偏振与晶体双折射(精)
晶体的双折射现象(精)
•
光轴
• •
o光
e光
o光 e光
3. 光轴平行晶体表面,自然光垂直入射
o光
• •
e光
• •
• •
e光
• •
o光
•
此时,o, e 光传播方向相同,但传播速度不同。从晶体出
射后,二者产生相位差。
三. 晶体偏振器
no (1.658) n(1.55) ne (1.486)
1. 尼科耳棱镜
••
•
•
2. 渥拉斯顿棱镜
•
光轴 o光
•
••
••
o光
e光
e光
o光Biblioteka ••上述两种棱镜得到的偏振光 质量非常好,但棱镜本身价 格很高,因而使用较少。
负晶体 no ne
o光 ie,o
••
e光
加拿大树胶
••
e
o
•
• e光 o光
3. 波晶片(光轴平行于表面且厚度均匀的晶体)
自然光垂直入射波晶片后, o 光, e 光传播速度不同, 产生的相位不同 。
§14.13 晶体的双折射现象
一. 双折射现象
1.双折射
双折射现象 一束光入射到
各向异性的介质后出现两
s
束折射光线的现象。
方解石
R2
R1
2. 寻常光和非寻常光
两折射光线中有一条始终在入 射面内,并遵从折射定律,称 为寻常光,简称 o 光
i n1
n2
e o
e光
o光
另一条光一般不遵从折射定律,称非常光,简称 e 光
3. 晶体的光轴 当光在晶体内沿某个特殊方向传播时不发生双折射,该 方向称为晶体的光轴。 例如 方解石晶体(冰洲石)
偏振与双折射实验报告
偏振与双折射实验报告实验目的:本次实验旨在通过实验操作验证偏振与双折射现象,并深入了解其基本原理和应用。
实验器材:偏光片、双折射晶体、平行光源、显微镜、偏振镜、光源滤片、介质物。
实验原理:偏振现象指的是碎片形状不同的光通过偏振片时,透射出的光线及光强会有所改变的现象。
偏振片是由其中的一些小分子串列而成的,这些小分子只容许某一方向的振动传播。
当光透过偏振片时,只有与筛网平行的振动分量可以通过,与筛网垂直的振动分量则被截止了。
双折射现象是指在某一些晶体中,不同方向的光线具有不同的折射率,从而产生双折射现象。
在正常的单折射晶体中,光的传播方向与折射率无关。
在双折射晶体中,光的传播方向与折射率是有关系的。
通过双折射显微镜可以观察到双折射现象。
实验步骤:第一步:使用光源、平行光源和光源滤片,发出平行光线。
第二步:在光路中加入偏振片和偏振镜,观察透射光线的改变。
第三步:选一块双折射晶体,放在偏振片和偏振镜之间的光路上,观察透射光线的变化。
第四步:在双折射晶体中加入特定介质物,再次观察透射光线的变化。
实验结果:在第一步中,我们通过光源、平行光源和光源滤片,发出平行光线。
在第二步中,我们将偏振片和偏振镜加入光路,发现透射光线的光强会发生变化。
在第三步中,我们选一块双折射晶体,放在偏振片和偏振镜之间的光路上,观察到透射光线会发生双折射现象。
在第四步中,我们在双折射晶体中加入特定介质物,观察到透射光线的双折射现象随介质物种类不同而改变。
结论:本次实验中,我们验证了偏振和双折射现象的存在,并深入了解其基本原理和应用。
我们也掌握了相关实验操作技能,并通过实验得到了有价值的数据和结论。
光的偏振与光的双折射实验研究
实验原理及步骤简介
3. 观察双折射现象
将线偏振光投射到双折射晶体上,观 察并记录寻常光和非常光的传播方向 和光强变化。
4. 数据采集与分析
使用测量仪器记录实验数据,并通过 计算机进行数据处理和分析,得出实 验结果。
03
光的双折射实验
双折射现象产生条件及原理
产生条件
当一束光通过某些晶体时,会分成两束光沿着不同方向传播,这种现象称为双折 射现象。
原理
双折射现象是由于晶体内部存在各向异性,导致光在晶体中传播时速度不同,从 而分成两束光。这两束光的振动方向相互垂直,分别称为寻常光(o光)和非寻 常光(e光)。
双折射晶体选择及实验装置搭建
在实验过程中需要记录光源的波长、晶 体的厚度和双折射率等参数,以及接收 屏上干涉条纹的位置和形状等信息。
VS
数据处理
通过对实验数据的分析处理,可以得到晶 体的双折射率、光在晶体中的传播速度等 重要物理量。同时,还可以通过比较不同 晶体或不同条件下的实验结果,进一步探 究双折射现象的规律和特点。
04
实验结果分析与讨论
偏振实验结果分析
01
在偏振实验中,通过旋转偏振片观察到光强的周期性变化,验 证了光的横波性质。
02
通过测量不同角度下的光强,得到了马吕斯定发现,当入射光为非偏振光时,透射光的光强随偏振
03
片旋转而发生变化,但不会出现完全消光现象。
05
误差来源及减小方法
系统误差来源分析
01
实验仪器误差
包括光源、偏振片、双折射晶 体等元件的制造精度和装配误
差。
02
环境因素
偏振与晶体双折射(精)
状和取向,并在以后的传播中不再改变。
• 线偏光垂直入射到波晶片时,出射光是椭圆偏振光;当θ=450
(AO=Ae)且波晶片为1/4波片( =+π/2)时,出射光是圆偏 振光。
• 由自然光得到椭圆(园)偏振光:
e
A
椭圆偏振器: 园偏振器:
N1
N2
I0
o
I
起偏器
波晶片
§5.8 偏振态的实验检定
一、平面偏振光的检定:
方法:让被检定的光通过一块偏振片(如尼科耳棱镜),以入 射光为轴旋转偏振片。
第五章 光的偏振
1、阐明自然光、平面偏振光、部份偏振光、圆偏振光 和椭圆偏振光的概念及其检验方法。 2、了解由反射、折射和二向色性晶体所产生的偏振; 掌握布儒斯特定律的马吕斯定律。 3、叙述单晶体双折射的特点,说明惠更斯作图法,阐 明几种偏振仪器的作用。 4、叙述1/4波晶片的作用,分析平行平面偏振光干涉的 条件及其实现的方法。 阐明偏振光的干涉及应用。
实验表明:
o光是光矢量与o主平面垂直的线偏振光.
