【数学】2010年高考数学选择试题分类汇编——立体几何
10年高考真题汇总—(立体几何高考试题汇编)
立体几何分类汇编一、异面直线夹角(2007全国理I)如图,正四棱柱1111-ABCD A B C D 中,12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为A.51B.52C.53D.54(2008全国理II)已知正四棱锥S ABCD -的侧棱长与底面边长都相等,E 是SB 的中点,则AE SD ,所成的角的余弦值为()A.13B.23D.23(2009全国理I)已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 上的射影为111A B C 的中点,则异面直线AB 与1CC 所成的角的余弦值为D.34(2009全国理II)已知正四棱柱1111ABCD A B C D -中,12AA AB =,E 为1AA 中点,则异面直线BE 与1CD 所成的角的余弦值为A.10B.15C.10D.35(2012全国理I)三棱柱111ABC A B C -中,底面边长和侧棱长都相等,1160BAA CAA ∠=∠= ,则异面直线1AB 与1BC 所成角的余弦值为____________。
(2013全国理I)如图,在正方体1111ABCD A B C D -中,M 、N 分别是CD 、1CC 的中点,则异面直线1A M 与DN 所成角的大小是____________。
(2014全国理II)直三棱柱111ABC A B C -中,90BCA ∠= ,,M N 分别是1111,A B A C 的中点,1BC CA CC ==,则BM 与AN 所成的角的余弦值为()A.110B.25C.D.二、线面夹角(2007全国理II)已知正三棱ABC A B C -111的侧棱长是底面边长相等,则AB 1与侧面ACC A 1所成角的正弦等于A.64B.104C.22D.32(2008全国理I)已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于()A.13B.23C.33D.23(2010全国理I)正方体1111ABCD A B C D -中,1BB 与平面1ACD 所成角的余弦值为(A)23(B)33(C)23(D)63(2016全国理I)平面α过正方体1111ABCD A B C D -的顶点A ,α 平面11CB D ,α 平面ABCD m =,α 平面11ABA B n =,则,m n 所成角的正弦值为A.32 B.22C.33D.13(2007全国理I)四棱锥S ABCD -中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD 已知45ABC ∠= ,2,22,3AB BC SA SB ====(Ⅰ)证明:SA BC ⊥;(Ⅱ)求直线SD与平面SAB所成角的大小。
十年真题(2010-2019)高考数学(理)分类汇编专题09 立体几何与空间向量选择填空题(新课标Ⅰ卷)(解析版
专题09立体几何与空间向量选择填空题历年考题细目表填空题2010 三视图与直观图2010年新课标1理科14历年高考真题汇编1.【2019年新课标1理科12】已知三棱锥P﹣ABC的四个顶点在球O的球面上,P A=PB=PC,△ABC是边长为2的正三角形,E,F分别是P A,AB的中点,∠CEF=90°,则球O的体积为()A.8πB.4πC.2πD.π【解答】解:如图,由P A=PB=PC,△ABC是边长为2的正三角形,可知三棱锥P﹣ABC为正三棱锥,则顶点P在底面的射影O为底面三角形的中心,连接BO并延长,交AC于G,则AC⊥BG,又PO⊥AC,PO∩BG=O,可得AC⊥平面PBG,则PB⊥AC,∵E,F分别是P A,AB的中点,∴EF∥PB,又∠CEF=90°,即EF⊥CE,∴PB⊥CE,得PB⊥平面P AC,∴正三棱锥P﹣ABC的三条侧棱两两互相垂直,把三棱锥补形为正方体,则正方体外接球即为三棱锥的外接球,其直径为D.半径为,则球O的体积为.故选:D.2.【2018年新课标1理科07】某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2C.3 D.2【解答】解:由题意可知几何体是圆柱,底面周长16,高为:2,直观图以及侧面展开图如图:圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度:2.故选:B.3.【2018年新课标1理科12】已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为()A.B.C.D.【解答】解:正方体的所有棱中,实际上是3组平行的棱,每条棱所在直线与平面α所成的角都相等,如图:所示的正六边形平行的平面,并且正六边形时,α截此正方体所得截面面积的最大,此时正六边形的边长,α截此正方体所得截面最大值为:6.故选:A.4.【2017年新课标1理科07】某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A.10 B.12 C.14 D.16【解答】解:由三视图可画出直观图,该立体图中只有两个相同的梯形的面,S梯形2×(2+4)=6,∴这些梯形的面积之和为6×2=12,故选:B.5.【2016年新课标1理科06】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.17πB.18πC.20πD.28π【解答】解:由题意可知三视图复原的几何体是一个球去掉后的几何体,如图:可得:,R=2.它的表面积是:4π•2217π.故选:A.6.【2016年新课标1理科11】平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD =m,α∩平面ABB1A1=n,则m、n所成角的正弦值为()A.B.C.D.【解答】解:如图:α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABA1B1=n,可知:n∥CD1,m∥B1D1,∵△CB1D1是正三角形.m、n所成角就是∠CD1B1=60°.则m、n所成角的正弦值为:.故选:A.7.【2015年新课标1理科06】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛【解答】解:设圆锥的底面半径为r,则r=8,解得r,故米堆的体积为π×()2×5,∵1斛米的体积约为1.62立方,∴ 1.62≈22,故选:B.8.【2015年新课标1理科11】圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1 B.2 C.4 D.8【解答】解:由几何体三视图中的正视图和俯视图可知,截圆柱的平面过圆柱的轴线,该几何体是一个半球拼接半个圆柱,∴其表面积为:4πr2πr22r×2πr+2r×2rπr2=5πr2+4r2,又∵该几何体的表面积为16+20π,∴5πr2+4r2=16+20π,解得r=2,故选:B.9.【2014年新课标1理科12】如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.6B.6 C.4D.4【解答】解:几何体的直观图如图:AB=4,BD=4,C到BD的中点的距离为:4,∴.AC6,AD=4,显然AC最长.长为6.故选:B.10.【2013年新课标1理科06】如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器注水,当球面恰好接触水面时测得水深为6cm,如不计容器的厚度,则球的体积为()A.B.C.D.【解答】解:设正方体上底面所在平面截球得小圆M,则圆心M为正方体上底面正方形的中心.如图.设球的半径为R,根据题意得球心到上底面的距离等于(R﹣2)cm,而圆M的半径为4,由球的截面圆性质,得R2=(R﹣2)2+42,解出R=5,∴根据球的体积公式,该球的体积V.故选:A.11.【2013年新课标1理科08】某几何体的三视图如图所示,则该几何体的体积为()A.16+8πB.8+8πC.16+16πD.8+16π【解答】解:三视图复原的几何体是一个长方体与半个圆柱的组合体,如图,其中长方体长、宽、高分别是:4,2,2,半个圆柱的底面半径为2,母线长为4.∴长方体的体积=4×2×2=16,半个圆柱的体积22×π×4=8π所以这个几何体的体积是16+8π;故选:A.12.【2012年新课标1理科07】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6 B.9 C.12 D.18【解答】解:该几何体是三棱锥,底面是俯视图,三棱锥的高为3;底面三角形斜边长为6,高为3的等腰直角三角形,此几何体的体积为V6×3×3=9.故选:B.13.【2012年新课标1理科11】已知三棱锥S﹣ABC的所有顶点都在球O的表面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此三棱锥的体积为()A.B.C.D.【解答】解:根据题意作出图形:设球心为O,过ABC三点的小圆的圆心为O1,则OO1⊥平面ABC,延长CO1交球于点D,则SD⊥平面ABC.∵CO1,∴OO1,∴高SD=2OO1,∵△ABC是边长为1的正三角形,∴S△ABC,∴V三棱锥S﹣ABC.故选:C.14.【2011年新课标1理科06】在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为()A.B.C.D.【解答】解:由俯视图和正视图可以得到几何体是一个简单的组合体,是由一个三棱锥和被轴截面截开的半个圆锥组成,∴侧视图是一个中间有分界线的三角形,故选:D.15.【2010年新课标1理科10】设三棱柱的侧棱垂直于底面,所有棱长都为a,顶点都在一个球面上,则该球的表面积为()A.πa2B.C.D.5πa2【解答】解:根据题意条件可知三棱柱是棱长都为a的正三棱柱,上下底面中心连线的中点就是球心,则其外接球的半径为,球的表面积为,故选:B.16.【2017年新课标1理科16】如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△F AB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△F AB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为.【解答】解法一:由题意,连接OD,交BC于点G,由题意得OD⊥BC,OG BC,即OG的长度与BC的长度成正比,设OG=,则BC=2,DG=5﹣,三棱锥的高h,3,则V,令f()=254﹣105,∈(0,),f′()=1003﹣504,令f′()≥0,即4﹣23≤0,解得≤2,则f()≤f(2)=80,∴V4cm3,∴体积最大值为4cm3.故答案为:4cm3.解法二:如图,设正三角形的边长为,则OG,∴FG=SG=5,SO=h,∴三棱锥的体积V,令b()=54,则,令b′()=0,则430,解得=4,∴(cm3).故答案为:4cm3.17.【2011年新课标1理科15】已知矩形ABCD的顶点都在半径为4的球O的球面上,且AB=6,BC=2,则棱锥O﹣ABCD的体积为.【解答】解:矩形的对角线的长为:,所以球心到矩形的距离为:2,所以棱锥O﹣ABCD的体积为:8.故答案为:818.【2010年新课标1理科14】正视图为一个三角形的几何体可以是(写出三种)【解答】解:正视图为一个三角形的几何体可以是三棱锥、三棱柱(放倒的情形)、圆锥、四棱锥等等.故答案为:三棱锥、圆锥、三棱柱.考题分析与复习建议本专题考查的知识点为:空间几何体的结构、三视图和直观图,空间几何体的表面积与体积,空间点、直线、平面之间的位置关系,直线、平面平行、垂直的判定与性质,空间向量及其运算,立体几何中的向量方法(证明平行与垂直、求空间角和距离)等.历年考题主要以选择填空题型出现,重点考查的知识点为:空间几何体的结构、三视图和直观图,空间几何体的表面积与体积,空间点、直线、平面之间的位置关系,直线、平面平行、垂直的判定与性质等.预测明年本考点题目会比较稳定,备考方向以知识点空间几何体的结构、三视图和直观图,空间几何体的表面积与体积,空间点、直线、平面之间的位置关系,直线、平面平行、垂直的判定与性质等为重点较佳.最新高考模拟试题1.在四棱锥P ABCD -中,所有侧棱都为42,底面是边长为26的正方形,O 是P 在平面ABCD 内的射影,M 是PC 的中点,则异面直线OP 与BM 所成角为( ) A .30o B .45oC .60oD .90o【答案】C 【解析】由题可知O 是正方形ABCD 的中心, 取N 为OC 的中点,所以OP MN P , 则BMN ∠是异面直线OP 与BM 所成的角. 因为OP ⊥平面ABCD , 所以MN ⊥平面ABCD ,因为在四棱锥P ABCD -中,所有侧棱都为42,底面是边长为26的正方形, 所以23OC =,所以321225OP =-=,因此5MN =,又在PBC ∆中,2223232245cos 22328PB PC BC BPC PB PC +-+-∠===•⨯,所以22252cos 32824222208BM PB PM PB PM BPC =+-••∠=+-⨯⨯⨯=, 即25BM =, 所以1cos 2MN BMN MB ∠==, 则异面直线OP 与BM 所成的角为60o . 故选C2.已知,m n 是两条不重合的直线,,αβ是两个不重合的平面,下列命题正确的是( )A .若m αP ,m βP ,n α∥,n β∥,则αβPB .若m n ∥,m α⊥,n β⊥,则αβPC .若m n ⊥,m α⊂,n β⊂,则αβ⊥D .若m n ⊥,m αP ,n β⊥,则αβ⊥ 【答案】B 【解析】A 选项,若m αP ,m βP ,n α∥,n β∥,则αβP 或α与β相交;故A 错;B 选项,若m n ∥,m α⊥,则n α⊥,又n β⊥,,αβ是两个不重合的平面,则αβP ,故B 正确;C 选项,若m n ⊥,m α⊂,则n α⊂或n α∥或n 与α相交,又n β⊂,,αβ是两个不重合的平面,则αβP 或α与β相交;故C 错;D 选项,若m n ⊥,m αP ,则n α⊂或n α∥或n 与α相交,又n β⊥,,αβ是两个不重合的平面,则αβP 或α与β相交;故D 错; 故选B3.已知正方体1111ABCD A B C D -的棱长为1,在对角线1A D 上取点M ,在1CD 上取点N ,使得线段MN平行于对角面11A ACC ,则||MN 的最小值为( ) A .1 B .2C .2D .3 【答案】D 【解析】作1MM AD ⊥,垂足为1M ,作1NN CD ⊥,垂足为1N ,如下图所示:在正方体1111ABCD A B C D -中,根据面面垂直的性质定理,可得11,MM NN ,都垂直于平面ABCD ,由线面垂直的性质,可知11MM NN P ,易知:1111//M M A N N ACC 平面,由面面平行的性质定理可知://11M N AC ,设11DM DN x ==,在直角梯形11MM N N 中,222211(2)(12)633MN x x x ⎛⎫=-+-=-+ ⎪⎝⎭,当13x =时,||MN 的最小值为33, 故本题选D.4.如图,某几何体的三视图如图所示,则此几何体的体积为( )A .3B .23C .3D .3【答案】A 【解析】解:根据几何体得三视图转换为几何体为:故:V 11321332=⨯⨯⨯=故选:A .5.已知正四棱锥P ABCD -的所有顶点都在球O 的球面上,2PA AB ==,则球O 的表面积为( )A .2πB .4πC .8πD .16π【答案】C 【解析】解:∵正四棱锥P ﹣ABCD 的所有顶点都在球O 的球面上,P A =AB =2, ∴连结AC ,BD ,交于点O ,连结PO , 则PO ⊥面ABCD ,OA =OB =OC =OD 221122222AC ==+=, OP 22422PB OB =-=-=,∴O 是球心,球O 的半径r 2=,∴球O 的表面积为S =4πr 2=8π. 故选:C .6.已知长方体全部棱长的和为36,表面积为52,则其体对角线的长为( ) A .4 B 29C .223D .17【答案】B 【解析】设长方体的三条棱的长分别为:,,x y z , 则2()524()36xy yz zx x y z ++=⎧⎨++=⎩,22222()2()95229x y z x y z xy yz zx ++=++-++=-=.故选:B .7.如图所示,边长为a 的空间四边形ABCD 中,∠BCD=90°,平面ABD⊥平面BCD ,则异面直线AD 与BC所成角的大小为()A.30°B.45°C.60°D.90°【答案】C【解析】由题意得BC=CD=a,∠BCD=90°,∴BD=2a,∴∠BAD=90°,取BD中点O,连结AO,CO,∵AB=BC=CD=DA=a,∴AO⊥BD,CO⊥BD,且AO=BO=OD=OC=22a,又∵平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,AO⊥BD,∴AO⊥平面BCD,延长CO至点E,使CO=OE,连结ED,EA,EB,则四边形BCDE为正方形,即有BC∥DE,∴∠ADE(或其补角)即为异面直线AD与BC所成角,由题意得AE=a,ED=a,∴△AED为正三角形,∴∠ADE=60°,∴异面直线AD与BC所成角的大小为60°.故选:C.8.鲁班锁起于中国古代建筑中首创的榫卯结构,相传由春秋时代鲁国工匠鲁班所作. 下图是经典的六柱鲁班锁及六个构件的图片,下图是其中一个构件的三视图,则此构件的体积为A .334000mmB .333000mmC .332000mmD .330000mm【答案】C 【解析】由三视图得鲁班锁的其中一个零件是:长为100,宽为20,高为20的长方体的上面的中间部分去掉一个长为40,宽为20,高为10的小长体的一个几何体,如图,∴该零件的体积:V =100×20×20﹣40×20×10=32000(mm 3).故选:C .9.在正方体1111ABCD A B C D -中,动点E 在棱1BB 上,动点F 在线段11A C 上,O 为底面ABCD 的中心,若1,BE x A F y ==,则四面体O AEF -的体积( )A .与,x y 都有关B .与,x y 都无关C .与x 有关,与y 无关D .与y 有关,与x 无关【答案】B 【解析】因为V O -AEF =V E -OAF ,所以,考察△AOF 的面积和点E 到平面AOF 的距离的值, 因为BB 1∥平面ACC 1A 1,所以,点E 到平面AOE 的距离为定值, 又AO∥A 1C 1,所以,OA 为定值,点F 到直线AO 的距离也为定值, 即△AOF 的面积是定值,所以,四面体O AEF -的体积与,x y 都无关,选B 。
2010-2019“十年高考”数学真题 立体几何解析版专项汇总(理数 可下载)
因为 E,F 分别是 PA,AB 的中点,所以 EF P PB .又 CEF 90 ,即 EF⊥CE,
所以 PB⊥CE,得 PB⊥平面 PAC.所以 PB⊥PA,PB⊥PC. 又因为 PA PB PC ,△ABC 是正三角形, 所以 △PAC≌△PBC≌△PAB ,故 PA PC ,所以正三棱锥 P ABC 的三
【解析】如图所示,联结 BE , BD .因为点 N 为正方形 ABCD 的中心, △ECD 为正三角形,平面 ECD 平面 ABCD , M 是线段 ED 的中点,所以 BM 平面 BDE , EN 平面 BDE ,因为 BM 是△BDE 中 DE 边上的中线, EN 是△BDE 中 BD 边上的中线, 直线 BM , EN 是相交直线,设 DE a ,则
则点 D 到平面 ABC 的最大距离 d1 d 4 6 ,
所以三棱锥
D
ABC
体积的最大值 Vmax
1 3
S
ABC
6
19 3
3 6 18
3.
故选 B.
8.(2018 北京)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为
对于 B, 内有两条相交直线与 平行,则∥ ;
对于 C, , 平行于同一条直线,则 与 相交或∥ ,排除;
对于 D, , 垂直于同一平面,则 与 相交或∥ ,排除.故选 B.
2.(2019 全国Ⅲ理 8)如图,点 N 为正方形 ABCD 的中心,△ECD 为正三角形,平面 ECD⊥ 平面 ABCD,M 是线段 ED 的中点,则 A.BM=EN,且直线 BM、EN 是相交直线 B.BM≠EN,且直线 BM,EN 是相交直线 C.BM=EN,且直线 BM、EN 是异面直线 D.BM≠EN,且直线 BM,EN 是异面直线 【答案】B.
