02FFL-183 Multi-Objective Optimization of Diesel Engine Emissions and Fuel Economy using Ge

合集下载

粒子群优化算法(详细易懂)复习过程

粒子群优化算法(详细易懂)复习过程
我们以某种启示,只不过我们常常忽略了 大自然对我们的最大恩赐!......”
粒子群算法的基本思想
设想这样一个场景:一群鸟在随机搜索食物
在这块区域里只有一块食物; 已知 所有的鸟都不知道食物在哪里;
但它们能感受到当前的位置离食物还有多远. 那么:找到食物的最优策略是什么呢?
搜寻目前离食物最近的鸟的周围区域 . 根据自己飞行的经验判断食物的所在。 PSO正是从这种模型中得到了启发. PSO的基础: 信息的社会共享
通常,在第d(1≤d≤D)维的位置变化范围限定在 [Xmin,d, X内m ,ax,d]
速度变化范围限定在 [-Vmax,d,内V(ma即x,d在] 迭代中若
vid、 xid
超出了边界值,则该维的速度或位置被限制为该维最大速度或边界
位置)
粒子i的第d维速度更新公式:
v i k d = w v i k d - 1 c 1 r 1 ( p b e s t i d x i k d 1 ) c 2 r 2 ( g b e s t d x i k d 1 )
no
达到最大迭代次数或
全局最优位置满足最小界限?
yes
结束
2維簡例
區域
Note
合理解
目前最優解
區域最佳解
全域
粒子群算法的构成要素 -群体大小 m
m 是一个整型参数. m 很小:
陷入局优的可能性很大. m 很大:
PSO的优化能力很好, 但收敛速度慢. 当群体数目增长至一定水平时,再增长将不再有显 著的作用.
对每个粒子,将其当前适应值与其个体历史最佳位置(pbest)对应 的适应值做比较,如果当前的适应值更高,则将用当前位置更新历 史最佳位置pbest。
4. Find the Gbest:

基于粒子群优化算法的船舶柴油机故障诊断

基于粒子群优化算法的船舶柴油机故障诊断

基于粒子群优化算法的船舶柴油机故障诊断王师;李明【摘要】为了提高模糊神经网络收敛速度,克服容易陷入局部极值的不足,提出利用改进的动态加速常数协同惯性权重的WCPSO算法对网络参数进行优化.该算法通过对标准粒子群算法WPSO的改进,实现动态加速常数随进化代数线性变化,使被优化的网络收敛速度加快,不易陷入局部极值.将其应用于船舶柴油机模糊神经网络故障诊断模型中,仿真结果表明经过优化的故障诊断模型更为准确,提高了诊断速度.%To improve the convergence rate of neural networks and overcome the shortcoming of easily falling into local extreme, the coordination of dynamic acceleration constant and inertia weight called WCPSO algorithm is proposed to optimize network parameters. This algorithm improves the WPSO to realize linear evolution of the dy-namic acceleration constant. WCPSO was applied to marine diesel fault diagnosis model, and the simulation results show that the optimized diagnosis model is more prepared and the diagnosis speed is faster.【期刊名称】《科学技术与工程》【年(卷),期】2011(011)027【总页数】5页(P6730-6734)【关键词】模糊神经网络;WCPSO;船舶柴油机;故障诊断【作者】王师;李明【作者单位】江苏科技大学电信学院,镇江212003;镇江船艇学院,镇江212003【正文语种】中文【中图分类】TP183作为往复式机械的代表,柴油机是典型的多系统、多层次的复杂系统[1]。

多种约束条件下机翼的双目标响应面优化方法

多种约束条件下机翼的双目标响应面优化方法

多种约束条件下机翼的双目标响应面优化方法邱良骏;宋文滨;孙卫平【摘要】提出一种在较强的工程约束条件下,开展机翼优化设计的高效率多目标方法.综合升力线理论和RANS的流场计算方法以及数学近似的响应面方法,研究在多种工程约束条件下,巡航设计点中升阻比和翼根弯矩的多目标优化问题.采用分步嵌套优化的方法,首先,固定平面形状,优化展向的扭转角分布;然后优化固定形式下的平面形状参数,对于每一个平面外形,展向扭转角分布的优化为平面形状优化的内迭代;最后通过响应面的结果得到双目标的近似Pareto锋面.该方法对完成特定约束条件下的气动设计具有参考价值.%A multi-object optimization is carried out considering wing lift-to-drag ratio and bending moment performance at cruise flight condition using a combination of lift line theory, CFD RANS calculation and response surface methods. Wing is optimized under strong engineering constraints with constant planform topology, reference area, and wing root chord length. The airfoil shapes are also kept the same along the span. The optimization work is conducted in two steps. Spanwise twist angle is optimized at fixed wing planform at first. Wing planform is then optimized with wing twist optimized in the inner loop. Pareto front for the two objectives are obtained based on a response surface methods. The method presented in the paper can be used in cases where there are strong engineering constraints in wing optimization problems.【期刊名称】《科学技术与工程》【年(卷),期】2013(013)008【总页数】8页(P2142-2149)【关键词】机翼设计;多目标优化;CFD;响应面优化【作者】邱良骏;宋文滨;孙卫平【作者单位】中航通用飞机有限责任公司,珠海519040【正文语种】中文【中图分类】V211.3民用飞机设计的主要经济性指标直接使用成本(Direct Operating Cost,DOC)受到航程、商载和燃油消耗率(SFC)等参数的影响,影响这些指标的飞机设计包括发动机油耗、飞机结构设计效率、飞机的气动效率等三个方面,其中飞机的气动效率主要涉及巡航阻力性能。

2 Multiobjective Optimization Using Evolutionary Algorithms 3

2 Multiobjective Optimization Using Evolutionary Algorithms 3

3.1 The Basic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.2 Reducing the Pareto Set by Clustering . . . . . . . . . . . . . . . . . 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Chapter 1 Introduction
Many real-world problems involve simultaneous optimization of several incommensurable and often competing objectives. Usually, there is no single optimal solution, but rather a set of alternative solutions. These solutions are optimal in the wider sense that no other solutions in the search space are superior to them when all objectives are considered. They are known as Pareto-optimal solutions. Consider, for example, the design of a complex hardware/software system. An optimal design might be an architecture that minimizes cost and power consumption while maximizing the overall performance. However, these goals are generally con icting: one architecture may achieve high performance at high cost, another low-cost architecture might considerably increase power consumption|none of these solutions can be said to be superior if we do not include preference information (e.g., a ranking of the objectives). Thus, if no such information is available, it may be very helpful to get knowledge about those alternate architectures. A tool exploring the design space for Pareto-optimal solutions in reasonable time can essentially aid the decision maker to arrive at a nal design. Evolutionary algorithms (EAs) seem to be particularly suited for this task, because they process a set of solutions in parallel, eventually exploiting similarities of solutions by crossover. Some researcher suggest that multiobjective search and optimization might be a problem area where EAs do better than other blind search strategies Fonseca and Fleming, 1995] Valenzuela-Rendon and Uresti-Charre, 1997]. Since the mid-eighties several multiobjective EAs have been developed, capable of searching for multiple Pareto-optimal solutions concurrently in a single run. In spite of this variety, it is di cult to determine the appropriate algorithm for a given problem because it lacks extensive, quantitative comparative studies. The few comparisons available to date are mostly qualitative and restricted to two different methods quite often, the test problems considered are rather simple. As a consequence, it sometimes seems that every new application results in a new multiobjective EA. In this study we have chosen another way. Firstly, we carried out an extensive comparison of di erent multiobjective EAs that bases on two complementary quantitative measures|the test problem was a NP-hard 0/1 knapsack problem. The experience we gained from the experiments led to the development of a new ap1