e光是光矢量与e主平面平行的线偏振光.
当光轴在入射面内时,主截面,o主平面,e主平面都重合.
• 光轴 e光
法线
• • • o光
法线
e光 • • • o光 光轴
二.惠更斯原理对双折射的解释 1.晶体的主折射率,正晶体、负晶体
在双折射晶体中,o光沿各向传播的速度相同,故 o波波面为球面;e光沿各向的传播速度不同,e波面
振幅分别为: AO A sin ,
Ae A cos
e
A
o
在晶片内两个 振动分别为:
Eo
Ao
cost
o
Ao
cos2
光纤的双折射及偏振特性(精)
L LB 2
LB
2 L
0
B
双折射越厉害, 拍长越短。如光纤的拍长远小于某种外界
干扰的长度周期, 它就可抵御这种干扰而有保持偏振状态
的能力。
4.消光比和功率耦合系数
在传输过程中,两个正交的线偏振模之间存在耦合,如在光
纤输入端激发x方向的线偏振模,其功率为P x ,由于耦合, 在光纤的输出端出现了y方向的线偏振模,其功率为 P y。用
Optical fiber communications
§3 光纤的双折射及偏振特性
Copyright Wang Yan
1-1 2024/8/17
一、Introduction
1. SMF实际上有两个简并模:LP0y1, LP0x1
2. 实际光纤并不完善(光纤芯子的椭圆变形,光纤内部
的残余应力),两个模式并不简并,纵向相位常数β略有
幅度比 R Ey0 / Ex0 相位差 y x ( y x )z
E
Ex
EyEx0 exp NhomakorabeaE
y
0
exp
j(t x z) j(t y z)
1
Ex Re xp( j)
Copyright Wang Yan
Optical fiber communications 1-3 2024/8/17
L
)
R L L R L
2
2
Optical fiber communications
1-12 2024/8/17
Copyright Wang Yan
2.旋光率:单位长度上旋过的角度
R L L R
L2
2
HW1
1.平板波导 n1 1.5, n2 1.45, n3 1.4, d 5m。
大学物理实验偏振与双折射
三、装置
旋转式光学综合放视频
四、现象演示
(1)将光源、方解石晶体、接收屏共轴放置。
(2)将光射到方解石晶体上,光进入晶体后,分解为o、e两束光并从晶体中射出来,在屏上形成两个光斑。
(3)以光的传播方向为轴旋转方解石,会发现一个光斑不动,而另一个光点会绕其旋转。不动光斑对应着寻常光,旋转光斑对应着非寻常光。
双折射现象与双折射的偏振
一、演示目的
观察光通过方解石晶体后发生的双折射现象
二、原理
当光进入各向异性介质(晶体)时,介质中出现两束折射光线的现象叫做双折射。双折射现象具有以下特点:
(1)其中一束折射光始终在入射面内,遵守折射定律,称为寻常光,简称为o光;另一束折射光一般不在入射面内,不遵守折射定律,寻非常光,简称为e光。
(4)用偏振片可检验两束光的偏振化方向。在光路中垂直插入检偏器(偏振片),旋转偏振片可观察到两个光斑的亮度交替变化,并交替消光,说明它们所对应的光(即双折射的两束光)都是偏振光。实验表明,这两束光的消光位置互相直,说明两束光的偏振化方向互相垂直。
五、讨论与思考
方解石越厚,两个光斑分得越开还是越近?
