29【国 2000-24】 A.17B.15C.13D.11【例 3】32、27、23、20、18、()【国 2002B-3】A.14B.15C.16D.17【例4】102、96、108、84、132、( )【国2006 一类-31】【国2006 二类-26】A.36B.64C.70D.72【例5】8、4、( )、17、34A.4B.7C.8D.10【例6】6、9、( )、24、36【广东2002-87】A.10B.11C.13D.15【例7】60、77、96、( ) 、140【江苏2006C-4】A.111 B.117 C.123 D.1279【例8】0.5、2、2、8、()【浙江2007 一类-1】27 A.12.5 B.2 C.1412D.16【例9】-2、1、7 、16、( )、43【国2002B-5】A.25B.28C.31D.35【例10】2、3、5、9、17、()【国1999-28】A.29B.31C.33D.37【例11】5、13、37、109、( ) 【江苏2004B 类真题】A.327B.325C.323D.321【例12】4、7、13、25、49、()【北京社招2006-1】A.80B.90C.92D.97【例13】3、4、6、10、18、()【山东2003-1】A.34B.36C.38D.40【例14】118、199、226、235、()【广东2005 下-4】A.255B.253C.246D.238【例15】1、2、6、15、31 ( )【国2003B-4】A. 53B. 56C. 62D. 87【例16】0、2、6、14、()、62【浙江2002-1】A.40B.36C.30D.38【例17】20、22、25、30、37、()【国2002A-2】A.39B.45C.48D.51【例18】16、17、19、22、27、()、45【浙江2003-8】A. 35B.34C.36D.37【例19】1、2、2、3、4、6、( )【国2005 二类-30】A.7B.8C.9D.10【例20】1、4、8、13、16、20、( )【国2003A-1】A. 20B. 25C. 27D. 28【例21】6、12、19、27、33、()、48【浙江2004-5】A.39B.40C.41D.42【例22】22、35、56、90、( )、234【国2000-22】A.162B.156C.148D.145【例23】3、4、()、39、103【浙江2003-5】A.7B. 9C.11D.12第二节三级数列【例1】1、10、31、70、133、( )【国2005 一类-33】A.136B.186C.226D.256【例2】0、4、18、48、100、( )【国2005 二类-33】A.140B.160C.180D.200【例3】( )、36、19、10、5、2【国2003A-4】A. 77B. 69C. 54D. 48【例4】0、4、16、40、80、( )【国2007-44】A. 160B. 128C. 136D.140【例5】1、4、8、14、24、42、( )【江苏2004B 类真题】A.76B.66C.64D.68【例6】17、24、33、46、( )、92【浙江2003-7】A.65B.67C.69D.71【例7】-8、15、39、65、94、128、170、()【广东2006 上-2】A. 180B. 210C. 225D. 256【例8】9、8、12、4、( )、-116【广东2003-5】A.-32B.-34C.-33D.-8【例9】0、1、3、8、22、63、( )【国2005 一类-35】A.163B.174C.185D.196第三节做商多级数列【例 1】1、1、2、6、24、()【国 2003B-2】A. 48B. 96C. 120D. 144【例 2】2、4、12、48、()【国 2005 一类-26】A.96B.120C.240D.480【例 3】3、9、6、9、27、( )、27【北京社招 2007-2】A.15B.18C.20D.30【例 4】0.25、0.25、0.5、2、16、( )【江苏 2005 真题】A.32B.64C.128D.2562 【例 5】100、20、2、 15 1 1 、150 1 、( )【山东 2006-4】1 A. 3750 B. 225C. 3D.500【例 6】1、6、30、 ( )、360【浙江 2007 一类-3】A.80B.90C.120D.140【例 7】2、2、3、6、15、( ) A.30 B.45 