【数学】2010年高考数学选择试题分类汇编——立体几何(2)
2010年高考数学试题分类汇编——立体几何(2010浙江理数)(6)设l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是 (A )若l m ⊥,m α⊂,则l α⊥ (B )若l α⊥,l m //,则m α⊥ (C )若l α//,m α⊂,则l m // (D )若l α//,m α//,则l m //解析:选B ,可对选项进行逐个检查。
本题主要考察了立体几何中线面之间的位置关系及其中的公理和判定定理,也蕴含了对定理公理综合运用能力的考察,属中档题(2010全国卷2理数)(11)与正方体1111ABCD A B C D -的三条棱AB 、1CC 、11A D 所在直线的距离相等的点(A )有且只有1个 (B )有且只有2个 (C )有且只有3个 (D )有无数个 【答案】D【解析】直线上取一点,分别作垂直于于则分别作,垂足分别为M ,N ,Q ,连PM ,PN ,PQ ,由三垂线定理可得,PN ⊥PM ⊥;PQ ⊥AB ,由于正方体中各个表面、对等角全等,所以,∴PM=PN=PQ ,即P 到三条棱AB 、CC 1、A 1D 1.所在直线的距离相等所以有无穷多点满足条件,故选D.(2010全国卷2理数)(9)已知正四棱锥S ABCD -中,23SA =,那么当该棱锥的体积最大时,它的高为(A )1 (B )3 (C )2 (D )3 【答案】C【命题意图】本试题主要考察椎体的体积,考察告辞函数的最值问题.【解析】设底面边长为a ,则高所以体积,设,则,当y 取最值时,,解得a=0或a=4时,体积最大,此时,故选C.(2010陕西文数) 8.若某空间几何体的三视图如图所示,则该几何体的体积是 [B](A )2 (B )1(C )23(D )13解析:本题考查立体图形三视图及体积公式 如图,该立体图形为直三棱柱 所以其体积为122121=⨯⨯⨯(2010辽宁文数)(11)已知,,,S A B C 是球O 表面上的点,SA ABC ⊥平面,AB BC ⊥,1SA AB ==,2BC =,则球O 的表面积等于(A )4π (B )3π (C )2π (D )π解析:选A.由已知,球O 的直径为22R SC ==,∴表面积为244.R ππ=(2010辽宁理数)(12) (12)有四根长都为2的直铁条,若再选两根长都为a 的直铁条,使这六根铁条端点处相连能够焊接成一个三棱锥形的铁架,则a 的取值范围是(A)(0,62+) (B)(1,22) (C) (62-,62+) (D) (0,22)【答案】A【命题立意】本题考查了学生的空间想象能力以及灵活运用知识解决数学问题的能力。
2010年高考试题分类练习(立体几何)理科2(答案版)
2010年高考试题分类练习(理科:立体几何)(二)答案曾劲松 整理一.选择题1.B .2.D .3.D .解析:直线B 1D 上取一点P ,连接P A 、PB 、PC 、PC 1、P A 1、PD 1,易知△P AB ≌△PCC 1≌△P A 1PD 1,于是这3个三角形的高相等,即P 到三条棱AB 、CC 1、A 1D 1所在直线的距离相等,所以有无穷多点满足条件,故选D .4.B .解析:根据对称性可知,外接球的球心为上下两底连线的中点,在1R t AO O ∆中,1123232a AO O O =⨯==,2222()3212a O A R ==+=1272a,所以27744123a a S R πππ==⨯=球372a π. 5.B .解析:过CD 作平面PCD ,使AB ⊥平面PCD ,交AB 与P ,设点P 到CD 的距离为h ,则有AB CD11222323V h h =⨯⨯⨯⨯=四面体,当直径通过AB 与CD 的中点时,max h ==m ax 3V =6.D .解析:面EFQ 即为面11DCB A ,连结1AD ,由正方体的性质可得⊥1AD 面11DCB A ,过P 作PN ∥1AD ,交D A 1于N 点,则有⊥PN 面11DCB A ,即⊥PN 面EFQ ,又z PD PN 2245cos =︒=,222121211=⨯⨯=⨯=∆C B EF S EFQ ,由z z PN S V EFQ EFQ P 312223131=⨯=⨯=∆-.7.C .解析:设底面边长为a ,则高212)22(222aa SAh -=-=,所以体积54221123131aa h a V -==,设642112a a y -=,则53348a a y -=',当y 取最值时,解得a =0或a =4时(a =0舍去),体积最大,此时22122=-=ah .二.填空题8.144. 9.4. 104.解析:过点A 作平面β的垂线,垂足为C ,在β内过C 作l 的垂线.垂足为D .连结AD ,可知AD ⊥l ,故∠ADC 为二面角l αβ--的平面角,为60°.又由已知,∠ABD =30°.连结CB ,则∠ABC 为A B 与平面β所成的角.设AD =2,则ACCD =1,AB =sin 30A D =4,∴sin ∠ABC=4A C A B=.11.321S S S <<.解析:由题意OC OB OA ,,,两两垂直,可将其放置在以O 为一顶点的长方体中,设三边OC OB OA ,,分别为c b a >>,从而易得22121cb a S +=,22221ca b S +=,22321bac S +=,()(222222214141ca b aS S -+=-)(222222241baccb a b-=+ )()2222241baccb -=+,又b a >,所以02221>-S S,即21S S >.同理,用平方后作差法可得32S S >.∴123S S S <<.三.解答题12.方法一:如图所示,建立空间直角坐标系,点A 为坐标原点,设1AB =,依题意得(0,2,0)D ,(1,2,1)F ,1(0,0,4)A ,31,,02E ⎛⎫⎪⎝⎭.(1)解:易得10,,12E F ⎛⎫= ⎪⎝⎭,1(0,2,4)A D =-.于是1113cos ,5EF A D EF A D EF A D==-.所以异面直线E F 与1A D 所成角的余弦值为35.(2)证明:已知(1,2,1)AF = ,131,,42EA ⎛⎫=-- ⎪⎝⎭ ,11,,02E D ⎛⎫=- ⎪⎝⎭ .于是A F ·1E A =0,A F ·E D=0.α∙AB∙βCD∙因此,1AF EA ⊥,AF ED ⊥,又1EA ED E ⋂=,所以A F ⊥平面1A ED .(3)解:设平面E F D 的法向量(,,)u x y z = ,则 ,即102102y z x y ⎧+=⎪⎪⎨⎪-+=⎪⎩.不妨令x =1,可得(1,21u →=-).由(2)可知,A F →为平面1A ED 的一个法向量.于是2cos,==3||A F A F|A F|u u u →→→→→→∙,从而sin ,=3AF u →→.所以二面角1A -ED -F的正弦值为3.方法二:(1)解:设AB =1,可得AD =2,AA 1=4,CF =1.CE =12.连接B 1C ,BC 1,设B 1C 与BC 1交于点M ,易知A 1D ∥B 1C ,由1C E C F 1==C BC C 4,可知EF ∥BC 1.故BMC ∠是异面直线EF 与A 1D所成的角,易知BM =CM=11B C 2,所以2223cos 25BMC MBCBM C BM CM +-∠==,所以异面直线FE 与A 1D 所成角的余弦值为35(2)证明:连接AC ,设AC 与DE 交点N 因为12C D EC BCAB==,所以RtDCE ~RtCBA , 从而CDE BCA ∠=∠, 又由于90CDE CED ∠+∠=︒, 所以90BCA CED ∠+∠=︒,故AC ⊥DE ,又因为CC 1⊥DE 且1CC AC C ⋂=,所以DE ⊥平面ACF ,从而AF ⊥DE . 连接BF ,同理可证B 1C ⊥平面ABF ,从而AF ⊥B 1C ,所以AF ⊥A 1D 因为1DE A D D ⋂=,所以AF ⊥平面A 1ED .(3)解:连接A 1N .FN ,由(2)可知DE ⊥平面ACF ,又NF ⊂平面ACF , A 1N ⊂平面ACF ,所∙以DE ⊥NF ,DE ⊥A 1N ,故1A N F ∠为二面角A 1-ED -F 的平面角.易知R t C N ER t C ∆∆ ,所以C N E C B CA C=,又AC =所以5C N =,在1305Rt N C F N F Rt A AN ∆==中,在中,在Rt △A 1AN中,15N A ==.连接A 1C 1,A 1F在111Rt A C F A F ∆==中,222111112cos 23A N FN A FRt A N F A N F A N FN +-∆∠==∙在中,.所以1sin 3A N F ∠=所以二面角A 1-DE -F正弦值为3.13.方法一:(Ⅰ)解:取EF 的中点H ,连结A H ', A E A F ''=及H 是EF 的中点,∴A H EF '⊥. 又因为平面A E F '⊥平面BEF ,及A H '⊂平面.A EF '所以A H '⊥平面BEF . 如图建立空间直角坐标系.A xyz -则(2,2,(10,8,0),(4,0,0),(10,0,0).A C F D '故(2,2,(6,0,0)FN FD =-=.设(,,)n x y z = 为平面A F D '的一个法向量,所以22060x y x ⎧-++=⎪⎨=⎪⎩.取(0,z n ==-则.又平面BEF 的一个法向量(0,0,1)m =,故cos ,3||||n m n m n m ⋅<>==⋅.3(Ⅱ)解:设x FM =,£¬(4,0,0)FM x M x =+则.因为翻折后,C 与A 重合,所以CM =A M '.∙故222222(6)80(2)2x x -++=--++,得214x =.经检验,此时点N 在线段BG 上,所以21.4F M =方法二:(Ⅰ)解:取截段EF 的中点H ,AF 的中点G ,连结A G ',NH ,GH . 因为A E A F ''=及H 是EF 的中点,所以A 'H //EF . 又因为平面A 'EF ⊥平面BEF ,所以A 'H `⊥平面BEF , 又AF ⊂平面BEF ,故A H AF '⊥,又因为G ,H 是AF ,EF 的中点,易知GH //AB , 所以GH AF ⊥,于是AF ⊥面A 'GH , 所以A GH '∠为二面角A '—DF —C 的平面角,在Rt A GH '∆中,2,A H G H A G ''===,所以cos 3A G H '∠=故二面角A '—DF —C 的余弦值为3.(Ⅱ)解:设FM x =,因为翻折后,G 与A '重合,所以CM A M '⊥, 而222228(6)CMDC DMx =+=+-,222222222(2)2A MA H M HA HM G G Hx '''=+=++-+++,得214x =经检验,此时点N 在线段BC 上,所以21.4F M =14.(Ⅰ)证明:在ABC ∆中,因为45ABC ∠=°,BC =4,AB =所以2222cos 458AC AB BC AB BC =+-⋅⋅=,因此AC =. 故222BCACAB =+,所以090B A C ∠=.又PA ⊥平面ABCDE ,AB //CD ,所以,C D P A C D A C ⊥⊥.又P A ,AC ⊂平面P AC ,且P A ∩AC =A ,所以CD ⊥平面P AC ,又CD ⊂平面PCD , 所以平面PCD ⊥平面P AC . (Ⅱ)解法一:因为A P B ∆是等腰三角形,所以PA AB ==4PB ==.又AB //CD ,所以点B 到平面PCD 的距离等于点A 到平面PCD 的距离. 由于CD ⊥平面P AC ,在Rt PAC ∆中,P A A C ==PC =4.故PC 边上的高为2,此即为点A 到平面PCD 的距离,所以B 到平面PCD 的距离为 2.h = 设直线PB 与平面PCD 所成的角为θ,则21sin 42h P Bθ===,又[,0]2πθ∈,所以.6πθ=解法二:由(Ⅰ)知AB ,AC ,AP 两两相互垂直,分别以AB ,AC ,AP 为x 轴,z 轴建立如图. 所示的空间直角坐标系,由于P A B ∆是等腰三角形,所以PA AB ==又AC =,因此(0,0,0),0,0),(0,0),(0,0,A B C P 因为AC //DE ,CD AC ⊥, 所以四边形ACDE 是直角梯形,因为02,45,//AE ABC AE BC =∠=.所以0135B A E ∠=,因此045C A E ∠=,故0sin 4522C D AE =⋅=⨯=,所以(0)D .因此(0,(0,0)C P C D =-=. 设(,,)m x y z =是平面PCD 的一个法向量,则0,0m C P m C D ⋅=⋅=,解得0,x y z ==,取1,(0,1,1)y m ==得.又(0,BP =-,设θ表示向量B P与平面PCD 的法向量m 所成的角,则1cos 2||||m B P m B P θ⋅== , 所以3πθ=,因此直线PB 与平面PCD 所成的角为.6π(Ⅲ)因为AC //ED ,CD AC ⊥,所以四边形ACDE 是直角梯形.因为02,45,//AE ABC AE BC =∠=, 所以0135B A E ∠=, 因此045C A E ∠=.故0sin 4522C D AE =⋅=⨯=, 0cos 4522ED AC AE =-⋅=⨯=所以 3.2A C D E S ==四边形 又PA ⊥平面ABCDE ,所以133P C D E V -=⨯⨯=15.解法一 :(I )⊥A A 1 平面ABC ,⊂BC 平面ABC ,BC A A ⊥∴1.AB 是圆O 的直径, AC BC ⊥∴.又A A A AC =1 , ⊥∴BC 平面11ACC A ,而⊂BC 平面11BCC B ,所以平面11ACC A ⊥平面11BCC B . (II )(i )设圆柱的底面半径为r ,则r AA AB 21==, 故三棱柱111_C B A ABC 的体积r AC V ⋅⋅=⋅⋅=BC AC 2r BC 211.又22224r AB BC AC==+ , 22222r BC ACBC AC =+≤⋅∴.当且仅当r BC AC 2==时等号成立.从而,312r V ≤.而圆柱的体积3222r r r V ππ=⋅=,故ππ1223321=≤=rrVV p ,当且仅当r BC AC 2==,即AB OC ⊥时等号成立.所以,p 的最大值等于π1.(ii )由(i )可知p 取最大值时,AB OC ⊥.于是以O 为坐标原点,建立空间直角坐标系xyz O -(如图). 则)0,0,(r C ,)0,,0(r B ,)2,,0(1r r B .⊥BC 平面11ACC A ,)0,,(r r BC -=∴→是平面11ACC A 的一个法向量.设平面OC B 1的法向量),,(z y x n =→.由⎪⎩⎪⎨⎧⊥⊥→→→→1OBn OCn ,得⎩⎨⎧=+=020rz ry rx ,解得⎩⎨⎧-==z y x 20.取1=z ,得平面OC B 1的一个法向量为)1,2,0(-=n .900≤<θ,解法二:(I )同解法一(II )(i )设圆柱的底面半径为r ,则r AA AB 21==, 故三棱柱111_C B A ABC 的体积r AC V ⋅⋅=⋅⋅=BC AC 2r BC 211设)900(<<=∠ααBAC ,则ααcos 2cos r AB AC ==,αsin 2r BC =, 由于22222sin 2cos sin 4r r r BC AC ≤==⋅ααα,当且仅当12sin =α即45=α时等号成立,故312r V ≤.而圆柱的体积3222r r r V ππ=⋅=,故ππ1223321=≤=rrVV p ,当且仅当12sin =α即45=α时等号成立.所以,p 的最大值等于π1.(ii )同解法一. 解法三:(I )同解法一.(II )(i )设圆柱的底面半径r ,则r AA AB 21==,故圆柱的体积3222r r r V ππ=⋅=. 因为VV p 1=,所以当1V 取得最大值时,p 取得最大值.又因为点C 在圆周上运动,所以当AB OC ⊥时,ABC ∆的面积最大.进而,三棱柱111_C B A ABC 的体积最大,且其最大值为322221r r r r =⋅⋅⋅.故p 的最大值等于π1.(ii )同解法一.。
2010年高考数学试题分类汇编立体几何
2010年高考数学试题分类汇编——立体几何1.(2010年山东卷理科)在空间,下列命题正确的是( )(A )平行直线的平行投影重合(B )平行于同一直线的两个平面平行(C )垂直于同一平面的两个平面平行(D )垂直于同一平面的两条直线平行 2.( 2010年全国卷I 理科)已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为( )(A)3(B)3(C) (D)33.(2010年福建卷理科)如图,若Ω是长方体1111ABC D -A B C D 被平面E F G H 截去几何体11EFG H B C 后得到的几何体,其中E 为线段11A B 上异于1B 的点,F 为线段1B B 上异于1B 的点,且E H ∥11A D ,则下列结论中不.正确..的是( ) A. E H ∥F G B.四边形E F G H 是矩形 C. Ω是棱柱 D. Ω是棱台3题图 4题图4.(2010年安徽卷理科)一个几何体的三视图如图,该几何体的表面积为( )A 、280B 、292C 、360D 、3725.(2010年广东卷理科)如图,△ ABC 为直角三角形,A A '//B B ' //C C ' , C C ' ⊥平面ABC 且3A A '=32B B '=C C ' =AB,则多面体△ABC -A B C '''的正视图(也称主视图)是( )6.(2010年宁夏卷)设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为( ) (A) 2a π(B)273a π(C)2113a π (D) 25a π7.(2010年浙江卷)设m,l 是两条不同的直线,α是一个平面,则下列命题正确的是( )CA9.(2010年全国2卷理数)与正方体1111ABC D A B C D -的三条棱A B 、1C C 、11A D 所在直线的距离相等的点( )(A )有且只有1个 (B )有且只有2个(C )有且只有3个 (D )有无数个10.(2010年湖北卷理科)圆柱形容器内部盛有高度为8 cm 的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是 cm . 11.(2010年江西卷理科)如图,在三棱锥O A B C -中,三条棱O A ,O B ,O C 两两垂直,且O A O B O C >>,分别经过三条棱O A ,O B ,O C 作一个截面平分三棱锥的体积,截面面积依次为1S ,2S ,3S ,则1S ,2S ,3S 的大小关系为 .12.(2010年浙江卷)若某几何体的正视图(单位:cm )如图所示,则此几何体的体积是____cm 3. 13.(2010年全国2卷理数)已知球O 的半径为4,圆M 与圆N 为该球的两个小圆,A B 为圆M 与圆N 的公共弦,4A B =.若3O M O N ==,则两圆圆心的距离M N = . 14.(2010年上海市理科)如图所示,在边长为4的正方形纸片ABCD 中,AC 与BD 相交于O,剪去A O B ,将剩余部分沿OC 、OD 折叠,使OA 、OB 重合,则以A 、(B )、C 、D 、O 为顶点的四面体的体积为 。
十年上海高考数学真题专题汇编-立体几何专题
ABDCA 1B 1C 1D 1立体几何【2010年上海文6】已知四棱椎P ABCD −的底面是边长为6的正方形,侧棱PA ⊥底面ABCD ,且8PA =,则该四棱椎的体积是 .【2010年上海理12】如图所示,在边长为4的正方形ABCD 纸片中,A C 与BD 相交于O ,剪去AOB ,将剩余部分沿OC 、OD 折叠,使OA 、OB 重合,则以A 、()B 、C 、D 、O 为顶点的四面体的体积为 。
【2011年上海理7】 若圆锥的侧面积为2π,底面面积为π,则该圆锥的体积为 . 【2011年上海文7】若一个圆锥的主视图(如图所示)是边长为3,3,2的三角形,则该圆锥的侧面积为【2011年上海文20】已知1111ABCD A B C D −是底面边长为1的正四棱柱,高12AA =,求 (1)异面直线BD 与1AB 所成角的大小(结果用反三角函数值表示); (2)四面体11AB D C 的体积.O 1D 1C 1B 1A 1CDBA【2011年上海理21】已知1111ABCD A B C D −是底面边长为1的正四棱柱,1O 为11A C 与11B D 的交点.(1)设1AB 与底面1111A B C D 所成角的大小为α,二面角111A B D A −−的大小为β.求证:tan 2tan βα=;(2)若点C 到平面111A B D 的距离为43,求正四棱柱1111ABCD A B C D −的高.【2012年上海理8】若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为 .【2012年上海理14】如图,AD 与BC 是四面体ABCD 中互相垂直的棱,2BC =,若2AD c =,且2AB BD AC CD a +=+=,其中,a c 为常数,则四面体ABCD 的体积的最大值是 .【2012年上海理19】如图,在四棱锥P ABCD −中,底面ABCD 是矩形,PA ⊥底面ABCD ,E 是PC 的中点,已知2AB =,22AD =,2PA =,求:(1)三角形PCD 的面积;(2)异面直线BC 与AE 所成的角的大小 .【2012年上海文19】如图,在三棱锥P ABC −中,PA ⊥底面ABC ,D 是PC 的中点,已知∠BAC =2π,2AB =,23AC =,2PA =,求: (1)三棱锥P ABC −的体积;(2)异面直线BC 与AD 所成的角的大小(结果用反三角函数值表示).PABCD【2013年上海文10】已知圆柱Ω的母线长为l ,底面半径为r ,O 是上底面圆心,A B 、是下底面圆周上的两个不同的点,BC 是母线,如图.若直线OA 与BC 所成角的大小为6π,则rl= .【2013年上海理13】在xOy 平面上,将两个半圆弧22(1)1(1)x y x −+=≥和22(3)1(3)x y x −+=≥、两条直线1y =和1y =−围成的封闭图形记为D ,如图中阴影部分.记D 绕y 轴旋转一周而成的几何体为Ω,过(0,)(||1)y y ≤作Ω的水平截面,所得截面面积为2418y ππ−+,试利用祖暅原理、一个平放的圆柱和一个长方体,得出Ω的体积值为__________【2013年上海理19】(本题满分12分)如图,在长方体1111ABCD A B C D −中,2AB =,1AD =,11AA =,证明直线1BC 平行于平面1DA C ,并求直线1BC 到平面1DA C 的距离.D 1C 1B 1A 1D C BA【2013年上海文19】(本题满分12分)如图,正三棱锥O ABC −的底面边长为2,高为1,求该三棱锥的体积及表面积。
2010-2014年文科数学高考题分类汇编—立体几何