(2)光沿晶体的光轴方向传播时,o光和e光不分开,即不发生双折射。
(3)晶体中光线与光轴构成的平面叫该光线的主平面。o光光振动垂直于自己的主平面,而e光的光振动平行于自己的主平面,也就是说,o光和e光都是线偏振光。
(4)当光线入射在晶体的某一晶面上时,该晶面的法线于晶体的光轴组成的平面叫做晶体的主截面。当入射光线在主截面内时,两折射光线均在入射面内。即此情况下,入射面、主截面和o光和e光的主平面重合;o光和e光的光振动互相垂直。
光的偏振与双折射现象
光的偏振与双折射现象光是一种电磁波,可以在真空中以及各种介质中传播。
而在传播过程中,光的偏振与双折射现象是光波特性中非常重要的内容。
本文将介绍光的偏振与双折射现象的基本概念和原理。
一、光的偏振偏振是指光波中的电场矢量在传播方向上的振动方式。
光波可分为非偏振光、偏振光和部分偏振光。
1. 非偏振光:光波中的电场矢量在各个方向上均匀分布,没有特定的振动方向。
2. 偏振光:光波中的电场矢量在某一特定方向上振动,而在其他方向上几乎无振动。
常见的偏振光有线偏振光和圆偏振光。
3. 部分偏振光:光波中的电场矢量在多个方向上振动,但是其中有一个主要的振动方向。
光的偏振可以通过偏振片进行实验观察和分析。
偏振片是由特殊材料制成的,在某一方向上只允许特定方向的电场矢量通过。
当非偏振光通过偏振片时,只有与偏振片振动方向一致的电场矢量能通过,其他方向上的电场矢量则被滤除,从而得到偏振光。
二、双折射现象双折射指的是某些特定材料在光线入射时会发生两个不同速度的折射现象。
这是由于光在这些材料中的传播速度与光的偏振方向有关。
具有双折射现象的材料被称为双折射材料,其中最常见的是石英晶体。
当光线垂直于晶体的光轴方向传播时,不会发生双折射现象;但当光线不垂直于光轴时,就会发生双折射现象。
双折射材料可以通过偏振光的传播方向和光轴方向之间的夹角来进行分类。
根据夹角的不同,可以分为正常双折射和畸变双折射。
1. 正常双折射:在该类材料中,晶体的光轴方向与偏振光的振动方向垂直。
在光线通过材料时,会出现两个折射光束,一个按照正常的折射定律折射(常光),另一个则不按照常规定律折射(特光)。
2. 畸变双折射:在该类材料中,晶体的光轴方向与偏振光的振动方向不垂直。
在光线通过材料时,除了产生两个折射光束外,还会出现不同程度的畸变现象,导致光的传播路径变得复杂。
三、应用领域1. 光学器件:光的偏振与双折射现象在光学器件的设计中起着重要作用。
例如,偏振片可以用于光的调节、滤波和分析等方面。
光的偏振和晶体的双折射
第五章 光的偏振和晶体的双折射§ 5.1光的偏振态偏振:振动方向相对于传播方向的不对称性。
一.光是横波1、 光是电磁波——横波2、 用二向色性晶体(电气石晶体、硫酸碘奎宁晶体)检验——横波。
最初的器件是用细导线做成的密排线栅(金质线栅,d=5.08×10-4mm ),光通过时,由于与导线同方向的电场被吸收,留下与其垂直的振动。
1928年,Harvaed 大学的Land (19岁)发明了人造偏振片,用聚乙烯醇膜浸碘制得。
到1938年,出现了H 型偏振片,原理相同。
3、名词起偏:使光变为具有偏振特性。
检偏:检验光的偏振特性。
透振方向:通过偏振仪器光的电矢量的振动方向。
二.光的偏振态偏振:振动方向相对于传播方向的不对称性。
对可见光,只考虑其电矢量。
1.自然光振动方向随机,相对于波矢对称。
光的叠加是按强度相加。
可沿任意方向正交分解,在任一方向的强度为总强度之半。
021I I自然光是大量原子同时发出的光波的集合。
其中的每一列是由一个原子发出的,有一个偏振方向和相位,但光波之间是没有任何关系的。
所以,他们的集合,就是在各个方向振动相等、相位差随机的自然光。
在直角坐标系中,一列沿z 向传播、振动方向与X 轴夹角为θ的光,在X 方向的振幅为θθcos A A x =,由于各个光波在X 方向的总强度是光强相加,故有22022220cos )(A d A d A I x x πθθθππθ===⎰⎰同理2A I y π= 而总光强22022A d A I πθπ==⎰,故021I I I y x == 2.平面偏振光(线偏振光)只包含单一振动方向的电矢量。
在任一方向的光强θθ20cos I I =,马吕斯定律。
用偏振片可以获得平面偏振光。
偏振仪器(起偏器)的消光比=最小透射光强/最大透射光强 3.部分偏振光 介于自然光和线偏光之间。
偏振度=(I MAX -I MIN )/(I MAX +I MIN ) 4.圆偏振光电矢量端点轨迹的投影为圆。
光的偏振和双折射
或
将各方向的 E 投影到二个任意互相垂直的方向 上,由于在所有可能的方向上 E 完全相等,所以在
任二个互相垂直的方向上光矢量的分量的和相等。 自然光也可以表示为:
Leabharlann 传播方向 图中:“︱”表示 在板面内的分振动 E “●”表示 E 垂直板面的分振动
二个相互垂直的光振动,光强各占一半
tgib n2 n1
12
ib
n2
布儒斯特定律:当自然光以布儒斯特 角 ib 入射到二介质界面时,反射光为 完全偏振光,振动方向⊥入射面
三. 应用
1. 测量不透明介质的折射率 让光线入射到不透明的介质上,改变入射角i 并测反 射光线的偏振化程度,当反射光线为完全偏振光时, 入 射角 ib 即为布儒斯特角,即:
4
2. 偏振化方向: 偏振片允许通过的光振动的方向。
偏振片 自然光I0
线偏振光I
1 2
偏振化方向
I
I0
※不是只有一个振动方向 的光可以通过偏振片,其他方 向振动的光在偏振化方向的分 量均可以通过偏振片。
偏振片 自然光I0
线偏振光I
1 2
偏振化方向
I
I0
※自然光不是只有2个方 向的振动,在 0~2p 内有无数 个振动方向。
光
的
光的偏振与双折射解密光的振动特性
光的偏振与双折射解密光的振动特性光是一种电磁波,作为一种波动现象,具有振动特性。
光的振动方向是指光波电场变化的方向。
光的振动可以是沿着任意方向,但是在许多情况下,光波的振动方向会受到影响,其中一种重要的现象是光的偏振和双折射。
一、光的偏振现象1. 偏振光的定义光线在传播过程中,其振动方向只在一个特定的平面上振动,这种光称为偏振光。
在偏振光中,只有振动方向与某一平面垂直的光能够通过偏振器。
2. 偏振光的产生偏振光的产生可以通过自然光经过偏振器滤波得到,也可以通过其他的物理现象产生,例如布儒斯特角反射。
3. 偏振器和偏振光的性质偏振器是一个能够选择性通过某个特定方向的光的器件。
当自然光通过偏振器时,垂直于偏振器所允许的唯一振动方向的光被选择性地通过,而其他方向的光则被阻挡。
二、双折射现象1. 双折射的定义双折射是指当光线传播到某些特殊的晶体材料中时,光线会分为两束,沿不同的路径传播。
这种现象也称为光的波面分裂。
2. 双折射的产生双折射是由于晶体结构的对称性导致的。
在一些晶体中,光沿着晶体的不同轴向传播时,会遵循不同的折射定律,从而产生双折射现象。
3. 双折射的性质双折射会导致入射光在晶体内发生方向的改变,使得光线变得有两个不同的传播方向。
这种现象不仅存在于晶体材料中,也可以在一些特殊的非晶体材料中观察到。
三、光的振动特性解密1. 光的振动方向与电场在光学中,振动方向的概念与电场方向紧密相关。
光波电场的振动方向决定了光的偏振方向,而光线的传播方向与电磁场的传播方向保持一致。
2. 光的振动特性与介质相关光的振动特性可以通过介质的性质来解释和调控。
不同的介质对光的传播和振动方向会产生不同的影响,从而实现对光的偏振特性的调节。
3. 光的偏振与实际应用光的偏振性质在许多领域中有着广泛的应用,例如光学器件、通信技术、显示技术等。
通过对光的偏振进行精确控制和调节,可以实现更多的光学效应和功能。
综上所述,光的偏振和双折射现象揭示了光的振动特性。
晶体的双折射现象(精)
方解石
光轴
o光
e光
o光
e光
3. 光轴平行晶体表面,自然光垂直入射
o光
e光
e光
o光
此时,o, e 光传播方向相同,但传播速度不同。从晶体出 射后,二者产生相位差。
三. 晶体偏振器 1. 尼科耳棱镜 2. 渥拉斯顿棱镜
no (1.658) n(1.55) ne (1.486)
光轴
v o t
v e t
( 平行光轴截面 )
( 平行光轴截面 )
ve
vo
( 垂直光轴截面 )
ve
vo
( 垂直光轴截面 )
二. 单轴晶体中的波面 ( 惠更斯作图法(ve>vo) )
1. 光轴平行入射面,自然光斜入射负晶体中 B
光轴
A
光轴
B'
方解石
o光 e光
2. 光轴平行入射面,自然光垂直入射负晶体中
光轴
o光
负晶体 no ne
加拿大树胶
o光 e光
e光 o光
o光 ie,o e光
e光
e
上述两种棱镜得到的偏振光 质量非常好,但棱镜本身价 格很高,因而使用较少。
o
o光
3. 波晶片 (光轴平行于表面且厚度均匀的晶体) 自然光垂直入射波晶片后, o 光, e 光传播速度不同, 产生的相位不同 。 出射 o 光 e 光的相差为
偏振光与双折射实验教案
偏振与双折射实验教案赵东一、实验目的1、观察光在各向异性晶体中传播时产生的双折射现象,了解其规律;2、观察光的偏振现象,加深对各种偏振光的概念和规律的理解;3、掌握一些偏振光的产生和检验方法,以及了解相关仪器件的原理和使用方法。
二、实验原理1、光的横波性与偏振光的横波性是指光波的电矢量与光的传播方向垂直。
在传播方向上垂直的二维空间中,电矢量可能有各种各样的振动状态,我们称之为偏振。
简而言之,振动方向与传播方向垂直的波,叫横波。
光的偏振态可分为5种:自然光,线偏振光,部分偏振光,圆偏振光,椭圆偏振光。
后面将一一介绍。
2、二色性与偏振片(polarizer)2.1二色性有的晶体对不同方向的电磁振动具有选择吸收的性质,当光照射到这种晶体的表面上时,振动的电矢量与光轴(光轴的概念在后面介绍)平行时,被吸收得比较少,光可以较多地通过;电矢量与光轴垂直时,被吸收得较多。
比如电气石晶体。
这种性质叫二色性。
2.2偏振片的制造这里先插入对偏振片的介绍。
能产生线偏振光(线偏振光的概念见后面)的晶片叫偏振片。
电气石对电矢量垂直和平行与光轴方向的光的吸收程度的差别还不够大,我们要做的理想偏振片的要求是,最好能使一个方向的振动全部吸收掉。
在这一点上,碘硫酸奎宁晶体的性能要比电气石好得多,但是它的晶体很小。
通常的偏振片是在拉伸了的塞璐璐基片上蒸镀一层硫酸奎宁晶粒,基片的应力可以使晶粒的光轴定向排列起来,这样可得到面积很大的偏振片。
小知识:1852年海拉巴斯(Herapath)发现碘硫酸奎宁晶体有二向色性,这一发现被布儒斯特写入书中,当时在哈佛就读的学生兰德(Land)读了布儒斯特的书后,对此很感兴趣。