C. 18 D. 24第二章 多重数列基 本 多重数列:基本特征:定 义【例 1】3、15、7、12、11、9、15、( )【国 2001-44】A.6B.8C.18D.19【例 2】1、3、3、5、7、9、13、15、()、()【国 2005 一类-28】A.19、21B.19、23C.21、23D.27、30【例 3】1、1、8、16、7、21、4、16、2、()【国 2005 二类-32】A.10B.20C.30D.40B.8,12C.9,12D.10,10第三章 分数数列【例 4】1、4、3、5、2、6、4、7、( )【国 2005 二类-35】A.1B.2C.3D.4【例 5】4、27、16、25、36、23、64、21、()【上海 2004-8】 A. 81B. 100C. 121D. 19【例 6】1、2、7、13、49、24、343、()【江苏 2006A-4】A.35B.69C.114D.238【例 7】1、3、2、6、5、15、14、 ( )、 ()、 123【江苏 2004B 类真题】A.41,42B.42,41C.13,39D.24,23【例 8】0、3、1、612、()、( )、2、48【江苏 2005 真题】、24 、36 C.2、24D.2、36【例 9】400、360、200、170、100、80、50、() 【江苏 2006C-1】A.10B.20C.30D.40【例 10】0、1、3、2、6、4、9、 ( ) 【江苏 2004B 类真题】 A.7 B.8C.6D.12【例 11】1、2、3、7、8、17、15、( ) A.31 B.10 C.9D.25【例 12】15、3、12、3、9、3、()、3【河北 2005 真题】 A.4B.5C.6D.7【例 13】1、3、3、6、7、12、15、 () 【江苏 2004A 类真题】A.17B.27C.30D.24【例 14】5、24、6、20、( )、15、10、()A.7,15核 心 分式数列 单独通过分子或分母来排除选项。
华图数量关系讲义很有用
华图数量关系讲义很有用Newly compiled on November 23, 2020数量关系讲义整理行测解题逻辑以选项为中心:注意选项的布局题目难度分析数字推理5=3+2、10=5+3+2数学运算10=5+3+2、15=8+4+3资料分析4=2+1+1不要奢望全部都会做,先扫视一遍题目重点做熟悉的题,适当放弃。
题目越难越没有陷阱,简单题要注意陷阱。
两则理论:一、条件反射要强化记忆基本公式、技巧,提高熟练程度,形成条件反射。
二、内外兼修通过反复的练习,化为内在素质。
上篇数学运算第一节代入排除思想代入排除法:是指将题目的选项直接代入题干当中判断选项正误的方法。
这是处理客观单选题”非常行之有效的方法,广泛应用到各种题型当中。
可以与数字特征等其它方法配合使用。
例九比例问题答案还是比例,甲付出比乙多,甲比乙大例十消化的三倍是五的倍数第二节特例思想如果题中比例关系较多,可用特例法去做。
设当满足条件的一种情况代入计算如果是加水溶液浓度是减小的,且减小幅度是递减的;如果是蒸发水,溶液浓度是增加的,且增加幅度是递增的。
第三节数字特性思想数字特性法是指不直接求得最终结果,而只需要考虑最终计算结果的某种数字特性”,从而达到排除错误选项的方法。
掌握数字特性法的关键,是掌握一些最基本的数字特性规律。
(下列规律仅限自然数内讨论)奇偶运算基本法则【基础】奇数±奇数=偶数偶数±偶数=偶数偶数±奇数=奇数奇数±偶数=奇数【推论】一、任意两个数的和如果是奇数,那么差也是奇数;如果和是偶数,那么差也是偶数。
二、任意两个数的和或差是奇数,则两数奇偶相反;和或差是偶数,则两数奇偶相同。
整除判定基本法则一、能被2、4、8、5、25、125 整除的数的数字特性能被2(或 5 )整除的数,末一位数字能被2(或 5 )整除;能被4(或25)整除的数,末两位数字能被4 (或25)整除;能被8(或125)整除的数,末三位数字能被8(或125)整除;一个数被2(或 5 )除得的余数,就是末一位数字被2(或 5)除得的余数一个数被4 (或25)除得的余数,就是末两位数字被4(或25)除得的余数一个数被8(或125)除得的余数,就是末三位数字被8(或125)除得的余数二、能被3、9 整除的数的数字特性能被3 (或9)整除的数,各位数字和能被3(或9)整除。
行测数量关系知识点汇总资料讲解