基于粒子群优化的目标跟踪传感器节点的选择

基于粒子群优化的目标跟踪传感器节点的选择
In the process of target tracking, the tracking accuracy will be very high if all of the nodes involved in the work. But it also will consume much energy in this way. For this problem, a sensor management scheme is proposed based on conditional posterior Cramer-Rao lower bounds (CPCRLB). This online sensor selection is achieved by particle filtering. And the results demonstrate the efficiency and superiority of the CPCRLB-based sensor management.
2.2 粒子滤波器 ....................................................................................................... 13 2.2.1 状态空间模型 ........................................................................................ 13 2.2.2 基于粒子滤波的目标跟踪 .................................................................... 14
Exhaustive algorithm usually be used to select sensor in WSN. The computational complexity of find an optimal subset through exhaustive search can grow exponentially with the number of sensors. In this paper, we apply the binary particle swarm optimization to the problem of selecting k sensors from a set of m sensors for the purpose of minimizing the error in parameter estimation. In addition to applying the general binary particle swarm optimization (BPSO) to the sensor selection problem, we also present a specific improvement to this population heuristic algorithm. The proposed BPSO for the sensor selection problem is computationally efficient, and its performaation results.

Optimization Toolbox MATLAB优化工具箱

Optimization Toolbox MATLAB优化工具箱

Optimization Toolbox--求解常规和大型优化问题Optimization Toolbox 提供了应用广泛的算法集合,用于求解常规和大型的优化问题。

这些算法解决带约束、无约束的、连续的和离散的优化问题。

这些算法可以求解带约束的、无约束的以及离散的优化问题。

工具箱中包含的函数可以用于线性规划、二次规划、二进制整数规划、非线性优化、非线性最小二乘、非线性方程、以及多目标优化等。

用户能够使用这些算法寻找最优解,进行权衡分析,在多个设计方案之间平衡,以及将优化算法集成到算法和模型之中。

主要特点∙交互式工具用于定义、求解优化问题,并能监控求解过程∙求解非线性优化和多目标优化问题∙求解非线性最小二乘,数据拟合和非线性方程∙提供了解决二次方程和线性规划问题的方法∙提供了解决二进制整数规划问题的方法∙某些带约束条件的非线性求解器支持并行运算使用Optimization Toolbox 中的基于梯度的求解器寻找峰值函数(peaks function)的局部最小解。

运用优化工具箱提供的大型线性最小二乘法修复一张模糊的照片。

定义,求解以及评定优化问题优化工具箱提供了解决极小极大值问题的最常用方法。

工具箱包含了常规和大型优化问题的算法,使用户可以利用问题的稀疏结构来求解问题。

用户可以通过命令行或图形用户界面Optimization Tool调用工具箱函数和求解器选项。

通过命令行运行的优化程序(左,调用了定义指标函数(右上)和限定条件方程(右下)的MATLAB文件。

Optimization Tool 是一个将一般优化工作简单化的图形用户界面。

通过该图形用户界面,用户能够完成以下操作:∙定义自己的优化问题并选择求解器∙配置,检验优化选项和所选求解器的默认设置∙运行优化问题,显示中间以及最终结果∙在可选择的快速帮助窗口中查看特定求解器的文档∙在MATLAB 的工作空间和优化工具之间导入和导出用户问题的定义,算法配置和结果∙保存用户工作和使工作自动化,自动生成M 语言代码∙调用Global Optimization Toolbox中的求解器使用Optimization Tool 设置并求解的一个优化程序(左)。