几年后,兰德发明一种方法,把细小的针状的碘硫酸奎宁晶体排列在塞璐璐基片上,制成了面积很大的线偏振器。
这是一种价廉物美的偏振片,至今还广泛运用科研和教学中。
2.3偏振片的透振方向偏振片上能透过的振动方向称为它的透振方向。
2.4偏振片表示偏振片一般用它英语的第一个字母P 表示。
《物理光学》第7章 光的偏振与晶体光学基础
vk = vs cos α
z
4、 自然光:具有一切可能的振动方向的许多光波的总和。 振动方向无规则。 自然光可以用相互垂直的两个光矢量表示,这两个光矢量的 振幅相同,但位相关系不确定。
没有优势方向
自然光的分解
一束自然光可分解为两束振动方向相互垂直的、 一束自然光可分解为两束振动方向相互垂直的、等幅 不相干的线偏振光。 的、不相干的线偏振光。
寻 常 光 线 (ordinary ray) 和 非 常 光 线 (extr- ordinary ray)
o光 : 遵从折射定律
n1 sin i = n2 sin ro sin i ≠ const sin re
自然光 n1 n2 (各向异 各向异 性媒质) 性媒质
e光 : 一般不遵从折射定律、 也不一定在入射面内。
Dx ε xx D = ε y yx Dz ε zx
ε xy ε xz Ex ε yy ε yz E y ε zy ε zz Ez
通过坐标变换,找到主轴方向:x,y,z,则 通过坐标变换,找到主轴方向:x,y,z,则:
均匀性及各向异性
2 晶体的介电张量(The dielectric tensor) (The 张量的基础知识: 零阶张量(标量): ( ) 如果一个物理量在坐标移动时数值不变,则称为标量(T, (T, m, …) )
一阶张量(矢量): ( ) 如果一个物理量由三个数表示,而且在坐标移动时如同坐标 一样变换,则此物理量称为矢量…
Dx ε x D = 0 y Dz 0
主介电常数 双轴晶体:
0
εy
0
0 Ex 0 Ey ε z Ez
偏振与双折射
…….(11)
Aee与Aoe有一位相差 A
,还包含坐标轴投影引起的位相差π。Aee和Aoe有相同的振动方 A A
,它包含了λ/4波片产生的相差 δ = π δ′ 2
向和频率,且相位差恒定,能够产生干涉现象,合成后的光矢量A2 A
2 2 A 2 = A ee + A oe + 2A ee A oo cos δ'
A o = A sin θ A e = A cos θ
则o光和e光之光强分别为:
…….(1)
I o = A 2 sin 2 θ I e = A 2 cos 2 θ
……..(2)
(2)式就是马吕斯公式。马吕斯公式可用于偏振光的检测如图5, 有两个偏振片(或偏振晶体),其透光轴夹角为θ,自然光垂直 入射。通过 第一个偏振片(称为起偏器)后,变为线偏振光,其 振幅为A 。通过第二个偏振片(称为检偏器)后,仍然为线偏振 A 光,但其偏振面转过了θ角,其振幅为Ae Ae,强度为Ie Ie,由公式(2) Ae Ie 表示。当第二个偏振片旋转θ从0度变到90度时,Ie就从极大变为0。 I 4、波片——位相延迟器。 波片——位相延迟器。 ——位相延迟器 波片是由双折射晶体制成的平板状光学元件,其厚度为d且光轴 平行于表面,,也称位相延迟器。
大学物理实验:电磁波。光的干涉与衍射现 象说明了光的波动性,光的偏振和在光学各向异性晶体中的双 折射现象则显示了光的横波性,这些都是对光的电磁理论的有 力证明。光的偏振现象现已广泛运用于科研,生产实际,如光 的信息处理技术和激光应用技术。通过本实验加深读者对光的 偏振基本规律,及偏振光器件的了解,有利于大家在各个领域 中更好地利用光的偏振特性。
2 I = A2 = A 2 [(cos 2 θ cos 2 ϕ + sin 2 θ sin 2 ϕ]
光的偏振与双折射现象
光的偏振与双折射现象光是一种电磁波,可以表现出多种性质,其中偏振和双折射现象是光学中的重要现象。
本文将介绍光的偏振和双折射现象的原理与应用。
一、偏振现象偏振是指光波传播过程中,光的振动方向发生了限制或者变化的现象。
光的偏振可以通过偏光片来实现。
偏光片是一种特殊的光学材料,可以选择性地传递特定方向上的光振动,而将其他方向上的振动滤除掉。
常见的偏光片有偏振片和偏振镜。
偏振现象的应用十分广泛。
在摄影领域,使用偏振镜可以有效地减少光的反射,增强色彩鲜艳度和对比度。
在液晶显示领域,液晶屏通过对光进行偏振来实现显示效果。
此外,偏振现象也在光通信、材料研究和光学器件制造等领域得到广泛应用。
二、双折射现象双折射现象是指光在某些特定材料中传播时,分裂成两个独立的光线的现象。
这是由于这些材料的晶体结构对于光波的传播方向有特殊的影响。
双折射现象也称为光的双折射或者倍频效应。
双折射现象最早被发现于石英晶体。
当光通过石英晶体时,会分裂成一个普通光线和一个额外光线,它们分别遵循普通折射定律和额外折射定律。
这两条光线有不同的折射率和传播速度,因此会呈现出不同的传播路径和相位差。
这种现象可以被用来制造光学器件,如偏光棱镜和波片。
双折射现象在光学领域具有重要应用。
例如,在显微镜中,使用偏光器和波片可以增强对样品内部结构的观察。
在激光技术中,偏折光的双折射可以用来改变激光的传输特性和调节光强。