行测数量关系知识点汇总行测常用数学公式工作量=工作效率X工作时间;工作效率=工作量十工作时间;工作时间=工作量十工作效率; 总工作量=各分工作量之和;注:在解决实际问题时,常设总工作量为1或最小公倍数(1)方阵问题:1.实心方阵:方阵总人数=(最外层每边人数)2=(外圈人数宁4+1)2=N最外层人数=(最外层每边人数-1)X42.空心方阵:方阵总人数—(最外层每边人数)2-(最外层每边人数-2X层数)2=(最外层每边人数-层数)X层数X 4二中空方阵的人数。
★无论是方阵还是长方阵:相邻两圈的人数都满足:外圈比内圈多8人。
3. N边行每边有a人,则一共有N(a-1)人。
4. 实心长方阵:总人数=M X N 外圈人数=2M+2N-45. 方阵:总人数=N N排N列外圈人数=4N-4例:有一个3层的中空方阵,最外层有10人,问全阵有多少人?解:(10 —3)X3 X4 = 84 (人)(2)排队型:假设队伍有N人,A排在第M位;则其前面有(M-1 )人,后面有(N-M)人(3)爬楼型:从地面爬到第N层楼要爬(N-1 )楼,从第N层爬到第M层要爬|M N层。
线型棵数=总长/间隔+1 环型棵数=总长/间隔楼间棵数=总长/间隔-1(1)单边线形植树:棵数=总长间隔+ 1;总长=(棵数-1 )X、可隔(2)单边环形植树:棵数=总长间隔;总长二棵数X、可隔(3)单边楼间植树:棵数=总长间隔一1总长=(棵数+1)X、可隔(4)双边植树:相应单边植树问题所需棵数的2倍。
(5)剪绳问题:对折N次,从中剪M刀,则被剪成了(2N XM^ 1)段⑴路程二速度X时间;平均速度二总路程十总时间平均速度型:平均速度二2^竺v1v2(2)相遇追及型:相遇问题:相遇距离=(大速度+小速度)X相遇时间追及问题:追击距离=(大速度一小速度)X追及时间背离问题:背离距离=(大速度+小速度)X背离时间(3)流水行船型:顺水速度=船速+水速;逆水速度=船速-水速。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
总结一些华图宝典数量关系公式(解题加速100%)
1.两次相遇公式:单岸型 S=(3S1+S2)/2 两岸型 S=3S1-S2
例题:两艘渡轮在同一时刻垂直驶离H 河的甲、乙两岸相向而行,一艘从甲岸驶向乙岸,另一艘从乙岸开往甲岸,它们在距离较近的甲岸720 米处相遇。
到达预定地点后,每艘船都要停留10 分钟,以便让乘客上船下船,然后返航。
这两艘船在距离乙岸400 米处又重新相遇。
问:该河的宽度是多少?
A. 1120 米
B. 1280 米
C. 1520 米
D. 1760 米
典型两次相遇问题,这题属于两岸型(距离较近的甲岸720 米处相遇、距离乙岸400 米处又重新相遇)代入公式3*720-400=1760选D
如果第一次相遇距离甲岸X米,第二次相遇距离甲岸Y米,这就属于单岸型了,也就是说属于哪类型取决于参照的是一边岸还是两边岸
2.漂流瓶公式:T=(2t逆*t顺)/ (t逆-t顺)
例题:AB两城由一条河流相连,轮船匀速前进,A――B,从A城到B城需行3天时间,而从B城到A城需行4天,从A城放一个无动力的木筏,它漂到B城需多少天?
A、3天
B、21天
C、24天
D、木筏无法自己漂到B城
解:公式代入直接求得24
3.沿途数车问题公式:发车时间间隔T=(2t1*t2)/ (t1+t2 )车速/人速=(t1+t2)/ (t2-t1)
例题:小红沿某路公共汽车路线以不变速度骑车去学校,该路公共汽车也以不变速度不停地运行,没隔6分钟就有辆公共汽车从后面超过她,每隔10分钟就遇到迎面开来的一辆公共汽车,公共汽车的速度是小红骑车速度的()倍?
A. 3
B.4
C. 5
D.6
解:车速/人速=(10+6)/(10-6)=4 选B
4.往返运动问题公式:V均=(2v1*v2)/(v1+v2)
例题:一辆汽车从A地到B地的速度为每小时30千米,返回时速度为每小时20千米,则它的平均速度为多少千米/小时?()
A.24
B.24.5
C.25
D.25.5
解:代入公式得2*30*20/(30+20)=24选A
5.电梯问题:能看到级数=(人速+电梯速度)*顺行运动所需时间(顺)
能看到级数=(人速-电梯速度)*逆行运动所需时间(逆)
6.什锦糖问题公式:均价A=n /{(1/a1)+(1/a2)+(1/a3)+(1/an)}
例题:商店购进甲、乙、丙三种不同的糖,所有费用相等,已知甲、乙、丙三种糖
每千克费用分别为4.4 元,6 元,6.6 元,如果把这三种糖混在一起成为什锦
糖,那么这种什锦糖每千克成本多少元?