英语建筑词汇

英语建筑词汇

.' (1)隧道图用缩略语英语词汇D&B 钻炸法(Drill and Blow)TBM 全断面隧道钻掘机(Tunnel Bore Machine)T.H. 上半断面(Top Height)B 台阶(Bench)I 仰拱(Invert)NATM 新奥工法(New Austrian Tunnel Method)RMR 岩体评分(Rock Mental Ratio)RQD 岩石品质指标(Rock Quality Directive)T.I. 临时仰拱(Temporary Invert)CCM 明挖覆盖工法(Cut and Cover Method).' (2)结构图用缩略语英语翻译ALT 交错排列(Alternative)BOT 底(层)(Bottom)BT 弯(Bent)CL 净(保护层)(Clearance)CT 柱箍筋(Column Tie-Bar)EW 各方面(Each Way)FF 远侧(Far Face)Fc 混凝土设计强度(28天圆柱试体抗压强度)(Compressive Strength of Concrete)Fs 钢材抗拉强度(Tensile Strength of Steel)Fy 钢材降伏强度(Yield Strength of Steel)HSB 高强度螺栓(High Strength Bolt)HTS 高拉力钢绞线(High Tensile Strand)HTW 高拉力钢线(High Tensile Wire)IF 内面(Inner Face)NF 近侧(Near Face)OF 外侧(Outside Face)SP 螺旋筋(Spiral) STIR 箍筋(Stirrup)STR 直通(Straight)T&B 顶层及底层(Top and Bottom)W/C 水灰比(Water Cement Ratio)WWF 熔接钢线网(Weld Wire Fence)GWL 地下水位(Ground Water Level)HHWL 最高洪水位(Highest High Water Level)HWL 高水位(High Water Level)HWY 公路(Highway)INV 仰拱(沟、管)底(Invert)LWL 低水位(Lower Water Level) MSL 平均海平面(Mean Sea Level) MWL 平均水位(Mean Water Level) NWL 常水位(Normal Water Level) PC 无筋混凝土(Preplair Concrete) PG 纵坡(Profile Grade) PVCP 塑胶管(P.V.C Pipe) RC 钢筋混凝土(Reinforced Concrete) RCP 钢筋混凝土管(Reinforced Concrete Pipe) ROW 路权(Right of Way) RR 铁路(Rail Road) SE 超高(Super Elevation) SL 海平面(Sea Level) SRC 钢骨钢筋混凝土(Steel Reinforced Concrete) SSP 不銹钢管(Stainless Steel Pipe) STA 测站、桩号(Station) T/R 轨道顶(Top of Rail) WL 水位、水平面(Water Level) WWL 警戒水位(Warning Water Level)AFF 粉刷完成楼板面上(Above Finished Floor)CB 阴井(Catch Basin) CL 中心线(Center Line) C-C 中心到中心(Center to Center) COL??????.??? ? ????柱(Column).????CONC 混凝土(Concrete) CMU 混凝土空心砖(Concrete Masonry Unit) CJ 控制缝(Control Joint) CP 控制点(Control Point) DIA 直径(Diameter) DIM尺寸(Dimension) ???.???DN 向下(Down) DRG 图说(Drawings) EA 每个(Each) EL高程(Elevation) (按比例绘制的)建筑的立式图ELVR 电梯(Elevator) ????EQ 相等(Equivalent) ?????EXP 伸缩(Expansion) EJ 伸缩缝(Expansion Joint) FFL 粉刷(装修)楼板面高程(Finished Floor Level) FGL 粉刷(装修)地面高程(Finished Ground Level) FHC消防器(Fire Hydrant Cabinet)FLASH 盖板、遮雨板(Flash)FL 楼板(Floor) FD 地板落水(Floor Drainage) GALV 镀锌(Galvanized) GA 轨距/ 量规(Gauge) GLA 玻璃(Glass) GL 地面高程/ 地基高程(Ground Level) GYP 石膏板(Gypsum) ???JT 接缝(Joint)????KO 预留开口(孔)(Knock Out) MO 圬工(Masonry) R半径(Radius) RD ????????路(Road) RD 屋顶落水(Roof Drainage) RI 放样(Rough In) RM 房间(Room) SNV 卫生纸贩卖机(Sanitary Napkin Vending) SNR 卫生纸收集箱(Sanitary Napkin Receipt) S 南向(South) SPKR 扬声机(Speaker) SPEC规范说明(Specification) ???????SQ 广场(Square) SS??不銹钢(Stainless Steel)???? ??? ???STR 楼梯(Stair) STA 车站(Station)SCR 车站控制室(Station Control Room) ST 钢(Steel) STOR 储藏(Storage) ST 街(Street) SUSP 悬吊式(Suspended) SYS 系统(System) TEL 电话(Telephone) TELENCL 电话箱(Telephone Control) TV 电视(Television) TERR 磨石子(Terrazzo)THK 厚(Thickness) TYP 标准型式(Typical) U/G 地下(Under Ground) UP 向上(Up) VENT通风(Ventilation) VERT 垂直(Vertical) WC 大便器(Water Closet) WT 重量(Weight) W 西向/ 宽度或木料(West / Width / Wood) W/ 含… / 及… (Wit h) W/O 不含… (Without) WD 木料(Wood) WP 工作点(Working Point)(5)土木工程常用缩略语ABUT 桥墩(Abutment) C-C 中心到中心(Center to Center) CCTV 闭路电视(Closed Circuit Television) CONC 混凝土(Concrete) CC 施工契约(Construction Contract) C&C 明挖覆盖(Cut and Cover) DDCs 详细设计顾问(Detail Design Consultants) DIA 直径(Diameter) DN 向下(Down) DRG 图说(Drawings) E 东向(East) EMU 电联车(Electric Multiple Unit) EL 高程(Elevation) EQ 相等(Equivalent) ECS 环境控制系统(Environmental Control System) EXC 开挖(Excavation) EXIST 现有(Existing) EGL 现有地面高程(Exist Ground Level) EXP 伸缩(Expansion) FRC 强化玻璃纤维混凝土(Fiber Glass Reinforced Concrete) FIN 粉刷(装修)(Finishing) FFL 粉刷(装修)楼板面高程(Finished Floor Level) FGL 粉刷(装修)地面高程(Finished Ground Level) FL 楼板(Floor) FDN 基础(Foundation) GC 总顾问(General Consultants) GL 地面高程、地基高程(Ground Level) HOR 水平(Horizontal) HR 时(Hour) ID 内径(Inside Diameter) IL 仰拱面高程(Invert Level) MH 人孔(Manhole) MRT 大眾捷运系统(Mass Rapid Transportation) ML 衔接线(Match Line) MCT 中运量捷运系统(Middle Capacity Transportation) N 北向(North) NIC 契约外(Not In Contract) NTS 不按比例(Not To Scale) PCC 预铸混凝土(Precast Concrete) PRC 预铸钢筋混凝土(Precast Reinforcement Concrete) PSC 预力混凝土(Prestressed C oncrete) RC 钢筋混凝土(Reinforced Concrete) RD 道路(Road) SECT 断面(Section) SQ 方形/ 平方/ 正方(Square) STA 车站(Station) TEL 电话(Telephone) TYP 标准型式(Typical) UP 向上(Up)装配式预制precast 安装预应力prestressed 连续多跨Multi-spans continuous 刚构rigid frame 受力load-carrying capability 等截面uniform section 拼接splice 跨越spanning 支架scaffoldings 模板formwork 跨线桥overpass bridge 最优化optimization 三跨three-span 结构优化设计optimum design of structures-program 单墩single pier 主梁girder断面deck/section 边、中跨径side span & middle spin 空心板梁hollow slab beam 工字形箱H-shaped box 板箱梁slab box beam 主梁截面girder section 中等(30~50米)的主跨跨径范围medium range of main span 刚度比ratio of rigidity V形墩V-shaped pier V形斜撑V-shaped inclined strut 与水平线夹角included angle with level lineplan 设计图town planning 城市规划Doric 多利安式Ionic 爱奥尼亚式Corinthian 科林斯式Composite 混合式Tuscan order 托斯卡纳式Gothic 哥特式flamboyant Gothic 哥特式的火焰状饰Romanesque 罗马式barroque 巴洛克式plateresque 带复杂花叶形装饰的rococo 洛可可式building 建筑物arch 拱vault 穹顶ogive 葱形饰;尖形拱顶facade 侧面frontispiece 三角墙,山墙column 柱pilaster 壁柱,半露柱pediment 山墙饰,山花fronton 山墙ground plan 平面图floor, storey 层ground floor 第一层(美作:first floor)flat 套(美作:apartment)stair well 楼梯间lift shaft 电梯,升降梯(美作:elevator shaft) fire escape 防火梯staircase 楼梯lift 电梯(美作:elevator)goods lift 公务电梯(美作:freight elevator) central heating 暖气ventilation shaft 通风井air conditioning 空调air-conditioned 带空调的flooring (一块)地板floorboard 地板(总称)parquet 木条地板herringbone parquet 人字形木条地板tile 瓷砖terrazzo 磨石子地wall 墙main wall 承重墙partition wall 隔断墙plastering 抹灰skirting board 壁脚板to whitewash 粉刷facade 建筑物正面window 窗basement 地下室penthouse 遮檐,披屋attic, garret 阁楼kitchen 厨房dining room 饭厅living room 起居室lounge 吸烟室,大厅bathroom 浴室toilet 卫生间chimney 烟囱fireplace 壁炉gutter 排水沟drainpipe 雨水管,落水管ceiling 天花板flat roof, roof garden 屋顶平台,屋顶花园roof 屋瓦顶tile, roof tile 瓦property 物业,资产interest 产权subsidiary 附属机构,子公司valuation 评估open market value 公开市场价值leaseback 售后回租(即租回已出售的财产)on a residual basis 剩余法capital value 资本价值cost of development 开发费(指拆迁费,七通一平费等)professional fee 专业人员费(指勘察设计费等)finance costs 融资成本(指利息等)sale proceeds 销售收益on the basis of capitalisation 资本还原法floor area 建筑面积title document 契约文书land use certificate 土地使用证commercial/residential complex 商住综合楼land use fee 土地使用费(获得土地使用权后,每年支付国家的使用土地费用)Grant Contract of Land Use Right 土地使用权出让合同plot ratio 容积率.' site coverage 建筑密度land use term 土地使用期project approval 项目许可planning approval 规划许可commission 佣金permit 许可证business license 营业执照strata-title 分层所有权public utilities 公共设施urban planning 城市规划state-owned land 国有土地fiscal allotment 财政拨款grant or transfer 出让或转让the Municipal Land Administration Bureau 市土地管理局infrastructure 基础设施financial budget 财政预算public bidding 公开招标auction 拍卖negotiation /agreement协议&nbsland efficiency 土地效益location classification 地段等级projecting parameter 规划参数government assignment 政府划拨administrative institution 行政事业单位key zones for development 重点开发区tract 大片土地biding document 标书prerequisitioned land 预征土地competent authorities 主管部门construction project 建设项目planning permit of construction engineering 建设工程规划许可证go through the formalities 办手续comprehensive sub-areas 综合分区reconstruction of old area 旧区改造purchasing power 购买力property trust 物业信托equity 权益cash flows 现金流量appreciation 增值disposition 处置hedge 保值措施income tax shelter 收入税的庇护downturn (经济)衰退wealth maximisation 最大限度的增加财产(同其他投资相比)forecast 预测rules-of-thumb techniques 经验法mortgage lender 抵押放贷者vacancy 空房discounted cash flow models 折现值现金流量模型expectation 期望值letting 出租equity reversion 权益回收bad debts 坏帐depreciation allowances 折旧费supplies 日常用品utilities 公共事业设备allowances for repairs and maintenance 维修费unpaid mortgage balance 抵押贷款欠额stamp duty印花税recession 衰退<br>overproduction 生产过剩glut 供过于求high-technology 高科技investment strategy投资策略circulation 发行量entrepreneur 倡导者,企业家coliseum 大体育场,大剧院chambers (商业资本家联合组织的)会所arena 室内运动场socioeconomic status 社会经济地位amenities 便利设施condominium 个人占有公寓房,一套公寓房的个人所有权income bracket 收入档次tenement 分租合住的经济公寓area code (电话)地区代码community 社区assessment 估价downzone 降低区划规模housing residences住宅to build, to construct 建设,建筑,修建architecture 建筑学building 修筑,建筑物house 房子skyscraper摩天大楼block of flats 公寓楼(美作:apartment block)monument 纪念碑palace 宫殿temple 庙宇basilica 皇宫,教堂cathedral 大教堂church教堂tower 塔,塔楼ten-storey office block 十层办公大楼column 柱colonnade 柱列arch 拱town planning 市政(美作:city planning)building permission 营建许可证,建筑开工许可证greenbelt 绿地elevation 建筑物的三面图plan 设计图scale 比例尺to prefabricate 