立体几何 20109.如图1,ABC 为正三角形,'''////AA BB CC ,''''32CC BB CC AB ⊥===平面ABC 且3AA ,则多面体'''ABC A B C -的正视图(也称主视图)是提示:选D18.(本小题满分14分)如图4,AEC AEC 是半径为a 的半圆,AC 为直径,点E 为AC的中点,点B 和点C 为线段AD 的三等分点,平面AEC 外一点F满足FC ⊥平面BED ,FB =5a . (1)证明:EB FD ⊥;(2)求点B 到平面FED 的距离.(1) 证明:∵FC ⊥平面BED ,BE ⊂面BED ,∴FC⊥BE ,∵在半圆弧点E 为AC 的中点,∴BE ⊥BC ,又BC ∩FC=CBE ⊥面BCF ,FD ⊂面BCF ,∴EB FD ⊥(2)点B 到平面FED 的距离是锥体B-EFD 的高,并设为h ,下面先求△EFD 的面积,∵△EBC 为等腰直角△,BC=a ,FB =5a .FC=2a∴EC=a 2∴EF=a 6,ED=a 5,FD=a 5,从而得△EFD 底边EF 上的高是a a a 214)26(522=-, ∴△EFD 的面积为2221214621a a a =⨯ 另一方面锥体B-EFD 的体积就是锥体F-BED S △EFD =2221a a a =⨯锥体F-BED 的高是FC=2a ,利用体积相等得a a h a 222122⨯=⨯ ∴h=21214既点B 到面FED 的距离为21214 20117.正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱对角线的条数共有( )A .20B .15C .12D .10【命题意图】本题考查学生的空间想象能力,难度较大.【解析】下底面有5个点,每个下底面的点对应上底面的5个点中,符合条件的只有2个,故总共有10条,选D.9.如图1-3,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别为等边三角形、等腰三角形和菱形,则该几何体体积为( )A .B .C .D . 2【命题意图】本题考查简单几何体的三视图和体积计算,是中档题.【解析】由三视图知,此几何体是底面边长为2,短对角线为2的菱形,顶点在底面上的射影为菱形的中心,一条侧棱长为,∴底面积为2121142-⨯⨯=,高为22(23)(3)-=3,故12333V =⨯⨯=,故选C.18(本小题满分13分)如图所示,将高为2,底面半径为1的直圆柱沿过轴的平面切开后,将其中一半沿切面水平向右平移得到的,,,,A A B B ''分别为,,,,CD C D DE D E ''''的中点,1122,,,'O O O O '分别为,,,CD C D DE D E ''''的中点.(Ⅰ)证明:12',,,O A O B '四点共面;(Ⅱ)设G 为AA '中点,延长1''A O 到H ',使得11''O H A O ''=,证明: 2'BO ''⊥面H B G .【命题意图】本题考查空间点共面、线线平行与垂直,线面垂直与平行等基础知识,考查空间想象能力、逻辑推理能力,是中档题.【解析】(Ⅰ)易得:∵1O A C CEE ''''⊥面,2BO C CEE ''⊥面,∴12//O A BO '',∴12,,,O A B O ''共面. (Ⅱ) ∵2H B O B ''''⊥,H B BB '''⊥,∴2H B O B B '''⊥面,∴2O B H B ''⊥,延长1AO 至H ,使1O H =1AO ,连结1HO ',1O A ',1O A '交GH '于点I ,显然211////O B HO O A ''', 在正方形AA H H ''中,tan GH A ''=1tan O A A '=12, ∴1GH A O A A '''∠=∠,∴1GH A H A O ''''∠+∠=0190O A A H A O '''∠+∠=,∴090H IA ''∠=,即1H G A O ''⊥, ∴2O B H G ''⊥, ∴2BO H B G '''⊥面.20127.某几何体的三视图如图1所示,它的体积为( )()A 72π ()B 48π ()C π30 ()D π24【解析】选C 几何体是半球与圆锥叠加而成 它的体积为3222141335330233V πππ=⨯⨯+⨯⨯⨯-= 18.(本小题满分13分)如图5所示,在四棱锥P ABCD -中,AB ⊥平面PAD ,//,AB CD PD AD =,E 是PB 中点,F 是DC 上的点,且12DF AB =,PH 为PAD ∆中AD 边上的高。
十年真题(2010-2019)高考数学真题分类汇编专题09立体几何文(含解析)
专题09立体几何历年考题细目表质17解答题2013垂直关系的判定与性质2013年北京文科17解答题2012垂直关系的判定与性质2012年北京文科16解答题2011空间角与空间距离2011年北京文科17解答题2010垂直关系的判定与性质2010年北京文科17历年高考真题汇编1.【2018年北京文科06】某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( )A.1 B.2 C.3 D.4【解答】解:四棱锥的三视图对应的直观图为:PA⊥底面ABCD,AC,CD,PC=3,PD=2,可得三角形PCD不是直角三角形.所以侧面中有3个直角三角形,分别为:△PAB,△PBC,△PAD.故选:C.2.【2017年北京文科06】某三棱锥的三视图如图所示,则该三棱锥的体积为()A.60 B.30 C.20 D.10【解答】解:由三视图可知:该几何体为三棱锥,该三棱锥的体积10.故选:D.3.【2015年北京文科07】某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()A.1 B.C.D.2【解答】解:由三视图知:几何体是四棱锥,且四棱锥的一条侧棱与底面垂直,底面为正方形如图:其中PB⊥平面ABCD,底面ABCD为正方形∴PB=1,AB=1,AD=1,∴BD,PD.PC═该几何体最长棱的棱长为:故选:C.4.【2013年北京文科08】如图,在正方体ABCD﹣A1B1C1D1中,P为对角线BD1的三等分点,P到各顶点的距离的不同取值有()A.3个B.4个C.5个D.6个【解答】解:建立如图所示的空间直角坐标系,不妨设正方体的棱长|AB|=3,则A(3,0,0),B(3,3,0),C(0,3,0),D(0,0,0),A1(3,0,3),B1(3,3,3),C1(0,3,3),D1(0,0,3),∴(﹣3,﹣3,3),设P(x,y,z),∵(﹣1,﹣1,1),∴(2,2,1).∴|PA|=|PC|=|PB1|,|PD|=|PA1|=|PC1|,|PB|,|PD1|.故P到各顶点的距离的不同取值有,3,,共4个.故选:B.5.【2012年北京文科07】某三棱锥的三视图如图所示,该三棱锥的表面积是()A.28+6B.30+6C.56+12D.60+12【解答】解:三视图复原的几何体是底面为直角边长为4和5的三角形,一个侧面垂直底面的等腰三角形,高为4,底边长为5,如图,所以S底10,S后,S右10,S左6.几何体的表面积为:S=S底+S后+S右+S左=30+6.故选:B.6.【2011年北京文科05】某四棱锥的三视图如图所示,该四棱锥的表面积是()A.16B.16+16C.32D.16+32【解答】解:由已知中的三视力可得该几何体是一个四棱锥,棱锥的底面边长为4,故底面面积为16,棱锥的高为2,故侧面的高为:2,则每个侧面的面积为:4,故棱锥的表面积为:16+16,故选:B.7.【2010年北京文科05】一个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如图所,则该几何体的俯视图为( )A.B.C.D.【解答】解:由正视图可知去掉的长方体在正视线的方向,从侧视图可以看出去掉的长方体在原长方体的左侧,由以上各视图的描述可知其俯视图符合C选项.故选:C.8.【2010年北京文科08】如图,正方体ABCD﹣A1B1C1D1的棱长为2,动点E、F在棱A1B1上.点Q是CD的中点,动点P在棱AD上,若EF=1,DP=x,A1E=y(x,y大于零),则三棱锥P﹣EFQ的体积()A.与x,y都有关B.与x,y都无关C.与x有关,与y无关D.与y有关,与x无关【解答】解:三棱锥P﹣EFQ的体积与点P到平面EFQ的距离和三角形EFQ的面积有关,由图形可知,平面EFQ与平面CDA1B1是同一平面,故点P到平面EFQ的距离是P到平面CDA1B1的距离,且该距离就是P到线段A1D 的距离,此距离只与x有关,因为EF=1,点Q到EF的距离为线段B1C的长度,为定值,综上可知所求三棱锥的体积只与x有关,与y无关.故选:C.9.【2019年北京文科12】某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为l,那么该几何体的体积为.【解答】解:由三视图还原原几何体如图,该几何体是把棱长为4的正方体去掉一个四棱柱,则该几何体的体积V.故答案为:40.10.【2019年北京文科13】已知l,m是平面α外的两条不同直线.给出下列三个论断:①l⊥m;②m∥α;③l⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:.【解答】解:由l,m是平面α外的两条不同直线,知:由线面平行的判定定理得:若l⊥α,l⊥m,则m∥α.故答案为:若l⊥α,l⊥m,则m∥α.11.【2016年北京文科11】某四棱柱的三视图如图所示,则该四棱柱的体积为.【解答】解:由已知中的三视图可得:该几何体上部是一个以俯视图为底面四棱柱,棱柱的底面面积S(1+2)×1,棱柱的高为1,故棱柱的体积V,故答案为:12.【2014年北京文科11】某三棱锥的三视图如图所示,则该三棱锥最长棱的棱长为.【解答】解:由主视图知CD⊥平面ABC,设AC中点为E,则BE ⊥AC,且AE=CE=1;由主视图知CD=2,由左视图知BE=1,在Rt△BCE中,BC,在Rt△BCD中,BD,在Rt△ACD中,AD=2.则三棱锥中最长棱的长为2.故答案为:2.13.【2013年北京文科10】某四棱锥的三视图如图所示,该四棱锥的体积为.【解答】解:几何体为底面边长为3的正方形,高为1的四棱锥,所以体积.故答案为:3.14.【2019年北京文科18】如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD为菱形,E为CD的中点.(Ⅰ)求证:BD⊥平面PAC;(Ⅱ)若∠ABC=60°,求证:平面PAB⊥平面PAE;(Ⅲ)棱PB上是否存在点F,使得CF∥平面PAE?说明理由.【解答】证明:(Ⅰ)∵四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD为菱形,∴BD⊥PA,BD⊥AC,∵PA∩AC=A,∴BD⊥平面PAC.(Ⅱ)∵在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD为菱形,E为CD的中点,∠ABC=60°,∴AB⊥AE,PA⊥AE,∵PA∩AB=A,∴AE⊥平面PAB,∵AE⊂平面PAE,∴平面PAB⊥平面PAE.解:(Ⅲ)棱PB上是存在中点F,使得CF∥平面PAE.理由如下:取AB中点G,连结GF,CG,∵在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD为菱形,E为CD的中点,∴CG∥AE,FG∥PA,∵CG∩FG=G,AE∩PA=A,∴平面CFG∥平面PAE,∵CF⊂平面CFG,∴CF∥平面PAE.15.【2018年北京文科18】如图,在四棱锥P﹣ABCD中,底面ABCD 为矩形,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,E,F分别为AD,PB的中点.(Ⅰ)求证:PE⊥BC;(Ⅱ)求证:平面PAB⊥平面PCD;(Ⅲ)求证:EF∥平面PCD.【解答】证明:(Ⅰ)PA=PD,E为AD的中点,可得PE⊥AD,底面ABCD为矩形,可得BC∥AD,则PE⊥BC;(Ⅱ)由于平面PAB和平面PCD有一个公共点P,且AB∥CD,在平面PAB内过P作直线PG∥AB,可得PG∥CD,即有平面PAB∩平面PCD=PG,由平面PAD⊥平面ABCD,又AB⊥AD,可得AB⊥平面PAD,即有AB⊥PA,PA⊥PG;同理可得CD⊥PD,即有PD⊥PG,可得∠APD为平面PAB和平面PCD的平面角,由PA⊥PD,可得平面PAB⊥平面PCD;(Ⅲ)取PC的中点H,连接DH,FH,在三角形PCD中,FH为中位线,可得FH∥BC,FH BC,由DE∥BC,DE BC,可得DE=FH,DE∥FH,四边形EFHD为平行四边形,EF⊄平面PCD,DH⊂平面PCD,即有EF∥平面PCD.16.【2017年北京文科18】如图,在三棱锥P﹣ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.(1)求证:PA⊥BD;(2)求证:平面BDE⊥平面PAC;(3)当PA∥平面BDE时,求三棱锥E﹣BCD的体积.【解答】解:(1)证明:由PA⊥AB,PA⊥BC,AB⊂平面ABC,BC⊂平面ABC,且AB∩BC=B,可得PA⊥平面ABC,由BD⊂平面ABC,可得PA⊥BD;(2)证明:由AB=BC,D为线段AC的中点,由PA⊥平面ABC,PA⊂平面PAC,可得平面PAC⊥平面ABC,又平面PAC∩平面ABC=AC,BD⊂平面ABC,且BD⊥AC,即有BD⊥平面PAC,BD⊂平面BDE,可得平面BDE⊥平面PAC;(3)PA∥平面BDE,PA⊂平面PAC,且平面PAC∩平面BDE=DE,可得PA∥DE,又D为AC的中点,可得E为PC的中点,且DE PA=1,由PA⊥平面ABC,可得DE⊥平面ABC,可得S△BDC S△ABC2×2=1,则三棱锥E﹣BCD的体积为DE•S△BDC1×1.17.【2016年北京文科18】如图,在四棱锥P﹣ABCD中,PC⊥平面ABCD,AB∥DC,DC⊥AC.(1)求证:DC⊥平面PAC;(2)求证:平面PAB⊥平面PAC;(3)设点E为AB的中点,在棱PB上是否存在点F,使得PA∥平面CEF?说明理由.【解答】(1)证明:∵PC⊥平面ABCD,DC⊂平面ABCD,∴PC⊥DC,∵DC⊥AC,PC∩AC=C,∴DC⊥平面PAC;(2)证明:∵AB∥DC,DC⊥AC,∴AB⊥AC,∵PC⊥平面ABCD,AB⊂平面ABCD,∴PC⊥AB,∵PC∩AC=C,∴AB⊥平面PAC,∵AB⊂平面PAB,∴平面PAB⊥平面PAC;(3)解:在棱PB上存在中点F,使得PA∥平面CEF.∵点E为AB的中点,∴EF∥PA,∵PA⊄平面CEF,EF⊂平面CEF,∴PA∥平面CEF.18.【2015年北京文科18】如图,在三棱锥V﹣ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC,O,M分别为AB,VA的中点.(1)求证:VB∥平面MOC;(2)求证:平面MOC⊥平面VAB(3)求三棱锥V﹣ABC的体积.【解答】(1)证明:∵O,M分别为AB,VA的中点,∴OM∥VB,∵VB⊄平面MOC,OM⊂平面MOC,∴VB∥平面MOC;(2)∵AC=BC,O为AB的中点,∴OC⊥AB,∵平面VAB⊥平面ABC,OC⊂平面ABC,∴OC⊥平面VAB,∵OC⊂平面MOC,∴平面MOC⊥平面VAB(3)在等腰直角三角形ACB中,AC=BC,∴AB=2,OC=1,∴S△VAB,∵OC⊥平面VAB,∴V C﹣VAB•S△VAB,∴V V﹣ABC=V C﹣VAB.19.【2014年北京文科17】如图,在三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E、F分别为A1C1、BC 的中点.(1)求证:平面ABE⊥平面B1BCC1;(2)求证:C1F∥平面ABE;(3)求三棱锥E﹣ABC的体积.【解答】解:(1)证明:∵三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,∴BB1⊥AB,∵AB⊥BC,BB1∩BC=B,BB1,BC⊂平面B1BCC1,∴AB⊥平面B1BCC1,∵AB⊂平面ABE,∴平面ABE⊥平面B1BCC1;(Ⅱ)证明:取AB中点G,连接EG,FG,则∵F是BC的中点,∴FG∥AC,FG AC,∵E是A1C1的中点,∴FG∥EC1,FG=EC1,∴四边形FGEC1为平行四边形,∴C1F∥EG,∵C1F⊄平面ABE,EG⊂平面ABE,∴C1F∥平面ABE;(3)解:∵AA1=AC=2,BC=1,AB⊥BC,∴AB,∴V E﹣ABC S△ABC•AA1(1)×2.20.【2013年北京文科17】如图,在四棱锥P﹣ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD.E和F 分别是CD和PC的中点,求证:(Ⅰ)PA⊥底面ABCD;(Ⅱ)BE∥平面PAD;(Ⅲ)平面BEF⊥平面PCD.【解答】解:(Ⅰ)∵PA⊥AD,平面PAD⊥平面ABCD,平面PAD ∩平面ABCD=AD,由平面和平面垂直的性质定理可得PA⊥平面ABCD.(Ⅱ)∵AB∥CD,AB⊥AD,CD=2AB,E和F分别是CD和PC 的中点,故四边形ABED为平行四边形,故有BE∥AD.又AD⊂平面PAD,BE不在平面PAD内,故有BE∥平面PAD.(Ⅲ)平行四边形ABED中,由AB⊥AD可得,ABED为矩形,故有BE⊥CD①.由PA⊥平面ABCD,可得PA⊥AB,再由AB⊥AD可得AB⊥平面PAD,∴CD⊥平面PAD,故有CD⊥PD.再由E、F分别为CD和PC的中点,可得EF∥PD,∴CD⊥EF②.而EF和BE是平面BEF内的两条相交直线,故有CD⊥平面BEF.由于CD⊂平面PCD,∴平面BEF⊥平面PCD.21.【2012年北京文科16】如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点,将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2.(1)求证:DE∥平面A1CB;(2)求证:A1F⊥BE;(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.【解答】解:(1)∵D,E分别为AC,AB的中点,∴DE∥BC,又DE⊄平面A1CB,∴DE∥平面A1CB.(2)由已知得AC⊥BC且DE∥BC,∴DE⊥AC,∴DE⊥A1D,又DE⊥CD,∴DE⊥平面A1DC,而A1F⊂平面A1DC,∴DE⊥A1F,又A1F⊥CD,∴A1F⊥平面BCDE,∴A1F⊥BE.(3)线段A1B上存在点Q,使A1C⊥平面DEQ.理由如下:如图,分别取A1C,A1B的中点P,Q,则PQ∥BC.∵DE∥BC,∴DE∥PQ.∴平面DEQ即为平面DEP.由(Ⅱ)知DE⊥平面A1DC,∴DE⊥A1C,又∵P是等腰三角形DA1C底边A1C的中点,∴A1C⊥DP,∴A1C⊥平面DEP,从而A1C⊥平面DEQ,故线段A1B上存在点Q,使A1C⊥平面DEQ.22.【2011年北京文科17】如图,在四面体PABC中,PC⊥AB,PA⊥BC,点D,E,F,G分别是棱AP,AC,BC,PB的中点.(Ⅰ)求证:DE∥平面BCP;(Ⅱ)求证:四边形DEFG为矩形;(Ⅲ)是否存在点Q,到四面体PABC六条棱的中点的距离相等?说明理由.【解答】证明:(Ⅰ)∵D,E分别为AP,AC的中点,∴DE∥PC,∵DE⊄平面BCP,∴DE∥平面BCP.(Ⅱ)∵D,E,F,G分别为AP,AC,BC,PB的中点,∴DE∥PC∥FG,DG∥AB∥EF∴四边形DEFG为平行四边形,∵PC⊥AB,∴DE⊥DG,∴四边形DEFG为矩形.(Ⅲ)存在点Q满足条件,理由如下:连接DF,EG,设Q为EG的中点,由(Ⅱ)知DF∩EG=Q,且QD=QE=QF=QG EG,分别取PC,AB的中点M,N,连接ME,EN,NG,MG,MN,与(Ⅱ)同理,可证四边形MENG为矩形,其对角线交点为EG的中点Q,且QM=QN EG,∴Q为满足条件的点.23.【2010年北京文科17】如图,正方形ABCD和四边形ACEF所在的平面互相垂直.EF∥AC,AB,CE=EF=1.(Ⅰ)求证:AF∥平面BDE;(Ⅱ)求证:CF⊥平面BDE.【解答】证明:(Ⅰ)设AC于BD交于点G.因为EF∥AG,且EF=1,AG AC=1,所以四边形AGEF为平行四边形,所以AF∥EG,因为EG⊂平面BDE,AF⊄平面BDE,所以AF∥平面BDE.(Ⅱ)连接FG.因为EF∥CG,EF=CG=1,且CE=1,所以平行四边形CEFG为菱形.所以CF⊥EG.因为四边形ABCD为正方形,所以BD⊥AC.又因为平面ACEF⊥平面ABCD,且平面ACEF∩平面ABCD=AC,所以BD⊥平面ACEF.所以CF⊥BD.又BD∩EG=G,所以CF⊥平面BDE.考题分析与复习建议本专题考查的知识点为:空间几何体的结构、三视图和直观图,空间几何体的表面积与体积,空间点、直线、平面之间的位置关系,直线、平面平行、垂直的判定与性质,空间向量及其运算,立体几何中的向量方法(证明平行与垂直、求空间角和距离)等.历年考题主要以选择填空或解答题题型出现,重点考查的知识点为:三视图和直观图,空间几何体的表面积与体积,直线、平面平行、垂直的判定与性质,立体几何中的向量方法(证明平行与垂直、求空间角和距离)等.预测明年本考点题目会比较稳定,备考方向以知识点三视图和直观图,空间几何体的表面积与体积,直线、平面平行、垂直的判定与性质,立体几何中的向量方法(证明平行与垂直、求空间角和距离)等为重点较佳.最新高考模拟试题1.在正方体中, 1AD与BD所成的角为( )A.45?B.90C.60D.120【答案】C【解析】如图,连结BC1、BD和DC1,在正方体ABCD-A1B1C1D1中,由AB=D1C1,AB∥D1C1,可知AD1∥BC1,所以∠DBC1就是异面直线AD1与BD所成角,在正方体ABCD—A1B1C1D1中,BC1、BD和DC1是其三个面上的对角线,它们相等.所以△DBC1是正三角形,∠DBC1=60°故异面直线AD1与BD所成角的大小为60°.故选:C.2.在正方体中,用空间中与该正方体所有棱成角都相等的平面 去截正方体,在截面边数最多时的所有多边形中,多边形截面的面积为S,周长为l,则( )A.S为定值,l不为定值B.S不为定值,l为定值C.S与l均为定值D.S与l均不为定值【答案】C【解析】正方体的所有棱中,实际上是3组平行的棱,每条棱所在直线与平面α所成的角都相等,如图:与面1A BD平行的面且截面是六边形时满足条件,不失一般性设正方体边长为1,即六边形EFGHMN,其中分别为其所在棱的中点,由正方体的性质可得2EF=,2∴六边形的周长l为定值32.∴六边形的面积为,由正方体的对称性可得其余位置时也为正六边形,周长与面积不变,故S与l均为定值,故选C.3.在四面体P ABC-中,ABCPA=,4∆为等边三角形,边长为3,3PC=,PB=,5则四面体P ABC-的体积为()A.3B.23C.11D.10【答案】C【解析】如图,延长CA至D,使得3AD=,连接,DB PD,因为,故ADB∆为等腰三角形,又,故,所以即,故CB DB⊥,因为,所以,所以CB PB⊥,因,DB⊂平面PBD,PB⊂平面PBD,所以CB⊥平面PBD,所以,因A为DC的中点,所以,因为,故PDC∆为直角三角形,所以,又,而4∆为直角三角形,PB=,故即PBD所以,所以,故选C。