A.4.8 元B.5 元C.5.3 元D.5.5 元
7.十字交叉法:A/B=(r-b)/(a-r)
例:某班男生比女生人数多80%,一次考试后,全班平均成级为75 分,而女生的平均分比男生的平均分高20% ,则此班女生的平均分是:
析:男生平均分X,女生1.2X
1.2X 75-X 1
75 =
X 1.2X-75 1.8
得X=70 女生为84
8.N人传接球M次公式:次数=(N-1)的M次方/N 最接近的整数为末次传他人次数,第二接近的整数为末次传给自己的次数
例题:四人进行篮球传接球练习,要求每人接球后再传给别人。
开始由甲发球,并作为第一次传球,若第五次传球后,球又回到甲手中,则共有传球方式()。
A. 60种
B. 65种
C. 70种
D. 75种
公式解题:(4-1)的5次方/ 4=60.75 最接近的是61为最后传到别人次数,第二接近的是60为最后传给自己的次数
9.一根绳连续对折N次,从中剪M刀,则被剪成(2的N次方*M+1)段
10.方阵问题:方阵人数=(最外层人数/4+1)的2次方N排N列最外层有4N-4人
例:某校的学生刚好排成一个方阵,最外层的人数是96人,问这个学校共有学生?
析:最外层每边的人数是96/4+1=25,则共有学生25*25=625
11.过河问题:M个人过河,船能载N个人。
需要A个人划船,共需过河(M-A)/ (N-A)次
例题(广东05)有37名红军战士渡河,现在只有一条小船,每次只能载5人,需要几次才能渡完?()
A.7
B. 8
C.9
D.10
解:(37-1)/(5-1)=9
12.星期日期问题:闰年(被4整除)的2月有29日,平年(不能被4整除)的2月有28 日,记口诀:一年就是1,润日再加1;一月就是2,多少再补算
例:2002年9月1号是星期日 2008年9月1号是星期几?
因为从2002到2008一共有6年,其中有4个平年,2个闰年,求星期,则:
4X1+2X2=8,此即在星期日的基础上加8,即加1,第二天。
例:2004年2月28日是星期六,那么2008年2月28日是星期几?
4+1=5,即是过5天,为星期四。
(08年2 月29日没到)
13.复利计算公式:本息=本金*{(1+利率)的N次方},N为相差年数
例题:某人将10万远存入银行,银行利息2%/年,2年后他从银行取钱,需缴纳利息税,税率为20%,则税后他能实际提取出的本金合计约为多少万元?()
A.10.32
B.10.44
C.10.50 D10.61
1. 100名男女运动员参加乒乓球单打淘汰赛,要产生男女冠军各一名,则要安排单打赛多少场?()
A. 95
B. 97
C. 98
D. 99
【解析】答案为C。
在此完全不必考虑男女运动员各自的人数,只需考虑把除男女冠军以外的人淘汰掉就可以了,因此比赛场次是100-2=98(场)。
2. 某机关打算在系统内举办篮球比赛,采用单循环赛制,根据时间安排,只能进行21场比赛,请问最多能有几个代表队参赛?()
A. 6
B. 7
C. 12
D. 14
【解析】答案为B。
根据公式,采用单循环赛的比赛场次=参赛选手数×(参赛选手数-1 )/ 2,因此在21场比赛的限制下,参赛代表队最多只能是7队。
3. 某次比赛共有32名选手参加,先被平均分成8组,以单循环的方式进行小组赛;每组前2名队员再进行淘汰赛,直到决出冠军。
请问,共需安排几场比赛?() A. 48 B.
63 C. 64 D. 65
【解析】答案为B。
根据公式,第一阶段中,32人被平均分成8组,每组4个人,则每组单循环赛产生前2名需要进行的比赛场次是:4×(4-1)÷2=6(场),8组共48场;第二阶段中,有2×8=16人进行淘汰赛,决出冠军,则需要比赛的场次就是:参赛选手的人数-1,即15场。
最后,总的比赛场次是48+15=63(场)。
4. 某学校承办系统篮球比赛,有12个队报名参加,比赛采用混合制,即第一阶段采用分2组进行单循环比赛,每组前3名进入第二阶段;第二阶段采用淘汰赛,决出前三名。
如果一天只能进行2场比赛,每6场需要休息一天,请问全部比赛共需几天才能完成?()
A. 23
B. 24
C. 41
D. 42
【解析】答案为A。
根据公式,第一阶段12个队分成2组,每组6个人,则每组单循环赛产生前2名需要进行的比赛场次是:6×(6-1)÷2=15(场),2组共30场;第二阶段中,有2×3=6人进行淘汰赛,决出前三名,则需要比赛的场次就是:参赛选手的人数,即6场,最后,总的比赛场次是30+6=36(场)。
又,“一天只能进行2场比赛”,则36场需要18天;“每6场需要休息一天”,则36场需要休息36÷6-1=5(天),所以全部比赛完成共需18+5=23(天)。