预制excavation挖土,掘土foundations 基to lay the foundations打地基course of bricks 砌好的砖列scaffold脚手架scaffolding脚手架质量合格证书certification of fitness原材料raw material底板bottom plate垫层cushion侧壁sidewall中心线center line条形基础strip footing附件accessories型钢profile steel钢板steel plate熔渣slag飞溅welding spatter定位焊tacking引弧generating of arc熄弧quenching of arc焊道welding bead坡口beveled edges外观检查visual inspection重皮doubleskin水平方向弧度radian in horizontal direction 成型molding直线度straightness accuracy焊缝角变形welding line angular distortion 水平度levelness铅垂度verticality翘曲变形buckling deformation角尺angle square对接焊缝butt weld母材parent metal法兰密封面flange sealing surface夹层interlayer表面锈蚀浓度surface corrosion concentration挠曲变bending deformation超声波探伤ultrasonic testing/ ultrasonic examination 压力容器pressure vessel预制下料prefabrication baiting排版直径set-type diameter焊缝welding line中幅板? center plate测量方法measuring method基准点datum mark跳焊skip welding允许偏差allowable variation补强板stiffening plate开孔tapping对接接头banjo fixing butt jointing角钢angle iron安装基准圆installation fundamental circle 吊装立柱hoisting upright column焊接钢管welded steel pipe向心斜拉筋centripetal canting pull rope 带板band plate槽钢胀圈channel steel expansion ring环口collar extension局部变形local distortion环缝circumferential weld顶板top plate拱顶vault顶板加强肋stiffening rib对接butt joint胎具clamping fixture卷板机plate bending rolls中心支架center bearing bracket椭圆度ovality等分线bisectrix搭接宽度lap width点焊spot welding搭接焊overlap welding对称:symmetrically螺旋爬梯cockle stairs放料阀baiting valve液位计content gauge充水试验filling water test错边量unfitness of butt joint底圈foundation ring真空度检漏vacuum degree leak test丁字焊缝tee welding渗透探伤oil whiting test充水试验filling water test内侧角焊缝接头interior angle welding line joint foundation settlement 基础沉降测量基准点datum mark稳定性试验stability test排气阀outlet valve角钢angle steel构件component part机械损伤mechanical damage缩孔shrinkage cavityenfoldment 折迭碳钢管carbon steel tube公称直径nominal diameter预埋件embedded part轴测图axonometric drawing布置图arrangement diagram氧乙炔气割oxyacetylene gas cutting 低合金钢管low alloy steel热影响区heat affected area修磨polish砂轮片grinding wheel等离子plasma panel重皮coldlap凹凸unevenness缩口necking down端面head face倾斜偏差dip deviation外径external diameter砂轮grinding wheel管件pipe casting单线图single line drawing平齐parallel and level两端two terminals满扣buckle螺栓紧固bolton周边periphery附加应力additional stress同轴度axiality平行度parallelism随机stochastic允许偏差allowable variation重直度verticality水平度levelness隔离盲板blind plate氩弧焊argon arc welding压盖螺栓gland bolt间距spacing有效期period of validity担任take charge of undertake焊条welding rod碳钢焊条carbon steel焊丝welding wire熔化焊melting钢丝steel wire气体保护焊gas shielded arc welding 烘干drying清洗ablution制度system焊接工艺welding procedure相应corresponding手工电弧焊manual electric arc welding 手工钨极manual tungsten electrode打底render电源power source交流alternating current主入口大门/岗亭(车行& 人行)MAIN ENTRANCE GATE/GUARD HOUSE(FOR VEHICLE& PEDESTRIAN )2.次入口/岗亭(车行& 人行) 2ND ENTRANCE GATE/GUARD HOUSE (FOR VEHICLE& PEDESTRIAN )3.商业中心入口ENTRANCE TO SHOPPING CTR.4.水景WATER FEATURE5.小型露天剧场MINI AMPHI-THEATRE6.迎宾景观-1 WELCOMING FEATURE-17.观景木台TIMBER DECK (VIEWING)8.竹园BAMBOO GARDEN9.漫步广场WALKWAY PLAZA10.露天咖啡廊OUT DOOR CAFE11.巨大迎宾水景-2 GRAND WELCOMING FEATURE-212.木桥TIMBER BRIDGE‘S13.石景、水瀑、洞穴、观景台ROCK‘SCAPE WATERFALL GROTTO/ VIEWING TERRACE14.吊桥HANGING BRIDGE15.休憩台地(低处) LOUNGING TERRACE (LOWER )16.休憩台地(高处) LOUNGING TERRACE (UPPER )17.特色踏步FEATURE STEPPING STONE18.野趣小溪RIVER WILD19.儿童乐园CHILDREN‘S PLAYGROUND20.旱冰道SLIDE21.羽毛球场BADMINTON COURT22.旱景DRY LANDSCAPE23.日艺园JAPANESE GARDEN24.旱喷泉DRY FOUNTAIN25.观景台VIEWING DECK26.游泳池SWIMMING POOL27.极可意JACUZZI28.嬉水池WADING POOL29.儿童泳池CHILDREN‘S POOL30.蜿蜒水墙WINDING W ALL31.石景雕塑ROCK SCULPTURE32.中心广场CENTRAL PLAZA33.健身广场EXERCISE PLAZA34.桥BRIDGE35.交流广场MEDITATING PLAZA36.趣味树阵TREE BATTLE FORMATION37.停车场PARING AREA38.特色花架TRELLIS39.雕塑小道SCULPTURE TRAIL40.(高尔夫)轻击区PUTTING GREEN41.高尔夫球会所GOLF CLUBHOUSE42.每栋建筑入口ENTRANCE PAVING TO UNIT43.篮球场BASKETBALL COURT44.网球场TENNIS COURT45.阶梯坐台/种植槽TERRACING SEATWALL/PLANTER46.广场MAIN PLAZA47.森林、瀑布FOREST GARDEN WATERFALL48.石景园ROCKERY GARDEN49.旱溪DRY STREAM50.凉亭PA VILION51.户外淋浴OUTDOOR SHOWER52.拉膜结构TENSILE STRUCTURE53.台阶STAIR54.高尔夫球车停车场PARKING ( GOLF CAR )55.健身站EXERCISE STATION56.晨跑小路JOGGING FOOTPATH57.车道/人行道DRIVEW AY /SIDEWALK58.人行漫步道PROMENADE59.瀑布及跳舞喷泉(入口广场) WATER FALL AND DANCING FOUNTAIN ( ENTRY PLAZA )60.特色入口ENTRY FEATURE61.石景广场ROCKERY PLAZA建筑类词汇(3)建筑工程专业英语词汇建设,建筑,修建to build, to construct建筑学architecture修筑,建筑物building房子house摩天大楼skyscraper公寓楼block of flats (美作:apartment block) 纪念碑monument宫殿palace庙宇temple皇宫,教堂basilica大教堂cathedral教堂church塔,塔楼tower十层办公大楼ten-storey office block柱column柱列colonnade拱arch市政town planning (美作:city planning)营建许可证,建筑开工许可证building permission 绿地greenbelt建筑物的三面图elevation设计图plan比例尺scale预制to prefabricate挖土,掘土excavation基foundations, base, subgrade打地基to lay the foundations砌好的砖列course of bricks脚手架scaffold, scaffolding质量合格证书certification of fitness 原材料raw material底板bottom plate垫层cushion侧壁sidewall中心线center line条形基础strip footing 附件accessories型钢profile steel钢板steel plate熔渣slag飞溅welding spatter 定位焊tacking引弧generating of arc熄弧quenching of arc焊道welding bead坡口beveled edges外观检查visual inspection重皮double-skin水平方向弧度radian in horizontal direction 成型molding直线度straightness accuracy焊缝角变形welding line angular distortion 水平度levelness铅垂度verticality翘曲变形buckling deformation角尺angle square对接焊缝butt weld母材parent metal法兰密封面flange sealing surface夹层interlayer表面锈蚀浓度surface corrosion concentration挠曲变bending deformation超声波探伤ultrasonic testing/ ultrasonic examination 压力容器pressure vessel预制下料prefabrication baiting排版直径set-type diameter焊缝welding line中幅板center plate测量方法measuring method基准点datum mark跳焊skip welding允许偏差allowable variation补强板stiffening plate开孔tapping对接接头banjo fixing butt jointing 角钢angle iron安装基准圆installation fundamental circle 吊装立柱hoisting upright column焊接钢管welded steel pipe向心斜拉筋centripetal canting pull rope 带板band plate槽钢胀圈channel steel expansion ring环口collar extension局部变形local distortion环缝circumferential weld顶板top plate拱顶vault顶板加强肋stiffening rib对接butt joint胎具clamping fixture卷板机plate bending rolls中心支架center bearing bracket 椭圆度ovality等分线bisectrix搭接宽度lap width点焊spot welding搭接焊overlap welding对称symmetrically螺旋爬梯cockle stairs放料阀baiting valve液位计content gauge芬兰维萨拉Vailsla OY美国美科"Met-coil, USA"集中式空调系统centralized air conditioning system 裙房annex热源heat source平面位置的空间space of planimetric position密封性能sealing performance机房machine room节点timing专业"profession or discipline 都可以,要根据上下文" 连体法兰coupling flange垂直井笼vertical well cage变风量variable air rate施工面展开construction unfolds违约行为noncompliance合同交底- contract presentation管理承包商Management Contractor party工程量work amount实施的形象进度progress of implementation完工资料as-built documentation文整clear-up审核review汽车式起重机Autocrane深化图纸deepen drawing设备配置计划equipment furnishment plan结构预埋配合阶段Structure pre-embedment assistance stage精装修阶段Fine fitment stage工程施工阶段Construction stage工程竣工阶段Completion stage台钻Bench drill冲击钻Churn drill手电钻Electric portable drill砂轮切割机Abrasive cutting off machine角钢卷圆机Angle iron rolling machine管道切断器Pipe cutting machine铜管调直机Copper pipe straightening machine 管道压槽机Book joint setting machine for pipes 管道压槽机Book joint setting machine for pipes 角向磨光机Angle polishing machine电动套丝机Electric threading machine电动卷扬机Electric winch电动试压泵Motor-driven pressure test pump手动试压泵Manual pressure test pump阀门试压机Valve pressure test device阀门试压机Valve pressure test deviceTDC(F)风管加工流水线TDC(F)air ductwork fabrication stream line等离子切割机Plasma cutting machineTDC(F)法兰条成型机TDC(F) flange strip shaping mill勾码成型机Forming machine for flange clampTDC(F)风管加工成型机TDC(F) duct fabrication shaping mill多普勒超声波流量检测仪Doppler ultrasonic flow detector 温、湿度传感器"Temperature, humidity senor"精密声级计Precision sound level meter风管漏风量测试仪、风室式漏风测试装置"Duct air leakage tester, airchamber air leakage testing device"风罩式风量测试仪Air hood air rate tester微压计、毕托管、热球(电)风速仪"Micromanometer , pitot tube, hot bulb(electrical) anemoscope"潜水泵Submerged pump电动弯管机Electric pipe bender铜管弯管机Copper pipe bender液压弯管机Hydraulic pipe bender 电动剪刀Electric clipper液压铆钉钳Hydraulic riveting clamp 线槽电锯Trunking electric saw开孔器Tapper电动空压机Electric air compressor 液压千斤顶Hydraulic jack液压手推车Hydraulic trolley焊条烘干箱Welding rod drying box 手拉葫芦Chain block道(垫)木Sleeper转速表Tachometer电流钳型表Clip-style ammeter压力表Pressure gauge接地电阻测试仪Earthing resistance testing device 氧气表Oxygen gauge乙炔表Acetylene gauge对讲机Walkie talkie文件和资料documents and information?建设单位Construction unit安装单位Installation unit。