(北京卷)十年真题(2010_2019)高考数学真题分类汇编专题09立体几何文(含解析)
专题09立体几何历年考题细目表题型年份考点试题位置单选题2018三视图与直观图2018年北京文科06单选题2017三视图与直观图2017年北京文科06单选题2015三视图与直观图2015年北京文科07单选题2013空间角与空间距离2013年北京文科08单选题2012三视图与直观图2012年北京文科07单选题2011三视图与直观图2011年北京文科05单选题2010三视图与直观图2010年北京文科05单选题2010表面积与体积2010年北京文科08填空题2019三视图与直观图2019年北京文科12点线面的位置关系与立体几何基本定填空题2019理2019年北京文科13填空题2016三视图与直观图2016年北京文科11填空题2014三视图与直观图2014年北京文科11填空题2013三视图与直观图2013年北京文科10解答题2019平行关系的判定与性质2019年北京文科18解答题2018平行关系的判定与性质2018年北京文科18解答题2017空间角与空间距离2017年北京文科18解答题2016空间向量在立体几何中的应用2016年北京文科18解答题2015表面积与体积2015年北京文科18解答题2014垂直关系的判定与性质2014年北京文科17解答题2013垂直关系的判定与性质2013年北京文科17解答题2012垂直关系的判定与性质2012年北京文科16解答题2011空间角与空间距离2011年北京文科17解答题2010垂直关系的判定与性质2010年北京文科17历年高考真题汇编【2018年北京文科06】某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为()1.A.1B.2C.3D.4【解答】解:四棱锥的三视图对应的直观图为:PA⊥底面ABCD,AC,CD,PC=3,PD=2,可得三角形PCD不是直角三角形.所以侧面中有3个直角三角形,分别为:△PAB,△PBC,△PAD.故选:C.2.【2017年北京文科06】某三棱锥的三视图如图所示,则该三棱锥的体积为()A .60B .30C .20D .10【解答】解:由三视图可知:该几何体为三棱锥,该三棱锥的体积10.故选:D .3.【2015年北京文科07】某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为(A .1B .C .D .2【解答】解:由三视图知:几何体是四棱锥,且四棱锥的一条侧棱与底面垂直,)底面为正方形如图:其中PB ⊥平面ABCD ,底面ABCD 为正方形∴PB =1,AB =1,AD =1,∴BD,PD.PC ═该几何体最长棱的棱长为:故选:C .4.【2013年北京文科08】如图,在正方体ABCD ﹣A 1B 1C 1D 1中,P 为对角线BD 1的三等分点,P 到各顶点的距离的不同取值有()A .3个B .4个C .5个D .6个【解答】解:建立如图所示的空间直角坐标系,不妨设正方体的棱长|AB |=3,则A (3,0,0),B (3,3,0),C (0,3,0),D (0,0,0),A 1(3,0,3),B 1(3,3,3),C 1(0,3,3),D 1(0,0,3),∴(﹣3,﹣3,3),设P (x ,y ,z ),∵(﹣1,﹣1,1),∴(2,2,1).∴|PA |=|PC |=|PB 1|,|PD |=|PA 1|=|PC 1|,|PB |,|PD 1|.故P 到各顶点的距离的不同取值有,3,,共4个.故选:B .5.【2012年北京文科07】某三棱锥的三视图如图所示,该三棱锥的表面积是(A .28+6B .30+6C .56+12D .60+12【解答】解:三视图复原的几何体是底面为直角边长为4和5的三角形,一个侧面垂直底面的等腰三角形,高为4,底边长为5,如图,所以S 底10,S 后,)S 右10,S 左6..几何体的表面积为:S =S 底+S 后+S 右+S 左=30+6故选:B .6.【2011年北京文科05】某四棱锥的三视图如图所示,该四棱锥的表面积是()A .16B .16+16C .32D .16+32【解答】解:由已知中的三视力可得该几何体是一个四棱锥,棱锥的底面边长为4,故底面面积为16,棱锥的高为2,故侧面的高为:2,则每个侧面的面积为:故棱锥的表面积为:16+16故选:B .,4,7.【2010年北京文科05】一个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如图所,则该几何体的俯视图为()A .B .C .D .【解答】解:由正视图可知去掉的长方体在正视线的方向,从侧视图可以看出去掉的长方体在原长方体的左侧,由以上各视图的描述可知其俯视图符合C 选项.故选:C .8.【2010年北京文科08】如图,正方体ABCD ﹣A 1B 1C 1D 1的棱长为2,动点E 、F 在棱A 1B 1上.点Q 是CD 的中点,动点P 在棱AD 上,若EF =1,DP =x ,A 1E =y (x ,y 大于零),则三棱锥P ﹣EFQ 的体积()A .与x ,y 都有关C .与x 有关,与y 无关B .与x ,y 都无关D .与y 有关,与x 无关【解答】解:三棱锥P ﹣EFQ 的体积与点P 到平面EFQ 的距离和三角形EFQ 的面积有关,由图形可知,平面EFQ 与平面CDA 1B 1是同一平面,故点P 到平面EFQ 的距离是P 到平面CDA 1B 1的距离,且该距离就是P 到线段A 1D 的距离,此距离只与x 有关,因为EF =1,点Q 到EF 的距离为线段B 1C 的长度,为定值,综上可知所求三棱锥的体积只与x 有关,与y 无关.故选:C .9.【2019年北京文科12】某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为l ,那么该几何体的体积为.【解答】解:由三视图还原原几何体如图,该几何体是把棱长为4的正方体去掉一个四棱柱,则该几何体的体积V 故答案为:40..10.【2019年北京文科13】已知l ,m 是平面α外的两条不同直线.给出下列三个论断:①l ⊥m ;②m ∥α;③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:.【解答】解:由l ,m 是平面α外的两条不同直线,知:由线面平行的判定定理得:若l ⊥α,l ⊥m ,则m ∥α.故答案为:若l ⊥α,l ⊥m ,则m ∥α.11.【2016年北京文科11】某四棱柱的三视图如图所示,则该四棱柱的体积为.【解答】解:由已知中的三视图可得:该几何体上部是一个以俯视图为底面四棱柱,棱柱的底面面积S 棱柱的高为1,故棱柱的体积V 故答案为:12.【2014年北京文科11】某三棱锥的三视图如图所示,则该三棱锥最长棱的棱长为.,(1+2)×1,【解答】解:由主视图知CD ⊥平面ABC ,设AC 中点为E ,则BE ⊥AC ,且AE =CE =1;由主视图知CD =2,由左视图知BE =1,在Rt △BCE 中,BC,在Rt △BCD 中,BD 在Rt △ACD 中,AD =2,..则三棱锥中最长棱的长为2故答案为:2.13.【2013年北京文科10】某四棱锥的三视图如图所示,该四棱锥的体积为.【解答】解:几何体为底面边长为3的正方形,高为1的四棱锥,所以体积故答案为:3..14.【2019年北京文科18】如图,在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,底面ABCD 为菱形,E 为CD 的中点.(Ⅰ)求证:BD ⊥平面PAC ;(Ⅱ)若∠ABC =60°,求证:平面PAB ⊥平面PAE ;(Ⅲ)棱PB 上是否存在点F ,使得CF ∥平面PAE ?说明理由.【解答】证明:(Ⅰ)∵四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD为菱形,∴BD⊥PA,BD⊥AC,∵PA∩AC=A,∴BD⊥平面PAC.(Ⅱ)∵在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD为菱形,E为CD的中点,∠ABC=60°,∴AB⊥AE,PA⊥AE,∵PA∩AB=A,∴AE⊥平面PAB,∵AE⊂平面PAE,∴平面PAB⊥平面PAE.解:(Ⅲ)棱PB上是存在中点F,使得CF∥平面PAE.理由如下:取AB中点G,连结GF,CG,∵在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD为菱形,E为CD的中点,∴CG∥AE,FG∥PA,∵CG∩FG=G,AE∩PA=A,∴平面CFG∥平面PAE,∵CF⊂平面CFG,∴CF∥平面PAE.15.【2018年北京文科18】如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,E,F分别为AD,PB的中点.(Ⅰ)求证:PE⊥BC;(Ⅱ)求证:平面PAB⊥平面PCD;(Ⅲ)求证:EF∥平面PCD.【解答】证明:(Ⅰ)PA=PD,E为AD的中点,可得PE⊥AD,底面ABCD为矩形,可得BC∥AD,则PE⊥BC;(Ⅱ)由于平面PAB和平面PCD有一个公共点P,且AB∥CD,在平面PAB内过P作直线PG∥AB,可得PG∥CD,即有平面PAB∩平面PCD=PG,由平面PAD⊥平面ABCD,又AB⊥AD,可得AB⊥平面PAD,即有AB⊥PA,PA⊥PG;同理可得CD⊥PD,即有PD⊥PG,可得∠APD为平面PAB和平面PCD的平面角,由PA⊥PD,可得平面PAB⊥平面PCD;(Ⅲ)取PC的中点H,连接DH,FH,在三角形PCD中,FH为中位线,可得FH∥BC,FH BC,由DE∥BC,DE BC,可得DE=FH,DE∥FH,四边形EFHD为平行四边形,可得EF∥DH,EF平面PCD,DH⊂平面PCD,即有EF∥平面PCD.16.【2017年北京文科18】如图,在三棱锥P﹣ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.(1)求证:PA⊥BD;(2)求证:平面BDE⊥平面PAC;(3)当PA∥平面BDE时,求三棱锥E﹣BCD的体积.【解答】解:(1)证明:由PA⊥AB,PA⊥BC,AB⊂平面ABC,BC⊂平面ABC,且AB∩BC=B,可得PA⊥平面ABC,由BD⊂平面ABC,可得PA⊥BD;(2)证明:由AB=BC,D为线段AC的中点,可得BD⊥AC,由PA⊥平面ABC,PA⊂平面PAC,可得平面PAC⊥平面ABC,又平面PAC∩平面ABC=AC,BD ⊂平面ABC ,且BD ⊥AC ,即有BD ⊥平面PAC ,BD ⊂平面BDE ,可得平面BDE ⊥平面PAC ;(3)PA ∥平面BDE ,PA ⊂平面PAC ,且平面PAC ∩平面BDE =DE ,可得PA ∥DE ,又D 为AC 的中点,可得E 为PC 的中点,且DE由PA ⊥平面ABC ,可得DE ⊥平面ABC ,可得S △BDC PA =1,S △ABC 2×2=1,则三棱锥E ﹣BCD 的体积为DE •S △BDC 1×1.17.【2016年北京文科18】如图,在四棱锥P ﹣ABCD 中,PC ⊥平面ABCD ,AB ∥DC ,DC ⊥AC .(1)求证:DC ⊥平面PAC ;(2)求证:平面PAB ⊥平面PAC ;(3)设点E 为AB 的中点,在棱PB 上是否存在点F ,使得PA ∥平面CEF ?说明理由.【解答】(1)证明:∵PC ⊥平面ABCD ,DC ⊂平面ABCD ,∴PC⊥DC,∵DC⊥AC,PC∩AC=C,∴DC⊥平面PAC;(2)证明:∵AB∥DC,DC⊥AC,∴AB⊥AC,∵PC⊥平面ABCD,AB⊂平面ABCD,∴PC⊥AB,∵PC∩AC=C,∴AB⊥平面PAC,∵AB⊂平面PAB,∴平面PAB⊥平面PAC;(3)解:在棱PB上存在中点F,使得PA∥平面CEF.∵点E为AB的中点,∴EF∥PA,∵PA⊄平面CEF,EF⊂平面CEF,∴PA∥平面CEF.18.【2015年北京文科18】如图,在三棱锥V﹣ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC 且AC=BC,O,M分别为AB,VA的中点.(1)求证:VB∥平面MOC;(2)求证:平面MOC⊥平面VAB(3)求三棱锥V﹣ABC的体积.【解答】(1)证明:∵O,M分别为AB,VA的中点,∴OM∥VB,∵VB⊄平面MOC,OM⊂平面MOC,∴VB ∥平面MOC ;(2)∵AC =BC ,O 为AB 的中点,∴OC ⊥AB ,∵平面VAB ⊥平面ABC ,OC ⊂平面ABC ,∴OC ⊥平面VAB ,∵OC ⊂平面MOC ,∴平面MOC ⊥平面VAB(3)在等腰直角三角形ACB 中,AC =BC ∴S △VAB ,,∴AB =2,OC =1,∵OC ⊥平面VAB ,∴V C ﹣VAB •S △VAB ,∴V V ﹣ABC =V C ﹣VAB .19.【2014年北京文科17】如图,在三棱柱ABC ﹣A 1B 1C 1中,侧棱垂直于底面,AB ⊥BC ,AA 1=AC =2,BC =1,E 、F 分别为A 1C 1、BC 的中点.(1)求证:平面ABE ⊥平面B 1BCC 1;(2)求证:C 1F ∥平面ABE ;(3)求三棱锥E ﹣ABC 的体积.【解答】解:(1)证明:∵三棱柱ABC ﹣A 1B 1C 1中,侧棱垂直于底面,∴BB 1⊥AB ,∵AB ⊥BC ,BB 1∩BC =B ,BB 1,BC ⊂平面B 1BCC 1,∴AB ⊥平面B 1BCC 1,∵AB ⊂平面ABE ,∴平面ABE ⊥平面B 1BCC 1;(Ⅱ)证明:取AB 中点G ,连接EG ,FG ,则∵F 是BC 的中点,∴FG ∥AC ,FG AC ,∵E 是A 1C 1的中点,∴FG ∥EC 1,FG =EC 1,∴四边形FGEC 1为平行四边形,∴C 1F ∥EG ,∵C 1F 平面ABE ,EG 平面ABE ,∴C 1F ∥平面ABE ;(3)解:∵AA 1=AC =2,BC =1,AB ⊥BC ,∴AB ∴V E ﹣ABC ,S △ABC •AA 1(1)×2.20.【2013年北京文科17】如图,在四棱锥P ﹣ABCD 中,AB ∥CD ,AB ⊥AD ,CD =2AB ,平面PAD ⊥底面ABCD ,PA ⊥AD .E 和F 分别是CD 和PC 的中点,求证:(Ⅰ)PA ⊥底面ABCD ;(Ⅱ)BE ∥平面PAD ;(Ⅲ)平面BEF ⊥平面PCD .【解答】解:(Ⅰ)∵PA⊥AD,平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,由平面和平面垂直的性质定理可得PA⊥平面ABCD.(Ⅱ)∵AB∥CD,AB⊥AD,CD=2AB,E和F分别是CD和PC的中点,故四边形ABED为平行四边形,故有BE∥AD.又AD⊂平面PAD,BE不在平面PAD内,故有BE∥平面PAD.(Ⅲ)平行四边形ABED中,由AB⊥AD可得,ABED为矩形,故有BE⊥CD①.由PA⊥平面ABCD,可得PA⊥AB,再由AB⊥AD可得AB⊥平面PAD,∴CD⊥平面PAD,故有CD⊥PD.再由E、F分别为CD和PC的中点,可得EF∥PD,∴CD⊥EF②.而EF和BE是平面BEF内的两条相交直线,故有CD⊥平面BEF.由于CD⊂平面PCD,∴平面BEF⊥平面PCD.21.【2012年北京文科16】如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点,将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2.(1)求证:DE∥平面A1CB;(2)求证:A1F⊥BE;(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.【解答】解:(1)∵D ,E 分别为AC ,AB 的中点,∴DE ∥BC ,又DE 平面A 1CB ,∴DE ∥平面A 1CB .(2)由已知得AC ⊥BC 且DE ∥BC ,∴DE ⊥AC ,∴DE ⊥A 1D ,又DE ⊥CD ,∴DE ⊥平面A 1DC ,而A 1F 平面A 1DC ,∴DE ⊥A 1F ,又A 1F ⊥CD ,∴A 1F ⊥平面BCDE ,∴A 1F ⊥BE .(3)线段A 1B 上存在点Q ,使A 1C ⊥平面DEQ .理由如下:如图,分别取A 1C ,A 1B 的中点P ,Q ,则PQ ∥BC .∵DE ∥BC ,∴DE ∥PQ .∴平面DEQ 即为平面DEP .由(Ⅱ)知DE ⊥平面A 1DC ,∴DE ⊥A 1C ,又∵P 是等腰三角形DA 1C 底边A 1C 的中点,∴A 1C ⊥DP ,∴A 1C ⊥平面DEP ,从而A 1C ⊥平面DEQ ,故线段A 1B 上存在点Q ,使A 1C ⊥平面DEQ .22.【2011年北京文科17】如图,在四面体PABC 中,PC ⊥AB ,PA ⊥BC ,点D ,E ,F ,G 分别是棱AP ,AC ,BC ,PB 的中点.(Ⅰ)求证:DE ∥平面BCP ;(Ⅱ)求证:四边形DEFG 为矩形;(Ⅲ)是否存在点Q,到四面体PABC六条棱的中点的距离相等?说明理由.【解答】证明:(Ⅰ)∵D,E分别为AP,AC的中点,∴DE∥PC,∵DE平面BCP,∴DE∥平面BCP.(Ⅱ)∵D,E,F,G分别为AP,AC,BC,PB的中点,∴DE∥PC∥FG,DG∥AB∥EF∴四边形DEFG为平行四边形,∵PC⊥AB,∴DE⊥DG,∴四边形DEFG为矩形.(Ⅲ)存在点Q满足条件,理由如下:连接DF,EG,设Q为EG的中点,由(Ⅱ)知DF∩EG=Q,且QD=QE=QF=QG EG,分别取PC,AB的中点M,N,连接ME,EN,NG,MG,MN,与(Ⅱ)同理,可证四边形MENG为矩形,其对角线交点为EG的中点Q,且QM=QN EG,∴Q为满足条件的点.23.【2010年北京文科17】如图,正方形ABCD 和四边形ACEF 所在的平面互相垂直.EF ∥AC ,AB =EF =1.(Ⅰ)求证:AF ∥平面BDE ;(Ⅱ)求证:CF ⊥平面BDE .,CE【解答】证明:(Ⅰ)设AC 于BD 交于点G .因为EF ∥AG ,且EF =1,AGAC =1,所以四边形AGEF 为平行四边形,所以AF ∥EG ,因为EG 平面BDE ,AF 平面BDE ,所以AF ∥平面BDE .(Ⅱ)连接FG .因为EF ∥CG ,EF =CG =1,且CE =1,所以平行四边形CEFG 为菱形.所以CF ⊥EG .因为四边形ABCD 为正方形,所以BD ⊥AC .又因为平面ACEF ⊥平面ABCD ,且平面ACEF ∩平面ABCD =AC ,所以BD ⊥平面ACEF .所以CF ⊥BD .又BD ∩EG =G ,所以CF ⊥平面BDE .考题分析与复习建议本专题考查的知识点为:空间几何体的结构、三视图和直观图,空间几何体的表面积与体积,空间点、直线、平面之间的位置关系,直线、平面平行、垂直的判定与性质,空间向量及其运算,立体几何中的向量方法(证明平行与垂直、求空间角和距离)等.历年考题主要以选择填空或解答题题型出现,重点考查的知识点为:三视图和直观图,空间几何体的表面积与体积,直线、平面平行、垂直的判定与性质,立体几何中的向量方法(证明平行与垂直、求空间角和距离)等.预测明年本考点题目会比较稳定,备考方向以知识点三视图和直观图,空间几何体的表面积与体积,直线、平面平行、垂直的判定与性质,立体几何中的向量方法(证明平行与垂直、求空间角和距离)等为重点较佳.最新高考模拟试题1.在正方体A .45?【答案】C 【解析】B .90中,AD 1与BD 所成的角为()C .60D .120如图,连结BC 1、BD 和DC 1,在正方体ABCD-A 1B 1C 1D 1中,由AB=D 1C 1,AB ∥D 1C 1,可知AD 1∥BC 1,所以∠DBC 1就是异面直线AD 1与BD 所成角,在正方体ABCD-A 1B 1C 1D 1中,BC 1、BD 和DC 1是其三个面上的对角线,它们相等.所以△DBC 1是正三角形,∠DBC 1=60°故异面直线AD 1与BD 所成角的大小为60°.故选:C .2.在正方体中,用空间中与该正方体所有棱成角都相等的平面α去截正方体,在截面边数最多时的所有多边形中,多边形截面的面积为S ,周长为l ,则( )A .S 为定值,l 不为定值C .S 与l 均为定值【答案】C 【解析】正方体的所有棱中,实际上是3组平行的棱,每条棱所在直线与平面α所成的角都相等,如图:与面A 1BD 平行的面且截面是六边形时满足条件,不失一般性设正方体边长为1,B .S 不为定值,l 为定值D .S 与l 均不为定值即六边形EFGHMN ,其中由正方体的性质可得EF =2,2分别为其所在棱的中点,∴六边形的周长l 为定值32.∴六边形的面积为,由正方体的对称性可得其余位置时也为正六边形,周长与面积不变,故S 与l 均为定值,故选C.3.在四面体P -ABC 中,边长为3,PA =3,PB =4,PC =5,则四面体P -ABC∆ABC 为等边三角形,的体积为()A .3【答案】C 【解析】B .23C .11D .10如图,延长CA 至D ,使得AD =3,连接DB ,PD ,因为又所以因为因即,所以,故∆ADB 为等腰三角形,,故,故CB ⊥DB ,,所以CB ⊥PB ,,,DB ⊂平面PBD ,PB ⊂平面PBD ,所以CB ⊥平面PBD ,所以因A 为DC 的中点,所以因为所以又所以,而PB =4,故,所以,故∆PDC 为直角三角形,,即∆PBD 为直角三角形,,故选C.,,4.若a ,b 是不同的直线,α,β是不同的平面,则下列命题中正确的是()A .若,则α⊥βB .若C .若D .若【答案】C 【解析】‖β,则α‖β,则α‖β,则αA 中,若B 中,若,平面α,β可能垂直也可能平行或斜交,不正确;,平面α,β可能平行也可能相交,不正确;‖β,正确;C 中,若a ⊥α,b ⊥β,则a ,b 分别是平面α,β的法线,a ‖b 必有αD 中,若,平面α,β可能平行也可能相交,不正确.故选C.5.某几何体的三视图如图所示,则该几何体的外接球的体积是()A .2π33π2B .C .3πD .43π【答案】B 【解析】解:根据几何体的三视图,该几何体是由一个正方体切去一个正方体的一角得到的.故:该几何体的外接球为正方体的外接球,所以:球的半径,则:故选:B .6.如图,正方体.中,E 为棱BB 1的中点,用过点A 、E 、C 1的平面截去该正方体的下半部分,则剩余几何体的正视图(也称主视图)是()A .B .C .D .【答案】A 【解析】解:正方体中,过点A ,E ,C 1的平面截去该正方体的上半部分后,剩余部分的直观图如图:则该几何体的正视图为图中粗线部分.故选:A.7.下列说法错误的是()A.垂直于同一个平面的两条直线平行B.若两个平面垂直,则其中一个平面内垂直于这两个平面交线的直线与另一个平面垂直C.一个平面内的两条相交直线均与另一个平面平行,则这两个平面平行D.