总结光的偏振和双折射现象是光学中的重要现象。
它们不仅有基础研究意义,而且在光学器件和技术应用中起到重要作用。
深入了解和掌握光的偏振和双折射现象,将有助于我们更好地理解光的本质和应用。
光的偏振与双折射
光的偏振与双折射光是电磁波的一种,它具有振动方向的特性,这种特性被称为偏振。
同时,当光通过一些特定的材料时,由于其晶体结构的影响,光会发生折射现象并被分割成两个方向不同的光线,这被称为双折射。
本文将深入探讨光的偏振和双折射的原理和应用。
一、光的偏振偏振是指光在传播过程中的振动方向。
正常光是做直线运动的,其中振动方向中的任意一方向都是等概率的。
当光经过某些介质或特定的装置时,其中某些振动方向的成分会被选择性地消除,只有特定方向的振动成分保留下来,这种光就成为偏振光。
具体来说,偏振光可以分为线偏振光和圆偏振光两种。
线偏振光是指光的振动方向沿着一条直线的光,可以通过偏振片进行过滤和调整。
圆偏振光是指光的振动方向沿着一个圆锥面上的某条直线旋转的光。
光的偏振对于某些领域具有重要意义。
在光学仪器中,通过使用偏振片可以减少或消除光的反射和干扰,提高成像的质量。
在光通信中,利用偏振来传输信息可以提高信号传输的稳定性和可靠性。
在3D电影技术中,通过控制光的偏振状态可以实现不同的景深效果,呈现出更真实的观影体验。
二、双折射现象当光传播过程中穿过某些晶体材料时,由于晶体结构的特殊性,光会被分成两个方向不同的光线,这种现象被称为双折射。
具体来说,双折射可分为正常双折射和非正常双折射两种情况。
正常双折射是指光的传播方向不会发生改变,只是光的传播速度不同,造成光线的折射角发生变化。
非正常双折射则是光的传播方向发生明显偏离,光线会分成两个方向完全不同的光线。
双折射现象使得光在经过双折射晶体时发生了分离和偏移,这在某些应用中具有重要的意义。
例如,各种仪器和设备中的偏振器件是基于双折射现象制作的,通过调整双折射晶体的结构可以控制光的传播路径和偏振状态。
三、光的偏振与双折射的应用根据光的偏振和双折射的原理,我们可以将其应用于许多领域。
以下是一些常见的应用领域:1. 光学器件:偏振片、偏振镜和各种光学滤波器等,通过选择性地透过或排除光的特定偏振成分,用于光学成像、干扰消除等。
偏振干涉法测量晶体应力双折射精度分析
Байду номын сангаас
关 键 词 :测 量 ; 应 力 双 折 射 ; 偏 振 干 涉 法 ; 精 度 分 析 中 图 分 类 号 :TN2 6 1 文 献 标 志 码 :A 文 章 编 号 :0 7 2 7 ( 0 10 — 2 1 0 10 — 2 62 1)2 0 7 — 6
X io Ha s a o u ,Zh n n in 。 a i a g ,LiF w e。 a g Yu q a g ,F n Zh g n u i,Pa o i g n Gu q n 。
( . e er h C ne fS a e O t a n ie r g Hab n I s t t o e h oo y Habn 1 0 0 , hn 1 R sac e tro p c p i lE gn ei , ri n tu e fT c n lg , r i 5 0 1 C ia c n i
2 C ia Ai on s l Ac d my L o a g 4 1 0 , ia . hn r r e Mi i a e , u y n 7 0 9 Chn ) b se
A b ta t sr c :A eho a e n p lrz t n i tre e c e h d wa r p s d t r cs l e s r h te s m t d b s d o oa ia o ne r n e m t o s p o o e o p e iey m a u e te s s i f r b r fi g n e o p ia r t1 A p e od s e i e sa o td t v i a u e e ter rc u e y t e ie rn e c fo t lcysa . s h n i p cm n wa d p e o a o d me s r m n ro a s d b h c h c n s f p c m n. Usn t e te r o e l tc l o a ie l h a d o e m arx te a ay c t ik e s o s e i e ig h h o y f li ia p lrz d i t n J n s p g ti , h n lt i e p e so o e s r me te r r o p ia ah d fe e c c us d b h o ai g p sto a c u a y o x r sins f r m a u e n ro f o tc lp t if r n e a e y t e r t t o i n l a c r c f n i t e a ay e ,te p s e i t n f te q a tr w a e p ae a d t e a i uh e o f s e i e s u d r ts h n l z r h ha e d vai o h u re v lt n h zm t r r o p cm n n e e t o