改进的二进制粒子群优化算法

改进的二进制粒子群优化算法

改进的二进制粒子群优化算法二进制粒子群优化算法(Binary Particle Swarm Optimization, BPSO)是一种基于群体智能的优化算法,适用于解决复杂的优化问题。

它模拟了鸟群或鱼群在寻找食物或避开天敌时的群体行为,通过个体之间的信息交换和协作,逐步优化目标函数的值。

传统的BPSO算法在处理高维问题和多模态问题时存在一些局限性,因此需要进行改进和优化,以提高算法的收敛速度、搜索能力和全局寻优能力。

1. 算法原理与流程改进的二进制粒子群优化算法基于传统BPSO算法,通过引入新的策略和机制来增强其性能。

算法流程包括初始化群体、设置适应度函数、更新粒子位置和速度等关键步骤。

与传统的粒子群优化相比,二进制粒子群优化算法主要通过二进制编码表示解空间中的解,并通过更新算子(如异或操作)来调整粒子的位置和速度。

2. 改进策略和机制2.1 自适应学习因子传统的BPSO算法中,学习因子(学习因子控制了粒子在搜索空间中的速度和范围)通常是固定的,不随着搜索过程的进行而调整。

改进的算法引入了自适应学习因子机制,根据群体的搜索状态动态调整学习因子的大小,使得在早期探索阶段能够加快搜索速度,在后期收敛阶段能够更精确地定位到局部最优或全局最优解。