一条直线与一个平面内的无数条直线垂直,则这条直线和这个平面垂直【答案】D【解析】由线面垂直的性质定理知,垂直于同一个平面的两条直线平行,A正确;由面面垂直的性质定理知,若两个平面垂直,则其中一个平面内垂直于这两个平面交线的直线与另一个平面垂直,B正确;由面面平行的判定定理知,一个平面内的两条相交直线均与另一个平面平行,则这两个平面平行,C正确;当一条直线与平面内无数条相互平行的直线垂直时,该直线与平面不一定垂直,D错误,故选D.8.《九章算术》中,将四个面都为直角三角形的四面体称之为“鳖臑”.在如图所示的四棱锥P-ABCD中,PD⊥平面ABCD,底面ABCD是正方形,且PD=CD,点E,F分别为PC,PD的中点,则图中的鳖臑有()A.2个B.3个C.4个D.5个【答案】C【解析】由题意,因为PD⊥底面ABCD,所以PD^DC,PD⊥BC,又四边形ABCD为正方形,所以BC⊥CD,所以BC⊥平面PCD,BC⊥PC,所以四面体PDBC是一个鳖臑,因为DE⊂平面PCD,所以BC⊥DE,因为PD=CD,点E是PC的中点,所以DE⊥PC,因为,所以DE⊥平面PBC,可知四面体EBCD的四个面都是直角三角形,即四面体EBCD是一个鳖臑,同理可得,四面体PABD和FABD都是鳖臑,故选C.9.在三棱锥P-ABC中,平面PAB⊥平面ABC,△ABC是边长为6的等边三角形,△PAB是以AB为斜边的等腰直角三角形,则该三棱锥外接球的表面积为_______.【答案】48π【解析】如图,在等边三角形ABC中,取AB的中点F,设其中心为O,由AB=6,得,∆PAB是以AB为斜边的等腰角三角形,∴PF⊥AB,又因为平面PAB⊥平面ABC,∴PF⊥平面ABC,∴PF⊥OF,,则O为棱锥P-ABC的外接球球心,外接球半径,∴该三棱锥外接球的表面积为故答案为48π.,10.若将一个圆锥的侧面沿一条母线剪开,其展开图是半径为3,圆心角为_______.【答案】2π的扇形,则该圆锥的体积为322π3【解析】因为展开图是半径为3,圆心角为2π的扇形,所以圆锥的母线l =3,圆锥的底面的周长为3,,因此底面的半径r =1,根据勾股定理,可知圆锥的高所以圆锥的体积为.11.设m ,n 是两条不同的直线,α,β是两个不同的平面,下列正确命题序号是_____.(1)若m α,n ∥α,则m ∥n (2)若m ⊥α,m ⊥n 则n ∥α(3)若m ⊥α,n ⊥β且m ⊥n ,则α⊥β;(4)若m ⊂β,α【答案】(3)(4)【解析】若若若若,则m 与n 可能平行,相交或异面,故(1)错误;则n ∥α或n ⊂α,故(2)错误;且m ⊥n ,则α⊥β,故(3)正确;,由面面平行的性质可得m α,故(4)正确;β,则m α故答案为:(3)(4)12.长方体的底面ABCD 是边长为1的正方形,若在侧棱AA 1上存在点E ,使得,则侧棱AA 1的长的最小值为_______.【答案】2【解析】设侧棱AA 1的长为x ,A 1E =t ,则AE =x ﹣t ,∵长方体ABCD ﹣A 1B 1C 1D 1的底面是边长为1的正方形,∠C 1EB =90°,∴22,2∴2+t +1+(x ﹣t )=1+x ,整理,得:t ﹣xt+1=0,∵在侧棱AA 1上至少存在一点E ,使得∠C 1EB =90°,∴△=(﹣x )2﹣4≥0,解得x≥2.∴侧棱AA 1的长的最小值为2.故答案为2.213.如图,在Rt ∆ABC 中,AB =BC =1,D 和E 分别是边BC 和AC 上一点,DE ⊥BC ,将∆C D E 沿DE 折起到点P 位置,则该四棱锥P -ABDE 体积的最大值为_______.【答案】327【解析】在Rt ∆ABC 中,由已知,AB =BC =1,DE ⊥BC ,所以设四边形ABDE的面积为,,当∆CDE ⊥平面ABDE 时,四棱锥P -ABDE 体积最大,此时,且,,故四棱锥P -ABDE 体积为,⎛3⎫x ∈ 0, 3⎪⎪时,V '>0;⎝⎭所以,当x =时,V '<0,33时,V max =.327故答案为32714.三棱锥P -ABC 的4个顶点在半径为2的球面上,PA ⊥平面ABC ,V ABC 是边长为3的正三角形,则点A 到平面PBC 的距离为______.【答案】65【解析】a=2,即r =1.sin60︒h∵PA ⊥平面ABC ,PA =h ,球心到底面的距离d 等于三棱锥的高PA 的一半即,2△ABC 是边长为3的正三角形,可得外接圆的半径2r =那么球的半径R2,解得h=2,又由知,得d ='66故点A 到平面PBC 的距离为55故答案为6.515.如图,该几何体由底面半径相同的圆柱与圆锥两部分组成,且圆柱的高与底面半径相等.若圆柱与圆锥的侧面积相等,则圆锥与圆柱的高之比为_______.【答案】3【解析】设圆柱和圆锥的底面半径为R ,则圆柱的高h 1=R ,圆锥的母线长为L ,因为圆柱与圆锥的侧面积相等,所以,,解得:L =2R ,得圆锥的高为h 2=3R ,所以,圆锥与圆柱的高之比为3R=3.R故答案为:316.直三棱柱中,,设其外接球的球心为O ,已知三棱锥O -ABC 的体积为1,则球O 表面积的最小值为__________.【答案】16π.【解析】如图,在Rt ∆ABC 中,设,则.分别取AC ,A 1C 1的中点O 1,O 2,则O 1,O 2分别为Rt ∆A 1B 1C 1和Rt ∆ABC 外接圆的圆心,连O 1,O 2,取O 1O 2的中点O ,则O 为三棱柱外接球的球心.连OA ,则OA 为外接球的半径,设半径为R .∵三棱锥O -ABC 的体积为1,即∴ac =6.在Rt ∆OO 2C 中,可得,,∴∴O 球表面积的最小值为16π.故答案为:16π.,当且仅当a =c 时等号成立,17.在三棱锥P -ABC 中,∆ABC 是边长为4的等边三角形,,PC =25.(1)求证:平面PAB ⊥平面ABC ;(2)若点M ,N 分别为棱BC ,PC 的中点,求三棱锥N -AMC 的体积V .【答案】(1)见证明;(2)V =【解析】(1)取AB 中点H ,连结PH ,HC .263∵,AB =4,∴PH ⊥AB ,PH =22.∵等边∆ABC 的边长为4∴HC =23,又PC =25∴∴∠PHC =90,即PH ⊥HC 又∵,AB平面ABC ,CH ⊂平面ABC∴PH ⊥平面ABC ,又PH ⊂平面PAB ∴平面PAB ⊥平面ABC(2)∵点M ,N 分别为棱BC ,PC 的中点∴点N 到平面ABC 的距离为且∴三棱锥N -AMC 的体积18.如图所示,三棱柱1PH =22中,∠BCA =90°,AC 1⊥平面A 1BC .(1)证明:平面ABC ⊥平面ACC 1A 1;(2)若,A 1A =A 1C ,求点B 1到平面A 1BC 的距离.【答案】(1)见解析;(2)3【解析】(1)证明:AC 1⊥平面A 1BC ,,.,∴BC ⊥平面ACC 1A 1.又BC ⊂平面ABC ,∴平面ABC ⊥平面ACC 1A 1.(2)解:取AC 的中点D ,连接A 1D .,.又平面ABC ⊥平面ACC 1A 1,且交线为AC ,则A 1D ⊥平面ABC .AC 1⊥平面A 1BC ,,∴四边形ACC 1A 1为菱形,.又A 1A =A 1C ,∴A 1AC 是边长为2正三角形,∴A 1D =3.面BB 1C 1C ,BB 1⊂面BB 1C 1C∴AA 1面BB 1C 1C 设点B 1到平面A 1BC 的距离为h .则.,,∴h =3.所以点B 1到平面A 1BC 的距离为3.19.在边长为3的正方形ABCD 中,点E ,F 分别在边AB ,BC 上(如左图),且BE =BF ,将AED ,.DCF 分别沿DE ,DF 折起,使A ,C 两点重合于点A ¢(如右图)(1)求证:A 'D ⊥EF ;(2)当BF =1BC 时,求点A ¢到平面DEF 的距离.3375【答案】(1)见解析;(2)【解析】(1)由ABCD 是正方形及折叠方式,得:A 'E ⊥A 'D ,A 'F ⊥A 'D ,,∴A 'D ⊥平面A 'EF ,平面A 'EF ,.(2),,设点A ¢到平面DEF 的距离为d ,,∴S DEF =52,,解得d =37.5∴点A 到平面DEF 的距离为37.520.如图,四棱锥S -ABCD 中,SD ⊥平面ABCD ,AB //CD ,AD ⊥CD ,SD =CD ,AB =AD ,CD =2AD ,M 是BC 中点,N 是SA 上的点.(1)求证:MN //平面SDC ;(2)求A 点到平面MDN 的距离.【答案】(1)见证明;(2)d =【解析】(1)取AD 中点为E ,连结ME ,NE ,则ME //DC ,因为ME ⊄平面SDC ,所以ME //平面SDC ,同理NE //平面SDC .所以平面MNE //平面SDC ,从而因此MN //平面SDC .127(2)因为CD ⊥AD ,所以ME ⊥AD .因为SD ⊥平面ABCD ,所以SD ⊥CD ,ME ⊥SD .所以ME ⊥平面SAD .设DA =2,则ME =3,NE =2,,MD =10,ND =5.在∆MDN 中,由余弦定理,从而,所以∆MDN 面积为7.2又∆ADM 面积为1⨯2⨯3=3.2得设A 点到平面MDN 的距离为d ,由因为NE =2,所以A 点到平面MDN 的距离d =7d =3NE ,212.7AB //CD ,AB ⊥AD ,3,,21.如图,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,PA =AB =2,E 为侧棱PA 上一点.(Ⅰ)若PE =1PA ,求证:PC //平面EBD ;3(Ⅱ)求证:平面EBC ⊥平面PAC ;(Ⅲ)在侧棱PD 上是否存在点F ,使得AF ⊥平面PCD ?若存在,求出线段PF 的长;若不存在,请说明理由.【答案】(Ⅰ)详见解析;(Ⅱ)详见解析;(Ⅲ)存在,线段PF 长【解析】(Ⅰ)设,连结EG ,3.2由已知AB//CD ,DC =1,AB =2,得.1AEPA ,得=2.3EPAE AG=在ΔPAC 中,由,得EG //PC .EP GC由PE =因为EG ⊂平面EBD ,PC ⊄平面EBD ,所以PC //平面EBD .(Ⅱ)因为PA ⊥平面ABCD ,BC ⊂平面ABCD ,所以BC ⊥PA .由已知得AC =所以所以BC ⊥AC .又,所以BC ⊥平面PAC .2,BC =2,AB =2,.因为BC ⊂平面EBC ,所以平面EBC ⊥平面PAC .(Ⅲ)在平面PAD 内作AF ⊥PD 于点F ,由DC ⊥PA ,DC ⊥AD ,得DC ⊥平面PAD .因为AF ⊂平面PAD ,所以CD ⊥AF .又,所以AF ⊥平面PCD .,由PA =3,AD =1,PA ⊥AD ,得PF =3.2的底面ABC 是等边三角形,侧面AA 'C 'C ⊥底面ABC ,D 是棱BB '的中22.已知三棱柱点.(1)求证:平面DA 'C ⊥平面ACC 'A ';(2)求平面DA 'C 将该三棱柱分成上下两部分的体积比.【答案】(1)见证明;(2)1:1【解析】(1)取AC ,A 'C '的中点O ,F ,连接OF 与A 'C 交于点E ,连接DE ,OB ,B 'F ,则E 为OF 的中点,且,所以BB 'FO 是平行四边形.,又D 是棱BB '的中点,所以DE P OB .41。
2010年高考数学试题分类汇编立体几何(5)-推荐下载
A. ①②
B. ②③
C. ①④
(2010 山东理数)(3)在空间,下列命题正确的是 (A)平行直线的平行投影重合 (B)平行于同一直线的两个平面平行 (C)垂直于同一平面的两个平面平行 (D)垂直于同一平面的两条直线平行 【答案】D 【解析】由空间直线与平面的位置关系及线面垂直与平行的判定与性质定理可以得出答案。
OB , OC 两两垂直,且 OA > OB > OC ,分别经过三条棱 OA ,
OB , OC 作一个截面平分三棱锥的体积,截面面积依次为 S1 , S2 ,
S3 ,则 S1 , S2 , S3 的大小关系为
【答案】 S3 S2 S1
【解析】考查立体图形的空间感和数学知识的运用能力,通过补形,借助长方体验证
2010 年高考数学试题分类汇编——立体几何
(2010 上海文数)6.已知四棱椎 P ABCD 的底面是边长为 6 的正方形,侧棱 PA 底面
ABCD ,且 PA 8 ,则该四棱椎的体积是 96
解析:考查棱锥体积公式V 1 36 8 96 3
(2010 湖南文数)13.图 2 中的三个直角三角形是一个体积为 20cm2 的几何体的三视图,则 h= 4 cm
2010 年高考数学试题分类汇编——立体几何(5)
(2010 湖北文数)4.用 a 、 b 、 c 表示三条不同的直线, y 表示平面,给出下列命题:
①若 a ∥ b , b ∥ c ,则 a ∥ c ;②若 a ⊥ b , b ⊥ c ,则 a ⊥ c ;
③若 a ∥ y , b ∥ y ,则 a ∥ b ;④若 a ⊥ y , b ⊥ y ,则 a ∥ b .
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术通关,1系电过,力管根保线据护敷生高设产中技工资术艺料0不高试仅中卷可资配以料置解试技决卷术吊要是顶求指层,机配对组置电在不气进规设行范备继高进电中行保资空护料载高试与中卷带资问负料题荷试2下卷2,高总而中体且资配可料置保试时障卷,各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并22工且22作尽22下可22都能22可地护以缩1关正小于常故管工障路作高高;中中对资资于料料继试试电卷卷保破连护坏接进范管行围口整,处核或理对者高定对中值某资,些料审异试核常卷与高弯校中扁对资度图料固纸试定,卷盒编工位写况置复进.杂行保设自护备动层与处防装理腐置,跨高尤接中其地资要线料避弯试免曲卷错半调误径试高标方中高案资等,料,编试要5写、卷求重电保技要气护术设设装交备备置底4高调、动。中试电作管资高气,线料中课并敷3试资件且、设卷料中拒管技试试调绝路术验卷试动敷中方技作设包案术,技含以来术线及避槽系免、统不管启必架动要等方高多案中项;资方对料式整试,套卷为启突解动然决过停高程机中中。语高因文中此电资,气料电课试力件卷高中电中管气资壁设料薄备试、进卷接行保口调护不试装严工置等作调问并试题且技,进术合行,理过要利关求用运电管行力线高保敷中护设资装技料置术试做。卷到线技准缆术确敷指灵设导活原。。则对对:于于在调差分试动线过保盒程护处中装,高置当中高不资中同料资电试料压卷试回技卷路术调交问试叉题技时,术,作是应为指采调发用试电金人机属员一隔,变板需压进要器行在组隔事在开前发处掌生理握内;图部同纸故一资障线料时槽、,内设需,备要强制进电造行回厂外路家部须出电同具源时高高切中中断资资习料料题试试电卷卷源试切,验除线报从缆告而敷与采设相用完关高毕技中,术资要资料进料试行,卷检并主查且要和了保检解护测现装处场置理设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
十年高考真题分类汇编(2010-2019) 数学 专题10 立体几何 解析版
十年高考真题分类汇编(2010—2019)数学专题10立体几何1.(2019·浙江·T4)祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V 柱体=Sh,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm 3)是( )A.158B.162C.182D.324 【答案】B【解析】由三视图得该棱柱的高为6,底面五边形可以看作是由两个直角梯形组合而成,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为2+62×3+4+62×3×6=162.2.(2019·全国1·理T12)已知三棱锥P-ABC 的四个顶点在球O 的球面上,PA=PB=PC,△ABC 是边长为2的正三角形,E,F 分别是PA,AB 的中点,∠CEF=90°,则球O 的体积为( )A.8√6πB.4√6πC.2√6πD.√6π【答案】D【解析】设PA=PB=PC=2x.∵E,F 分别为PA,AB 的中点,∴EF ∥PB,且EF=12PB=x.∵△ABC 为边长为2的等边三角形,∴CF=√3.又∠CEF=90°,∴CE=√3-x 2,AE=12PA=x.在△AEC 中,由余弦定理可知cos ∠EAC=x 2+4-(3-x 2)2×2·x . 作PD ⊥AC 于点D,∵PA=PC,∴D 为AC 的中点,cos ∠EAC=AD PA =12x .∴x 2+4-3+x 24x=12x . ∴2x 2+1=2.∴x 2=12,即x=√22.∴PA=PB=PC=√2.又AB=BC=AC=2,∴PA ⊥PB ⊥PC.∴2R=√2+2+2=√6.∴R=√62.∴V=43πR 3=43π×6√68=√6π.故选D.3.(2019·全国2·理T7文T7)设α,β为两个平面,则α∥β的充要条件是( )A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面【答案】B【解析】由面面平行的判定定理知,“α内有两条相交直线与β平行”是“α∥β”的充分条件.由面面平行的性质知,“α内有两条相交直线与β平行”是“α∥β”的必要条件,故选B.4.(2019·全国3·理T8文T8)如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD,M 是线段ED 的中点,则( )A.BM=EN,且直线BM,EN 是相交直线B.BM ≠EN,且直线BM,EN 是相交直线C.BM=EN,且直线BM,EN 是异面直线D.BM ≠EN,且直线BM,EN 是异面直线【答案】B【解析】如图,连接BD,BE.在△BDE 中,N 为BD 的中点,M 为DE 的中点,∴BM,EN 是相交直线,排除选项C 、D.作EO ⊥CD 于点O,连接ON.作MF ⊥OD 于点F,连接BF.∵平面CDE ⊥平面ABCD,平面CDE ∩平面ABCD=CD,EO ⊥CD,EO ⊂平面CDE,∴EO ⊥平面ABCD.同理,MF ⊥平面ABCD.∴△MFB 与△EON 均为直角三角形.设正方形ABCD 的边长为2,易知EO=√3,ON=1,MF=√32,BF=√22+94=52,则EN=√3+1=2,BM=√34+254=√7, ∴BM ≠EN.故选B.5.(2019·浙江·T8)设三棱锥V-ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点).记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P-AC-B 的平面角为γ,则( )A.β<γ,α<γB.β<α,β<γC.β<α,γ<αD.α<β,γ<β【答案】B【解析】如图G 为AC 中点,点V 在底面ABC 上的投影为点O,则点P 在底面ABC 上的投影点D 在线段AO 上,过点D 作DE 垂直AE,易得PE ∥VG,过点P 作PF ∥AC 交VG 于点F,过点D 作DH ∥AC,交BG 于点H,则α=∠BPF,β=∠PBD,γ=∠PED,所以cos α=PF PB =EG PB =DH PB <BD PB =cos β,所以α>β,因为tan γ=PD ED >PD BD=tan β,所以γ>β.故选B.6.(2018·全国3·理T10文T12)设A,B,C,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为9√3,则三棱锥D-ABC 体积的最大值为( )A.12√3B.18√3C.24√3D.54√3 【答案】B【解析】由△ABC 为等边三角形且面积为9√3,设△ABC 边长为a,则S=12a ·√32a=9√3.∴a=6,则△ABC 的外接圆半径r=√32×23a=2√3<4.设球的半径为R,如图,OO 1=√R 2-r 2=√42-(2√3)2=2.当D 在O 的正上方时,V D-ABC =1S △ABC ·(R+|OO 1|)=1×9√3×6=18√3,最大.故选B.7.(2018·全国1·理T7文T9)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A,圆柱表面上的点N 在左视图上的对应点为B,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A.2√17B.2√5C.3D.2【答案】B【解析】如图所示,易知N 为CD⏜的中点,将圆柱的侧面沿母线MC 剪开,展平为矩形MCC'M',易知CN=14CC'=4,MC=2,从M 到N 的路程中最短路径为MN.在Rt△MCN中,MN=√MC2+NC2=2√5.8.(2018·全国3·理T3文T3)中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )【答案】A【解析】由题意可知带卯眼的木构件的直观图如图所示,由直观图可知其俯视图应为A中图形.9.(2018·北京·理T5文T6)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( )。
A06【数学】2010年高考数学选择试题分类汇编――立体几何.
知识改变命运,学习成就未来二面角的大小为另解:设P( x, y,0,则.本题主要考查直线与直线、直线与平面的位置关系、二面角的概念等基础知识;考查空间想像能力、推理论证能力和探索问题、解决问题的能力.满分 13 分.解:法一:(1)如图:在△ABC 中,由 E、F 分别是 AC、BC 中点,得 EF//AB,又平面 DEF,EF 平面 DEF. ∴AB∥平面 DEF. (2)∵AD⊥CD,BD⊥CD A ∴∠ADB 是二面角A—CD—B 的平面角∴AD⊥BD ∴AD⊥平面 BCD E 取 CD 的中点 M,这时EM∥AD ∴EM⊥平面 BCD 过 M 作 MN⊥DF 于点 N,连结 EN,则 EN⊥DF∴∠MNE 是二面角 E—DF—C 的平面角 Q M D 又把 4 1 代入上式得, 3 3 3 所以在线段 BC 上存在点 P 使 AP⊥DE w.w 解法一:(Ⅰ)连 BD,设 AC 交 BD 于 O,由题意。
在正方形 ABCD 中,,所以 C 3 在 Rt△EMN 中,EM=1,MN= 2 3 21 ∴tan∠MNE= ,cos∠MNE= 2 7 (Ⅲ)在线段 BC 上存在点 P,使 AP⊥DE 证明如下:在线段 BC 上取点 P。
使∴PQ⊥平面 ACD ∵平面SBD ,得Ⅱ设正方形边长 a ,则又。
1 BC ,过 P 作 PQ⊥CD 与点Q, 3 2 a ,所以连 OP ,由(Ⅰ)知平面SBD ,所以 AC 且所以是二面角的平面角。
由平面PAC ,知所以在等边△ADE 中,∠DAQ=30°3 ∴AQ⊥DE∴AP⊥DE 法二:(2)以点 D 为坐标原点,直线 DB、DC 为 x 轴、y 轴,建立空间直角坐标系,则 A(0,0,2) B(2,0,0)C(0, 2 3,0, , E(0, 3,1, F (1, 3,0 平面 CDF 的法向量为设平面 EDF 的法向量为 n 则即二面角的大小为 30 。
2010高考数学大盘点_立体几何
例 6 (2010全国Ⅰ理7文9)正
方 体 ABCD -A1B1C1D1 中 ,BB1 与 平 面
ACD1所成角的余弦值为( )
A.