光的偏振与双折射
光的偏振与双折射光是一种电磁波,当光通过某些介质时,它的振动方向会发生变化。
这就是光的偏振现象。
同时,某些晶体还具有双折射特性,即光在进入晶体时会分裂成两束光线,这也与光的偏振有关。
1. 光的偏振现象光的偏振是指光波中的电场矢量在空间中振动的方向。
一般情况下,光是以各个方向振动的无偏振光,但当光通过特定介质时,电场矢量的振动方向会被限制为特定的方向,这种现象称为光的偏振。
一个常见的产生偏振光的方法是通过偏振片。
偏振片是一种由有机高分子或无机晶体制成的透明薄片,其中的分子或晶格结构能够选择性地吸收或透过特定方向上的光振动。
当光通过偏振片时,与偏振片相垂直的振动方向的光会被吸收或减弱,而与偏振片平行的振动方向的光则可以透过。
2. 马吕斯定律与双折射除了偏振现象,光还具有双折射特性。
在某些晶体中,光通过时会发生不同的折射现象,即一个入射光线会分裂成两束光线,并沿不同的方向传播。
这种现象被称为双折射。
双折射的性质可以由马吕斯定律描述。
马吕斯定律规定,当光线从一个介质(称为主光轴)进入具有双折射性质的晶体时,将会被分为两束光线,一束沿主光轴方向传播,称为普通光线;另一束则沿着与主光轴垂直的方向传播,称为非普通光线或称为振动光线。
这两束光线的传播速度和折射率都不同,因此它们在晶体中的传播路径也会发生偏离或弯曲。
当这两束光线再次离开晶体时,它们的振动方向也会发生改变,这进一步与光的偏振相关。
3. 光的偏振与双折射的应用光的偏振和双折射现象在许多领域都有重要的应用。
以下是一些相关的应用举例:3.1 光学器件偏振片广泛应用于各种光学器件中。
例如,在摄影领域中,偏振片可以用于控制光线的入射角度和减少反光;在液晶显示器中,偏振片则用于调控和控制液晶分子的取向,从而实现图像的显示。
3.2 光通信在光纤通信中,光的偏振也是一个重要的考虑因素。
由于光信号本身也是具有偏振的,因此需要采取相应的措施来保持光信号的传输质量。
通过使用偏振保持器和偏振控制器,可以控制和调整光信号的偏振状态,以确保光信号在光纤中的传输稳定性和可靠性。
光的偏振与双折射解析偏振角和双折射率的计算
光的偏振与双折射解析偏振角和双折射率的计算偏振是指光波在传播过程中偏离自由传播状态的现象。
光可以被分为不同方向的偏振态,其中最常见的是线偏振光。
而双折射是指当光通过某些特殊的材料时,光波会分裂成两个不同的方向传播的光线。
观察和计算光的偏振角和双折射率是研究光学行为的重要方面。
一、光的偏振角计算光的偏振角是指光波的电场矢量与某一参考方向(通常为光的传播方向)之间的夹角。
偏振角主要有两种常见的表示方式:在光学坐标系中的偏振角和在物理坐标系中的偏振角。
1. 光学坐标系中的偏振角在光学坐标系中,我们可以将光的偏振角表示为矢量的向量积。
假设光波的电场矢量为E,传播方向为z轴,偏振方向为x轴,那么可以用一个右手坐标系表示光的偏振角。
具体的计算公式为:θ = arctan(Ey/Ex)其中Ex和Ey分别表示电场矢量在x轴和y轴方向上的分量。
2. 物理坐标系中的偏振角在物理坐标系中,我们可以将光的偏振角表示为与光传播方向之间的夹角。
这个夹角通常由检偏器来测量。
假设光波的电场矢量为E,传播方向为z轴,而光传播方向和检偏器方向之间的夹角为α,那么计算公式为:θ = arcsin(sin(α)/n)其中n为材料的折射率。
二、双折射率的计算双折射是指当光通过某些特殊材料时,由于其晶格结构导致光波在材料内部发生分裂,分裂成两个不同的方向传播的光线。
双折射通常通过计算材料的双折射率来描述。
双折射率可以通过使用传输矩阵法来计算。
传输矩阵法是一种基于薄膜的光学计算方法,适用于计算具有各向异性的材料的光学性质。
具体的计算方法需要根据材料的晶格结构和折射率张量来确定。
这里不再赘述详细的计算步骤,但需要强调的是,双折射率的计算需要考虑材料的晶体结构、入射光的方向和波长等因素。
总结:光的偏振与双折射是光学研究中的重要概念。
通过计算光的偏振角和双折射率,我们可以更深入地理解光在材料中的传播行为。
对于光学器件的设计和应用也起到了重要的指导作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:由马吕斯定律
I10
• • I10/2 I1
I10 I1 cos 2 30 2
I 20 I2 cos 2 600 2
同理:
取 I 1 = I2
I10 I 20 2 2 cos 30 cos 60 2 2
两束单色自然光的强度比为:
I 10 cos 2 60 1 2 I 20 cos 30 3
§5-2 反射和折射光的偏振 一. 反射时光的偏振 自然光反射和折射 后产生部分偏振光
n1 n2
••
• • • • i i •• r •
线偏振光 · · i = i0 时,反射光只有 ·S · n1 · · ·i0 i0· 垂直于入射面的光振
动.
n2
r0
·
起偏振角
且
n2 tg i0 n21 n1
•部分偏振光的表示法:
· ·
平行板面的光振动较强 垂直板面的光振动较强
· ·· · ··
4.圆偏振光和椭圆偏振光
偏振面随时间旋转的光为圆或椭圆偏振光.
迎着光线看,光矢量顺时针旋转为右旋偏振光.