2.2 多策略合并传统的BPSO算法中,粒子更新位置和速度的策略通常是固定的,例如采用全局最优或局部最优的方式更新粒子位置。

改进的算法引入了多策略合并的思想,同时考虑多种更新策略,根据当前搜索空间的局部信息和全局信息动态选择合适的更新策略。

这种策略合并能够有效提高算法的全局搜索能力和局部收敛速度。

2.3 精英粒子保留机制为了防止算法陷入局部最优,改进的算法引入了精英粒子保留机制。

在每一代的更新过程中,保留历史上搜索到的最优粒子位置,并在新一代的初始化和更新过程中考虑这些精英粒子的影响,以引导整个群体向更优的解空间进行搜索。

这种机制有效地增强了算法的全局搜索能力和收敛速度。

万有引力搜索算法的Web服务选择

万有引力搜索算法的Web服务选择
关键词 万有引力算法;服务质量控制;粒子群算法;多目标优化 中图分类号 TP393 DOI:10. 3969/j. issn. 1672-9722. 2019. 02. 007
Web Service Selection for Gravitation Search Algorithm
YUAN Bo MA Li (Xi'an University of Posts & Telecommunications,Xi'an 710061)
万有引力搜索算法[3](Gravitational Search Al⁃ gorithm,GSA)在 2009 年首次由伊朗克曼大学的教 授 Esmat Rashedi 等提出。万有引力搜索算法是一 种新的启发式智能优化算法,它是在牛顿万有引力 定律[4]及粒子间的相互作用的基础上被提出的。
近几年,有关万有引力搜索算法一直是人们研 究的重点,文献[5]用万有引力搜索算法来解决约 束优化问题。为防止出现早熟现象,文献[6]将混
Abstract Focusing on the problems of the traditional optimization algorithm can not solve the problem of high dimension search space optimization. An improved gravitational search algorithm is proposed,which combines the gravitational search algo⁃ rithm with the particle swarm optimization algorithm. Through the operation of the boundary and the new search space Activate the stagnant particles,so that the particles jump out of the local area,to find the optimal solution. The experimental results show that with the increase of the number of iterations,the proposed algorithm has better performance than traditional heuristic optimization al⁃ gorithm.

Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA_D and NSGA-II

Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA_D and NSGA-II
H. Li was with the Department of Computing and Electronic Systems, University of Essex, Colchester CO4 3SQ, U.K. He is now with the School of Computer Science, University of Nottingham, Nottingham NG8 1BB, U.K. (e-mail: hzl@).
I. INTRODUCTION
A multiobjective optimization problem (MOP) can be stated as follows:
minimize
subject to
(1)
where is the decision (variable) space, is the objective
MOP.
Let
,
be two
vectors, is said to dominate if
for all
,
and
.1 A point
is called (globally) Pareto optimal
if there is no
such that
Hale Waihona Puke dominates. The set
of all the Pareto optimal points, denoted by , is called the
Pareto set. The set of all the Pareto objective vectors,
, is called the Pareto front [1].

智能控制技术第十三课鲁棒优化完美版PPT

智能控制技术第十三课鲁棒优化完美版PPT
目标函数的个数),当种群较大时,计算相当耗时;
b〕没有精英策略,精英策略能加速算法的执行速度,而且也能在一 定程度上确保已经找到的满意解不被丧失;
c〕需要指定共享半径
share
NSGA-II
1.快速的非劣解分类方法: 为了根据个体的非劣解水平将种群分类,必须将每一个体与其他 个体进行比较。NSGA-II算法采用快速的非劣解分类方法,计算速 度提高。 首先,对每一个解计算两个属性: 〔1〕ni,支配解i的解数目; 〔2〕si,解i所支配解的集合。 找到所有ni=0的解并将其放入F1,称F1是当前非劣解,其等级为 1。对当前非劣解中的每一个解i,考察其支配集中si的每一点j并将 nj减少一个,如果某一个体j其nj成为零,我们把它放入单独的类H 。如此反复考察所有的点,得到当前非劣解H。依次类推,直至所 有解被分类。
gi (x) 0
x(x1,x2,...,xD)X y(y1,y2,...,yk)Y
S = { x R q |g i( x ) 0 ,i= 1 , 2 , ,m }
Z = { z R q |z 1 f 1 ( x ) , z 2 f 2 ( x ) ,, z q f q ( x ) }
支配〔占优〕关系
m i nz 1=f 1 ( x ) , z 2=f 2 ( x ) , L, z q=f q( x )
MinimS is zueb. /jM et catx. tiom g izi e( c(x x)y) (cf10 ((xx), )i ,c(= 2(f1x 1 ()x,, .).2 ,.,fc2, m (L x (x), ,).).m . ,f0K(x))
生活中的多目标优化问题
例子: 买衣服:希望质量好,价格低
投资理财:希望收益高,风险小

基于改进ILS算法的多目标优化试验设计

基于改进ILS算法的多目标优化试验设计

Experimental Design of Multi-objective Optimization Based on Modified ILS Algorithm
ZHANG Kun-lun, GUO Bo
(Department of System Engineering, College of Information System and Management, National University of Defense Technology, Changsha 410073, China)
min
1≤i, j≤N ,i≠
j
d
(2)
另有:
D1
=
max
X∈{LHD}
D1( X
)
(3)
与 D1 相 对 应 的 X 即 为 符 合 极 大 极 小 距 离 标 准 则 的 一 个 LHD。
由于 D1 可能对应了多个不同的 LHD,为进一步区分,
Morris 和 Mitchell[3]将极大极小距离准则进行了推广。设:
试验点的空间分布均匀属性。同时,良好的 LHD 应该保证试
验点之间的相关度尽量低,即保证试验点正交程度高,通过 列相关系数 ρ 2 [4]进行度量。
2.1 极大极小距离标准和 φp 准则 设向量 xi 、 x j 的距离为 d ( xi , x j ) ,则一个 LHD 的极小
距离为:
D1 (
X
)
=
第 37 卷 第 5 期 Vol.37 No.5
计算机工程 Computer Engineering
2011 年 3 月 March 2011
·开发研究与设计技术·
文章编号:1000—3428(2011)05—0273—03 文献标识码:A

Multiobjective optimization using non-dominated sorting in genetic algorithms

Multiobjective optimization using non-dominated sorting in genetic algorithms
One way to solve multiobjective problems is to scalarize the vector of objectives into one objective by averaging the objectives with a weight vector. This process allows a simpler optimization algorithm to be used, but the obtained solution largely depends on the weight vector used in the scalarization process. Moreover, if available, a decision maker may be interested in knowing alternate solutions. Since genetic algorithms (GAs) work with a population of points, a number of Pareto-optimal solutions may be captured using GAs. An early GA application on multiobjective optimization by Scha er (1984) opened a new avenue of research in this eld. Though his algorithm, VEGA, gave encouraging results, it su ered from biasness towards some Pareto-optimal solutions. A new algorithm, Nondominated Sorting Genetic Algorithm (NSGA), is presented in this paper based on Goldberg's suggestion (Goldberg 1989). This algorithm eliminates the bias in VEGA and thereby distributes the population over the entire Pareto-optimal regions. Although there exist two other implementations (Fonesca and Fleming 1993; Horn, Nafpliotis, and Goldberg 1994) based on this idea, NSGA is di erent from their working principles, as explained below.