%
姨
2
3
B.
%
姨
3
3
C. 2 3
D.
%
姨
6
3
分析:本题是典型的求线面角问
题,画出示意图后可知所求的线面角
即为 Rt△DD1O中的∠DD1O. 解答:因为BB1∥DD1,所以BB1 与
量法解决.
解答 题
在高考试卷中,通常有道立体几 何的解答题, 位置大概在第三题,以 容易题或中档题为主. 这道题常考 的内容为空间直线、平面的平行与垂 直的证明和空间各种角的计算,解决 的方法一般为建立空间直角坐标系 的向量法.
例 7 (2010北京理文16)如图
5,正 方 形ABCD和 四 边 形ACEF所 在
S 数学公开课 HUXUE GONGKAIKE
专题策划·立体几何
2010高考数学大盘点— ——立体几何
⊙ 上海松江区教师进修学院 阮晓明(特级教师)
考点阐释 …………………………………………………………
1. 认识柱、锥、台、球及简单组合 体的空间结构特征.
2. 能画出长方体、球、圆柱、圆锥、 棱柱等简易组合的三视图和直观图.
一个法向量. 设平面ABE的一个法向
奂 量 为 n =(x,y,z),
则由
n·B姨姨A=0, n·B姨姨E=0,
得
奂%
姨
2
-
%
姨
x 2
= y
0 +
, z=
0
.
令
y
=
1
十年真题(2010-2019)高考数学(理)分类汇编专题09 立体几何与空间向量选择填空题(新课标Ⅰ卷)(原卷版
专题09立体几何与空间向量选择填空题历年考题细目表填空题2010 三视图与直观图2010年新课标1理科14历年高考真题汇编1.【2019年新课标1理科12】已知三棱锥P﹣ABC的四个顶点在球O的球面上,P A=PB=PC,△ABC是边长为2的正三角形,E,F分别是P A,AB的中点,∠CEF=90°,则球O的体积为()A.8πB.4πC.2πD.π2.【2018年新课标1理科07】某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2C.3 D.23.【2018年新课标1理科12】已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为()A.B.C.D.4.【2017年新课标1理科07】某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A.10 B.12 C.14 D.165.【2016年新课标1理科06】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.17πB.18πC.20πD.28π6.【2016年新课标1理科11】平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD =m,α∩平面ABB1A1=n,则m、n所成角的正弦值为()A.B.C.D.7.【2015年新课标1理科06】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛8.【2015年新课标1理科11】圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1 B.2 C.4 D.89.【2014年新课标1理科12】如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.6B.6 C.4D.410.【2013年新课标1理科06】如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器注水,当球面恰好接触水面时测得水深为6cm,如不计容器的厚度,则球的体积为()A.B.C.D.11.【2013年新课标1理科08】某几何体的三视图如图所示,则该几何体的体积为()A.16+8πB.8+8π C.16+16πD.8+16π12.【2012年新课标1理科07】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6 B.9 C.12 D.1813.【2012年新课标1理科11】已知三棱锥S﹣ABC的所有顶点都在球O的表面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此三棱锥的体积为()A.B.C.D.14.【2011年新课标1理科06】在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为()A.B.C.D.15.【2010年新课标1理科10】设三棱柱的侧棱垂直于底面,所有棱长都为a,顶点都在一个球面上,则该球的表面积为()A.πa2B.C.D.5πa216.【2017年新课标1理科16】如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△F AB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△F AB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为.17.【2011年新课标1理科15】已知矩形ABCD的顶点都在半径为4的球O的球面上,且AB=6,BC=2,则棱锥O﹣ABCD的体积为.18.【2010年新课标1理科14】正视图为一个三角形的几何体可以是(写出三种)考题分析与复习建议本专题考查的知识点为:空间几何体的结构、三视图和直观图,空间几何体的表面积与体积,空间点、直线、平面之间的位置关系,直线、平面平行、垂直的判定与性质,空间向量及其运算,立体几何中的向量方法(证明平行与垂直、求空间角和距离)等.历年考题主要以选择填空题型出现,重点考查的知识点为:空间几何体的结构、三视图和直观图,空间几何体的表面积与体积,空间点、直线、平面之间的位置关系,直线、平面平行、垂直的判定与性质等.预测明年本考点题目会比较稳定,备考方向以知识点空间几何体的结构、三视图和直观图,空间几何体的表面积与体积,空间点、直线、平面之间的位置关系,直线、平面平行、垂直的判定与性质等为重点较佳.最新高考模拟试题1.在四棱锥P ABCD -中,所有侧棱都为42,底面是边长为26的正方形,O 是P 在平面ABCD 内的射影,M 是PC 的中点,则异面直线OP 与BM 所成角为( ) A .30oB .45oC .60oD .90o2.已知,m n 是两条不重合的直线,,αβ是两个不重合的平面,下列命题正确的是( ) A .若m αP ,m βP ,n α∥,n β∥,则αβP B .若m n ∥,m α⊥,n β⊥,则αβP C .若m n ⊥,m α⊂,n β⊂,则αβ⊥ D .若m n ⊥,m αP ,n β⊥,则αβ⊥3.已知正方体1111ABCD A B C D -的棱长为1,在对角线1A D 上取点M ,在1CD 上取点N ,使得线段MN平行于对角面11A ACC ,则||MN 的最小值为( ) A .1B .2C .2D .3 4.如图,某几何体的三视图如图所示,则此几何体的体积为( )A 3B 23C 3D .35.已知正四棱锥P ABCD -的所有顶点都在球O 的球面上,2PA AB ==,则球O 的表面积为( ) A .2πB .4πC .8πD .16π6.已知长方体全部棱长的和为36,表面积为52,则其体对角线的长为( ) A .4B 29C .223D .177.如图所示,边长为a 的空间四边形ABCD 中,∠BCD=90°,平面ABD⊥平面BCD ,则异面直线AD 与BC所成角的大小为( )A .30°B .45°C .60°D .90°8.鲁班锁起于中国古代建筑中首创的榫卯结构,相传由春秋时代鲁国工匠鲁班所作. 下图是经典的六柱鲁班锁及六个构件的图片,下图是其中一个构件的三视图,则此构件的体积为A .334000mmB .333000mmC .332000mmD .330000mm9.在正方体1111ABCD A B C D -中,动点E 在棱1BB 上,动点F 在线段11A C 上,O 为底面ABCD 的中心,若1,BE x A F y ==,则四面体O AEF -的体积( )A .与,x y 都有关B .与,x y 都无关C .与x 有关,与y 无关D .与y 有关,与x 无关10.在三棱锥A BCD -中,平面ABC ⊥平面BCD ,V ABC 是边长为2的正三角形,若4BDC π∠=,三棱锥的各个顶点均在球O 上,则球O 的表面积为( ) A .523πB .3πC .4πD .283π11.在棱长为2的正方体1111ABCD A B C D -中,P 是1BDC ∆内(不含边界)的一个动点,若11A P BC ⊥,则线段1A P 的长的取值范围为( )A .43(2,]3B .43[,6)3C .43[,22)3D .(6,22)12.已知如图正方体1111ABCD A B C D -中,P 为棱1CC 上异于其中点的动点,Q 为棱1AA 的中点,设直线m 为平面BDP 与平面11B D P 的交线,以下关系中正确的是( )A .1//m D QB .1m Q B ⊥C .//m 平面11BD QD .m ⊥平面11ABB A13.一个圆锥的母线长为2,圆锥的母线与底面的夹角为4π,则圆锥的内切球的表面积为( ) A .8πB .24(22)πC .24(22)π+D .232(22)49π14.如图是某几何体的三视图,则过该几何体顶点的所有截面中,最大截面的面积是( )A .2B 3C 3D .115.已知平面αI 平面β=直线l ,点A 、C α∈,点B 、D β∈,且A 、B 、C 、D l ∉,点M 、N 分别是线段AB 、CD 的中点,则下列说法正确的是( ) A .当2CD AB =时,M 、N 不可能重合B .M 、N 可能重合,但此时直线AC 与l 不可能相交 C .当直线AB 、CD 相交,且//AC l 时,BD 可与l 相交 D .当直线AB 、CD 异面时,MN 可能与l 平行16.阳马,中国古代算数中的一种几何形体,是底面长方形,两个三角面与底面垂直的四棱锥体,在阳马P ABCD -中,PC 为阳马P ABCD -中最长的棱,1,2,3AB AD PC ===,若在阳马P ABCD -的外接球内部随机取一点,则该点位阳马内的概率为( ) A .127πB .427πC .827πD .49π17.某空间几何体的三视图如图所示,则该几何体的外接球半径为( )A 2B 3C 5D .218.已知正四面体P ABC -的棱长为2,D 为PA 的中点,,EF 分别是线段AB ,PC (含端点)边上的动点,则DE DF +的最小值为( )A 2B 3C .2D .219.设O 是正四面体P ABC -底面ABC 的中心,过O 的动平面与PC 交于,S 与,PA PB 的延长线分别交于,,Q R 则111||||||PQ PR PS ++( ) A .有最大值而无最小值B .有最小值而无最大值C .既有最大值又有最小值,且两者不相等D .是一个与平面QRS 无关的常数20.已知正方体1111ABCD A B C D -的体积为1,点M 在线段BC 上(点M 异于B 、C 两点),点N 为线段1CC 的中点,若平面AMN 截正方体1111ABCD A B C D -所得的截面为五边形,则线段BM 的取值范围是( )A .10,2⎛⎤ ⎥⎝⎦B .1,12⎛⎫ ⎪⎝⎭C .1,13⎡⎫⎪⎢⎣⎭ D .11,23⎡⎤⎢⎥⎣⎦21.给出下列四个命题:①如果平面α外一条直线a 与平面α内一条直线b 平行,那么a P α;②过空间一定点有且只有一条直线与已知平面垂直;③如果一条直线垂直于一个平面内的无数条直线,那么这条直线与这个平面垂直;④若两个相交平面都垂直于第三个平面,则这两个平面的交线垂直于第三个平面.其中真命题的序号为______.22. “圆材埋壁”是我国古代数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何.”用现在的数学语言表述是:“如图所示,一圆柱形埋在墙壁中,1AB =尺,D 为AB 的中点,AB CD ⊥,1CD =寸,则圆柱底面的直径长是_________寸”.(注:l 尺=10寸)23.表面积为43的正四面体的各个顶点都在同一个球面上,则此球的体积为_____.24.已知圆锥的轴截面是直角边长为2的等腰直角三角形,则该圆锥的侧面积为____.25.如图.网络纸上小正方形的边长为1.粗实线画出的是某几何体的三视图,则该几何体的体积为______.26.在棱长为2的正方体1111ABCD A B C D -中,P 是1BDC ∆内(不含边界)的一个动点,若11A P BC ⊥,则线段1A P 的长的取值范围为_____.27.已知三棱锥A SBC -23,各顶点均在以SC 为直径球面上,2,2AB AC BC ===,则这个球的表面积为_____________。
十年真题(2010_2019)高考数学真题分类汇编专题09立体几何文(含解析)
专题09立体几何历年考题细目表历年高考真题汇编1.【2018年新课标1文科05】已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()A.12πB.12πC.8πD.10π【解答】解:设圆柱的底面直径为2R,则高为2R,圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,可得:4R2=8,解得R,则该圆柱的表面积为: 12π.故选:B.2.【2018年新课标1文科09】某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2C.3 D.2【解答】解:由题意可知几何体是圆柱,底面周长16,高为:2,直观图以及侧面展开图如图:圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度:2.故选:B.3.【2018年新课标1文科10】在长方体ABCD﹣A1B1C1D1中,AB=BC=2,AC1与平面BB1C1C所成的角为30°,则该长方体的体积为()A.8 B.6C.8D.8【解答】解:长方体ABCD﹣A1B1C1D1中,AB=BC=2,AC1与平面BB1C1C所成的角为30°,即∠AC1B=30°,可得BC12.可得BB12.所以该长方体的体积为:28.故选:C.4.【2017年新课标1文科06】如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()A.B.C.D.【解答】解:对于选项B,由于AB∥MQ,结合线面平行判定定理可知B不满足题意;对于选项C,由于AB∥MQ,结合线面平行判定定理可知C不满足题意;对于选项D,由于AB∥NQ,结合线面平行判定定理可知D不满足题意;所以选项A满足题意,故选:A.5.【2016年新课标1文科07】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.17πB.18πC.20πD.28π【解答】解:由题意可知三视图复原的几何体是一个球去掉后的几何体,如图:可得:,R=2.它的表面积是:4π•2217π.故选:A.6.【2016年新课标1文科11】平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD =m,α∩平面ABB1A1=n,则m、n所成角的正弦值为()A.B.C.D.【解答】解:如图:α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABA1B1=n,可知:n∥CD1,m∥B1D1,∵△CB1D1是正三角形.m、n所成角就是∠CD1B1=60°.则m、n所成角的正弦值为:.故选:A.7.【2015年新课标1文科06】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛【解答】解:设圆锥的底面半径为r,则r=8,解得r,故米堆的体积为π×()2×5,∵1斛米的体积约为1.62立方,∴ 1.62≈22,故选:B.8.【2015年新课标1文科11】圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1 B.2 C.4 D.8【解答】解:由几何体三视图中的正视图和俯视图可知,截圆柱的平面过圆柱的轴线,该几何体是一个半球拼接半个圆柱,∴其表面积为:4πr2πr22r×2πr+2r×2rπr2=5πr2+4r2,又∵该几何体的表面积为16+20π,∴5πr2+4r2=16+20π,解得r=2,故选:B.9.【2014年新课标1文科08】如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱【解答】解:根据网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,可知几何体如图:几何体是三棱柱.故选:B.10.【2013年新课标1文科11】某几何体的三视图如图所示,则该几何体的体积为()A.16+8πB.8+8πC.16+16πD.8+16π【解答】解:三视图复原的几何体是一个长方体与半个圆柱的组合体,如图,其中长方体长、宽、高分别是:4,2,2,半个圆柱的底面半径为2,母线长为4.∴长方体的体积=4×2×2=16,半个圆柱的体积22×π×4=8π所以这个几何体的体积是16+8π;故选:A.11.【2012年新课标1文科07】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6 B.9 C.12 D.18【解答】解:该几何体是三棱锥,底面是俯视图,三棱锥的高为3;底面三角形斜边长为6,高为3的等腰直角三角形,此几何体的体积为V6×3×3=9.故选:B.12.【2012年新课标1文科08】平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,则此球的体积为()A.πB.4πC.4πD.6π【解答】解:因为平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,所以球的半径为:.所以球的体积为:4π.故选:B.13.【2011年新课标1文科08】在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为()A.B.C.D.【解答】解:由俯视图和正视图可以得到几何体是一个简单的组合体,是由一个三棱锥和被轴截面截开的半个圆锥组成,∴侧视图是一个中间有分界线的三角形,故选:D.14.【2010年新课标1文科07】设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为()A.3πa2B.6πa2C.12πa2D.24πa2【解答】解:根据题意球的半径R满足(2R)2=6a2,所以S球=4πR2=6πa2.故选:B.15.【2019年新课标1文科16】已知∠ACB=90°,P为平面ABC外一点,PC=2,点P到∠ACB两边AC,BC 的距离均为,那么P到平面ABC的距离为.【解答】解:∠ACB=90°,P为平面ABC外一点,PC=2,点P到∠ACB两边AC,BC的距离均为,过点P作PD⊥AC,交AC于D,作PE⊥BC,交BC于E,过P作PO⊥平面ABC,交平面ABC于O,连结OD,OC,则PD=PE,∴CD=CE=OD=OE1,∴PO.∴P到平面ABC的距离为.故答案为:.16.【2017年新课标1文科16】已知三棱锥S﹣ABC的所有顶点都在球O的球面上,SC是球O的直径.若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S﹣ABC的体积为9,则球O的表面积为.【解答】解:三棱锥S﹣ABC的所有顶点都在球O的球面上,SC是球O的直径,若平面SCA⊥平面SCB,SA =AC,SB=BC,三棱锥S﹣ABC的体积为9,可知三角形SBC与三角形SAC都是等腰直角三角形,设球的半径为r,可得,解得r=3.球O的表面积为:4πr2=36π.故答案为:36π.17.【2013年新课标1文科15】已知H是球O的直径AB上一点,AH:HB=1:2,AB⊥平面α,H为垂足,α截球O所得截面的面积为π,则球O的表面积为.【解答】解:设球的半径为R,∵AH:HB=1:2,∴平面α与球心的距离为R,∵α截球O所得截面的面积为π,∴d R时,r=1,故由R2=r2+d2得R2=12+(R)2,∴R2∴球的表面积S=4πR2.故答案为:.18.【2011年新课标1文科16】已知两个圆锥有公共底面,且两个圆锥的顶点和底面的圆周都在同一个球面上,若圆锥底面面积是这个球面面积的,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为.【解答】解:不妨设球的半径为:4;球的表面积为:64π,圆锥的底面积为:12π,圆锥的底面半径为:2;由几何体的特征知球心到圆锥底面的距离,求的半径以及圆锥底面的半径三者可以构成一个直角三角形由此可以求得球心到圆锥底面的距离是,所以圆锥体积较小者的高为:4﹣2=2,同理可得圆锥体积较大者的高为:4+2=6;所以这两个圆锥中,体积较小者的高与体积较大者的高的比值为:.故答案为:19.【2010年新课标1文科15】一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的(填入所有可能的几何体前的编号)①三棱锥②四棱锥③三棱柱④四棱柱⑤圆锥⑥圆柱.【解答】解:一个几何体的正视图为一个三角形,显然①②⑤正确;③是三棱柱放倒时也正确;④⑥不论怎样放置正视图都不会是三角形;故答案为:①②③⑤20.【2019年新课标1文科19】如图,直四棱柱ABCD﹣A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求点C到平面C1DE的距离.【解答】解法一:证明:(1)连结B1C,ME,∵M,E分别是BB1,BC的中点,∴ME∥B1C,又N为A1D的中点,∴ND A1D,由题设知A1B1DC,∴B1C A1D,∴ME ND,∴四边形MNDE是平行四边形,MN∥ED,又MN⊄平面C1DE,∴MN∥平面C1DE.解:(2)过C作C1E的垂线,垂足为H,由已知可得DE⊥BC,DE⊥C1C,∴DE⊥平面C1CE,故DE⊥CH,∴CH⊥平面C1DE,故CH的长即为C到时平面C1DE的距离,由已知可得CE=1,CC1=4,∴C1E,故CH,∴点C到平面C1DE的距离为.解法二:证明:(1)∵直四棱柱ABCD﹣A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.∴DD1⊥平面ABCD,DE⊥AD,以D为原点,DA为x轴,DE为y轴,DD1为z轴,建立空间直角坐标系,M(1,,2),N(1,0,2),D(0,0,0),E(0,,0),C1(﹣1,,4),(0,,0),(﹣1,),(0,),设平面C1DE的法向量(x,y,z),则,取z=1,得(4,0,1),∵•0,MN⊄平面C1DE,∴MN∥平面C1DE.解:(2)C(﹣1,,0),(﹣1,,0),平面C1DE的法向量(4,0,1),∴点C到平面C1DE的距离:d.21.【2018年新课标1文科18】如图,在平行四边形ABCM中,AB=AC=3,∠ACM=90°,以AC为折痕将△ACM折起,使点M到达点D的位置,且AB⊥DA.(1)证明:平面ACD⊥平面ABC;(2)Q为线段AD上一点,P为线段BC上一点,且BP=DQ DA,求三棱锥Q﹣ABP的体积.