右旋椭圆 偏振光
y
E
0
传播方向 x
y
x
/2
某时刻左旋圆偏振光E随z的变化
z
二. 偏振片的起偏和检偏 1. 起偏和检偏 •起偏:从自然光获得偏振光.
§5-3 双折射 偏振棱镜 一. 双折射的概念 1.双折射现象 一束光线进入某种晶体,产生两束折射光叫双折射.
e
···
e o
· · ·
方解石
自然光 n
(各向异 性媒质)
i
1
o
n2
re ro o光
e光
2.寻常光(o光)和非寻常光(e光) n1 sin i n2 sin ro o光 : 遵从折射定律
I 0 E 02 ,
IE
2
E 02 cos
2
I I 0 cos
2
马吕斯定律(1809)
0,I I max I 0
,I 0
2
——消
光
例题 有两个偏振片,一个用作起偏器,一个用作检偏器. 当它们的偏振化方向之间的夹角为30º 时,一束单色自 然光穿过它们,出射光强为I1;当它们的偏振化方向之 间的夹角为60º 时,另一束单色自然光穿过它们,出射强 度为I2, 且I 1=I2 . 求两束单色自然光的强度之比.
§5-1 光的偏振性
一.光的偏振状态 1. 线偏振光传播方向看
面 动 振
•线偏振光可沿两个相互垂直的方向分解
E x E cos
y
Ey E
E y E sin
Ex
x
•线偏振光的表示法:
···· ·
光振动垂直板面
光振动平行板面
2. 自然光 自然光的光矢量在所有可能的方向上,且振幅E相等.
—布儒斯特定律(1812年)
i 0—布儒斯特角或起偏角
sin i0 n2 tgi0 由 sin r0 n1
sin r0 cos i0
有: i0+r0=90O 若 n1 =1.00 (空气),n2 =1.50 (玻璃),
则:
空气 → 玻璃 i0 5618 互余 玻璃 → 空气 i0 3342
第五章
光的偏振
1、阐明自然光、平面偏振光、部份偏振光、圆偏振光 和椭圆偏振光的概念及其检验方法。 2、了解由反射、折射和二向色性晶体所产生的偏振; 掌握布儒斯特定律的马吕斯定律。 3、叙述单晶体双折射的特点,说明惠更斯作图法,阐 明几种偏振仪器的作用。 4、叙述1/4波晶片的作用,分析平行平面偏振光干涉的 条件及其实现的方法。 阐明偏振光的干涉及应用。
•起偏原理:利用某种光学的不对称性. •起偏器: 起偏的光学器件. •检偏:检验偏振光,起偏器也就是检偏器. 2. 偏振片 如利用某些物质能吸收某一方向的光振动,而让 与这个方向垂直的光振动通过的性质(二向色性)制 成起偏器.
这种起偏器叫偏振片.
非偏振光
· · ·
光轴 线偏振光 电气石晶片
3. 起偏示意图
没有优势方向
自然光的分解
一束自然光可分解为两束振动方向相互垂直的、 等幅的、不相干的线偏振光。
Ex E y
•自然光的表示法:
I Ix Iy
· · ·
3. 部分偏振光
某一方向的光振动比与之相垂直方向的光振动占优 势的光.
部分偏振光
部分偏振光的分解
•部分偏振光可分解为两束振动方向相互垂直的、不 等幅的、不相干的线偏振光.
• 光轴
法线 e光
• • •
o光 e光
法线
• • • o光 光轴
二.惠更斯原理对双折射的解释
1.晶体的主折射率,正晶体、负晶体
在双折射晶体中 ,o 光沿各向传播的速度相同 , 故o波波面为球面;e光沿各向的传播速度不同,e波 面为椭球面.两者沿光轴方向传播速度相同. o光 :
n0
c
光轴
二. 玻璃片堆折射的偏振 当 i = i0 时
I 1 sin 2 ( i0 r0 ) I0 2
I · I · · · i0 · · · · · · · · · · · · · · · · · · · ·· ·· · · ·
0
玻璃片堆
自然光从空气→玻璃
I 7% I0
(接近线偏振光)
自然光I0 P
···
线偏振光 I
偏振化方向 (透光方向)
1 I I0 2
4. 检偏 用偏振器件分析、检验光的偏振态.
P 待检光 I
偏振化方向 (透光方向)
?
思考:
当偏振片旋转时. I不变?是什么光 I变,有消光?是什么光
I变,无消光?是什么光
三. 马吕斯定律
I0
P
I
E0
P E=E0cos
4. 主平面和主截面
光轴
法线
主平面:
晶体中光的传播方向 与晶体光轴构成的平面.
109º
入射线 71º 主截面
一般情况下, o主平面与e主平面是不重合的. 实验表明: o光是光矢量与o主平面垂直的线偏振光.
e光是光矢量与e主平面平行的线偏振光.
当光轴在入射面内时,主截面,o主平面,e主平面都重合.
e光 : 一般不遵从折射定律 sin i const sin re
3. 晶体的光轴 当光在晶体内沿某个特殊方向传播时不发生双折 射,该方向称为晶体的光轴。
e光折射线也不一定在入射面内.
102° A
例如,方解石晶体(冰洲石)
光轴
B
光轴是一特殊的方向,凡平行于此方向的直线均为光轴. 4. 主平面和主截面 主截面 : 晶体表面的法线与晶体光轴构成的平面 . 如 图入射时,入射面就是主截面.