大规模MIMO网络能效和频效的多目标联合优化

大规模MIMO网络能效和频效的多目标联合优化

大规模MIMO网络能效和频效的多目标联合优化作者:***来源:《计算机时代》2022年第08期摘要:針对大规模MIMO网络下行链路中系统能效与频效的联合优化问题,从发射功率和发射天线数目两个因素考虑进行研究。

为了使得满足网络中多项性能指标,将大规模MIMO 网络下行链路的能效与频效构建成一个多目标优化问题,提出一种改进的快速非支配排序多目标优化遗传算法,在本文所设场景下对问题进行求解,得到了该问题的Pareto最优解集。

最后将该方法与同类型的多目标进化算法进行对比分析。

结果表明,所提方法能够有效的搜索到最优解集,满足不同情况下的通信需求。

关键词:大规模MIMO网络; 多目标优化; 多目标进化算法; 下行链路中图分类号:TN915 文献标识码:A 文章编号:1006-8228(2022)08-15-05Joint optimization of energy efficiency and spectrum efficiency of Massive MIMO networkWu Hang(School of Optical-Electrical and Computer Engineering, Shanghai 200093, China)Abstract: In order to solve the conflict between system energy efficiency and spectral efficiency in the downlink of Massive MIMO network, the two factors of power allocation and the number of transmit antennas are studied. In order to meet the various performance requirements in the network,the energy efficiency and spectral efficiency of the downlink of Massive MIMO network are formulated into a multi-objective optimization problem. An improved fast non-dominated multi-objective optimization algorithm with elite reservation strategy is proposed. The problem is solved in the scenario set in this paper, and the Pareto optimal solution set of the problem is obtained. Finally, the method is compared with the same type of multi-objective evolutionary algorithm. The results show that the proposed method can effectively search for the optimal solution and meet the performance requirements in different situations.Key words: Massive MIMO network; multi-objective optimization; multi-objective evolutionary algorithm; downlink0 引言多输入多输出技术(MIMO)是无线蜂窝网络的一项核心技术,MIMO技术的多天线特点,使得它能够提供空间自由度和多路复用增益[1]。

粒子群算法(优化算法)毕业设计毕设论文(包括源代码实验数据,截图,很全面的)

粒子群算法(优化算法)毕业设计毕设论文(包括源代码实验数据,截图,很全面的)

毕业论文题目粒子群算法及其参数设置专业信息与计算科学班级计算061学号3060811007学生xx指导教师徐小平2010年I粒子群优化算法及其参数设置专业:信息与计算科学学生: xx指导教师:徐小平摘要粒子群优化是一种新兴的基于群体智能的启发式全局搜索算法,粒子群优化算法通过粒子间的竞争和协作以实现在复杂搜索空间中寻找全局最优点。

它具有易理解、易实现、全局搜索能力强等特点,倍受科学与工程领域的广泛关注,已经成为发展最快的智能优化算法之一。

论文介绍了粒子群优化算法的基本原理,分析了其特点。

论文中围绕粒子群优化算法的原理、特点、参数设置与应用等方面进行全面综述,重点利用单因子方差分析方法,分析了粒群优化算法中的惯性权值,加速因子的设置对算法基本性能的影响,给出算法中的经验参数设置。

最后对其未来的研究提出了一些建议及研究方向的展望。

关键词:粒子群优化算法;参数;方差分析;最优解IIParticle swarm optimization algorithm and itsparameter setSpeciality: Information and Computing ScienceStudent: Ren KanAdvisor: Xu XiaopingAbstractParticle swarm optimization is an emerging global based on swarm intelligence heuristic search algorithm, particle swarm optimization algorithm competition and collaboration between particles to achieve in complex search space to find the global optimum. It has easy to understand, easy to achieve, the characteristics of strong global search ability, and has never wide field of science and engineering concern, has become the fastest growing one of the intelligent optimization algorithms. This paper introduces the particle swarm optimization basic principles, and analyzes its features. Paper around the particle swarm optimization principles, characteristics, parameters settings and applications to conduct a thorough review, focusing on a single factor analysis of variance, analysis of the particle swarm optimization algorithm in the inertia weight, acceleration factor setting the basic properties of the algorithm the impact of the experience of the algorithm given parameter setting. Finally, its future researched and prospects are proposed.Key word:Particle swarm optimization; Parameter; Variance analysis; Optimal solutionIII目录摘要 (II)Abstract ............................................................................................................................. I II 1.引言. (1)1.1 研究背景和课题意义 (1)1.2 参数的影响 (1)1.3 应用领域 (2)1.4 电子资源 (2)1.5 主要工作 (2)2.基本粒子群算法 (3)2.1 粒子群算法思想的起源 (3)2.2 算法原理 (4)2.3 基本粒子群算法流程 (5)2.4 特点 (6)2.5 带惯性权重的粒子群算法 (7)2.7 粒子群算法的研究现状 (8)3.粒子群优化算法的改进策略 (9)3.1 粒子群初始化 (9)3.2 邻域拓扑 (9)3.3 混合策略 (12)4.参数设置 (14)4.1 对参数的仿真研究 (14)4.2 测试仿真函数 (15)4.3 应用单因子方差分析参数对结果影响 (33)4.4 对参数的理论分析 (34)5结论与展望 (39)致谢 (43)附录 (44)IV11.引言1.1 研究背景和课题意义“人工生命”是来研究具有某些生命基本特征的人工系统。

代理模型辅助的复杂网络能控性鲁棒性优化方法

代理模型辅助的复杂网络能控性鲁棒性优化方法

代理模型辅助的复杂网络能控性鲁棒性优化方法
聂君凤;于卓然;李均利
【期刊名称】《小型微型计算机系统》
【年(卷),期】2024(45)1
【摘要】近年来,复杂网络的鲁棒性优化问题引起人们广泛关注.复杂网络暴露在外会受到各种各样的攻击,因此如何设计抗击能力较好的网络结构成为了研究热点.虽然现有的方法在小规模复杂网络的鲁棒性方面已经取得了显著成果,但大规模复杂网络的能控性鲁棒性优化的计算成本非常大.而代理模型可以以较低的计算成本来代替优化过程中对复杂网络能控性鲁棒性的评估,但一个代理模型不可能适用于评估所有类型的复杂网络能控性鲁棒性.文中将Dempster-Shafer理论应用于代理模型选择及其混合,并把选择出的代理模型用来辅助进化算法搜索能控性鲁棒性更优的网络结构.此方法在SF、ER、SW、RR、RT和QS 6种合成网络上的实验结果表明:在不同类型的复杂网络中选择合适的代理模型能更好的辅助进化算法找到能控性鲁棒性更优的网络结构.
【总页数】9页(P151-159)
【作者】聂君凤;于卓然;李均利
【作者单位】四川师范大学计算机科学学院
【正文语种】中文
【中图分类】TP301
【相关文献】
1.基于拷贝模型的复杂网络鲁棒性研究
2.基于复杂网络的航空产品协同创新知识网络鲁棒性优化
3.基于社区结构的复杂网络鲁棒性优化策略
4.基于复杂网络理论的城市公交网络鲁棒性分析与优化
5.复杂网络能控性鲁棒性研究进展
因版权原因,仅展示原文概要,查看原文内容请购买。