【解答】解:(1)证明:∵在平行四边形ABCM中,∠ACM=90°,∴AB⊥AC,又AB⊥DA.且AD∩AC=A,∴AB⊥面ADC,∵AB⊂面ABC,∴平面ACD⊥平面ABC;(2)∵AB=AC=3,∠ACM=90°,∴AD=AM=3,∴BP=DQ DA=2,由(1)得DC⊥AB,又DC⊥CA,∴DC⊥面ABC,∴三棱锥Q﹣ABP的体积V1.22.【2017年新课标1文科18】如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,且四棱锥P﹣ABCD的体积为,求该四棱锥的侧面积.【解答】证明:(1)∵在四棱锥P﹣ABCD中,∠BAP=∠CDP=90°,∴AB⊥PA,CD⊥PD,又AB∥CD,∴AB⊥PD,∵PA∩PD=P,∴AB⊥平面PAD,∵AB⊂平面PAB,∴平面PAB⊥平面PAD.解:(2)设PA=PD=AB=DC=a,取AD中点O,连结PO,∵PA=PD=AB=DC,∠APD=90°,平面PAB⊥平面PAD,∴PO⊥底面ABCD,且AD,PO,∵四棱锥P﹣ABCD的体积为,由AB⊥平面PAD,得AB⊥AD,∴V P﹣ABCD,解得a=2,∴PA=PD=AB=DC=2,AD=BC=2,PO,∴PB=PC2,∴该四棱锥的侧面积:S侧=S△PAD+S△PAB+S△PDC+S△PBC=6+2.23.【2016年新课标1文科18】如图,已知正三棱锥P﹣ABC的侧面是直角三角形,PA=6,顶点P在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E,连接PE并延长交AB于点G.(Ⅰ)证明:G是AB的中点;(Ⅱ)在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.【解答】解:(Ⅰ)证明:∵P﹣ABC为正三棱锥,且D为顶点P在平面ABC内的正投影,∴PD⊥平面ABC,则PD⊥AB,又E为D在平面PAB内的正投影,∴DE⊥面PAB,则DE⊥AB,∵PD∩DE=D,∴AB⊥平面PDE,连接PE并延长交AB于点G,则AB⊥PG,又PA=PB,∴G是AB的中点;(Ⅱ)在平面PAB内,过点E作PB的平行线交PA于点F,F即为E在平面PAC内的正投影.∵正三棱锥P﹣ABC的侧面是直角三角形,∴PB⊥PA,PB⊥PC,又EF∥PB,所以EF⊥PA,EF⊥PC,因此EF⊥平面PAC,即点F为E在平面PAC内的正投影.连结CG,因为P在平面ABC内的正投影为D,所以D是正三角形ABC的中心.由(Ⅰ)知,G是AB的中点,所以D在CG上,故CD CG.由题设可得PC⊥平面PAB,DE⊥平面PAB,所以DE∥PC,因此PE PG,DE PC.由已知,正三棱锥的侧面是直角三角形且PA=6,可得DE=2,PG=3,PE=2.在等腰直角三角形EFP中,可得EF=PF=2.所以四面体PDEF的体积V DE×S△PEF22×2.24.【2015年新课标1文科18】如图,四边形ABCD为菱形,G为AC与BD的交点,BE⊥平面ABCD.(Ⅰ)证明:平面AEC⊥平面BED;(Ⅱ)若∠ABC=120°,AE⊥EC,三棱锥E﹣ACD的体积为,求该三棱锥的侧面积.【解答】证明:(Ⅰ)∵四边形ABCD为菱形,∴AC⊥BD,∵BE⊥平面ABCD,∴AC⊥BE,则AC⊥平面BED,∵AC⊂平面AEC,∴平面AEC⊥平面BED;解:(Ⅱ)设AB=x,在菱形ABCD中,由∠ABC=120°,得AG=GC x,GB=GD,∵BE⊥平面ABCD,∴BE⊥BG,则△EBG为直角三角形,∴EG AC=AG x,则BE x,∵三棱锥E﹣ACD的体积V,解得x=2,即AB=2,∵∠ABC=120°,∴AC2=AB2+BC2﹣2AB•BC cos ABC=4+4﹣212,即AC,在三个直角三角形EBA,EBD,EBC中,斜边AE=EC=ED,∵AE⊥EC,∴△EAC为等腰三角形,则AE2+EC2=AC2=12,即2AE2=12,∴AE2=6,则AE,∴从而得AE=EC=ED,∴△EAC的面积S3,在等腰三角形EAD中,过E作EF⊥AD于F,则AE,AF,则EF,∴△EAD的面积和△ECD的面积均为S,故该三棱锥的侧面积为3+2.25.【2014年新课标1文科19】如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO ⊥平面BB1C1C.(1)证明:B1C⊥AB;(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC﹣A1B1C1的高.【解答】(1)证明:连接BC1,则O为B1C与BC1的交点,∵侧面BB1C1C为菱形,∴BC1⊥B1C,∵AO⊥平面BB1C1C,∴AO⊥B1C,∵AO∩BC1=O,∴B1C⊥平面ABO,∵AB⊂平面ABO,∴B1C⊥AB;(2)解:作OD⊥BC,垂足为D,连接AD,作OH⊥AD,垂足为H,∵BC⊥AO,BC⊥OD,AO∩OD=O,∴BC⊥平面AOD,∴OH⊥BC,∵OH⊥AD,BC∩AD=D,∴OH⊥平面ABC,∵∠CBB1=60°,∴△CBB1为等边三角形,∵BC=1,∴OD,∵AC⊥AB1,∴OA B1C,由OH•AD=OD•OA,可得AD,∴OH,∵O为B1C的中点,∴B1到平面ABC的距离为,∴三棱柱ABC﹣A1B1C1的高.26.【2013年新课标1文科19】如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°(Ⅰ)证明:AB⊥A1C;(Ⅱ)若AB=CB=2,A1C,求三棱柱ABC﹣A1B1C1的体积.【解答】(Ⅰ)证明:如图,取AB的中点O,连结OC,OA1,A1B.因为CA=CB,所以OC⊥AB.由于AB=AA1,,故△AA1B为等边三角形,所以OA1⊥AB.因为OC∩OA1=O,所以AB⊥平面OA1C.又A1C⊂平面OA1C,故AB⊥A1C;(Ⅱ)解:由题设知△ABC与△AA1B都是边长为2的等边三角形,所以.又,则,故OA1⊥OC.因为OC∩AB=O,所以OA1⊥平面ABC,OA1为三棱柱ABC﹣A1B1C1的高.又△ABC的面积,故三棱柱ABC﹣A1B1C1的体积.27.【2012年新课标1文科19】如图,三棱柱ABC﹣A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC AA1,D是棱AA1的中点.(Ⅰ)证明:平面BDC1⊥平面BDC(Ⅱ)平面BDC1分此棱柱为两部分,求这两部分体积的比.【解答】证明:(1)由题意知BC⊥CC1,BC⊥AC,CC1∩AC=C,∴BC⊥平面ACC1A1,又DC1⊂平面ACC1A1,∴DC1⊥BC.由题设知∠A1DC1=∠ADC=45°,∴∠CDC1=90°,即DC1⊥DC,又DC∩BC=C,∴DC1⊥平面BDC,又DC1⊂平面BDC1,∴平面BDC1⊥平面BDC;(2)设棱锥B﹣DACC1的体积为V1,AC=1,由题意得V11×1,又三棱柱ABC﹣A1B1C1的体积V=1,∴(V﹣V1):V1=1:1,∴平面BDC1分此棱柱两部分体积的比为1:1.28.【2011年新课标1文科18】如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形.∠DAB=60°,AB=2AD,PD⊥底面ABCD.(Ⅰ)证明:PA⊥BD(Ⅱ)设PD=AD=1,求棱锥D﹣PBC的高.【解答】解:(Ⅰ)证明:因为∠DAB=60°,AB=2AD,由余弦定理得BD,从而BD2+AD2=AB2,故BD⊥AD又PD⊥底面ABCD,可得BD⊥PD所以BD⊥平面PAD.故PA⊥BD.(II)解:作DE⊥PB于E,已知PD⊥底面ABCD,则PD⊥BC,由(I)知,BD⊥AD,又BC∥AD,∴BC⊥BD.故BC⊥平面PBD,BC⊥DE,则DE⊥平面PBC.由题设知PD=1,则BD,PB=2.根据DE•PB=PD•BD,得DE,即棱锥D﹣PBC的高为.29.【2010年新课标1文科18】如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高.(Ⅰ)证明:平面PAC⊥平面PBD;(Ⅱ)若AB,∠APB=∠ADB=60°,求四棱锥P﹣ABCD的体积.【解答】解:(1)因为PH是四棱锥P﹣ABCD的高.所以AC⊥PH,又AC⊥BD,PH,BD都在平PHD内,且PH∩BD=H.所以AC⊥平面PBD.故平面PAC⊥平面PBD(2)因为ABCD为等腰梯形,AB∥CD,AC⊥BD,AB.所以HA=HB.因为∠APB=∠ADB=60°所以PA=PB,HD=HC=1.可得PH.等腰梯形ABCD的面积为S ACxBD=2所以四棱锥的体积为V(2).考题分析与复习建议本专题考查的知识点为:空间几何体的结构、三视图和直观图,空间几何体的表面积与体积,空间点、直线、平面之间的位置关系,直线、平面平行、垂直的判定与性质等.历年考题主要以选择填空或解答题题型出现,重点考查的知识点为:三视图和直观图,空间几何体的表面积与体积,直线、平面平行、垂直的判定与性质等.预测明年本考点题目会比较稳定,备考方向以知识点三视图和直观图,空间几何体的表面积与体积,直线、平面平行、垂直的判定与性质等为重点较佳.最新高考模拟试题AD与BD所成的角为()1.在正方体中, 1A.45?B.90C.60D.120【答案】C【解析】如图,连结BC1、BD和DC1,在正方体ABCD-A1B1C1D1中,由AB=D1C1,AB∥D1C1,可知AD1∥BC1,所以∠DBC1就是异面直线AD1与BD所成角,在正方体ABCD-A1B1C1D1中,BC1、BD和DC1是其三个面上的对角线,它们相等.所以△DBC1是正三角形,∠DBC1=60°故异面直线AD1与BD所成角的大小为60°.故选:C.2.在正方体中,用空间中与该正方体所有棱成角都相等的平面α去截正方体,在截面边数最多时的所有多边形中,多边形截面的面积为S,周长为l,则( )A.S为定值,l不为定值B.S不为定值,l为定值C.S与l均为定值D.S与l均不为定值【答案】C【解析】正方体的所有棱中,实际上是3组平行的棱,每条棱所在直线与平面α所成的角都相等,如图:与面1A BD平行的面且截面是六边形时满足条件,不失一般性设正方体边长为1,即六边形EFGHMN ,其中分别为其所在棱的中点, 由正方体的性质可得22EF =, ∴六边形的周长l 为定值32.∴六边形的面积为,由正方体的对称性可得其余位置时也为正六边形,周长与面积不变,故S 与l 均为定值,故选C.3.在四面体P ABC -中,ABC ∆为等边三角形,边长为3,3PA =,4PB =,5PC =,则四面体P ABC -的体积为( )A .3B .23C .11D .10 【答案】C【解析】如图,延长CA 至D ,使得3AD =,连接,DB PD ,因为,故ADB ∆为等腰三角形, 又,故, 所以即,故CB DB ⊥, 因为,所以,所以CB PB ⊥, 因,DB ⊂平面PBD ,PB ⊂平面PBD ,所以CB ⊥平面PBD ,所以,因A 为DC 的中点,所以,因为,故PDC ∆为直角三角形,所以,又,而4PB =,故即PBD ∆为直角三角形,所以,所以,故选C.4.若,a b 是不同的直线,,αβ是不同的平面,则下列命题中正确的是( )A .若,则αβ⊥B .若,则αβ‖C .若,则αβ‖D .若,则αβ‖【答案】C【解析】A 中,若,平面,αβ可能垂直也可能平行或斜交,不正确;B 中,若,平面,αβ可能平行也可能相交,不正确;C 中,若,a b αβ⊥⊥,则,a b 分别是平面,αβ的法线,a b ‖必有αβ‖,正确;D 中,若,平面,αβ可能平行也可能相交,不正确.故选C.5.某几何体的三视图如图所示,则该几何体的外接球的体积是( )A .23πB .32π C .3πD .43π【答案】B【解析】解:根据几何体的三视图,该几何体是由一个正方体切去一个正方体的一角得到的.故:该几何体的外接球为正方体的外接球,所以:球的半径,则:. 故选:B .6.如图,正方体中,E 为棱1BB 的中点,用过点A 、E 、1C 的平面截去该正方体的下半部分,则剩余几何体的正视图(也称主视图)是( )A .B .C .D .【答案】A【解析】解:正方体中,过点1,,A E C 的平面截去该正方体的上半部分后,剩余部分的直观图如图:则该几何体的正视图为图中粗线部分.故选:A .7.下列说法错误的是( )A .垂直于同一个平面的两条直线平行B .若两个平面垂直,则其中一个平面内垂直于这两个平面交线的直线与另一个平面垂直C .一个平面内的两条相交直线均与另一个平面平行,则这两个平面平行D .一条直线与一个平面内的无数条直线垂直,则这条直线和这个平面垂直【答案】D【解析】由线面垂直的性质定理知,垂直于同一个平面的两条直线平行,A 正确; 由面面垂直的性质定理知,若两个平面垂直,则其中一个平面内垂直于这两个平面交线的直线与另一个平面垂直,B 正确;由面面平行的判定定理知,一个平面内的两条相交直线均与另一个平面平行,则这两个平面平行,C 正确; 当一条直线与平面内无数条相互平行的直线垂直时,该直线与平面不一定垂直,D 错误,故选D.8.《九章算术》中,将四个面都为直角三角形的四面体称之为“鳖臑”.在如图所示的四棱锥P ABCD -中,PD ⊥平面ABCD ,底面ABCD 是正方形,且PD CD =,点E ,F 分别为PC ,PD 的中点,则图中的鳖臑有( )A .2个B .3个C .4个D .5个【答案】C【解析】 由题意,因为PD ⊥底面ABCD ,所以PD DC ,PD BC ⊥,又四边形ABCD 为正方形,所以BC CD ⊥,所以BC ⊥平面PCD ,BC PC ⊥,所以四面体PDBC 是一个鳖臑,因为DE ⊂平面PCD ,所以BC DE ⊥,因为PD CD =,点E 是PC 的中点,所以DE PC ⊥,因为,所以DE ⊥平面PBC ,可知四面体EBCD 的四个面都是直角三角形,即四面体EBCD 是一个鳖臑,同理可得,四面体PABD 和FABD 都是鳖臑,故选C.9.在三棱锥P ABC -中,平面PAB ⊥平面ABC ,ABC △是边长为6的等边三角形,PAB △是以AB 为斜边的等腰直角三角形,则该三棱锥外接球的表面积为_______.【答案】48π【解析】如图,在等边三角形ABC中,取AB的中点F,设其中心为O,由6AB=,得,PAB∆是以AB为斜边的等腰角三角形,PF AB∴⊥, 又因为平面PAB⊥平面ABC,PF∴⊥平面ABC,PF OF∴⊥,,则O为棱锥P ABC-的外接球球心,外接球半径,∴该三棱锥外接球的表面积为,故答案为48π.10.若将一个圆锥的侧面沿一条母线剪开,其展开图是半径为3,圆心角为23π的扇形,则该圆锥的体积为_______.【答案】22 3π【解析】因为展开图是半径为3,圆心角为23π的扇形,所以圆锥的母线3l=,圆锥的底面的周长为,因此底面的半径1r=,根据勾股定理,可知圆锥的高,所以圆锥的体积为.11.设m,n是两条不同的直线,α,β是两个不同的平面,下列正确命题序号是_____.(1)若m α,n α∥,则m n ∥(2)若m α⊥,m n ⊥则n α∥(3)若m α⊥,n β⊥且m n ⊥,则αβ⊥;(4)若m β⊂,αβ,则m α【答案】(3)(4)【解析】若,则m 与n 可能平行,相交或异面,故(1)错误;若则n α∥或n α⊂,故(2)错误;若且m n ⊥,则αβ⊥,故(3)正确;若,由面面平行的性质可得m α,故(4)正确;故答案为:(3)(4)12.长方体的底面ABCD 是边长为1的正方形,若在侧棱1AA 上存在点E ,使得,则侧棱1AA 的长的最小值为_______.【答案】2【解析】设侧棱AA 1的长为x ,A 1E =t ,则AE =x ﹣t ,∵长方体ABCD ﹣A 1B 1C 1D 1的底面是边长为1的正方形,∠C 1EB =90°,∴,∴2+t 2+1+(x ﹣t )2=1+x 2,整理,得:t 2﹣xt+1=0,∵在侧棱AA 1上至少存在一点E ,使得∠C 1EB =90°,∴△=(﹣x )2﹣4≥0,解得x≥2.∴侧棱AA 1的长的最小值为2.故答案为2.13.如图,在Rt ABC ∆中,1AB BC ==,D 和E 分别是边BC 和AC 上一点,DE BC ⊥,将CDE ∆沿DE 折起到点P 位置,则该四棱锥P ABDE -体积的最大值为_______.【答案】327 【解析】 在Rt ABC ∆中,由已知,1AB BC ==,DE BC ⊥,所以设,四边形ABDE 的面积为,当CDE ∆⊥平面ABDE 时,四棱锥P ABDE -体积最大,此时,且,故四棱锥P ABDE -体积为,, 30,3x ⎛⎫∈ ⎪ ⎪⎝⎭ 时,0V '> ;时,0V '<, 所以,当33x =时,max 327V =. 故答案为32714.三棱锥P ABC -的4个顶点在半径为2的球面上,PA ⊥平面ABC ,ABC 是边长为3的正三角形,则点A 到平面PBC 的距离为______.【答案】65【解析】△ABC 是边长为3的正三角形,可得外接圆的半径2r a sin60==︒2,即r =1. ∵PA ⊥平面ABC ,PA =h ,球心到底面的距离d 等于三棱锥的高PA 的一半即h 2, 那么球的半径R 2,解得h=2,又由知,得'65d = 故点A 到平面PBC 的距离为65故答案为65. 15.如图,该几何体由底面半径相同的圆柱与圆锥两部分组成,且圆柱的高与底面半径相等.若圆柱与圆锥的侧面积相等,则圆锥与圆柱的高之比为_______.【答案】3【解析】设圆柱和圆锥的底面半径为R ,则圆柱的高1h =R ,圆锥的母线长为L ,因为圆柱与圆锥的侧面积相等, 所以,,解得:L =2R ,得圆锥的高为2h =3R , 所以,圆锥与圆柱的高之比为33R R=. 故答案为:316.直三棱柱中,,设其外接球的球心为O ,已知三棱锥O ABC -的体积为1,则球O 表面积的最小值为__________.【答案】16π.【解析】如图,在Rt ABC ∆中,设,则.分别取11,AC A C 的中点12,O O ,则12,O O 分别为111Rt A B C ∆和Rt ABC ∆外接圆的圆心,连12,O O ,取12O O 的中点O ,则O 为三棱柱外接球的球心.连OA ,则OA 为外接球的半径,设半径为R .∵三棱锥O ABC -的体积为1,即,∴6ac =.在2Rt OO C ∆中,可得,∴,当且仅当a c =时等号成立,∴O 球表面积的最小值为16π.故答案为:16π.17.在三棱锥P ABC -中,ABC ∆是边长为4的等边三角形,,25PC =. (1)求证:平面PAB ⊥平面ABC ;(2)若点M ,N 分别为棱BC ,PC 的中点,求三棱锥N AMC -的体积V .【答案】(1)见证明;(2) 26=3V【解析】(1)取AB 中点H ,连结PH ,HC .∵,4AB =,∴PH AB ⊥,22PH =.∵等边ABC ∆的边长为4∴23HC =,又25PC =∴∴90PHC ∠=,即PH HC ⊥又∵,AB 平面ABC ,CH ⊂平面ABC∴PH ⊥平面ABC ,又PH ⊂平面PAB∴平面PAB ⊥平面ABC(2)∵点M ,N 分别为棱BC ,PC 的中点∴点N 到平面ABC 的距离为1=22PH 且 ∴三棱锥N AMC -的体积 18.如图所示,三棱柱中,90BCA ∠=°,1AC ⊥平面1A BC .(1)证明:平面ABC ⊥平面11ACC A ;(2)若,11A A A C =,求点1B 到平面1A BC 的距离.【答案】(1)见解析;(2)3【解析】(1)证明:1AC ⊥平面1A BC ,.,,BC ∴⊥平面11ACC A .又BC ⊂平面ABC ,∴平面ABC ⊥平面11ACC A .(2)解:取AC 的中点D ,连接1A D .,.又平面ABC ⊥平面11ACC A ,且交线为AC ,则1A D ⊥平面ABC .1AC ⊥平面1A BC ,,∴四边形11ACC A 为菱形,.又11A A A C =,1A AC ∴是边长为2正三角形,13A D ∴= . 面11BB C C ,1BB ⊂面11BB C C1AA ∴面11BB C C设点1B 到平面1A BC 的距离为h .则.,,3h ∴=.所以点1B 到平面1A BC 的距离为3.19.在边长为3的正方形ABCD 中,点E ,F 分别在边AB ,BC 上(如左图),且=BE BF ,将AED ,DCF 分别沿DE ,DF 折起,使A ,C 两点重合于点A (如右图).(1)求证:A D EF '⊥;(2)当13BF BC =时,求点A 到平面DEF 的距离. 【答案】(1)见解析;(2)375 【解析】(1)由ABCD 是正方形及折叠方式,得:A E A D '⊥',A F A D '⊥',,A D ∴'⊥平面A EF ',平面A EF ',.(2),,,52DEF S ∴= 设点A 到平面DEF 的距离为d ,, ,解得375d =. ∴点A 到平面DEF 的距离为375. 20.如图,四棱锥S ABCD -中,SD ⊥平面ABCD ,//AB CD ,AD CD ⊥,SD CD =,AB AD =,2CD AD =,M 是BC 中点,N 是SA 上的点.(1)求证://MN 平面SDC ;(2)求A 点到平面MDN 的距离.【答案】(1)见证明;(2)127d = 【解析】 (1)取AD 中点为E ,连结ME ,NE ,则//ME DC ,因为ME ⊄平面SDC ,所以//ME 平面SDC ,同理//NE 平面SDC .所以平面//MNE 平面SDC ,从而因此//MN 平面SDC .(2)因为CD AD ⊥,所以ME AD ⊥.因为SD ⊥平面ABCD ,所以SD CD ⊥,ME SD ⊥.所以ME ⊥平面SAD .设2DA =,则3ME =,2NE =,,10MD =,5ND =.在MDN ∆中,由余弦定理,从而,所以MDN ∆面积为72. 又ADM ∆面积为12332⨯⨯=. 设A 点到平面MDN 的距离为d ,由得732d NE =, 因为2NE =,所以A 点到平面MDN 的距离127d =. 21.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,3PA =, //AB CD ,AB AD ⊥,,2AB =,E 为侧棱PA 上一点.(Ⅰ)若13PE PA =,求证:PC //平面EBD ; (Ⅱ)求证:平面EBC ⊥平面PAC ;(Ⅲ)在侧棱PD 上是否存在点F ,使得AF ⊥平面PCD ?若存在,求出线段PF 的长;若不存在,请说明理由.【答案】(Ⅰ)详见解析;(Ⅱ)详见解析;(Ⅲ)存在,线段PF 长32. 【解析】 (Ⅰ)设,连结EG ,由已知AB//CD ,DC 1=,AB 2=,得.由1PE PA 3=,得AE2EP =.在ΔPAC 中,由AEAGEP GC =,得EG //PC .因为EG ⊂平面EBD ,PC ⊄平面EBD ,所以PC //平面EBD .(Ⅱ)因为PA ⊥平面ABCD ,BC ⊂平面ABCD ,所以BC PA ⊥.由已知得AC 2=,BC 2=,AB 2=,所以. 所以BC AC ⊥.又,所以BC ⊥平面PAC .因为BC ⊂平面EBC ,所以平面EBC ⊥平面PAC .(Ⅲ)在平面PAD 内作AF PD ⊥于点F ,由DC PA ⊥,DC AD ⊥,,得DC ⊥平面PAD .因为AF ⊂平面PAD ,所以CD AF ⊥.又,所以AF ⊥平面PCD . 由PA 3=,AD 1=,PA AD ⊥,得3PF 2=. 22.已知三棱柱的底面ABC 是等边三角形,侧面AA C C ''⊥底面ABC ,D 是棱BB '的中点.(1)求证:平面DA C '⊥平面ACC A '';(2)求平面DA C '将该三棱柱分成上下两部分的体积比.【答案】(1)见证明;(2)1:1【解析】(1)取,AC A C ''的中点,O F ,连接OF 与C A '交于点E , 连接DE ,,OB B F ',则E 为OF 的中点,, 且,所以BB FO '是平行四边形.又D 是棱BB '的中点,所以DE OB .侧面AA C C ''⊥底面ABC ,且OB AC ⊥ ,所以OB ⊥平面ACC A '' . 所以DE ⊥平面ACC A '',又DE 平面DA C ',所以平面DA C '⊥平面ACC A ''.(2)连接A B ', 设三棱柱的体积为V .故四棱锥的体积 又D 是棱BB '的中点,BCD ∆的面积是BCC B ''面积的14 , 故四棱锥的体积故平面DA C '将该三棱柱分成上下两部分的体积比为1:1.。