多目标粒子群优化算法在配置城市土地使用上应用

多目标粒子群优化算法在配置城市土地使用上应用

多目标粒子群优化算法在配置都市土地使用上的应用Considering the ever-increasing urban population, it appears that land management is of major importance. Land uses must be properly arranged so that they do not interfere with one an other and can mee t each ot her' s needs as much as possible; this goal is a challenge of urban land-use planning. The main objective of this research is to use Multi-Objective Particle Swarm Optimization algorithm to find the optimum arrangement of urban land uses in parcel level, considering multipie objectives and constraints simultaneously. Geospatial Information System is used to prepare the data and to study different spatied scenarios when developing the model. To optimize the land-use arrangement, four objectives are defined:maximizing compatibility, maximizing dependency, maximizing suitability, and maximizing compactness of land uses・These objectives are characterized based on the requirements of planners・As a resuIt of optimization, the user is provided with a set of optimum land-use arrangements, the Pareto-front solutions・The user can select the most appropriate solutions according to his/herpriorities. The method was tested using the data of region7, district 1 of Tehran. The resuIts showed an acceptable level of repeatability and stability for the optimization algorithm. The model uses parcel instead of urban blocks, as the spatial unit.Moreover, it considers a variety of land uses and triesto optimize several objectives SimuItaneously.1摘要:考虑到不断增加的都市人口,土地治理看起来就具有重大意义。

双层束搜索算法优化机器人制造单元调度问题

双层束搜索算法优化机器人制造单元调度问题

双层束搜索算法优化机器人制造单元调度问题ZHAO Xiaofei;GUO Xiuping【摘要】针对混流生产阻塞机器人制造单元调度问题,给出了可行机器人运动插入法,构建可行解.依据可行机器人运动插入法,提出双层过滤变宽度束搜索算法进行求解.搜索过程利用局部评价函数和全局评价函数对节点进行两次择优选取.通过计算随机生成算例,仿真结果表明,相对于以分支定界算法产生的可行解进行变邻域搜索、分支定界算法、局部评价函数束搜索算法、全局评价函数束搜索算法和双层过滤定宽度束搜索算法,双层过滤变宽度束搜索算法不但能显著提高搜索效率,而且解的平均改进度分别为3.07%、6.07%、7.79%、12.62%、14.47%.【期刊名称】《计算机工程与应用》【年(卷),期】2019(055)004【总页数】6页(P56-61)【关键词】机器人制造单元;双层过滤变宽度束搜索;混流生产;阻塞;可行机器人运动插入法【作者】ZHAO Xiaofei;GUO Xiuping【作者单位】【正文语种】中文【中图分类】TP278;F2731 引言《中国制造2025规划》提出:在重点领域试点建设智能工厂/数字化车间,加快人机智能交互、工业机器人、智能物流管理等技术和装备在生产过程中的应用。

先进生产系统机器人制造单元是一种工业机器人,广泛应用于半导体制造、电路板印刷、电镀处理、钢铁冶炼、医药化工和食品加工等行业[1-2]。

为了满足市场对产品小批量多品种需求,很多制造商对机器人制造单元进行技术改造和升级换代,使其能够均衡生产小批量多品种产品的能力。

因此,混流生产机器人制造单元调度问题被提出。

混流生产是将一定批量的多种类型工件按照一定比例组成最小工件集(Minimal Part Set,MPS)来组织生产。

例如,需要生产100个A型工件,300个B型工件和150个C型工件,则MPS={2A,6B,3C},重复生产50次MPS就可以。

为了方便管理,混流生产机器人制造单元以MPS循环周期运行。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

high calculation cost. Many researchers are studying and developing several types of the optimization methods. Many algorithms that use the information about the gradient of the functions are developed and implemented into several commercial software[9, 10]. In this paper, the Genetic Algorithm (GA) is used for solving MOPs. The GA is an algorithm that simulates the heredity and evolution of creatures[11]. It is one of the multi-point search methods and probabilistic algorithm. It is said that it is easy to apply the GAs to several types of problems. It is also said that the GA is a robust algorithm for searching for an optimum solution even when the objective function has many local optimums. The GA especially is suitable for solving MOPs since the GA is a multi-point search. In this paper, the simulation of a multi-objective optimization problem of a diesel engine is performed using the phenomenological model of a diesel engine and genetic algorithm. At first, the concept of multi-objective optimization problems is explained. Secondly, the GA and phenomenological model of diesel engine are illustrated briefly. In this paper, the extended GA that is developed by authors is applied. That is called the ”Neighborhood Cultivation GA (NCGA)”. The procedure of the NCGA is also mentioned. In the simulation, the target purpose functions are SFC, NOx, and Soot and the design variables are the shape of injection rate. Through this simulation, the effectiveness of the GAs for solving the diesel engine problem and the importance of phenomenological model in optimization problems are made clarified. MULTI-OBJECTIVE OPTIMIZATION PROBLEMS Problems to find design variables x that minimize or maximize k objective functions within the m constraints are called Multi-objective Optimization Problems (MOPs). MOPs can be formulated as follows[26, 27], min f (x) s.t. x ∈ X
minimization of the fuel efficiency, the amounts of the nitric oxide (NOx), and the amounts of the soot have been interested in many engine designer[1, 2, 3]. Therefore, these NOx, Soot and fuel efficient become objective functions in optimization problems. There are some studies that solve this optimization problem[4, 5, 6, 7]. However, these problems are treated as single objective problems. Since there are trade-off relationships between the fuel efficiency, NOx and Soot, it is natural to handle these problems as Multi-objective Optimization Problems (MOPs). In this research, the minimization of fuel efficient, the amounts of NOx, and the amounts of Soot are simultaneously performed by using the concept of multiple-purpose optimization. To perform optimization by simulations, an optimizer (it determines the next searching point) and an analyzer (it evaluates the searching point) are needed. The process of the combustion of the diesel engine is very complicated. At the same time, there are many requirement items for the models such as injection characteristics, spray characteristics, air-fuel mixing, ignition, heat release rate, heat losses, exhaust emissions, and so on. Thus, it is almost impossible to build the model of diesel combustion with the numerical expressions. On the other hand, several types of the models of diesel combustion have been proposed[8]. Those are roughly divided into three categories; thermodynamic model, phenomenological model and detailed multidimensional model. The thermodynamic model only predicts the heat release rate. In the phenomenological model, the prediction of equation which is derived by the fundamental experiment is used. The detailed multidimensional model predicts several items by solving differential equations with small time steps. In this paper, the HIDECS which is based on the phenomenological model is used since it does not need a 1
Doshisha University
H. Hiroyasu
Kinki University
Copyright c 2002 Society of Automotive Engineers, Inc.
ABSTRACT In this paper, the simulation of the multi-objective optimization problem of a diesel engine is performed using the phenomenological model of a diesel engine and the genetic algorithm. The target purpose functions are Specific fuel consumption, NOx, and Soot. The design variable is a shape of injection rate. In this research, we emphasize the following three topics by applying the optimization techniques to an emission problem of a diesel engine. Firstly, the multiple injections control the objectives. Secondly, the multi-objective optimization is very useful in an emission problem. Finally, the phenomenological model has a great advantage for optimization. The developed system is illustrated with the simulation examples. INTRODUCTION Because of the merit of the durability and fuel efficiency, a diesel engine is loaded on from small to large vehicles. However, with increasing environmental concerns and legislated emissions standards, current engine research is focused on simultaneous reduction Soot and NOx during maintaining reasonable fuel economy. The combustion improvement especially can be achieved designing a good injection system and characteristics of spray combustion. To develop a good injection system, a parameter search to determine the influence an organization performance and an exhaust performance should be performed. However, when this parameter search is executed experimentally, the huge expense and huge time are needed. For this reason, the optimization of parameters by simulation on a computer is very useful. When the parameter is optimized by the simulation, the
相关文档
最新文档