(新课标全国I卷)2010_2019学年高考数学真题分类汇编专题06立体几何(1)文(含解析)
专题6 立体几何(1)立体几何小题:10年19考,一般考三视图和球,主要计算体积和表面积.其中,“点线面”也有可能出现在小题.1.(2019年)已知∠ACB=90°,P为平面ABC外一点,PC=2,点P到∠ACB两边AC,BC,那么P到平面ABC的距离为.【解析】∠ACB=90°,P为平面ABC外一点,PC=2,点P到∠ACB两边AC,BC,过点P作PD⊥AC,交AC于D,作PE⊥BC,交BC于E,过P作PO⊥平面ABC,交平面ABC于O,连结OD,OC,则PD=PE∴CD=CE=OD=OE1,∴PO.∴P到平面ABC2.(2018年)已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()A.πB.12πC.D.10π【答案】B【解析】设圆柱的底面直径为2R,则高为2R,圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,可得:4R2=8,解得R=,则该圆柱的表面积为2π⨯⨯+⨯=12π.故选B.23.(2018年)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A .B .C .3D .2【答案】B【解析】由题意可知几何体是圆柱,底面周长16,高为2,直观图以及侧面展开图如图:圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为=B .4.(2018年)在长方体ABCD ﹣A 1B 1C 1D 1中,AB =BC =2,AC 1与平面BB 1C 1C 所成的角为30°,则该长方体的体积为( )A .8B .C .D .【答案】C【解析】长方体ABCD ﹣A 1B 1C 1D 1中,AB =BC =2,AC 1与平面BB 1C 1C 所成的角为30°,即∠AC 1B =30°,可得BC 1=tan 30AB=BB 12×2⨯选C .5.(2017年)如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()A.B.C.D.【答案】A【解析】对于选项B,由于AB∥MQ,结合线面平行判定定理可知B不满足题意;对于选项C,由于AB∥MQ,结合线面平行判定定理可知C不满足题意;对于选项D,由于AB∥NQ,结合线面平行判定定理可知D不满足题意;所以选项A满足题意.故选A.6.(2017年)已知三棱锥S﹣ABC的所有顶点都在球O的球面上,SC是球O的直径.若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S﹣ABC的体积为9,则球O的表面积为.【答案】36π【解析】三棱锥S﹣ABC的所有顶点都在球O的球面上,SC是球O的直径,若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S﹣ABC的体积为9,可知三角形SBC与三角形SAC都是等腰直角三角形,设球的半径为r,可得112932r r r⨯⨯⨯⨯=,解得r=3.球O的表面积为4πr2=36π.7.(2016年)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是()A .17πB .18πC .20πD .28π【答案】A【解析】由题意可知三视图复原的几何体是一个球去掉18后的几何体,如图,可得:37428R 833ππ⨯=,R =2.它的表面积是227342284ππ⨯⨯+⨯⨯=17π.故选A .8.(2016年)平面α过正方体ABCD ﹣A 1B 1C 1D 1的顶点A ,α∥平面CB 1D 1,α∩平面ABCD =m ,α∩平面ABB 1A 1=n ,则m 、n 所成角的正弦值为( )A .2B .2C .3D .13【答案】A【解析】如图,α∥平面CB 1D 1,α∩平面ABCD =m ,α∩平面ABA 1B 1=n ,可知:n ∥CD 1,m ∥B 1D 1,∵△CB 1D 1是正三角形.m 、n 所成角就是∠CD 1B 1=60°.则m 、n A .9.(2015年)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:”今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?“其意思为:”在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?“已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛【答案】B【解析】设圆锥的底面半径为r ,则2πr =8,解得r =16π,故米堆的体积为21116543ππ⎛⎫⨯⨯⨯⨯ ⎪⎝⎭≈3209,∵1斛米的体积约为1.62立方,∴3209÷1.62≈22,故选B . 10.(2015年)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r =( )A .1B .2C .4D .8【答案】【解析】由几何体三视图中的正视图和俯视图可知,截圆柱的平面过圆柱的轴线,该几何体是一个半球拼接半个圆柱,∴其表面积为:12×4πr 2+12×πr 212+⨯2r ×2πr +2r ×2r +12×πr 2=5πr 2+4r 2,又∵该几何体的表面积为16+20π,∴5πr 2+4r 2=16+20π,解得r =2,故选B .11.(2014年)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱【答案】D【解析】根据几何体的三视图,可知几何体是三棱柱,如图.故选B.12.(2013年)某几何体的三视图如图所示,则该几何体的体积为()A.16+8πB.8+8πC.16+16πD.8+16π【答案】A【解析】三视图复原的几何体是一个长方体与半个圆柱的组合体,如图,其中长方体长、宽、高分别是4,2,2,半个圆柱的底面半径为2,母线长为4.∴长方体的体积=4×2×2=16,半个圆柱的体积=12×22×π×4=8π,所以这个几何体的体积是16+8π,故选A.13.(2013年)已知H是球O的直径AB上一点,AH:HB=1:2,AB⊥平面α,H为垂足,α截球O所得截面的面积为π,则球O的表面积为.【答案】9 2π【解析】设球的半径为R,∵AH:HB=1:2,∴平面α与球心的距离为13R,∵α截球O所得截面的面积为π,∴d=13R时,r=1,故由R2=r2+d2得R2=12+(13R)2,∴R2=98,∴球的表面积S=4πR2=92π.14.(2012年)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6 B.9 C.12 D.18【答案】B【解析】该几何体是三棱锥,底面是俯视图,三棱锥的高为3,底面三角形斜边长为6,高为3的等腰直角三角形,此几何体的体积为V =13×12×6×3×3=9.故选B .15.(2012年)平面α截球O 的球面所得圆的半径为1,球心O 到平面α,则此球的体积为( )A πB .C .D .【答案】B【解析】因为平面α截球O 的球面所得圆的半径为1,球心O 到平面α,所以球的半径为343π⨯=.故选B .16.(2011年)在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为( )A .B .C .D .【答案】D【解析】由俯视图和正视图可以得到几何体是一个简单的组合体,是由一个三棱锥和被轴截面截开的半个圆锥组成,∴侧视图是一个中间有分界线的三角形,故选D .17.(2011年)已知两个圆锥有公共底面,且两个圆锥的顶点和底面的圆周都在同一个球面上,若圆锥底面面积是这个球面面积的316,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为 . 【答案】13【解析】不妨设球的半径为4,球的表面积为64π,圆锥的底面积为12π,圆锥的底面半径为何体的特征知球心到圆锥底面的距离,求的半径以及圆锥底面的半径三者可以构成一个直角三角形,由此2=,所以圆锥体积较小者的高为4﹣2=2,同理可得圆锥体积较大者的高为4+2=6,所以这两个圆锥中,体积较小者的高与体积较大者的高的比值为13. 18.(2010年)设长方体的长、宽、高分别为2a 、a 、a ,其顶点都在一个球面上,则该球的表面积为( )A.3πa2B.6πa2C.12πa2D.24πa2【答案】B【解析】根据题意球的半径R满足(2R)2=6a2,所以S球=4πR2=6πa2.故选B.19.(2010年)一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的(填入所有可能的几何体前的编号)①三棱锥②四棱锥③三棱柱④四棱柱⑤圆锥⑥圆柱.【答案】①②③⑤【解析】一个几何体的正视图为一个三角形,显然①②⑤正确;③是三棱柱放倒时也正确;④⑥不论怎样放置正视图都不会是三角形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010年高考数学试题分类汇编——立体几何(2010浙江理数)(6)设l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是 (A )若l m ⊥,m α⊂,则l α⊥ (B )若l α⊥,l m //,则m α⊥ (C )若l α//,m α⊂,则l m // (D )若l α//,m α//,则l m //解析:选B ,可对选项进行逐个检查。
本题主要考察了立体几何中线面之间的位置关系及其中的公理和判定定理,也蕴含了对定理公理综合运用能力的考察,属中档题(2010全国卷2理数)(11)与正方体1111ABCD A B C D -的三条棱AB 、1CC 、11A D 所在直线的距离相等的点(A )有且只有1个 (B )有且只有2个 (C )有且只有3个 (D )有无数个 【答案】D 【解析】直线上取一点,分别作垂直于于则分别作,垂足分别为M ,N ,Q ,连PM ,PN ,PQ ,由三垂线定理可得,PN ⊥PM ⊥;PQ ⊥AB ,由于正方体中各个表面、对等角全等,所以,∴PM=PN=PQ ,即P 到三条棱AB 、CC 1、A 1D 1.所在直线的距离相等所以有无穷多点满足条件,故选D.(2010全国卷2理数)(9)已知正四棱锥S ABCD -中,23SA =,那么当该棱锥的体积最大时,它的高为(A )1 (B )3 (C )2 (D )3 【答案】C【命题意图】本试题主要考察椎体的体积,考察告辞函数的最值问题.【解析】设底面边长为a ,则高所以体积,设,则,当y 取最值时,,解得a=0或a=4时,体积最大,此时,故选C.(2010陕西文数) 8.若某空间几何体的三视图如图所示,则该几何体的体积是 [B](A )2 (B )1(C )23(D )13解析:本题考查立体图形三视图及体积公式 如图,该立体图形为直三棱柱 所以其体积为122121=⨯⨯⨯(2010辽宁文数)(11)已知,,,S A B C 是球O 表面上的点,SA ABC ⊥平面,AB BC ⊥,1SA AB ==,2BC =,则球O 的表面积等于(A )4π (B )3π (C )2π (D )π解析:选A.由已知,球O 的直径为22R SC ==,∴表面积为244.R ππ=(2010辽宁理数)(12) (12)有四根长都为2的直铁条,若再选两根长都为a 的直铁条,使这六根铁条端点处相连能够焊接成一个三棱锥形的铁架,则a 的取值范围是(A)(0,62+) (B)(1,22) (C) (62-,62+) (D) (0,22)【答案】A【命题立意】本题考查了学生的空间想象能力以及灵活运用知识解决数学问题的能力。
【解析】根据条件,四根长为2的直铁条与两根长为a 的直铁条要组成三棱镜形的铁架,有以下两种情况:(1)地面是边长为2的正三角形,三条侧棱长为2,a ,a ,如图,此时a 可以取最大值,可知AD=3,SD=21a -,则有21a -<2+3,即22843(62)a <+=+,即有a<62+221(2)构成三棱锥的两条对角线长为a ,其他各边长为2,如图所示,此时a>0; 综上分析可知a ∈(62(2010全国卷2文数)(11)与正方体ABCD —A 1B 1C 1D 1的三条棱AB 、CC 1、A 1D 1所在直线的距离相等的点(A )有且只有1个 (B )有且只有2个 (C )有且只有3个 (D )有无数个 【解析】D :本题考查了空间想象能力∵到三条两垂直的直线距离相等的点在以三条直线为轴,以正方体边长为半径的圆柱面上,∴三个圆柱面有无数个交点,(2010全国卷2文数)(8)已知三棱锥S ABC -中,底面ABC 为边长等于2的等边三角形,SA 垂直于底面ABC ,SA =3,那么直线AB 与平面SBC 所成角的正弦值为(A )3 (B) 5(C)74 (D) 34【解析】D :本题考查了立体几何的线与面、面与面位置关系及直线与平面所成角。
过A 作AE 垂直于BC 交BC 于E ,连结SE ,过A 作AF 垂直于SE 交SE 于F ,连BF ,∵正三角形ABC ,∴ E 为BC 中点,∵ BC ⊥AE ,SA ⊥BC ,∴ BC ⊥面SAE ,∴ BC ⊥AF ,AF ⊥SE ,∴ AF ⊥面SBC ,∵∠ABF 为直线AB 与面SBC 所成角,由正三角形边长3,∴ 3AE =AS=3,∴ SE=3AF=32,∴3sin 4ABF ∠=(2010江西理数)10.过正方体1111ABCD A B C D -的顶点A 作直线L ,使L 与棱AB ,AD ,1AA 所成的角都相等,这样的直线L 可以作 A.1条 B.2条 C.3条 D.4条【答案】D【解析】考查空间感和线线夹角的计算和判断,重点考查学生分类、ABCS EF划归转化的能力。
第一类:通过点A位于三条棱之间的直线有一条体对角线AC1,第二类:在图形外部和每条棱的外角和另2条棱夹角相等,有3条,合计4条。
(2010安徽文数)(9)一个几何体的三视图如图,该几何体的表面积是(A)372 (B)360(C)292 (D)2809.B【解析】该几何体由两个长方体组合而成,其表面积等于下面长方体的全面积加上面长方体的4个侧面积之和。
2(10810282)2(6882)360S=⨯+⨯+⨯+⨯+⨯=.【方法技巧】把三视图转化为直观图是解决问题的关键.又三视图很容易知道是两个长方体的组合体,画出直观图,得出各个棱的长度.把几何体的表面积转化为下面长方体的全面积加上面长方体的4个侧面积之和。
(2010重庆文数)(9)到两互相垂直的异面直线的距离相等的点(A)只有1个(B)恰有3个(C)恰有4个(D)有无穷多个解析:放在正方体中研究,显然,线段1OO、EF、FG、GH、HE的中点到两垂直异面直线AB、CD的距离都相等,所以排除A、B、C,选D亦可在四条侧棱上找到四个点到两垂直异面直线AB、CD的距离相等(2010浙江文数)(8)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是(A)3523cm 3(B)3203cm3(C)2243cm3(D)1603cm3解析:选B,本题主要考察了对三视图所表达示的空间几何体的识别以及几何体体积的计算,属容易题(2010山东文数)(4)在空间,下列命题正确的是A.平行直线的平行投影重合B.平行于同一直线的两个平面平行C.垂直于同一平面的两个平面平行D.垂直于同一平面的两条直线平行答案:DABCD-A B C D的棱长为(2010北京文数)(8)如图,正方体11112,A B上。
点Q是CD的中点,动点动点E、F在棱11A E=y(x,y大于零),P在棱AD上,若EF=1,DP=x,1则三棱锥P-EFQ的体积:(A)与x,y都有关;(B)与x,y都无关;(C)与x有关,与y无关;(D)与y有关,与x无关;答案:C(2010北京文数)(5)一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如右图所示,则该集合体的俯视图为:答案:CA B C D的棱长为2,(2010北京理数)(8)如图,正方体ABCD-1111A B上,动点P,Q分别在棱AD,CD上,若EF=1,动点E、F在棱11A E=x,DQ=y,DP=z(x,y,z大于零),则四面体PEF1Q的体积(A)与x,y,z都有关(B)与x有关,与y,z无关(C)与y有关,与x,z无关(D)与z有关,与x,y无关BCDAN MOα答案:D(2010北京理数)(3)一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如右图所示,则该几何体的俯视图为答案:C(2010四川理数)(11)半径为R 的球O 的直径AB 垂直于平面α,垂足为B , BCD V是平面α内边长为R 的正三角形,线段AC 、分别与球面交于点M ,N ,那么M 、N 两点间的球面距离是(A )17arccos25R (B )18arccos 25R (C )13R π (D )415R π 解析:由已知,AB =2R ,BC =R ,故tan ∠BAC =12cos ∠BAC =55连结OM ,则△OAM 为等腰三角形 AM =2AOcos ∠BAC 45,同理AN 45R ,且MN ∥CD 而AC 5,CD =R 故MN :CD =AN :AC⇒ MN =45R , 连结OM 、ON ,有OM =ON =R于是cos∠MON=22217225 OM ON MNOM ON+-=g所以M、N两点间的球面距离是17 arccos25 R答案:A(2010广东理数)6.如图1,△ABC为三角形,AA'//BB'//CC' ,CC'⊥平面ABC且3AA'=32BB'=CC'=AB,则多面体△ABC -A B C'''的正视图(也称主视图)是6.D.(2010广东文数)(2010福建文数)3.若一个底面是正三角形的三棱柱的正视图如图所示,则其侧面积...等于 ( )A3B.2C.23D.6【答案】DAB C DA 1B 1C 1D1O【解析】由正视图知:三棱柱是以底面边长为2,高为1的正三棱柱,所以底面积为244⨯⨯=3216⨯⨯=,选D . 【命题意图】本题考查立体几何中的三视图,考查同学们识图的能力、空间想象能力等基本能力。
(2010全国卷1文数)(12)已知在半径为2的球面上有A 、B、C 、D 四点,若AB=CD=2,则四面体ABCD的体积的最大值为 (A)3(B)3 (C) 312.B 【命题意图】本小题主要考查几何体的体积的计算、球的性质、异面直线的距离,通过球这个载体考查考生的空间想象能力及推理运算能力.【解析】过CD 作平面PCD ,使AB ⊥平面PCD,交AB 与P,设点P 到CD 的距离为h ,则有ABCD 11222323V h h =⨯⨯⨯⨯=四面体,当直径通过AB 与CD 的中点时,max h =故max 3V =(2010全国卷1文数)(9)正方体ABCD -1111A B C D 中,1BB 与平面1ACD 所成角的余弦值为 (A )(B(C )23(D 9.D 【命题意图】本小题主要考查正方体的性质、直线与平面所成的角、点到平面的距离的求法,利用等体积转化求出D 到平面AC 1D 的距离是解决本题的关键所在,这也是转化思想的具体体现.【解析1】因为BB 1//DD 1,所以B 1B 与平面AC 1D 所成角和DD 1与平面AC 1D 所成角相等,设DO ⊥平面AC 1D ,由等体积法得11D ACD D ACD V V --=,即111133ACD ACD S DO S DD ∆∆⋅=⋅.设DD 1=a,则122111sin 60)2222ACD S AC AD a ∆==⨯⨯=o g ,21122ACD S AD CD a ∆==g .所以1312333ACD ACD S DD DO a S a∆∆===g ,记DD 1与平面AC 1D 所成角为θ,则13sin 3DO DD θ==,所以6cos θ=. 【解析2】设上下底面的中心分别为1,O O ;1O O 与平面AC 1D 所成角就是B 1B 与平面AC 1D 所成角,111136cos 1/32O O O OD OD ∠===(2010全国卷1文数)(6)直三棱柱111ABC A B C -中,若90BAC ∠=︒,1AB AC AA ==,则异面直线1BA 与1AC 所成的角等于(A)30° (B)45°(C)60° (D)90°6.C 【命题意图】本小题主要考查直三棱柱111ABC A B C -的性质、异面直线所成的角、异面直线所成的角的求法.【解析】延长CA 到D ,使得AD AC =,则11ADAC 为平行四边形,1DA B ∠就是异面直线1BA 与1AC 所成的角,又三角形1A DB 为等边三角形,0160DA B ∴∠=(2010全国卷1理数)(12)已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为 (A)23 (B)43 (C) 23 (D) 83(2010全国卷1理数)(7)正方体ABCD-1111A B C D 中,B 1B 与平面AC 1D 所成角的余弦值为(A )23 (B )33 (C )23(D )63(2010四川文数)(12)半径为R的球O的直径AB垂直于平面a,垂足为B,BCD∆是平面a内边长为R的正三角形,线段AC、AD分别与球面交于点M、N,那么M、N两点间的球面距离是(A)17arccos25R(B)18arccos25R(C)13Rπ(D)415Rπ解析:由已知,AB=2R,BC=R,故tan∠BAC=1 2cos∠BAC=5 5连结OM,则△OAM为等腰三角形AM=2AOcos∠BAC=455R,同理AN=55R,且MN∥CD而AC5,CD=R 故MN:CD=AN:AC⇒MN=45 R,连结OM、ON,有OM=ON=R于是cos∠MON=22217225 OM ON MNOM ON+-=g所以M、N两点间的球面距离是17 arccos25 R答案:A(2010湖北文数)4.用a、b、c表示三条不同的直线,y表示平面,给出下列命题:①若a∥b,b∥c,则a∥c;②若a⊥b,b⊥c,则a⊥c;③若a∥y,b∥y,则a∥b;④若a⊥y,b⊥y,则a∥b.A. ①②B. ②③C. ①④D.③④(2010山东理数)(3)在空间,下列命题正确的是(A)平行直线的平行投影重合(B)平行于同一直线的两个平面平行(C)垂直于同一平面的两个平面平行(D)垂直于同一平面的两条直线平行【答案】D【解析】由空间直线与平面的位置关系及线面垂直与平行的判定与性质定理可以得出答案。